研究速報

速

 ${f w}$

形状記憶合金はりの超弾性挙動の有限要素解析

ーその2:引張挙動と圧縮挙動が非対称な場合--

Finite Element Analysis of Superlastic Behavior of Shape Memory Alloy Beam —Part 2: Asymmetric tension and compression behavior—

都 井

裕*・李

宗 儐*·田 谷

Yutaka TOI, Jong-Bin LEE and Minoru TAYA

1. 序

形状記憶合金はりの超弾性挙動の有限要素解析に関する 前報では,Brinsonの構成方程式¹⁾に基づいて,層分割法 Timoshenkoはり要素による増分形有限要素解析の定式化 を行ない,片持はりの引張および曲げ解析に適用した.圧 縮変形挙動は引張変形挙動と対称的と仮定した.

しかしながら一般には、圧縮変形挙動は引張変形挙動と 完全に対称的ではない.そこで本報では、変態臨界条件の 判定において、静水圧の影響を含む Drucker-Prager 型の相 当応力を用いることにより、形状記憶合金に対する Brinson の一次元構成方程式において引張挙動と圧縮挙動の相違を 考慮する.この拡張された構成方程式を用いて、Nitinol 合金(Ni₅₅Ti)製の片持はりの曲げ挙動およびNi-Ti-10%Cu 合金製の両端支持はりの4点曲げ挙動を解析し、後者につ いては Auricchoと Taylor による実験結果²⁾と比較すること により、解析法を検証する.

2. 構成方程式

Brinson が提案したマルテンサイト変態および逆変態過 程における形状記憶合金の構成方程式は

 $\sigma - \sigma_0 = E(\varepsilon - \varepsilon_0) + \Omega(\xi_s - \xi_{s0}) + \theta(T - T_0) \quad \cdots \cdots (1)$

のように記述される¹⁾. ここで, Eは縦弾性係数, Ω は変態テンソル, ξ_s は応力誘起によるマルテンサイト体積率, θ は熱弾性係数である. Ω とEはそれぞれ以下のように表される.

$\Omega = -\varepsilon_L E \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$E = E_a + \xi (E_m - E_a) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
ここに, ε_L は最大残留ひずみ, E_m はマルテンサイト相,
*東京大学生産技術研究所 人間・社会大部門

**ワシントン大学 知的材料システム研究センター

 $E_a はオーステナイト相の縦弾性係数である. 温度誘起に$ $よるマルテンサイト体積率を<math>\xi_i$ とすると、全マルテンサ イト体積率 ξ は

稔**

のように表される. ξ , ξ_s , ξ_i は温度Tと応力 σ の関数である.

ここで、 ξ , ξ_s , ξ_r の発展方程式を判別するための相当 応力として、Misesの相当応力 σ_e の代わりに次式を用いる ことにする.

ここに、 β は材料定数、pは静水圧であり、

と表わされる.形状記憶合金はりの超弾性変形挙動は垂直 応力のみに支配されると仮定すると,層分割法 Timoshenko はり要素においては,相当応力として次式が用いられる.

 $f = |\sigma| + \beta\sigma \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (7)$

ξ, ξ_s, ξ_tの発展方程式は、以下のように与えられる.

非双晶マルテンサイト相への変態過程

 $T \ge M_s$ および $\sigma_s^{cr} (1+\beta) + C_M (1+\beta) (T-M_s) < f < \sigma_f^{cr} \times (1+\beta) + C_M (1+\beta) (T-M_s) の場合:$

$$\xi_{s} = \frac{1 - \xi_{s0}}{2} \cos \left\{ \frac{\pi}{\sigma_{s}^{cr}(1+\beta) - \sigma_{f}^{cr}(1+\beta)} \left[f - \sigma_{f}^{cr} + (1+\beta) - C_{M}(1+\beta) (T - M_{s}) \right] + \frac{1 + \xi_{s0}}{2} \right\} \dots \dots (8)$$

HINE IN THE DEPENDENCE OF THE

$$_T > M_s$$
および σ_s^{cr} $(1+eta) < f < \sigma_f^{cr}$ $(1+eta)$ の場合:

ここに,

 $M_t < T < M_s$ および $T < T_0$ の時

その他の時は

オーステナイト相への変態過程

 $T > A_s$ そして C_A $(1+\beta)$ $(T-A_f) < f < C_A$ $(1+\beta)$ $(T-A_s)$ の場合:

ここに、 $C_M \& C_A$ は変態臨界応力と温度の関係における傾き、 $M_f \& M_s$ はマルテンサイト変態終了および開始温度、 $A_f \& A_s$ はオーステナイト変態終了および開始温度、 $\sigma_f^{cr} \& \sigma_s^{cr}$ はマルテンサイト変態終了および開始臨界応力である. $a_M \& a_A$ は次式のように定義される.

$$a_{M} = \frac{\pi}{M_{s} - M_{f}}, \quad a_{A} = \frac{\pi}{A_{f} - A_{s}} \quad \dots \quad \dots \quad \dots \quad \dots \quad (17)$$

ここで,

- $\sigma \ge 0$ の場合 $m = 1 + \beta$ $\sigma \le 0$ の場合 $m = 1 - \beta$
- とすると,接線剛性法による有限要素解析に用いる応力・ ひずみマトリックス [D] は,以下のように表現される.

非双晶マルテンサイト相への変態過程

 $T > M_s$ そして σ_s^{cr} $(1+\beta) + C_M (1+\beta) (T-M_s) < f < \sigma_f^{cr} \times (1+\beta) + C_M (1+\beta) (T-M_s)$ の場合:

$$[D_{t}] = \begin{bmatrix} \frac{E}{1 - E\varepsilon_{L} nm} & 0\\ 0 & G \end{bmatrix}$$

$$\sigma \ge 0$$
の場合 $\alpha_t = \alpha - \varepsilon_L n C_M (1 + \beta) \dots (18)$

$$\sigma \leq 0$$
の場合 $\alpha_t = \alpha + \varepsilon_L n C_M (1 + \beta)$

$$\begin{aligned} z \geq iz, \\ n &= \frac{1 - \xi_{s0}}{2} \sin\{\frac{\pi}{\sigma_s^{cr}(1+\beta) - \sigma_f^{cr}(1+\beta)} \\ &\times [f - \sigma_f^{cr}(1+\beta) - C_M(1+\beta)(T-M_s)]\} \\ &\times \frac{\pi}{\sigma_s^{cr}(1+\beta) - \sigma_f^{cr}(1+\beta)} \end{aligned}$$
(19)

$$z \geq kz,$$

$$n = \frac{1 - \xi_{s0}}{2} \sin\left|\frac{\pi}{\sigma_s^{cr}(1 + \beta) - \sigma_f^{cr}(1 + \beta)} + \sum_{s=1}^{\infty} \frac{\pi}{2}\right| \cdot \dots \cdot \dots \cdot (21)$$

$$\times [f - \sigma_f^{cr}(1 + \beta)] \left|\frac{1 - \xi_{s0}}{2}\right|$$

オーステナイト相への変態過程

 $T > A_s$ そして C_A (1+ β) ($T-A_f$) < $f < C_A$ (1+ β) ($T-A_s$) の場合:

$$[D_{\iota}] = \begin{bmatrix} \frac{C_{\iota}(1+\beta)E}{C_{\iota}(1+\beta) + E\varepsilon_{\iota}nm} & 0\\ 0 & G \end{bmatrix} \stackrel{\sigma \ge 0 \quad \mathcal{O} \ \ \mathcal{G} \ \ \mathcal{O} \ \ \mathcal{G} \$$

ここに,

その他の場合は

3. 有限要素解析

3.1 解析条件および材料定数

図1に示す Nitinol 合金 ($Ni_{55}Ti$) 製の片持はりの材料定数を表1に示す.温度条件は $T = 60 \ \mathbb{C}$ である.要素数, 層分割数はそれぞれ5要素,21層分割とした.

59

図2は、4点曲げを受けるNi-Ti-10%Cu合金製の円形 断面はりである.材料定数は実験による応力・ひずみ線図 から表1のように同定した.要素数等は6要素(図中に要 素番号を示す.)、21層分割である.

3.2 有限要素解析結果

図3は引張と圧縮挙動が対称的な場合、図4は非対称の 場合($\beta = 0.15$)の、Nitinol合金(Ni₅₅Ti)はりにおける 曲げ応力・ひずみ曲線である。図4の圧縮側においては、 図3よりも高い応力レベルで超弾性挙動が起こっているこ とがわかる。

Ni-Ti-10% Cu 合金はりの四点曲げ解析においては, Taylorらによる引張実験結果²⁾から表2に示すように材料 定数を決定した.引張と圧縮挙動が非対称な場合は, $\beta =$ 0.15を仮定している²⁾.決定した応力・ひずみ曲線と実験 結果を図5に示す.この材料定数を用いてNi-Ti-10% Cu 合金はりの四点曲げ挙動を解析した結果の荷重・変位曲線 が図6である.本解析結果はTaylorらの実験結果²⁾と良好 に一致していることが確認できる.図7は,Ni-Ti-10% Cu 合金はりの四点曲げ解析において,引張挙動と圧縮挙動を

Fig. 1 Nitinol alloy $(Ni_{55}Ti)$ beam

Table 1 Material constants of Nitinol alloy

対称と仮定した場合と非対称と仮定した場合の荷重・変位 曲線の比較である。両者ともに引張試験結果と合うように 構成方程式におけるパラメータを決定しているが,引張と 圧縮挙動が対称的な場合は過大な変位が計算されている。 図8は,最大荷重時における各要素内の応力分布とひずみ

Fig. 3 Stress-strain curve in a Nitinol alloy beam ($\beta = 0$)

Fig. 4 Stress-strain curve in a Nitinol alloy beam ($\beta = 0.15$)

Table 2 Material constants of Ni-Ti-10 % Cu alloy

$E_{a}=60 \times 10^{3} \text{Mpa} \qquad M_{f}=T_{0}-72. \ 5^{\circ} \text{C} \qquad C_{a}=8 \text{ MPa}/^{\circ} \text{C} \\ \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \qquad \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \\ \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \qquad \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \\ \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \qquad \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \\ \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \qquad \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{C} \\ \mathcal{C}_{a}=13.8 \text{ MPa}/^{\circ} \text{MPa} \\ \mathcal{C}_{a}=10.0 \text{ MPa} \\ \mathcal{C}_{a}=10.0 M$		Modulus	Transformation temperatures	Transformation constants	Maximum residual strain
$ \begin{array}{c} 700 \\ 600 \\ 500 \\ 700 $	$E_{a}=E_{a}=$ θ	=60×10³Mpa =20×10³Mpa =0.55MPa/℃ β=0.15	$M_{f} = T_{0} - 72. 5^{\circ}C$ $M_{s} = T_{0} - 52. 5^{\circ}C$ $A_{s} = T_{0} - 21. 7^{\circ}C$ $A_{f} = T_{0} - 14. 5^{\circ}C$	\overline{C}_{N} =8 MPa/°C C_{A} =13.8 MPa/°C σ_{s}^{cr} =100 MPa σ_{f}^{cr} =180 MPa	ε _ι =0.067
Strain(x10 ⁻⁵) Strain(x10 ⁻⁵) (a) Clamped, lower end (b) Clamped, upper end	ou coo Miray	700 600 500 400 300 200 0 0 0 100 0 0 1 2 0		700 500 500 500 500 500 500 500 500 500	
(a) Clamped, lower end (b) Clamped, upper end	Strain(x10 ⁻²)		Strain(x10 ⁻²)		
	((a) Clampe	d, lower end	(b) Clamped, upper end	

分布である.各要素において上縁が圧縮,下縁が引張状態 にある.はり要素を使用しているため必然的に,ひずみ分 布は直線状である.応力分布より,要素1と6においては 未だマルテンサイト変態が起きていないが,要素3と4の 下縁ではすでにマルテンサイト変態が終了していおり,上 縁ではマルテンサイト変態が進行していることがわかる.

4. 結 論

Brinsonによる形状記憶合金の1次元構成式を,非対称 な引張・圧縮挙動に拡張し,片持はりおよび4点曲げを受 ける支持はりの有限要素解析に適用した.定温下の形状記 憶合金はりの曲げ変形挙動が良好にシミュレートされ,後 者はTaylorらによる実験結果とも良好に一致した. (2001年3月8日受理)

参考文献

- L.C. Brinson: One-Dimensional Constitutive Behavior of Shape Memory Alloy: Thermomechanical derivation with Non-Constant material Functions and Redefined Martensite Internal Variable, J. of Intell. Mater. Syst. and Struct., Vol.4, April (1993), pp.229–242
- F. Auricchiro and R.L. Taylor: Shape-memory alloys:modeling and numerical simulations of the finite-strain superelastic behavior, Comput. methods Appl. Engrg. Vol. 143, (1997), pp. 175–194.