53 巻 11 · 12 号 (2001.11)

生産研究 615

研究速報

ハイパースペクトルリモートセンシングによる コンクリート劣化評価手法の検討

Application of Hyper Spectrum Remote Sensing for Assessment of Deteriorated Concrete

有田

淳*・遠 藤 貴 宏*・奥 山 康 二*・越 智 士 郎*・安 岡 善 文* Jun ARITA, Takahiro ENDO, Koji OKUYAMA, Shiro OCHI and Yoshifumi YASUOKA

1. はじめに

山陽新幹線の高架橋やトンネルにおける相次ぐコンクリ ートの剥落事故が起こったのを機に、コンクリートの劣化 評価およびその維持管理への要望が高まっている¹¹.筆者 らは、劣化コンクリートの非破壊・非接触検査手法として、 ハイパースペクトルリモートセンシングに着目し、その可 能性を検討している.

一般に、2~20チャンネルの観測波長帯数をもつセン サをマルチスペクトルセンサ、20チャンネル以上の波長 帯数を持つものをハイパースペクトルセンサと呼んでい る.近年,波長分解能の高いセンサ(ハイパースペクトル センサ)が開発され、可視・近赤外・短波長赤外域(400 ~2500 nm)の波長域で波長分解能10 nm(波長帯の数は 200~300チャンネル)程度で対象のスペクトル特性を連 続的に観測できるようになった.これにより、これまで判 別できなかった対象物の構成成分のスペクトル特性を計測 できるようになった.しかし、現在のところ、岩石や鉱物、 あるいは一部の農産物や植物については、スペクトル特性 と構成化学物質との関係が明らかになっているが^{23,4)}、コ ンクリートの劣化に伴うスペクトル特性の変化を分析した 研究はまったくされていないのが現状である.

本研究では、中性化劣化(コンクリート表面の水酸化カ ルシウムと二酸化炭素の反応による劣化)したコンクリー トを対象に、そのスペクトル特性を分析し、さらに、劣化 の進行度合いを推定する手法を提案する.

2. 実験装置

本研究では、ハイパースペクトルセンサとして、 GER 2600(GER 社製)を使用した.計測波長範囲は、紫外 域の一部(350~400 nm),可視域(400~700 nm),近赤

*東京大学生産技術研究所 都市基盤安全工学国際研究センター

外域 (700~1300 nm), 短波長赤外域の一部 (1300~2500 nm) で. 合計 585 チャンネルで構成される.

対象物のスペクトル特性の計測は暗室において行った. 光源には、室内実験で一般的に用いられるタングステンラ ンプを使用し、光量が一定になるように調整した.光源か らの光が対象物に45度の角度で入射するように、また、 対象物表面からセンサに接続された光ファイバーケーブル までの距離は常に4cmとなるように、対象物と光源の下 に昇降台を設置し、自由に高さを調節できるようにした.

3. 測定結果と考察

3.1 非劣化コンクリートのスペクトル特性

コンクリート表面は見た目にはほぼ一様に見えるが,内 部の骨材の位置が異なるため,コンクリート表面の場所に よって,スペクトル特性に違いが出る可能性がある.そこ で,水セメント比が55%の標準的な配合のコンクリート を対象とし,表面を9ヶ所に分けて,それぞれの場所にお けるスペクトル特性をハイパースペクトルメーターを用い て計測した.

図1は9ヶ所で測定した分光反射率である.場所ごとに 反射率(明るさ)は異なるものの,その形状は類似してお

り,一次微分をとることで,オフセットを除くことにした. 図2は、9ヵ所計測したコンクリート表面のスペクトル特 性の一次微分である.どの波長域においても傾きが一致し ていることがわかり,図1の分光反射率のグラフに見られ る1400 nm 付近と1900 nm 付近の吸収ピークの位置もほぼ 一致していることがわかる.この結果から,コンクリート 表面の分光反射率は,場所によってばらつくが,対象物の 持つ固有のスペクトル特性(形状)は一致することがわか った.分光反射率の値が上下にばらつく原因としては,表 面の色,明るさなどが考えられる.このばらつきは,一次 微分することで解消できることが判明した.

3.2 劣化コンクリートのスペクトル特性

中性化、塩害、化学的腐食(硫酸劣化)によって劣化し

図2 コンクリート表面の場所の違いによる一次微分スペクトル

たコンクリートは、表面で化学変化を起こしており、正常 なコンクリートと比べてスペクトル特性に変化が現れるも のと予想される.模擬的な劣化コンクリートを準備し、そ のスペクトル特性から、「劣化度」を推定するモデルの説 明変数となる特徴波長を導いた.本稿では、中性化劣化の みの実験結果を示す.

サンプルとして,水セメント比40%のセメントペース ト(A),水セメント比55%のセメントペースト(B)の2 種類を用意し,それぞれを二酸化炭素濃度10%に保った 中性化曹に放置し,人工的に劣化を施した.サンプルは1 週間隔で中性化曹から取り出し,ハイパースペクトルメー ターを用いて表面分光特性の計測を行った.

図3に中性化曹で4週間人工劣化させたセメントペース トA,Bの分光反射率の1週間毎の計測結果を示す.どち らも、分光反射率がわずかながら変化している.水セメン ト比の小さいAの方が、変化の割合が大きいこともわか る.しかし、分光反射率だけでは、週によって上下動があ るために、どの波長域にスペクトルの変化が生じているか を正確に分析することはできなかった.そこで、図4に示 すように、一次微分スペクトルを用いて、各波長における 一次微分の値と劣化日数との相関分析を行った.

図4より,劣化日数と高い相関が現れたのは,Aにおいては,450 nm ~ 700 nm,1470 nm ~ 1570 nm,1920 nm 付近,2250 nm 付近で,Bでは,450 nm ~ 700 nm,1380 nm

53巻11・12号(2001.11)

研, 1999, 199 究 速 報

付近, 1470 nm 付近, 1650 nm ~ 1830 nm, 1930 nm 付近. 2200 nm 付近, 2330 nm 付近であった.相関係数の値に違 いがあるものの相関が高く出る波長域は、水セメント比に よらず,ほぼ一定であることがわかった.このことより. 物理的意味を以下のように考察した:

· 450 nm 付近: 可視域であることから. 劣化に伴って生 成される炭酸カルシウムにより, コンクリート表面が白っ ぼくなってくることに起因すると考えられる.

・1470 nm 付近:この波長域は、コンクリートの吸収ピー クの極小点付近であり、劣化に伴って生成される炭酸カル シウムのスペクトル特性により、この吸収ピークが小さく なることに起因すると考えられる.

・1900 nm 付近:この波長域もコンクリートの吸収ピーク の極小点付近であり,劣化に伴って生成される炭酸カルシ ウムのスペクトル特性により、この吸収ピークが小さくな ることに起因すると考えられる.

· 2200 nm 付近:劣化に伴って生成される炭酸カルシウム のスペクトル特性により、2300 nm 付近に新たな吸収ピー クが生じることに起因すると考えられる。2300 nm 付近は C-O 共有結合の吸収ピークでもある.

これらの特徴波長域は、各劣化において異なっているた め、あるコンクリートの特徴波長域におけるスペクトル特 性を正常なコンクリートのそれと比較することで、そのコ ンクリートがどのような劣化を受けているのかを容易に判 断することができると考えられる.また,複数の劣化が同 時に起こっている際にも、各劣化における独立した特徴波 長域におけるスペクトル特性から、劣化種類を判断するこ とは可能であると考えられる.

4. 劣化度診断モデルの構築

前章の結果を踏まえ、中性化の深さを指標とする劣化度 を推定するため、以下の実験を実施した。

10 cm × 10 cm × 12 cm の大きさのサンプルを、二酸化炭 素濃度10%,湿度55%に保った中性化曹に入れ、人工的 に劣化を施す.このサンプルの表面スペクトル特性を1週 間おきにハイパースペクトルメーターを用いて計測する. 表面スペクトル特性の計測が終わったサンプルは、 圧縮試 験機で割裂し、中性化深さの計測を行った. 中性化深さの 計測は、フェノールフタレインを割裂面に噴霧し、赤色に 着色しない部分、すなわち、中性化された部分の表面から の距離を計測した.

図5に各週における中性化深さの結果を示す.中性化深 さは、4週目あたりまでは劣化の進行が速く、9週目を過 ぎるとしだいに収束してくる.

図6にハイパースペクトルメーターを用いて計測したコ

ンクリート表面の分光反射率12週分の結果を示す.

分光反射率は、どの波長においても20%近くばらつい ており、1週目から12週目までの傾向はこの図からはつ かめない. 図7に図6に示したスペクトル特性の各波長に おける傾きを表す一次微分スペクトルを示す.

図7の一次微分スペクトルは、各波長における傾きを示 している. 一次微分スペクトルの値が負から正に変わる波 長が、吸収ピークの極小値を与える波長である、コンクリ ートには、1450 nm 付近と 1950 nm 付近に顕著な吸収ピー クが存在するが、その吸収ピークにおける傾きが、劣化が 進行するにつれて緩やかになることがわかる. さらに、各 波長において,中性化深さと一次微分スペクトル値の相関

85

研	究	速	報				
を調・	べた.			パラメーター推定の結果,	440 nm,	1500 nm,	2341 nm に

図8より,440 nm付近,1393 nm付近,1500 nm付近, 1930 nm付近,2127 nm付近,2341 nm付近で相関性が強 くなっている.この結果は,前章で示した中性化セメント ペーストの結果とよく一致している.

この分析結果より,中性化コンクリートの特徴波長域は, 440 nm付近,1393 nm付近,1500 nm付近,1930 nm付近, 2127 nm付近,2340 nm付近の6波長領域であると判断で きる.ハイパースペクトルメーターのバンド幅が約12 nm であるから,各特長波長域から,5バンドずつ選定し,計 30 バンドの特徴波長における一次微分値を説明変数とし て抽出した.

これらの説明変数を用いて,式(5.1)に示す式により, 線形回帰分析を行った^{5,6)}.

 $H_t = aX'_{\lambda_1} + bX'_{\lambda_2} + cX'_{\lambda_3} + d \cdots \vec{x}$ (5.1) H_t :中性化深さ a, b, c, d :パラメーター λ_i :特徴波長 X'_{λ_i} :特徴波長における一次微分値

波長(nm) 図8 中性化深さと一次微分スペクトル値の相関

パラメーター推定の結果,440 nm,1500 nm,2341 nmに おける一次微分値が説明変数として,有意であると判定さ れた⁷⁾.各変数どうしの相関をしらべたところ,いずれも 相関係数が0.5以下であったので,独立変数であるといえ る.このモデル式を用いて,中性化深さの実測値と推定値 を比較した⁸⁾結果を図9に示す.相関係数は0.898,決定 係数は0.807 であり,よい精度で推定できているといえ る.

5. 結 論

本研究の成果を以下に示す.

- コンクリート表面のスペクトル特性は、計測する場所 によってばらつきがあるが、一次微分などの処理をす ることによってスペクトルが一致することから、配合 が同じであれば上下に平行移動しているだけであるこ とがわかった。
- 2) 中性化コンクリートは450 nm付近,1470 nm付近, 1900 nm付近,2200 nm付近に特徴的な波長域があり, その波長域における分光反射率の一次微分値を比較す ることで,他の劣化と種類を判別できることがわかった.
- 3)中性化劣化において、特徴波長域における一次微分値 を入力変数として、中性化深さを出力変数とする再現 性の高いモデルを構築することができた.同様のモデ ルは塩害劣化コンクリートにも適用できた.

辞

本研究は、(社) セメント協会公募研究の一環として実施した. また、本研究の実施においては、本研究所魚本健人教授から貴重 な助言を頂た.ここに関係各位に記して感謝の意を表する.

謝

(2001年10月11日受理)

参考文献

- 1) 小林一輔,「コンクリートが危ない」, 岩波新書, 1999.
- 2) 岩元睦夫他,「近赤外線分光入門」,幸出版, 1998.
- 3) 遠藤貴宏, "ハイパースペクトルリモートセンシングによる 陸域生態系パラメータの計測に関する研究",東京大学修士 論文,2000.
- 金属鉱業事業団,「平成11年度資源衛星データ解析技術開発調査報告書」, pp. 8–87, 1999.
- 5) 石村貞夫,「すぐわかる統計処理」,東京図書, pp. 76-97, 1994.
- 杉原敏夫,藤田渉著,「多変量解析」,牧野書店, pp. 1-39, 1998.
- 長谷川勝也,「確率・統計のしくみがわかる本」,技術評論 社, pp. 341–343, 1994.
- 8) 松原望,「統計学入門」,東京大学出版会, pp. 47-57, 1991.