
CD
"" ""

A Reflective Object-Oriented Concurrent Language
for Distributed Environments

Q)

A Reflective Object-Oriented Concurrent Language
for Distributed Environments

A Reflective Object-Oriented Concurrent

Language for Distributed Environments

Doctor Thesis by

Yuuji Ichisugi

Submitted to Department of Information Science

Faculty of Science

The University of Tokyo

on Mar 25 , 1993

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Science

Abstract

ln a computational system, reflection is the process of reasoning about and acting

upon the computational system itself. Reflection is a scheme that r<'alizf's highly flf'x ­

ible and malleable systems . A reflective system can manipulat<' data caiiC'd Cn.u8ally­

Connected Self Represenlation(CCSR) that represents lhe current still<' of it s own

computation. In a reflective system, the user program can manipulate its C'C'SR in

order to change the future course of its computation. The user ran define new lan­

guage features or change the rep resentation of data structures of the languag<" within

the same language framework. Th is thesis proposes a reflective object-oriented con­

current language RbC I wh ich has no run-time kernel. All the behavior of RbCI <"Xcept

for what is restricted by the operating system and hardware can be modifi<'d/extcnded

by the user. RbCl runs effic iently in a distributed environment and is intended for

practical use. The execution of an RbCI program is performed by a mdasyslf1n that

consists of meta/eve/ objects. All the features of RbCI including roncu!T<'nt <'X<'rution,

inter-node communication, and even reflective facilities themselves are realized by the

metalevel objects , which arc modifiable and extensible. Important mctalevel objects

are called system objects, that arc registered in system object tables . The user ca.n

change the behavior of the metasystem by replacing elements of system object tables

wit h user-defined objects . RbCI a.lso provides a. novel feature called linguistic sym­

b·iosis for metalevel objects. All the metalevel objects in the initia l RbCI metasystem

are actually C++ objects, but the linguistic symbiosis enables the user to manipulate

meta.level C++ objects just a.s ordinary RbCI objects. Even reflective schemes and

facilities themselves are rea lized by system objects that ca.n be modifi<"'d/extended

by the user. Therefore, debugging of reflective programs a.nd experiments on refl ec­

tive schemes and facilities can be expressed and performed within the RbCI language

framework.

Acknowledgments

I am gratefu l to Professor Akinori Yonezawa for serving as my thesis su pervisor.

wou ld like thank him for so many hours he spared for having technical discussions

and Leaching me how to write papers.

I would a lso like to thank Satoshi Matsuoka, Takuo Watanabe. l lidchiko i\lasuhara

and Masahiro Yasugi for their numerous helpful advices and discussions about com­

putational reflection.

I wish also thank for Professor Kci Hiraki. Yutaka Ishikawa and ll idcaki Okamura

for their invaluable ad vices and help th rough discussions.

F inally, I thank the members of Yonczawa Laboratory for the useful suggestions

a nd the encouragements.

Contents

1 Introduction

1.1 Background

J .2 Previous Work

1.3 Motivations

1.4 Research Contribut ions .

1.5 Possible Applications of the Reflective Capability

1.6 Tbesis Flow

2 Language RbCl

2.1 Plain RbCI

2.1.1 Objects

Message Send ing 2.1.2

2.1.3

2.1.4

2.1.5

Linguistic Symbios is

System Object Tables

Inter-Node Communication

2.2 Execution environments . ..

2.2.1 Machine Architectures

2.2.2 RbCI Nodes .

2.2.3 Front-End Processor

2.2.4 Execution of Programs

2.2.5 1/0 .

3 Reflection in RbCl

2

6

6

8

10

11

13

14

15

15

15

16

18

18

20

22

22

22

22

23

23

24

3.1 Baselevel and Metalevcl 24

3.2 Manipulating the Metasystem 26

3.3 Characteristics of the Metasystem 27

3.3.1 Kernel-less System 27

3.3 .2 Dynamic Creation of Metalevel Objects . 30

3.3.3 Different ia l Programming ;)j

4 Metasystem 33

4.1 First Class Data. 31

4.2 Scheduling . 36

4.2.1 Scheduler and Active Queue 36

4.2.2 Changing Scheduling Policy 36

4.3 In ter-node Commun ication 37

4.3.1 Three Layers 37

4.3.2 Network Manager 38

4.3 .3 Read/ Write Connections :)9

4.3.4 Connection Request Handlers 39

4.3.5 Encoding/ Decoding 40
4.3.6 Changing In ter-Node Communication Protocols 40

4.4 Reflective Tower . . 42

4.4.1 The Infinite Tower of Direct Implementation 44

4.4.2 Level Manager 46

4.4.3 Mechanism for Reflection . 47

4.4.4 Generating the Meta Meta System 47

4.4.5 Examples of Modifying the Reflective Scheme 48
4.5 Realization of Lingui st ic Symbiosis 52
4.6 Garbage Collection 55

4.6.1 Garbage Collect ion and Finalizat ion 55
4.6.2 Changing Garbage Collection Scheme . 55

3

5 Performance Evaluation 57

5.1 C urrent Stat us o f Implementat io n 57

5.2 Overhead of Non-Renect ive Execution 57

5.3 O verhead of Refl ect ive Execut ion 58

5.4 P e rformance Im provement Using Re fl ective Program ming 58

6 Conclusions 60

A Examples Programs in RbCI 66

A.l Non -refl ective Programs 66
A.l.l Prime num bers 66
A.l.2 Lin guist ic Symbios is 67

A.l.3 Coroutine Libraries 67
A.l.4 Finalizat ion 69
A.l. 5 Remote Message Sending . 70

A.l.6 Startup Scheduling 71

A.2 Reflecti ve Programs . 72
A.2.1 Meta- la mbda 72

A.2 .2 System O bject Ta bles 72

A.2.3 Extending Objects 73

A.2.4 Extending Cons Genera tors 73

A.2.5 Ext ending Port Genera tor 7.5

A.2.6 Changing Scheduling Policy 77

A.3 E xtending Refl ecti ve Facili t ies 80

A.3.1 Extending In termedia te Pointers . 80

A.3.2 Extending a Level Ma nager 82

A.3.3 E xtending a ll Level Managers 84

B Rscheme 89

List of Figures

2.1 An object definition of RbCl.

2.2 Each level of each node has its own system object lablc.

2.3 System object tab le.

2.4 System objects in plain RbCl.

3.1 The baselevel and the metalevcl in RbCI.

3.2 The user can replace al l system objects.

3.3 Language systems with/without run-time kernels.

3.4 The delegation mechanism of metalevel objects.

4.1 The encoder and the decoder of cons cells .

4.2 The infinite tower of the direct implementation.

4.3 An interpreted reAect ive tower and (meta)w level.

4.4 A tower interpreter in RbCI. .

4.5 Implementat ion of tbe linguistic symbiosis.

4.6 The language boundary and intermediate pointers .

5

17

18

19

21

25

2.5

28

32

41

43

49

51

53

54

Chapter 1

Introduction

1.1 Background

RecenLiy, object-oriented languages are recognized its usefulness and widely spread.

Also, research on distributed concurrent languages becomes very active in ordrr to

make full use of network environments, or to improve performance or application s.

Usual ly, systems for object-oriented languages and concurrent languages contain

many 1·un-time routines. For example, many object-ori ented languages have run ­

time routines such as dynamic memory management and class systems. Distributed

concur rent languages should have run-time routines which support many facilities

such as sched uling and inter-node communications.

The behaviors of the run-time rou t ines affect t he efficiency of program execution.

For example, a schedu ling based on some priority scheme may improve performance

rather than the schedu ling using a simple FIFO queue. It is, however , impossible

to decide t he best su ited execut ion policy of run-time routines before execution. In

some traditional systems, run-time rou tines are designed to be customizable in re­

stricted manner (e.g ., changing parameters). ln distributed concurrent languitg<'s . the

customization with a restricted manner is not adequate because they have to accom­

modate to various app lications and execution environments . ConsequenLiy, flexible

language systems are required whose run-time routines arc easil y custornizable with

6

fewer restriction 1
.

On the other hand, researchers of programming langue.ges also require flC'xible

language systems that can be used as a pl atform of research for languagc facilities

and implementat ion techniques. Suppose that a researcher wants to make an experi­

ment with a new distributed garbage collection algori thm. H there a re no platforms

for the experiment, t he researcher must implement an almost completc distributed

language sys tem, or analize a. huge amount of the source code of an ex ist ing la nguage

system to incorporate the new algorithm into it. lf t herc is a language system whose

implementation is modular, well documented and in teract ively modifiable, thc pains

for t he experiment will be dramaticall y reduced .

R efl ect ion is a scheme that allows us to realize such a highly fl ex ible and malleable

system. In a computational system, re fl ect ion is the process of reasoning about and

acting upon the compu tational sys tem itse lf [20, 13 , 28]. A refl ect ive syslrnJ can

manipulate data called Causally-Connected Self Rqn-esentalion(CCS R)[13] that rep­

resents the current state of its own computat ion. Refl ect ive systems maintain causal ly

connect ion between CCSR and actua l status of computation. In other words, whrn

CCSR is mod ified, the actual status of computation is a lso modified at the same

time. In a reflective system, the user program can manipula te its CCSR to cha nge

tbe subsequent course of its computation . The user can define new language fea­

tures or change the representation of data st ructures of the language within the same

language framework .

There are many advantages of refl ect ive sys tems in contrast with traditional cus­

tomizat ion schemes, such as specifying parameters or modifying the language system's

source code direct ly.

l. The user can use the high level language for customization rather than low level

languages such as C. It is especial ly usefu l for prototyping of run-t ime routines.

2. It is easy to construct flexible appli cat ions that adapt its behav ior for dynam­

ically changed execution environments such as t he load of the system or the

10ne of the interesting applications is to dynamically change the sched uling policy of object

execution [1] in distributed simulation based on the T ime Warp Scheme [10].

7

network traffic. Re-compilation and restart of the entire system arC' not II<'CC'S­

sa ry after changin g the behavior of run-time routines.

3. The state of computat ion is easy to manipulate' because il is abslraclrd as

CCS R. Especiall y. in object-oriented systems. CCSR can be reprcsC'ntC'd as ob­

jects, that can be accessed through a uniformed milnner: message' sending.

Differential programming using inherit ance or de legat ion also makes llw system

easy to modify /extend.

1.2 Previous Work

B. Smith gave the definition of a dialect of sequenti al Li sp, ca lled 3-Lisp[20] which

has substant ial re fl ect ive capabilities. Use r programs of 3- Li sp arc usuaJly C'Xecuted

at Level 0. The behavior of t he Level 0 language is defined by an interprC'ter at LC'vel

1, and Level 0 and Level I are completely same language. This interpreter is cal led

a metacir·cular inter·preter·. When a r·eflcctive procedur·c is called, it is cx<'cul<'d at

Level l. The user can execute reflective procedu re at Level I, then it is executed at

Level 2. In this way, the execut ion of Level 0 is implemented as an infini te tower

of interpreter. This tower is called a r·efleclive tower·. In 3-Lisp, a t ri ple of code, an

environment and a continuat ion represent a compu tation state. Smith indicates that

the user can define new language const ruct such as catch and throw using reflE'ctive

proced ures.

Following Smith's t rad it ion, P. Maes proposed a reflective object-oriented architec­

ture, called 3-KRS [l3]. In 3-KRS, a ll the objects are defined by its metaobjccts. The

user can change the behavior of an object by modifying its metaobject. A metaob­

ject itself is also an object, so it has a nother metaobject, and t hi s cha in continues to

infinity. In contrast with 3-lisp, metaobjects, that are the CCS R of 3-KRS objects,

contain more rich informat ion about objects. In add it ion. the user can manipulate

the CCS R with uniformed manner, message sending. Since 3-l<RS have only one

name space of global object names, it shou ld be clone careful ly to change the sys­

tem's global behavior for keeping the system's consistency. For example, redefin it ion

8

of mctaobject named object, that is super class of all objects in the systC'm, will

change all behaviors of objects in the system, including thC' object itself.

CLOS is an object oriented language ba sed on Common Lisp. CLOS-i\ IOP (~ldaobject

Protocol)[ll] is an object-oriented system that provides nlC'laobjC'ct farilili<'s to mod-

ify /extend the behavior and implementation of objects. Til<' metaclass of a class is

actually an object which creates the class. The user can modify /extend lhC' sys lC'm by

customizing metaclasses and specifying mctaclass at the lime of creation of objects.

Since CLOS-MOP have only one name space of class as w<'ll as 3-I<RS, modifying the

existing class dynamically is not recommended.

A BCL/R[23] is also object-oriented language and it is the first reflectiv<' con­

current language. Objects of ABCL/R have its own metaobj<'ct, as well as 3-1\HS.

Metaobjects are also concu rrent objects. Because there arc no CCSR lhal represent.

global behavior of the system, ABCL/R user can not chang<' the sciH'duling policy.

ABCL/R2[15 , 14] introduced group tower to manipulate compntational r<'sourrcs

such as computing power. In ABCL/R2 scheduling policy is can be customizC'd by

manipulating a mctaobject that defines scheduling policy.

AL-1/D [9, 17] is an object-oriented concurrent languag<'. i\L-1/D is based on

the multi-model reflection framework . AL-1/D provides multiple CCSRs that are

suitable for various purposes in modifying the behavior of the interpreter, resource

management, etc. Current AL-1/D does not provide any facilities to define new

models of objects.

Apertos [25, 26] is a re fl ect ive object-oriented operating system. Apcrtos runs

efficiently in distributed environments, and the user can modify/extend almost all

parts of the system. Apertos objects at the basel eve! are represented as raw data at the

metalevel. Tn contrast with many other reflective systems, Apertos does not provide

infinite reflective tower. A small kernel called MetaCore manages the primitives of

reflection. The behavior of the MetaCore cannot be manipulated by the use r so the

range of customizat ion is restricted (although Apertos al lows some customizat ion of

reflective behaviors by subclassing new reflector classes).

Rose[l9] proposes a metaobject protocol for dynamic dispatch that is <'fficient,

powerful and language independent. However, Rose's mctaobj ect protocol on ly sup-

9

ports a dynamic dispatch mecha nism, and does not support ol hC'r faci lit iPs such as

concurrent execut ion .

1.3 Motivations

T he main mot ivat ion of t his research is to develop a practica lly usC'ful concurrent

programmi ng system t hat is easy to customize and becomC' adaptable. P rC'vious

reflective systems have the following problems :

• All previous reflect ive language systems are imp\ C'mented on lop of thei r nm­

time kemels, t hat cannot be man ipul ated by the user. For exa ntplc, t he re r! cc­

t ive tower of 3-Lisp[20][18] is implemented by code of hu nd reds of lin es which

acts as the run-time kernel. Although t he semant ics of th e' language may be a l­

tered using the refl ective capabilities, the behavior of the run-t ime kPrn<' l ca nnot

be changed by the use r. This is a seri ous problem for the language users who are

keen to effi ciency: for example, a user may want to t une t he language system

to adapt to a specific a pplicat ion to improve its effi ciency. The ex istence of l h<'

run-time kernel , however , will rest ri ct such modifi cat ions. Also, t he un derl ying

scheme of reflection, whi ch is implemented by t he ru n-t ime kerne l, cannot be

modified /extended by the user wit hin t he la nguage framework.

• In all previous refl ective systems, CCSRs that can be manipul at<>d by the user

does not expose the entire as pects of system implementat ion; ra ther, the CCSRs

are abstracted so t ha t the user can eas ily man ipulate the system behav ior. This

res tri cts the aspects of computat ion t he user can ma nipul ate: for t"Xamplc, if t he

representation of garbage collect ion mechanisms is not included in the CCS R,

t he user cannot change t he garbage co llect ion scheme.

• In a ll previous reflect ive sys tems which have a reflective tower, t he rer!ective

tower observed by the user actually does not ex ist ; rather, t he run-time kernel

makes t be sys tem act as if there is an infini te reflective tower. Because t he refl ec­

ti ve tower is far from t he actual im plementation , the user must un derstand t he

10

behavior of the run-time kernel to predict the amount of the CPU power and

memory used by reflective programs. Furthermore, complex implementat ion

techniques are required for efficient implementation in spite of thei r relat ively

simple metacircular definitions. Th is may cause various implementation prob­

lems for large systems (e.g., whether or not the semantics of the rcnecti ve lower

is properly preserved) .

1.4 Research Contributions

In th is thes is, we propose a new reflective architecture and implcnwntat ion techniques

t hat a ll ev iate t he above problems. Our lang uage RbCI (Reflection Based Concurrent

Language) [6, 8] is an object-oriented concu rrent lang uage with a renectivr architec­

t ure, a nd runs efficiently in a distributed environment. Specifi call y, our Rb C' I sys tem

has the following characteristics to a llev iate t he problems.

• A simple mechanism called system object tables arc in troduced to remove the

fixed run -t ime kernel a t the level of t he implementat ion language. In other

words , a ll the run-time routines compr ising the language system can be replaced

by the user-defin ed ones. In the case of RbCI , the implementation language is

C++; the user , therefore, can redefine the entire C++ program code to change

t he behavior o[the system up to the restriction imposed by the operating system

and hardware. Every possible ru n-lime facility can be provided as libraries or

applications written in RbCI.

• A novel facili ty called linguistic symbiosis with implementation language is in­

troduced to make the CCSR completely be in accordance with the actual im ple­

mentation. The linguistic symbiosis ena bles the user to manipulate objects of

the implementat ion language in the same manner as ordinary H.bCI objects. All

language facilities initially realized by C++ objects, including concurrent exe­

cution. inter-node communication. program code management, memory man­

agement, etc., can be subject to modifications by the user. Even the renective

schemes themselves can be modified/extended by the user. Therefore, RbC I is

11

highly useful as a platform for experimenting new languagE' facilities and im­

plementation techniques. Furthermore. the li nguistic symbios is a ll ows eflic ient

implementation of the reflective system itself.

• In RbCI, the reflective tower can be regarded as actually existing; that is to say,

the reflect ive tower of RbCI is the infinite lo1cer of the direct implementation.

However, the metasystem, which is a system that realizes the execution of a

system on each level. is created in a lazy manner . This creation of melasystems

can be achieved without using the run-time kernel, by using the characlC'ristic of

direct implementation. Because the behavior of the reflective tower is completely

de li ned by the CCSR of RbCI, t he user can easily predict the efficiency of

the reflective programs and can a lso modify/extend the behavior of the ent ire

refl ective tower.

• The metasystem of RbCI (that is, t he CCSR of RbCI system as nwnlioned

above) is designed based on an object-oriented and /aye1·ed arch itect ur<'. so that

the user can eas ily modify/extend its behavior in a n encapsulated manner.

• In previous reflective object-oriented concurrent languages such as ABCL/R2

and AL-1/D, meta. objects a re a lso concurrent obj<>cts and they run in parallel.

In RbCl, default metasystem is executed in seq uent ia l. (ll owcvcr, the user

can make use of concurrent execution facility in meta level programming.) This

metasystem has the followin g merits.

The behavior of baselevcl is com pletely deli ned by t he metasystem because

the execut ion of t he metasystem is deterministic. In other wo rds, the user

can customize the detailed sched uling policy of the basE'Ievel.

The mutual exclus ion mechanisms of metalevel objects are not necessary.

The message sendi ng between metalevel objects can be implemented by

efficient function calls using stack.

When the user manipulates a metalevel object, it is not necessary to be

careful about interference from other metalevel object that runs in parallel.

12

• The reflective facilities of RbCI arc implemen ted using only simple mcch;misms

of the implementat ion language: the only spec ial mechanism req uired is tlw

coroutine mechanism. The implementation techniques employed by llbCI can

be easily applied to a wide range of language systems.

1.5 Possible Applications of the Reflective Capa­

bility

There are a number of poss ible applicat ions of RbCI. Some of thern a re li sted belows:

• Extending language features such as :

Message sending and sy nchronizat ion mechanisms,

Characteristics of objects

(Persistent, Replicable, ...),

Language constructs.

Data types,

Reflective facilities, et

• Dynamically changing implementation schemes such as:

Scheduling,

In ter-node Communicat ion protocols ,

Distributed garbage co ll ect ion,

Load balancing,

Fault tolerance, etc.

These are realized by manipu lating the parts of the metasystcm. The detailed

schemes to realize some of these applications are described in Chapter 4.

13

1.6 Thesis Flow

The remainder of this thesis is structured as follows. In Ch~pter 2. WC' will explain

language features of RbCI. In Chapter 3, the reflective architecture provided by RbCI

are explained. In Chapter 4, we will describe how the R.bCI facilities arc implemented

and can be modified by the user. In Chapter 5, we consider performance of RbCTs

reflective architecture. Finally, we summarize our work in Chaplcr 6. In Appendix A,

a number of example programs of RbCl (including ones t hal extend the reflecti,·e

facilities themselves) are presented. To illustrate a concise overview of the H.bCI

system, in Append ix 8, we will give a full program list of Rschemc, that is a kernel­

less language on Scheme based on a reflect ive architecture like that of RbCI.

14

Chapter 2

Language RbCl

Since RbCJ is a kernel-Jess system, all the features described here can be altered if

the user desires to do so. We refer to the language initially provided for the user

as the plain RbCl to distinguish it from a modified/extended RbCI. Although this

thesis describes the characteristics of the plain RbCI in the strict sense of the word,

we simply use the name "RbCJ" except for the cases when' we need to make the

distinction.

2.1 Plain RbCl

The computation model on which RbCI is based is simil ar to that of A BCL/ 1[27, 3]

except for reflective facilities. In this section, we describe the language featu res of

plain RbCI except fo r its reBective facilities.

2.1.1 Objects

In RbCI, objects are the units of concurrency and tbe operations performed within an

object are executed based on a sequent ial imperative computation model. Currently,

we use the a. subset of Common Lisp to describe the sequential behavior of each

object. Objects are dynamically created and they interact each other only by sending

messages.

15

The default RbCl object has only the minimum functions. For example, the

facility that guarantees the uniqueness of object identity is not provided at the d<'fault

system . In other words, there arc no methods to determine if two object pointE'rs

denote the same objects. It is not trivial to implement this facility in distributed

environments. and it usually introduces an extra o\·erhead. Such facilities must b<'

supplied as libraries written with reflective facilities of RbCl. Plain RbCl docs not

support inheritance mechanism . Classes arc only generators of objects.

There are no global variables except for system object lablr dcscri bed at Sec­

tion 2.1.4.

Fig . 2.1 shows an object definition . Defclass defines a template of the objects.

Expression (new <class-name>) generates an instance of the class. When an object

is generated, it starts initialization immediately, then waits for messages sent from

other objects. The script macro form specifies the method that thE' object can

accept. The syntax of script is almost equ ivalent to A BCL/ 1 's one. This obj<'cl

accepts three messages, : empty 7 , :push and :pop. The behavior of the method is

described using Common Lisp form.

! value

means sending a return value to the caller object.

2.1.2 Message Sending

RbCl provides three types of message passing:

1. Past type message passing does not wait for a reply message. Jn RbCl, this type
of message passing form is written as:

[T <= H) or [T <= H ~ R]

where T, M and R are the target object, message and reply destination, respec­

tively. The reply destination is an object to which the receiver can send a reply

message. If the reply destinat ion is not specified, send ing a reply to the sender

will report an error.

16

(defclass stack

; ; Initialize a state variable.

(let ((contents nil))

; ; Method definitions.

(script

(=> [:empty?]

! (null contents))

(=> [:push x]

(setq contents (cons x contents)))

(=> [:pop]

! (car contents)

(setq contents (cdr contents))))))

Figure 2.1: An object defini t ion of RbCI.

2. Now type message pass ing blocks th e execution of t he sender object unt il it
receives the reply. In RbCI, thi s type of message pass ing form is written as :

[T <== H]

A now type message pass ing looks si milar to a n ordina ry remote proc('dure cal l.

3. Future type message pass ing does not wait for a reply message as well as past
ty pe. The return value can be accessed when it becomes necessary. In RbCI,
th is type of message pass ing form is written as :

[T <= M $ F]

where F is a. future object created by a make- future functi on. The ret urn value
of the fu t ure type message passing is ex tracted by the fo llowing fun ction:

(next-value F)

The caller of t hi s next - value will block if t he reply is not reached at t he futu re

object yet .

RbCllacks some linguist ic facili t ies of ABCL/1 such as t he wait-for statement

and the express mode message passing.

17

Node A Node B

Base ·~·
, level

'• '• '• '• '• '•

~··~ Meta
level

Figure 2.2 : Each level of each node has its own system object tab le.

2.1.3 Linguistic Symbiosis

RbCI provides a novel facility call ed linguistic symbiosis with C++ objects. It hides

the implementation gap between RbCI objects and C++ objects by a llowing trans­

parent inter-conununicat ion with in the same memory space. An RbCI object ca n

regard a C++ object as a n RbCI object, and con verse ly, a C++ object can regard

an RbCI object as a C++ object. The user need not be conscious of the difference

of these languages. When comm uni cat ing between C++ an d llbCI, each uses its

own communication protocols: an RbCI object communicates with a C++ object

by the RbCl message pass ing protocol, while a C++ object communi cates with an

RbCl object via C++ virtual fun ct ion in vocat ion. The implementat ion scheme of

t he li nguist ic symbiosis is described in Section 4.5. As described in Sect ion 4.4 .1 ,

the linguist ic symbiosis plays an important role in implementing the infini te reflective

tower with finite computing resources without any run-time kernel.

2.1.4 System Object Tables

18

Object Table

Figure 2.3: System object table.

Each level of each node (RbCI system consists of RbCI nodes connC'cLed by the

network) has its own system object table (Fig. 2.2), which plays a crucial role in

realizing the reflective faciliti es of RbCI. A system object table realizes a name space

of system objects. System objects a re important metalevel objects that determine the

basic behavior of the baselevel, and are recorded in the system object table of the

metalevel(Fig. 2.3). For exam ple, the metalevel objects that dete rmine the global

behavior of the baselevel, such as sched ulers, active queues and the network manager,

are all system objects . The generators (described at Section 3.3.2) a re also system

objects that generate metalevel objects such as parts of baselevel objects, or primitive

data element such as cons cell s. System objects are referred by name from other

objects within the same node and level. The user can change the behavior of the

baselevel program on a node by replacing elements of the system object table of the

mctalevel on the node.

In RbCI, objects can access an element foo of the system object table using the

19

-- ~-

- .

following express ion:

(G foo)

The following express ion replaces t he element of the system object table:

(setf (G foo) value)

The value should be an object. If other datum (such as an in teger) is spec ified.

runtime error will be reported.

System objects a re parts of mctasystem. Usually, the baselevd programs do not

access to the system objects prov ided by plain RbCl, but the mcta.levcl programs

access to them to modify/extend the behavior of t he system. All the system objects

provided by plain RbCl is a.ct ua.lly C++ objects, bu t the lingu ist ic symbiosis enab les

the user to manipulate them just as ordinary RbC I object. F'ig. 2.4 shows t.hc li st of

system objects in pla.in RbCI.

2.1.5 Inte r-Node Communication

ln plain RbCl , nodes can be started dyna.mica.ll y and can join to another RbCI system.
A connection between two nodes is exp licit ly made by the user program. The current
system identifies RbCl nodes by pair of host address and port number.

(setq encoder (connect (node-address "123. 45.67. 89 11 6666)))

The first argument of the function node- addr ess is a. host address and the secon d

argument is a. port number. Return va lue of node- address can be appl ied to thc

function connect that makes a. connection to a specified RbCI node. The return

value of connect is called encoder, that is communication point to the RbCI node

(The role of encoders are described at Section 4.3).

When an object sends a message, t he object should have a reference to the target
object. Immediately after connect ion is establi shed, there are no reference between
each node. System objects a.t the baselevel are accessible from a rbi t ra ry connect ing
nodes. The following function return s specifi ed system object at the node connected
through the specified encoder:

(remote-syst em-object 'name encoder)

There is an example program using this function in Appendix A. I.

20

Generators of first class Data:

Linteger

Lcons

Lsymbol

Lpackage

Generators of parts of RbCl objects:

Lobject

Llocal_pointer

Lport

make_local_obj ect

Scheduling module:

Lscheduler

Lc_obj ect

Lactive_queue

LCthread

current_obj ect

current_thread

scheduler

active_ queue

scheduler_ thread

Linguistic symbiosis module:

Lr2c_pointer

Lc2r_pointer

Lr2c_startup

Lc2r _rep_des

Inter-node communication module:

Lnetliilork_manager

Lliilakeup_baselevel

L t cpip_node_address

L t cpi p _connect ion_requ est _handler

L t cpip_read_connect ion

L tcpip_ write_ connection

Lio_bufter

Lglobal_pointer

Len coder

Ldecoder

network_manager

current_sender _node

Reflective tower module:

Lglobal_ var

Llevel_manager

Lmetalevel_level_manager

Lsystem_obj ect_ table

baselevel_system_obj ect_ table

def aul t_sys tem_o b j ect_ table

level_manager

metalevel_level_manager

met as ys t em_g ener at or

Figure 2.4: System objects in plain RbCI.

21

2.2 Execution environments

2.2.1 Machine Architectures

The language specification of plain RbCI assumes a distributed environments that

consists of processors connected by a network. Most parts of the mctasystcm of RbCI

are designed not to depend on a specific network architecture.

When one node or one network is down, the entire system will be halted. That is

the simplest implementation of the distributed system.

2.2.2 RbCl Nodes

The RbCI system consists of nodes wh ich are units of resource sharing such as CPU

power and memory. In plain RbCI, each node has its own reflective tower. The

metasystem is executed sequentially; concurrent execution of the basclcvcl objects

becomes pseudo-parallel. Tn progra1TU11ing the baselevel, the user need not b<O' aware

of the distributed nature of the architecture. However, the design of the mclakvel

takes node boundaries into account. In the metasystem of the plain RbCI, there

are no inter-node references between metalevel objects. The transparent inter-node

communication between baselevel objects is realized at the metalevel using explicit

remote communication s.

2.2.3 Front-End Processor

The front-end processor reads source codes of RbCI and translates them into the

intermediate code, that is machine independent. The intermediate code is written

to an output file. Currently, the front end processor is written in Common Lisp.

(Although it will be rewritten in RbCI code in the future.) The user can use the

powerful macro facilities provided by Common Lisp.

22

2 .2.4 Execution o f Program s

The user of the system starts up the front end processor and enters Lhc program.

Then, start up the RbCl node from shell specifying the file name of the in te rmediate

code generated by the front end processor. This is a lso called as bootstrap code for

the RbCl node.

Plain RbCl does not support the interactive execut ion environments. Top-level

read-evel-print-loop can be provided as one of standard libra ry for pla in RbCI. Thrrc

may by various problems to design the top-level for distributed concurrent languages.

For example, the semant ics and the implementation of the name space of t he g loba l

variab les and global function s arc not tri vial. There may be variou s sty les o f top-leve l.

The experiments for des ign and implementat ion of such top-levels a re on<' of t he aim

of us ing RbCI. P lain RbCl has an ability to load other program code dynamically.

The user can build up hi s own top-level using RbCI reflective facilities.

2.2.5 1/0

Pla in RbCI provides read/write facilities from files or terminals. When an object

blocks its execution because of reading, other runnable object can run. The standard

library functions such as print outputs strings to the terminal on which the RbCI

node starts. When many objects output st rings simultaneously, outputs wiU be mi xed.

I/0 li brary can be provided with more sophisticated and useful sty le for users. RbCl

enab les the user to define such librar ies using the reflect ive facilit ies .

23

Chapter 3

Reflection in RbCl

In t hi s chapter , we will explain t he refl ect ive architecture provided by BbC'I. l~xam plc

programs using the reflective faci lities of RbCI are presented in Append ix A.2.

3.1 Baselevel and Metaleve l

A client RbCI program resides at the base/eve/. The metasyslem is a mctalcvel sysl em

that realizes the execution of the base level RbCI program (Fig. 3.1). The metasystem

consists of metalevel objects. Likew ise the execut ion of the mctalevel objects is reali zed

by t he meta meta system and so on ad infini tum, fo rming a reflective lowe·r.

A !though the plain Rb CI metasystem consists of only C++ objects, the behavior

of each object is carefully designed so as to be independent of C++ language features

as much as possible. For example, global variables and global function s of C++

are not used; rather, system objects are employed for encapsulating g lobal data and

operations.

The user can replace arbitrary system objects with user-defin ed ones, that may be

either C++ objects or RbCI objects (Fig. 3.2). The user need not be conscious of the

differences between these languages thanks to the linguistic symbios is. When the user

defines RbCI system objects, the user can use all RbCI features such as concurrent

execut ion , inter-node communication .

The RbCI metasystem is constructed in a layered manner. In other words, the

24

N~:~:l''"''objocl
~ _,' 1 Baselevel

•---,'----,--~\ I 1 I

Metalevel objects

Figure 3.1: The basclevel and the metalevel in RbCI.

Object Table

Figure 3.2 : The user can replace all system objects.

25

metasystem consists of several layers co rrespond ing to the degree of abst raction. Pro­

gram modules that depend on the hardware architecture arc in the lower layers, and

program modules that depend on specific features arc in the higher layers. Tlw laycr<'d

a rchitecture enhances portab ility and extensibility of RbCI.

3 .2 Manipulating the Metasystem

Plain RbCl provides t he follo wi ng facilities to execute user code at the mctaiC'vcl.

The function metalevel-new is the only primj t ive for re fl ect ion in cu rrent plain
RbCI.

(metal evel-new class-name)

The generated metalevel object is used as a. first class daln a.t the basel<'v<' l. (In

plain RbCI , integers, cons cells, symbo ls, etc. are examples of first class data. Tlw

exact definition is in Section 4.1.) Any operations on t he created first class data

occurs message sendings to the metalevcl object. How th is metal<'vC'I object ca n b<'

manipulated is described in Section 4 .1.

A macro form meta-lambda is defi ned using metalevel-new.

(meta-lambda (.. . args ...) . . . body ...)

Thi s express ion is evaluated to a fun ct ion. When th is fun ct ion is ca ll ed, the body

of the funct ion is evaluated at the metalevel environment. When an express ion in th<'

body accesses to a system object , the system object table at the metalevel is used.

Arguments of the function are referred as melalevel object within the body.

Actual ly, calling thi s function send a :call message to a metal eve I object that

have a method :call with specifi ed body.

Metalevel-exec is also a macro form to execute expressions at the metalevel
en vi ron ment.

(metalevel- e xec body .. .)

This is equi valent to

(funcall (meta- l ambda () body ...))

26

The function reify enables the user to manipulate first class data as ordi nary
objects (in other words, targets of message sen ding) .

(progn (setq foo (reify 1))

(print foo)

(print [foo (;; [:fix]]))

Output :

· (Lr2c_pointer output of (print foo)

output of (print [foo (;; [:fix]])

The message sent to t he reifi ed first class data foo is actually sent to the mdalevC'!

object representing 1.

The function r eflect is in verse function of reify.

3 .3 Characteristics of the Metasystem

In t his section, we will describe characteristics of the metalevel of plain Rb I.

3.3.1 Kernel-less Syst em

The rneLasystern of RbCl is a kernel-less system. In this sect ion , we describe the

characteristics and benefits of kernel -less systems.

If a sys tem written in a programming language L has a facility thai enables the

user to replace every part of its program code by a user-defined one, we say th at the

system is a kernel-less system on language L.

The following systems are examples of kernel-less systems: when a system's ent ire

machine language instruction code is located in mutable store, and t he system has

a facility for modifying the values of contents of arbitrary add resses, the system is a

kernel-less system on the machine language. The window system on a Lisp machine

is a kernel-less system on Lisp because all the Lisp functions deftning t he behavior

of the system can be redefin ed by the user. A more elaborate example is as follows:

the behavior of a reflective language is often defined by a reflective towe1·, t hat is,

27

A language A language
with run-time kernel . without run-time kernel .

Reflective Tower

Baselevel
Meta level

Jl_~---t Baselevel
.. . Meta level

Run-time Kernel
OS 0~

Hardware Hardware

A reflective language A reflective language
with run-time ke r nel . without run-time kernel .

D Modifiable D Fi xed

Figure 3.3 : Language systems with/without run-time kernels.

28

an infinite tower of metacircular interpreters. ~vlore specifically (e.g., in 3- Lisp), the

behavior of the language at level n is defined by the interpreter at level n + I. The

user can replace the entire interpreter code at level n using reflective computation ill

level n + 1. Therefore, any system at level n is a kernel-less syst<'m on I he language

defined at level n + 1. This is one reason why the reAectivf' syslen1 is so flexible.

However, since the entire 3-Lisp system must be implemented by another language,

the program code implementing the behavior of the reAecti,·e lower can n<'VC'r be

modified by the user of the 3-Lisp system, so the 3-Lisp system is not kernel -less as

it has a kernel running on the implementat ion language.

Most of the t raditional language systems such as Lisp, Prolog, Smalltalk, ha,·e

run-time ke rnels to support their high level facilities. By contrast. machine languag<'

programs written in an assembler or C(++), etc., require no run -tim<']((•rnel support

except for OS kernel.

RbCI is a kernel-less language system on C++, or, we can say "on machinc lan ­

guage·' because C++ has an abi lity to incorporate assembler programs, and C++

programs are compiled to machine language programs. This kernel -less systcm is

realized by a simple mechanism ca ll ed system object tables as will be described in Sl'c­

tion 3.1. As a result, the user can redefine the entire C++ program code to change the

behavior of the system up to the restriction by the operating system and hardware

(Fig. 3.3). Thus, concurrent execut ion, inter-node communication, program code

management, memory management, and even reflective schemes and facilities them­

selves can be modified/extended by the user. In language systems that ha ve run -time

kernels, the trade-offs between var ious characterist ics such as efficiency, flexibility,

programmability, safety, portability, arc achieved only by t he system implementer.

In RbCI, the balance of the trade-offs between all such characteristics can also be

changed by the language user.

A problem with kernel-less systems, such as a machine language program in mu­

tab le store (as described above), is that it is often extremely difficult and dangerous

to change the behavior of t he system dynamically: as a result, they cannot be used

for practical purposes. In RbCI , its reflective faci lities and linguistic symbiosis enable

the user to easily modify/extend behavior of the system thanks to t he encapsulation

29

provided by the object-oriented nature of RbCI.

3.3.2 Dynamic Creation of M etaleve l Objects

Many ty pes of objects arc created dynamically at the meta leve l. No rma ll y, C'++ uses

' new class () ' to create an object, but t hi s is not fl exib le because l hP co nstruction

code of t he specified class is direct ly inlined. Instead, we employ an indirect creation

scheme, which enables t he user to replace t he const ruct ion code. \\'e provide system

objects called genemtm-s corresponding to each C++ class. When a generator object

receives a message :call , it creates an mctalevel object and returns it to ca ll Pr objPc t .

For example, to create a port object (a meta levcl obj ect that rq>r<'senls a Jl1 Pssage

queue of an object) , t be user sends the following message to t he sys tem object na lllrd

Lport , which is a generator of the port object:

[(G jLport j) <== [:call]]

In pla in RbCI, there are no generators th at create generator objects dyna mically.

Note that all metalevel objects have an opport uni ty to be mod ified /extended by

the user. All metalevel objects a re categorized in to t wo types, t he ystem objects,

which exist from the initial sta te of system, and dynamically created objects . Sys tem

objects may be replaced with user defin ed objects by manipu lat ing t he sys tem object

ta ble. Replacement of t he generator object changes the behavior of newly created

object.

lf a user decides that a dyn amically created object should be repl aced with another

object at a certain t ime other t han its creat ion time, the user could ex tend the

generator in ad vance so that it return s an invisible poin te!' object th at dP!egatl's

a ll messages except t he :become message to a newly created object Then t he user

can replace t he obj ect dynamically by sending t he :become message to t he in visible

pointer 1 •

1 Here is ano ther reason why the defaul t RbCI syste m does not guarantee the un iqueness of

object identity. If metalevel o bj ecls use such a fac ility to determ.ine if two objects are same one,

it is diffi cult to implement fl exib le facil it ies such as in visible poin ters nor the linguistic sy mb iosis

30

3.3.3 Differential Programming

The faci lity of differential programming is necessary to enable the user to reuse the

system objects provided at default system. In RbCI. all mctalevcl objects arc d<'nncd

obeying a convention that enables extending object dynamically using delegation

mechanism[l2}.

• They must have instance variables named self and super. The initial value of

self is the object itself, and the initial value of super is an object that does

not do anything.

• They must have methods to refer/update the value of self and super.

• T he message sending to itse lf must be performed as message s<'nding to the

variable s elf.

The follow ing function extends an object .

(extend mixin pm·ent)

mixin and parent are objects, not classes. They may be both an RbCl object or a

C++ object as far as they obey above conventions. The return value of this function

is an extended object (Fig. 3.4) . The behavior of the par-ent object is not defined

when it receives a message directory after this extension.
The funct ion extend is defined as follows .

(defun extend (mixin parent)

[m i x in <:== [:set-super par ent]]

(do ((super parent [super <== [:get- s uper]]))

([super <== [:null]])

[super <== [:set- self mi xin]])

mi xin)

This is a simple example extending cons cell generator (the system object named

Lcons) so that it prints a message if it receives a request to generate a cons cell. The

expressions in metalevel-exec form are evaluated in the metalevel.

with in the uniformed framework. Therefore, all operations on metalevel objects must be achieved

by message passing.

31

self

mixinca
self

pa<ent~
super t (extend mixlil p.1nm1)

super super

Figure 3.4: The delegation mechanism of metal eve I objects.

(metalevel-exec

(defclass trace-rnixin

(script

(=> any (I) reply-destination

(print "Received ! ! ")

; ; Delegate any messages .

[super <= any ~ reply-destination])))

(setf (G ILconsl)

(extend (nell trace-mix in) (G I Lcons I))))

Because all metalevel objects obey the conventions that enab le the differential

programming, this trace-mixin class can be used for tracing any type of mctalevel

objects such as active queues, the network daemon.

32

Chapter 4

Metasystem

The metasystem of RbCI implements the execut ion of the baselevel. All the ll bC'I

faci lities are reali zed by metalevel objects. They are des igned carefu lly so thitl the

user can easily modify /extend t he behavior of t hem . Important mctalevcl objects

that determine the basic behavior of the baselevel are called system objects, thitt

are recorded in the system object tab le of the metalevel. System objects mity bC'

replaced with user defined objects to modify/extend the behavior of the system. The

metasystem is divided into some independent modules. In particular , the following

mechanisms are implemented by characteristic module of RbCI.

• First class data (primiti ve data types).

• Scheduling mechanism that implements pseudo parallel execution within a node.

• Reft ect ive facilities .

• Inter-node communicat ion mechanism.

• Linguistic symbiosis.

• Garbage collection.

In this chapter, we will describe how these RbCI faci lities are implemented and

can be modified by the user.

33

4 .1 First Class D ata

First class data in RbCl are subject to the following treatments:

• Assigning them to variables.

• Passing them to functions as arguments of function calls.

• Sending them to other objects as arguments of message sending forms.

Cmrently, plain RbCl provides the following data types as first class data:

• Integers (32bit fixed)

• Cons cells

• Symbols

• Function Objects

• Object pointers

Unlike Smalltalk, first class data and objects are distinguished. Operations on first

class data (e.g., arithmetic operat ions or getting car of cons cells) a re not via message

passings. In particular, a pointer to an object is distinguished from the object body.

An object po in ter is a first class data but an object body itse lf is not. A single object

body may be referred through various pointers wit h which messages arc transmitted

in various ways (e.g., various rout ing algorithms). Usually, the user docs not hav<' to

be conscious of this difference between pointers and object bodies.

In plain RbCl, all the first class data may be used as arguments of the print

function. Unlike Smalltalk. printing first class data is not performed by message

passing. This difference is exposed when an object pointer is printed. Printing a

remote object pointer on ly uses the local information, and the remote access to the

object body does not occur.

Fi rst class data are sometimes copied or modified by the system implicitly. For

example, cons cells are copied and object pointers are modified when they are passed

34

to remote objects through t he network. In contrast with first class data, object bodies

(in plain RbCI system) never be cop ied or modified without exp li cit message passing.

At the metalevel, fir st class data which are simple data at t he basclcvcl arc repre­

sented as metalevel objects. All t he operat ions on first class data a rc represented by

message pass ing at t he metalevcl. There are no builtin operations on the mctalcvel

objects. Even the following basic operations are represented by message passing at

t he metalevel.

• Identify ing t he type

• Equality checking

• Prin t ing

• Encoding/ decoding

For examples, print operation at the baselevel :

(print foo)

are represented by the metalevel interpreter as

[<foo> <== [:print]]

where <foo> is a metalevel object that represents the baselevel first class data

foo .

Past type Message sending forms at the baselevel such as

[obj <= message]

are rep res en ted as

[<obj> <== [: send <message>]]

where <obj > is a metalevel object that represents the pointer obj and <message>

is a metalevel object that represents the message message .

In this way, the implementations of first class data are completely encapsu lated

at t he metalevel. This increases the fl exibility of the metasystcm dramat icall y. The

user can define new first class data with arb itrary characteristics by definin g new

metalevel objects. The user can eas ily mod ify/extend the behavior of first class data

using differential programming.

35

4.2 Scheduling

4 .2 .1 Scheduler and Act ive Queue

In RbCI, t he scheduler and the act ive quwe are realized as system objects at tlw

metalevcl so that the user can easi ly modify/extend the scheduling policy. Currently,

a non-preemptive scheduler is provided at the metalevel. In plain RbC'I, the scheduling

policy satisfies the following requirements.

• All active objects shou ld be executed within a finite time.

• All input through a network from outs ide should be managed within a flnii<'

time.

These are realized as follows: A system object named active queue is a metalcvcl

object that queues runnab le objects in t he node. Each metalcvcl object enqueued in

active queue accepts :run message from the schedule1·. The mdalevd object interprets

the intermediate code of t he cor responding object one step, then returns cont rol to

the sched uler. The default queue is a simple FIFO queue. The user can replace it

with a priority queue that gives priorities to objects according to ce rtain evaluat ion

function .

The scheduler also performs the polling the network inputs. The scheduler sends

a :poll message to a system object named network- manager at, intNva ls.

The scheduler executes infinite loop sending messages to active objects and the

network manager. The user can change the scheduler to modify the timing of polling

the network.

4 .2.2 Changing Scheduling Policy

The following example of refl ective programming is to change the scheduling policies
by replacing the active queue.

(metalevel- exe c

(defclass pr i ority-queue

(let ((qu eu e n i l))

36

(script

(=> [:empty]

' (null queue))

(=> [:enqueue obj]

(setq queue (sort (cons obj queue)

:test # 1 cal c-priority))

! nil)

(=> [:dequeue]

! (pop queue)))))

(let ((new-queue (new priority-queue)))

(do ()

; ; Repeat until it becomes empty.

([(G active- queue) <== [:empty]])

[new-queue (:;:;

[:enqueue

[(G active-queue) <== [:dequeue]]]])

(setf (G active- queue) new-queue)))

This priority queue has a so rted list of active objects. The prio ri ti<'s of obj<'cts are

determined by function calc-priority. Replacing a global object that has internal

states shou ld be performed carefully to preserve the system consistency. In th is case,

all t he contents of the old act ive queue should be enqueued in the new one. Otherwise,

the execution of the baselevel will stop because ini t ial content of t he new queu<' is

empty.

A complete example of changing the schedu ling policy is presented in /\pp<'ndi x A .2.

4.3 Inter-node Communication

4.3.1 Three Layers

The inter-node corrununication mechanism is partitioned into three layers, the lowest

layer depends on the hard ware archi tectu re and the highest layer depends on the

characteri st ics of the RbCI objects. As a result the RbCl system becomes portable

across various parallel machines and su itable to be a platform of implement ing other

37

parall el languages. In the plain RbCl metasystem, there arC' no remote rcferC'IlCC' be­

tween metalevel objects. The inter-node communicat ion between basC'level objects is

realized at the metalevel using mctalcvcl objects such as network manager. ThC'sc

mctalevel objects communicate to other node using system calls providC'd by t!tC' op­

erating system. This is the lowest layer of the inter-node communication m<'chanism

and its implementation depends on the machine architecture. One example of modi ­

fying/extending metalevel objects in this layer is to change the buffering st rategy to

reduce the communication cost .

The encoder and the decoder objects a re in the middle layer. When a remot<' mes­

sage passing occurs, an encoder object on the sender node translates the structured

message to a byte stream, and a. decoder object on the receiver nodC' r<'const rucls

t he message. The user can modify /extend this laye r to change the protocol of encod­

ing/decoding data.

The pointe1· and the pod objects are in the highest layer. Th is layC'r realizes

network t ransparent message passing using lower layers . The port object is a message'

queue of each baselevel object. If the pointer refers to a local object, it on ly contains

local address of the port of that object. If the pointer refers to a r mote object ,

it contains encoder object where the remote object resides and local add ress of the

remote object within its node. The user can monitor message send ing by extending

poi nter objects.

4 .3.2 N etwork M anager

T hs system object named network- manager manages inpu t/output ports from/to

other RbCl nodes. The scheduler sends message :poll to the network manager at

intervals. When the network manager receives the message :poll , it wi ll check in­

put/output ports provided by operating system. When some inputs/output arc ava il­

ab le, the network manager call s t he handler object associated with the input/output

port 1•

11n UN IX system , inpu t/output ports are file descriptors. The network manager is implemented

by select system call.

38

4.3 .3 R ead/Write Connect ions

In plain RbCI, there are three types of handlers, Lread_connection, Lwri te_connection,

Lwakeup_baselevel. When a Lread_connection receives the :handle message from

the network manager, the Lread_connection reads the packet, the message sent

through the network, from the associated input port using OS primiti1•e (e.g., read

system call in UNIX system). When a Lwrite_connection receives the :handle mes­

sage from the network manager, the Lwrite_connection writes a buffered packet to

the associated output port .

When the meta meta system exists, the network manager at the metalcvel be­

haves in the same way. The network manager at the metalevcl is explicitly imp le­

mented by the network manager at the meta meta level. At the meta meta lev<' l,

Lwakeup_basel evel is associated with all input/output ports used by the meta level.

When some metalevel input/output ports are available, the meta meta system wakes

up the metasys tem to process them .

4.3.4 Connection R equest Handlers

In plain RbCl , the connections between nodes are established dynamically a.t E'Xecu­
tion time. From the point of view of the baselevel , the user executes the following
form as described in Section 2.1.5 to make a connection.

(set q encoder (connect (node-address "123. 45.67. 89" 6789)))

Each RbCI metasystem has a metalevel object: the connection request handler.

This object is registered in t he network manager and associated with connection

7'equest port 2 • When an input [or the connection request port is available, the network

manager sends a message :handle to the connection request handler.

Each level has its own connection request handler. The outside system can com­

municate with each level on a node independently.

21n UN IX version of RbCI, a connection request porL is a server socket.

39

4.3.5 Encoding/Decoding

All data should be encoded into byte streams when they arc sent to r<'mote hosts

through the network. In addition, there an' many types of mPssages that controls

the meta system. The example is messages for garbage collection system (e.g .. mark

messages for mark&sweep collectors). These control messages arc also <'ncoded into

byte streams.

In RbCl, data encoding/decoding and system control messages arc processed by

the same mechanism. The encoding/decoding routines are defined as system objects.

Message encoding is performed by a metalevel object called encoder. Each enrockr

is corresponding to each connection to another node. The encoder creates pad·rts

and sends it to the corresponding node. When a node receives a. packd, the n<'lwork

manager on the receiver node sends a :handle message to tlw Lrcad_r·onncclion object

cor responding to the sender node. System objects which have the method :decodeis

called decoder· objects. Each packet consists of two parts, a decoder name and its

argument. A decoder name is a. small integer that denotes a syst<'m object name. The

Lread_connection object sends a :decode message to the decoder object indicated

by th name. The decoder object decodes the contents of the packet. ThC' length of

argument part is determined by each decoder object.

The argument part is passed to the specified decoder as buffer objecl. 11nfkr ob­

jects can receive messages :get-int and :get-L. The return values of these message

sen dings are an integer or a metalevcl object read from the buffer, respectively.

F ig. 4 .I is an example of encoder/decoder object for cons cell s 3 .

4.3.6 Changing Inter-Node Communication Protocols

In RbCl. it is possible to adapt the in ter-node commun ication protocols to specific

application to reduce the overhead of the network communication.
For example, suppose all remote messages in an appl ication arc lists of two inte­

gers (e.g., (12 34)), length of packets can be optimized to three words. thC' decoder
name and tbe two integers. This speciali zed encoder/decoder routine works obvious ly

3 These objects do not treat recursive stru cture.

40

(defclass I Lcons I

; ; cons cell

(let (car cdr)

(script

(;) [:encode buf]

; ; specify the decoder

; messages from an encoder

[buf <;; [:put-int [(reify ' IDconsl) <;; [:syrnbol-id]]]]

; ; arguments for the decoder Dcons

[buf <;; [: put-L car]]

[buf <;; [: put-L cdr]]

! NIL)

)))

(defclass IDcons I

; ; cons decoder

(script

(=> [:decode buf] ; messages from an read-connection

(let ((car [buf <;; [:get-L]])

(cdr [buf <;; [: get-L]])

! [(G ILconsl) <;;[:call car cdr)])))))

F igure 4.1: T he encoder and Lhe decoder of cons ce ll s.

41

more efficiently than original one. The foll ow ing program is an example to do this.
The function extend-generator extends the spec ifi ed generato r so that a ll instance'
created by the generator will be extended using specified mixin class . In the follow­
ing example, a ll cons cell s generated by the extended generator wi ll have extended
encoder routine defined by special-encoder-mixin.

(metalevel-exec

(defclass special-encoder-mixin

(script

(=> [:encode buf]

[buf <== [: put-int [(reify 'special-decoder)

<== [: symbol-id]]]]

[buf <== [:put-int (reflect [super <== [:car]])]]

[buf <== [:put-int (reflect [[super <== [:cdr]]

<== [:car]])]]

' (reify nil))

(=> any ~ rep-des

[super <= any = rep-des])))

(setf (G ILcons I) (extend-generator special-encoder-mixin

(G I Lcons I)))
(defclass special-decoder

(script

(=> [:decode buf]

! [(G ILconsl)

<== [:call

(reify [buf <== [: get-int]])

[(G I Lcons I)

)))

<== [:call

(reify [buf <== [:get-int]])

(reify nil)]]]]

(setf (G special-decoder) (new special-decoder))

4.4 Reflective Tower

42

~ A baselevel C++ obJect 0

1
16 __.!~ ---

Baselevel \~
I I I I

Metalevel objects I I J J 01'-< __ _....,...-,...... A metalevel obJect 0 '

I A1\ representing 0
representing a RbC~ obj._1\..- i J __.~R"""'

Metalevel ~- ~~
.j J A ~ta n.ta level

Meta meta
level

0 RbCI object

y~ ::;::.:;;~ 0

I ~
I I

D C++ objel:l

Figure 4.2: The infinite tower of the direct implementation.

43

4.4.1 The Infinite Tower of Direct Implementation

Without run-time kernels , the pn·vious reflective systems would b(' impossib le to

implement with finite computing resources. A run-time kernel was necessary to mak<'

the system ad as if an infinite reflective tower exists. In contrast. an RbC'I syst<'m ,

which embodies a tower, is implemented with finite computing resources without a

run-time kernel. This is achieved by employing the linguistic symbiosis with C++

objects, that can be executed without a run-time kernel. The refl<'cti,·<' tower of th('

plain RbCl is the infinite towe1' of the di1·ect implementation. In this sect ion , we

describe the reflective tower o[RbCI.

In reflective systems, a ll baselevel entit ies do not exist at the meta lev('\ in tilt' strict

sense o[the word; that is to say, there exist only the metal eve\ en t it ics that I"CJl7"f'scnl

the baselevel ent it ies. For example, imagine a Lisp interpreter written in C. Although

there are cons cells in Lisp, there are none in C; rather there are C st ructur('S that

represent the Lisp cons cells. In the same way. there are no C st ructures al the

machine language level, but rather there is storage whose contents repr<'scnt th(' C

st ructures. We can go far as to say that, there is no storage at the hardware lev(' \, but

rather , there are electronic entities that represent the storage. When a Lisp program

is running, all the levels are active at the same t ime, but usual ly one pays attention

to one level at a time to understand the behavior of the system.

Let us pay attention to the C level interpreting Lisp expressions. Generally, there

are two methods for implementing a language faci lity on top of another language

system: direct implementation and explicit implementation [18]. Fo r exampl<'. when

the '+' operat ion of Lisp is implemented by using only the '+' operation of the C

language, we say that "the'+' operation is directly implemented." In this case, the

semantics of the'+' operation of Lisp fu lly depends on that of C. On the other hand ,

if the meaning of the '+' operation is defined explicitly using the usual primitive

recurs ion scheme, we say that '"the '+' operation is explicitly implemented. "

In the same way, let us pay attention to the metalevel of RbCI that implements the

baselevel of RbCI. RbCI provides the linguistic symbiosis that enables C++ objects to

be executed as baselevel objects. In the plain RbCI metasystem , the execution of the

44

baselevel C++ objects are directly implemented. This is achieved as folloll's(Fig. 1.2):

a baselevel C++ object 0 is represented by a single metalcvel object 0' (in contrast

to a baselevel RbCl object which is represented by multiple mctalevel objects). o· has

instance variables and methods identical to those of 0. Therefore, a message sending

to 0 at the baselevel can be simply represented by a message sending to 0' at the

metalevel.

Let us pay attention to the meta meta level of RbCl that implements tiH' metalevd

of RbCI. There are meta meta level C++ objects that represent mdalevel C++
objects. F'or example, t he mctalevel object 0' is represented as a meta meta level

object 0 " tbat bas instance var iables an d methods identical to thosc of 0'. 13ccause

the pla in RbCl metasystem consists only of C++ objects, the com putation state of

t he meta meta level is st rictl y ident ical to that of the mcta levcl. In t hi s way, thc

meta meta level of the plain RbCI can be rega rded as actually ex isting and dirrctly

implementing the execut ion of the metalevel C++ objects. (F'ig. 4.2 illustrates this

whereby each C++ object is represented by a meta level C++ object that has thc

same hatch pattem.)

The meta meta level itself is also regarded as directly implemented by the meta

meta meta level and t his tower of direct implementation cont inues on infini tely. In

t hi s manner, the reflective tower of RbCI is realized with finite comput ing resources.

According to this view, arbitrary (non-reflective) systems cou ld be regarded as

being implemented by the infinite tower of direct implementation. llowever, such

view is usually meaningless because the user of such systems cannot manipulate the

lower levels. On the other hand , the reflective facilities of RbCl enable the user

to manipulate the arbitrary levels if t he user desires. The meta meta system t hat

in terprets RbCl objects at the metalevcl is explicitly generated by a metasystem

when a user creates an RbCl object at the metalevel for the first time. Therefore, the

infini te tower of direct implementation of RbCl bas the same power as the reflective

towers of other refl ective systems . How the meta meta syst<'m is generated by the

metasystem is described in Section 4.4.4.

45

4.4.2 Level Manager

The linguistic symbiosis enables C++ objects to be executed at the basclcvcl. As

explained in Section 3.1, each level has its own system object table that rcali?.<'s

a name space of system objects. Consequently, the baselevel C'++ objects must

be executed in the baselevel's name space. The management of the name space is

conducted by system objects called level managers. Each level of <'ach node has its

own level manager. The level manager of the melalevel performs level shifting. t hal

is, switching the current name spaces of the system objects between lh<' bas<'ievcl and

the metalevel. The level manager of the meta meta level similarly performs th<' '"'"<'I

shift ing between the metalevel and the meta meta level. The linguistic symbiosis and

all the reflect ive facilities such as creati ng metalevel RbCI objects arc implemented

using the primitive level shift ing capability provided by the level manag<'rs.

Note t hat a level manager on ly sw itches the name spaces. Wher<'vcr the name

space of the metalevel is shi fted, the baselevcl is still executed by the lll<'lasystcm

and the metalevel is still executed by the meta meta system and so on.
The level shifting mechanism is implemented as follows: a C++ obj<'ct r<'f<'rs to

a C++ global variable to know the appropriate system object table that represents
the current name space. A C++ object accesses a system object as follows:

system_obj ect_ table [symbol_id]

Systern_objecLtable is a C++ globa l variable whicb is a pointer to an ar ra y of

C++ objects. This array represents the system object table. SymboLid is a small

integer that represents the global name of a system object. The level manager changes

the value of the C++ global variable system_objecLtable to an appropriate system

object table when it receives messages :shift-to-met a or :shift-to- base.

Level managers are system objects, and thus can also be replaced with user-defined

objects. Therefore, programs that require changes to the reflective facilities of the

RbCJ itself, such as debugging of reflective programs, or performing 0xpcriments

on reflective facilities, can be expressed within the RbCJ language framework. In

Sect ion 4.4 .5 we will explain this in detail.

46

4 .4 .3 M echanis m for Reflect ion

The reflective facilities of RbCI can be easily implemented because of the linguistic

symbios is. Generating a metalevel object using user specified RbCI coc!C' can bC'

simp ly implemented as follow s.

LP make_metalevel_obj ect (LP code){

G (S_metalevel_level_manager) ->shift_ to_meta();

LP obj = make_object(code)->c2r();

G(S_level _manager)->shift_ to_base();

return obj;

A sys tem object named metaleveLleveLmanager generates a meta meta. system

if it is not exist yet . The function make_object generates an RbCI object using whose

behavior is specified by code. The return value of a virt ual fun ction call c2r() to

the generated RbCl object can be used as a C++ object .

4 .4 .4 Generating the M eta M eta Syst em

All reflective systems that have reflective towers implement lazy creation of meta.sys­

tems within run-time kernels. The RbCI metasystem can generate the meta meta

system with in the RbCl language framework - that is, it docs not requi re a run­

Lime kernel to do so. This is achieved as fo llows: first, let us defin e an object to

be p1·imitive if it is implemented only by direct imp lementation. For example, C++

objects are primit ive objects while interpreted RbCI objects a re not. As explai ned in

Section 4.4.1 , when a primitive object runs at t he (meta.)n level, the same primiti ve

object actual ly runs at the (meta.)n+ l level. For example, when a metalevel primitive

object A creates another meta.level primitive object B and sends a message to B,

the corresponding meta. meta level object A' actually creates t he corresponding meLa

meta level object B' and sends a message to B' .

The meta meta system can be generated by the metasystem using t his character­

istic of primitive objects. To briefly summarize, the only thing needed to be clone is

to generate a new metasystem t hat consists of only primiti ve objects.

47

The meta meta system is generated by the mctasystem in the following way:

1. Create an array of objects th at represents the system object table of the nwta

meta system.

2. Shallow-copy a ll the elements from lh<'

default - system- object-table to the system object table of t he rn<'la meta

system. Default-system- object-table is a system object t hat conteins th<'

system objects of t he plain RbCI metasystem that are shared by a lltlw lew·ls.

Most system objects such as generators have no intern al slate's, so they can be

shared.

3. Create addit ional objects and register them to the system object table. These

objects are system objects that cannot be shared by a ll the levels

arc a level manager and a schedu ler.

examples

4. Ini tialize the created system objects as if t he execution of the nwtalevel were

directly implemented by the meta meta system.

The generated meta meta system provides all the facilities provided by the plain

RbCl metasys tem. When a n RbCI object is created at the meta meta level, t he meta

meta meta sys tem will be generated in the same way.

4.4.5 Examples of Modifying the Reflective Schem e

R eplacin g level m a nagers

The reflecti ve scheme of RbCI itself can be modified/extended or even complete ly

changed by the user by using the RbCI reflective capabili ties. If the user wants

to print messages whenever the current level shifts between the basclcvcl and the

metalevel, the user can replace the default level manager wit h a user-defined level

manager which prints ou t a message whenever the level shifts. This is achieved by

the following RbCl program.

48

Ref~ective tower /
Base level ·/ Meta1eve1

... 1/
OS

Hardware -

Base level
Metaievel

. . .
(Meta)" Level

(MetalW+l Level

()~

Hardware

Ref~ective tower of
interpreted RbC~

#'

Ref~ective tower of
interpreting RbC~ ,.-

The usual RbCl system The tower interpreter
of RbCl in RbCl

F igure 4.3: An interpreted refl ect ive tower and (meta)w leve l.

(metalevel-exec

(setf (G level-manager)

a-use!·-defi ned-level-manager))

Metalevel-exec is a macro form to execute express ions in t he metalevel environment.

(G level-manager) denotes a system object named level-manager.

The above example only changes t he level manager at t he metalevel. In add it ion

to t hi s, t he user can change all t he level managers of t he metasys tems created in a

lazy mann er. As described in Sect ion 4.4.4 , new metasystems a re created using thr

elements of default-system-object-table. Level managers of the new metasys tems

are created by t be sys tem object named level-manager-generator. Th e user can

replace thi s element of default-system-object-table as follows :

(metalevel-exec

[[(G default-system-object-table)

<== [: aset

(symbol-id 'level-manager-generator)

a-user-defined- level-manage7·-genemtor]]])

After execu ting t hi s code, when a new metasystem (the meta meta system, the meta

meta meta system , etc.) is generated, a level manager is generated using the user­

defin ed level manager genera tor.

49

There IS one caveat in this example: when the user replaces the

level-manager- generator with an interpreted RbCI object, in practice il will never

be used because the new meta meta system wi ll have already been generated using the

old value of default-system-object-table when the user creates the interpreted

RbCI object. To avoid this situation, in the next example, we introduce the (meta)"'

level which enables the user to replace the elements of the default-system-object-table

with interpreted RbCI objects.

The (Meta)w Level

The behavior of 3-Lisp programs is defined by the infinite reflective lower of ntct a­

circular interpreters . In practice, for efficient execution, the reflective LOW('!' of :~- Lisp

is realized by a run-time interpreter kernel written in another language L. We refer

to such an interpreter as the tower inteJ']J/"eler of 3-Lisp in L. A tower intcrpr<'lcr of

3-Lisp can a lso be written in 3-L isp itself (without using its reflective facililies)[l8].

This system would be the tower interpreter of 3-Lisp in 3-Lisp.

In the same way, we can write a tower interpreter of RbCI in RbCI. As explairwd

in Section 4.4.1, the reflective tower of the plain RbCI is implemented on the C++

language, so the plain RbCl metasystem is a tower interpreter of RbCI in C++. Ob­

vious ly we can use the RbCl language itself to write a tower interpreter of fl bCI: we

call this system the tower interpreter of RbCI in RbCI (Fig. 4.3). The reader should

not confuse two RbCl systems, the in lerp1·eted RbCl and t he inle1preling l?b CI. The

interpreted RbCI is implemented by the tower interpreter, and the tower interpreter

is only an app lication program of the interpreting RbCl. The baselevcl of the in­

terpreting RbCI may be called the (meta)w level of the interpreted RbCI, because it

implements the entire reflective tower of the interpreted RbCl. The programming at

the (meta)w level allows, for example, debugging of reflective programs, experiments

on reflective facilities using RbCI, rather than using other low level programming

languages such as C++. New reflective systems - for example, a multi-user sys­

tem supporting each user to have his/her own reflective tower - could be efficiently

realized within the RbCI framework .

50

(defun Tower-in-RbCl (obj-code)

;; This level is the (meta) '(omega) level

;; inte!']J!'eted by the (meta) '(omega+!} level.

(let (level- manager

obj)

;; Generate a new metasystem.

(setq level-manager

[(G metasystem-generator) <== [:call]])

;; Shift to the generated level.

[level-manager <== [:shift-to-meta]]

;; Now, this level is the new metalevel

;;still interpreted by the (meta) '(omega+l) level.

(setq obj [(G make-local-object)

<== [:call obj-code]])

[(G active- queue) <== [:enqueue obj]]

;; Start interpretation of the new base/eve/.

[(G scheduler) <== [:call]]

))

Figure 4.4 : A tower interpreter in RbCI.

Fig . 4.4 is an example of tower interpreter in RbCI. Obj -code is the program

code of the start-up object4 (G metasystem-generator) denotes a system ob­

ject t hat generates a new metasystem by the scheme described in Section 4.4.'1.

Metasystem-generator returns t he level manager of the generated metasystcm when

it receives a [:call] message. We can implement a complete tower in te rpreter in

such a few program steps because metasystem-generator has an abi li ty to create a

complete metasystem explicit ly.

It is likewise possible in other reflective language systems to wr ite the tower in -

4The RbCI metasystem rep resents program code of RbCI objects as metalcvel objects.

51

terpreter of itself. However, it would require hundreds of lines of program code to

implement the run -ti me kernel exp li cit ly. Furthermore, the execut ion of intrrpr<'lrcl

re fl ect ive tower would be much slower than the original one. and the usn must change

t he program code of run-time kernel (in a n ad hoc way) to experiment with new r<'­

flective facilities . In contrast, the execution speed of programs in the intcrpretccl

RbCI is as fast as the interpreting RbCI, because the entire reflective tower is di ­

rect ly implemented by the (meta)w level. Furthermore. the user could replace sonJ<'

elements of (G default-system-object-table) with (meta)w level Hb C' I objr·cts to

mod ify the behavior of the entire reflective tower. So, for example, th<' user could

use RbCI to implement a. debugger of reflective programs rath er t han using ot llC'r low

level programming languages such as C++.

4.5 Realization of Linguistic Symbiosis

In order to realize the linguistic symbios is, t he implementation gap betwecn BbC I and

C++ is absorbed by metal eve! objects call ed intermediale poiniCis (F ig . 4 .5). Each

reference between baselevel RhCI objects and baselevel C++ objects is represented

by an in termediate pointer object at the metalevel. The user can modify/extend the

behavior of intermediate pointers as well as other metalevel objects. Intermediate

pointers perform the following things:

l. Convers ion of message pass ing protocols between the two languag<'s .

2. Conversion of data represen tation between the two languages.

3. Level shift ing (switching system object tables) by sending messages to t he leve l

manager of the metalevel.

4. Coroutine management using the thread libra ry of the C language.

Currently, C++ objects must meet the following requirements:

• A C++ class must be defined to be a subclass of the class L . To access a C++

object, the RbCI system needs to invoke the methods provided by the class L .

52

I
I I I 1 1 II l

·t '\ I 1 1 -11 1

I I I II II I

r - --~-----~·~ : D: ,-- -- Metarever
-- ,' ~·- -,, ~ ~- _. I ~

- .:#' ' ' .,.,..,.. "~ ____
lmermediate pointer

Figure 4.5: Implementat ion of t he li nguist ic sym bios is.

• All t he methods which t he RbCI may invoke must be defi ned as virtue ! func­

t ions.

• All t he argumen ts of t he methods whi ch the RbCI may invokf' must have the

type eit her basic type (e.g ., integer, Boolean . etc.) or the pointer typf' r<'fcrt>nc­

ing an instance of t he class L.

The in termediate poin ters between two object types a re generated in obje-ct­

oriented manner. We can regard t he baselevel world as separated in to two languag<'

wo rlds, t he RbCI wor ld and t he C++ wo rld. When a reference goes across the lan­

gu age boundm·y, there must be an inte rmed iate poin ter. (Fig. 4.6) When a rf'ference

of an RbCI object R goes across t he la nguage boun dary from RbCI to C++, Lh<' in te r­

mediate poin ter at t hat bou ndary traps t hat message sending and sends t he message

: c2r to R . T he return value of t hi s message sending form is new intermed iat(' pointe r

P which will convert a C++ virt ua l funct ion call to an R bCi message sending. P can

be regarded as R itself from the po int of view of the C++ world.

T he in termed iate po inters convert message passing protocols as fo llows. The
method :too with one method defi ned fo r the intermediate pointer class looks like:

LP Lc 2r _pointer: : foo (LP argl){

level_manager->shift_ to_meta();

LP r_ret = c2r_nowsend (list (builtin_symbol (S_f oo) , a rg1->r 2c ()) , r_obj) ;

53

C++ world RbCl world

Figure 4.6: The language boundary and intermediate pointers.

LP ret :; r _ret->c2r ();

level_manager->shift_ to_base () ;

return ret;

Lc2r_pointer is the class of the intermediate pointer from the C++ world to thP

RbCI world. LP is a pointer type to metalevel objects. This method :foo trans lates

the C++ representation of a message and its arguments into the RbCJ representation.

Because instances of different C++ classes receive different set of messages, every class

needs the class-specific definition of the intermediate pointer class. This burdensome

task of producing an intermediate pointer class may be automatically clones Message

passing from an RbCI object to a C++ objrct is realized in a sim ilar way.

The function c2r_nowsend appeared at above program li st performs an Rb CJ

message sending. It also manages the coroutines using thread library. All baselevel

RbCI objects are interpreted at the metalevel on one thread. and baselevel C++

objects are directly implemented by metalcvel C++ objects that run at the melalevel

on the other threads . When a baselevel RbCI object sends a message to a baselcvel

C++ object, the intermediate pointer at the metalevcl switches the active thread to

a new thread where the corresponding metalevel C++ object runs. When control

is passed back to a baselevel RbCl object , the interpreter thread at the meta!f'vel is
5
T h is mechanism is not implemented yet. Cu rrently, only instances of class L can used as H.bCI

objects.

54

reactivated. Message passing between C++ objects is performed eflic iently with an

ordinary virtual function invocat ion without using intermedi ate pointPrs.

4.6 Garbage Collection

4.6.1 Garbage Collection and Finalization

Garbage collection of RbCl objects is implemented using the finalization facility. Each

obj ect may have a finalization form 6
, which will be executed before the object is

ga rbage collected. (There is an example program using a fin ali zat ion form in Ap­

pendix A.l.) ln the current prototype system, C++ objects are garbage co ll ected by

reference counting scheme 7
.

The garbage collection of RbCI objects is implemented as follows. Wlwn a refer­

ence to an object is discarded at a baselevel , the pointer object wh ich represents that

reference become garbage because no metalevel objects refer it yet. The finalization

form of the pointer object decrement the reference count of t he object it had been

referred. If the reference count becomes zero, the corresponding baselevel object is

regarded as garbage.

4.6.2 Changing Garbage Collection Scheme

Plain RbCI does not support di stributed garbage co ll ect ion. The user can imple­

ment various distributed garbage collect ion schemes by extendi ng pointer and port

objects . For example, group reference counting scheme[7], that can col lect some dis­

tr ibu ted cyclic garbage, can be implemented . The following program is an example

to implement a simple distributed ga rbage collect ion using reference counting.

In pla in RbCl , a remote pointer is represented as a metalevel obje t called

LglobaLpointer, that contains an encoder of the node where the target object

res id es and local id of the object.

6 in C++ terminology, it is a des tructor(2 i].
7 1i is implemented by using sma1·t pointer and destru ctor of it .

55

When a LglobaLpointer is regarded as a ga rbage aL the meLal<?v<'l, the final ­

izat ion form of Lhe LglobaLpointer is executed. In the followin g prog ram, I he

finali zat ion form sends a packet whose Lag is Ddiscard. The receiver of the packet

send a :decode message Lo Lhe system objed named Ddiscard, Lhat dccrcnl<'nt til('

reference counter of t he targeL objed.

(metalevel-exec

(defclass pointer-mixin

(unwind-protect

(script

(;> [:set-super x]

(setq self nil)

! (setq super x))

(;> any ~ r ep - des

[super <; any ~ rep-des]))

. , The following form is executed

when this object is regarded as a garbage.

(let ((encoder [super (;; [:get-encoder]])

(localid [super (;; [: get-localid]])

(buf [(G ILio_bufferl) (;; [:call]]))

[buf (;; [:put-int [(reify 'Ddiscard)

(;; [:symbol-id]]]]

[buf (;; [:put-int localid]]

[encoder (;; [:nacl-send buf]]

)))

(setf (G ILglobal_pointerl)

(extend-generator pointer-mixin

(G I Lglobal_pointer I)))

(defclass Ddiscard

(script

(;> [:decode buf]

(let ((obj (localid-to-obj [buf (;; [: get-int]])))

; ; Decrement the reference count.

[obj (;; [:user-discard]]

o (reify nil)

))))

(setf (G Ddiscard) (new Ddiscard)))

56

Chapter 5

Performance Evaluation

5.1 Current Status of Implementation

Currently, the prototype system of H.bCI has been implemented on Spare-Stations

connected with an Ethernet. The lwp (light weight process) library of Sun OS is used

to implement the linguistic symbios is. The following RbCI features are impicm<'ntcd.

• Concurrent execution of objects.

• The linguistic symbiosis.

• Inter-node communication .

• Reflective facilit ies .

5.2 Overhead of Non-Reflective Execution

During execut ing non-reflect ive programs, indirect accesses to metalevel objects such

as virtual function call become execution overhead. This is a result of tradeoff between

flexibility and efficiency. As demonstrated in the previous Sections, H.bCI prov ides

highly flexibil ity that is worth this overhead. The user who thinks that th<: perfor­

mance is more important can decrease this overhead as follows. For examp le, suppose

a user wants to improve performance of inter-node communications . The inter-node

57

communication module consists of severa l system objects, as described at Section 4.3.

The user may replace system objects in inter-node communicatio n modul<- so that t ll<'y

communicate directly (communicate with ordinary function calls rat lwr than l'irtnal

function call s) each other. In this case, flexibility of the inter-node communirat ion

module is lost instead of efficiency.

In th is way, RbCI perfectly leaves the chance of tradeoff between flexibility and

efficiency for the user because there a re no run-time kernels that restrict thr rang<' of

customiza tion.

It is also possible to decrease overhead of indirection without dccr·ease flexi­

bi lity by employing compiler optimization techniques fo r sequential object-or iented

languages[2] . It decreases overhead of indirect message sending.

5.3 Overhead of Reflective Execution

When t he user replaces a metalevel system object with a C++ object (or a compiled

RbCI object), there is absolutely no overhead except for default overhead d<'scribcd

above.

When the user rep laces a metalevel system object with an RbCI object, the new

system object will be interpreted by t he meta meta system, so the performance of

the system wi ll be degraded. The overhead of message sen ding between RbC I objects

and C++ objects is a lso not so small because it causes data. conversion of argumen ts,

thread sw itching and level shift ing.

5.4 Performance Improvement Using Reflective

Programming

We measured t he cost of the asynch ronous remote message send ing in three cases.

The content of the message is a list of two integers. The first case is measured in

the de fau lt metasystem of pl ain Rb CI. In the second case, inter-node commun icat ion

routines a re customized as described at Section 4 .3.6. Two system objects are rep laced

58

with the user defined RbCI objects that are special ized to the messagC' type, lists of

two integers. [n t he third case, two system objects are replaced with C++ objects

whose behavior is almost same to the RbCI objects of t he second case.

• The pla in RbCI metasystem : 9.8 ms

• Replaced with RbCI objects : 600 ms

• Rep laced with C++ objects : 7.4 ms

In the second case, the speed is slower than the default system, but t his custom ization

scheme (replacing with RbCI objects) ca n be used for prototyp ing tlw metalf'vPI. If

th e use r defin ed RbCI objects a re compiled to the native code, the cos t will bcconlC'

near to that of the third case.

59

Chapter 6

Conclusions

RbCl reali zes t he refl ective towe r e ffi cienLly with fini te computing rf'sources without

n run-time kerne l. This is achieved by em ploying a s im ple mechani sm ca ll ed system

object tables and a novel facili ty call ed linguistic symbiosis wit h C++ objects.

Because RbCl is a kernel-less system . t he user can change the bf' havio r of t hf'

system up to t he restriction imposed by t he operating system an d hard war<' within lh<'

RbCl framework. T his implies t ha t every possible run-t ime fac ili ty can be provicif'd

as libra ries or applications writ ten in R bCJ.

T he system object t able of the metalevel on a node is the CCS R of t he basclevel

on t he node. The system obj ects th at reali ze the basic behavior of the baseleve l a rC'

the elements in the system object table of the metalevel. The benefit s of t he system

object ta bles are as follows:

l. The system object table of the meta.l eve l is t he mechanism th at ma kes the RbCl

metasystem kernel-less . AU the system objects are indirectly accessed through

t he sys tem object table. T herefore, the user can change the behav ior of t he

metasystem by replacing elements of t he system object tab le with user-dcfin<'d

obj ects . T he overhead of t hi s indirect ion is negligible because access to a system

object can be achieved in only a few inst ruction steps.

2. The system obj ect tables represent t he name spaces of system objects that a re

equi valently accessed by two languages, C++ and RbCI.

60

3. Level shifti ng, that is , switch ing the current name spare of thr system objects ,

can be efficiently implemented.

The benefits of t he linguist ic symbiosis with the C++ objects are as follows:

I. An efficient reflect ive system can be easily implemented . The metasystC'nt ca n

be constructed only by the C++ objects that are efficient ly executed, and the

user can manipulate the meta level C++ objects just as RbCI objects .

2. The linguistic symbiosis a lso serves as a foreign language interface to the C(++)

language t hat enab les t he user to directl y use tbe sys tem call s provided bv the

operating system .

It shou ld be noted that the imp lementat ion techniques used by RbCI arc ra sil y

ap pli cable to other sys tems. The reflect ive facilities of RbCJ a re implemented using

on ly simple mechanisms of tbe implementation language: the system object table' is

only a simple a rray of objects, a nd the lingui stic symbios is requires on ly the co ro utine

facility for its implementat ion.

Des ign and implementation of the following mechanisms are the future work.

• Except ion handling and real t ime features .

Pract ical programming system shou ld provide these features. [5] proposes such

features for object-ori en ted co ncurrent languages. Interrupt manager should be

introduced into the metasys tem to implement these features.

• Compiler.

Currently, t he user defined object is executed by t he in terpreter and the differ­

ential programming is supported naively. In ad dition, all objects , including very

small one such as cons cells, a re operated through virtua l fun ct ion invocations.

The implementation techniques to make object-oriented languages effi cien t(2]

are very effective to reduce this overhead. Compi ling concurrent objects to

efficient code is difficult and very important research issue. Development of

an open-ended compiler that can be used as a platform of experiments about

compiling techniques wou ld cont ribute to such research .

61

Bibliography

[1] Burdorf, C. & J. Mart i, ''Non-Preemptive Time Warp Schedul ing Algorithms'',

Operating Systems Review, vol.24,pp7-18,Apr.1990.

[2] Chambers, C. & Unger, D. , "Making Pure Obj ect- Oriented Languages Pract i­

cal," ln Proc. of OOPSLA '91 , ACM, October, pp.l-15 , 1991.

[3] Etsuya Shibayama, Yonezawa, A., & lchisugi , Y. The A BCL/ 1 user's guide. In

[27] .

[4] Ferber, J. , "Computational Re fl ection in Class based Obj ect Oriented Lan­

guages ," In Proc. of OOPSLA '89, ACM , pp.317- 326 , October. 1989.

[5] lch isugi, Y. & Yonezawa, A. Exception handling and real time features in an

object-oriented concurrent language. In Concu1·rency: Th eO'I·y, Languages and

Architecture, volume 491 of Lecture Notes in Computer Science, pages 92 I 09.

Springer- Verlag, 1990.

[6] Jchisugi, Y., Matsuoka, S. , Watanabe, T. & Yonezawa, A. An object-o riented

concu rrent reflective architecture for distributed computing environments (ex­

tended abstract). In Pmceedings of 29th Annual Allerton Confcrwce on Com­

munication, Control and Com]mling, Allerton fllinois, 1991, J 991.

[7] Ichisugi , Y. & Yonezawa, A. Dist ribu ted garbage collection using group reference

count ing. In Ikuo Nakata and Masami ll agiya, ed itors, Softwa,·e Science and

Engineerings, pages 212- 226. World Scientific, 1992.

62

[8] lchisugi , Y. , Matsuoka, S. & Yonezawa, A. RbCI: A Reflective Object-O riented

Concurrent Language without a Run-t ime Kernel. In Proc. of l~ISA '92 Inter­

national Workshop on Reflection and Meta-level Architecture, Tokyo, Nov.4 7.
1992.

[9] Ishikawa, Y., "Reflection Facilities and Realistic Programming," SICPLAi\' .\o­

tices, VoJ.26, No.8, Aug.1991, pp.IOJ -110.

[10] Jefferson , D.R., "Virtual Time", ACM Trans. Programming Languages and SyH­

tems, vol.7,no.3,pp.404-425, 1985.

[11] Kiczales, G., des Rivieres, J. & Bobrow , D. C., The Art of Mctaobjcct Protoco l,
MIT Press , 1991.

[12] Lieberman., H., "Using Prototyp ical Objects to Implement SharPd Beha vior in

Object Oriented Systems," In Proc. of OOPSLA '86, ACM, September-October,
pp.214- 223 1986.

[13] Maes, P., "Concepts and Experiments in Computational Refl ect ion '' , In Proc.

OOPSLA '87, ACM , pp. 147- 155, 1987.

[14] Masuhara, H., Matsuoka, S., Watanabe, T. & Yonezawa, A. "Object-Oriented

Concurrent Reflective Languages can be Implemented Efficient ly", In Proc . of

OOP SLA'92, ACM, pp.127-144, 1992.

[l5] Matsuoka, S. , Watanabe, T. & Yonezawa, A. , "Hybrid Group Reflective Archi­

tecture for Object-Oriented Concurrent Reflective Programming", In Proc. of

ECOOP '91. pp. 231- 250 , Lecture Notes in Computer Science, 512. Springer,
1991.

[16] Matsuoka, S., Watanabe, T ., lchisugi, Y.& Yonezawa, A., "Object- Oriented Con­

current Reflective Architectures," ln Proc. of ECOOP Workshop on Object­

Based Concurrent Programming, Geneve, Switzerland, Ju ly, 1991, also in a

LNCS 612 , Springer, 1992.

63

[17] Okamura, H., Ishikawa, Y. & Tokoro, M., '·AL-1/D: A Distributed Programming

System with Multi-Model Renection Framework," In Proc. of li\!Si\'92 lnkr­

national Workshop on Renection and ~lela-le,·d Architecture. Tokyo, .\101·. I T.
1992.

[18] Rivieres, J. & Smith, B. C .. '·The Implementation of Procedurally Reflective Lan ­

guages,"· Conference Record of the 1984 ACM Symposium on Lisp and Function a I
Programming. 1984.

[19] Rose, J., ·'A Minimal Metaobject Protocol for Dynamic Dispatch"'. In l'ror. of

the OOPSLA'91 Workshop on Reflection and Metalevel Architecture's in ObjC'ct ­

Oriented Programming, October, 199J.

[20] Smith, B. C., '·Reflection and Semantics in Lisp". In Conference Record of AC'fVI
POPL '84, pp. 23-35, 1984.

[21] Stroustrup,B., '·TIIE C++ PROGRAMMING LANGUAGE SEC'O D lmi­

TION", Addison Wesley, 1991.

[22] Wand,M . & Friedman.D., "The fVlystery of the Tower Rev<'aled: A Non­

ReAective Description of the Renective Tower,"' Meta-Level Archikcturrs and

Reflection, pp.ll1- 134, Elsevier Science, North-Holland , 1988.

[23] Watanabe, T. & Yonezawa, A., "Reflection in an Object-Oriented Concurrent

Language", In Proc. ACM OOPSLA '88, pp. 306-315, 1988, (rev ised V<' rsion in
[27]) .

[24] Watanabe, T. & Yonezawa, A., "An Actor-Based Metalevel Architecture for

Group- Wide ReAection'', In Pro c. REX School/Workshop on Foundations of

Object-Oriented Languages (REX/FOOL), Lecture Notes in Computer Science,
489, Springer, 1991.

[25] Yokote,Y., Teraoka,F. & Tokoro,M., .. A Reflective Architecture for an Object­

Oriented Dist ributed Operat ing System," Proceedi ngs of European Conference

on Object-Oriented Programming, Jul y, 1989.

64

[26] Yokote,Y., "The Apertos Rencctive Operating System: Tlw Conr<'pt and Its

Implementation '', In Proc. of OOPS LA '92, ACM , October , 1992.

[27] Yonezawa. A.(Ed.) , ABCL: An Object-Oriented Concurrent SystC'm, i\IIT PrPSS ,
1990.

[28] Yonezawa, A. & Watanabe, T., '·An Introduction to Object- Based HdiPcti vc

Concurrent Computations", In Proc. of 1989 Workshop on ObjC'ct- Bas<'d Con­

current Programmi ng, ACM SIGPLA 1 Not ices, 24(4) , pp. 50-54 . 191'19.

65

Appendix A

Examples Programs in RbCl

In this appendix, we will present example programs or RbCI.

A.l Non-reflective Programs

In this sedion, we expla in some non-reflective language reaturcs.

A .l.l Prime numbers

This is a simple example or RbCI program, t hat prin t the prime numbers.

(progn

(defclass filter-class

(let (next - filter)

(script

(;> [:check n]

(print n)

(setq next-filter (new filter-class))

(script

(;> [: check m]

(unless (; (- m (• (/ m n) n)) 0)

[next-filter (; [:check m]])))))))

(let ((filter (n ew filter-class))

(x 1))

66

(loop [filter<; [:check (incf x)]])))

Output :

2

3

5

7

11

13

A.1.2 Linguistic Symbiosis

The system object table contains parts of t he metasystem. A system object named
Lcons generates obj ects whi ch represent cons cell s.

(progn (setq foo (G]Lcons I))

(print foo) i This is a C++ object at baselevel

(print (setq bar [foo <;; [:call foo fool]))

(print [bar <;; [:car]]))

Output:

- (Lr 2c_point er

· (Lr 2c_point er

- (Lr 2c_pointer

When a C++ object is passed as an argument of the print function,

"- (Lr2c_pointer) " is printed. This is actually an in termediate pointer (descri bed

at Section 4.5) from a RbC I object to a C++ object.

A.1.3 Coroutine Libraries

In RbCI, coroutine library provided for C(++) is encapsulated in system objects.

Although coroutine libraries are usuall y used for metasystem, it ca n be used at base-

67

level. This is an example t hat s hows t hat t he semantics o r t he basC'IC'vC'I a nd t hC'

meta level in plain RbCI are completely equi va lent.

(progn

(defclass foo

(script

(=> [:call]

(dotirnes (n 3)

(dotirnes (rn 2)

(print (list :foo n m)))

[bar-thread <== [:yield]])

)))

(defclass bar

(script

(=> [:call]

(dotirnes (n 3)

(dotirnes (rn 3)

(print (list :bar n rn)))

[foo-thread <== [: yield]])

)))

(setq foo-thread [(G (LCthreadl) <== call (new foo)]])

(setq bar-thread [(G ILCthreadl) <== call (new bar)]])

[foo- thread <== [:yield]])

Output:

(:FOO 0 0)

(: FOO 0 1)

(:BAR 0 0)

(:BAR 0 1)

(:BAR 0 2)

(:FOO 1 0)

(:FOO 1 1)

(:BAR 1 0)

(:BAR 1)

(:BAR 2)

(:FOO 2 0)

68

(:FOO 2 1)

(:BAR 2 0)

(:BAR 2 1)

(:BAR 2 2)

A.l.4 Finalization

RbCl provides a finalization facility as mentioned in Section 1.6. Th<' S<'tnanl ics

of unwind-protect (special form of Common Lisp) is exlend<'cl lo support thC' fi ­

nalization. When an object is ga rbage co ll ected, al l unwind-prolC'cl<'d form will b<'
executed .

(progn

(defclass foo

(let ((obj nil))

(unwind-protect

(script

(~> [: set-obj x]

(setq obj x)))

(print (list 'obj~ obj)))))

(setq x (nell foo))

(setq y (nell foo))

[x <~ [: set-obj y]]

(print (list X y))

(setq y nil)

(print (list X y))

(setq x nil)

(print (list X y)))

Output:

(• (Llocal_pointer • (Llocal_pointer))

(• (Llocal_pointer NIL)

(NIL NIL)

(OBJ~ • (Llocal_pointer))

69

(OBJ= NIL)

A.1.5 Remote Message Sending

This is an example of distribu ted feature explained in Sect ion 4.3.

(if (equal (hostname) ••server-host'')

(progn

(print (hostname))

(funcall

(meta-lambda ()

(defclass foo

(script

[(G I Ltcpip_connection_request_handler I)
<== [:call (reify 6667)]]))

(=> [:foo n]

(print n)

• (1+ n))))

(setf (G foo) (new foo))

(print [(G foo) <== [:foo 12]])

(progn

(print (hostname))

(setq node (connect (node-address 11 Server-host 11 6667)))

(print (setq remote-foe (remote-system-object 1 foo node)))

(print [rernote-foo <== [:too 34]])))

Output of server-host:

''server-host"

12

13

34

Output of client-host:

70

"client-host 11

35

A.1.6 Startup Scheduling

T his example explai ns how to start up sc heduling. T his scheme IS US<'d in some
examples app ears below.

(progn

(de:fclass base-base

(dotimes (n 10) (print n)))

(print [(G active-queue) <== [: empty]])

[(G make-local-object) <== [:call (reify base-base)]]

(print [(G active-queue) <== [:empty]])

[(G scheduler) <== [:call]]

; ; never return

(print :end))

Output:

T

NIL

0

2

3

4

5

6

7

8

71

A.2 Reflective Programs

A .2 .1 M eta-lambda

This is a simple example of using meta-lambda. T he messag<.' sending :fix to a
metalevel object wh ich represents an integer returns its representing in teger 1·alue.

(progn (print (funcall

Output:

(meta-lambda (x)

(print x)

345)))

(print [x <== [:fix]])

x)

- (Lr2c_pointer

345

output of (print x)

output of (print [x <== [:fix]])

output of (print (funcall ...)) 345

A .2.2 Syst em Object Tables

T his example shows each level has its own system object table .

(progn

(print (refl ect (G I Lcons I)))

(fun call (meta-l ambda

()

[[(G baselevel-system-obj ect-table)

<== [:aset [(reify 'ILconsl) <== [symbol-id]]

(reify 123)]]]

(reif y nil)

))

(print (reflect (G I Lcons I))))

Output :

#<builtin generator >

72

123

A.2.3 Extending Objects

T hi s is an example of different ial programming descr ibed at Section 3.3.3. i\ s''St<'m
object Leans at t he baselevel is extended.

(progn

(defclass trace-mixin

(script

(=> [:set-super x]

! (setq super x))

(;> any ~ rep-des

(print any)

[super (; any ~ rep-des])))

(defun extend (mix in parent)

[mix in <== [:set-super parent]]

(do ((super parent [super (;; [:get-super]]))

([super (;; [:null]])

[s uper <== [: set-self mix in]])

mix in)

(setf (G ILconsl) (extend (new trace-mixin) (G ILcons l)))

[(G ILconsl) (;; [:print]])

Output:

(:PRINT)

(:PRINl -(Lr2c_pointer))

#<builtin generator>

A.2.4 Extending Cons Generators

T his is an example of extending a w·nerato r. vVhen cons generator rf'ce iv<'d some

message, such as :call , the message tag will be prin ted . Note t hat t hi s metal eve!

program a lso creates cons cell s, but it will not pri nt t race message because t he cons

generator a t the meta meta level is st ill de fa ult one.

73

(progn

(funcall

(meta-lambda

()

(def class trace-mixin

(script

(=> [:set-super x]

! (setq super x))

(=> any ~ rep-des

(print (car any))

[super <= any «< rep-des])))

(defun extend (mixin parent)

[mix in <== [:set-super parent]]

(do ((super parent [super <== [get-super]]))

([super <== [:null]])

[super <== [:set-self mix in]])

mixin)

(defclass generator-mixin

(let (mixin-class)

(script

(=> [:set-super x]

1 (setq super x))

(=> [: init-generator-mixin class]

! (setq mixin-class class))

(=> any

1 (extend (new rnixin-class) [super <==any])))))

(defun extend-generator (mixin-class generator)

(let ((new-generator (extend (new generator-mixin) generator)))

[new-generator <== [: init-generator-mixin rnixin-class]]

new-generator))

(setf (G ILconsl)

(extend-generator

trace-mix in (G I Lcons I)))

(reify nil)))

(print (list 1 2 3)))

Output:

74

: PRIN1

(:CDR

: CONSP

:CAR

:CDR

:CDR

:CONSP

:CAR

2 :CDR

:CDR

:CAR

3:CDR

A.2.5 Extending Port Generator

T his example is similar to above one. When a por t generator receives messages, t he

name of the message will be prin ted. Note t hat defini t ion of t race-mix in is eq ui valent

to t he above example.

(progn

(funcall

(meta-lambda

()

(defclass trace-mixin

(script

(=> [:set-super x]

! (setq super x))

(=> any <0 rep-des

(print (car any))

[super <= any <0 rep-des])))

(defun extend (mixin parent)

[mix in <== [:set-super parent]]

(do ((super parent [super <== [:get-super]]))

([super <== [:null]])

[super <== [: set-self rnixin]])

75

mix in)

(defclass generator-mixin

(let (rnixin-class)

(script

(=> [:set-super x]

1 (setq super x))

(=> [: init-generator-mixin class]

! (setq mix in-class class))

(=> any

1 (extend (new rnixin-class) [super <== any])))))

(defun extend-generator (mixin-class generator)

(let ((new-generator (extend (new generator-mixin) generator)))

[new- generator <== [: init-generator-mixin mixin-class]]

new-generator))

(setf (G ILport I)

(extend-generator

trace-rnixin (G I Lport I)))

(reify nil)))

(defclass foo

(script

(=> [:fool

(pr int :foo))))

(setq x (new foo))

[x <= [: fool]

(setq x nil))

Output:

:SET-BODY

: USER-REFER

:WAIT-FOR-MESSAGE

:SEND

:NEXT-VALUE

:FOO

:WAIT-FOR-MESSAGE

76

A.2.6 Changing Scheduling Policy

This is a more complex example. Objects and t he active-queue arc cxtend<'d to
implement scheduling with priority. (Cf. Sect ion 4.2) After extending bt>ha1·ior of
objects , a [unction set-priority becomes avai lable. The function set-priority

just send a priority value specified as an argument to the currently running object.
This example creates two objects, p1 and p2 with different pr iority.

(progn

(defclass pl

(set-priority 6)

(dotirnes (n 3) (print : pl)))

(defclass p2

(set-priority 7)

(dotirnes (n 3) (print :p2)))

(defclass boot

(new p2)

(new pl))

(funcall

(meta-lambda

()

(defclass priority-mixin

(let ((priority 5)) ; default priority

(script

(;> [:set-super x]

' (setq super x))

(;>[:set-priority n]

! (setq priority n))

(;> [:get-priority]

! priority)

(;> any ~ rep-des

[super <; any ~ rep-des]))))

(defun set-priority (n)

(funcall (meta-lambda (n-obj)

[(G current-obj oct)

(;; [:set-priority (reflect n-obj)]]

77

(reify nil))

n)

(defun insert-obj (obj queue)

(cond ((null queue)

(list obj))

((< [obj <== [get-priority]]

[(car queue) <== [:get-priority]])

(cons obj queue))

(t

(cons (car queue)

(insert-obj obj (cdr queue))))))

(defclass pr iority-queue

(let ((queue nil))

(script

(=> [:empty]

' (null queue))

(=> [:enqueue obj]

(setq queue

(insert-obj obj queue))

! nil)

(=> dequeue]

! (pop queue)))))

(defun extend (mixin parent)

[mix in <== [:set-super parent]]

(do ((super parent [super <== [:get-super]]))

([super <== [:null]])

[super <== [:set-self mix in]])

mix in)

(defclass generator-mixin

(let (mixin-class)

(script

(=> [:set-super x]

! (setq super x))

(:;) [: init-generator-mixin class]

! (setq mixin- class class))

78

(~> any

!(extend (new rnixin-class) [super<~~ any])))))

(defun extend-generator (mixin-class generator)

(let ((new-generator (extend (new generator-mix in) generator)))

[new-generator <:= [: ini t-generator-mixin mixin-class]]

new-generator))

(let ((old-queue (G active-queue)))

(setf (G active-queue)

(new priority-queue))

(setf (G ILobjectl)

(extend-generator priori ty-mixin

(G ILobjectl)))

[(G make-local-object)

<~~ [:call (reify boot)]]

(print : start)

[(G scheduler) <== [:call]]

; ; never return

))))

Output:

: START

:Pl

:Pl

:Pl

: P2

:P2

:P2

79

A.3 Extending Reflective Facilities

One of t he most nota ble characteri st ics of RbCI is t hat t he usn can mod ify/<'xtcnd

even refl ect ive faci lities t hemselves . T he foUowing progra ms a rc examp les of mod­

ify/extend t he reflect ive facili ties .

A.3.1 Extending Intermediate Pointers

In termed iate poin ters, t hat realizes t he li nguist ic symbios is a rc also custon1i2a bk.
This is a n examp le to t race in termediate poin ters at metaleve l.

(progn

(fun call

(meta-lambda

()

(setq •id• 0)

(defclass trace-mixin

(let ((id (incf •id•)))

(print (list id :created))

(script

(=> [:set-super x]

! (setq super x))

(=> any <II rep- des

(print (list id :delegate (car any)))

[super <= any <II rep-des]))))

(defun extend (mixin parent)

[mix in <== [:set-super parent]]

(do ((super parent [super <== [:get-super]]))

([super<== [:null]]}

[super <== [:set-self mix in]])

mixin)

(defclass generator-mixin

(let (rnixin-class)

(script

(=> [:set-super x]

r (setq super x))

(=> [:init class]

80

! (setq mix in-class class))

(=> any ~ rep-des

(let ((a-mixin (new mixin-class))

(a-cont (new mixin-cont)))

[a-cont <;; [: init rep-des a-mixin]]

[super <= any C a-cont])))))

(defclass mixin-cont

(script

(;> [:in it rep-des a-mix in]

!nil

(send rep-des (extend a-mixin (next-value me))))))

(defun extend-generator (mixin-class generator)

(let ((new-generator (extend (new generator-mixin) generator)))

[new-generator <;; [: init mixin-class]]

new-generator))

(setf (G 1Lr2c_pointerl)

(extend-generator trace-mixin

(G 1Lr2c_pointerl)))

(setf (G 1Lc2r_pointerl)

(extend-generator trace-mix in

(G 1Lc2r_pointerl)))

(reify nil)

))

(defclass foo

(script

(=> any C rep-des

[(G ILconsl) <=any~ rep-des])))

(print 1)

(print (G I Lcons I))

(print 2)

(setq x [(G ILconsl) <== [:call (G ILconsl) (new foo)]])

(print x)

(print 3)

[x <== [: print]]

81

Output:

(1 :CREATED)

(1 :DELEGATE :PRIN1)

~ (Lr2c_pointer

2

(2 :CREATED)

(3 : CREATED)

(3 :DELEGATE

(2 :DELEGATE

(3 :DELEGATE

(4 :CREATED)

(4 :DELEGATE

: EXPORT-COPY)

:SEND)

:C2R)

:PRIN 1)

- (Lr2c_pointer)

3

(4 :DELEGATE :SEND)

((5 : CREATED)

(5 : DELEGATE :SEND)

<bui l tin generator>(6 : CREATED)

(6 :DELEGATE :SEND)

(7 :CREATED)

(8 :CREATED)

(7 : DELEGATE :EXPORT-COPY)

(8 :DELEGATE :SEND)

(7 :DELEGATE :C2R)

#<builtin generator>)

A.3.2 Extending a Level Manager

In th is example, a level manager a t the metalevel is extended to moni tor tllC' lrvel

shift ing between the baselevel and t he metalevel.

(progn

(funcall (meta-lambda

()

(setq •id• 0)

82

(defclass trace-mixin

(let ((id (incf •id•)))

(print (list id :created))

(script

(=> [:set-super x]

! (setq super x))

(=> any Q rep-des

(print (list id :delegate (car any)))

[super <= any Q rep-des]))))

(defun extend (mixin parent)

[mix in <== [:set-super parent]]

(do ((super parent [super <== [:get-super]]))

([super <== [:null]])

[super <== [:set-self mixin]])

mix in)

(setf (G level-manager)

(extend (new trace-mixin)

(G level-manager)))

(G ILconsl) ;dummy

))

(defclass too

(script

(=> any

(print : foo)

! (G I Lcons I))))

(print 1)

(print (G I Lcons I))

(print 2)

(setq x [(G ILconsl) <== [:call (G ILconsl) (new foo)]])

(print x)

(print 3)

[x <== [:print]]

Output :

(1 :CREATED)

83

- (Lr2c_pointer

2

(1 :DELEGATE :SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

- (Lr2c_pointer)

(1 :DELEGATE :SHIFT-TO-BASE)

((1 : DELEGATE :SHIFT-TO-META)

:FOO

(1 :DELEGATE :SHIFT-TO-BASE)

#<builtin generator> (1 :DELEGATE :SHIFT-TO-META)

:FOO

(1 :DELEGATE :SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

:FOO

(1 :DELEGATE :SHIFT-TO-BASE)

#<builtin generator>(! :DELEGATE : SHIFT-TO-META)

:FOO

(1 :DELEGATE :SHIFT-TO-BASE)

. (1 :DELEGATE :SHIFT-TO-META)

:FOO

(1 :DELEGATE :SHIFT-TO-BASE)

#<builtin generator>)

(1 :DELEGATE :SHIFT-TO-META)

A. 3.3 Ex t e nding a ll Leve l M anagers

This is an example extending t he a ll level managers in the re fl ect ive tower using meta

omega level described in Section 4.4.5.

(progn

(setq •id• 0)

(def class trace-mix in

(let ((id (incf •id*)))

(print (list id :created))

(script

84

(=> [:set-super x]

! (setq super x))

(;> any «< rep-des

(print (list id :delegate (car any)))

[super <; any Gl rep-des]))))

(defun extend (mixin parent)

[mix in <;; [:set-super parent]]

(do ((super parent [super <;; [:get-super]]))

([super <;; [:null]])

[super <;; [: set-self mixin]])

mixin)

(defclass generator-mixin

(let (mixin-class)

(script

(;> [:set-super x]

'(setq super x))

(;> [:in it class]

! (setq mixin-class class))

(;> any 00 rep-des

(let ((a-mixin (ne~ mix in-class))

(a-cont (new mixin-cont)))

[a-cont <== [:init rep-des a-mixin]]

[super <; any 00 a-cont])))))

(defclass mixin-cont

(script

(=> [: i n it rep-des a-mixin]

!nil

(send rep-des (extend a-mixin (next-value me))))))

(defun extend-generator (mixin-class generator)

(let ((new-generator (extend (new generator-mixin) generator)))

[new-generator <== [:in it mix in-class]]

new-generator))

[[(G default-system-object-table)

<;; [: aset [(reify ' I Llevel_manager I)

<;; [: symbol-id]]

(extend-generator

trace-mix in

85

(G ILlevel_managerl))]]]

; ; create new metasystem

[[(G metasystem-generator) <== [:call]] <== [:shift- to-meta]]

; i now. this level is new metalevel

(defclass foo

(script

(=> any Ill rep-des

[(G ILconsl) <=any 1!1 rep-des])))

(defclass startup

(print 1)

(print (G I Lcons I))

(print 2)

(setq x [(G ILconsl) <== [:call (G ILconsl) (new foo)]])

(print x)

(print 3)

[x <== [:print]]

(funcall (meta-lambda ()

(print 4)

(funcall (meta-lambda ()

(reify nil)

)))

(print 5)

(G ILcons I) ; dummy

))

[(G make-local-object) <== [:call (reify startup)]]

[(G scheduler) <== [:call]]

, , never returns

Output:

(1 :CREATED)

(1 :DELEGATE : SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

- (Lr2c_pointer

2

86

(1 :DELEGATE :SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

• (Lr2c_pointer)

3

(1 :DELEGATE :SHIFT-TO-BASE)

((1 :DELEGATE :SHIFT-TO-META)

(1 :DELEGATE :SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

(1 :DELEGATE :SHIFT-TO-BASE)

#<builtin generator>(l :DELEGATE

(1 :DELEGATE :SHIFT-TO-BASE)

(1 :DELEGATE :SHIFT-TO-META)

(1 :DELEGATE : SHIFT-TO-BASE)

(1 :DELEGATE : SHIFT-TO-META)

(1 :DELEGATE :SHIFT-TO-BASE)

#<builtin generator>(1 :DELEGATE

(1 :DELEGATE :SHIFT-TO-BASE)

)

(1 :DELEGATE :SHIFT-TO-META)

(2 :CREATED)

(2 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE :SHIFT-TO-META)

(2 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE : SHIFT-TO-META)

4

(3 :CREATED)

(3 :DELEGATE :SHIFT-TO-BASE)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(3 :DELEGATE :SHIFT-TO-META)

5

(3 :DELEGATE :SHIFT-TO-BASE)

(3 :DELEGATE :NULL)

(3 : DELEGATE :NULL)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE :SHIFT-TO-BASE)

:SHIFT-TO-META)

:SHIFT-TO-META)

87

(2 :DELEGATE :NULL)

(2 :DELEGATE :NULL)

(2 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :NULL)

(3 :DELEGATE :NULL)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(3 :DELEGATE :NULL)

(3 :DELEGATE :NULL)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE : SHIFT-TO-BASE)

(2 :DELEGATE :NULL)

(2 :DELEGATE :NULL)

(2 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :NULL)

(3 :DELEGATE :NULL)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE :SHIFT-TO-BASE)

(2 :DELEGATE :NULL)

(2 :DELEGATE :NULL)

(2 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :NULL)

(3 :DELEGATE :NULL)

(3 :DELEGATE :SHIFT-TO-META)

(3 :DELEGATE :SHIFT-TO-BASE)

(3 :DELEGATE :NULL)

(3 :DELEGATE : NULL)

(3 :DELEGATE :SHIFT-TO-META)

88

Appendix B

Rscheme

We present a full program li st of Rscheme, which is a kernel-less languag<' on Sc hem<'

based on a refl ective architecture modeling that of RbCI.

The program li st consists of two parts, one representing system objf'ct ta bles a nd

the other run-time routines. Run-time routines mainly consists of t hrcC' parts which

are respecti vely implementing the in terpreter , linguisti c symbios is and the re fl <'ct ive

tower. All t he run-time rout ines are elements of t he system object table.
Rscheme has a primiti ve language construct for refl ect ion , named exec-at-rnetalevel.

The user can modify/extend elements of the system object table at t he rnetalevel us­
ing this primi t ive. For example, t he following code repl aces t he sys tem fun ct ion ca ll ed
eval with a user defined function. After execut ing thi s code, each ex press ion will b<'
printed out when it is evaluated.

; ; ; trace

(exec-at-metalevel

((lambda (old-eval)

(setG 'eval

(lambda (exp cont)

(write exp)

(newline)

(old-eval exp cont))))

(G 'eval)))

The value of old-eval is actuall y a Scheme procedure, but th e li ng uist ic symbiosis

enables the user to manipulate t he Scheme procedure just as a n Rschcme fun ct ion.

89

; ; ; ; Rscheme

The representation of system object tables.

In the actual RbCl implementation, SOT is represented as

an array and access functions are defined as macros.

(define SOT '())

(define (get-current-SOT) SOT)

(define (set-current-SOT table)

(set' SOT table))

(define (G name)

(let ((pair (assoc name SOT)))

(if pair

(cdr pair)

; ; NOTE: The function ''error" is not defined

; ; at standard scheme.

(error name "Undefined system object."))))

(define (setG name value)

(set' SOT (cons (cons name value) SOT))

name)

(define (copy-table table)

(if (null? table)

>()

(cons (cons (car (car table)) (cdr (car table)))

(copy-table (cdr table)))))

(define (boot)

(set-current-SOT '())

, , The system object called default-SOT is the template of

metasystem represented as an alist.

, , All parts of the plain Rscheme interpreter are registered

as elements of default-SOT.

(setG

'default-SOT

(list

90

···
(cons 'default-SOT 'dummy)

--
evaluator

(cons 'eval

(lambda (exp cont)

(cond ((symbol? exp)

((G 'eval-var) exp cont))

((pair? exp)

(case (car exp)

((quote) ((G 'eval-quote) exp cont))

((if) ((G 'eval-if) exp cont))

((set') ((G 'eval-set') exp cont))

((lambda) ((G 'eval-lambda) exp cont))

((exec-at-metalevel)

((G 'exec-at-metalevel) exp cont))

(else

((G 'eval-list)

exp

(lambda (1)

((G 'apply)

(car 1) (cdr 1) cont))))))

(else (cont exp)))))

(cons 'eval-quot e

(lambda (exp cont)

(cont ((G 'S->R) (car (cdr exp))))))

(cons 'eval-if

(lambda (exp cont)

(let ((cond (car (cdr exp)))

(then (car (cdr (cdr exp))))

(else (car (cdr (cdr (cdr exp))))))

((G 'eval) cond

(cons 'eval-var

(lambda (val)

(if val

((G 'eval) then cont)

((G 'eval) else cont)))))))

(lambda (var cont)

91

(cons

apply

(let ((pair (assoc var (G 'env))))

(if pair

(cont (cdr pair))

(error var "Unbound variable. 11
)})))

1 eval-set!

(lambda (exp cant)

(let ((var (car (cdr exp)))

(val (car (cdr (cdr exp)))))

((G 'eval)

val

(lambda (val)

(set-cdr! (assoc var (G 'env)) val)

(cont var))))))

(cons 'apply

(lambda (fun args cont)

(cond (((G 'R-procedure?) fun)

((G 'apply-R-procedure) fun args cont))

(((G 'R-function?) fun)

((G 'apply-R-function) fun args cont))

(else

(error fun "It is not a function")))))

(cons 'eval- list

(lambda (exp cont)

(if (null? exp)

(cont '0)

((G 'eval) (car exp)

functions

(lambda (car-val)

((G 'eval-list)

(cdr exp)

(lambda (cdr-val)

(cant

(cons car-val

cdr-val)))))))))

(cons 'eval-lambda

(lambda (exp cont)

92

"'

(cont

(let ((args (car (cdr exp)))

(body (cdr (cdr exp))))

(list 'R-function args body (G 'env))))))

(cons 1 R-function?

(lambda (x)

(and (pair? x) (eq? (car x) 'R-function))))

(cons 1 apply-R-function

(lambda (fun args cont)

(let ((vars (car (cdr fun)))

(body (car (cdr (cdr fun))))

(env (car (cdr (cdr (cdr fun)))))

(old-env (G 'env)))

(setG 'env

(append (map cons vars args) env))

((G 'oval-list)

body

(lambda (val)

(setG 1 env old-env)

(cont

((G 'last-element) val)))))))

(cons , last-element

(lambda (1)

(cond ((null? 1) '())

((null? (cdr 1)) (car 1))

(else ((G 'last-element) (cdr l))))))

--

The following system functions play the same roles

as the intermediate pointers

and realize linguistic symbiosis.

In this implementation, we use

call-with-current-continuation to implement

coroutine facility.

Function calls from baselevel Rscheme functions

93

to baselevel Scheme procedures.

(cons 'apply-R-procedure

(lambda (R-proc R-args cont)

(let ((proc ((G 'R-procedure->procedure)

R-proc))

(5-args (map (G 'R->5) R-args))

(shitt-to-meta (G 'shift-to-meta)))

((G 'shift-to-base))

(let ((val (apply proc 5-args)))

(shift-to-meta)

(cent ((G '5->R) val))))))

Convert an Rscheme function to a Scheme procedure.

(cons 'R-function->procedure

(lambda (x)

(let ((shift-to-meta (G 'shift-to-meta)))

(lambda args

(call-with -current-cant inuat ion

(lambda (cont)

(shift-to-meta)

((G 'apply-R-function)

X

(map (G '5->R) args)

(lambda (R-val)

(let ((5-val ((G 'R->5) R-val)))

((G 'shift-to-base))

(cont 5-val))))))))))

. .. --
Data representation conversions between Scheme and Rscheme.

(cons 'S->R

(lambda (x)

(cond ((pair? x)

((G 'list->R-list) x))

((procedure? x)

((G 'procedure->R-procedure) x))

(else x))))

(cons 'R->S

(lambda (x)

94

'''

(cond (((G •a-list?) x)

((G •a-list->list) x))

(((G 'a-procedure?) x)

((G 1 R-procedure->procedure) x))

(((G •a-function?) x)

((G 1 R-function->procedure) x))

((pair? x)

(error x "Cannot convert R->s••))

(else x))))

Scheme procedure

(cons 'procedure->R-procedure

(lambda (proc)

(list 'a-procedure pro c)))

(cons 'R-procedure?

(lambda (x)

(and (pair? x) (eq? (car x) •a-procedure))))

(cons 'R-procedure->procedure

(lambda (x)

(car (cdr x))))

list

(cons 1 list->R-list

(lambda (1)

(cons •a-list 1)))

(cons 'R-list?

(lambda (x)

(and (pair? x) (eq? (car x) •a-list))))

(cons 'R-list->list

(lambda (x)

(cdr x)))

--

The following system function returns two function closures

which play the same role as the level managers.

(cons 'generate-level-manager

(lambda (metalevel-SOT)

(cons

; ; shift-to-base

95

(lambda ()

(set! metalevel-SOT (get- current -SOT))

(set-current-SOT

(G 'baselevel-SOT)))

, , shift-to-meta

(lambda ()

(let ((baselevel-SOT (get-current - SOT)))

(set-current-SOT metalevel-SOT)

(setG 'baselevel-SOT

baselevel-SOT))))))

The following system functions generates a rnetasystem

in the lazy manner.

(cons 'generate-metasystem

; ; returns shift-to-meta

(lambda ()

(let• ((new-SOT (copy-table

(G 'default-SOT)))

(pair ((G 'generate-level-manager)

new-SOT))

(shift-to-base (car pair))

(shift-to-meta (cdr pair)))

(shift-to-meta)

; ; initialize meta meta level's SOT

(setG 'shift-to-base shift-to-base)

(setG 'shift-to-meta shift-to-meta)

(setG 'env

(map (lambda (pair)

(cons (car pair)

((G 'S->R) (cdr pair))))

(G 'default-env)))

(shift-to-base)

shift-to-meta)))

(cons 'shift-to-metametalevel

(lambda ()

(setG 'shift-to-metametalevel

((G 'generate-metasystem)))

96

((G 'shift-to-rnetametalevel))))

(cons 'exec-at-metalevel

(lambda (exp cont)

(setG 'exp exp)

(setG 'cont cont)

((G 'shift-to-rnetametalevel))

((G 'eval) (car (cdr exp))

(lambda (R-val)

(let ((S-val ((G 'R->S) R-val)))

((G 'shift-to-base))

((G 'cont) S-val))))))

(cons 'read-eval-print-loop

(lambda ()

(nellline)

('liil'rite '==>)

((G 'eval)

(read)

(lambda (val)

(llrite ((G 'R->S) val))

((G 'read-eval-print-loop))))))

, , This is the default environment of plain Rscheme.

ALL the Scheme functions (including higher order

, , functions such as apply or map) can be used

, , just as Rscheme functions.

(cons 'default-env

(list

(cons 'cons cons)

(cons 'car car)

(cons 'cdr cdr)

(cons 'list list)

(cons 'null? null?)

(cons 'eq? eq?)

(cons '+ +)

(cons ,_ -)

97

(cons '* •)

(cons 'I /)

(cons '; ;)

(cons 'map map)

(cons 'apply apply)

(cons 'write write)

(cons 'newline newline)

(cons 'G G)

(cons 'setG set G)

; ; NOTE: The function "eval 11 is not defined

; ; at standard scheme.

(cons 'scheme-eval eval)

))

)) ; end of default-SOT

(set-cdr! (car (G 'default-SOT)) (G 'default-SOT))

(setG 'baselevel-SOT '())

(setG 'generate-level-manager

(cdr (assoc 'generate-level-manager

(G 'default-SOT))))

(setG 'generate-metasystem

(cdr (as soc 'generate-metasystem

(G 'default-SOT))))

(setG 'shift-to-metametalevel

((G 'generate-metasystem)))

((G 'shitt-to-metametalevel))

((G 'read-eval-print-loop)))

98

