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Chapter 1 Intmduction 

Chapter 1 

Introduction 

Since the discovery of soliton phenomena (Zabusky and I<ruskal 1965) for the 

Korteweg-de Vries (KdV) equation, soliton physics has been one of the most active 

fields in nonlinear science. The KdV equation was presented to describe the water 

surface wave in the last century(Korteweg and de Vries 1895). At the same time 

one soliton solution was analytically found . The model equation includes both 

nonlinear and dispersive effects whose competition causes the generation of solitary 

waves. The notion of the soliton has been developed since the initial value problem 

of the I<dV equation was solved by the inverse scattering method (Gardner, Greene, 

I<ruskal and Miura 1967). It is believed that the particle-like stability of solitons is 

a reflection of the complete integrability of the I<dV equation. 

The KdV equation is derived from a wide class of one-dimensional nonlinear 

dispersive systems such as fluid, anharmonic lattice and plasma. For any case, a 

balance between the nonlinear effect and the dispersion is collected by a perturba

tional method. A systematic method to obtain the simple model equations from 

complex nonlinear systems was presented (Taniuti et al. 1974) , which is known as 

the reductive perturbation method. In applying this method , we assume that 

the amplitude of the wave is small but finite (weakly nonlinear approximation) and 

that the wave is slowly varying (weakly dispersive approximat ion). To take these 

assumptions into account, transformations of dependent and independent variables 

are introduced by use of a smallness parameter. Applying the perturbation method 

with respect to the smallness parameter, the KdV equation or its families are quite 

generally derived. 

The reductive perturbation method is applicable also to other situations such 

as two-dimensional systems, modulations of monochromatic waves and a couplin g 

of multi-waves. In most cases the obtained equations are completely integrable 

equations (soliton equations) such as the Kadmotsev-Petviashivili(I<P) equation, 
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Clta]>ler 1 !nLTOduction 

the Non linear Schrod inger (N LS} equation and the three-wave interaction equation. 

In this sense, soliton eq uat ions and soliton phenomena are ubiquitous in nonlinear 

dispersive wave systems. In fact solitons are observed in many stages of the nature. 

This is one of th e reasons why the notion of soliton is so important in nonlinear 

sc1ence. 
It should be noted that the soliton equations are derived mostly from homo

geneous nonlinear systems. However, in real physical systems, effects of the inho

mogeneities on the wave propagations are often important. In general, to treat 

the inhomogeneity in the frame of the reductive perturbation method (weakly non

linear and dispersive approximation) seems to be difficult. But the following two 

types of inhomogeneities are possibly tractable and have been studied extensively. 

One is the 'slow inhomogeneity' which will be discussed in the part L The other is 

' localized inhomogeneity' which causes scatterings of the nonlinear waves. The part 

II is devoted to a study of this type of inhomogeneities. 

Throughout this thesis inhomogeneous anharmonic lattices are mainly investi

gated as typical examples of inhomogeneous nonlinear systems. It should be men

tioned that this choice does not lose the generality of the study, because anharmonic 

lattices contains essential features of nonlinear wave systems. That is, many im

portant soliton equations are derived from anharmonic lattices in the similar way 
as that for most other nonlinear systems. 

Introduction Related to Part I 

Based on the recent results, nonlinear wave propagations in slowly inhomoge

neous media are considered in part L The recent studies will be reviewed shortly 

later. Let us start from a historical review of the studies on slow inhomogeneity 

in order to make clear the theme of chapter L If the functions which represent 

the inhomogeneity of a system are slowly varying in space, it is called slow in
homogeneity. Shallow water wave traveling over an uneven bottom is one of the 

interesting examples and has been studied by many researchers (for instance Pere

grine 1967, Madsen and Mei 1969, I<akutani 1971a, Johnson 1973}. In these papers, 

it is assumed that the bottom is slowly varying such that the characteristic length 

of the bottom change is much longer than the wave length of the shallow water. 

In such case the reductive perturbation method is applicable and a model equation 

has been presented(I<akutani 1971a}; 

Uu + c1 U{U + C2U{{{- caBuu = 0, (1.1} 

where u(u,O is related to the surface elevation. Here and hereafter subscripts indi

cate partial differentiations with the respect to the corresponding variables. lnd e-
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pendent variable u indicates a space coordinate. Variable ( refers to the coord in ate 

running with the local velocity of the linear wave. Coefficients c1, c2 and ca are fun c

tions of the bottom surface B(u}. The last term can be removed by a transformation 

of independent variables( Johnson 1973, Grimshaw 1979a). Moreover applying an

other transformation of dependent and independent variables , eq.(L1} is rewritten 

as (Ono 1972}, 

(1.2} 

Variable ( is same as that in (1.1} and r a deformed space coordinate. Function 

v( r} in the last term is related to the depth change. If the bottom is flat , this 

function disappears and (1.2} reduces to the well known I<dV equation. Equation 

(1.1} and (1.2} represent competitions among effects of the nonlinearity, dispersion 

and inhomogeneity. 

From (1.1} or (1.2}, damping, growing and disintegration of a KdV soliton due 

to a slope of the bottom are discussed(Ono 1974a, S.Watanabe and N.Yajima 1984}. 

For instance, a mild step in the bottom causes fissions of a soliton. A formula which 

gives the number of disintegrated solitons has been obtained (Ono 1972, J ohnson 

1973}. Recently, Ono studied eq.(L2} and discussed fissions of a incident soliton by 

means of the solitary wave approximation (Ono 1992}. 

The same type of equation as (1.1} or (1.2} is derived from a wid e class of 

nonlinear inhomogeneous systems. Two typical examples other than the shallow 

water have been presented. One is the magneto-acoustic waves in which plasma 

density and magnetic fi eld are inhomogeneous (I<akutani 1971b, Asano and Ono 

1971}. The other is anharmonic lattice where the distributions of masses and springs 

are not uniform (Ono 1972). 

In the case of a slowly inhomogeneous system, we can also apply the reductive 

perturbation method to the nonlinear modulations of a monochromatic waves. The 

envelope u is, in general, shown to obey a NLS equation with a purely imaginary 

potential; 

iur + U{{ + 2juj 2 
u + iv( r}u = 0, (13} 

where r is related to a space coordinate. In the homogeneous limit, function v(r) 

vanishes and (1.3} reduces to the ordinary NLS equation. Equation (1.3} is equiv

alent to the variable coefficient NLS equation (Grimshaw 1979b}. By use of the 

reductive perturbation method, the model equation (1.3} is derived from the inho

mogeneous I<dV equation (1.2} (Ono 1974a}, ion-acoustic systems in plasma with 

the x-dependent density and temperature (Leclert, Charles, Karney, Bers and J<aup 

1979}, and deep water waves over an uneven bottom (Ono 1991b}. In deriving the 
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Chapter 1 Introduction 

inhomogeneous NLS equation (1.3) , it shou ld be noted that the carrier wave is not 

a simple plane wave any more, but slowly deformed due to the inhomogeneity. In 

the paper of Leclert et al., effect of a linearly increasing temperatu re is considered. 

For this inhomogeneity, 1/( 7) is proportional to the inverse of 7 and (1.2) becomes 

the cy lindrical NLS equation which is also completely integrable. One of the aims 
of chapter 2 is to obtain (1.3) from inhomogeneous an harmonic lattices. 

Recently, a class of slow inhomogeneity-weak inhomogeneity is introduced 

(Wadati 1990, Ono 1991a, I izuka and Wadati 1992a). If functions which repre
sent inhomogeneities of a sys tem are slowly varying and their fluctuations are much 

smaller than their mean amplitudes, we term the system weakly inhomogeneous sys

tem . For this class of inhomogeneous systems, the reductive perturbation method 

has been shown to be applicable. If the fluctuation s are comparable to the character

istic magnitudes, the inhomogeneity is considered to be finite. (Equations (1.1~3) 

are typical model equations for systems of slow and finite inhomogeneities.) By 

the weakly nonlinear and dispersive approximation, the following model equation 

is obtained form a wide class of weakly inhomogeneous nonlinear media; 

(1.4) 

Dependent variable 7 and a function v(7) represent a scaled space coordinate and 

inhomogeneity respectively. Variable ( is the coordinate running with a constant 

velocity. Equation (1.4) is recently derived from inhomogeneous anharmonic lattice 

(Wadati 1990, Iizuka, Nakao and Wadati 1992) and shallow water wave over an 

un even bottom (Ono 1991a). 

As will be discussed in chapter 2, equation (1.4) is reduced to the KdV equation 

by a transformation of independent variables. Thus, equation (1.4) is completely 

integrable (Wadati 1983) . One soliton solution of this I<dV equation offers an 

analytical expression of the deformation of a soliton. It is found that the soli
ton never disintegrate or emit the radiation under weak inhomogeneity. This is 

a remarkable property of the weak inhomogeneity as compared with that of fini te 

inhomogeneity. 

Sinularly to the case of slow and finite inhomogeneity, the reductive perturba

tion method is applicable to the nonlinear modulations of the monochromatic waves 

under the weak inhomogeneity. Recently a model equation is obtained from weakly 

inhomogeneous anharmonic lattices (Iizuka, Nakao and Wadati 1991,1992); 

(1.5) 
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Functions 1/(7) and J.L(7) are real and related to the inhomogeneity. The fourth and 

fifth terms in l.h.s. of (1.5) can be removed by transformat ions of independent vari

ables and the phase of u. Thus, (1.5) is reduced to NLS equation and a deformation 

of the NLS soliton is analytically discussed as is for the I<dV case. Equation (1.5) is 

also derived from shallow water wave (Ono 1991b). Similar to t he case of the finite 
inhomogeneity, the carrier wave is deformed due to the weak inhomogeneity(lizuka, 
Nakao and Wadati 1991,1992). 

The purpose of part I is to investigate the effects of the slow inhomogeneity on 
t he nonlinear wave propagations. Part I consists of the following chapters. 

In chapter 2 the inhomogeneous dispersion relations (for one dimensional sys

tem) are introduced. They suggest how to introduce transformations of independent 

variables. And next the reductive perturbation method is app lied to slow ly inho

mogeneous systems. As examples, anharmonic lattices whose mass distribution is 

slowly varying are considered. Two types of waves -slowly changing waves and 

modulations of monochromatic wave- and two types slow inhomogeneities - finite 

and weak inhomogeneities- are separately investigated. For all cases model equa
tions which are presented above appear. 

In chapter 3 the model equation are applied to the random latt ice systems. The 

mass distributions are supposed to belong to a class of the weak inhomogeneity. The 

the mass distribution is assumed, for simplicity, to be a Gaussian white noise, which 

causes the random walk of solitons. Statistical behaviors of I<dV soliton, modified 

KdV soliton and NLS soliton are analytically discussed (Wadati 1990, Iizuka, Nakao 
and Wadati 1991 ,1992). 

Chapter 4 is devoted to an unstable system with slow inhomogeneities. The 

Rayleigh-Taylor instability problem (Iizuka and Wadati 1990) , where the bottom 

is slowly varying, is studied. For the homogeneous case, by use of the reductive 

perturbation method, the unstable nonlinear Schrodinger (UNS) equation has been 

obtained at the critical wave number (T.Yajima and Wadati 1990ab, lizuka, Wa

dati and T.Yajima 1991 , Wadati , Iizuka and T.Yajima 1991, Wadat i, T.Yajima 

and Iizuka 1991). This suggests tha t the UNS equat ion is ubiquitous in unstable 

nonlinear systems. The aim of this chapter is to present a model equation which is 
referred to as the inhomogeneous UNS equation. 

A two-dimensional slowly inhomogeneous system- shallow water waves over 

a two dimensional un even bottom (Iizuka and Wadati 1992b)- is investigated in 

chapter 5. For water waves in straits of varying depth and width , a generali zed 

I<P equation has been derived (David, Levi and Wintern itz 1987,1989). Here, the 
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Cha]Jter 1 Int1·oduction 

model equations (1.1),(1.2) and (1.4) are extended to a two-dimensional case. This 

ex tension is referred to as the inhomogeneous KP equation. Analytical forms 

of deformations of the line soliton due to some kinds of weak depth changes are 

shown. 

Introduction Related to Part II 

The main theme of part ll is invest igation on nonlinear systems in which inho

mogeneities are sufficiently localized. Let us define the localized inhomogen eity . 

If the inhomogeneity of a one-dimensional system is localized in a point or in a much 

shorter range than the wave length, it is called localized inhomogeneity. In higher 

dimensional systems, we also use the term 'localized', for instance, for an interface 

and boundary of the medium. Due to this type of inhomogeneities, there occurs 

scattering of nonlinear waves. That is for an incident wave, there appears 
reflected and transmitted waves. The main purpose of chapterll is to investigate 

scat tering of soliton due to some kinds of the localized inhomogeneities. 

In the application of the weakly nonlinear approximation to these systems, 

divide the medium are divided into two regions. Between them the inhomogeneous 

point (or range) exists. In one region incident and reflected waves propagate. Spatial 

evolutions of these two waves are determined by the reductive perturbation method 

in the assumption that the group velocities of them are opposite. In general the two 

waves obey independent soliton equations respectively. In the other region only the 

transmitted wave propagates. Spatial evolution of this wave is again determined by 

the reductive perturbation method. The direction of the group velocity is the same 

as that of incident waves. 

The incident , reflected and transmitted waves should be connected at the point 

of the inhomogeneity (for long waves, we may regard the narrow range of the inho

mogeneity as a point). This condition of the connection depends on the property 

of the system. Due to the condition, the motions of the reflected and transmitted 

waves are determined at the point from that of the incident wave. Thus, solving the 

spatial evolution equations for the reflected and transmitted waves respectively, we 

can construct the two waves from an incident wave(Fig.1.1). In the case that the 

there exist more than one localized inhomogeneities, if they are separated enough 

to each other, the method is also effective. 

This idea was presented firstly by N.Yajirna (N.Yajima 1975). He considered a 

d iscontinuous nonlinear lattice- there is a discontinuity of the mass distribution

and discussed scatterings of I<dV soliton due to the discontinuity. The reflection 

and transmission of the incident soliton are analytically formulated by use of the 
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Figure 1.1: For a incident wave we can construct the refl ected and trans

mitted waves. 

inverse scattering method. Scatterings of the I<dV soliton in plasma due to sheath 

ions are also investigated (T.Watanabe, I<anamori and N.Yajima 1989). 

Moreover , shallow water waves over the localized inhomogeneities of the bottom 

have been investigated; over a barrier (Sugimoto, Hosokawa and I<akutani 1987) or 

over a step (Sugimoto, Nakajima and I<akutani 1987). The incident , reflected and 

transmitted waves are connected by the edge layer theory based on the matched 

asymptotic method (Sugimoto and I<akutani 1984, Sugimoto, I<usaka and I<akutani 

1987). Then scatterings of the I<dV soliton are analytically investigated. 

This idea is also applicable to the modulations of carrier waves. Recently, scat

terings of envelope soliton in anharmonic lattice due to the discont inuity of its mass 

distribution are investigated analytically (Iizuka and Wadati 1992c). This is the 

first study which treat the scatterings of the NLS soliton from the localized inho

mogeneity. The same analysis has been done for the system with a mass impurity 

(Iizuka and Wadati 1992d). 

The aim of part ll is to analyze scatterings of lattice solitons due to some kinds 

of localized inhomogeneities. The outline of Partll is the followings. 
In chapter 6, nonlinear lattices with a discontinuity in its mass distribution 

are investigated(Iizuka and Wadati 1992c) . Fissions and reflections of the I<dV and 

NLS solitons are discussed. 
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Chapter 7 is devoted to modulations of monochromatic wave in an anharmonic 

lattice which contain a single impurity (Iizuka and Wadati 1992d). We do not 

consider the localized mode (Nagahama and N.Yajima 1989) which is one of the 

important subject in this system. Reflection and transmission coefficients of an 

incident NLS soliton by the impurity are obtained. 

If the mass of the impurity in an anharmonic lattice is much heavier than those 

of the host particles, there occurs a coupling between the long lattice waves and the 

impurity. The long lattice waves are divided into incident, reflected and transmitted 

waves which are governed by the independent KdV equations. This phenomenon is 

interpreted as interaction between nonlinear wave and matter (Iizuka and Wadati 

1992e) . In chapter 8, scattering of KdV soliton and the motion of the matter( heavy 

impurity) are calculated. 

Chapter 9 is devoted to the case of two-dimensional anharmonic lattice. It is 

assumed that there is an infinite interface line of the mass distribution (Iizuka and 

Wadati 1993). T he incident, reflected and transmitted lattice waves obey indepen

dent KPII equations. It is known that the KPJI equation has stable line soliton 

solutions. Scatterings of an incident line soliton due to the interface is investi

gated, the results of which are interpreted as properties of nonlinear reflection and 

refraction phenomena. 
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Chapter 2 

Model Equations 

2.1 Inhomogeneous Dispersion Relations 

2.2 Finite and Slow Inhomogeneity 

2.3 Weak Inhomogeneity 

2.4 Conclusion and Discussion 

We present some model equations of nonlinear waves propagating in slowly 

inhomogeneous media. At first, inhomogeneous dispersion relations are introduced . 

From equation of motion for inhomogeneous and anharmonic lattices, we obtain 

the model equations by applying the reductive perturbation method. The equation 

represents a competition among effects of nonlinearity, dispersion and the inhomo

geneity. 

2.1 Inhomogeneous D ispersion Relations 

Homogenous Case 

Let us consider a wave propagation in a one-dimensional homogeneous and 

lossless system. We denote a wave field by tf>(x, t) , where x and tare space and time 

variables respectively. In this section we assume that the amplitude of the wave 

is infinitesimal such that the nonlinear effect is neglected. Using the plane wave 

solution¢>= expi(kx- wt), we have the dispersion relation; 

w =w(k). (2.1.1) 

Note that the dispersion relation (2 .1.1) is directly related to the operator relation 
by the transformations; 

(2.1.2a) 

(2.1.2b) 
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The operator relation is nothing but the linearized partial differential equation which 
governs t/>(x, t). 

Assume th a t the Taylor expansion of (2.1.1) around k = 0 (long wave limit) 
is given by 

w = vk- ak3 + ... (KdV type dispersion), (2.1.3) 

where v is the group velocity dw/dk(at k = 0) and a is real constant. Quadratic 

term of k does not exist because of the invariance of the system under x +--+ -x and 

t +--+ -t. We sometimes call (2.1.3) a weak dispersion. We introduce transformations 
of independent variables; 

{ 

~ = t:(x- vt), 

r = t:3 at, 
(2.1.4) 

or 

(2.1.5) 

where £ is a smallness parameter. For both transformations, the operator relation 
(2.1.3) becomes 

(2.1.6) 

where we have neglected higher order terms of £. This is nothing but the linear 

part of the KdV equation. In fact , if we collect the lowest nonlinear term, we often 
obtain the KdV equation; 

(2.1.7) 

In this sense, we may call (2.1.3) KdV type dispersion. 

The transformation (2.1.4) (Galilei type transformation) is useful when we con

sider the time evolution for a given initial value tf>(x, 0) = tf>(C 0) , since initial value 

problem of the KdV equation is solved analytically (Gardner, Greene, Kruskal and 

Miura 1967). In the same reason the transformation (2.1.5) is useful if we are inter

ested in the spatial evolution for a given boundary value at x = O; ¢>(0, t) = tf>(C O) 
(Asano and Ono 1971). In addition, equation (2.1.5) is suitable for slowly inh omo

geneous systems or locally inhomogeneous systems. That is, the inhomogeneity is 
expressed as a function of r. 

The similar discussion is effective for modulations of monochromatic wave 

(short wave). We assume that the spatial Fourier spectrum distributes around 
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a narrow range around k = k0 . Thus we consider the Taylor expansion of th e 

dispersion relation (2.1.1) around k = ko ; 

w = wo + v(k- ko) + a(k- ko) 2 + · (Schrodinger type dispersion), (2.1.8) 

where w0 = w(k0 ). By a transformation of the dependet variable 

(2.1.9) 

we can remove ko and w0 in the relation (2.1.8). We introduce the transformations 

of independent variables; 

or 

{ 
( = t:(x- vt) , 

r = t:2 at, 

{

(=t:(;-t) , 

2 a r = c -x, 
v3 

where v = dwfdk(k = k0 ) is the group velocity. 

operator relation at the lowest order of E reduce to 

(2 .1.10) 

(2 .1.11) 

With both transformations the 

(2.1.12) 

which is nothing but the operator relation of the free Schrodinger equation. In this 

sense we term (2.1.8) Schrodinger type dispersion. We should note that when v = 0 

the transformation (2.1.11) is meaningless. Throughout this thesis we assume that 

the group velocity is not very small (including zero). Collecting the lowest non linear 

effect, we often obtain the NLS equation 

(2.1.13) 

Initial value problem of the NLS equation has been solved analytically (Za

kharov and Shabat 1972). Thus, similarly to the case of long wave limit , Gali lei 

type transformation (2.1.10) is useful if an initial wave is given. For boundary value 

problems, (2.1.11) is suitable. In particular the latter is useful for the problem 

of light emission into a nonlinear optical fiber (Hasegawa 1989). Similarly to the 

case of long wave, transformation (2 .1.11) is also useful for slowly inhomogeneous 
systems and locally inhomogeneous systems. 

Taking the above discussions into account, we shall extend the dispersion rela

tion to an inhomogeneous system and discuss the linear part of model equations. 

- 12-
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Slow and Finite Inhomogeneity 

In this subsect ion we consider slow and finite inhomogeneities ; functions 

which represent the inhomogeneities of a system are slowly varying fun ctions of x. 

We neglect nonlinearity and assume that the wave fi eld r/J(x, t) obeys a linear partial 
differential equation 

(2.1.14) 

where ox is a product of x with smallness parameter o which represents the rapidn ess 

of the change in inhomogeneities. Using the relations (2.1.2) , eq uation (2.1.14) is 
interpreted as a dispersion relation which explicitly depends on x; 

w = w(k , ox). (2.U5) 

We call (2.1.15) inhomogeneous dispersion relation. As was considered in the 
homogeneous case, we shall investigate the long wave and the short wave separately. 

For the long wave limit we consider the Taylor expansion of (2.1.15) around 
k = 0; 

(2.1.16) 

where v(ox) is the local group velocity. The term -iob(ox) appears because of non

commutability of k = -i{}x and x. We introduce a transformation of independent 
variables by use of a smallness parameter E = o113 ; 

(2.1.17) 

The operator relation (2.1.16) reduces to a linear partial differential eq uation at 
O(t:a); 

a(<T) b(<T) 
cPu+-( )4 rPw+-( )r/J=O. v(<T) v <T 

(2.1.18) 

This represents the linear terms of the model equation (1.1). By collecti ng the 

lowest part of the nonlinearity we generally obtain (1.1). In place of (2.1.17) we 
introduce another transformation of independent variables; 

{ 

( = t:( j vto:) - t), 

3 j a( ox) d 
r=t: (v(ox)f x, 

(2.1.19) 
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which is an extension of (2 .1.5). With this choice, we have 

rPr + rf>w + v(r)¢> = 0, 
bv3 

v( r) = --;;-' 

(2.1.20) 

which has the same form as the linear part of the model equation (1.2). If we 

consider the lowest nonlinearity and introduce a transformation of the dependent 

variable¢((, r), we obtain in general the inhomogeneous KdV equation (1.2). 

For the short wave case (finite wave number k) , we take the Taylor expansion 

of (2.1.15) around w = wo; 

w = w0 + v(ox)(k- k0 ) + a(ox)(k- ka) 2
- i5b(5x) + · · (2.1.21) 

where the last term of r.h .s . appears due to the same reason as that for (2 .1.16). 

The local wave number k0 = k0 (5x) is defined by solving w0 = w(k, .Sx) with respec t 

to k. By introducing ..p as 

¢> = expi(J ko(.Sx)dx- wat) · .,P, (2.1.22) 

we redu ce the dispersion relation (or operator relation of¢>) (2.1.21) to 

i..Pt + iv(.Sx)..Px + a(.Sx)..Pxx + i5b(5x).,P = 0. (2.1.23) 

The carrier wave, exp(- ··),in (2.1.22) is a deformed monochromatic wave due 

to the inhomogeneity. Introducing a smallness parameter c = 5112 and the following 

transformation of independent variables to (2.1.23) 

we obtain at 0(~:2 ) ; 

{ E=~:(j vtoxx) -t), 

r=~:2 j a(5x)3dx, 
(v(ox)) 

i.,P, + "1/J{{ + iv( r) .,P = 0, 
bv2 

v(r)=-. 
a 
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Note that (2.1.24) is a generalization of (2.1.11), This is similar to the linear part 

of (1.3). The nonlinear term of (1.3) is collected by taking the lowest nonlinearity 
into account. 

Weak Inomogeneity 

Next, we consider a weakly inhomogeneous system; functions which repre

sent the inhomogeneities of the system are slowly changing and their nuctuat ions 

are much smaller than their characteristic magnitude. Due to the weakness of the 
inhomogeneity, the dispersion relation (2.1.15) is divided into two parts; 

w = w(k) + .S'D.(k, .Sx), (2.1.26) 

where 5' and 5 are smallness parameters which represent th e weakness and rap idness 

of the inhomogeneities respectively. The inhomogeneous dispersion relation is also 

considered as a partial differential equation for the wave rf>(x, t) (see (2.1.2)). 

In the long wave limit, we take the Taylor expansion of (2.1.26) around k = 0; 

w = vk- ak3 + 5'b(5x)k + O(k 5 ,55') , (2.1.27) 

where b = (8D.f8k) at k = 0. The group velocity v is defined as v = dw/dk at 

k = 0. Note that if the last term is neglected , (2.1.27) is equivalent to the KdV 

type dispersion (2.1.3) . We assume that 5' and 5 are expressed by a smallness 
parameter t:; 

{ 
5' = ~: 2 , 

5 = ca 

If we employ the transformation (2.1.5), we obtain from (2 .1.27) ; 

(3.1.28) 

(2.1.29a) 

(2.1.296) 

Again, by considering the lowest nonlinear effect we generally obtain the inhomo
geneous KdV equation (1.4). 

For the monochromatic wave modulations, similarly to the previous cases, we 

consider the Taylor expansion of dispersion relation (2.1.26) around k = k0 ; 

w =wo + .S'D.a(.Sx) + v(k- ko) + a(k - k0 ) 2 

+ 8' aD.(~~ .Sx) (k- ko) + O((k- ko)3, 58'), (2 .1.30) 
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where wo = w(k0 ) and !10 (8z) = !1(k0 , 8z). We should remark that unlike the case 

of (2.1.21), k0 does not depend on z. That is k0 is defined from a given constant wo 
or vice ve•·sa. We suppose that 8' and 8 are expressed by a smallness parameter c:; 

(2 .1.31) 

We introduce the transformations of independent variables (2.1.11) and a new de

pendent variable t/J; 

¢> = expi(koz- wot- E: J dz!t(k~,r)) 't/J, (2.1.32) 

where exp(- · ·) is a deformed monochromatic wave due to the weak inhomogeneity. 

We have defin ed the group velocity v by dwjdk at k = k0 . Then , considering 

(2.1.30), we obtain a linear equation for t/J; 

it/Jr + t/Ju. + if(r)t/J, + g(r)t/J = 0, 

!( ) 
= v 2 8!1(k0 , 8z) _ 

211 r a ok 0 ' 

g(r) = v!to(r) 8!1(ko , 8z) _ (!1o(r))2, 
a ok 

(2.1.33a) 

(2.1.33b) 

(2.1.33c) 

where we have employed transformation (2.1.11) . Similarly to the former cases, we 

can derive (1.5) by taking nonlinear effect into account. 

2.2 Finite and Slow Inhomogeneity 

In this and the next sections, we shall investigate inhomogeneous anharmonic 

lattices; the mass distribution is not uniform. Making reference to the previous 

sect ion , we apply the reductive perturbation method to this system. We shall 

derive model equations (1.2)~(1.5) (and inhomogeneous modified KdV equat ions). 

A force due to the spring between two adj acent particles is common and as

sumed to be 

(2.2.1) 

where 6. is the elongation of the spring and [( is the spring constant. Let mi and Yi 

be the mass and displacement of j-th particle respectively. The equation of motion 

for the j-th particle is given by 

miiii = I<[Yi+l - Yi + a(Yi+l- YY + f3 (Yi+I - YY + · · ·] 
- K[yi- Yi-1 + a(yi- Yi-d

2 + f3 (Yi- Yi - d
3 + · · ·], (2.2.2) 
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where dots on Yi indicate derivatives with respect time L Since we are interested in 

weakly nonlinear waves, we have neglected higher order terms in (2.2.2). The mass 

distribution mi is slowly changing. Since the derivations of the model equations 

for finite inhomogeneities and those for the weak inhomogeneities are essentia lly 
different , we mvest1gate th e two cases separately. 

In the present section the fluctuation of the mass dist ribution 6-mi is assumed 
to be comparable to the mean mass (mj) ; 

6-mj ~ (mj ), fini te inhomogeneity. (2.2.3) 

Because t he inhomogeneity is slow, we express the mass distribution by a continuu m 
variable z = jh; (hi s the lattice constant) and a fun ction G(8z); 

mi = (mi )G(8z) , (2.2.4) 

where 8 is a smallness parameter. 

Long Wave Limit 

. At first we shall study the long wave limit. We employ the continuum approx-
unatwn Yi(t) = y( z, t) and consider the Taylor expansions; 

h2 h3 h4 
Yi±l = Y ± hyx + 2Yxx ± GYxxx + 

24 
Yxxxx ± · · (2 .2.5) 

Substitution of (2.2.5) into (2.2 .2) yields a inhomogeneous Boussinesq equation 

[( h4 
G(8z)y, = (mi) (h

2
Yxx + UYxxxx + 2ah3YxYxx) , (for a f. 0) (2.2.6a) 

[( 2 h4 
G(8x)Ytt = (mj) (h Yxx + 

12
Yxxxx + 3(3 h 4 y; Yxx), {for 0'. = 0) (2.2.6b) 

where higher order dispersion and nonlinear terms are neglected. 

!)Case of a f. 0. 

Let us define a new smallness parameter c: = 8113 . For a f. O, we introduce t he 
following transformations; 

(2.2.7a) 

(2.2.76) 

(2.2.8) 
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where v(Sx) is the local acoustic velocity; 

v(Sx) = (2 .2.9) 

As a result , an inhomogeneous KdV equation is derived at O(c:5 ); 

(2.2.10) 

This is nothing but the model equation (1.2), which is ubiquitous for nonlinear 

2)Case of a= 0 and (3 f. 0. 

long waves traveling over slow and finite inhomogeneities. For the case a = 0 

((3 f. 0) we employ transformations (2.2. 7) and introduce a new dependent variable; 

(2.2.11) 

A closed equation, in this case, is an inhomogeneous modified KdV (mKdV) equa
tion; 

(2.2.12) 

where >.= sgn((J) . 

Equations (2.2.10) and (2.2.12) are not integrable. However, by numerical or 

approximate approach to the model equation, we observe damping, growing and 
fission of the KdV or mKdV soliton. 

Monochromatic Wave Modulations 

We shall consider the modulations of monochromatic waves. As discussed in 

Chapter 1, we expect that the monochromatic waves (carrier wave) are deformed 

due to the inhomogeneities. The inhomogeneous dispersion relation is given by 

2 2/( ( ) w G(Sx) = -( -) 1- cos k(Sx)h , 
nti 

where G has been introduced in (2.2.4). We define the carrier wave F as 

F=expi( j k(Sx)dx-wt) . 

(2.2.13) 

(2.2.14) 

Here, the local wave number k(6x) is given by solving (2.2.13) for a given w. 

We see that, F in (2.2.14) is a solution of linearized equation of motion (2.2.2) up 
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to 0(8). Using t his carrier wave, we expand the displacements Yi by a smallness 
parameter c: = 8112 ; 

n 

Yi = L L t:n F'u(n,l)(( , u) , (2. 2. 15) 
n=ll=-n 

where we have introduced dimensionless independ ent variables; 

(2 .2. 16a) 

(2. 2.16b) 

The local group velocity v(u) will be defined shortly later. 

Keeping (2.2.4) in mind, we apply (2.2.15) and (2.2.16) to the equation of 
motion (2.2.2) and equate the coefficients of c;n F 1. At (n , I) = (1, 1) we confirm 

the inhomogeneous dispersion relation (2.2.13). The local group velocity v(u) is 
obtained in (n, I) = (2, 1); 

v(u) = I<hsin k(u)h = ({)w) 
(mi)wG(u) {)k u. 

(2.2.17) 

Relations among the dependent variables 

( 2 2) . sin k(u)h ( (11 ))2 u ' = ta u • 
1- cosk(u)h ' (2.2.18) 

u(1,0) =-Sa v(u) {Kiu(I ,1)12 
( h V00 · (2.2.19) 

are derived in (n, I)= (2, 2) and (n, I) = (3, 0) respectively. For the latter we have 
assumed that the lattice wave u( 1•1) is sufficiently localized. 

Collecting the above results, we obtain a closed equation for u( 1,1) in (n, 1) = 
(3, 1); 

where the coefficient functions are 

( ) __ h
2
(mi) k(u)h( ( ))-2 

p <7 -
4
/( tan 

2 
v u , 

q(u) =tan k(;)h {8a2 + (8a 2 -12(J)sin2 k(;)h}. 

•·(u) =~tan k(u)h hk'(u) cosk(u)h 
2 2 1-cosk(u)h · 

- 19-

(2.2.20) 

(2.2.21a) 

(2.2.216) 

(2.2.21c) 



Chap ter 2 Model Equations 

Prime on k(a-) in (2.2.2lc) indicates differentiation with respect to a-. Hereaft er, we 

shall assu me that p(a-)q(a-) > 0. By a furth er transformation of independent and 
dependent variables; 

~ --+ ~, 

<T--+ T = Ju p(a-')da-' 
1 

u(l,t)--+ U = g(a-) u(l,t) 
2p(a-) , 

we reduce (2.2.20) to 

iUr + u,, + 2jUj 2 
u + iv(r)U = 0, 

() -~(l 2p(r)) •·(r) 
v T - 2 og g(r) r + p(r)' 

(2.2.22a) 

(2.2.22b) 

(2.2.22c) 

(2.2.23a) 

(2.2.23b) 

This is the NLS equation with a pure imaginary potential (1.3), which is not in

tegrable. We have derived (1.3) from short waves in lattices for the first time. As 

seen from the derivation, the model equation appears in a wide class of slowly inho

mogeneous systems. Due to the last term in (2.2.23a), we expect damping, growing 
and fission of a NLS soliton. 

2.3 Weak Inhomogeneity 

Let us consider the equation of motion (2.2.2) again. We shall be interested 

in weakly inhomogeneous systems. Then, the fluctuation of the mass dist ribution 

L'l.mi is much smaller than the mean mass; 

L'l.mi ~ (mj), weak inhomogeneity. (2.3.1) 

Here, mi is a slowly changing function of a lattice site j. Therefore we may assume 
that mi takes a form 

mi = (mi)(1 + 6''1(6x)), (2.3.2) 

where x = jh. Smallness parameters 6' and 6 measure weakness and variation of 

the inhomogeneity respect ively. Relations (2 .2.2) and (2 .3.2) is our starting point. 
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Long Wave Limit 

1)Case of a=/= 0. 

For slowly varying waves, we may employ the continuum approximation Yi 

y(x, t). Similarly to the previous case, we have an inhomogeneous Boussinesq equa
tion; 

(1 6' ( c ) ) - [( ( 2 1 4 3 + '7 ux Ytt- -( -) h Yxx + -
2

h Yxxxx + 2ah YxYxx + · · ·). 
lnj 1 (2.3.3) 

The smallness parameters are assumed to satisfy (2.1.28). We change independent 
variables from x , t into~, r; 

1 
~ = hc:(x- vt), 

T = - 1
-c:3 x 24h , 

(2 .3.4a) 

(2.3.4b) 

where a constant v = hJ K/(mi) is the acoustic velocity. A new dependent variable 
u((, r) is introduced as 

(2.3.5) 

Transformations (2.3.4) and (2.3.5) are equivalent to (2.2.7) and (2.2.8) respectively 

in the homogeneous limit G --+ 1. Substituting (2.3.2) , (2.3.4) and (2.3 .5) into 

(2.3.3) we have a inhomogeneous KdV equation (Wadati 1990, lizuka, Nakao and 
Wadati 1992); 

(2.3.6) 

which is in the same form as (1.4). This type of equation is possibly a canonical 

model equation for a large class of nonlinear weakly inhomogeneous systems. For 

an example, shallow water waves over a weakly uneven bottom obey (2.3.6) (Ono 
1991a). 

We can simplify (2.3.6) by a further transformation of independent variables; 

X=~+ 121r IJ(r')d!J', 

T=r, 

by which we get 

ur + 6uux + uxxx = 0. 

(2.3.7a) 

(2.3.7b) 

(2.38) 

This is the K-dV equation and is exactly solvable. Since (2.2.8) has soliton solutions, 

the notion of soliton is also valid in the inhomogeneous system. It is interesting that 
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the soliton solution of (2.3.8) gives a d eform ed soliton in th e original fr ame x, t . 

T hus, in the weakly inhomogeneous media, the KdV soliton never fuses nor fi ss ions. 

T his is an essentially different property of the weak inhomogeneity from that of the 

finite and slow inh omogeneity. 

If we set x = 0 in (2.3.4) and (2.3. 7) , 

1 
X=~=-hf':v t, 

T = T = 0. 

(2.3.9a) 

(2.3.9b) 

This implies that if y(O , t) is given, we know u(X, 0) . The initial value problem 

of (2.3.8) can be solved by the inverse scat tering method (Gardner,Greene I<ruskal 

and Miura 1967). Using the result, we can construct y(x, t) from y(O, t) up to the 

lowest order off:. 

2)Case of a = 0 and (3 f. 0. 
In the continuum approximation, the equation of motion is expressed as 

1 f{ ( 2 h
4 

4( )2 ) (1 + 6 1J(6x))Ytt = (mj) h Yxx + 12 Yxxxx + 3(3h Yx Yxx + · · · · (2.3.10) 

We use the variables ~ and r in (2.3.4) and define u(~ , r) as 

(2.3.11) 

We apply the reductive perturbation method and the result is an inhomogeneous 

mT<dV equation ; 

(2.3.12) 

where>.= sgn((J). 

Similarly to the former case we can transform (2.3.12) to the modified I<d V 

equation by (2.3.7) 

(2.3.13) 

One soliton solution of (2.3.13) for >. > 0 represents a deformed soliton in the 

original coordinates x and t . Since the modified I<dV equation is exact ly solvable 

(Wadati 1973), we can construct y(x , t) from y(O , t) up to f':. 
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Monochromatic Wave Mod ulations 

For the modulations of monochromatic waves, we assume that the smalln ess 

parameters 6 and 6' in (2.3.2) sat isfy (2.1.31). Therefore the inhomogeneous dis
persion relation is given by 

2 2/( 
w = ( )( ( 2 )) (1- cos kh) , 

lnj 1 + € 1) i': X 

w= 2K(1- cos kh) ( ( 2 ))-112 

( ) 
1 +€1] i': X 

11lj 

2]((1-coskh)( i': ( 2 ) 3 2 ( 2 ) 2 ···). 1 - -!] i': X + -€ 1) i': X + 
(mi) 2 8 

We introduce the following dimensionless variables; 

x- vt 
~=1':-h-, 

2x 
T=€ h' 

(2.3 .14) 

(2.3.15) 

(2.3 .1 6a) 

(2.3.16b) 

where a constant v is to be determined later. With reference to the (2.1.32) , we 
choose the carrier as 

F = exp i(kx- wt + . 1J(r)dr) . 11- coskh J 
f': smkh 

(2.3.17) 

Note that k and win (2.3.17) correspond to k0 and w0 in (2.1.32) respectively. Th en, 
constants k and w satisfy the homogeneous dispersion relation, 

We expand Yi as 

2!( 
w 2 = --(1 -cos kh). 

(mi) 

Yi = y(x, t) = L L i':n F'u(n,l)' 

n=ll=-n 

where u(n ,l ) are functions of~ and r . 

(2.3.18) 

(2.3.19) 

Substituting (2.3.2) and (2.3.16)~(2 . 3.19) into (2.2.2) and equating the term 
of the order t:n F 1 we have the following equations. In the order i:F , we confirm the 

dispersion relation (2.3.18), and in the order 1': 2 F we see that a constant v is the 
group velocity, 

dw hwsin kh 

v = dk = 2(1- coskh)' (2.3 .20) 
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In t he orders of F.: 2 F 2 and F.:3 , we see that u<2·2l and u~LO) are related to u(Ll) as 
fo llows, 

u (2.2 ) = ia sin kh (u( l.1 )) 2 

1 - cos kh ' (2.3.21) 

(L O) - 8 I ( 1.1) 12 u~ - - a u (2.3.22) 

And finally 1n the order F.:3 F, we obtain a closed nonlinear evolution equation for 
u ( l.l ), 

iu~l.l) + pu~~ - t) + q lu(l .tf u(u) 

_ i 1 (r)u(l.l) _~ cos kh(1- cos kh) 2 (r) 2 (t.t) _ 
1 + cos kh 1J ~ 2 sin2 kh '7 u - O, (2.3.23) 

where the constant coefficients p and q are 

1 kh 
p=-4tan 2 , (2.3.24) 

kh 2 2 kh 
q =tan 2 {Sa +(Sa - 12,8) sin2 

2 }. (2.3.25) 

This is essentially the same as the equation (1.5) which may be canonical in weakly 
inh omogeneous media. 

Now we suppose pq > 0 and then we have a condition for kh; 

(sin kh)- 2 < ~ -1 
2 2a2 · 

Again we apply the following transformations to (2.3.23), 

X= ~2q (E + 1 1 kl ( '7(rl)drl) V 2P +cos · ' }0 

_ ~ x- vgt 1 r I I - V 2P(F.: -h- + 1 + coskh }
0 

IJ(r )dr) 

q qF.: 2 
T= -r= -x 2 2h , 

U(X, T) = u(l.I)(E, r) exp i (1J(r))2 cos kh(1 ~cos kh)
2 

2 Slll kh 

and obtain the NLS equation (Iizuka, Nakao and Wadati 1991,1992) , 

iUr + Uxx + 2/U/ 2 U = 0. 
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(2.3.28) 

(2.3.29) 

(2.3.30) 

ChapL eT 2 Model Equations 

The soliton solution of (2.3. 30) also describes deformations of a so liton in the original 

frame. Since the NLS equation is exactly solvable (Zakh arov a nd Shabat 1972), we 

have y( x, t) from y(O, t) up to F.: as for the case of I<dV equation. 

2.4 Conclusions and Discussion 

In chapter 2, four model equations for nonlinear waves in slowly inhomogeneous 

media are presented. We have introduced inhomogeneous dispersion relations which 

suggest us how to apply the reductive perturbation method in deriving the model 

equations. As a simple but basic application, we have considered nonlinear lattice 

where the mass distribution is not uniform. The transformations of independent 

variables introduced in lattice waves are essentially same as those introduced in 2.1. 

(For instance, (2.1.24) corresponds to (2 .2.7).) 

For the finite and slow inhomogeneity we have obtained equations (2.2.10,12) 

and (2.2.20) for long and short waves respectively. We should note that group 

velocity or acoustic velocity are slowly varying in space. The wave number and 

carrier wave are deformed due to the inhomogeneity. The model equations are not 

integrable. There, fission, damping and growing of (m)I<dV or NLS solitons are 

expected. Extensive analysis for the model equations is a future problem. 

For the weak inhomogeneity we have derived (2.3.6 ,12) and (2.3.23) for lon g 

waves and modulations of monochromatic waves respectively. The group velocity, 

acoustic velocity, and wave number are considered to be constants. However, the 

carrier wave must be deformed due to the weak inhomogeneity. The model equa

tions are transformed to the soliton equations such as the I\dV, mi<dV and NLS 

equations. Therefore we can analytically investigate nonlinear waves in weakly in

homogeneous media. For instance one soliton solution offers an exact expression of 

deformation of soliton. 
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Chapter 3 

Random Systems 

3.1 Introduction to Chapter 3 
3.2 Statistical Behavior of the KdV Solitons 

3.2 Statistical Behavior of the mKdV Solitons 

3.4 Statistical Behavior of t he NLS Solitons 

3.5 Conclusion and Discussion 

As applications of chapter 2 we invest igate nonlinear wave propagations in 

random systems. The randomness is assumed to belong to the class of the weak 

inhomogeneity. The function '7 in (2.3.2) is chosen to be a Gaussian white noise. 

Using (2.3.8), (2.3.13) and (2.3.30), statist ical behaviors of KdV, mi<dV and NLS 
soli tons are respectively investigated. 

3.1 Introduction to Chapter 3 

One of the most in1portant inhomogeneities is the randomness. Recently soliton 

propagations in the Toda lattice with randomly distributed two-kinds of masses 

were invest igated numerically (Ishiwata, Okada, S.Watanabe and H.Tanaca 1990). 

It was found that the amplitude of soliton decays as n-P, where n is the step 

length of the propagation of the front soliton and that the exponent p depends on 

the initial amplitude. In this simulation the full nonlinearity is included; in other 

words the weakly nonlinear approximation is not supposed. And the degree of the 

inhomogeneity is not always small. 

As for the weakly nonlinear waves in random system, we should remark the 

followings. If the inhomogeneity in a nonlinear media is not slowly varying, we 

cannot formally apply the reductive perturbation method as was done in the previ

ous chapter. However, in this situation, two works a.re reported on water waves over 

a random bottom. First , it is assumed that the characteristic length of t he depth 
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change is much smaller than the characteristic wave lengt h (N.Yajima 1972). Sec

ond, the two length is supposed to be comparable (I<awahara 1976). Applying the 

averaging method they derived coupled nonlinear equations and observed changes 

in phase velocities and damping of amplitudes. For either type of inhomogeneity, 

the obtained nonlinear equation are too complicated for further analysis. 

As an tractable case, stochastic KdV equation has been proposed (Wadati 

1983). There, statistical behaviors of the J(d V solitons for a Gaussian white noise 

are investigated. It has been shown that for a long time index p is 3/2. (In this 

case the step length n is a continuum variable.) 

Similar approach for random systems is also done by using the the model 

equations (2.3.6) , (2.3.12) and (2.3.23) (Wadati 1990, Iizuka, Nakao and Wadati 

1991). In the investigations it has been found that p = 1/2. The theme of the 

present chapter is to review these analysis. We choose the inhomogeneity 17( r) in 

the model equations as random functions. That is the mass distribution of the 

lattice is random, while its fluctuation is small. For convenience, we suppose that 
'1(T) is the Gaussian and the white noise defined by 

('7(r)'7(r')) = 288(r- r') , (3 .1.1) 

where 8 is a constant and ( ) indicates the ensemble average over the random mass 

distribution. In this chapter we study statistical behaviors of one-soliton solutions. 

In particular, we shall be interested in the asymptotic behaviors of the 'averaged' 

solitons. For the purpose we use a Fourier transformation method and a formula 
(Appendix 3A); 

(expi 1' (J!J(r') + L!J(r') 2 )dr') 

= exp{ -(J2 8 + 2L28(172) )r} exp{ iL(!J2 )r }, (3.1.2) 

which is derived from (3.1.1) (Iizuka, Nakao and Wadati 1991). Again we shall 

discuss three cases separately. 

3.2 Statistical Behavior of the KdV Solitons 

It is known that the KdV equation (2.3.8) has one-soliton solution 

(3.2.1) 
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with a real parameter '"- Fourier transform of the soliton solution is given by 

u(k,T) = 1: dXu(X,T)e-ikX 

1rk 1 
= 4~~:-2 . h( k/ ) exp[-ik( 4~~: 2T + X 0 )]. 

II: Slll 7r' 2~~: (3.2.2) 

Using the formula (3.1.2) the average of the soliton solution is expressed as 

For a large T, we may apply a saddle point method to have 

2~~:~ (u(X ,T)) =- -exp(-s2 j4a) , 
7r a 

where s and a stand respectively for 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

This shows that 'averaged' soliton (u(X, T)) deforms during the propagation and 

that when the initial amplitude 1- 2~~: 2 1 is large it approaches rapidly to the asymp
totic form, 

~~:{1 
(u(X, T)) = 6V ;oT- 112 exp[-(~- 4~~: 2 r- ~0) 2 /(5768r)]. (3 2.7) 

L1 terms of the original variables we explain the result . Let the incident soliton 
at x = 0 be 

(3.2.8) 

The statistical behavior for a large x is expressed as 

1 
(y,(x , t)) = A;J/2 exp( -B(x- Ct) 2 jx), (3.2 .9) 
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where constants A, B and C are given by 

A= -1w (hj6c:1r8) 112 , 

1 1 
B = 24 (1- 6"2c:2)2 Oc:h, 

C = v(1 + ~~: 2 c: 2 /6). 

(3 2JO) 

(3.2.11) 

(3.2. 12) 

Equation (3.2.9) suggests that after a long propagation the amplitude of a soliton 

decreases as x- 112 and the width increases as x 112 • This reminds us the dist ribution 

function of the random walk. Thus we may interpret that the center of mass of 
the soliton moves randomly around x = Ct. 

The power law x-P for the amplitude is consistent with the numerical resu lts 

for the random Toda lattice. Recall however that in the latter system the value of 

the index p depends on the amplitude of the incident soliton. When the amplitude 

is small, pis close to 1/2. This result completely agrees with our analysis. 

3.3 Statistical Behavior of the mKdV Solitons 

We assume the). in (2.3.13) is +1 (/3 > 0). One-soliton solution of the mod ified 
I<dV equation (2.3.13) is given by 

(3.3.1) 

We employ the same method as that of the former case . Fourier transformation of 
(3.15) is expressed as 

(3.3.2) 

Using a formula (3.1.2) with (3.3.1) we obtain 

langleu(X, T)!·angle = j_+oo d2k u(k, T)eik{-144k ,OT 
- oo 1r 

= j_+oo dk sech( 1rk )e-ik(<2T+Xo-0 -144k'OT . 
_

00 
2 2~~: (3.3.3) 

If Tis sufficiently large, (u(X, T)) is asymptotically given by 

( (X T)) = _!_ ET-1/2 ex {- (~~:2T + Xo- 02} 
u ' 24 V 7f P 5768T . (3.3.4) 
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Jn terms of the or igin al variables, (3.3.4) is written as 

(Yt(x, t)) = x~;2 exp( - B'(x - C't) 2 fx), 

where constants A', B' and C' are 

, _ __ v_ r;h -1 /2 
A - hV6PY 240€ , 
I- (1- /i: 2c4/24) 2 

B - 240ht: ' 

C'= v . 
1- li:2€2 /24 

This asymptotic behavior is exactly the same as (3.2.8). 

3.4 Statistical Behavior of the NLS Solitons 

The NLS equation (2.36) has one-soliton solution, 

U(X , T) = vfnsechvfn(X _ wT _ Xo)eiw(X -Xo)/2-i(w 2 /4-n)T 

(3.3.5) 

(3.3 .6) 

(3.3.7) 

(3 .3.8) 

(3.4.1) 

Here w, !1(> 0) and Xo are real parameters. We evaluate the deformation of solitons 
to the order oft: . To do this, we begin with calcu lations of (u(l ,l) F) and (u<1·0l). 

Using (3.4.1), we have a form u(l.I)F, 

(II) rr:; rr:; iw(X- Xo) w2 

u · F =v !1sechv !1(X- wT- X0 ) exp{ 
2 

- i( 4- !1)T} 

{ i 1- cos kh r ( ')d '} 
. exp t: sin kh }

0 
1J r r 

{ icoskh(1- cos kh) 2 
( 2( ')d '} 

. exp 2 sin3 kh f o 1J r r 

· exp{ i(kx- wt)}. 

By use of the Fourier transformation we may express (u(l.l) F) as 

(u< · ) F) =(- d(sech(-) exp •{ -( -(- X 0 )- -(- - !1)r} 1 1 1 j+oo 1r( . w {{p q w2 

2 - oo 2vfn 2 2p 2 4 

· exp{ i(( {L(- wq r- X 0 )} v 2']J 2 

(3.'1.2) 

· exp i{1T (l1J( r') + L1J 2(r'))dr'} )ei(kx-wt), (3.4.3) 
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where J and L are given by 

J = (( + ~) {L 1 + ~-1_-_c_os_k_h 
2 V iP 1 + cos kh t: s in kh ' 

L = - ~ cos kh(1- cos kh) 2 

2 sin3 kh · 
Applying the formula (3.1.2) to (3 .4.3), we have 

11+oo ( 
(u(Ll) F) = 2 d(sech( 7r rr:;) exp{ i(M( + N) + P(2 + Q( + R}, 

-oo 2v !1 
where 

M ={{p( - t~q r- X 0 , 

w {L w2 qr 
N =kx- wt + '2(y 2p(- X 0 )- ( T- !1) 2 + L(1J2 )r, 

P =- .!!_ 1 
Or 

2p (1 +cos kh) 2 , 

Q - 2[[p 1 (w{{p 1 1-coskh -- - - + )Or 
2p1+coskh 2 2p1+coskh e:sinkh ' 

R- (w {L 1 1-coskh)20 2L 20 2 
-- 2 V2/J1+ coskh + t:sinkh r- ('I )r. 

For a sufficiently large r , the asymptot ic form of (3.4.8) is 

(u(lt) F) 

= ~ (1Csecb(-~)e(M2 -Q 2)/(4P)+R+i ( -MQ/(2P )+N) 
2V~ 4VOP 

(3.'1.4) 

(3.4.5) 

(3.4.6) 

(3.4. 7) 

(3.4.8) 

(3.4.9) 

(3.4.10) 

(3.4.11) 

2 
7r(1+coskh)2 I( 1rQ) { -(~(-(wqf2)r-X0 ) 2 } 

q0rf(2p) sec 
1 

- 4VOP . exp 2(q/p)(1 +cos kh)- 20r 

· exp{ -2L 2 0(7J2)r} 

· exp i{kx- wt + (w 2 /4 + !1)qrf2 + L(1J2)r} 

·exp{-i {2isinkh( [j"(- wqr -X
0

)}. 

t: V~ YiP 2 

Recalling the relation (2.3.22) , we calculate u~I.O) and u(LO) as 

u~I.O) = -8a!1sech2Vn(X- wT- X 0 ) 

= -4a r+ oo d( ( e- i(wT+Xo)( +i(X 

f- oo sinh{7r(/(2VO)} ' 

u(I.O) = -Sa~ tanh [ Vn(X- wT- X 0 )]. 
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The average value of u~ l.O) is expressed as 

(u~I , O ) ) = :~(u(t,O)) 

= _ 4a j+oo d( ( ei(,jqf(2p)f.-wqf2r-Xo)( 

-oo sinh{ 11"(/(2vTI)} 

. (ei,jqf(2p)(/(l+coskh)j
0

r ry(r')dr') 

= _ 4a j+oo d( ( e'(Vqf(2p)f.-wqf2r-Xo)( 

-oo sinh{ 11"(/(2vTI)} 

. exp{- 2p(1 + ~os kh)2 Br(2}. (3.4.14) 

And we obtain the asymptotic behavior of slowly varying wave -k( u(t,O)) for a large 

r; 

11"(1 +cos kh) 2 

q0rf(2p) 

. exp{ p(1 +cos kh)
2 

( /I~_ wq r _ Xa) 2 } . 

2q0r V 2]J 2 
(3.4.15) 

Collecting (3.4.12) and (3.4.15), we find that the asymptotic behavior of 

(y(x,t)) up to the order of c; is given by, 

(y(x, t)) = c:{ (u(t,t) F)+ c. c.}+ c:(u(t,O)) 

=At x- 112 exp{ -Bt(X- C1t- xa) 2 /x } e-Dx cos(kx- wt +Ex+</>) 

where c.c. means the complex conjugate and 

211"p(1+coskh) 2 h h{ 1r (w 1f!p . kh)} At =£ sec --- - +- - sm · 
qO 2vTI 2 c: q ' 

Bt (1+coskh)
2

( 1 - ~/2)2 
4Bh c:wv pqr" , 

xo 

v 

1- c:wVPifi 

Xoh 
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(3.4.16) 

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

(3.4.21) 

(3.4.22) 

(3.4.23) 

(3.4.24) 

The result (3.4.16) needs some explanations. The factor cos(kx- wt +Ex+ q,) 
m the first term means a monochromatic wave. The wave number k is changed 

to k + E due to the the effects of nonlinearity and inhomogeneity.(see (3.4.22) and 

(2.3.25)) The factor x- 112 exp{ -B1 (x - C1 t - x0 ) 2 fx} indicates the modulation of 

the carrier wave. This is the same phenomena as that for slowly varying waves 

discussed in 3.2 and 3.3. Namely, the random walk of envelope soliton around a 

mean trajectory x = C1t. The factor e-Dx indicates an exponential damping due 

to the randomness of the phase. The second term in (3.4.16) i. e. c:(u(t,o)) represents 

a slowly varying wave which does not suffer the exponential damping . 

Since the first term in (3.4.16) decays exponentially in x, we may neglect it for 
a sufficiently large x. Then, there remains only the slowly varying wave c:(u(l,o))_ 
Differentiating it by t we have 

(3.4.25) 

This has the same form as (3.2.9) and (3.3.5) which indicates the random walk of 
soliton. 

3.5 Conclusion and Discussion 

We have invest igated the statistical behaviors of solitons in a random lattice by 

use of model equations (2.3.6), (2.3.12) and (2.3.23). We have assumed that '7( r) in 

each equation is a Gaussian random white noise defined in (3.1.1). For the first and 

second cases we have obtained the same results (3.2.9) and (3.3.5) respect ively; after 
a long propagation the amplitud e of the soliton decreases as x- 112 and the width 

increases as x 112
. For the third case, (3.4.16) shows that there is an exponential 

damping term of envelope soliton. For a sufficiently large x, on ly th e term of slow 

varying wave remains. And then we get the result (3.4.25) which has the same form 
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as (3.2.9). T he power law x- 1/ 2 for the amplitude is supported by t he numerica l 

result for the random Toda latt ice ,when the ampli tude of the so li ton becomes 

small enough. We remarked that the assumption of the Gaussian white noise is not 

essential in our theory. 

Let us remark that solitons in a weakly inhomogeneous system never damp nor 

fi ssion but t hey only deform. Since the averaged solitons (3.2.9) , (3.3 .5) and (3.4.25) 

are nothing but the distribution functions of random walk, we may regard the results 

as random walks of solitons. Calculations of higher correlation fun ctions and 

statist ical behav iors of N soliton are interesting problems. 

We may choose ot her ensembles. Analysis of a random system with a long 

range correlation 

(!,(r)77(r')) = 28 lr- rT"~, (3.5.1) 

is also very interesting. We expect anomalous diffusion of solitons for (3.5.1). This 

problem is left for a future study. 

Appendix 3A. Derivation of a formula (3.1.2) 

We write the definition of the white noise 77(r) again; 

(17(r)!,(r')) = 288(r- r') , (3.A.1) 

where 8 is a constants. We shall show that eqs. (3.1.2) are derived from eq.(3 .A.1). 

Since 17(r) is originally defined on the lattice point (see eq.(2.3.2)), we assume th at 

the correlation (3.A.1) does not vanish for lr- r'l < 8, where 5 is the smalln ess 

parameter in (2.3.2) . Thus we need some care in usin g (3.A.1). For the purpose, the 

8- functi on in (3.A.l) is modified into a function C.( r- r') such that if lr - r'l > 8, 
C.(r- r') = 0, and if lr- r'l < c:2 , C.(r - r') =constant. 

We defin e ij as 

In terms of the modified 8-function, we have 

(~(r)ij(r')) = J 2 (17(r)!,(r')) + 2L2 (17(r')!,(r)) 2 

= 2(8J2 + 48 2 L2 t.(O))C.(r- r') 

= 2(8J2 + 28L2 (172))C.(r- r') 

:::::: 2BC.(r- r'). 
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Equat ion (3.A.3) ind icates that ~ is also a Gaussian white noise . Then we get 

(exp i 1T ii( r')dr') = exp( -BT) 

= exp-(8J2
- 28L 2

(17
2 ))T, (3.A.4) 

from which we obtain (3.1.2) directly. 
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Chapter 4 

Unstable Systems 

4.1 The Unstable Nonlinear Schrodinger equation 

4.2 The Rayleigh-Taylor Instability Problem 

4.3 The inhomogeneous UNS Equation 

We investigate an unstable system which has an inhomogeneity; the Rayleigh

Taylor instability system with an uneven 'bottom'. At first we introduce Unstable 

Nonlinear Schrodinger (UNS) equation which is a ubiquitous model for nonlin ear un

stable systems. Then, inhomogeneous dispersion relations are introduced. Applying 

the reductive perturbation method, we obtain an inhomogeneous UNS equation. 

4.1 The Unstable Nonlinear Schrodinger Equation 

The UNS equation (Wadati, lizuka and T.Yajima 1991 Wadati , T.Yajima and 

Iizuka 1991) is defined by 

iux + Utt ± 2JuJ
2 

u = 0, (4.1.1) 

where x and t indicate space and time coord inates respect ively. It has been shown 

that (1.1) appears in many physical systems such as capillary waves on the surface 

of liquid column (Kakutani, Inoue and I< an 1974), two-stream instability in plasma 

system (T.Watanabe 1969, Yamamoto 1970, T.Yajima and Wadati 1990ab) , surface 

dynamics of the Rayleigh-Taylor instability problem (Iizuka and Wadati 1990). 

The e.xchange of the independent variables x and t gives the ordinary NLS 

equation and then the Lax pair for (1.1) exists. Thus we can apply the inverse 
scattering method to the UNS equation. The initial value problem of the UNS 

equation (1.1) has been solved ( T.Yajima and Wadati 1990 for + case, Iizuka, 

Wadati and T.Yajima 1991 for- case in (4.1.1)). There, attractive soliton collisions 

are reported. 
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The ubiquity of the mod el equation is explained as follows. Let us consider a 

1-dimensional wave fi eld ~(x, t) which satisfies a nonlinear evolution equation. By 
neglecting nonlinear terms and assuming a plane wave solution ei(kx-wt), we have 
a dispersion relation; 

k = k(w) . (4.1.2) 

As discussed in 2.1, we consider the Taylor expansion of k(w) around w = w0 ; 

{}k/ 1 a2 kl 2 k - ko = - (w- wo) +- - (w- wo) + .. · 
{}w w=wo 2 fJw 2 w=wo 

(4.1.3) 

If fJkjawlw=wo = 0, ko = kc is regarded as critical wave number because the sign 

of (w- w0 )
2 changes when k exceeds k c. Appearance of complex w indicates the 

instability of the system. 

We introduce depend ent variable 1jJ as 

(4 .1.4) 

Then, the dispersion relation (4.1.3) which is interpreted as an operator relation 
through (2.1.2) becomes 

(4.1.5) 

This represents a lin ear part of the UNS equation . Th erefore, the UNS equation 

is derived as an envelope equation, where the wave number of th e carrier wave is 

near the critical value k c. We note that for the critical wave number, we need not 

introduce the moving frame such as (2.1.10,11) but only the scaling transformation 

of independent variables ( 4.3.1). To take the nonlinear effect into account, we app ly 
the reductive perturbation method. 

In the following , we introduce inhomogeneous dispersion relations around k = 
kc. Finite and weak inhomogeneities are separately discussed as in 2.1. 

For the finite and slow inhomogeneity, kc depends on x ; kc = k(e:2 x). Taylor 
expansion ( 4.1.3) at k = kc is given by 

(4.1.6) 

Note that the term which corresponds to last term in (2.1.21) does not appear in 
this case. By introducing . .;, as 

(4.1.7) 
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we obtain an operator relation for IJi ; 

which is transformed to (4.1.5) by a transformation of a space variable x. 

If the inhomogeneity is weak, we may express the dispersion relation (4.1.2) as 

(4.1.9) 

We define the critical wave number kc by 

(4.1.10) 

Then the expansion ( 4.1.3) becomes 

(4.1.11) 

which is similar to (2.1.30). Again , we introduce 'if; as 

(4.U2) 

and have a linear equation from (4.1.11): 

(4.1.13) 

This suggests that due to the weak inhomogeneity, the UNS equation (4.1.1) is 

modified into 

iux + Utt ± 2lul 2 
u + iv(x)u, = 0. (4.1.14) 

4.2 The Rayleigh-Taylor Instability Problem 

As an example of unstable and inhomogeneous system, we consider the Rayleigh 

Taylor In stability Problem (Iizuka and Wadati 1990). Let us consider a two dimen

sional heavy fluid (density p) supported by a light fluid. The two fluid are assumed 

not to mi..x each other. The coord inates x and y indicate horizontal and vertical 

positions respectively. The heavy fluid is bounded from the above by a rigid su rface 
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whose shape is s lowly changing in the x-d irect ion and expressed as y = -H(c:2 x) 
(Fig.4.1). Constant c: is a smallness parameter. This represents the slow and finite 
inhomogeneity in this sys tem. 

The surface of the fluid is given by y = 7J (x, t) , where t indicates time. When 

the surface is fiat , 1J = 0. We denote by .P(x , y, t) the velocity potential of heavy 
fluid. The fluids are assumed to be inviscid , incompressible and irrotational. 

Between the two fluid there exists surface tension which generates the effect of 

the stability to the surface. Here and hereafter, we shall assume that the density of 

the lighter fluid is negligibly smaller than that of the heavy fluid (Malik and Singh 

1989). Thus the interface is determined by considering only the motion of the heavy 

fluid. The fundamental equations for the heavy fluid are 

.Pxx + .Pyy = 0, - JI(x) ::S Y ::S !](X, t) 

1 { 2 2} T !Jxx .P,+2 (.Px) +(.Pv) =g17+- 3.' y = !J(x , t) 
p {1 + (!Jx) }2 

(4.2.1) 

(4.2.2) 

y = !J(X , t) (4.2.3) 

y = -H(c:2x) (4.2.4) 

The first equation ( 4.2.1) describes the conditions that the fluid is incompress ible 
and the flows are irrotational. The second equation (4.2.2) is the continuity con

dition for the pressure that can be derived from the Bernoulli theorem. Here, g 

and Tare acceleration constant of the gravity and coefficient of the surface tension, 

respectively. The third equation (4.2.3) denotes the free boundary condition at the 

interface. The last equat ion (4.2.4) means that the perfect fluid does not penetrate 
the rigid surface. 

Let us consider a linearization of the fundamental equations. Th e solutions up 

to O(c:2
) are given by; 

.P = C cosh k(H(c:2 x)- y) cos(J kdx- wt), 

1J = -C~ sin kH(c:2 x) sin( / kdx- wt) , 

(4.2.5) 

(4.2.6) 

where local wave number k = k(c: 2x) is determined by the following inhomogeneous 
dispersion relation for a given w 

(4.2.7) 
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Rigid Bottom 

y=-H( a) 

Heavy Fluid 

y= 77 (x,t) 

Light Fluid 

F igure 4.1: System of the Rayleigh Taylor Instability problem. 

Between the two fluid there exists a surface tension. 
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The profile of (4.2.7) for the homogeneous case is shown in Fig. 4. 2. 

V.Te find that there is a critical wave number kc which, fortunately, does not 
depend on x ; 

(4.2 .8 ) 

If k > kc, th e linearized wave is stable and if k < kc, unstable. When k = kc, 

w = 0. Conversely, if we set w = 0, we obtain from (4.2.7) k(e: x) = kc =constant. 
Therefore, for th e critical wave number, the carrier wave F is given by 

F = exp i J kcdx = exp ikcx. (4.2.9) 

In the next section we consider nonlinear modulations of the carrier wave 
(4.2.9). 

4.3 The inhomogeneous UNS Equation 

The aim of this section is to present a model equation for the nonlinear waves in 
inhomogeneous and unstable media. The inhomogeneity is assumed to be slow and 

finite. As an example we consider the Rayleigh-Taylor instability problem. For the 

purpose we apply the reductive perturbation method to the nonlinear modulation 
of the monochromatic wave (4.2.9). 

We introduce scaling transformations of independent variables 

r =ct. 

Thus the rigid bottom is expressed as 

y= -H(a'). 

(4.3.la) 

( 4.3.16) 

(4.3.2) 

We expand the velocity potential iJ>(x , y, t) and the surface elevation 7J(x, t) in terms 

of the smallness parameter e: and the carrier wave F in ( 4.2.9); 

oo l=n 

iJ> = L L .,nplij>(n,l)(a, r , y) , (4.3.3) 
n=ll=-n 

oo l=n 

7) = L L en pl'l(n,I)(IT, r). (4.3.4) 
n=ll=-n 
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w 

Figure 4 .2: Dispersion relation for the Rayleigh Taylor Instability 

problem (homogeneous case). 
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We s ubstitute ( 4.3.1~4) into fundamental equations ( 4.2 . 1~4) and equate the te rms 
of en F 1. 

At (n, l) = (1, 0) we have relations 

,p.o) = 0, 

cj>~l ,O) := 0. 
(4.3.5) 

(4.3.6) 

At (n,l) = (1,1) we confirm that kc is the critical value (4.2.8) and that cj>(l ,l ) 
van ishes; 

cj>(l,l) = 0. 

For (n , I)= (2, 0) and (n , I)= (2, 1) we have 

a nd 

cj>~l ,0) = 9'7(2,0), 

cj>~1,0) := 0, 

(2,o) _ cosh kc(Y + H(u)) (1,1) 
cj) - kcsinh kH(IT) !Jr ' 

respectively. In (n, I) = (2, 2) we have 

and (n, l) = (3, 0) 

1](2,2) = 0, 

cj>(2,2) = 0, 

1](2,0) = 0, 

cj)~2 ,o) = 9 ,p.o) , 
cj>(3,0) = 0. 

From (4.3 .8) a nd (4.1.13) we find that cj)~1 ' 0 ) does not depend on r; 

Thus !(IT) is determined from the initial value of IJ· 

In (n, I)= (3 .1) we obtain a closed evolution equat ion for 1]<1·1); 

'7~~· 1 )- 2ig tanh kH(~T)IJ~1 • 1 )- ~;k~ tanh kH(IT) 11]<1·1)1
2 

1]<1·1) 

+ f(~T)kc tanhkH(IT)IJ(l,l) = 0. 
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Here the first and the second term correspond to l.h .s and r.h .s. of ( 4.1.8) respec

t i ve] ~. By a furth er transformation of dependent and independent variables; 

Jq do-' 
C-•- 2gtanhkH(o-') ' 

U(~,r) = ~ ~kS tanh kH(o-) exp i(j f(o-)d o- ~ kc)ry(l,l), 
2 p c p 

we reduce ( 4.3.17) to 

iU( + Urr - \UI 2 
U + iv(OU = 0, 

d 1 
v(O = d~ J3T/(2p)k~ tanh kH(o-). 

( 4.3.18a) 

(4.3.18b) 

(4 .3.20a) 

(4.3.20b) 

This is in the same form as inhomoge.neous NLS equation (1.3) or (2.2.23). How

ever the inhomogeneous UNS equation ( 4.3.20a) is essentially different; in (1.3) or 

(2.2.23) we consider evolution with respect tor '= c:i x(j = 2, 3) (spatial evolution) , 

while in ( 4.3.20a) with respect tor = c:t (time evolution). We believe that the model 

equation (4.3.20a) has many applications for the analysis of wave propagat ions in 

unstable and inhomogeneous systems. 
We have not considered weak inhomogeneity, because fJKjfJw in (4.1.13) van-

ishes for the Rayleigh-Taylor system. 
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Chapter 5 

Two-Dhnensional Systems 
(Shallow Water Waves Upon an Uneven Bottom) 

5.1 The Inhomogeneous KP Equation 

5.2 Deformations of Line Soliton 

5.3 Isotropic Scale Inhomogeneity 

5.4 Conclusion and Discussion 

Two-dimensional nonlinear waves in a slowly inhomogeneous system are inves

tigated. As a typical case, three-dimensional shallow water waves over an uneven 

bottom are considered. Here, the surface waves is two-dimensional. The depth is 

assumed to be slow in variation. As a model, an inhomogeneous I<P equation is 

proposed ; 

T his model is a two-dimensional extension of (1.2) and (1.4). The "external" fun c

tions A(r) , B(( , r) and C(r) are related to the depth change. Some reductions of 

this equation are used to describe deformation of a line soliton due to the depth 

change. The model equation is valid for a wide class of two-dimensional nonlinear 

waves in inhomogeneous systems. 

5.1 The Inhomogeneous KP Equation 

Let us consider water waves over an uneven bottom in three dimensional space 

(Iizuka and Wadat i 1992b). We denote time evolution of the water surface by 

z = 1)(x, y , t) , where z represents the vertical coordinate, x and y the horizontal 

coordinates and t the time. When the water surface is fl at, '7( x, y, t) :::::: 0. The 

rigid bottom is expressed as z = -H(x, y) . Let <J>(x , y, t), g and p be the velocity 
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potential, the gravitational acceleration and the density of the fluid , respectively. 

Similarly to ( 4 . 2.1~4) , fundamental equations for the water waves is given by 

<Pxx + il?yy + Wzz = 0 (for - H(x , y) ::'0 Z ::'0 !)(X, y, t)), (5.1.1) 

<Pt+~{(<Px ) 2 +(<P.) 2 +(<Pz) 2 }+gl)= P~ (at z=!)(x,y,t)), (5.1.2) 

Wz = 1)t + Wx!)x + Wy!)y (at Z =!)(X, y, t)) , (5.1.3) 

Hx<Px + Hyil?y + <Pz = 0 (at z = -H(x,y)) , (5.1.4) 

where Tis the surface tension and R- 1 is the mean curvature of the surface defined 

by 

~ = [{1 + ('7x) 2 }'7yy + {1 + (!)y )2hxx- 21)x'7v'7xv] {1 + ('7x)2 + ('7v) 2} -~ · (5.1.5) 

The meanings of the equations have been explained just after eqs. (4.2.1~4). The 

essential differences are that in the present case the system is three dimensional and 

that the direction of the gravitational acceleration is opposite. 

We shall be interested in weakly nonlinear waves. To this end, we apply the 

reductive perturbation method. Introducing a smallness parameter E: and a charac

teristic length I of the depth, we transform the independent variables; 

~ = clf(jx F(t:3 1- 1x')dx'- t), 

( = €21-ly, 

r = t:3 1- 1 x, 

z = l- 1 z, 

(5.1.6a) 

(5.1.66) 

( 5.1.6c) 

(5.1.6d) 

where F(t:31- 1x) = F(r) will be determined shortly later. New independent vari

ables are chosen to be dimensionless. We expand dependent variables !)(x, y, t), 
<P(x, y, z , t) and H(x , y) as 

'7(x , y, t) = 1 ( t:2 1)< 2l(~, (, r) + t:4 1)< 4l(~, (, r) + .. ·), 

<P(x , y, z , t) = Jgl3 ( t:<P< 1l((, (, z,T) + t:3<P<3l(C (, z,T) 

+ csw<s>((, (, z, r) + .. ·), 

H(x, y) =I ( H(0l(r) + t: 2 H( 2l(r, ()) . 
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The variation of the surface elevation I) in the y-direction is assumed to be much 

slower than that in the x-direction . The zeroth order inhomogeneity of the bottom, 
H (o) , is assumed to be independent of y. In (5.1.7c) H (o) and H(l ) indicate finite 

and weak inhomogeneity respectively. 

We substitute (5.1.6~7) into equations (5.1.1~4) and equate the terms of the 
same order in E:. Within O(t:2) we see that cp(l) does not depend on z and is given 
by 

<P~IJ = '7(2l((, (, r). (5 .1.8) 

At O(t:3) and O( t:4
) , we have relations as 

F(-) 1 _ 1 !( - ) 
T = Jg[H(O)('f) = .Jil T 1 (5.1.9) 

cp(3)- /
2 

(2) -2 (2)- + p ( (2))2 + (4) !2 (2) ( - -2'7(( z -!)(( z 2 I) I) - K, '7(( ' (5.1.10) 

where"= Tj(pg/ 2
) is a dimensionless parameter. If the bottom is uniform, Fin 

(5.1.9) is the inverse of velocity of the linearized wave. A closed equation of I)( I) is 
obtained at O(t:5 ): 

{ 
(2) + (]__- -!3) (2) + 3j3 (2) (2)- f; (2) + j3 H(2) (2)} + ]__ (I)- 0 ( ) 

'7; 6f " '7w 2 '7( '7 2! '7 2 '7( ( 21 '7(( - · 5·1.11 

Introducing further new variables rand U((, ( , r) by 

(5.1.12) 

(5 .1.13) 

we arrive at 

(5.1.14) 

where the functions A(r) , B(r,() and C(r) are related to the depth change by 

(5.1.15) 
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T his is nothing but the inhomogeneous KP equation. We should remark that this is 

a two-dimensional extension of the inhomogeneous KdV equations (1.2) and (1.4). 

We believe that it describes a large class of two-dimensional nonlinear waves in 

slowly inhomogeneous systems. For instance ion-acoustic waves in varying density 

and temperature are expected to reduce (5.1.14). We note that if the surface tension 

is neglected, the coeffi cient of U<< in (5.1.14) is constant(= 3). 

5.2. Deformations of Line Solitons 

In this section we shall investigate a simpler but still important case. Namely, 

we consider the weak inhomogeneity; 

H(O) = 1(/ = 1), (5.2.1) 

and assume that bottom variation does not depend on y; 

(5.2.2) 

Under these assumptions the inhomogeneous KP equation (5.1.14) reduces to 

( Ur + Uw + 6U(U + 3H(
2
l(-r)U() ( + (1 ~ 6 ~~:) U(( = 0. 

Let us introduce a transformation of independent variables 

X= E- 3 JT H( 2l(-r')d-r', 

y = v11 ~ 6~~:1( = >.(, 

T= T. 

Then, from (5.2.3), we get the I<P equation; 

(Ur + Uxxx + 6UUx )x + 3o-Uyy = 0. 

o- = sgn(1- 6~~:). 

(5.2.3) 

(5.2.4a) 

(5.2.4b) 

(5.2.4c) 

(5.2.5) 

From now on we assume that o- = +1. Recall that "= Tj(pgl2
) is a dimen

sionless parameter which is related to the surface tension . It is known that the KP 

equation (5.2.5) is integrable and has a line soliton solution; 

U = 2kfsech2(k1X + k2Y- wT- 8), 

k,w- 4kt- 3k~ = 0. 
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In terms of (C (, -r) and (x, y , t ), the soliton solution (5. 2.6) is expressed as 

U = 2kfsech2
{ ki(E - 3 /r H (2l (-r')d-r') + k2>.( - wr } , 

= 2kfsech2{ k1e:W 1x- {ft)- 3k1 ;•'x/GI H(2)(-r')dr' 

+k2e:2>.-- -x 
y W€3 } 

I 6/ ' (5.2.8) 

where we have taken 8 = 0 for simplicity. This form suggests that the line soliton 
undergoes the deformation due to the weak inhomogeneity H(2). In the following 

two analytically tractable forms of H(2) are investigated. 

First, let us consider a case; 

(5.2.9) 

If a> O(a < 0), the bottom has a line hollow(heap). The deformed soliton is given 
by 

U = 2k?sech20 
w 3-

0 = (k,e:- 6e:3)x- 3k1adtanh e: 
6
x + k2e:2 >.y- k1d, 

(5.2.10a) 

(5.2.10b) 

wherex = l- 1 x, y = /- 1yand i = Viflx are dimensionless. The waveforms (5.2.10) 

are shown in Fig.5.1. We see that the soliton is deformed forward(backward) du e 
to the line hollow(heap) . 

This is a reasonable result because in shallow waters th e velocity of the lin
earized wave is proportional to the square of the depth. 

Second, we choose 

H(2l(-r) =a tanh J· (5.2.11) 

This indicates a mild step in the bottom. For this inhomogeneity, the phase 0 in 
(5.2.10.b) is given by 

(5.2.12) 

Deformations of the line soliton are shown in Fig.5.2. We see that the velocity of 

the soliton is faster in the deeper region and that the line soliton is curved at the 

step. The latter represents one of the properties nonlinear refraction phenomena. 
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Figure 5.1: Deformation of the line soliton due to a line hollow( a) and 

a heap(b). The solitons at five different times are superposed. Arrows 

indicate propagation of the soliton. Lower sheets are the profiles of the 

bottoms. 
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Figure 5.2: Deformation of the line soliton due to a mild step. Both two 

opposite directions are allowed for propagation of the soliton. We observe 

a refraction of the soliton. 
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5.3 Isotropic Scale Inhomogeneity 

In this section , we investigate a rather different situat ion from the above one. 

In the preceding two sect ions, we have assumed JJ( 2) is a functwn ofT and(, which 
. . 1 H(2) 3 d JJ(2) ~ ~2 Namely the variation scale of the weak 1m plies t 1at x ~ ~ an v · ' . . 

1 inhomogeneity in the x-direction is much larger than that in the y-d1rect1on. In t 1e 
· k · h ·t (f = 1) where the two scale following we shall cons1der the wea m omogene1 Y . - . , 

lengths are the same order. We term it 'isotropic sc~le mhomogene~ty . In order to 

tl ·t t'on JJ(2) is assumed to be a functwn ofT and ~(, express 1e s1 ua 1 , 

JJ(2) = JJ(2l( r, ~() = JJ(2)(~31-Ix , ~3/-ly), (5.3.1) 

(5.3 .2) 

Again, employing the reductive perturbation method , we have 

( Ur + Uw + 6Ue U + 3JJ(2) ( r, ~()Ue) e + 1 ~ 6K Ucc = 0. (5.3.3) 

To eliminate the fourth term in (5.3.3) , we introduce new independent variables; . 

X=~-3 JT JJ( 2 ) (r' ,~()dr', 

( 
/

r JT' {jJJ(2)( r " ~()) 
y = A ( + 18~ dr' dr" 8(~(), , 

T= r , 

where A has been defined in (5 .2.4b) . Using (5 .3.4)into (5 .3.3) , we obtain 

(Ur + Uxxx + 6UxU)x + 3uUyy + 0(~2 ) = 0. 

(5.3.4a) 

(5.3.4b) 

(5.3.4c) 

(5.3.5) 

This is the KP equation up to 0(~2 ) quantities. In the following we shall ne~lec t 

0(~2) in (5.3.5) . This is not an appropriate approach for solving eq.(5.3.3) . Bu _we 

know th at the model equations (5.1.4),(5 .2.5) and (5.3.3) are, _as surf~ce dynamics, 
approximations within the error of 0(~2 ). In this sense, removmg 0(~ ) m equatiOn 

(5.3.5) is permitted. . 

Similarly to the previous case, one soliton solution of the KP equatiOn (5.3.5) 
for u = 1 is given by 

U = 2k~sech2 (k1X + k2Y- wT) 

= 2k~sech 2 G, 
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where 

e = k,(~- 3 IT JJ(2 ) (r',~()dr') + k2A(( + 18~ IT dr' l r' dr" 8ff(;)(~~;,~c)) +wr 

w 3) 2 -= (k,~- 6~ x + k2~ AY- k1d 

IT IT IT' 8JJ(2)( " () - 3k1 JJ(
2
)( r', ~()dr' + 1 8 k2~A dr' dr" 8(~~( . 

This describes a deformed line soliton due to the weak inhomogeneity JJ( 2) 

(5.3.7) 

As an application , we consider a localized inhomogeneity; 

(2)( ) 2T 2~( f! r ~( = asech -sech - (5.3.8) , d, d2. 

If a> O(a < 0) the bottom has a localized hollow(heap). The phase G of a deformed 
line soliton for a simple case k2 = 0 is given by 

3- 3 -w 3)- ~ X 2 ~ y -
(5.3.9) e = (kl~- -~ X- 3klad,(tanh- + 1)sech -d - k1d , 

6 6dl 2 

where the integration constant in (5.3.7) is chosen to be a. T he wave profi le for 

the phase (5.3.9) is shown in Fig.5.3. Similarly to the case in Sect ion 5.2 , th e line 
soliton is deformed forward(backward)due to the hollow(heap) . 

5.4 Conclusion and Discussion 

We have proposed the inhomogeneous KP equation (5.1.14) , which describes 
a three-dimensional shallow water wave traveling over an uneven bottom. The 

inhomogeneous KP equation is possibly a ubiquitous model for two dimensional 

nonlinear waves in inhomogeneous systems. If the inhomogeneity of the bottom is 

weak and depends only on the x-coordinate, equation (5.1.14) reduces to the KP 

equation . Then, we find that due to the inhomogeneity the deformation of a line 

soliton occurs during the propagation. As applications, effects of a line hollow, heap 

and a mild step in the bottom are considered. If the inhomogeneity is weak and 

the characteristic length of it is common in x and y directions, we obtain the I< P 

eq uation up to 0(~2 ). Similarly to the former case, the deformat ion of a line soli ton 
is shown explicit ly. 

When the inhomogeneity is not weak or B in (5.1.2) depends on ( , we cannot 
analytically solve the inhomogeneous KP equation. In this case, we expect not only 

the deformation of a soliton but also the fission. To investigate this phenomena we 

need to take numerical or approximate approaches, which is left for a future stud y. 
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(a) 

Figure 5.3: Deformation of the line soliton due to a localized hollow( a) 

and heap(b). 
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Chapter 6 

Discontinuous Systems 

6. 1 The Discontinuous Anharmonic Lattice 

6.2 Slowly Varying Waves 

6.3 Carrier Wave Modulations 

6.4 Transmiss ion and Reflection of a Soliton 

6.5 Conclusion and Discussion 

Scatterings of solitons due to a discontinuity in one-dimensional media are 

considered. As a mod el we employ a nonlinear lattice which has a discontinuity 

in the mass distribution. Two kinds of physically interest ing waves, slow ly varying 

waves and carrier wave modulations are studied. The reflected and transmitted 

waves are constructed from the incident wave analytically. Fission and reflection of 

incident KdV and NLS soli tons due to the discontinuity are observed. 

6.1. The Discontinuous Anharmonic Lattice 

We shall consider a one-dimensional nonlinear lattice. The mass of j-th particle 

is M for j 2': 0 and m for j < 0 (Fig.6.1). We denote by Yi the displacement of the 
j-th particle. 

The equation of motion is given by (Iizuka and Wadati 1992c) 

mi iii = B[Yi+l - Yi + a(Yi+l - Yi )
2 + f3(Yi+l - Yi )

3
] 

- B[yi- Yi -1 + a(yi- Yi-d
2 + f3( Yi- Yi-d

3
], 

mj= {m (j ~- 1) 
M (j 2': 0) 

(6. l.la) 

(6.1.1b) 

where B(> 0) , a and (3 are constants. Dot.s indicate differentiations with respect 
to t ime t. 
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~eflected Wave 

Incident Wave 
) 
j=-1 

Transmitted Wave 

j=O j=l 

Figure 6.1: Nonlin ear lattice with a discontinuity in t he mass distribu
tion. 

6.2 Slowly Varying Waves 

Reductive Perturbation Method 

> 

We assume that th e displacement Yi is slowly varying fun ction of the site j. 
Let h denote lattice spacmg. We employ the continuum approximation Yi = y(x, t) , 

where x =}h. Similarly to case in (2.2.6) , the equation of motion (6.1.1) is reduced 
to a Boussmesq type eq uat ion; 

1 h2 

Yxx = ?fYtt + 
12

Yxxxx + 2hayxYxx + · (6.2 .1 ) 

where subscripts x and t represent partial differentiations. The acoust ic ve locity c 
is given by 

{ 

c+ = [Kh2 (x > 0) , 
c= VlV! 

c_ = [!!!!. (x < 0). 
(6.2.2) 

In the following we consider the weakly nonlinear wave and apply the reductive 

perturbation method to th e regions x > 0, and x < 0 separately. We assu me that 
a ,to 0. 
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For x > 0 we consider the transmitted wave. We introd uce new independent 

variables '7 and 7 and new dependent variables v(l), vC 3
), · · · as 

c: 
'7 = h(x - c+t), 

€3 
7 = 24h x, 

y(x t) = _2_ { c:v(l)( 1J , 7) + c:3v(3)( 1) , 7) + · · ·}, 
' 4a 

(6.2 .3a) 

(6.2.3b) 

(6.2.3c) 

where c; is a smalln ess parameter. Substituting transformations (6.2.3) into (6.2.1) 

we get a closed eq uation for v(J) in O(c:5 ); 

Equation (6.2.4) is also expressed as 

iji ~ - 6 \Ji~· iJiT + iJi~~~ = 0 
( I) 

ijiT = v(l) = -~. 
.. '1 EC+ 

(7 > 0) 

The transmitted wave iJiT(1J ,7) is governed by the KdV equation (6.2.5a). 

(6.2.4) 

(6.2.5a) 

(6.2.5b) 

For x < 0 we need to consider both the incident and reflected waves. For 

the purpose we introduce the following transformations of the independent and 

dependent variables; 

~ = :_(x- c_ t) , 
h 

( = :.ex+ c_t), 
h 

€3 
7 = 24h x, 

y =- 4~ { c:u(ll (~ ,(, 7) +c:3u(3)(C{,7) +. -}. 

Substitution of (6.2.6) into eq.(6.2.1) yields at O( c:3), 

Therefore u(ll has a form 
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(6.2.6c) 

(6.2.6d) 
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At O(c:5 ) we can set 

(3) _ 3( (1) ( R) (I) (R) "a: u~ "a +"a "{ ) = 0, 

a nd get (Appendix 6.A) 

(1) (I) (I) (f) 
u~, - 6u~ "<< +"a<< = 0, 

(R) (R) (R) (R) 
"(, - 6"{ "a +"an= 0· 

Using new de pendent variables 

we obtain 

iJi~-6iJi 1 iJi{+ilifa=O (7 < 0) , 

iJin- 6iJiR.p~ +>It~-- = 0 (7 < 0) . 
' ' <a 

(6.2.9) 

(G.2.10a) 

(6.2. 10b) 

(6.2.11 a) 

(6.2.11 b) 

(6.2.12o.) 

(6.2.1 2b) 

Thus, the incid ent wave iJi1 (~, 7) and refl ected wave iJiR((, 7) are described by ind e

pendent KdV equations (6.2.12). Similar results are obtained for the shallow water 

waves (Ablowitz and Segur 1981). The above result means that there is no interac

tion between the incident and the reflected waves. However, we have assumed the 

following additional condition. That is th e collision time Tc between th e two waves 

is much shorter than the characteristic time Tm of the modulation of the waves. 

Such situation is realized when the total length of the waves are comparab le with 

characteristic scale of the wave l ength(~ 0- Then we have Tc/Tm ~ c;-l;c:-3 ~ 1. 

The same discussion is effect ive to th e carrier wave modulations in the next section 
and to the following chapters. 

Construction of the Transmitted and Refl ected Waves 

We examine the conditions of the continuity for y(x, t) and Yx(x , t) (up to O( c:)) 
at x = 0. We set 

h (t) = uUl( -c_c;t, 0) , 

fz(t) = u(R)(c_c;t, 0) , 

h(t) = v(ll( -c+c:t , 0) . 
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Neglect ing O(c:2 ) quant it ies we have 

ft(t) + h(t) = h(t) , 

j 1(t) j2(t) _ ia(t) ---+---- . 
c_ c_ c+ 

Equat ions (6.2.14) are rewritten as 

1 - v 
h(t) = -1 -ft(t) , 

+v 
2 

h(t) = 1 + Jt(t) 

v= ~= =fi 
From the definitions of W1 (E , r) , wR(~, r) and il/T ('7, r) we have 

w1 (E o) = --
1 i~(-.f_), 

' c;c_ c_ 

Using (6.2.15) in (6.2.16) we arrive at 

V -1 I -
ilin(~, 0) = v + 

1 
ill ( -E, 0) , 

iliT(1) O) = ~ili1 (V17 , 0) 
' 1 + v 

(6.2.14a) 

(6.2.146) 

(6.2.15a) 

(6.2.156) 

(6 .2.15c) 

(6.2.16a) 

(6.2 .166) 

(6.2.16c) 

(6.2.17a) 

(6.2.176) 

d' · f tl teflected and transmitted Equation (6.2.17) gives the ' initial' con ttiOn or te 

waves Therefore by means of the mverse scattenng method for the I<dV equa-
. k I d M' 1967) we can construct analyt•cally tion (Gardner, Greene, I<rus a an tura · th 

the 1'efl ec t ed wave ilfR(~, T < 0) and the transmitt ed wave ilfT(1) , T > 0) from e 

incident wave ili1 (E, r < 0). Th 
Our method is also applicable to the case that a = 0 and f3 # 0. ere, we 

obtain three independent modified I<dV equations for the three waves. ~h; r~~t~ 
and transmitted waves are constructed by the inverse scattenng met o ( a a I 

1973). ) d'ffi t o ch He N.Yajima (1977) also derived the relation (6.2 .17 by a I eren appr a . 

I tyl)e Of Val.l'able transformation in which small phase shifts 01 , employed anot ter 
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82 are introd uced(see eq .(18) in the paper). The va riables 6 and ~2 in the paper 

correspond toE and ( respectively. There, it is necessary to get th e form of 0
1 

and 

02
. However our transformation are simple linear relat ion. The cond ition of the 

continuity in the paper (eq.(25)) is a set of relation at r
2 

= O(t = 0), while our 

condition (6.2.17) is just a t the mass interface ( r = x = 0). In this sense our trans

formation offers clearer condition. Moreover, recall that transformation (6.2.3ab) 

for -oo < x < +oo is useful for the weakly inhomogeneous system (Chapter 2), 
because the inhomogeneity is represented as a functi on of r. 

6.3 Carrier Wave Modulations 

Reductive Perturbation Method 

In this section we investigate transmission and reflect ion of a modulated carrier 
wave whose wave length is comparable with the lattice spacing h. 

At first we consider the transmitted wave. In the region j 2: -1, we expand Yi 
by a smallness parameter c: and a carrier wave E as 

Yi = L L c:" Elv(n,/)(1), r) 
n=lJIJ$n 

E = ei(K,-nt) (x = jh). 

(j 2: -1) , (6.3 .1 a) 

(6.3.16) 

The wave number !{ and the angular frequency 0 sat isfy a dispersion rela tion 

We have introduced new independent variables 17 and r; 

€ 
1) = h(x- Vt), 

€2 

r= -,;x 
where V is the group velocity given by 

(r > 0) , 

dO Bh . 
V = - = -- Stn /{ h elK MD. . 

(6.3.2) 

(6.3.3a) 

(6.3.36) 

(6.3.4) 

Substituting (6.3.1) into the equation of motion (6.1.1) for j 2: 0 and comparin g 
the coefficients of c:" E 1 we have the following relations; 

c:E : dispersion relation (6.3.2) , (6.3.5a) 
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group velocity (6.3.4), 

( 2,2) _ . sin Kh (v(l,l))2 
v - w 1 - cos f{ h , 

v~l,O) =-Sa Jv(l,l)\2. 

. f (1,1) At O(c3 E) we find the NLS equation or v , 

. (!,1) + Pv(l,l) + Q Jv(1,l)J
2 

v(1,1) = 0, 
tVT T]JI 

1 d20 1 f{ h 
P = 2hV dK2 = -4 tan 2' 

f(h 2 2 . 2f{h} 
Q = 4tan 2 {2a + (2a - 3,B)sm 2 . 

(6.3.5b) 

(6.3.5c) 

(6.3.5d) 

(6.3.6a) 

(6.3.6b) 

(6.3.6c) 

In the region j ::; 0 we consider incident and reflected waves. We expand 
· f th · 'd nt wave F that of the . ( · < O) by the smallness parameter €, earner o e mc1 e , YJ J-

reflected wave G; 
00 

Yi = L L cnFIGI' u(n,l,l')(E,~,r) (j :s 0), (6.3.7a) 

n=11ll+ll'\Sn 

F _ ;(kx-wt) (6.3.7b) - e , 

G = e-;(kx+wt) . (6.3.7c) 

The wave number k and the angular frequency ware related by a dispersion relation; 

w2 = 2B (1- coskh). (6.3.8) 
m 

New independent variables E , ~and r have been introduced by 

E = ~(x- vt), 
h 

~ = ~(x + vt), 
h 

where vis the group velocity in the region j :S -1; 

dw Bh . 
v= -= -smkh. 

dk mw 

(6.3.9a) 

(6.3.96) 

(6 .3.10) 

· h ffi · t f n F 1G1' Substituting (6.3 .7) into (6.1.1) for j :S -1 and equat mg t e coe lCJen s 0 € , 

we have 

cF, cG: 

"2 F: 

dispersion relation (6.3.S), 
(1,1,0)- 0 

u{ - , 

(1,0,1)- 0 
u{ - . 
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Equation (6.3.llb) means that u(Ll.O) does not depend on (. Similarly, u< 1·0·1l 
does not depend on E. These factors are consistent with that u(I .LO) = u(l.LO)(E, r) 
indicates the incident wave and u(L0. 1) = u(l,0, 1 )(~, r) the reflected wave. At the 
higher orders we have 

At O(c3 F) we have 

u(2,1,-1) = -2ia sin kh u(I ,1,0) u(l ,o,- 1), 
1+coskh 

u(2,1,1) = O, 

( 2 ) . sinkh (1 l)2 u 2, ,o = ta (u ,t,o , 
1- coskh 

( 0 ) . sin kh ( 0 l) 2 u 2, ,2 = -ta (u 1, ,l , 

1- coskh 

u?·O,O) =-Sa Ju(1,1,0) /2, 

ut1,0,0) = -8a /u(1 ,0,1)12. 

. !{ 2 
u(2,1,0) = si~~h Ju(1,0,1)(t, r)J d(. u(1,1,0)(E, r) + C1(E. r), 

g = 4a
2
(1 -cos kh)(3 +cos kh)- 12,8(1- cos kh) 2 , 

(6.3.1 2a.) 

(6.3.12b) 

(6.3.12c) 

(6.3.12d) 

(6.3.12e) 

(6.312!) 

(6.3.13a) 

(6.3.13b) 

where C1 (E. r) is unknown and we obtain the NLS equation for u< 1·1·0l(E, r); 

iu~l,l,O) + pu~~,l,O) + q Ju(l ,I,0)/2 u(l,1,0) = 0, 

1 d 2w 1 kh 
P = 2hv dk2 = -4 ta.n 2' 

kh kh 
q = 4 ta.n 2 { 2a2 + (2a2 - 3,8) sin 2 

2
}. 

Similarly using a. unknown function C2 (~, r) we get at O(c3 G) 

u(2,0,1) = _ _}jj__ !{ Ju(1,l,O)((, r)/2 d(. u(l ,0,1)(~, r) + C2(~, r), 
Sill kh 

a.nd the NLS eq uation for u(l,o,1); 

iuP·O,t)- puti0, 1)- q /u(l ,o, tf u(l,0,1) = 0. 

(6.3.14a.) 

(6.3.14b) 

(6.3.14c) 

(6.3.15) 

(6.3.16) 

The incident wave u< 1·1·0l(E, r) and the reflected wave u< 1 · 0 · 1 l(~, r) obey independent 

NLS equations (6.3.14a) and (6.3.16). This situation is similar to the case of slowly 
varying waves discussed in §2. 
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Construction of the Transmitted and Refl ected Wave 

We notice t hat Yi=-l and Yi=O are expressed by two d ifferent expansions 

(6.3Ja) and (6.3.7a) . Equating the two expressions we have at j = - 1; 

00 

Yi=- l = L L e:ne-il(I<h+!1t)V(n, l ) 

At j = 0 we have 

n=l lli <On 

= 2: 2: e- il (kh+w•)ei l '(k h-w t ) tl(n. l ,l '), 

n=l lll+ll'I <On 

T = - £ 2 , 

e:Vt 
7] = -€- -, 

h 
- e:vt 

~ = -~=-€- h 

00 

. _ "\' "\' ~ne- il!1 t (n, l ) 
Y• =O - L.., L.., ~ v 

n= l lli <On 

00 

= 2: 2: e- ilwte- if 'wtu<n. l ,l' ), 

n=llll+ll'I 'O n 

r = 0, 
e:Vt 

7] =- h , 

- e:vt 
~ = -~ = - --;;: · 

(6. 3.17a) 

(6 .3.17b) 

(6.3.17c) 

(6.3 .17d) 

(6.3 .18a) 

(6.3.18b) 

(6.3.18c) 

(6.3 .18d) 

Comparing high frequency components in (6.3.17a) and (6.3.18a), we must set 

(Fig. 6.2) 

which is equivalent to 
sin I< h/2 = [ii_ 
sin kh/2 V-;:;;:-

(6.3. 19) 

(6.3 .20) 

Equating the coefficients of e:ne-ilwt in (6.3 .17a) and (6.3.18a) , we get at n = 

I = 1 

v(t ,t ) = u ( t , t ,O) + tt ( t ,O, t ) (r = 0) , 
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Dispersion Relations 

w 

0 k K 

Figure 6.2 : Dispersion relations w = w(k) , 0 = O(K). T he two wave 

numbers k and I< are related by w(k) = !l(K ). 
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where we have used the Taylor expansions of v(l,l), u(l,l ,O) and u(l ,O,l) in (6.3.176 ~ 

d) around (6.3.18b~d}. Eq uations (6.3.21} yield 

e-ikh eikh v 
(l l)( 0} - (l,l,0)(-1) 0} 

v ' 17, = e iJ<h _ eikh u v ' ' (6.3.22a} 

- e-;Kh- e-;kh (l,t ,o) -
,.(l ,O,l)(' 0} = 'kh Th u ( -~, 0}. 

~' e' · - e-• \ (6.3.226) 

This is an analogue of the relations (6.2.17}. 

Simi larly to the case of t he slowly vary ing waves, ( 6.3.22} gives the ' initial' 

condition of the reflected and transmitted waves. By using the inverse scattenn g 

method for the NLS eq uation (Zakharov Shabat 1972}, we can ana lyti ca lly cons truct 

v(t,t)( ') , 7 > O} and u(l,o,t)((, r < 0} from th e incident wave u(l ,t,O) (~ , T < 0} · 

H is natural that the group velocities v and V are pos1t1ve. We assume k and 

J( are in the first Brillouin zone. T herefore wave numbers k and K must sat isfy 

0 < kh, f{ h < 11'. (6 .3.23) 

From eq.(6 .3.20} we see that the wave number of the incident wave satisfi es 

sin kh[!!; < 1. (6.3.24} 

If condition (6.3.24} is not sat isfied I< is complex. In this case there appears the 

locali zed mode in the region x > 0. 

6.4 Transmission and Reflection of a Soliton 

I<dV Soliton 

We investigate th e scattering of an incident soliton in case of the slowly varying 

wave. Following N.Yaj ima (1977} we briefly summarize the discussions. 

Let us consider one-soliton solution of (6.2. 12a}; 

2 2 ~ 4r) 
l]il (C r) = -2d- sech (-d- d3 , (6.4. 1} 

where d denotes t he width of the soliton. From (6 .2.17} we have ' initia l' condition 
for l]iR and iJiT ; 
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Let us consider t he fo llowing result for the further analysis. From an initial 
condit ion 

(6.4 .3a) 
for the I<dV eq uat ion 

IJir -61Jix1Ji + IJixxx = 0, ( 6.4 .36) 

we can determine the number N of generated solitons by t he inverse scattering 

method (G.L.Lamb,Jr . 1980}. T he number N is the ma.ximum integer which sa tis-
fi es 

R+~-N>O, (6.4.4a} 

and the ampli tudes of the generated solitons are given by 

(6.4.46} 

Using these formulae we determine the amplit udes of refl ected and transmitted 
solitons. 

For the refl ected wave the number N is 1 or 0. The the refl ect ion coeffi cient R 
(relat ive ampli tude of t he velocity field in the soliton) is given by (Fig.6.3} 

{ 

0 (v ~ 1} no soli ton 

Rt = ( I 1/- 1 1 1) 2 

V 2 v + 1 + 4- 2 (v > 1} one soliton, 
(6.4.5a} 

where 

R 1 ---+ 1 if v ---+ +oo. (6.4.56) 

Note that there a lways exists the radiation (ripple} in the reflected wave. 

For the transmitted wave one or more solitons are always generated . T he 

transmission coeffic ients ~ (relative amplitudes of t he velocity fi eld in the solitons} 
of the j -th soliton is given by (Fig.6.3} 

(6.4.6a) 

wh ere T1 satisfi es 

T1 = 1 if v = 1. (6.4.66) 

We remark that in t he paper of N.Yajima (1977) , t he transmission coeffi cients a re 

defined differently (= ~v). In another paper (Iizuka and Wad at i 1992c} t hey are 
defined by ~v-l 
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Transmission Coefficients Ti 

Reflection Coefficient R 

R 

. . R and the transmission coefficients F . . 6 3 . 1' he reflectwn coefficient 1 Igtu e . · 
y 1 ~ '13 of the I<dV soliton. 
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The velocities of N generated solitons are a ll distin ct. Therefore we observe 
the fission of the incident so liton. In particular when 11 satis fi es 

4 
--=N(N+ 1) v(v + 1) N : integer, (6.4.7) 

N transmitted solitons are generated and there occur no radiation. In term of the 
scattering problem >JiT (17) is the reflection less potential. 

NLS Soliton 

As in the former case we consider the scattering of the incident soliton due to 
a discontinuity. In the following we denote u(l,I,o), u(l ,O, l) and vCI,I) as 4)1 , q>R and 
q>T respectively. The evolution equations are given by 

. I I I [12 1 z4>T + p4>a + q 4> 4> = o, 
iql~ _ p4>f{ _ q /cJ?R/2 q;R = O, 

i<l?:; + pq;~" + Q /4>r/2 cJ?T = 0. 

(6.4.8) 

(6.4.9) 

(6.4.10) 

The constants p, q, P and Q have been defined in (6.3.6) and (6.3.14). We assume 
that pg > 0 and PQ > 0. 

Let us consider one soliton solution of (6.4.8) ; 

where d denotes the width of the soliton and K is a real parameter. 
(6.3.22) we have ' initial' conditions for (6.4.9) and (6.4.10); 

(6.4.11) 

From eqs. 

(6.4.12) 

(6.4.13) 

In order to analyze the generation of solitons for initial conditions (6.4.12) and 

(6.4.13) we use the following results which are obtained by the inverse scattering 

method (Satsuma and N.Yajima 1974). We solve the nonlinear Schrodinger eq ua
tion; 

(ab > 0) , (6.4.14) 

- 69-



Cha]Jie•· 6 Disconti11U01<S Systems 

for t he initial condition; 

(6.4 .15) 

The number N of generated soliton is given by the maximum integer which sat isfi es 

1 lA I+-- N > 0. 
2 

(6.4.16) 

The velocities of the generated solitons are identically 2tca . Thus there emerges 

bound state of N solitons. The bound slate is unstable because it splits into N 

solitons under small perturbation. The amplitudes Ai of the j-lh soli ton is given 
by 

(6.4.17) 

1) Refl ected wave 

Using th e above results and (6.4.12) we find that the one or no soliton is 
generated in the refl ected wave; 

1 > A = = I 1
2 1 -cos(K-k)h { 

1 - cos(K + k)h 

1 
>-

4 
1 

<- 4 

one soliton 
(6 .4.18) 

no soliton 

If a soliton is generated the reflection coefficient of the soliton R (relative amplitude 
of the envelope soliton) is given by (Fig.6.4) 

~ _ 2 ( 1 - cos(!< - k) h 1) 1 
- 1 - cos(!< + k) h - 2 
= 211-,,1 - 1 

1 + J.L , 
(6.4.19a) 

V m kh 
p- 1 = 1+(--1) cos- 2 - (O<p<+oo), 

M 2 
(6.4.19b) 

where we have normalized as, 

R -> 1 if J.L -> 0, + oo. (6.4.19c) 

Let us remark that th e relation (6.3.24) is satisfied. Substituting k = 0 into (6.4.19b) 

we have I' = v (see eq. (6.2.15c)). 
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Amplitude of the Reflected 
NLS Soliton 

F igure 6.4: Refl ect ion Coefficient of the NLS soliton. 
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2)Transm itted wave 
For the transmitted waves, A in (6.4.15) corresponds to 

{2P {Q V e-;kh _ e;kh 

A= V -qy 2[i-:;; e-;Kh - e;kh, 

IAI 2 = ("y-1)sin 2(kh/2)-1. 2sin 2 J(h 
(I- 1) sin 2 (J( h/2)- 1 1- cos(k + K)h' 

3(3 
I= 2a2. 

(6.4 .20a) 

(6.4.206) 

(6.4.20c) 

By appropriate choice of parameters /, k and J(, IAI can take any positive num

ber; we may have any number of generated solitons. The transmission coefficients 

(relative amplitudes of the envelope soli tons) of j-th soliton is given by 

{P;v 
'lj = y ;;Q-:;;(2IAI + 1 - 2j). (6.4.21) 

To determine the number of generated solitons is very difficult due to the complex 

form of IAI in (6.4.20). 

However, for the case of cubic nonlinearity (a= 0 and (J i= 0), IAI is given by 

2 
IAI = -1- <2, 

+p 
(6.4.22) 

where f.1. has been defined in (6.4.19b). Therefore if f.1. 2': 3, soliton is not generated 

and if 1/3 < I' < 3 (v ::; 1/3), one (two) soliton(s) is( are) generated. The generated 

two solitons are in th e bound slate. But due to the higher order effects, there occurs 

the fission of the solitons. 

6.5 Conclusion and Discussion 

In this chapter we have studied nonlinear waves in a discontinuous lattice. 

In the weakly nonlinear approximation we can exact ly construct the reflected and 

transmitted waves from the incident wave. Two kinds of waves; slowly varying wave 

and modulation of the carrier wave, have been considered. For the former (latter) 

incident , refl ec ted and transmitted waves are governed by independ ent KdV (NLS) 

equations. As an interes ting example transmission and reflection of an incid ent 

soliton are invest igated. For the KdV soliton at most one soliton is generated in the 

reflected wave and a.t least one in the transmitted wave. The number of generated 
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soliton is determined by the mass ratio M/m. For the NLS l"t t 
sol t . so I on a most one 

I on IS generated in the reflected wave. If the n I" .t f h . . 
(a- 0) . on mean yo t e spnng •s cubic 

- , at most two soliton are generated in the transmitted wave Th b 
a· d t · d b · e num ers 

le e ermme Y a parameter f.1. defin ed by (6.4.19b). 

Our approach for scattering of KdV soliton has been applied to sha llow l . 
waves over a ba . . (S · wa e1 

rllet uglmoto, Hosokawa and I<akutani 1987) d 
(Sugim t N k ·· an over a step 0 o, a aJtma and Kakutani 1987) Th th . . . 
d . ed f I . ere, e connectiOn conditiOns are 

euv rom t 1e edge- layer th eory. 

In part!, the order of the smallness parameter e: is defin ed from the inborn 
genetty of the system, while in partll (except for chapter 8) the ord f .l . o
be any (small) number. er o 1 1s set to 

Appendix 6.A Derivation of (6.2.10) 

At O(e:) we have 

We rewrite (6.A. 1) as 

U(3) 1 ( (f) (R) (I) (R) (( - S u( u(( + u(( u( ) = F(~, r) + G((, r), 

u(J) - 6u(J) (I) (I) 
(r ( U(( + u(((( = -48F(~, r), 

u(R) - 6 (R) (R) (R) -
(r u( u{( + u(((( = -480(~, r). 

Integrating (6.A.2a), u(3) is so lved; 

(6.A.1) 

(6.A.2a) 

(6.A.2b) 

(6 .A.2c) 

u(3) = ~( uUlu(R) (R) (I) - J 
8 ( + u u( ) +If(~, r) +I((. r) + ( d~F)( + (! d(G)( (6.A .3) 

~he ]last two terms in (6.A.3) are the secu lar terms which grow linearly in ~ or i 
.1.0 e tmmate them we seep= G = 0 Th h ( '>· - - · us we ave 6.2.10). 
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Chapter 7 

Effects of Single Impurity 

7.1 NLS Equations 

7.2 Const ruct ion of the 'I\·ansmitted and Reflected Waves 
7.4 Transmission and Reflect ion of th e Incident Soliton 

7.5 Conclusion and Discussion 

Scatterings of nonlinear latt ice waves by a mass impurity are studied. The 

waves are assumed to be nonlinear modulations of the monochromatic waves. Due 

to the impurity there appear the incident , refl ected and transmitted waves. We show 

that the three waves are described by independent Nonlinear Schrodinger(NLS) 

equat ions respectively. Using the continuity conditions of the waves at the impu

rity site, we analytically construct the transmitted and refl ected waves from the 

incident wave. As an applicat ion, scattering of an incident NLS envelope soliton is 

investigated. We find that a t most one soli ton is generated both in the reflected 

wave and in the transmitted wave. 

7.1 NLS Equations 

We consider a one-dimensional anharmonic lattice where the springs are iden

tical (Iizuka and Wadati 1992d). The masses are also identical except that a single 

mass impurity is contained (Fig.7.1 ). 

Denot ing the displacement and mass of j -th particle by Yi and mi respectively, 

we write the equation of motion for the j -t h particle; 

mifii = B[(Yi+ t - Yi) + a(Yi+t- Yi)
2 + f3(Yi+t- Yi)

3 + · · ·] 
- B[(Yi - Yi -t) + a (yi - Yi -t )2 + f3(Yi- Yi-tl 3 + · · ·J, 

(7.1.1) 

where B(> 0), a and (3 are constants and dots on dynamical variables indicate 

d ifferent iations with respect to time t. While B is the spring constant , a a.nd (3 are 
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L Reflected Wave 

Incident Wave Transmitted Wave 

j=-1 i=O j=l 

m m 

Figure 7.1: Nonlinear lattice which contain a mass t"m ., pun,y. 

related to the coefficients of quadratic and cubic nonlinearities irt 
assume that /a/2 + //3/2 -L 0 Th . . . the spring. We 

-r- · e tmpunty zs located at j = O; 

{ 
mi = m (j oJ O) 
m 0 = M. (7.1.2) 

We consider nonlinear modulations of th 1 . 
th . . t d e monoc tromatzc waves assuming that 

ezr magm u es are small. We shall follow the method which was d I ed . 6 3 
At first w · t" h . eve op m . . 

e mves zgate t e equatiOn of motion for J. > 0 Th" d 
t. · d · ts correspon s to th e 
ransnutte wave. Displacements y · for j > 0 are d d . 

J - expan e tn terms of a smallness 
parameter c: and a carrier wave E as 

Yi = L L C:n E'v(n,l)(~, r) 
n=lJIJSn 

E = e i(kx-wt ) 
(x = jh) , 

(j 2: 0), 

where h is the latt ice constant. Since Yi is real we have 

v(n, - m) = ( v(n,m))•, 

(7.l.3a) 

(7.1.36) 

(7. 1.4) 
where * indicates complex conjugation Th b 

. e wave num er k and the angu lar fre-
quency w are related by a dispersion relation 

2 2B 
w = -(1- cos kh) m . (7.1.5) 
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Transformations of independent variables are introd uced as 

c: 
~ = h(x- vt), 

(r ~ 0), 

where v is the group ve locity: 

v = dw = Bh sin kh . 
dk mw 

To set t he group velocity v positive, it is natural to suppose that 

0 < kh < 7r, 

w > 0. 

(7.1.6a) 

(7.1.66) 

(7.1.7) 

(7.1.8a) 

(7.1.96) 

We subst itute the expansion (7.1.3) into the equation of motion (7.1.1) for j ~ 1 

and eq uate the coefficients of c;n Em. Then we have 

(2 2) . sin kh ( (1 1))2 
v ' = za 1- cos kh v , ' (7.1.9a) 

vi1,0) =-Sa jv(1,1f . (7.1.96) 

At O(c:3 E) i. e. the order of c:3 E, we see that v<u) satisfies the NLS equat ion; 

iv~ t , t) + pvi~·1) + q jv(1,1f v(1 ,1) = 0, (r ~ 0) (7.1.10a) 

1 d2w 1 kh 
p= 2hvdk2 =-4tan2, (7.1.106) 

kh { 2 2 . 2 kh} q = 4tan 
2 

2a + (2a - 3,B)stn 
2 

. (7.1.10c) 

Next we consider the equation of mot ion (7.1.1) for j :5; 0. Let E be carrier 

wave of the transmitted wave and G that of the refl ected wave. We expand Yi (j :5; 0) 

by the smallness parameter c:, E and G; 

00 

Yi = L L c:nEIGI'u(n, I ,I') (C~,r) 

G = e-i(kx+wt ), 

Similarly to eq.(7.1.4) , u(n,l,l') sat isfy real conditions 

u (n,- 1,1') = u(n,/,-1') = ( u(n ,l,l') )*. 
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(j s; 0) , (7.1.11a.) 

(7.1.116) 

(7 .1.12) 

Cha]J le•· 7 Effects of Sing le fmpu1·ity 

A new in dependent variable~ is introduced by 

- c: 
E = h(x + vt). (7. J .13) 

Subst it uting (7.1.11) into the equat ion of motion (7.1.1) for j :5; -1 and com parin g 
the coeffi cients of c:n E 1G 1', we have 

(1, 1,0) - (1,0,1)- 0 
u( - u( - . 

(2, 1,- 1) _ 2 · s in kh (1 1 o) (1 o - 1) u - - za u , ' u , , 
1 +coskh ' 

1t(2,1,1) = 0, 

1t(2,2,o) = ia sin kh (u<1,1,o) ) 2 
1 - cos kh , 

(2 0 2) . s in kh ( (I 0 1)) 2 
u · · = -ta tt. · · 

1- cos kh , 

uil ,O,O) =-Sa lu(1,1,0) 12 ' 

u? 'O,O) = -Sa lu(l,O,l) 12 . 

(7.1.14a) 

(7.1.146) 

(7. U 4c) 

(7 .1.1'1 d) 

(7.l.l4e) 

(7.1.14f) 

(7 .1.14 g) 

Equation (7.1.14a) implies that u< 1·1•0) a nd u(l ,0, 1) do not depend on ~and ~ re

spectively. It is thus obvious that u(l ,l ,O) ((, r :5; 0) describes a mod ulat ion of t he 
t . d (1 0 1) -ransmttte wave and u ' ' ((, r :5; 0) that of the refl ected wave. At O(c:3 E) and 
O(c:3G) we have 

u(2, 1,0) = si~gkh !( lu(1,o,t)((, r)l 2 d( . u(1 , l,O)(~ , r) + C1((, r), (7.1.15a) 

u(2 ,0,1) =- si~gkh !( lu(1,1,0)((, r)l 2 d(. u(1,0 , l )(~, r) + C2(~, r) , (7.1.156) 

g = 4a
2(1- cos kh)(3 +cos kh)- 12,8( 1 - cos kh) 2 , (7.1 .15c) 

where C1 (E, r) and C2(~, r) are unknown functions. At las t we obtain the NLS 
equat ions for u<1·1·0l ((, r) and u(1,0, 1 )(~, r) ; 

iu~l , l,O) + pug,1,0) + q lu(1,l,Of 1t(1 ,1,o) = O, (r :5; O) (7.l.l6a) 

iu~l ,O, l) _ put~O, I ) _ q lu(1,0,1)1
2 

1t(1 ,0, 1) = O, (r :5; O) (7.1.166) 

where real constants p and q are given in eqs. (7.1.10b) and (7.1.10c). We find that 

the incident wave u (l· 1·0l, the transmitted wave v< 1·1l and the reflected wave u(1,0,t) 

are governed by independent NLS equations (7.1.1 6a),(7. 1.10a) and (7.1.16b). 
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7.2. Construction of the Transmitte d and R eflect ed Waves 

In this sect ion the condit ions of the continuity at site j = 0 are considered. 

T here are two conditions which relate th e incident, transmitted and refl ected waves 

at r = 0. First , we notice that both expansions (7.1.3a) and (7 .1.11a) are available 

for j = r = 0; 

00 

Yo = L L c;»e-ilwtv(n,l)(E, O) = L L c;»e-ilwte-il'wt u(n,l,l')(E,(,O). (7.2.1) 

n=lllJSn n=LJ1J+Jl'JSn 

Comparing the coeffi cient of c:e-iwt , we have 

(7.2.2) 

T he second condition comes from the equation of motion at the impurity site j = 0. 

We substitute (7.1.3) into l.h .s. of (7.1.1) for j = 0. For the first term of r.h .s. of 

(7.1.1) we use the expansion (7 .1.3) and for the second term we use the expansion 

(7.1.11) . Comparing the coefficients of c:e-iwt, we obtain 

_ ~ w2v( l ,l)(E, O) =(eikh _ 1)v(L ,L)((, O) + (e-ikh _ 1)u(I ,I,O)((, O) 

+ (eikh _ 1)u(I,O,I)((, O). (7.2 .3) 

T he set of relations (7.2.2) and (7.2.3) const itutes the condition of continuity in the 

lowest order of c:. It is rewritten as 

(7.2.4a) 

(7.2.46) 

Note that when r = 0, E = -(. That is, if the incident wave u(I , I ,Ol (( , r) is given, we 
obtain ' initial' conditions v( L,ll (E, 0) and u(I ,O, Ll((, 0) through eqs.(7.2.4). We have 

shown that v( l , l)(E, r) and u(L,O,l)((, r) are governed by the NLS equat ions (7.1.10a) 

and (7 .1.16a) respectively. Initial value problem of the NLS equation is solved by 

the inverse scattering method. Therefore the reflected wave u(l ,O,l )((, r S:: 0) and 

the transmitted wave v(l, Ll((, r :;:: 0) are constructed analytically from the incident 

wa.ve. 
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7.3. Trausrnission and Reflec tion of the Incident Soliton 

. We sha ll invest igate the scattering of t he incident envelope soliton due to t he 
1mpunty. For convenience we denote u(I,I,O) u(l,O,l) and (I I) JF.I ... n d r 
. . , . ' v · as ':¥ , ':¥' an <I> 
1espect1vely. 1 he evolu t ion equations are 

i<l?~ + p<l?f( + q Wl 2 
<1? 1 = o, 

i<l?~- p<l?h - q I<J?RI 2 <l?R = 0, 

i<l?~ + p<l?[( + q I<J?rl2 <l?r = 0. 

(r S:: 0) 

(r S:: 0) 

(r:;:: 0) 

(7.3.1) 

(7.3.2) 

(7.3.3) 

The constants p and q have been defined in (7.1.10b) and (7.1.10c). In this sect ion 
we assume that pq > 0, which is equivalent to 

2 2 ( 2 . 2 kh a + 2a - 3{3) sm - < 0 2 . 

One-soliton solution of (7.3.1) is given by 

(7 3.4) 

(7.3.5) 

where "' is a real parameter. A more general expression of one-soliton solu tion 
contams another parameter(L in (6.4.16)), but the results does not change. From 
eqs.(7.2.4) we get 'initial' conditions of (7.3.2) and (7.3.3); 

<l?T(c O) _ isinkh f!p . f! ~ , -- . M -sech(e'~( :=AT ..l'sech'e'~( 
1 - e•kh - mw2 q q ~ , (7.3.6) 

R - 1- coskh- M w2f! _ . _ 
<1? ((, 0) =- 2E ..l'sech'e-• ~( = AR f2ii 1 c -i~{ 

1-eikh _ ~w2 q ~ - y q-sec t~e . (7.3.7) 

We discuss the generation of solitons in the transmitted and refl ected waves. 
We shall review the results mentioned in (6.4.14 ...... 17). 1 t 1 e us so ve the Nonlinear 
Schrodinger equation; 

(ab > 0) , (7.3.8) 

for the initi al condition; 

(7.3.9) 
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The number of generated soliton, N > 0, is the maximum integer which satisfies 

1 
IAI +-- N > 0 2 . (7.3.10) 

The velocities of the generated solitons are identically 21w and the amplitude Ai of 

the j -th soliton is given by 

(7.3.11) 

In the present case, AT and AR correspond to A in (7.3.9). Their absolute 

values are expressed as 

IATI=(u+1)-!, 

IARI = (u-1 + Wt, 
M 2 kh 

u = (1 - -) tan2 
-, 

m 2 

(7.3.12) 

(7.3 .13) 

(7.3.14) 

where (7.1.5) and (7.1.8) have been considered. Note that u can be taken as any 

positive value by choosing appropriate m, M and kh. Using the formulae (7.3.10) 

and (7.3.11) we find the followings . IfO < £T < 3(u > 3), one(no) soliton is generated 

in the transmitted wave. If u > 1/3(0 < u < 1/3) , one( no) soliton is generated in 
the refl ected wave. The relative amplitude of the transmitted soliton T and that of 

the reflected soliton Rare given by (see Fig.7.2) 

{ 2(1Arl - ~l=-2--1 , 
T = 2 vo:-+1 

0, u>3 

0<u<3 

{ 

2(1Anl- ~) = 2 - 1, 
R = 2 Ju- 1 + 1 

0, 

where we have normalized as 

T--> 1 (u--> 1 or M--> m), 

R--> 1 (u--> +oo or M--> +oo). 
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(7.3.15) 

(7.3.16) 

(7.3.17) 

(7.3.18) 

Chapter 7 Effects of Single Impu1·ity 

F igure 7.2 Relative amplitudes of the transmitted(T) and refl ected(R) 
sohtons. A parameter u is defined in eq.(7.3.14). 
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7 .4. Conclusion a nd Discussion 

In this chapter we have invest igated scatterings of nonlinear waves in one

dimensional lattice due to a mass impurity. T he lattice waves we considered ate 

nonlinear modulations of the monochromatic waves. The incident , transmitted and 

refl ect ed waves are governed by the Non lin ear Schrodinger (NLS) equatwns. By 

using t he continuity conditions at the impurity we can analytically construct t he 

transm itted a nd reflected waves from the incident wave. As a n mterestmg. applica

t ion, we have analyzed scattering of the incident soliton of the NLS equatiOn. One 

or no soliton is generated in the transmitted and reflected waves. The amplitudes 

of the generated solitons are determined by the parameter 0' wh1ch I S defined ll1 

· p· 2 'f 1/3 < u < 3 both reflect ed and transm1tted sohtons eq.(7.3.14). As seen 111 •1g. , 1 . . 

These resul ' s should be compared with experiments and s1mulatwns. 
are generated. ' 
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Chapter 8 

Interaction of Wave and Matter 

8.1 KdV Eq uations 

8.2 Construction of the 1\·ansmitted and Reflected Waves 

8.3 Scatter ing of the KdV Solitons 

8.4 Conclusion and Discussion 

Scattering of nonlinear waves in an anharmonic lattice du e to a very heavy 

impurity is investigated. The in cident , refl ected and transmitted waves are govern ed 

by the KdV equations on different coordinates. In particular, scattering of a n 

incident soliton is analyzed. We also evaluate the amplitudes of t he refl ec ted and 

transmitted solitons. The scatterings of long wave due to a heavy impurity is 

regarded as a interactions between the wave (KdV wave) and the matter (t he heavy 

impurity). 

8.1 KdV Equations 

Let us consider a one-dimensional lattice where all the anh armon ic sprin g con

slants are ident ical(Fig.8. 1) . We denote displacement and mass of j -th particle by 

Yi and mj respectively. The equation of mot ion for the j - th particle is given by 

miYi = B [(Yi+t- Yi) + a(Yi+t- Yi )2 + · · ·] 
- B [(Yi- Yi-tl + a( yi - Yi-tl 2 + · --], (8.1.1) 

where B and o:(f 0) are constants and the dot indicates a differentiat ion with 

respect to time t. 

We have neglected the higher nonlinear terms because Yi - Yi -I are assumed 

to be small. We assume that there is a very heavy impurity at the site j = 0 while 
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Reflected Wave 
Transmitted Wave 

' Incident Wave 

j=-1 j=O j=1 

Figure 8.1: Nonlinear latt ice which contains a very heavy impurity at 

site j = 0. 

the others have the same mass; 

{ 

mi = m (j i= 0), 
2m 

m 0 =M= -, 
E:J.L 

(8.1.2) 

where E: is a small fixed consta nt. It indicates the ampli tude of the latt ice waves 

which is related to the nonlinearity (see eqs. (8.14c) and (8.18d)). Constant I ' is 

0(1); the order of £0 Thus t he parameter J.L is determined by the mass ratio a nd 

t he amplitude of the waves (Iizuka and Wadati 1992e). 

In the following we apply t he method used in 6. 2. We suppose that displace

ments Yi are slowly changing with j . Then we may employ the conti nuu m approxi

mation; Yi(t) = y(x, t) , where x = jh, h being the lattice spacing. The equat ion of 

motion at x i= 0 is reduced to a Boussinesq type equation. 

1 h2 

i£Y!t = Yxx + 12 Yxxxx + 2hCXYxYxx + · (at xi= 0) , (8.1.3a) 

c= !If!-, (8.1.3b) 

where the subscripts indicate part ial differentiat ions and c is the sound velocity. 

Equat ion (8.1.3) is not valid at x = 0; we consider the waves separately in the 

regions x > 0 and x < 0. We shall follow the technique given in 6.2. A condition of 

conti nuity at x = 0 will be discussed in 8.2. 
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For x > 0 we regard the wave as a transmitted wave and express it as y(x t ) = 
y+ (x, t). We assume that the amplitude of the wave is small a d 1 1 ' · 
~ d · · . n s ow y vary 1ng. 

o escnbe 1t, we mtroduce new independent variables ~ rand dep d t · bl 
v(l ), v(3 ) , .. . as , en en van a es 

€ 
~= - (x-ct) h , 

€ 3 

T = 24h X , 

y(x, t) = y+(x , t) =- 4~ { E:v(')(C r) + E:3v(3) (~, r) + ... }. 

Substitution of (8.1.4) into (8.1.3) gives 

v(l)- 6v(')v(l) + ( l ) - 0 
(r ( (( v(((( - . 

Using a new dependent variable 

we get the I<dV equation from (8.1.5) 

ijiT _ 6•T•T ,T,T ,T,T 
' "'"' e +"'eee=O (r > 0). 

(8. Ha) 

(8.14b) 

(8.1.4c) 

(8.1.5) 

(8.1.6) 

(8. 1.7) 

Note that ijiT (~, 0) is proportional to the velocity of the impur ity (see (8 1 4 ) d 
(8. 1.6)). . .. c a n 

In the region x < 0 we concentrate on incident and reflected waves. Similarly 
to the prev1ous case, we use the reductive perturbat1"on met l1od . New independent 
and dependent variables are defined by 

€ 
~=;;_(x- ct), 

- € 
~=-(x+ct) h , 

€3 

T = 24h X, 

y(x, t) = y- (x, t) = - 4~ { E:u(
1)(C ( , r) + E:3u(3)(~, (, r) + ... }. 

We substitute (8.1.8) in to eq.(8.1.3). At 0(£3), we have 

u(l) = 0 
f.f. , 
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which spec ifies the fun ct ional form of u< 1l as 

From th e result of Append ix in chapter 6, we have 

T herefore, using new dependent variables 

equ ations (8.l.llc,d) reduce to 

l]i~ - 61J! 1wf + wf,, = 0 (r < 0) , 

w~ - 6wnw( + w(n = o (r < 0) . 

(8. 1.10) 

(8 .1.11a) 

(8.1.116) 

(8.1.12a) 

(8.1.12b) 

(8 .1.13a) 

(8.1.13b) 

T hus, th e incident and refl ected waves are governed by independent KdV equations 

(8. 1.13) . 

8.2. Construction of Transmitted and Reflected Waves 

Even if there is an impurity, the weakly nonlinear wave is not influenced very 

much as far as we are dealing with a long wave. The collective motion of many 

particles are rather independent on the single particle motion. However, wh en the 

mass of impurity is larg e enough , we expect a coupling between th e weakly nonlinea1· 

wave and the heavy impurity. In this section we shall explicitly show the existence of 

t his coupling by calculating the conditions of connection. Remark that in chapter 

7 we have considered short wave scatterings due to an impurity whose mass is 

comparable with others. 

In this section we connect y - and y+ by considering equations of motion for 

Y±1 and Yo; 

j = - 1; 
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= K(yo- Y-d- I\ h :x y - (- it , 0) + O(c:3), (8.2. la) 

fP 
m {)t2 y+( + h , t ) = K(yz- Yt)- K(yt -Yo)+ O(c:3) 

= f ( h :x y+ ( + h, 0)- K( yt -Yo)+ O(c:3), (8.2.16) 
d2 

M dt2 Yo = K [(Yt - Yo) + a(y1 - y0 ) 2J 

+ K [(Yo- Y-d + a( yo - Y-d 2
]. (8 .2.l c) 

Since l.h.s of (8. 2. la) is O(c:3), we have 

{) {) 
Yo - Y- 1 = h {)x y-(-h , t) + O(c:3) = h tJxy-(O, t) + O(c:3). (8.2.2a) 

Similarly, we obtain 

(8.2.26) 

Using 

Y-1 = Y- ( - h, t) = y- (0, t) - h_§_y_ (0 t) + 
8x ' 

= c:( u<I)(~ , 0) + u(R)([, 0))- h ! y- (0, t ) + 0(c:3), (8.2.3a) 

Y1 = y+(h , t) = y+(o, t) + h! y+(o , t) + .. 

= c: v (ll (~ , 0) + h :x y+(o , t) + O(c:3), 

we rewri te (8.2.2) as 

Yo= c:(u ( I)(~, 0) + u<Rl([, O)) + O(c:3 ), 

Yo = c:v(l l(C 0) + O(c:2
) = c:v(ll( - ~ ct , O) + O(c:3). 

By eliminating y0 we have 

Neglect ing O(c: 2
) and taking differentiation in (8 .2.4c) we obta in 
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(8 .2.4b) 
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where we have used (8.1.6) and (8.1. 12). 
Subst itu tin g (8.2.4b) and (8.2.2) into (8.2.1c) and elimin ati ng Yo, we have 

2 (t)( ) _ (t) ( ) {I)( ) (R)( - ) ( 2) -v« (, 0 - v, (, 0 - u< E, 0 - u, (, 0 + 0 c , 
I' ' 

(8.2.6) 

where (8.1.2),(8.1.4) and (8.1.8) are considered. If O(c2 ) is neglected this is equi v-

alent to 
2T T I n -
- ijl , ((, o) = w ((, o)- w ((, o)- w (E, 0), 
j.! 

(8.2.7) 

where (8 .1.6) and (8.1.12) have been used. 
Relations (8.2.5) and (8.2.7) are the conditions of the cont inuity. All quantities 

included in the relations are 0(1) . The condition (8.2.7) is a differential equation 

while that of discontinuous system is an algebraic relation (see eq .(6.2.17)). Equa

tion (8.2.7) indicates a coupling between the lattice wave and the heavy impurity. 

In our method we take a balance among nonlinearity, dispersion and mass ratio 

(inhomogeneity). If M/m is of order 0(1), l.h.s. of (8.2.6) is 0 and th ere remains 

no coupling between wave and impurity. In this case v(t) = u<Tl obeys a single 

I<dV equation and u(R) does not appear. 

We can const ruct ' initial cond itions' ij!T (E , 0) and wR(~, 0) from w1 
((, 0) by 

solving the system (8.2.5) and (8.2.7). Eliminating wR(~, 0) we get 

(8.2.8) 

whose solution is given by 

(8.2.9) 

Then ij!R((, 0) is determ ined as 

(8.2.10) 

Vie summarize the above results. If the incident wave u<I) or 1]1 1 is given, we 

can calcu late ij!T (E, 0) and I]JR(~, 0) through (8.2.9) and (8.2.10). Evolutions of the 
transmitted wave ijiT and the reflected wave I]JR are described by the I<dV equations 

(8.1.7) and (8.1.13b). Initial value problem of the I<dV equation is solved analyt

ically by the inverse scattering method. Therefore we can construct transmitted 

wave I]JT ( r > 0) and refl ected wave wR( r < 0). 
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8 ·3 · Scatte ring of the KdV Solitons 

We shall in vest igate sc tt .· f · · . a eu ng o an mcident soliton due to a J · · Th · ·d . 1eavy 1mpunty 
e mct ent wave IS chosen to be one soliton solu tion; .. 

ili
1 (E, r) = -2sech2(E- 4r). 

Substituting (8 .3.1) into eq.(8.2.9) we have I]JT(E, 0) as 

where v stands for 

I]IT(E,O) = -2/" l oo sech 2(e-~<'d(e~< 

= -4fte''' 1" v'~/2( 1 - v') -~/2dv' 

= -4pe'''Bv(~ + 1 -~ + 1) 
2 ' 2 ' 

e- 2< 

(8 3.1) 

(8.3.2) 

v = e-2{ + 1' (8.3.3) 
and B ( ) · th · · 

v Rx,y IS · e I~ complet e beta fun ct ion. Using (8.3.1) and (8.3.2) in (8.2. 10) we 
have 1]1 ((,0) . In Ftg.8.2 iJi1(E , 0) , wT(E O) and wn( _ t O) . h f 
and 

11 
= o. 2(b). ' .,, ate s own or 11 = l(a) 

We can solve the I<dV equations (8.1.7) and (8 113b) b th . . . 
m th d W · · Y e mvetse scattenng 

e o · e concentrate on a problem that how l't . 
ft ted . . many so t ons are generated m the 

re ec and transmitted waves. If u((, r) sat isfies the I<dV eq uation 

(8.3.4) 

and an initial condition u(E 0) · · . 
]' . . ' IS given, we can determine the number of generated 

so ttons and their amplitud es by solving the Schi'odinger equation; 

a2<P(E) 
8f.2 +(A- u(E, O))<P(O = o. (8.3.5) 

Let us denote the bound state energies as 

.A= -It, - 12 , . .. ' -In It > l2 > · · · > In > 0 (8.3 6) 

The number of the bound states n is equal to th t f th . 
1 · . . a 0 e generated soliton s and 

t letr amplitudes are given by 21i. Since the amplitude of the incid ent soliton is 
2

• '~el refer)to 1i as ' relat ive amplitude '. It should be noted that radiat ions (small 
osc1 atwns are also generated in general. 
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0 

-1 

-2 

- 10 0 

Figure 8.2(a): The incid ent \li1, transmi tted q;T and reflected q;R waves 

at x = O(r = 0) [or 1-1 = 1. Note that x = 0 corresponds toE= -E:ct/h. 
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1L =0.2 

0 

-1 

-2 w' 
-30 -20 -10 0 

Figure 8.2(b ): The incident \li1, transmit ted q;r and reflected q;R waves 

at x = O(r = 0) for J-1 = 0.2. We observe longer time motion of q;R and 
q;T due to heavier impurity. Note that x = 0 corresponds toE= -E:ctjh . 
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Using the above facts we numerically calculate the relative amp li tude of gener

ated solitons for the initial condition (8.3.2) and the correspond ing ~Jill((, 0). The 

results are shown in Fig.8.3,4. In the reflected wave we observe only one soliton 

(Fig.8.3). If the mass of the impurity becomes large (Jl becomes small) the ampli

tude increases. In the limit M--> oo(O), we have It --> 1(0), which can be explained 

by a s imple argument. 

ln the transmitted wave we observe at least 3 solitons (F ig.8.4). If t he mass of t he 

impurity is small enough ( Jl is large enough) there exists only one sol iton which we 

call ' main sol iton'. In the limit 1-' --> oo(O) we see It --> 1(0) , where It indicates 

relative amplitude of t he main soliton. This is also a physically reasonable result. 

If the impurity is heavy enough (p is small enough), more than one solitons are 

generated(Fig.8.4). T his may be explained as follows. Comparison of Fig.8.2(a) 

and (b) shows that when the impurity is heav ier, \]iT((, 0) = \]iT (-c:ctjh , 0) is more 

extended in t ime. When the impuri ty get heav ier (p becomes smaller) the duration 

of impurity motion becomes longer. In other words, the shape of \]iT(~ , 0) becomes 

wider and there generated more discrete spectra of the Schrodinger equat ion (8.3.5 ) . 

However the relative amplitudes of solitons (other than the main soliton) is very 

small. 

8.4 Conclusion and Discussion 

We have considered non linear waves m anharmonic lattice which contains a 

very heavy impurity a nd investigated scattering of the incident wave. In t he weakly 

nonlinear approximation the incident, reflected and transmitted waves are indepen

dently governed by th e I<dV eq uat ions. If the continuity condition at the impurity 

is taken into account , reflected and transmitted waves are analytically const ructed 

from the incident wave by means of the inverse scattering method. As an application 

we stud y scattering of a.n incident soliton from the mass impurity. We have shown 

that in the reflected wave one soliton is generated and in the transmitted wave one 

or more than one solitons are generated. The relative amplitudes of refl ected a.nd 

transm itted solitons are depicted in Fig.8.3 and F ig.8 .4 respect ively. 

Our approach is app licable to a large class of one dimensional nonlinear dis

persive systems. We have assumed that the latt ice waves are slowly changing. The 

scattering of long wave due to the heavy impurity is regarded as interactions of 

nonlinear wave and matte r. This picture is possibly applicable to a large class 

of such systems. 
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1 

0.1 

0.01 

0.001 

F igure 8.3 : Relat ive amplitude of the refl ected soliton. We observe only 
one so li ton. 
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1 

0.1 

0.01 

0.001 

0.1 1 10 

· • d l't ns We observe Fi ure 8.4: Relative amplitude of the lranstmt,e so 1 o . 
at ~east 3 solitons. As /.1. becomes smaller, more solitons are expected to 

appear since the width of \li(€ , 0) gels larger. 
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Chapter 9 

Nonlinear Refraction and Reflection Phenomena 

9.1 Two-dimensional Discontinuous Lattice 

9.2 KP Equations 

9.3 Refraction and Reflection of a Line Soliton 

9.4 Conclusion and Discussion 

We shall propose the notion of nonlinear refraction and refl ection phenomena. 

As a model , a two-dimensional anharmonic lattice which has a line discontinuity in 
the mass distribution is considered. We study scattering of the KP (line) solitons 

due to the mass interface. It is shown that the transmitted line soliton breaks 

up while the reflected soliton does not. The reflect ion angle is different from the 

incident angle due to the nonlinearity. These are considered as features of nonlinear 

refraction and reflection phenomena. Our approach is applicable to other two

dimensional nonlinear systems such as shallow water and ion acoustic wave. 

9.1 Two-dimensional Discontinuous Lattices 

The investigations in chapter 6~8 are scatterings of the one-dimensional nonlin

ear waves due to localized inhomogeneities. In the present chapter we aim to extend 

the analysis into two-dimensional case by introducing a mechanical model; anhar

monic triangular lattice which has an interface in the mass disl ribution.(Fig.9. 1) 

The lattice is anisotropic in the sense that there are two kinds of springs in the 
lattice. One is assigned on horizontal edges in Fig.9.1 and th e other on inclined 

edges. 

The (i , j)-th particle and its neighbors are assigned as shown in Fig.9 .2. De

noting the displacement and mass of (i, j)-th particle by r; ,j and m ;,j respect ively, 
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L ~®~~®~tt®©l W®VJ® 

~liil~~©l®liiltt W®VJ® 

Qm 

lrll®li'il~m~tttt®©l 

' 

M 

Figure 9 .1: Anharmonic triangular lattice with a mass interface. Strong 

springs are ass igned on horizontal edges and weak springs on inclined edges. 
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Figure 9.2: Arrangement of the ( i , j)-th particle and its neighbors. 
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we write the equation of motion; 

. rand k are unit vectors which are Here h is the lattice constant and vectors ,, 

parallel to th e edges of the lattice; 

i = (1,0), (9 .1.2) 

h (' ± 2 ') th part icle . . b tween the ( i , j)-th particle and t e ' , J - . 
ElongatiOns of spnng e d 6. the elongations of spnngs 

. · d b tJ. And we denote by 6.±± an ±'f 
are md1cate Y ±· . ( . ± 1 . ± 1)-th particle and between the 

I ( · ·) ti particle and the 1 ' J ed 
between t 1e ' ' J -

1 
. I , · vely They are calculat 

d I ( · ± 1 · :r 1) th partie e res pee,, · ( i, j)-th particle an t 1e 1 , J • -

as 

tJ. ± = 1±hi + r;±z,; - r; ,; 1- h, 

6.±± = 1±hl+ r;± 1,;±t - i\ ,; 1-h, 

!J.±'f = 1±hk + 7'\±l ,j'fl - Ti ,j I - h. 

(9.1.3a) 

(9.1.3b) 

(9 .1.3c) 

. (6.) d that due to the inclined sprin g The force due to the hor izontal spnng It an 

h(!J.) are given by 

j,(!J.) = B(!J. + a!J.z +. ·) (B > 0) , 

h(!J.) = B'(!J. +a' !J.z + .. ·) (B' > 0) . 

. . b 
We assume that t he mass distribution m;,; IS given y 

{

m 
m;,;= M 

(i:::; - 1) 

(i ~ 0) 

. f d' t' uous interface. w h icb shows the existence o a tscon m 

(9.1.4a) 

(9.1.46) 

(9.1.5) 
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Since we are interested in small and slowly varying waves, we introduce the 
continuum approximation for the regions i > 0 and i < 0 separately; 

Ti,j (t) = r(i, t) = i'"(x , y, t) = ( T'J (x, y, t) , 1'z(x , y, t)) , 

ih v'3 ., 
x=2, y=T]', i=(x,y) . 

(9.1.6a) 

(9.1.6b) 

In the following we suppose that constant of the horizontal spring B is much larger 

than that of other spring B'. Thus the lattice is strongly anisotropic . Due to 

this an isotropy the vertical displacement 1·2 is much smaller than the horizontal 
disp lacement r 1 . 

quantities as 
By using a smallness parameter t:, we set t he orders of these 

B ~ 0(1) , B' ~ O(t:2 ) , 

r1 ~ 0(€), rz ~ O(t:3 ). 

The slowness of the waves is indicated by 

f) f) f) 
- ~ - ~ - ~ O(t: ). 
fJx fJy fJt 

To the equation of motion (9.1.1), we apply the following expans ion 

(9.l.7a) 

(9.1.76) 

(9.l.7c) 

and take the order-relat ions (9.1.7) into account. The result is a set of partial 
differential equat ions; 

1 8
2

1'1 B' 821'1 h2 
8

4
T't 81'1 fJ 2r1 3B' fJ 2r1 

c(x)2 7fi2 = (
1 + SB) fJx 2 + 12 fJx4 + 2ah& fJx2 + SB fJy2 ' 

1 82
1·2 3B' fJ 2 ,.t 

c( x )2 fJt 2 = 4B fJxfJy · 

(9.1.9a) 

(9.1.9b) 

In (9.1.9) , O(t:
6

) is neglected. Here c(x) is the acoustic velocity in x-d irect ion; 

{ 

-- {i3h2 
c - v -;;:;---

c( x) = {ffff-m 
Bh2 

c+ = --
M 

(x < 0) 
(9.1.10) 

(x > 0) 

The two-dimensional Boussinesq equation (9.1.9a) is a star ting point of fur

t her analysis. In th e next sect ion, we apply the reductive perturbation method to 
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(9.1.9). The Kadomtsev-Petviashvili ( KP) equations are derived for the incident , 

transmitted and reflected waves. And then, conditions of continuity at x = 0 which 

connect the three waves are presented. In 9.3 we examine refraction and reflect ion 

of the line soliton. The explicit results are obtained since the problem is reduced to 

the initial value problem of the I<dV equat ion. 

9.2 KP equations 

We shal l apply the reduct ive perturbation method to the regions x > 0 and x < 
0 separately. In x > 0 we treat transmitted wave. Let us introduce dimensionless 

parameter "' as 
B' 
- =£21< B , 

and transformations of independent and dependent variables as 

(9.2 .1) 

(9.2.2a) 

(9.2.26) 

(9.2.2c) 

(9.2.3a) 

(9.2.36) 

The relation (9.2.1) indicates the strong anisotropy of the lattice. In (9.2.3a,b) 

we assume that the vertical displacement 1·2 is much smaller than the horizontal 

displacement 1·
1

. Substituting these transformat ions to (9 .1.9), we have at 0(£
5

) 

(9.2.4a) 

(9.2.46) 

Subscripts mean partial differentiations with respect to the corresponding indepen

dent variables. Equation (9.2.4a) is rewritten as 

u; + wr u~· + u'{"'' + 3ui, = o, 
UT = u~. 

- 100-

(9 .2.5a) 

(9.2.56) 

Chapte7· 9 Nonlinea7· R efm ction and Reflectio7 J>' 1. neno 1n ena 

Equation (9.2.5) is the KP(ll ) equation which is w 
extension of the I<dV eq uation W I I ell know n as two-di mensional 
I<P . e lave s !own that th t . ll equation (9.2.5a). e ran srmtted wave obeys 

In the region x < 0 · ·d lll Cl ent and transmitt d 
(9.2.2) and (9.2.3) we introdu . d d e waves propagate. Similarly to 

, ce Ill epen ent and depend ent variables as . 

~ = ~{x- c-(1 + £126"')t} , 

c £ { £2 "' 
., = h x+c-(1 + IB)t} , 

(= (2~y 
VJ;.~t · 

r- 1 
3 -24h£x, 

1 
rl = 4/£ui (~, (, r) + £uR((, (, r) + £3u(3)(~, (, (, r) + .. ·), 

£ . 
r2 = ~(vi(~,(, r) + vR((, (, r) + .. ). 

(9.2.6a) 

(9.2.66) 

(9.2.6c) 

(9.2.6d) 

(9.2.7a) 

(9.2.76) 

Incident and reflected waves are indicated by ui ( R -
SubstitutiOn of (9.2 .6) and (

9 2 7
) . ( .~' (, r) and u (~ , (, r) respectively. 

. . mto 9.1.9) gives at 0(£5) . 

48u(J) + 6( I R R I ({ u(u({ + u{ u(() 

+ (u{T + 6u{u{( + u{w + 3u{() 

+(u{l+6J.li I 
(T U( U{{ + U({({ + 3uf() = 0, 

VI-~ I a -16uu, 

(9.2.8a) 

(9.2.86) 

vf!.- ~ R 
(>J- Mu((· . (9 2.8c) 

W1th some functions F(~ ( ) d G( -, , r an ~. (, r) , equation (9.2.8a) is decomposed into 

u(3) + ~(ui uJ.l- + R I ) _ a 8 ( (( tt( u(( = F(~, (, r) + G(~, (, r) , 

ui + 6ul I I ~ (u(( + u(W + 3uf( = -48F((, (, r), 
u - + 6ul.lu£ - + L _ I -

(T ( (( UW( + 3u(( = -48G(~ , (, r). 

By integrating (9.2.9a), we have 
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. · 'I' h las t two terms in u(3 ) d I (( ( r ) are a rbi t rary fun ctiOns. e 
where H (( , (, r) an ' ' . . - d c t"vely In order to remove 
are secular terms which grow lmearly Ill ( an ~ respec I . 

these terms we must set 

F((, (, r) := G(~, (, r) = 0. 

t . (9 2 9b) and (9.2.9c) respectively reduce to Therefore equa Ions . . 

and 

u: +6UIUf+Uf,,+3u~, = O (r < O) , 

U1 = uf, 

(9.2.11) 

(9.2.12a) 

(9.2.12b) 

(9.2.13a) 

(9.2 .13b) 

We see that incident and reflected wav~ obey i~dependent I<P~te:u~t~ot:s~onnect 
In the following we consider contmmty conditiOns of r, (x , t) . . d'f 

tl . 'dent reflected and transmitted waves. T here are two contmmty con ' Ions 
1e lllCI , · f 

of ,·,(x , t) at x = r = 0. The first is the continmty o ,.,; 

7•1 (x = +0 , t) = r 1 (x = -0, t) = 0, 

from which we have at the lowest order of E 

ui+uR=uT (r=O). 

The second is th e continuity of fJr, /ax; 
{} [},·, 
~(x = +O ,t) = -{} (x = - O,t). 
fJx x 

Neglecting O(t:2 ), we have 

UJ UR UT 
--+-=--. 

c_ c_ c+ 

From (9 .2.15) and (9.2.17) we obtain 

uT(1) , ( , 0) = 1:vui(l/1) , (,0), 

1-vi - ) 
uR(~, ( , 0) = 1 + v u ( -( , ( , 0 ' 
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where 

(9 2. 19) 

The same conditions as (9.2.18) have been derived in one-dimensional sys tems (see 
eq.(6.2.17)). Taking t-derivative of (9 .2.18) we get 

T 2 I 
U (1), (, 0) = -u (v1J , (, 0) , 

l+v 
R - 1-vJ -u (C(, O) = --

1 
-u (- c e o). 

+v 

(9.2. 20a) 

(9 .2.206) 

Conditions (9.2.18) and (9.2.20) are very useful. If the incident wave, u1 and 

U
1

, is given, we find 'initial ' conditions for the transmitted and refl ec ted waves; 

uT(r = 0), ur(r = 0) ,uR(r = 0) and UR(r = 0). Therefore by solvin g the initial 
value problem of the I<PII equation, the transmitted wave (uT(r > 0) , UT(r > 0)) 

and the reflected wave (uR(r < 0), UR(r < 0)) are analytically constructed if 

U
1 

is sufficiently localized. We should note that r does not stand for time t but 

it is proportional to x. Thus, solving I<PII equations corresponds to cons tructing 

spatial evolutions of th e reflected and transmitted waves in the x-direc tion. Th e 
above discussion is similar to that in 6.2. 

9.3 Refraction and Reflection of a Line Soliton 

Using the results of th e previous section, we investigate scattering of an in cident 
line sol iton due to the interface. It is known that the J(p][ equation (9.2.12) has a 
stable line soliton solution ; 

U1 
= 2sech 2

(( + k( - wr), 

u
1 

= 2 tanh((+ k( - wr) , 

w- 4- 3e = o. 

(9 3.1 a) 

(9 3.1b) 

(9.3.1 c) 

We assume that the incident wave is given by (9.3.1) in r < 0. Using (9.3.1) 
in (9.2.18) and (9.2.20) , we have the 'initial ' conditions for the transmitted and 
reflected waves, 

T ) 4v 2 U (r = 0 = -
1 

- sech (v17 + k() , 
+v 

T 4v 
u (r = 0) = -- tanh(vl) + k() , 

1+v 
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-2(1 - v) h2(-' + k(), un(r = 0) = 1 + II sec ~ (9.3.3a) 

n( _ 0) = 2(1 - v) tanh(-{.+ k() . 
u r - 1+v 

(9.3.36) 

. 9 2 5) and (9 .2.13) for (9.3.2) and (9.3.3) 
Time evolutions of the I<Pli equatJ~n s ( . . to the I<dV equations in the followin g 
respectively are determtn ed by reducmg them 

way. 
Let us solve the I<PII equation 

•T• + 3-1.-- = 0 IJtt+61JtiJt.x+"'xxx '~'YY ' 

l]i =~_x , 

for initial values; 

IJt(X , Y, O) = asech 2 (bX + c~) , 
a - ") ~(X,Y , O)=btanh(bX+c' · 

(9.3.4a) 

(9.3.46) 

(9 .3.5a) 

(9.3.56) 

. - (c/b)Y we introduce transfor-h .. t. I alu es are functiOns of X + , Noting that t e tnt ta v . 

t . s of independent vanables; n1a Ion 

where 

x =(X+ dY)- 3d2T, 
y = y - 6di' , 

T=T, 

I . (9 3 6) to (9 .3.4) we have again the KPII equation App ymg · · 

IJtr + 61Jt1Jtx + IJtxxx + 3~n = O, 

l]i =~x-

The initial condition (9.3.5) is transformed to 

IJt(X , Y, 0) = asech 2(bX) , 

~(X, Y, O) = ~ tanh(bX) , 

(9.3.6a) 

(9.3.66) 

(9.3.6c) 

(9.3.7) 

(9.3.8a) 

(9.3.86) 

(9.3.9a) 

(9.3.96) 

d y d pendence of l]i and ~, and I X Therefore we can rop - e which depend on Y on · . 
the problem is reduced to solve the I<dV equatiOn 

IJtr+61JtiJtx+IJtxxx =0, (9.3.10) 
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for the ini t ial value (9.3.9a). T his pro blem is solved by th e in verse scattering 

method. We summari ze th e results concerning with th e genera tion of soli tons as 

was done in 6.2 and 8.2. The number of generated solitons N , is the max imum 
integer which satisfi es 

where 
R 1 

+ - - N> O 2 , 

a 
A= "j;2 · 

Width of the j-th soliton, bi- l, is determined by 

For sufficiently large /T/ , the asymptotic behavior of l]i is given by 

N 

l]i -----. L 26Jsech
2
(6i X- 4bJT) +(radiation) , 

T-+ ±oo i = l 

N 

(9. 3.11) 

(9.3 .12) 

(9 3 13) 

= L2bJsech
2
{bi(X + dY)- (3d 2bi + 46J)i'} +(radiation) . (9.3.14) 

i =l 

We apply the above results to our problem. 

For the transmitted wave (9.3.2) , constants a, b, d and A are 

4v 
a=-- b=v, 

1 +v ' 

Thus, from (9.3.13) , bi is given by 

k 
d= -, 

ll 

A- __ 4_ 
- v(1 + v) · (9.3.15) 

(9.3.16) 

Since A is chosen to be any positive number, many solitons are generated when v is 

small enough. At least one soliton is generated because A is always positive. Usin g 
(9.3.14) and transform ation (9.2.2) , we have the asymptotic form of ur 

N 

ur -----. :z=26Jsech2ej +(radiation) , 
r-+ +oo i=l 

k 3h: 2 

Gi =bi('l + -()- (-
2 

bi + 46Jlr 
II ll 

(9.3.17a) 

c;b c;2 k2 c 262 {2k € 2K 

=-f{(1- s;_;2- --f-Jx + V J;;;Y- c+(l + l6)t} (9.3.176) 
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For the refl ected wave (9.3 .3), constants a, b, d and A are 

v - 1 
a= A= 2--, b = -1, d = -k,. 

v+1 
(9.318) 

From the expression of A and (9.3.11), we find that if 11 :::; 1 no soliton is generated 

and that if 11 > 1 only one soliton is generated. In the latter case b1 is 

(v v _ 1 1 1) bt = - 2-- + -- - . 
v+1 4 2 

(9.3.19) 

Taking account of (9.3 .14) and transformation (9.2.6) , we gel the asymptotic be

hav ior of UR for v > 1, 

UR ---+ 2bisech2 0t +(radiat ion), (9.3.20a) 

T ---+ -oo 

From (9.3.1a) and (9.2.6) we have the expressions of the incident soliton in terms 

of the origin al independ ent variables x, y and t; 

(9.3.21) 

Profiles of incident, transmitted and reflected line solitons are shown in Fig.9.3(a,b). 

It is observed that the refracted line soliton breaks up (Fig. 9.3b), while the 

refl ected line soliton does not . It should be noted that reflection angle is not equ al 

to the incident angle due to the nonlinearity. These are referred to as nonlinear 

refraction and reflection phenomena. 
Next we study the transmission and refl ect ion coefficient of the soliton. Let us 

consider relations; 

I I 1 I U =u{ = --u, , 
EC-

UI ' 1 R =u(=+-u,, 
EC-

UT = UT = __ 1_UT 
11 t. 

EC+ 
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(9.3.22a) 

(9.3.22b) 

(9.3.22c) 

Chapte,· 9 NonlineaT Re[!-action and R fl t . > e ec ton } hen omena 

y 

-6 

v =2 

- 10 

Figure 9.3a: Scatterings of a line sol"t f 
d 

t on or 11 = 2 t _ O 
an K, = 2/3 T he r . d" ' - ' E = 0.4 k = 1 . mes m tcate the center lin . ' 
transmitted and th e refl ect d es of line solitons. For the 

e waves, the asyt t t" f 
(9.3.20) respectively, are used. np o tc orms (9.3.17) and 
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- 6 

].) =0.4 

0 4 t - 0 € = 0.4 , . f a line soliton for v = . ' - ' 
Figure 9.3b: Scattenn gs o t lines of line solitons. No 

2/3 T l r nes indicate the cen er 
k = 1 and "- = · le 

1 
.tt d wave fi ssions into three . b d d the transm1 e reflec ted soliton IS o serve an 

line soli tons. 

- 108-

Cha7>le1· 9 Noulinea1· R efm clion and R efl ec tion Phenomena 

The relative amplitudes of the refi ected and transmitted waves are defin ed as ratios 
of the velocity fi elds; 

T = I ut' I = I c+ urI = v-1 I ur I ' u{ c_ U1 U1 

R = I :~ I = I ~; I· 
(9323a) 

(9.3.236) 

T herefore the transmission coeffi cient of t he j-th transmitted so li ton Tj and refl ec
t ion coeffi cient of the single reflected soli ton R

1 
a re given by 

(9.3 24a) 

(9. 3.246) 

The results (9.3 .24) are same as (6.4.5a) and (6 .4.6a). T hey are plotted in Fig.6.3. 

9.4 Conclusion and Discussion 

We have introd uced two-d imensional anharmonic latt ice with a line disconti
nui ty in the mass distribution. T he la t tice is assumed to be tr iangular and strongly 

anisotropic. Scat terings of the latt ice waves due to the mass interface are inves

tigated. The incident , transm itted and refl ected waves satis fy independent KPJI 
equa tions. By means of the in ve rse scattering method for the I<dV equat ion, we 

have analyzed the refract ion and refl ection of an in cid ent lin e soliton. We have 

shown that in th e transmitted wave at least one soliton is always generated and if 

v < 1, soliton fi ssion is observed. One(No) soliton is observed in the refl ected wave 

if v > 1 (v < 1) . the refl ected soliton does not. The refl ection angle is different from 

the incident angle. T hese phenomena are interpreted as nonlinear refrac tion and 

reflection phenomena. The whole analysis is applicable to other two-d imensional 

systems such as shallow water waves traveling over a bottom step and ion acoustic 

waves with a discont inuity of ion tempera ture. We expect that nonlinear r e

frac tion and re fl ection phenomena will be experimentally observed (Ii zuka and 
Wadat i 1993). 
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Conchtding Remarks 

Concluding Remarks 

In this thesis we have considered weakly nonlinear wave propagations in inho

mogeneous systems. The effects of certain kinds of inhomogeneities on solitons have 

been investigated. 

Part I is devoted to the slow inhomogeneity, namely the inhomogeneity of the 

system is represented by a slowly varying function of space coordinate(x). To model 

the wave propagations, inhomogeneous KdV equations (1.2~3) and inhomogeneous 

NLS eq uations (1.4~5) have been derived from anharmonic lattices( chapter 2). 

We have introduced the weak inhomogeneity in which the analytic form of soliton 

deformations are obtained. As an application the deformations of soliton in random 

systems have been investigated in chapter 3. It is found that statistical behaviors of 

the KdV , mKdV and NLS solitons are described by random walk of solitons. The 

model equations are extended to unstable(chapter 4) and two-dimensional( chapter 

5) systems. 

To the temporally inhomogeneous systems the same method can be applied and 

moreover if the inhomogeneity is represented by the function of a linear combination 

of space(x) and time(t) we can obtain the same model equations. 

We have considered localized inhomogeneities in Part ll and investigated fis

sions and reflections of the lattice soli tons. Scatterings of KdV(chapter 6), NLS 

(chapter 6) and KP(chapter 9) solitons due to a discontinuity of the mass distribu

tion have been studied. In chapter 7 and chapter 8, scatterings of the NLS soliton 

and KdV soli ton respect ively from a single impurity have been investigated. For 

each case the ampli tudes of the generated solitons are calcu lated. 

T he main aim of the so li ton scattering is to construct the transmitted and 

reflected waves from th e incident wave. However, the method is applicable to the 

construction of the transmitted and incident waves from the reflected wave, and the 

construction of the refl ected and incident waves from the transmitted wave. 

Throughout this thes is, the anharmonic lattices are mainly considered. How

ever, the method is applicable to a large class of nonlinear systems such as fluid , 

plasma, elastic wire and opt ical fiber. Our approach is app licable to the inverse 

problems; we expect the unknown inhomogeneities (e .g. bottom topography in 

fluid systems and mass distribution in anharmonic latt ices) by observing soliton 

phenomena. 
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