究 速

研 究 凁 報

研

微動測定を利用した地震時構造物損傷度検査手法

Inspection Method for Earthquake Damaged Structure Using Microtremor Measurement

上 半 文 昭*·目 黒 公 Fumiaki UEHAN and Kimiro MEGURO

1. はじめに

著者らは、振動測定で構造物の地震時損傷度を精度良く 検査できる手法を開発することを目的として.鉄道 RC ラ ーメン高架橋の損傷挙動の非線形構造解析に取り組んでき た¹⁾ 新しい非線形構造解析手法である応用要素法²⁾で構 造物の損傷による固有振動数変化を崩壊レベルに至るまで 解析できることを確かめ、構造物の損傷を固有振動数低下 から検出する検査法の判定基準作成に役立てられることを 示した.本論文では次の段階として,より詳細で簡易な検 査法の開発に取り組む

兵庫県南部地震以降、せん断破壊先行型の高架橋柱は鋼 板巻き立て補強された. そのため既存の高架橋柱の大半が 曲げ破壊先行型となっており、地震時の損傷は柱端部に集 中するものと予想される.この柱端部の損傷度を柱の上下 端別々に且つ精度良く検査できるようになれば、最小限の 応急復旧工事(部分的な補強・補修)の計画設定や、復旧 工事後の施工不良箇所の検出等が可能になる. そこで,非 線形構造解析で作成した判定基準と振動測定を利用したラ ーメン高架橋の柱上下端の損傷度判定手法を開発する.

損傷度の検出には、鉄道分野で古くから研究されてきた 振動測定による構造物検査法を利用する.特に、検査をよ り簡単にするために、構造物の加振を必要としない微動 (常時の微小な地盤震動)測定の利用を検討する.鉄道で はこれまでの経験から現場技術者が構造物の固有振動数や 振動モード形状についての知識を有しており、振動測定を 利用した構造物検査法をよく理解しているが、微動の利用 技術の開発は歴史が浅く、その有効性(特に振幅情報の利 用)を疑問視する技術者が少なくない. そこで, 微動測定に よる構造物検査の模型実験を行い、その有効性を確かめる. 以下では、まず提案する損傷度検査手法の一連の流れを

*鉄道総合技術研究所

**東京大学生産技術研究所 都市基盤安全工学国際研究センター

数値解析による検証を交えて説明する.次にフレーム構造 模型の微動測定実験を行い、微動測定による構造物の振動 特性の同定精度と提案手法の妥当性を検証する.

ラーメン高架橋柱端部の損傷度検査法

2.1 概 要

ここで提案するのは、非線形構造解析で作成した損傷度 の判定基準と微動測定を利用した鉄道 RC ラーメン高架橋 の柱端部の損傷度検査手法である.原則として、鉄道 RC ラーメン高架橋(図1)の線路直交方向断面を構成する各 柱が左右対称な損傷形態を示すものと仮定し、柱の上端お よび下端のそれぞれの損傷度を検査するものとする.以下 に,提案手法の概要を解析的検討結果を交えて説明する.

2.2 損傷度判定基準の作成手順

(1) 柱端部の塑性ヒンジ特性の解析

地震直後に効率良く損傷度検査を行うために,非線形構 造解析で事前に損傷度の判定基準を作成する.まず対象と する鉄道 RC ラーメン高架橋の柱端部に生じる塑性ヒンジ 部の損傷度毎の剛性を求める.鉄道では、部材の損傷度を 図2のように定義している³⁾、対象とする柱断面の非線形 構造解析を行って、各損傷度に対応する塑性ヒンジ部の剛 性を求める.

(2) パラメータスタディによる損傷度判定基準の作成

次に, 柱上下端に先に調べた各損傷度に対応する塑性ヒ

研	究	速	载
121	14	1000	

ンジが生じた際の振動特性の変化に関するパラメータスタ ディを行い、その結果をデータベース化して損傷度の判定 基準を作成する. なお、損傷度判定基準は上部構造のみ (高架橋の地上部が剛基盤に固定された状態)を対象とし て作成する. ラーメン高架橋の数値モデルの柱端部に各損 傷度に対応する剛性を代入して振動特性の変化を調べる. 損傷度判定の指標として、高架橋の健全時の1次固有振動 数Fに対する損傷後の高架橋の1次固有振動数 F^{d} (添字^d は損傷後の値であることを示す.)の比である「固有振動 数変化率 (F^d/F) | と、図3 (a) に示す柱上端のモード振 幅A^{Top}と柱中央部のモード振幅A^{Mid}の比である「上部/中 央部振幅比(A^{Top}/A^{Mid})」を用いることにする.固有振動 数変化率は高架橋全体系の損傷度と関係する指標である. 上部/中央部振幅比は柱上下端の損傷程度の比と関係があ る指標として用いるものであり、1次振動モード形状を考 慮すれば上下端の損傷度が等しい時に「=2」,下端に比 べて上端の損傷が大きい場合には「>2|、逆の場合は 「<2」の値を示すことがわかる(後述の図13参照).

2.3 損傷度評価のための振動測定

地盤および基礎の影響を含んだ実構造物の損傷度評価を 行うための振動測定方法を説明する.振動測定は,健全時 の固有振動数 F_{G} (添字 $_{G}$ は地盤および基礎の影響を含ん でいることを意味する.)を得るための事前測定と,地震 や復旧工事等の事後測定の2度行う.事前の測定は高架橋 の1次固有振動数がわかれば良いので高架橋上1点の振動 測定を行い,そのフーリエスペクトルの卓越振動数を固有 振動数 F_{G} とする. F_{G} は地盤および基礎の影響を含むので

高架橋の上部構造のみの固有振動数Fより低い値を示す. なお,新幹線高架橋の上部構造のみの固有振動数Fは数 値解析でほぼ正確な値を計算できる.事後の測定では高架 橋柱の上端,中央および下端にセンサを配置して振動を測 定する(図3(b)).各センサで記録された微動のフーリエ スペクトルのピーク値をモード振幅A_G^{Top},A_G^{Mid}およびA_G^{Bot} とする.上端のセンサで記録された微動のフーリエスペク トルの卓越振動数を高架橋の損傷後の1次固有振動数F_G^d とする.

2.4 損傷度評価指標の算出法

測定結果から地盤および基礎の影響を取り除き,高架橋 の上部構造のみを対象として作成した損傷度判定基準に照 合可能な損傷度評価指標を算出する.地盤-基礎バネの回 転成分の影響を無視すれば,地盤および基礎の影響を含ん だ柱上部,中央部,下部それぞれのモード振幅*A_c^{Top},A_c^{Mid}*, 及び*A_c^{Bot}*から,上部/中央部振幅比*A^{Top}/A^{Mid}*が次のように 近似される.

地盤および基礎を伴う高架橋を,水平地盤バネ K_G を伴った剛性がK(損傷後は K^d とする)で質量がMの1自由 度系(図4)にモデル化する.上部構造のみの固有振動数 をF,地盤-基礎の影響を含んだ全体系の固有振動数を F_G , 損傷後の全体系の固有振動数を F_G^d ,そして損傷後の高架 橋の振動系から地盤-基礎バネの影響を取り除いた損傷後 の上部構造のみの固有振動数を F^d とすれば,固有振動数 変化率 F^d/F が次のように求められる⁴⁾.

$$F^{d} / F = F_{G} \cdot F_{G}^{d} / \sqrt{F^{2} \cdot F_{G}^{2} - F_{G}^{d2} \cdot (F^{2} - F_{G}^{2})} \dots \dots \dots \dots (2)$$

ここで、Fは計算で、 $F_G > F_G^d$ は振動測定結果から得られる. 2.5 数値解析による検証

(1) 概 要

線路に直交する断面が図5のような形状を持つ,地盤 (N値20程度を想定)および杭基礎を伴った鉄道RCラー メン高架橋の数値モデルの解析例を用いて,提案手法によ

398 54卷6号(2002)

る損傷度判定の流れを説明する. 高架橋モデルのヤング率 は、コンクリートが28.0 GPa, 鉄筋が200 GPa である. 桁 部は剛体でその質量は160 ton である. 地盤および基礎の 詳細は省略するが, 解析によれば上部構造のみの卓越振動 数F が 4.0 Hz であったのに対して, F_{G} は3.3 Hz に低下した.

(2) 柱端部の塑性ヒンジ特性の解析

図6に柱の数値モデルと正負交番載荷解析結果および数 値モデルの1次固有振動数変化率を示す.数値モデルの材 料諸元および載荷軸力は高架橋モデルと等しい.正負交番 載荷解析結果の包絡線形状と固有振動数変化率を参考にし て損傷度1~4(D1~D4)に対応する柱端部の塑性ヒン ジ特性を決定する.ここでは,柱の数値モデルの固有振動 数変化率がおよそ0.95(D1),0.8(D2),0.6(D3)そして 0.4(D4)となるヒンジ特性をD1~D4に対応させた.

(3) パラメータスタディによる損傷度判定基準の作成

高架橋上部構造を図7に示す柱上部の回転を拘束した1 本のRC柱にモデル化する.柱上下端に損傷度1~損傷度 4に対応するヒンジ剛性を代入して解析し,損傷度判定に 用いる指標の変化をまとめたのが表1である.

図5 鉄道 RC ラーメン高架橋の数値モデル(応用要素法)

(4) 数値モデルの損傷度評価指標の算出と損傷度判定

ー例として、図5の数値モデルの柱上端にD3相当、下 端にD1相当の塑性ヒンジを与え、提案手法で損傷レベル を正しく判定できるかどうかを調べる.解析結果によれば、 塑性ヒンジを与えた際の固有振動数 $F_{c}^{\ d}$ は2.2 Hz で、モー ド振幅は柱上端の $A_{c}^{\ Top} \varepsilon 1$ とすれば $A_{c}^{\ Mid}$ が0.37、 $A_{c}^{\ Ba}$ が 0.12 であった.式(1)によれば上部/中央部振幅比 $A^{\ Top}/A^{\ Mid}$ は3.5 となる.また、式(2)によれば固有振動数 変化率 $F^{\ d}/F$ は0.60 となる.表1を図化した図8に2つの 指標を照合し、柱上下端の損傷度を推定する.まず上部/ 中央部振幅比 $A^{\ Top}/A^{\ Mid}$ のグラフから柱の損傷度が「上端 D3-下端D1」か、「上端D4-下端D3」の組合せに絞られ る.固有振動数変化率 $F^{\ d}/F$ のグラフの条件も満たすのは 「上端D3-下端D1」の組合せのみとなり、数値モデルの 柱上下端の損傷度を正しく判定できた.

図7 柱1本に単純化した高架橋の数値モデル

」の損傷用 D D D4 D^3 0.91 0.75 0.59 0.37 柱下 D1 Alop/A 8.8 端部 Fª/F 0.75 0.62 0.51 0.35 D2 A^{10p}/A 2.0 0.51 58 18 Ø 0.44 Fª/I 0.58 0.32 D3 損傷 A lop / A Mind 1.4 1.6 0.34 0.32 0.36 0.26 D4 麚 A Top / A Mic 1.1 1.2 2.0 6.0 上端DO 柱上端の 損傷度 上端D4 柱上端の 損傷度 上编DI - D0 0.5 - D0 -= D1 -+ D2 -+ D3 -- D4 上蜡D2 - DI (H/H) 0.8 - D2 -D3 0.7 上端D3 * D4 上端D 世0.6 上蜡D4 上端D2 :端DI 0.7 上蠕D0 0.1 D0 D1 D2 D3 D4 D1102 D3 D4 柱下端の損傷度 柱下端の損傷度 (上端D3, 下端D1)or(上端D4, 下端D3) (上端D3,下端D1)or(上端D2,下端D2)or(上端D1,下端D3) 図8 高架橋柱上下端の損傷度の判定方法

表1 コンクリート配合

究 谏 報

3. フレーム構造模型の微動測定実験

3.1 概 要

鉄道ラーメン高架橋の損傷度評価に微動測定を利用する ための基礎的な検討として,小型のフレーム構造模型の微 動測定実験を実施する.微動測定による振動モード形状の 同定精度を調べた後、提案する損傷度評価手法に対応する 各種の実験を行って提案手法の妥当性を調べる.

3.2 実験装置および計測方法

一連の実験で使用するフレーム構造模型と微動の計測方 法について説明する. 図9にフレーム構造模型と微動セン サ配置を示す.フレーム構造模型は鋼製で,上部ウェイト, 桁部およびセンサの合計質量約25kgをL型鋼の柱4本で 支えた構造である.模型は床上に設置し、基礎部に固定用 ウェイトを配して固定する. 桁部および基礎部は, 柱端部 とボルトおよび固定金具で結合されており、ボルトの締め 方や金具の種類を変更することにより,結合部の剛性を変 化させられる. 微動測定センサは、実際に構造物検査に用 いるものと同等の微動計(速度計,固有周期2.0 sec)を用 いた.この微動計を基礎部、柱中間部、桁部の3箇所に設 置し、水平1方向の振動を同時測定する. 柱中間部のセン サは計測用棚上に設置した.

3.3 微動測定による振動モードの同定

微動の振幅情報の精度検証を目的として, 微動測定結果 からフレーム構造模型の振動モードの推定を試みる.振動 モードの推定対象として、柱の上下端ともにほぼ剛結状態

(図10(a))とした「上下端剛結モデル」と、柱下端は剛 結のままで柱上端を図10(b)のヒンジ状態とした「上端 ヒンジ-下端剛結モデル を作成した.フレーム構造模型 の1次振動モード形状を調べるために、計測用棚の設置高 さを 200~1.000 mm まで 100 mm 刻みで変化させ、各セ ンサで微動を同時記録(時間刻み 0.01 sec) した.記録波 形の中でノイズの影響が少ない 20.48 sec の部分を選び出 してフーリエ変換し、バンド幅0.4 Hzの Parzen ウィンド ウで平滑化して各微動記録のフーリエスペクトルを求め た. 桁部. 計測用棚および基礎部のフーリエスペクトルの ピーク値をそれぞれ A^{Top}, A^{Mid} および A^{Bot} (微動によるわず かな並進成分)とし、モデルの並進運動を除いて桁部の振 幅が1となるよう正規化した場合の計測用棚設置高さの振 幅A.を次式で求める.

結果を理論解と比較して図11に示す.微動測定でフレ ーム構造模型の1次振動モード形状を十分な精度で把握で きている.

3.4 柱上下端の損傷による振動特性の変化(上部構造)

ここではフレーム構造模型の固有振動数とモード形状 (柱上端部/柱中央部のモード振幅比)が、柱上下端の剛 性変化によって数値解析結果どおりに変化し、且つその変 化を微動測定で正しく把握できることを確かめる.フレー ム構造模型の柱上下端の結合部を図12に示す剛性の異な る3種の結合状態(a)~(c)に変化させ、その際の1次 固有振動数 F^dと上部/中央部振幅比 A^{Top}/A^{Mid}を調べる. 実験との比較を目的として、各部の剛性と質量を実際のフ レーム構造模型と等しくした数値モデル(図12)を作成 し、柱端部の剛性を3通りに変化させて指標の変化を調べ た、指標変化の解析結果および実験結果を表2に、図13 に数値モデルの1次振動モード形状の変化を示す.数値解 析と実験の結果はよく一致している.

図11 微動測定による1次振動モード形状の推定結果

研

図12 フレーム構造模型とその数値モデル(応用要素法)

表2 損傷度評価指標の変化 (数値解析および実験)

			桂上端の結合状態					
			数值解析			実験		
			(a)	(b)	(c)	(a)	(b)	(c)
柱	(a)	F^{d}	4.2	3.7	3.0	4.2	3.7	3.0
下		A ^{Top} /A ^{Mid}	2.0	2.2	2.6	2.0	2.2	2.5
の	(b)	F^{d}	3.7	3.3	2.7	3.7	3.3	2.7
結合状態		ATOP/AME	1.8	2.0	2.3	1.8	2.1	2.3
	(c)	F^{d}	3.0	2.7	2.2	3.1	2.7	1.9
		A^{Top}/A^{Mod}	1.6	1.8	2.0	1.6	1.8	2.0

図13 柱端部の損傷によるフレーム構造の1次振動モードの変化

表3 損傷度評価指標の変化(実験,地盤-基礎バネ有り)

			柱上端の結合状態			
			(a)無損傷	(b) 損傷小	(c) 損傷大	
	(a)	$F_G^{\ d}$	3.4	3.1	2.8	
柱下端	譜「	F^d	4.2	3.7	3,2	
	傷	ATop/AMid	2.0	2.1	2.4	
	(b)	F_{G}^{d}	3.1	2.9	2.5	
の 結	損	F^{d}	3.6	3.4	2,8	
谷状態 -	不	A Top / A Mid	1.8	1.9	2.2	
	(c)	$F_G^{\ d}$	2.7	2.5	1.8	
	損	F^{d}	3.0	2.7	1.9	
	天「	ATop/AMd	1.7	1.8	2.0	

3.5 地盤および基礎バネの影響の除去

24節で示した地盤および基礎バネの影響の除去方法に 関する実験を行う.図14に示す地盤-基礎バネ用のゴム支 承を付加したフレーム構造模型の測定結果から提案手法で ゴム支承の影響を除去し、表2と同様の結果を導けるかど うか確かめる.結合部の設定、微動の計測処理方法はこれ までと同様である.表3に地盤-基礎バネを伴ったフレー ム構造模型の1次固有振動数 F_{d}^{d} ,式(2)を用いて計算し た F^{d} および式(1)で計算した柱上部/柱中央部のモード 振幅比 A^{Top}/A^{Mid} を示す.表3と表2の各値は良く一致して いる.

4.まとめ

鉄道 RC ラーメン高架橋の損傷度を微動測定で検査する 手法を提案し,数値解析と模型実験によりその妥当性を検 証した.微動測定から得られる振幅情報はフレーム構造の 1次振動モードを捉えるのに十分な精度を持っていた.フ レーム構造模型の柱端部の損傷度や地盤-基礎バネを変化 させて,その振動特性の変化を微動測定で分析したところ, 期待通りの結果が得られ,提案する損傷度評価法の妥当性 を確認できた.

(2002年10月7日受理)

参考文献

- 上半文昭, 目黒公郎: 非線形構造解析による RC 構造物の 即時地震損傷度判定法に関する一考察,応用力学論文集, Vol.3, pp.621-628, 2000.8.
- Meguro K. and Tagel-Din H.: A new efficient technique for fracture analysis of structures, Bulletin of Earthquake Resistant Structure Research Center, IIS, Univ. of Tokyo, No. 30, pp. 103–116, 1997.
- 鉄道総合技術研究所:鉄道構造物等設計標準・同解説 耐 震設計,丸善,1999.
- 4) 上半文昭, 目黒公郎:微動測定を利用した地震時構造物損 傷度検査手法に関する実験的研究, 第11回日本地震工学 シンポジウム論文集, 2002(印刷中).