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Chapter 1 

Introduction 

Recent developments in the fabricat ion technology of submicrometer structures 

have revealed a quantum-mechanical nature of electrical transports at low temperatures. 
In very small systems and at low temperatures, the phase-coherence length becomes 

larger than the sample size, i.e., electrons can move without the loss of their memory of 

quantum-mechanical phase. Various quantum effects can be observed in these systems of 
mesoscopic size, in which the system size is much larger than the atomic(= microscopic) 

scale but smaller than that of the macroscopic system where there is no phase coherence. 

One of the most interesting mesoscopic phenomena is the conductance fluctua
tions. Conductance fluctuat ions were unexpectedly observed in the magnetoresistance 

of a small normal-metal ring [1], instead of the Aharanov-Bohm oscillations predicted 

theoretically [2-4] and observed later [5] . Conductance fluctuations with the Aharanov

Bohm effect are shown in Fig. 1. A special feature of the conductance fluctuations is 
that, although the fluctuating patterns are random as a function of a magnetic field B 
or the Fermi energy EF, they are time-independent, reproducible, and specific to the 

impurity-configuration in each sample. We can understand this feature by regarding the 

electron conduction as a random walk in a disordered sample: Vl' hen an electron passes 

through the system, it is scattered many times by the elastic impurity-scattering. The 

superposition of all the Feynman paths, each of which have a different phase, leads to 
random patterns in the conductance as a function of B or EF. 

Diagrammatic perturbation calculations [6- 11] have shown that the amplitude of 

the fluctuation takes a universal value of order e2 /h (the universal conductance fluctu
ation), independent of the sample size and degree of disorder at zero temperature in 
metallic samples. In metallic samples, all the sample dimensions are always much larger 

than the mean free path l and the Fermi wavelength AF, and are much smaller than 

the localization length ~· The universal conductance fluctuation in metallic samples has 

been shown by various other methods both analytically [12-16] and numerically [17-27]. 

Another interesting mesoscopic phenomenon is persistent currents in small rings. 
Persistent currents arc dissipationlcss equilibrium currents \Yhich flmy in an isolated 
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Fig. 1 Conductance fluctuat ions measured in a (a) wire and (b) ring geometry 
as a function of a magnetic field. T he fluctuating patterns are random but 
sample-specific, and these patterns are reproducible if we sweep the magnetic 
field down from a high field . In the wire, both the value of conductance and 
the periodicity are random. In the ring geometry, the value of conductance 
is random, but the fluctuating pattern with a periodicity h/e can be clearly 
seen, which is the evidence of the Aharanov-Bohm effect . 

ring induced by a static magnetic flux cf> inside the ring shown in Fig. 2. Equilibrium 

persistent currents in normal metallic rings were first predicted by Biitt iker , lmry and 

Landauer [28-30]. Experimental observation of the persistent currents was first made 
by Levy et al. [31] in the magnetization response of 10; isolated Cu rings at a low 

temperature. Recently another experiment was done by Chandrasekhar et al. [32] in 

a single Au ring. So far none of existing theor ies [33-43] can explain completely these 

experimental results. Especially the magnitudes of persistent currents observed in the 

experiments are larger than those predicted by most theories . (A review of works on 

persistent currents will be given in Chapter 5.) 
In addition to the interference effects mentioned above, the quantum size effect 

becomes important in semiconducting materials, where the sample size is smaller than 

the mean free path l and is larger but comparable to the Fermi waYelcngth AF. When we 
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Fig. 2 One-dimensional ring with a circumference of L in the x direction. The 
ring is threaded by a static magnetic flux ¢. 
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consider a quantum wire where the wire width HI« land w;::_;,F, the one-dimensional 

(1D) subbands are well-defined , because their level broadening is much smaller than 

their energy separations. When the sample length L is shorter than the mean free 

path (called ballistic region), an electron can move without suffering from impurity

scattering and quantum size effects are clearly seen. One of the typical phenomena 

is the conductance quantization across a narrow point contact [44, 45] . Electrons in 
the two-dimensional system at a Ga_As/AlxGa 1_xAs heterostructure can pass through 

a narrow point contact formed by application of a negative bias voltage to the split 

metallic gates on the top of the 2D heterostructure. 

T he conductance G = I /V across the point contact was observed to be quantized in 

units of e2 /rrh as shown in F ig. 3. Discrete energy-levels (also called subbands or chan

nels) are formed in the point contact region due to confinement potential in the lateral di

rection. As the bias voltage is increased, the bottom of confinement potential goes down, 

and the number of channels Mat the Fermi energy in the narrowest part of the contact of 

width w min is increased. T he conductance is calculated by G = (e 2 j1rn) L~j=l it;1 1
2

, 

where t;j is the transmission amplitude of an electron from a channel ito j and N(> M) 
is the total number of incoming and outgoing channels. When we assume an adiabatic 

limit for simplicity (although not the actual situation in the experiments) , the effective 

potent ial for the channel i is given by U;max = (n2 /2m.)(rri/W min) 2 Electrons in the 

channel satisfying U;max < EF are transmitted with probability unity, i.e., t,; = 1, 

electrons in the channel satisfying U;max > EF are reflected with probability unity, i.e ., 

t;; = 0, and scattering between different channels is completely neglected, i.e. , t;j = 0 

for i # j. This leads to the quantized conductance G = M(e 2 j1rn ). 
In quantum wires, we can no longer use the idea based on semiclassical Feynman 

paths Yalid in metallic wires, even when L » l. Therefore different behaviors can 
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Fig. 3 Quantum point contact and the observed conductance across it as a 
function of the gate voltage. Due to a negative bias applied to the split gates, 
two-dimensional electrons beneath the gates are depleted and can pass only 
through the narrow point contact. 

be expected in mesoscopic phenomena such as conductance fluctuation and persistent 

currents in quant urn wires. Moreover the localization effect can play an important role. 

As a matter of fact , in a strictly lD system, the localization length E is essentially equal 

to the mean free path l and therefore there is no diffusive region where the conventional 

perturbational treatment is valid. 
The purpose of this paper is to study typical mesoscopic phenomena, like conduc

tance fluctuations in quantum wires and persistent currents in a quantum ring. In the 
study of conductance fluctuations, we use several methods of calculation, i.e., numerical, 

perturbational, and distribution-function method, and try to reach a full understanding 

of the conductance fluctuation in quantum wires. In the study of persistent currents, 

we apply the conventional diagrammatic technique and examine the influence of well

defined subbands on the magnitude of persistent currents. 
This thesis is organized as follows. In Chapter 2 we study numerically the conduc

tance fluctua t ion in quantum wires. The effects of a magnetic field, spin-orbit interac

tion , and boundary roughness scattering are taken into account. In Chapter 3 we use 

the diagrammatic perturbation theory and study electrical transport in quantum wires. 

\Ve calculate the conductance, the weak localization correction, and the conductance 
fluctuation . In Chapter 4 we try to derive the Fokker-Planck equation for the distribu

tion function for the conductance. The conductance, its fluctuation, and the localization 

length can be obtained from the derived equation, and the calculated results are com

pared with those obtained in Chapters 2 and 3. In Chapter 5 we calculate persistent 

currents in a quantum ring by use of the diagrammatic technique and we examine the 

effect of subbands in a quantum ring. Fina.lly we give a summary in Chapter 6. 

Chapter 2 

Numerical Study of Conductance Fluctuation 

In this chapter we study the conductance fluctuation in quantum wires and the 

effect of localization on it by a numerical calculation [27, 46-49]. In the study of the 

fluctuation and the localization, it is very important to consider the symmetry of the 

system and the kind of scatterers. We take into account the effect of a magnetic field, 

spin-orbit scattering, and boundary roughness. We describe the theoretical formulation 

for the scattering matrix in Sec. 2. 1, present numerical results in Sec. 2.2, and give a 

summary in Sec. 2.3 .. 

2.1 Scattering Matrix Formula tion 

We consider a two-dimensional system of non-interacting electrons confined within 

the width Win the lateral (y) direction in the presence of a perpendicular magnetic field 

B and in the absence of spin-orbit scatterings and boundary roughness scatterings. (As 

will be discussed in Sec. 2. 1 D and E, the effect of spin-orbit scatterings and boundary 

roughness scatterings can be easily treated by a lattice model rather than a continu urn 

model described below.) The Hamiltonian is written as 

1 2 
H =? (p +eA ) +U(y)+ V( r ), 

_m U(y) = { ~ -W/ 2<y< W / 2 
otherwise 

(2.1) 

where r = (x,y), A = (- By,O), m is the effective mass, and V(r ) is the scattering 

potential. The system has length L in the x direction and is connected on both ends 

to long perfect leads which themselves are connected to reservoirs. We assume the 

scattering potential of a single impurity as a o function with the same strength Il l· 
In low-mobility wires, this model of impurity with a short-range potential is expected 

to simulate a (screened) ionized impurity and roughness at the heterointerface of GaAs 

and AlxGa 1_xAs, although the dominant scattering mechanism in high-mobility narrow 

wires is believed to have a long-range potential [50, 51] and the mobility of electrons 

becomes ~a~ger than that in :?D systems [52]. 
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In the absence of impurities the wavefunction is written as 

~(r) oc e'kx!f;(y) , (2.2) 

where 1/;(y) satisfies the reduced equation 

(2.3) 

with Wc=eB/m and l~=h/eB. For a given energy (E=EF) we obtain the two kinds 

of mode, the "conducting mode" whose wavenumber is real, ±k, (n= 1, · · ·, Nc; kn > 0), 

and the "evanescent mode" whose wavenumber is imaginary, ±iKn (n= Nc+ 1, · · · , oo; 
Kn > 0) . We denote the right-going waves consisting of the conducting modes with +kn 

or the evanescent modes with iKn as ~n+ and the left-going waves with -kn or -iKn as 

~n-· 
The normalization of the conducting solution ~n± is chosen as 

( ) 1 -ik "'· ' · ( ) ~n± r = ~e- " 'l'n± Y , 
yVn 

(2.4) 

with the velocity in the x direction of the nth state given by 

(2.5) 

so that each channel carries a unit flux. The normalization of the wavefunction of the 

evanescent channel is arbitrary and the conductance is independent of their choices. 

The wavefunction can be written for the incoming wave from the left side of the 

scattering region [0, L] as 

for x < 0, 

for x > L, 
(2.6) 

where tmn and rmn are the transmission and reflection amplitudes, respectively, and for 

the incoming wave from the right side of the scattering region as 

for x > L, 
for x < 0, 

(2.7) 

with transmission and reflection amplitudes, t;,n and r;,n. The scattering matrix or 

the S matrix is defined as 

5 = [: t'] 
r' 

(2.8) 

The cUJ"rent conservation law requires the unitarity of the S matrix as 

sts =sst= 1, (2.9) 

2.1 Scattering Matrix Formulation 7 

where S consists of the NcxNc transmission matrices i and i' and the reflection matrices 

i' and r' , which contain the scattering amplitudes from Nc incoming conducting channels 
to Nc outgoing conducting channels. 

To calculate the conductance between two reservoirs, we use the two-terminal, 
multi-channel version [53-57] of Landauer 's formula [58] 

(2.10) 

where a factor 2 due to the spin degeneracy is included. Here it should be noted that 

conductance fluctuations, though universal in the two-terminal metallic wire, can exceed 
the universal value by many orders of magnitude in the multi-terminal system, as shown 
theoretically [59-62] and experimentally [63, 64]. 

The overall S matrix for the disordered region L x W containing a certain number 
of impurities with 8-potential can be obtained by a decomposition into single-impurity 
parts and free-propagating parts using a composition law [65]. If we consider the twoS 
matrices defined by 

t; ] 
r' I 

and (2.11) 

then the composed S matrix 512 =51 0 52 for 51 and 52 in series can be calculated as 

t12 = t2[1 - r;r2r1
tl ' 

t;2 = t; [1- r2r;r 1t; ' 
(2.12) 

Note that the composition law satisfies the associative law (510 52)0 53 = 510 (520 53), 
but does not satisfy the commutative law in general , i.e., 52 0 51 f51®52- The overall 
S matrix can be expressed as 

(2.13) 

where N1 is the total number of impurities. It must be noted that this decomposition 
method cannot be applied to the system containing impurities with the long-range 
potential. This is why a lattice model will be used for the study of effects of boundary 

roughness scattering in Sec. 2. 2E. 
To derive the S matrix for a single impurity, we integrate the Schrodinger equation 

for the system containing an impurity with a 8-potential of strength --y at ro = (xo , Yo ) 

over the infinitesimally small region [x0-E, xo+E] with respect to x. We obtain 

a a 2m--y -a W(xo+E,y)- -a W(xo-E , y ) = -o 8(y-yo)W(Xo,Y ) . 
X X n_ -

(2.14 ) 
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Further the continuity of the wavefunction at x = xo leads to 

lli(xo+E,y) = lli(xo-E,y). (2.15) 

The wavefunction 1/Jn::o (y) is expanded by an orthonormal set of the N eigenstates <{'j 's 

of the reduced Hamiltonian for B = 0. 

N 

1/Jn± (y) = 2..:: 'Pj (y) CJn (2.16) 
j=l 

with 

'Pi(Y) = {~sin (f"¢(y +.\f)) for -.If ::; y :5 .If , 
(2.1 i) 

otherwise. 
Substituting Eqs. (2.6) and (2.16) into Eqs. (2.14) and (2.15), multiplying <pj,(y), 

and integrating with respect y, we have the transmission and reflection matrix, t and r, 

for incoming waves from the left hand side 

(2.18) 

with 

(2.19) 

In the same way we can obtain the transmission and reflection matrix, t' and r' , for 

incoming waves from the right side as 

[
C_K +ifG_ 

-C_ 

Combining Eqs. (2.18) and (2.20), we finally obtain 

C_K-ifC-] 
-C_ . 

The S matri..x for the free propagation from x = xo to x = xo + ~x is given by 

(2.20) 

(2.21) 

(2.22) 

The wavenumbers ±kn or ±iKn and the corresponding wavefunctions c~ are cal

culated as follows [66]: Substituting Eq. (2.16) into Eq. (2.3), we obtain 

(2.23) 

2.2 Numerical Results 9 

with Ej=(h2/2m)(nj/W)2
, where 

(Y)jj' = J dy<pj(y)Y'Pj'(Y). (2.24) 

Defining dj=(kW/n)cj, Eq. (2.23) can be rewritten as 

(2.25) 

with 

(A)jj' = [(kF"wf -l]ojj'- C~:f((~f)jj' 
(B)jj' = hwc / ny) , 

E1 \ W 11' 

(2.26) 

where kF = (2mEF /h2
) 112 Solving Eq. (2.25), we obtain 2N eigenvalues ±kn or ±i~<n 

and 2N eigenvectors c;'. 
The situation becomes particularly simple in the absence of a magnetic field. We 

have kn = [k}- (nn/W)2Jll2 and Vn =hkn/m when En< EF and Kn = [(nn/W) 2 -k}jll2 

when En> EF. Further, we have cfn =Ojn and the S matrix (2 .21) reduces exactly to 

the same expression as that previously obtained without evanescent states [23, 24] and 

with evanescent states [25, 26, 6i]. 

The system is characterized by the following three dimensionless parameters, 

2W/.\F, l/.\F = EFr/nh, and 1 = 2m}/nh2
, where T is the relaxation time in 2D 

systems given by r- 1 = n;iJ[ 2m/h3 with n; the impurity concentration and is related 

to the mean free path through l=VFT. The parameter 2W/.\F represents the number 

of occupied subbands at the Fermi energy. The parameter 1 represents the importance 

of the higher Born scatterings from a single impurity relative to the first Born effect. 

In the limit of negligibly small 1 and large concentration n; of impurities with a fixed 

l (the high concentration or white-noise limit), i becomes irrelevant and the system is 

characterized only by the two parameters 2W / .\F and l/ .\F. In the following , except for 

a single-impurity system, we choose Iii = 0.2, for which the system is nearly in the high 

concentration limit. In addition, equal amounts of attractive and repulsive scatterers 
are distributed in a sample in order to cancel out effects of energy shifts to the lowest 

order. The number of samples with different impurity configuration is between 2000 

and 3000. 

The 6-potential can cause some problems. A typical example is a divergence asso

ciated with its bound state in the attractive case in two or three dimensional systems. 

The same happens in the present quantum wire and the binding energy diverges loga

rithmically if the number N of the basis 1/Jj(y) becomes infinite. Any realistic scatterers 
have a potential with nonzero range. Therefore, we shall introduce a cutoff Ec in such 

a \\"ay that .'V is determined by the condition Ex < E c- This roughly corresponds to a 
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cutoff of the potential range at about k; 1 with h2 k~/2m~Ec. We shall choose Ec c=4EF 

in the numerical examples shown in the following section. 

2.2 Numerical R esults 

A. A Single Impurity 

The conductance for a single impurity in the absence of a magnetic field has already 

been calculated by Bagwell [67]. It has been shown that for an attractive potential a 

quasi-bound-state is formed below each subband bottom where the transmission prob

ability is reduced considerably. For a repulsive scatterer no such quasi-bound-state 

appears as is expected. The situation changes drastically in the presence of a magnetic 

field [68 , 69]. The bound-state energy of a single impurity can be obtained as 

l Vmax 1 
1 

= 271"1~ ~ E - (v + 1/2)hwc' 
(2.27) 

where Vmax is a cutoff. T his shows that there exist bound states (with an energy larger 

than each Landau-level energy) even for a repulsive impurity in 2D systems in strong 

magnetic fields. 
An example of the calculated conductance for a single impurity with .:Y = ±0. 7 

located at the center of the wire (y0 = 0) in a strong magnetic field (hwc/ E 1 = 10 

or W/ la c= 7) is shown in Fig. 4. Dips can be seen both for repulsive and attractive 

potential. They are due to the suppression of the transmission probability of the highest 

conducting channels : For example, when two subbands are occupied, we have it11l c= 1 

and !t12l c= lt21l c= ltd c= 0. The energies of quasi-bound states are close to those 

obtained from Eq. (2.27) for Vmax = 10 shown in Fig. 4 by the vertical arrows. 

The overlap of the wave functions of the highest conducting channels at the position 

of the impurity, I1/J;v,_(yo)1/.>N,+(Yo)l, is also included in the figure. At energies away 

from those of quasi-bound states, the conductance is nearly quantized except when 

this overlap is large. A singular peak seen just at the energy of the bottom of the 

second subband (EF c= 15E1) is due to the presence of a node of the wavefunction at 

y0 = 0. When EF becomes slightly larger than the sub band bottom, the overlap rapidly 

increases and the conductance is reduced. 
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Fig. 4 Conductance for a single impurity with 8-function potential located at 
the center of wire (Yo= 0) as a function of the Fermi energy in a strong magnetic 
field. The solid line represents that for a repulsive potential and the dotted line 
for an attractive potential. T he vertical arrows indicate the expected quasi
bound-state energies for a 2D system with '+ ' for a repulsive potential and 
' - ' for an attractive potential. The overlap between the highest conducting 
channels at the impurity position, 11/!N,- (y0 )1/!N,+(Yo)l, is represented by the 
dashed line. 

B . Conductan ce Fluctuation 

11 

In Fig. 5 we show the length dependence of the averaged conductance in the absence 
of a magnetic field. The narrowest wire has 5 occupied subbands and the widest 20 

below the Fermi energy. We have assumed l/ ).,F = 51.25 , for which the broadening is 

always smaller than the smallest sub band-separation (h / T = (1/ 7r )(2W/ ).,F )2 (>.F / l)E 1 c= 

0.87 x (£2 - £ 1) even for 2W/ ).,F = 10.25) and therefore the subbands are well-resolved. 

The Fermi b·ellies in the middle of the two sub band bottoms EN, and EN,+J· We have 
used the two different ways of averaging, the arithmetic average (G) and the geometric 

average exp[ (In G)]. With the increase of the sample length , the conductance decreases 

starting from the quantized value G = 2Nce2/h. As the system becomes much longer, 
the co:1d ucta:Jce begins to decrease c.xponentially. The localization length ~ can be 
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F ig. 5 Conductance as a function of the length L for different wire widths. The 
number of occupied subbands is 2W/.XF. The estimated localization lengths 
are indicated by the vertical arrows. The numerical uncertainty of~ is smaller 
than the width of the arrows. 

estimated by fitting to~= - (8(ln G)/8£)- 1 for the region 25 < L/l < 40 [70-74). We 

have ~/ l =4.9±0.2 for Nc = 5, 10.0±0.3 for Nc = 10, and 19.6±1.0 for Nc = 20, which are 

denoted in the figure by the vertical arrows. The two different averages start to deviate 
from each other when the length exceeds the localization length reflecting the singular, 

non-Gaussian distribution of the conductance in the localized region L;::, ~ [70-74). 

In 1D wires, an exact expression for the distribution funct ion of the conductance 

was derived by Abrikosov [75) (see also Sec. 4.2) as 

W( -. )- - 2- 1 "" uexp[- (u
2
/S+.S/4)] s, p - {::"'; du 112 , 

vr..S 3 archJp (cosh 2 u - p) 
(2 .28) 

where s = L/~ = 2CLL = 2L/l and p = 1/ g. Fig. 6 shows the exact distribution 
function in a 1D wire and Fig. 7 gives the conductance and fluctuation as a funct ion 
of length averaged over the distribution in Fig. 6. There is no length region where the 

conductance obeys a normal Gaussian distribution and the two different averages of the 
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conductance give the same value. 
Figure 8 shows the corresponding results for the conductance fluctuation 8G = 

((G- (G))2)Jf2 With increasing length, the fluctuation first increases, takes a maximum 

value, and then begins to decrease. The first increase in the nearly ballistic regime is a 

reflection of the fact that the conductance is quantized when L ;S l, and the decrease for 

L ;;::~is a result of the reduction of the conductance due to the localization effect. When 

the channel number is not so large (2W/ )..F = 5.5), the nearly ballistic regime and the 

localized regime overlap with each other and the fluctuation is always strongly dependent 

on the length. This behaYior is the same as that in strictly lD wires shown in Fig. i. As 

the channel number increases and the localization length becomes larger, the maximum 

fluctuat ion increases and there appears a length region where the fluctuation stays 

independent of length (the universal region). The maximum fluctuation for 2W / AF = 

20.5 is close to but slightly smaller than 0. i3e2
/ h derived by the perturbational method 

for the quasi-one-dimensional metallic wires [8-11]. It will be shown in Chapter 3 and 
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Fig. 9 A crossover of conductance fluctuations from a quantum wire to a 
metallic wire when the number of the occupied subbands is 20. The solid 
squares correspond to a wire where the broadening is larger than the level 
separation and the sub band structure is smeared out. The dotted line indicates 
the result obtained by the perturbation calculat ion for metallic wires. The 
triangles are the same data as those in Fig. 8. The vertical arrow indicates the 
length corresponding to the 2D square. The universal values obtained by the 
perturbation for quasi-one-dimensional wires and 2D squares are indicated by 
the horizontal arrows. 
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4 that the absolute value of 8G in the universal region in N-channel quantum wires is 

the same as that calculated perturbationally in quasi-one-dimensional metallic wires. 

A crossover occurs from lD to 2D when the broadening of the sub bands exceeds 

their separation and the subband structure is smeared out . Figure 9 shows calculated 

8G for 1/ AF = 2.05 together with that for l/ )..F = 51.25 in the case that the number 
of occupied sub bands is 20. For l/ )..F = 2.05 the situation is closer to that of metallic 

wires, i.e. , the broadening is larger than the largest subband separation (n/r ~ 1.6 x 

(ENo+l - El\J ) and the wire width is larger than the mean free path (W/l = 5). The 
numerical result is in good agreement with that by the perturbation represented by 

the dotted line in the region ~I< L < 101 including the length corresponding to the 2D 



16 Chapter 2 Numerical Study of Conductance Fluctuation 

:2 -N 
(!) 

5 

04 
(J') ••• 

.E • ••••• •• 
:::J 
- 3 
(!) 

u 
c 

_s 
~ 2 

-o 
c 
0 

u 
U/=3. 00 
2W/AF= 5.5 
I/)I.F=51 .25 

...... 

0 l___. _ _JIL.___.._.:_.J_ _ _..:.~-~-::-L._---'-----7 

0.0 0.1 0.5 

F ig. 10 Conductance as a function of the magnetic field for L/l = 3 and 
2W/ >.F = 5.5. The number of occupied subbands Nc changes at the magnetic 
fields indicated by the vertical dotted lines. 

square W = L. When the length is larger than ~ 101, the fluctuation becomes smaller 

due to the localization effect. 
A brief comment on effects of the eYanescent states is worthwhile. T he evanescent 

states correspond to Yirtual processes in scatterings. Therefore, by their inclusion the 

higher Born scatterings from a single impurity can automatically be taken into account. 

The major part of the effects noted in the papers [25, 26] is probably those of such 

higher Born scatterings. V•le have chosen :Y as small as possible (and assumed equal 

amounts of attractive and repulsive impurities) in order to reduce the higher Born 

effects. Consequently, the evanescent states have little influence on the conductance 

except when the Fermi level lies just below the bottom of an excited subband, where 

the subband broadening cannot otherwise be treated properly. In fact, the calculated 

conductance suffers little change even if the evanescent states are completely neglected, 

when the Fermi level lies in the middle of the bottoms of two adjacent subbands. 

2.2 Numerical Results 
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Fig. 11 Mean free path of each subband as a function of a magnetic field for 
the same system as that in Fig. 10. The mean free path exceeds the sample 
length when the occupied channel number becomes three. 

C. Magnetic Field 

17 

An example of calculated conductance as a function of the magnetic field is shown 

in Fig. 10. We consider a system characterized by 2W/ >.F = 5.5 and 1/ >.F = 51.25 with 

fixed length L = 31, where the fluctuation becomes nearly maximum in the absence of 

magnetic fields, and vary the magnetic field at a fixed value of the Fermi energy. In the 

presence of very weak magnetic fields (hwc/ EF ;S 1 x 10-2 ), the conductance increases 
slightly from the value at zero field probably due to a reduction in the weak localization 

effect. At higher magnetic fields , the conductance exhibits an oscillatory dependence 

on the field. 

This behavior can be understood simply in terms of the magnetic-field dependence 

of the mean free path. The mean free path of each subband shown in Fig. 11 is calcu

lated by solving the Boltzmann transport equation [76]. Whenever the Fermi level is 

close to a subband bottom, the mean free path decreases drastically due to the diver

gence in the 1D density of states. The decrease in the conductance at each subband 
botto::-:1 co:rcsponds to this strong enhancement of scattering effects. Except at such 
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magnetic fields the mean free path increases gradually with magnetic field. In magnetic 

fields, electrons are pushed toward the wire edges, the overlap between wavefunctions 
associated with positive and negative velocity becomes small, and backscattering rates 

are lowered. At the magnetic field (hwc/ EF ""0.4) where the channel number changes 
from 3 to 2, the mean free path increases by several orders of magnitude and exceeds 
the system length. Correspondingly, the conductance rapidly approaches the quantized 

value G=2Nc(e2jh). In such a strong field well-defined edge states are formed and the 
backscatterings between the edge states are completely suppressed. An electron in the 

edge states can move ballistically through the sample except when the energy is in the 
region of broadened bulk Landau levels where the edge states are strongly mixed with 

the bulk levels [77] . Edge states with a long mean free path in high magnetic fields have 

been the subject of both theoretical [55, 78] and experimental [79-81] investigations. 

Figure 12 shows the corresponding result of the fluctuation. The reduction in the 

fluctuation which can be seen in weak magnetic fields (hwc/ EF :S 1 x 10- 2
) corresponds 

to the suppression of the contribution from the so-called "particle-particle channel" 
predicted by perturbational calculations [6-10]. As a matter of fact, the flux penetrating 
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Fig. 13 Conductance as a function of the length L for 2Wj:>.,F = 5.5 in the 
magnetic field corresponding tO hwc/ EF = 3 x w- 3 compared with that at 
B = 0. The magnetic flux penetrating through the area with length l and 
width W is BlW = 2.5 x (h/e). The localization lengths are indicated by the 
vertical arrows. 
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through the sample is BLW ~ 13x(h/e) for hwc/ EF ~ 1 xl0- 2 When the magnetic field 

is increased further, the fluctuation gradually decreases except in the vicinity of the fields 

where the sub band depopulation occurs. This can be explained by the gradual approach 

of the system to the ballistic regime due to the increase in the mean free path. In strong 

magnetic fields (hwc / EF:C,0.45) the fluctuation becomes negligibly small corresponding 
to the quantization of the conductance itself. 

Figure 13 shows Gas a function of L for 2W/>.F=10.5 and l/>.F=51.25 in the weak 

field hwc/ EF = 3 x 10-3 together with G at B = 0. In terms of the magnetic flmc, each 

area normal to the field with length l and width W is penetrated by BlW /(h/e) = 2.5 

flux. In the nearly ballistic regime (L « l ), there is almost no difference between the 

conductances of B = 0 and B f 0, which is due to the fact that the mean free path is 

not affected by the weak magnetic field. As the length becomes larger, the conductance 

becomes larger than that at B = 0 at eYery length. The localization length, denoted by 
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the vertical arrow, is 16.7±0.6 in units of I, which is about 1.7 as large as that in the 

absence of a magnetic field. 

In the limit of large channel numbers , it has been shown that ~ increases in pro

portion to f3 Nc in metallic wires, where the symmetry factor (3 is defined for a system 

of the orthogonal ((3 = 1), unitary ((J = 2), and symplectic ((3 = 4) universality classes. 

Thouless [82} has assumed that the localization length roughly corresponds to the sys

tem length L where the conductance ne2
T j mL becomes of the order of e2 j1riL The 

same result has been derived analytically with the use of the supersymmetry method 

[83}, the random-matrix method [84), and numerical calculations [85}. In the case of 

more general values of Nc, it has been shown by the previous calculation [86, 87}, and it 

will be shown in Chapter 4, that t he localization length~ is given by~ ex (f3Nc + 2- (3). 

The present numerical result is in good agreement with this analytic expression which 
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shows that the localization length for (3 = 2 is 1.8 times as large as that for (3 = 1 in 

the case of Nc = 10. It should be noticed that, in contrast to metallic wires , quantum 

wires have well resolved 1D subbands and the actual value of~ varies considerably as a 

function of the energy even for a given channel number [77}. 

Figure 14 shows the corresponding results for the fluctuation. The universal region 

can now be clearly seen as well as the reduction of 6G in comparison with 6G at B = 0, 
when the sample is shorter than the localization length (L < 151). The actual amount 

of the reduction is slightly smaller than that predicted by perturbational calculations 

(6G(B)j6G(B=0)~0 . 8 in contrast to 1/v'2=0.7l). This difference is to be expected 
because the mechanism leading to the reduction is absent in pure 1D wires with a single 

occupied subband. When the sample becomes longer than the localization length , 6G 

somewhat increases, takes a maximum, and begins to decrease in the region L > 351 . 

The similar and even stronger enhancement of the fluctuation in this region occurs in the 

presence of spin-orbit interaction in Sec. 2.2 D where we will discuss this enhancement 

in more details. 

D. Spin-Orbit Interaction 

In treating spin-orbit scatterings and boundary roughness scatterings, it is more 
convenient to use a square-lattice model. In particular, effects of spin-orbit interaction 

can easily be introduced by the same model as that adopted in the study of symmetry 

effects on localization [88}. It is described by the Hamiltonian 

H = L o;C)0 C;a- L V(i, u;j, u')c)0 Cj a' , 

i,j 

(2.29) 

where V (i, u;j, u') = Vx or Vy depending on the direction of the nearest neighbor site 

in the x or y direction. In the matrix form we have 

(2.30) 

with V1 and V2 being spin-diagonal and off-diagonal elements respectively and 

I T)=[~] . I l l =[~]· (2.31) 

This model of spin-orbit interaction with spin-splitting is different from the conventional 

one without spin-splitting used in metallic wires. However it is expected to simulate 

actual two-dimensional systems in n-channel inversion layers on surfaces of III-V semi

conductors or at GaAs/ AlxGa1_xAs heterostructures [88}, and is enough in the study 
of the effect of symmetry on the conductance fluctuations. 

Effects of scatterings from bulk impurities are introduced through randomness of 

site energy c:, distributed uniformly with width U( -U / 2 ::; .:; + 4V ::; U/ 2) . This latt ice 
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model corresponds to the wire containing high concentration of scatters with 6-function 
potentials, if we choose the parameters as 

(2.32) 

where n; is the impurity density per area, "f is the strength of an impurity, and a is the 
lattice constant. 

In a two-dimensional system without randomness (c:; = -4V) , the energy of an 

electron with wave vector k = (kx, ky) is given by an eigenvalue of the following 2 x 2 
matrix 

H(k) = [4V1 - 2V1 (coskxa + coskya) -2V2 (isin kxa +sin kya) ] 
-2V2 (-i sin kxa +sinkya) 4V1 -2V1 (coskxa+coskya) · 

(2.33) 

For small kxa and kya, Eq. (2.33) becomes 

[ 
li2 k2 /2m -21i

2
k 5 (ikx + ky)/2m] 

H(k) = -21i2 k~(-ikx + ky)/2m li2 k2 /2m ' (2.34) 

where 

VI 1i
2 ( 1 )

2 ()..F) 2 v2 = ~ AF ks (2.35) 
EF = 2ma2 EF = 271' --;; EF 211' a kF 

The energy takes a minimum along the circle defined by k = ks instead of k = 0. We 
choose k. / kF as the parameter characterizing the strength of spin-orbit interaction. 
The presence of such a k-linear term was first pointed out by Ohkawa and Uemura 

[89] inn-channel inversion layers on narrow-band-gap H~Cd 1 -x Te. It is quite difficult, 
however, to obtain a reliable estimate of the absolute magnitude of the k-linear term 
[50]. The randomness parameter is related to the mean free path l through 

.!!.__ = [ 6>.} ] 1/2 

EF 11'3a2l 
(2.36) 

We have checked that, in the absence of spin-orbit interaction, the results obtained by 

the lattice model are the same as those by the continuum model. 

Figure 15 shows the calculated conductance as a function of sample length for 
2W/>.F = 5.25 corresponding to the channel number 5. As is the same in the case 
of magnetic field, the initial decrease of the conductance in the nearly ballistic regime 
(L « l) does not depend on the strength of spin-orbit interaction, corresponding to the 
fact that the mean free path itself is not affected by the symmetry of the system. With 

further increase of the length, the conductance in the presence of spin-orbit interaction 
decreases more slowly than in its absence, which leads to the increase of the localization 

length by a factor of about 3. This result is in g_ood agreement with the analytic 
expression in Chapter 4, cr- 1 o:: (!3 Nc + 2- (3), which shows that the localization length 

for /3 = 4 is three times as large as that for /3 = 1 in the case of Nc = 5. 
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The corresponding result for the fluctuation is given in Fig. 16. In the presence of 

spin-orbit interaction, the fluctuation is reduced by a factor close to 1/ 2 in the universal 

region (l « L « ~) . But with further increase of the length, it gradually becomes larger 

and takes a maximum around the length cr- 1 = 2~, as is the same in the presence of a 
magnetic field (Sec. 2.2 C) . 
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Fig. 16 Calculated fluctuation vs length in the presence (squares, ks / kF = 0.1) and 
the absence (circles) of spin-orbit interaction for wires with the channel number 5. The 

vertical arrows denote cr- 1 = 2~ (~ : the localization length). The horizontal dotted 

lines denote the fluctuations calculated perturbationally for metallic lD wires. 
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To understand this length dependence more clearly, we look at the distribution 

function of the conduct ance. Figure 17 shows calculated distribution functions in the 

(a) presence and (b) absence of spin-orbit interaction, corresponding to lengths o:L ~ 

118, 114, 112, 1, and 2. In the universal region, the conductance nearly obeys a normal 

Gaussian distribution around the mean value. The width of the distribution becomes 

narrower in the presence of spin-orbit interaction than its absence. The distribution 

function changes qualitatively when its left tail reaches the origin G = 0. Because of 

the difference in the amount of the fluctuation, this change occurs at lengths o:£~ 112 

with spin-orbit scatterings, while for its absence the change occurs at o:£~114. For 
longer wires (o:£<,1), the distribution function is nearly independent of the symmetry 

and close to that in a 1D wire. 

As shown in Fig. 6, the distribution function in 1D wires clearly changes its feature 

around a crossover length o:Lc ~ 112, where its left tail reaches the origin. In Fig. 7, the 

fluctuation takes a maximum at a length slightly larger than Lc. For wires much longer 

than the localization length (o:L » 1), the conductance and its fluctuation for different 

channel-numbers and different symmetries can be expressed by the same functions of 
the length, if it is scaled by the localization length. This result can easily be understood 

because the conductance in the strong localization regime consists of sharp peaks at 

energies of localized states which are distributed almost randomly with broadening 

determined by the localization length and interact with each other only if their energies 

are very close. The analytical calculation in Sec. 4.4 also gives the same scaling result. 

The present result suggests that this universality already appears when o:L ~ 1. 

Figure 18 shows calculated fluctuations for different values of kslkF . The fluc

tuation takes a small maximum in the nearly ballistic regime (1~o:L~2) particularly 

for weak spin-orbit interaction. This arises because electrons pass through the system 

before being affected by spin-flip scattering for such short wires. In other length region, 

the fluctuation does not depend on ks l kF appreciably as long as ks l kF i' 0. 

Figure 19 gives calculated fluctuations for a wider wire with 2W I >.F = 10.25 

corresponding to channel number 10. All the features are the same as those with 

2W I >.F = 5.25 except that the universal region in the absence of spin-orbit interaction 

has become much clearer and the reduction due to the spin-orbit interaction has become 

further close to 112. 
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F ig. 17 Calculated histograms of the conductance in (a) the presence and (b) the 

absence of spin-orbit interaction. The length of the wire L chosen in such a way that 
o:L ~ 2, 1, 112, 114, and 118 from the top. 
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Fig. 18 Calculated conductance fluctuation vs length for several values of the spin-orbit 

parameter k. / kF. The horizontal lines denote the fluctuation calculated perturbation

ally for metallic lD wires. 

~ 
N 

Q) -0 

.2 
c 
::J 

c 
0 

0 

2 
u 
::J 

l.L 

0.8 

0.6 

0.4 

0.2 

2.2 Numerical Results 

1D !No Spin-Orbit) 

2W IAF = 10.25 
l l.l.F= 50.0 

o.o 0'----1-'-0--'-----'-20--'--3'-0 ---4-'-0----'50 

Length (units of l l 

29 

Fig. 19 Calculated conductance fluctuation vs length in the presence (squares) and the 

absence (circles) of spin-orbit interaction for wires with channel number 10. The vertical 

arrows denote a- 1 = 2E (E : the localization length) . The horizontal lines denote the 

fluctuation calculated perturbationally for metallic lD wires. 
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E. Boundary Roughness Scattering 

It was shown experimentally [90] that long quantum wires exhibited a large pos

itive magnetoresistance due to the effect of boundary roughness scattering. A similar 

magnetoresistance has already been observed in aluminum films [91] and explained by a 

classical-trajectory model [92]. In the classical theory, it is assumed that each electron 

follows a classical trajectory with the Fermi velocity v F and is reflected specularly with 

the probability p and otherwise scattered into a random direction. In the absence of a 

magnetic field, the roughness itself cannot produce a nonzero resistivity because straight 

trajectories parallel to film surfaces have an infinite mean free path and dominant the 

current. In the presence of a magnetic field, the resistivity becomes nonzero because all 

electrons follow a curved trajectory and are scattered at a collision with the boundaries. 

When the cyclotron radius Rc = vFiwc becomes smaller than half of the film thickness 

W, the resistivity vanishes again because of the absence of backscattering. A detailed 

numerical calculation performed for p = 0 has shown that the resistivity increased with 

the magnetic field at low fields, exhibits a maximum at WI Rc "" 0.55, and decreased 

down to the bulk resistivity at WI Rc = 2. A quantum-mechanical calculation [93] in 

quantum wires has been performed and the same result has been obtained. 

The model of boundary roughness which we will use here is the same as that used by 

Akera and Ando [93] . The boundary roughness is described by deviation of boundaries 

Ll. =(x) at y = ±WI2 shown in Fig. 20. 

y=+W/2 -- -

y= -W/2 ---

Fig. 20 The model of boundary roughness. 8 is the correletion length, with 
which the next variation of the wall occurs. Ll. is the average displacement or 
the root-mean-square deviation of the wall. 

The wire is separated into narrow segments whose length takes nd0 (n = 

1, 2, · · · , n6 ) with probability n;;- 1
. Within each segment, the left and right boundaries 

are shifted by ±mll.0 (m = 1, 2, · · ·, n 6 ) \\·ith probability qln6 and are left unshiftcd 
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with 1-2q. This gives the correlation function of roughness Ll.+(x) of the left boundary 

and Ll._(x) of the right boundary as 

(2.37) 

with correlation length 8 = (2nd+ 1)d0l3fi and average displacement Ll. 2 = q(n6 + 
1) (2nt. + 1)6513. The correlation function g(x) is normalized to unity and g(O) = 

1lfi8. The matrix element H± of boundary roughness scattering at y = ±WI2 is 
given by 

(n'k'J H'c Jnk) = ~y~k' k~ Jdxll._._ei(k-k')x 
- 2m n n L - ' (2.38) 

where 

y= = a..pn'k' a..pnk I 
n'k'nk + a a , 

Y Y =W/2 
(2.39) 

where 1/Jnk is the solution of Eq. (2 .3). It is noted that the matrix element is proportional 

to the differential of the wavefunction 1/JndY) and is smaller for the lower sub bands since 

JYn~k'nkl = 2r.2n'ni W3. 

Figure 21 shows calculated conductance for wires with boundary roughness as a 

function of the length, normalized by the arithmetic average of the mean free path of 

each sub band (/A = Ln lniN), in the absence (WI Rc = 0) and presence (WI Rc = 0.5) 
of a magnetic field. 

In the Boltzmann transport theory, the conductivity is proportional to the lA (see 

also Chapter 3) and takes a minimum around a magnetic field corresponding to WI Rc = 

0.5. The reduction in the mean free path from li>.F ~ 11.8 for WIRe= 0 to li>.F ~ 4.6 

for WI Rc = 0.5 shows that the resistivity is enhanced from its zero-field value by more 

than double in the Boltzmann transport theory. 

The conductance for W I Rc = 0 does not agree with that for WI Rc = 0.5 in the 

nearly ballistic regime (LI/.4~ 1 ) even if scaled by the mean free path except at L = 0. 

This is an expected result because of the singularly strong dependence of the mean free 

path on 1D sub bands. In the limit of short-range boundary roughness (bl AF « 1), 

the Boltzmann transport theory predicts that T;: 1 ex n 2 for W I Re= 0, where Tn is the 

relaxation time of an electron in the subband n. Because of an extra n dependence due 

to the velocity Vn, the mean free path ln = VnTn exhibits even stronger dependence than 

n-2 In fact , the actual calculation shows that for 2WI>.F = 5.25 the mean free path 

of the lowest subband is about two orders of magnitude larger than that of the highest 

subband. The decrease in the nearly ballistic region is likely to be determined by the 

harmonic average of ln, l'H 1 
= Ln l;: 1 IN, which is much smaller than lA. 

Figure 22 shows that corresponding fluctuation as a function of length. The fluc

tuation takes a sharp maximum in the nearly ballistic region (LilA~ 1 ) and starts to 
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decrease around the localization length both in the absence and the presence of a mag

netic field. There is no universal region where the fluctuation remains independent of 

L because the wire is still too narrow. 
Figures 23 and 24 give the result for a wider wire with channel number 10 (2W / ).. F = 

10.25). The magnetic-field reduction in the mean free path is much larger than that for 

2W/)..F = 5.25. The universal region appears in the region l « L « a- 1
, where the 

fluctuation in the absence of a magnetic field is clearly smaller than that of 1D metallic 

wires. T he singular enhancement of the fluctuation in the nearly ballist ic region is 

stronger than that in narrower wires. 
In short wires, mixing among different 1D subbands due to scattering is not ap

preciable and each channel may be regarded as almost independent. The transmission 

probability of the low-lying sub bands has a sharper distribution with peak close to unity 

because of the large mean free path, while that of the higher subbands has a broader 

distribution with peak at much smaller than unity. T his is presumably a main origin 

of the singular enhancement of the fluctuation in the near-ballistic regime. T his en

hancement may be related to the suggestion by Higurashi, Iwabuchi, and Nagaoka [94], 

who claimed that the fluctuation can be enhanced considerably in the near-ballistic 

regime even for bulk impurity scattering within a lattice model containing a peculiar 

anisotropy. In our model, which simulates actual quantum wires much better, however, 

such enhancement has not been obtained fo r bulk scatterers. 

10-3 

2.2 Numerical Results 

Boundary Roughness 

WIRe 
0.00 
0.50 

l IAF 
11.8 
4.6 

30 

2W/ ;..F= 5.25 
t. f J..F = 0.18 
o/;..F=0.12 

40 
Length (units of I ) 

33 

50 

Fig. 21 Calculated conductance due to boundary roughness scattering vs length in the 

presence (squares) and the absence (circles) of a magnetic field for wires with channel 

number 5. The correlation length 8/)..F ~ 0. 12 and the mean deviation !J.j)..F ~ 0.18. 

Two different averages, arithmetic (filled symbols) and geometric (open symbols) are 

shown. The vertical arrows denote a- 1 = 2~. The horizontal dotted lines represent the 

fluctuations calculated perturbationally for metallic wires. 
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Boundary Roughness 
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Fig. 22 Calculated fluctuat ion due to boundary roughness scattering vs length in the 

presence (squares) and the absence (circles) of a magnetic field for wires with channel 

number 5. The vertical arrows denote a- 1 = 2~ (~ : the localization length). The 

horizontal dotted lines represent the fluctuations calculated perturbationally for metallic 

wires. 
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Fig. 23 Calculated conductance due to boundary roughness scattering vs length in 

the presence (squares) and the absence (circles) of a magnetic field for wide wires 

with channel number 10. The correlation length 8/ )..F ~ 0.24 and the mean deviation 

C;. f>.F ~ 0.18. T he dotted lines represent the straight lines corresponding to a- 1 = 2~. 
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Fig. 24 Calculated fluctuation due to boundary roughness scattering vs length in the 

presence (squares) and the absence (circles) of a magnetic field for wide wires with 

channel number 10. 
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2.3 Summary 

In conclusion, we have numerically studied electrical transport , especially conduc

tance fluctuations and localization, in quantum wires in the presence of magnetic fields, 

spin-orbit interaction, and boundary roughness. The important results are summarized 

as follows. 

(i) When only a few subbands are occupied in the absence of magnetic field and 

spin-orbit interaction and in the presence of bulk impurities, E is comparable to l and 

there is no universal region where the fluctuations stay independent of L . When many 

sub bands are occupied, E is much longer than l (E ~Ncl with Nc the number of occupied 

sub bands) and there appears a universal region in l::; L::; E- The absolute value of 

the fluctuation in the universal region is close to that obtained for quasi-lD metallic 

wires by the perturbational method. We have also demonstrated that the crossover 
from quantum wires to metallic wires occurs when the broadening exceeds the sub band 

energy separations. 

(ii) In the presence of a weak magnetic field or spin-orbit interaction, the amplitude 

of the conductance fluctuation in the universal region is reduced and the reduction

factor of the fluctuation approaches l/-/2 and l/2 in the presence of magnetic fields 
and spin-or bit interaction respectively. 

(iii) Because of the peculiar nature of boundary-roughness scattering, the conduc

tance fluctuation exhibits a different behavior from that for bulk impurities when the 

length is shorter than the localization length, i.e., a singular enhancement of the fluctu

ation in the nearly ballistic region and the reduction of the fluctuation in the universal 

region from that of lD metallic diffusive wires. When the localization effect becomes 

important , the fluctuation becomes the same as that for bulk impurity scattering, if the 

length is scaled by the localization length . 



Chapter 3 

Perturbational Study of Mesoscopic Transport 

In the previous numerical calculation, there remained the question whether the 

amplitude of conductance fluctu~tions in the universal region is the same as that in 

metallic wires. In this chapter, we study electrical transport in quantum wires by 

the conventional diagrammatic perturbational technique and calculate the amplitude of 

fluctuations, as well as the conductivity itself and the weak-localization correction, in 

order to answer this question. 

Fukuyama [95] studied the weak localization in the presence of intervally scatterings 

in Si-MOS by use of the perturbational method. In the study of intersubband scattering 

by the perturbational method, Cantrell and Butcher [96] and Kearney and Butcher [97] 
studied the Boltzmann transport and the weak localization in quasi-two-dimensional 

(Q2D) and quasi-one-dimensional (Q 1D) systems respectively. The weak localization 

and conductance fluctuation in Q2D systems were calculated by Iwabuchi and Nagaoka 

[98] , and the weak localization in Q1D wires (i.e., quantum wires) was studied by Suhrke 

et al. [99]. Iwabuchi and Nagaoka have shown that the amplitude of the conductance 

fluctuations in quasi-2D systems is exactly the same as that in 2D films in the limit of 

strong intersubband scatterings at T = 0. 

In Sec. 3.1, we describe the model of calculation and obtain the one-particle Green 

function in quantum wires. We calculate the Boltzmann conductivity (Sec. 3.2), the 

weak localization correction (Sec. 3.3), and the conductance fluctuation (Sec. 3.4) . Fi

nally we give a summary in Sec. 3.5. 

3.1 Model 

The Hamiltonian is given by Eq. (2 .1 ), except that we consider the system in the 

absence of magnetic fields B = 0. Using the normalized eigenfunction ~nk(x, y) = 
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L -l l 2 eikx1/Jn(Y) without impurities, the scattering part in the Hamiltonian (2.1) is ex

pressed in the second-quantized form as 

(3.1) 

The one-particle retarded and advanced Green function satisfy the Dyson equation 

where (· · -) denotes the averaging over impurity configurations and En 
(h2 / 2m)(,m/W) 2 In the matrix form, this Dyson equation is expressed as 

(3.2) 

(3.3) 

We assume that the energy broadenings due to disorder are smaller than the separations 

between adjacent subband bottoms in quantum wires and that the Fermi level is well 

away from the broadened subband bottoms, i.e., 

(3.4) 

Under this condition, the perturbed Green funct ion (3 .3) can be approximated by di

agonal matrix and Eq. (3.2) is given by 

where we used a single subscript n for the diagonal Green function. The diagonal 

self-energy is calculated in the Born approximation by 

(3.6) 

and the perturbed one-particle Green function is given by 

(3.7) 

where -fn is the imaginary part of the self-energy E~n and (Vnn ,(q)Vn ,n(-q)) is given 

by 

(3.8) 
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By taking the imaginary part of Eq. (3.6) and changing the q summation into integral 

by Lq --+ (L/ 27r) J dq , we obtain r n as 

(3.9) 

where we defined the velocity of an electron at t he Fermi energy in the channel n by 

v;: = [2(EF- En)fmjl1 2 and used Eq. (3.4). 

3.2 Boltzmann Conductivity 

Unaveraged conduct ivity is given by 

r.h3 e2 
a= -m2L 

'\"' kk' ( + c · ·' ) c- (k k' E )) L (27ri)2 Gnn' k , k ,EF - nn' ' ' F 
n ,n' ,k ,k' 

x (G~'n(k' , k , EF) - G;:,n(k',k , EF)) , 

(3.10) 

where G~n' (k , k', EF) is the unaveraged Green function propagating from state (n, k) to 

(n' , k' ). When Eq. (3.10) is averaged over impurity configurations, the most dominant 

contribution in the large channel limit N = Nc » 1 comes from the so-called ladder 

diagram schematically shown in Fig. 25. 

(a) (b) 

Fig. 25 Diagrams that should be considered for conductivity. Dashed line 
with a crossed symbol denotes the scattering from an impurity. 

As is usual in the case of scattering by impurity potential of 8-function type in 

the absence of magnetic fields , the contribution from the diagram with a ladder (b) 

Yanishcs and only the diagram (a) gives non-zero contribution. T hen the Boltzmann 

3.3 Weak Localization Correction 4 1 

conduct ivity is given by 

he2 k2 e2 L 21rmkF 

a B = 27rm2£ ~ (EF- E n - h2k2/2m)2 + r~ = 27rh2m2£ ~ 27r ~ 
e2 e2 

= -,;~ln =-,; Nl, 
(3.11 ) 

n 

where k;: = mv;: j h. The mean free path ln for the subband n is defined by 

N 
z-l = r n = '\"' ~ 
n - v~ ~1 n?v~v~ . 

(3.12) 

As seen from Eq. (3. 11), the Boltzmann conductivity a 8 for quantum wires is e.xpressed 

in terrns of the arithmetic mean of ln. T his result is in agreement with the result of the 

semiclassical Boltzmann transport theory [93]. 

3.3 Weak Localization Correction 

Before we calculate the correction to the Boltzmann conduct ivity, we show the 

general feature of the ladder diagrams in quantum wires. General (cooperon) ladder 

diagram is given in Fig. 26, where the subband indices of a pair of the upper- and 

lower-propagators between two adjacent scatterings are not necessarily the same. 

n, k n,, k , n,, k, n', k' 

* * * ' ' ' ' ' ' 
n n, nz n' 

-k+q -k,+q -k,+q -k'.+q 

F ig. 26 Ladder diagram. 

In the intermediate part of the ladder in Fig. 26, there appears a term like 

(3.13) 

By calculating Eq. (3. 13), we can show that 

(3.14) 

where "·e haYe used the condition Eq. (3.4). Therefore we only haYe to consider the 
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n,k n,, k, n,. kl n', k' n, k n,, k, n,. kl n', k' 

' ' ' ' ' ' ' ' ' ' ' ' ' ' 
Cnn·(q,w)= * * ~ Dnn1.q,w)= * * ~ ' ' ' ' ' ' . ' ' 

n n, n, n n n, nl n 
-k+q -k,+q -kl+q -k'+q k+q k ,+q k,+q k'+q 

Fig. 27 Cooperon ladder and diffuson ladder. 

ladder diagrams in which the subband index of a pair of the upper- and the lower

propagators is the same. From this fact, the cooperon ladder and diffuson ladder to be 

considered are shown schematically in the Fig. 27. 

The cooperon ladder satisfies the following equation 

Cnn•(q) = q,t + L q,~n, (G~,(k1 ,w)) (G;;, (- kJ+ q,w)) Cn,n' (q) 
n1,k1 

(3. 15) 

For a small q, we obtain 

(3.16) 

Substituting Eq. (3. 16) into Eq. (3.15) and solving the equation for a small q, we obtain 

the cooperon as 

C () _ 4fnfn• (" nv;;. 2)-l 
nn' q - L 'S;- r m q 

4fnfn• (D 2)-1 
2r.nN(O)L q ' 

(3. 17) 

where N(O) = Lm(1 /7Tnv;;,) is the total density of states (per spin) at the Fermi energy 

and the diffusion constant D is defined by 

1 
N F L Vm 

D=2r.N(O) rm· 
m=l 

(3. 18) 

Diffuson Dnn' ( q) is obtained in the similar calculation as Dnn' ( q) = Cnn' ( q). 

Correction to the Boltzmann conductivity is calculated with the so-called maximal 

crossed diagram as shown in Fig. 28. The weak localization correction is given by 

n.Je2 
aWL=-- " k(-k+q) 

2r.m2 L L (3. 19) 
n ,n', k ,q 

X ( G~(k)) (G;;(k)) (G~.(-k + q)) (G~.(-k + q))C,.,.•(q), 

3.4 Conductance Fluctuation 

Fig. 28 Maximal crossed diagram giving a weak localization correction to the 
Boltzmann conductivity. 

43 

where it is noted that Cnn•(q) , in which one propagator goes from the subband n to 

n' and another from n' to n , is different from Cnn' ( q) , in which both go from n to n'. 
However by obtaining 

L - 1 L k 2 (G~(k)) (G;;(k)) ( G~,(-k + q)) (G~,( -k + q) ) = m;f 8nn', 
k 2 n 

(3.20) 

and noting Cnn(q) = Cnn(q), we can calculate the weak localization correction as 

(3.21) 

In the numerical result in Fig. 10, we obtained gw L = awL/ L ::e 0.15 (per spin), 

which is smaller than 1/3 of Eq. (3.21). This is because the sample length and the 

channel number in the numerical calculation are not so large (L /l = 3, N = 5) where 
the perturbation is not good approximation. 

3.4 Conductance Fluctuation 

When we define the dimensionless conductance g = G/(e2 /h), the amplitude of 
conductance fluctuations 8g is calculated by the square-root of the variance of conduc

tance, i.e. , F = (8g) 2 = (g2
) - (g) 2 The diagrams for conductance fluctuation are 

represented by the product of two conductivity bubbles connected each other by two 

diffusons (or two cooperons) as shown in Fig. 29 in the momentum representation [6-11]. 
The contribution from Fig. 29(a) is calculated as 
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where q = 1rm/ L from the boundary condition for the diffusion propagator [6-11]. As 
seen from Eq. (3.22), sub band-dependent parameters such as v;; and r n are collected to
gether into a sub band-independent parameter DN(O) and cancel when they are summed 

over the sub band index. Similarly we obtain Fa= Fb = -2Fc = -2Fd = 4F •. When we 
count spin factor by 22 , the cooperon contribution by 2, the exchange of the retarded 
and the advanced Green functions between the inner and outer bubbles by 2, and the 

way of inserting vertices by 2 for (a) and by 4 for (b)-(e), the total value is F = 8/15 
or lig = J87l5 = 0.730. Then we conclude that the amplitude of the conductance 

fluctuation is universal also in quantum wires and the universal value is exactly the 

same as that in metallic wires. 
In the presence of the boundary roughness scattering, as seen in Fig. 24, the ampli

tude of the conductance fluctuation in the universal region l « L « ~ is smaller than 
0. 730 in the absence of magnetic fields . This is presumably because the mean free path 

in the highest sub band is extremely small (about two orders of magnitude smaller than 

that of the lowest subband), and the perturbational treatment fails. 

3.4 Conductance Fluctuation 

+ + 

n' n 
k'+q k 

+ 

(a) (b) 

+ + 

n n 
k k 

+ + 

(c) (d) 

+ 

n 
k 

+ 

(e) 

Fig. 29 Contributing diagrams to conductance fluctuations. Two shaded parts 
in a diagram is both cooperons or both diffusons, and the dashed line with a 
crossed symbol denotes the scattering by a single impurity. 
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3.5 Summary 

We have studied electrical transports in quantum wires by perturbational method. 

We have calculated the conductance, the weak localization correction, and the conduc

tance fluctuation . It has been shown that the conductance of quantum wires is given 

by the arithmetic average of the mean free path for each subband in agreement with 
the result of the Boltzmann transport theory, and that the amplitude of the universal 

conductance fluctuation is exactly the same as that in metallic wires. 

Chapter 4 

Distribution Function of Transfer Matrix 

In the previous numerical and perturbational studies, we have calculated the con

ductance, its fluctuation , and the localization length in quantum wires, by averaging 

them over impurity configurations. If we obtain the distribution function of conduc

tance, we can calculate any function of the conductance. 

T he exact distribution function of the conductance for 1D wires derived by 

Abrikosov has already been shown in Eq. (2.28). There have been several attempts 

to calculate the distribution function for multi-channel systems. Dorokhov [86] has ob

tained the Fokker-Planck equation for N one-dimensional chains weakly coupled with 

their neighbors and studied the localization of an electron. :vlello et al [13, 15 , 100, 101] 

and Pichard et al [87, 102, 103] have used the maximum entropy method in determining 

the distribution of the transfer matrix in the quasi-one-dimensional metallic wires and 

studied conductance and its fluctuation, and the localization. For quantum wires where 

the one-dimensional subbands are well-defined, it is possible to ex-tend the method of 

Dorokhov, as will be shown in this chapter [104, 105]. 

In Sec. 4.1, we describe the model and derivation of the Fokker-Planck equation for 

the distribution function in quantum wires. In Sec. 4.2, the conductance, the conduc

tance fluctuation, and the localization length are calculated by use of the Fokker-Planck 

equation obtained in Sec. 4.1. In Sec. 4.3, we compare the calculated results with the 

numerical results shown in Chapter 2 and give some discussions. Finally we give a brief 

summary in Sec. 4.4. 

4 .1 Differential Equation of D istribut ion Function 

We extend an analytical method used by Dorokhov [86] to derive a Fokker-Planck 

equation of the distribution function of the conductance in quantum wires. We consider 

the same system as that in Chapters 2 and 3. The symmetry fac tor /3 is defined for 

a system without (8 = l ) or with (B = 2) magnetic fields or with st rong spin-orbit 

scattering ({3 = 4). 
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First we define a transfer matrix T for the disordered region as 

(4.1) 

where I, I' and 0 , 0' are incoming and outgoing fluxes. The transfer matrix can be 

parametrized as [86, 106] 

T _ [u 0] [cosh(f/2) sinh(f/2)] [x YO], (4.2) 
- 0 v sinh (r / 2) cosh(f /2) 0 

where r is an N x N (2N x 2N) real diagonal mat rix and u, v, x, and Y are all N x 

N (2N x 2N) unitary matrices for (3 = 1 and 2 (for (3 = 4). In case of f3 = 1, v = u• 
and y = x•, and in case of (3 = 4, v = ~<u* "'T and y = ~<x* "'T where "' is defined by 

~<= [-tay 0 l' -wy= [~ ~1 ] , 
0 -tay 

(4 .3) 

and 2N X 2N matrix r for (3 = 4 has diagonal elements in pairs r!, r] , r2 , r2 , ... ' r N , rN 

and "'T is the t ransposed matrix of "'· 
Under this parametrization, the transmission matrix t and the two-terminal, mul

t ichannel version [53-57] of the Landauer formula [58] can be expressed as 

t = u cosh(f /2) x ' 
(4 .4) 

As seen from Eq. (4.4), the conductance is determined only by the parameter r. 

It is very difficult to derive a Fokker-Planck differential equation for the distri

bution function, because the transfer matrix contains t oo many parameters and the 

differential equat ions become a set of complicated coupled equations of these param

eters. Therefore we make two assumptions: (A) r , u ,x(,v, y ) are statistically inde

pendent of each other and the distribution function is given by W(L; r , u, v, x, y) = 

W(L;r)W(L;u)W(L;v)W(L;x)W(L;y). (B) All un itary matrices u,x(,v,y) are 

equally probable, i.e., are distributed according to the im·ariant measure of the uni

tary group [107], with which the second and fourth moments of elements of N x N 

unitary matrix u are given by 

( ui,uJ'k')u =N-
1
6jj'6kk' • 

(uj ktlfmtlj ' k'ui'm') U =(N2
- 1)-J (bjj'bll'bkk'bmm' + bjl'blj'bkm'bmk') (4.5) 

- N-J (N2 
- 1)-J (bjj'bll'bkm'bmk' + bji'blj'bkk'bmm' ), 

where (· .. )u = J du ... denotes the average with t he invariant measure of the unitary 

group U(J','). T he Yalidity of these assumptions will be discussed later. 
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Under these two assumptions, the expectation value of an arbitrary function of 

r , U = { u, x(, v, y)} is defined in terms of the distribution function W(L; r , U) = 

W(L; f )W(U ) for the sample length L by 

(F(f, U ))L = J dfdUF(f, U )W(L ; f,U) = J df(F(f, U ))uW(L;f) . (4.6) 

Expanding (F(f)) L+b.L = (F(f + 6.r)) L with respect to 6.f up to the second order, 

we obtain 

where (- · ·) D denoted the average over impurity configurations. Integrating by parts, 

we obtain a Fokker-Planck equation for W(L;f) as 

oW(L;r) 
aL 

In order to obtain the small increment 6.f in Eq. (4.8), we add an infinitely small 

segment of length 6..£ to the system with length L. The transfer matrix of the total 

system with length L + 6.L is also written by Eq. (4.2) where r, u, v, x, yare replaced 

with r + 6..f, u + 6..u , v + 6.. v, x + 6.x , y + 6..y , and satisfies the relation 

T (r + t..r , u + 6.u, v + 6..v, x + 6. x, y + 6..y ) = T~LT(r , u, v, x, y) , (4.9) 

where T~L is a transfer matri_x for the small segment L < x < L + 6. L and given by 

T~L = 1 + i [-I++ 1+- ] - ~ [ - 1++ l+-] 2' 
-!-+ /-- 2 - 1-+ 1--

1 1 
b::::::)'"" = ----(.u±IV(L, L + 6..L)I v±), n ,jVILVv 

(4. 10) 

where V (L , L + 6.L ) is the impurity potential in the segment L < x < L+ 6..L, and !v±) 

is the solution of the Schriidinger equation H lv±) = Ep lv±) at the Fermi energy Ep 

with velocity ±vv. (v is the index of the channel n for (3 = 1 and 2, or of the channel 

nand spin a for (3 = 4.) 

Expanding Eq. (4.9) in terms of 6.f, 6..u , 6.x (, 6. v, 6..y ) up to the second order of 1 

(Born approximation), we obtain the first and second moments of the small increment 
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t.r. See Appendix A for details of derivation . The calculated result is as follows: 

(l.fi)D = cothfj ((R+-)jj(R~_)jj) D 

( (R+-)ik (R~_)ki + (R~_)ik(R+-)ki) 
+sinh f · """""' D, 1 ~ cosh f ·- coshfk 

k;<j J 

(t.rjc.rk ) D = 2 ( (R+-)jj(R~_)jj) D ojk> 

(4.11) 

where R+ - = ulJ'+-v. In calculating Eq. (4.11), we have taken into account scat

tering processes like ((""Y++) nn•b~+)n•n)D or (b+-)nn•b~-)n•n )D, which conserve the 
momentum in the x direction in a quantum wire after disorder averaging, although 

the forward-scattering terms vanish and the final result Eq. (4 .11) depends only on 

back-scattering processes. 
Using the assumption (B), we obtain the relation 

t t - 4 (/3/2)1-0jk 
( (R+-)jk(R+_)kj + (R+_)jk(R+-hi) D,U- ((J(N - 1) + 2)lH, (4. 12) 

where lH is defined for (3 = 1 and 2 by 

(4.13) 

and for (3 = 4 by 

(4.14) 

When we assume an impurity potential of a-function type and a hard-wall confinement 

potential in the lateral direction, lH is given by 

(4.15) 

where 1/Jn=(y) is the solution of Eq. (2.3) at E= EF with a velocity ±vn. For (3 = 1, 

IH is given by the harmonic average 

N 

1-1 = ~ """""' 1-1 
H N ~ n > 

n=l 

(4. 16) 

where ln is given in Eq. (3. 12). (We will give a comment on this result in Sec. 4.3.) lH 

is not in general the same as the mean free path of an electron in a two-dimensional 

system l = L"FT = Ft3vF/mnn·2 (vF: Fermi '"clocity). For example, Eq. (4. 16) goes to 
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1. 271 in a large N limit when B = 0. 

Substituting Eqs. (4.11) and (4. 12) into Eq. (4.8), we finally obtain the desired 

Fokker-Planck equation for the distribution function W as 

2 ~ a [ a 2 ~ Aj Ak ] (3(N-1)+2~aA(1 -Ai) at::.Ai- f3 ~A-A W (s; A), 
)=1 J J ky!j J k 

aW(s;A) 

as 

(4. 17) 

with (3 = 1, 2,4, where s = L / IH , and Ai = 2/(1 + coshfj) (we order Ai as A1 > 
A2 > · · · > AN) . Exactly the same equation has been obtained in the case of a quasi

one-dimensional metallic wire for (3 = 1 and 2 by Mello et al [13, 15, 100] by use of the 

so-called maximum entropy method. However the mean free path has been introduced 

just as a parameter in this method. 

4. 2 Calculated Examples 

It is difficult to obtain the general solut ion of W(s; A) from Eq. (4. 17), but several 

important transport quantities can be calculated. \Vhen the system is not in the strongly 

localized regime L « ~ (~: localization length) and the channel number is sufficiently 

large, we can use a 1/N expansion method proposed by Mello et al [13, 15]. Details of 

calculation are shown in Appendix B. For (3 = 1 and 2, the calculated results are the 

same as those by :VIello et al., if we replace the mean free path used in Refs. 13 and 15 

with lH given by Eq. (4 .13). The averaged dimensionless conductance per spin becomes 

( ) = __1fj1_ = __!!_ _ ~ 2- f3 _s_
3
_ O (~) L2!_;f NlH _ 8131 8134 (4_18) 

g 5
- (e2/h) 1 + s 3 (3 (1 + s) 3 + N L 3 + 6 · 

The first term corresponds to the Ohmic conductance and the second term to the 

correction according as the symmetry of the system. T he variance of the conductance 

is given by 

( ?) 2 2 ( 1 3 1 ) ( 1 ) 
Var(g) = g- 5 - (g) 5 =fJ 15-5(1 +s)5+3(l+s)6 +ON' (4. 19) 

and the root-mean-squared fluctuation, including the factor 2 for spin degeneracy, is 

given by 

{ 

0. 730 for (3 = 1 
< ? ty=t::\( ) L»IH,N»J 0 516 f (3 ? ug = -V var\9J ---+ = . or = _. 

0.365 for (3 = 4 
(4 .20) 

This result shows that, in the length region lH « L « ~ and in the large channel limit 

N » 1, the amplitude of the conductance fluctuation is universal also in a quantum 

wire and moreover the universal values are exactly the same as those in a metallic wire 

obtained by the perturbation treatment [8- 11] for all (3. 
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In the localized region, we have A1 » A2 » · · · » AN, and only one of A;'s is 

dominant in the conductance (g ~ A1). In this case the differential equation for the 
distribution function Eq. (4 .8) is reduced to the one-channel problem 

8W(s;g) = [~( 1 - )~ 2] w(- · ) ( 1 ) 88 8g 9 8g 9 s,g s=s€, 

where € is the localization length given by 

( 
8 )-~ ~ { (N+ 1)1H /2 

-- (lng) = NlH 
8L 

L~oo (2N - 1)lH 
€= 

((3 = 1) 
((3 = 2) 
((3 = 4) 

N»l __, 

(4.21) 

(4.22) 

Equation (4.21) bas been solved exactly by Abrikosov [75], and the result is given by 

Eq. (2 .28) . Exact conductance, fluctuation, and distribution are also shown in Figs. 6 

and 7. In a large channel-number limit the localization length € is proportional to the 

channel number and the symmetry factor, which is the same result given by several 

authors [86, 102, 108]. It is also noted that for a strictly one-dimensional wire (N = 1), 

€ = lH regardless of (3. T his is the result of the fact that the one-dimensional system 

always has the time-reversal and the spin-rotation symmetry. 

4.3 Comparison with Numerical Results and Discussions 

The above analytical results are compared in Figs. 30-33 with numerical results 

obtained in Chapter 2. In general the analytically calculated conductance is in good 

agreement with, but always a little smaller than the numerically calculated conductance. 

The analytically calculated localization length in Fig. 30 is considerably smaller than 
the numerical result. This deviation arises because the unitary matrices parametrizing 

the transfer matrix in Eq. (4.2) are not always distributed according to the invariant 

measure of U(N) like the assumpt ion (B). Under this assumption, the transmission 

probabilities Tn for the channel n is obtained as 

Tn = (( tt1)nn)s = :L(A; )s (J un; J2 )u = ~ :L(A;)s = (~s, 
i i 

(4.23) 

showing that each channel gives always the equal contribution to the conductance. 

Actually the numerical results in Chapter 2 seem to show that the distribution function 

of the unitary matrix deviates from the assumption (B) in such a way that the channel 

with a larger mean free path ln tends to carry a larger current. 

As seen in Eq. (4. 17), the wire length is scaled by lH. In the absence of magnetic 

field , IH is equal to the harmonic averag;.e l}/ = I: 1;:; 1 / N. This becomes quite unrea

sonable in the case that some channels have mean free paths much larger than others 

like in the presence of strong boundary-roughness scattering as mentioned in Chapter 2. 

In this case, both conductance and localization length arc expected to be determined by 
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Fig. 30 Length dependence of conductance for various occupied channel numbers at 
B = 0, where l is the mean free path of an electron in a 2D system. Solid lines and 
upward arrows correspond to the analytically calculated conductance and localization 
length respectively, and symbols and downward arrows are the numerically calculated 
conductance and localization length respectively. 
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Fig. 31 Length dependence of fluctuation without and with a magnetic field. Solid line 
represents the analytical result with f3 = 1 and dotted line with f3 = 2. Symbols are the 
numerical results. 
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Fig. 32 Magnetic field dependence of conductance where we= eB/ m. Solid line repre
sents the analytical result with (J = 2. The number of occupied subbands N changes at 
the magnetic fields indicated by the vertical dotted lines. 
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channels with a larger mean free path. In the present result , however , they are deter

mined by the harmonic average dominated by channels with a shorter mean free path . 

In Chapter 3, we showed that the mean free path appearing in conductance is given by 

the arithmetic average lA = "f:)n/N (~ 1.61 in the large N limit and B = 0). This 

arithmetic average may be more appropriate as the length scale, since it does not seem 

to suffer from such difficulties. Further study, including going beyond our assumptions, 

is highly needed to understand this interesting and important problem. 

4.4 Summary 

We have studied the electrical transport in quantum wires analytically by use of 

the distribution function method. It has been shown that in the large channel limit 

the conductance fluctuation in a quantum wire is universal in the length region larger 

than the mean free path and shorter than the localization length and that the universal 

values are exactly the same as those in metallic wires . 



Chapter 5 

Persistent Currents in a Quantum Ring 

In this chapter, we calculate persistent currents in a quantum ring by use of a 
diagrammatic perturbational method in order to examine the effect of well-defined sub

bands [43]. First we give a review of the previous works on persistent currents in metallic 

rings in Sec. 5.1. In Sec . 5.2 we describe the modeL In Sec. 5.3 we calculate the typical 

currents. We also calculate in Sec. 5.4 the averaged current which is related to the root

squared-mean of fluctuation of the number of electrons. F inally we give conclusions in 

Sec. 5.5. 

5.1 P er sist ent Currents in a M etallic Ring 
Equilibrium persistent currents in normal metallic rings have attracted much atten

tion since Biittiker , Imry and Landauer [28-30]. In the one-dimensional ring geometry, 

the presence of enclosed flux ¢ imposes a boundary condition on the wavefunction of 

an electron E(x + L) = exp(2r.i¢/¢o)E(x), where L is the circumference of the ring, 

E(x) = L -l/2 exp(ikx) for an ideal ring, and ¢0 = hie. With this boundary condition, 

the eigenvalue of the wavenumber kn and the energy En are given by 

kn= 
2
; (n+ :J, 

En=;: c;r (n+ :J2

, (n=0,±1,±2, ··). 

Then the persistent current in an ideal ring is calculated by 

Substituting Eq. (5. 1) into Eq. (5.2), we obtain 

I _ L <l>o 
{ 

_!2'.£.~ 

- -T(~-1) 
for odd N. and -112 s;-!; s; 112, 

for even .Ill. and 0 s; -£; s; 1, 

(5. 1) 

(5.2) 

(5.3) 

5.1 Persistent Currents in a Metallic Ring 

where N. is the number of electrons. Eq. (5.3) can be expressed as a Fourier sum 

= 2!, 
I = L 

1
: cos(lkFL) sin(21r.¢/¢0 ), 

1=1 
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(5.4) 

where N. = kFLir.. Then the typical amplitude of persistent currents in a ring is 

estimated by I ~ ev F I L and the dominant periodicity is ¢0 . This result is easy to 

understand if we note that T = LlvF is the time for an electron to make one turn 

around the ring and the value Io = evFIL = eiT corresponds to the current carried 

by a single electron in the level near E = EF. In the presence of weak scattering, we 

can obtain I ~ Io(l l L) if we replace T with TD = L2 I D (D : diffusion constant) which 

corresponds to the time for an electron to move diffusively around the ring. 
Experimental observation of the persistent currents was first made by Levy et al. 

[31] in the magnetization response of 107 isolated Cu rings with the ring circumference 

L ~ 2.211-m, the channel number in the transverse direction N ~ 17000, and the mean 

free path I ~ 0.0211-m at a low temperature. T hey found that the average current 

has the value of order of 3 x w- 3evFI L per ring and the periodicity of <Pol2, not 

¢o. This observation of the periodicity-halving was very surprising, although it was 

already predicted by Cheung et al. [33] and Bouchiat and Montambaux [34]. By the 

experimental evidence of <Pol2 periodicity, the importance of thermodynamic ensemble 

of the system to average has been clearly recognized. The experimental measurement 

was done under the condition of a fixed number of electrons in each ring ( = the canonical 

ensemble), while the conventional diagrammatic method is applied for the system with 
a fixed chemical potential(= the grand-canonical ensemble). In an ideallD ring, we see 

from Eq. (5.4) that the lth Fourier coeffecient is proportional to cos(lkFL) = cos(lr.N.). 

If l is odd, this factor changes its sign as a function of N., while for even l it always 

gives unity. In the many-ring configuration, the number of electrons varies randomly 

from ring to ring, and only terms with even l survive. In the presence of weak disorder, 

it was shown [35-37] that the averaged current in the canonical ensemble is proponional 

to the root-mean-squared fluctuation of the number of electrons in the grand-canonical 

ensemble and that the averaged current had the ¢ 012 periodicity and the magnitude 

was given at T = 0 by ::: (evFIL)( 1IN). This magnitude of currents was smaller 

than the experiment by about order 2. Ambegaoker and Eckern [38] has taken into 

account the electron-electron interactions and also obtained the ¢012 periodicity. But 

the magnitude of currents they obtained is still smaller than the experiment by about 

order one, although there is an ambiguity in selecting the electron-electron cou piing 

constant which is experimentally unknown. 

Recently another experiment was done by Chandrasekhar et al. [32] in a single 

ring of Au. The experiment was performed in two gold rings of diameters (a) 4Jlm and 

(b) 2.4J1m and (c) a gold square loop of dimensions 1.4J1m x 2.6Jlm with the channel 
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number N ~ 50000 and the mean free path l ~ 0.07fLm. The magnetic response had 

a fundamental period of ¢0 and the amplitude of the oscillations corresponded to a 
persistent current at T = 0 of (0.3 ~ 2.0)evF/ L . In the case of a single-ring system, 

the amplitude of the oscillation is calculated by the root-mean-squared fluctuation of 

currents 812 = (! 2 ) - (J)2 (which we call typical current) [39-41] It is shown that the 
difference of the ensemble is not so important for the typical current [34], and the typical 

current has been calculated by the grand-canonical ensemble in a normal metallic ring, 

given by 81 :::= (evF/L)(l/L) with a ¢0 periodicity. Using parameters obtained in the 
experiment, the amplitude of currents at T = 0 is estimated as (a) 0.12nA, (b) 0.28nA, 

and (c) 0.25nA. The observed values in the experiment are (a) 3±2nA, (b) 30±15nA, 
and (c) 6±2nA, which are larger than the prediction by factor 25 to 100. Eckern 
and Schmid [42] have considered typical currents in the presence of electron-electron 

interactions and obtained 15! :::= (evF/L) and the dominant periodicity of ¢o. But it 
is pointed out that, in addition to the ambiguity in determining the electron-electron 
coupling constant, they have taken into account only some of the relevant diagrams and 

their treatment is not appropriate [41]. 

5.2 Theoretical 11ode l 

We consider a two-dimensional ring of circumference L in the x direction, confined 

by potential in the y direction and threaded by a static magnetic flux ¢ inside the ring, 
as shown in Fig. 34. Without loss of generality, additional dimension (i.e., z-direction) 

can be omitted for simplicity. We assume that the ring has a large aspect ratio, and 
neglect the influence of curvature of ring and the effect of a magnetic field threading in 

the plane of the ring. 

y 

Fig. 34 Schematic ring with a circumference of L in 

the x direction . The ring is threaded by a magnetic 

flux¢. 
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We consider the same Hamiltonian Eq. (2. 1), except that we adopt the gauge where 

the vector potential A points in the azimuthal (x) direction. The effect of a magnetic 

field can be eliminated by the gauge transformation. However , the wavefunction has a 

flux-periodic boundary condition in the x-direction as 

~nk(x + L , y) = exp(27ri¢/¢o)~nk(X, y). 

With this boundary condition, the wavenumber k is given by 

27r 
k = L (nx + ¢/¢o), (nx = 0, ±1 , ±2, .. ·). 

(5.1) 

(5.2) 

By following the same arguments as in Sec. 3.1 , we can show that, in quantum rings, 

the perturbated one-particle thermal Green function is diagonal with respect to the 

subband index and obtain in the Born approximation as 

(5.3) 

where (nk = li2 k 2 /2m - li2 k}/2m +En and ht:m is the Matsubara frequencies for the 

fermion E:m = (2m+ 1)7r I P' = (2m+ 1)7rkaT and r n is the imaginary part of self-energy 
of an electron in the channel n given by Eq. (3.9). 

The ladder diagrams for finite temperatures in Fig. 35 can be obtained in the same 

way as shown in Sec. 3.3. We obtain the cooperon and the diffuson as 

4fnfn' ( 2 )-1 
Cnn•(q, l"-'j l) = Dnn•(q, lwj l) = 21rN(O)L Dq + lwjl , (5.4) 

where wi = 27rj / P', N(O) = I:(l / 1rliv;;) is the total density of states (per spin) at the 
m 

Fermi energy, and D = (1/2" N (0)) I: v;;;r m is the diffusion constant. 

it:, it:, 
n,k n,, k , n-,, k, n', k' n, k n,, k, n-,, k, n', k' 

' ' ' ' ' 
Cnn'(q,i wJI)= * * * Dnn'(q,iw))= * * * ' ' ' ' ' ' ' ' 

n n, n-, n n n, n, n 
-k+q -k,+q -k,+q -k'+q k+q k,+q k,+q k'+q 

it:,+iWj i£m+iC0 

Fig. 35 Cooperon ladder and diffuson ladder at finite temperatures. 
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5.3 Typical Current 

The thermodynamic equilibrium current is given in terms of the thermal Green 

function by 

I=~ LLGn(k,it:m)I(k) , 
nk f:rn 

(5.5) 

where I(k) = - ev/ L = -ehk/mL . Squaring and averaging over impurity configura

tions, we obtain the following expression. 

(5.6) 

The diagrams most contributing to the typical current 812 = (12
) - (1)2 are shown in 

Fig. 36, in which two current bubbles are connected by impurity lines. 

The contribution from diagrams Fig. 36(a1) and (a2) is expressed by 

(6/
0

)
2 = ;

2 
L L I (k) 2 (Gn(k , icm))

2 
(Gn(k, icm + iwj))

2 

E:"' (£m. +w,)<O n,k (5. 7) 

From the condition of the wavenumbers k , k' in Eq. (5.2), the momentum transfer 

q = k ± k' of a ladder should satisfy q = k- k' = (2rr / L )nx for a diffuson and q = 
k + k' = (2rr/ L )(nx + 2¢/¢0 ) for a cooperon (nx = 0, ±1 , ±2, · ·} The vertex part is 

calculated as 

(5 .8) 

Substituting Eqs. (5.4) and (5 .8) into Eq. (5 . 7) and summing over the sub band index 

n, we obtain 

(5 .9) 

where b (q, \w11) = C (q, \w1\) = (Dq2 + !w1!r 1 
In Eq. (5.9), the subband-dependent 

parameters, v?: and r n, are collected together into two parameters, the diffusion con

stant D and the density of states N(O). (It is noted that the same thing happened in 

Chapter 3.) Eq. (5.9) is exactly the same expression as that obtained for a metallic 

ring, if D and N (0) are replaced with those for a metallic ring. 

The q summation in Eq. (5.9) can be done in the same way in case of metallic 

rings and details of the calculation is shoKn in Appendix C. Changing the summation 

(al) 

ic,. 

(b l ) 

5.3 Typical Current 

n' 
k' 

(a1) 

n · 
k' 

(b2) 

Fig. 36 Diagrams contributing to the typical current 

61, where (61) 2 = (12
) - ( / ) 2 The current vertex is 

denoted by a wavy line, and a shaded part with D or C 
represents a diffuson or cooperon ladder respectively. 

where we defined a]= \w1\ (L/2rr) 2 /D and <p = ¢/¢0 . 

The cont ribution of diagrams (b1) and (b2) in Fig. 36 is expressed by 

X I (k' + q) (Gn• (k' + q,iom)) (Gn•( k' , iom + iw1 ))
2 

X (D~n' (q, \wj\) - C~n' (q, \wj\)) . 

The vertex part is calculated as 

61 

(5.10) 

(5.11) 

(5. 12) 

Substituting Eqs. (5.-1) and (5.12) into Eq. (5.11 ) and summing O\'Cr the subband index 
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n, n', we obtain 

(5. 13) 

The q summation can be done in the similar way as before (see Appendix C), and we 

obtain 
2k T = w · 2e2 = . 2 -2,o;p 

(6h)2 = _ B_ ~ ...2.-~ (27rp0ij- 1) sm 27rprpe . 
h j;J 27r 7r0ij p;J 

(5.14) 

By adding Eqs. (5. 10) and (5. 14), total typical current is given by 

2k T = w· = 2"" (6!) 2 = _ B_ ~ ...2.4e2 ~psin2 21rprpe- ,P. 

h j;J 27r p;J 
(5 .15) 

a} = lwji(L/27r)2/D = j(L /Lr) 2 , where thermal length Lr is defined by Lr_ = 
jhD/kaT. At a sufficiently low temperature (Lr » L), we can change Wj summat1on 

to integral over x = Wj, 

~ 2kaT Wj -hpo, -1= dx-1-xe-pL.,rx/8 = i_ (E-) 2- , w - h- 27r e - a 27r2 7r2 £2 p4 
j;J 

(5 .16) 

and obtain 

(61)
2 = ~; ( ~ Y ~ ~ sin

2 
27rpif>/¢o 

(5. 17) 

When Lr « L, we can easily see from Eq. (5. 15) that only P 

summation is dominant and the typical current is given by 

1 term in the p 

2 

(6!)2 = _;. ( eD) e-hL/Lr sin2 27rif>/if>a. 
7r - L~ 

(5. 18) 
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5.4 Averaged Current in a Sing le Ring 

Next we calculate the average current (I) in a single ring. It has been pointed out 

[33, 35-37] that the there is a significant difference in the averaging results between the 

canonical and the grand-canonical ensemble. In a metallic ring, the average current 

for the canonical ensemble is given by (I)~ (evF/L)(1/N), while the grand-canonical 

ensemble averaging causes the exponentially vanishing factor exp( -L/l). 

In order to calculate the averaged current in a ring with a fixed number of electrons, 

we use the fact that the averaged current I (N,) in the canonical ensemble with a fixed 

number of electrons N, is expressed in terms of the number fluctuation 6N,(J.t) in the 

grand-canonical ensemble with a fixed chemical potential J.t [35-37] , such as 

tl 1 a 2) (I (N,)) = - 2 \ BQ> (6N,(J.t)) , (5.19) 

where tl = ((8N,/8J.t)q,) is the mean level spacing and, for a quantum ring, it is given by 

tl -I = N(O)L = L:~;J (Lj1rhv~). The thermodynamic equilibrium number of electrons 

is given by 

(5.20) 

Squaring Eq. (5.20) and averaging over disorder, we obtain the largest contribution as 

( (6N,)
2 J = ; 2 ~ L L (Gn(k, icm))

2 
(Gn( -k + q, icm + iwj )) 

<m (<m+w, }<On, k ,n',k' q (5.21 ) 

X (Gn' ( -k' + q, icm)) (Gn• (k' , icm + iwj))
2 c~n' (q, lwj I)' 

which is schematically shown in Fig. 37. It is noted that the diagram contains only 

cooperons because diffusons without the dJ dependence do not contribute to the average 

current. 

i £m 

n 
k' 

Fig. 37 Diagram contributing to the averaged current 

J(Ne) for a fixed electron number N,, where the verte.,-..: 

is the unit operator denoted by a zigzag line. 
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The calculation of Eq. (5.21) can be performed in the similar way as the typical 

current. The vertex part is evaluated as 

-iL 
"' (Gn(k, ic:m)) 2 (Gn( -k + q, ic:m + iwj)) = 2TwFf2 · 
L.._. n n 

k 

Then Eq. (5.21) is reduced to 

( (8Nel2
) = ;2 L L C

2 
(q, lwjl), 

En; (E..n +w; )<0 q 

(5.22) 

(5.23) 

where subband-dependent parameters are collected again into the diffusion constant D. 

The q summation can be performed in the similar way as before (see Appendix C), and 

we obtain the averaged current as 

eC:. ( L ) 
2 

1 
00 

. -ha p (I (Ne)) = - - L ~ LP(1 + 27rpaj) sm47rp<pe ' . 
47rli Lr w;>O a; p=l 

(5.24) 

For Lr » L, the summation over Wj results in 

(J (Ne)) = 2:~7i f sin 47rpif;/¢o, 
p=l 

(5.25) 

and for Lr « L, 

et:.(£) 2
. -2-rrLL 

(J (Ne)) = 2h Lr sm 47r¢/¢oe 1 7 
· 

(5 .26) 
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5.5 Conclusion 

We have seen that the typical current Eq. (5.15) and the averaged current Eq. (5.24) 

for a quantum ring become exactly the same expression as those for a metallic ring, if the 

diffusion constant D and the mean level spacing t:. for a quantum ring are replaced by 

those for a metallic ring. If we assume a hard-wall confinement potential and estimate 

the diffusion constant D and the mean level spacing t:. in a large channel limit N » 1, 

we find 
N 

t:. -l = N(O)L = L Lj1r1iv~ -+ N L /2hvF = (mj21rh2 )LW, 
n::::;l 

(5.27) 
N 

L(v~/fn)/27rN(O)-+ v}r/2, 
n = l 

where V F and r are the Fermi velocity and the elastic-scattering time of electrons in a 

2D system. Then t:. and D in a large channel limit are the same those for a 2D metallic 
ring. 

From Eq. (5.17), the typical current 6! at T = 0 has a magnitude of order eD /£2 -+ 

(evF/ L )(l/L) where lis t he elastic mean free path in 2D system given by l = vn, and 

from Eq. (5.25), the averaged current at T = 0 is estimated as et:. -+ (evF/L)(1 / N). 

Therefore, in a large channel limit , both the typical current and the averaged current are 

the same value as those for a 2D metallic ring. In conclusion, the well-defined subband 

structure in a quantum ring makes no effect on persistent currents. 



Chapter 6 

Summary 

In this paper we have studied typical mesoscopic phenomena, like conductance fluc

tuations and persistent currents, in a quantum wire and ring by use of several methods 

of calculation, i.e., numerical, perturbational, and distribution-function method. 

In Chapter 2, we have numerically studied conductance fluctuations in quantum 

wires in the presence of magnetic fields, spin-orbit interaction, and boundary roughness. 

It has been shown that (i) when only a few subbands are occupied in the absence of 

magnetic field and spin-or bit interaction and in the presence of bulk impurities, there 

is no length region where the amplitude of fluctuations stays independent of L. When 

many subbands are occupied, ~ is much larger than l and there appears a universal 

region in l::; L::; ~ where the universal value is close to that obtained for metallic wires 

by the perturbational method. We have also demonstrated that the crossover from 

quantum wires to metallic wires occurs when the broadening exceeds the subband en

ergy separations. (ii) In the presence of a weak magnetic field or spin-orbit interaction, 

the amplitude of the conductance fluctuation is reduced in the universal region and the 

reduction-factor of the fluctuation is close to 1/-/2 and 1/2 in the presence of mag

netic fields and spin-orbit interaction respectively. (iii) Because of the peculiar nature 

of boundary-roughness scattering, the conductance fluctuation exhibits a different be

havior from that for bulk impurities when the length is smaller than the localization 

length, i.e. , a singular enhancement of the fluctuation in the nearly ballistic region and 

the reduction of the fluctuation in the universal region from that of 1D metallic wires. 

In Chapter 3 we have studied electrical transports in quantum wires by diagram

matic perturbational technique. We have calculated the conductance, the weak localiza

tion correction , and the conductance fluctuation. It has been shown that the amplitude 

of the universal conductance fluctuation is exactly the same as that in metallic wires. 

In Chapter 4 we have studied the electrical transport in quantum wires analytically 

by use of the distribution function method. It has been shown that in the large channel 

limit the amplitude of the conductance fluctuation in a quantum wire is universal in the 
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length region larger than the mean free path and shorter than the localization length, 

and that the universal values are exactly the same as those in metallic wires for all the 
symmetries of the system. 

In Chapter 5, persistent currents in a quantum ring have been calculated by 

a diagrammatic perturbational method. The typical current is obtained as 81 ~ 

(evF/L)(l/L) and the average current as (I)~ (evF/L)(1/N). These expressions are 

the same as those for a metallic ring, and the well-defined subband structure makes no 
effect on the magnitude of persistent currents. 



Appendix A 

First we consider the case f3 = 1 and 2. Multiplying Eq. (4.9) by its Hermitian 

conjugate from the right, we obtain the equation 

[
1+ul t:.u 0 ] [cosh(f+t:.f) sinh(f+ t:.r)] [1+t:.ulu 

o 1 + vlt:.v sinh(r + t:.r) cosh(r + t:.r) 0 

= (1+ iR _ ~R2 ) [cosh r sinh r] (1 _ iRt _ ~Rt2), 
2 smh r cosh r 2 

where the matrix R is defined by 

[
-uLy++u R-

- -Vt.J'-+U 

(A. 1) 

(A.2) 

In order to calculate t:.r, t:.u, t:.v, t:.x, t:.y up to the second order of 1 (Born approxi
mation), we separate the small increment t:.P(= t:.r, t:.u, t:.v , t:.x , t:.y) into two parts, 
t:.P = t:. 1P + t:.2P, where t:. 1P contains terms of the first order of 1 and Ll2P contains 

terms of the second order of I· First we will calculate t:. 1P. Expanding Eq. (A. 1) in 
terms of t:.r , t:.u, t:.v , t:.x and t:.y up to the first order of 1, we obtain the equation of 

the sub-matrix in the upper-left block of Eq. (A. 1) as 

sinh rt:.Jf+ (u1 t:.lu] cosh r +cosh r [t:.lu1u] = 

i(R++ cosh r + R+- sinh r) - i(cosh r R~+ +sinh r R~_). 
(A.3) 

The diagonal part of Eq. (A.3) is calculated as 

sinh r 1t:. 1r 1 +cosh r 1 ( [ut t:.1 uL
1 

+ [t:.1 u1uL1) = i sinh r 1 { (R+- )11 - (R~_)11 }, 
(A.4) 

where we used the relation R+- = -R~+' R++ = R~+· As the matrix u must satisfy 
the unitarity (ul + t:.ul)(u+ t:.u) = 1, we obtain the relation 

(A .5) 

From Eq. (A.5), we can see that ul t:. 1u + t:. 1 ul u is the second-order contribution, and 

we obtain t:.1r as 

t:.1r1 = i { (R+-)11 - (R~_)11 }. (A.6) 

The off-diagonal part of Eq. (A.3) is given by 

[ 1 J _. . _ (R+-)jksinh rk-sinhr1 (R~_)1 k 
ut:.1uk-t(R++)1 k t hf hf , 

J COS j -COS k 
(A.7) 

where we used the relation ult:. 1u = -t:. 1utu up to order I· 
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Next we consider the second order of 1- The left-hand-side of the left-upper block 

of Eq. (A.1) of order 12 is given by 

. 1 2 
smh rt:.2r + 2 cosh r(Lltf) 

+ [ul t:.u] cosh r +cosh r [t:.ulu] + [ul t:.lu] cosh r [t:.luiu] 

+ [ul t:.1u] sinhft:. 1f+ sinhft:. 1r [t:. 1uiu]. 

Using Eq. (A.5), the second line of Eq. (A.8) is calculated as 

[ui t:.uL
1 

cosh r 1 +cosh r 1 [ t:.u
1uL 1 + (ut t:. 1 u cosh rt:.1 ui uL1 

= L (coshrk- cosh f 1) [uit:. 1uLk [t:. 1uiu]kj + 0 (/3
), 

k 

(A.8) 

(A.9) 

and the third line by (ui t:.l uLj sinh rjt:.lrj +sinh rjt:.lrj [t:.l ui uLj = 0(/3
). Then 

the diagonal part of Eq. (A.8) is obtained as 

sinh r 1t:.2 r j + ~cosh r 1 (t:.l r 1)
2 

+ I: (cosh rk- cosh r 1) [u1 t:.l uL k (t:.1 u1 uJ kj" 
k 

(A.lO) 

In calculating the right-hand side of Eq. (A.1), we only have to take into accounts 

scattering processes like ((l++)nn'b~+)n'n)D or (b+-) nn'(/~_)n'n)D , which conserve 
the momentum in the x direction in a quantum wire after disorder averaging. Ignoring 

non-contributing terms, we obtain the right-hand side oft he left-upper block of Eq. (A.1) 

of order of 1 2 as 

L (cosh rk- cosh r 1) (R++)jk(R~+)kj + L (cosh rk +cosh rj) (R+-)jk(R~_)kj. 
k k 

(A.ll) 

Then the first moment of (t:.r) D = (t:.2r) D is calculated from Eqs. (A.lO) and (A.ll ) 

as 

(t:.f1) D = coth fj \ (R+-)jj (R~_)jj) D 

. \ (R+-)jk(Rt_)kj + (R~_)jk(R+- ) kj) D (A.12) 
+~GL , 

kh cosh r 1 -cosh rk 

and, squaring Eq. (A.6), the second moment (t:.r1t:.rk )D = (t:.Jr1t:.tfk )D as 

Adding Eqs. (A. 12) and (A. l3), we obtain Eq. (4. 11) 

In the presence of strong spin-orbit scatterings (/3 = 4), the symmetry of the system 

is symplectic. In this case, a convenient way of calculation is to express numbers in terms 
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of quaternions. A quaternion is itself 2 x 2 matrix, given by 

(A.14) 

where, for (JJ-, v, >-) as an even permutation of (1, 2, 3), 

7 1 = [ ~ ~i] , 72 = [ ~ -0
1

] , 73 = [ ~i ~i] , (A. 15) 

(rp.) 2 = - 1, TJ.J.Tv = -TvTJ.J. = T)... 

Any 2N x 2N matrix with complex elements can be cut into N 2 blocks of 2 x 2 matrices 
and considered as an N x N matrix with complex quaternion elements. 

For a quaternion q given by Eq. (A.14), we define a "conjugate quaternion" by 
q = q0 - (q · 7), its "complex conjugate" by qc = q0 + (q* · 7), and the "Hermitian 
conjugate" by qt = q0 + (q* · 7). q is called "quaternion scalar" when it satisfies 
the relation q = q and then is a diagonal matrix with the same matrix element qo. 

For an N x N matrix Q with quaternion elements q,.v, its transposition is given by 

(QT),.v = 72qv,.7J, its Hermitian conjugation by (Ql),.v = qz,., and its time-reversal by 
(QR),.v = qvw In the following, we denote quatern ions with greek subscripts and scalar 

numbers with roman subscripts. 
The transfer matrix for a system with the symplectic symmetry satisfies the con

dition of time-reversality for the system with spin 1/2 

T* = KT K T K = [ O "'] ) 1\. 0 l 
(A.16) 

where "'is defined in Eq. (4.3). The transfer matrix for an infinitely small segment is 
given by Eq. (4. 10), except that the matrix elements of I== are quaternions. Noting that 
Eq. (4. 10) satisfies Eq. (A. 16), we can derive the relation h+-l* = "'1-+"'T Moreover 
the matrix elements of the scattering potential must be Hermitian, i.e., ~~- = 1-+ · 

From these two relations, 1+- satisfies the condition 

(A. 17) 

Except that elements of the transfer matrix are quaternions, the derivation of the small 
increments of parameter L'>.f is almost the same as for (3 = 1 and 2. Adding the small 
segment T~L to the system with length L and expanding Eq. (4.9) in terms of small 
parameters, we obtain the same expression as Eq. (4.11 ), if we replace j and k to Jl- and 
v respectively and treat (R+_),.v = (ul-y+_uc),v as quaternions. (f1, are quaternion 
scalar with diagonal elements r j of real numbers, and we can treat them just as real 
numbers.) Noting the relation Eq. (A. 17), we can sh9w that 

(R+-)I'v = L (u,.,,)l(-y+-)l''v'U~,v = L (Uv•v) 1 b+-),•v•U~'I' = (R+-)v,. , 
1-l',v' JJ.',v' (A.18) 
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Therefore (L'>.f ,) D and ((L'>.f ,f)D are quaternion scalar. By averaging over the unitary 
matrix u, we obtain the results 

( (R+-),.,.(R~_),,.) D,U = (2N ~ l)lH X 1 2 ' 

((R+-),.v(R~_)vl' + (R~_),v(R+-)vl' \ = ( 
4 

) X 12, I D,U 2N -1 lH (A.19) 

l }/ = ~ nt l \lh+-lnTn'TI
2 

+ lh+-lnTn'ln D, 
where 12 is a 2 x 2 unit matrix. 
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By use of Eq. (4.8), the expectat ion value of p-th moment (9P)s of dimensionless 

conductance 9 = Gf(e2 /h) satisfies the following ordinary equat ion: 

where a. = d/ ds. The right-hand-side of Eq. (B. 1) contains three kinds of moment 

other than (9P)5 , then we write down equations for these moments: 

{JN + 2 - {3 
2 

as (9p- 192 )
5 

= (2f39P+1 - {J(p+ 3)9P92 + 2(2- f3 )9p- 192 

- 4(2 - f3)9P- 1 93 - (2- {J)(p- 1)9p-29i) 
5 

+ (8(p - 1)9P-2(93- 94) + 2(p -1)(p- 2)9P- 3 (9~ - 9293)) 5 , 

{JN + 2 - {3 
2 

as (9p- 193)
5 

= (-{J(p+ 5)9P93 + 6f39P92- 3f39p- 19i} 5 

+ (2(p -1)(p - 2)9P-393(92- 93) + 12(p - 1)9P- 2(95 - 94) 

- 2(2- {J)(p - 1)9p-29293 - 18(2- f3 )9p- 194 

+ 12(2- f3) 9P- 193 ). ' 

{J N +
2
2 - {3 a. (9P- 29D. = ( - fJ (p + 6)9p- 19i + 4f39P92). 

+ (2(p- 2)(p - 3) 9p-4 9~ (92 - 93) - 16(p- 2)9p-392 (94- 93) 

- 169p-2(95 - 94)- (2- {J)(p- 2) 9P- 39~ 

-4(2 - f3)9p- 292(293- 92)) s. 
(B.2) 

We can see that new kinds of moment appear in Eq. (B.2), and it seems impossible to 
continue to write down and find the general solution of these coupled equations. Instead 

we seek an approximate solution. When the channel number N is sufficiently large and 
the system is not in t he localized regime (L « NlH ) , we can expand transport quantities 
in terms of N . In t his regime, we are concerned with the moments of conductance up to 
second order and we need to obtain the first three expansion terms. For this purpose, 
we only have to calculate four quantities, (TP )s. (TP- 1T2)s. (TP- 1T3)s. and (TP- 2Ti} • . 

In t he right-hand-sides of Eq. (B.2) , these quantities are collected in the first angular 

brackets. Expansion of four quantities is as follows : 

(9P )
5 

= NPap,O + NP- 1ap,1 + NP- 2ap,2 + · · · , 

(9p- 1 92) s = NPbp ,O + NP- 1 bp,1 + NP- 2bp ,2 + ... , 

(9p- 193 )
5 

= NPCp ,o + Np- 1Cp ,1 + NP - 2cp,2 + · · · , 

(9p-29Ds = NPdp,o + IVP- 1dp,1 + NP- 2dp ,2 + · 

(B.3) 
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where the initial condit ions are 

ap,m(O) = bp,m(O) = Cp,m(O) = dp ,m (O) = c5mo· (B.4) 

Substituting Eq. (B.3) into Eqs. (B. 1) and (B.2), we obtain the coupled equations for 
a, b, c and d 

(fJN + 2 - fJ) (NPasap,o(s ) + NP - 1asap,1(s) + NP- 2asap,2(s)) 

= - fJp (NP+1ap+1 ,o(s) + NPap+ 1,1(s) + NP- 1ap+1,2(s ) + · · ·) 

- (2 - fJ) p (NPbp ,o(s) + NP- 1bp,1(s) + · · ·) 
+ 2p(p- 1) (W - 1bp-1 ,o(s) + · · ·)- 2p(p- 1) (W-1ep_ 1,0 (s) + .. ·) , 

(fJ N + 2- fJ) (NPasbp,o(s) + w-1asbp,l (s) + · · ·) 

= 2fJ (NP+ 1ap+1 ,o(s ) + NPap+1 ,1(s) + · · ·) 
- fJ (p + 3) (NP+ 1bp+1,o(s) + NPbp+ 1,1(s ) + · ··) 
+ 2(2- fJ) (Wbp,o(s) + · · ·)- 4(2- fJ) (NP cv.o(s) + .. ) 

- (2- fJ) (p- 1) (Wdp,o(s) + ·. ) + O(NP- 1), 

(fJ N + 2 - {3) (WasCp ,o(s ) + · · ) 
=- fJ(p + 5) (W+1Cp+l ,o(s) + · · ) + 6fJ (NP+1bp+1,0(s) + .. ·) 

- 3/3 (NP+1dp+ 1,o(s) + · · ·) + O(NP), 

(fJ N + 2 - /:]) (Wdp,o(s ) + · · ) 
= - fJ (p + 6) (NP+1dp+1 ,o(s) + · · ·) + 4fJ (N P+ 1bp+1,0(s) + · · ·) + O(.W). 

(B.5) 
Equating the coefficients of NP+l , NP , and NP- 1 in Eq. (B.5), we obtain the dif

ferential equations 

Osap,o(s ) + pap+ 1,o( s ) = 0, (B.6a) 

(2 - {J) asap,o(s) + {Ja. ap,1(s ) = - (2- fJ) pbp ,o(s) - fJpap+1,1(s), (B.6b) 

(2 - f:J) asap,1(s) + {Jasap,2(s) = - fjpap+1,2(s) - (2- fJ) pbp, 1(s) 

+ 2p(p- 1)bp-1 ,o(s) - 2p(p - 1)cp-1 ,o(s),(B.6c) 

a.bp,o(s) = 2ap+1 ,o(s ) - (p + 3)bp+1 ,o(s), 

(2 - {J )asbp,o(s ) + {Jasbp,l (s) = 2fjap+l,1 (s) - fJ (p + 3)bp+1,1 (s) 

+2 (2 - fJ)bp ,o(s) - 4(2 - fJ)ep,o(s)- (2- fJ) (p- 1)dp,o (s), 

a.ep,o(s ) = - (p + 5)Cp+1,o(s) + 6bp+ 1,0(s) - 3dp+ J,o(s), 

a.dp,o(s ) = - (p + 6)dp+J ,o( s) + 4bp+J ,o(s ). 

(B.6d) 

(B.6e) 

(B.6f) 

(B.6g) 
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From Eq. (B.6a) and the condition ap,o(O) = 1, we obtain 

a~n)ap,o(O) = ( - p)( -p - 1) · · · (p- n + 1), (B .7) 

and therefore the solution for ap,o ( s) is 

(B.8) 

Inserting Eq. (B.8) into Eq. (B.6d) and solving the equation, we obtain 

2 1 1 1 
bp,o(s) = 3 (1 + s)P + 3 (1 + s)P+3 · (B.9) 

Then substituting Eqs. (B.8) and (B .9) into Eq. (B.6b) and (B.6g), we find 

2 - {3 [ p 1 p p p 1 ] 
ap,J(s) = - {3- - 3 (1 + s)P- l + (1 + s)P - (1 + s)P+1 + 3 (1 + s)P+2 

2- f3 ps3 
(B.lO) 

3{3 (l +s)P+2 ' 

and 
4 1 4 1 1 

dp,o(s) = 9 (1 + s)P + 9 (1 + s)P+3 + 9 (1 + s)P+6 · 
(B.ll) 

Repeating the same procedures, we can solve the coupled equations (B.6a)-(B.6g), and 

the results are 

8 1 1 3 1 11 
Cp ,o(s) = 15 (1 + s)P + 3 (1 + s)P+3 - 15 (1 + s)P+5 + 3 (1 + s)P+6' 

_ 2 - f3 [-lOp+ 4 1 2p _ _ 1 __ 2p 1 + p + 1 ~_____,.____,. 
bp,J(s)- f3 45 (1 + s)P 1 + 3 (1 + s)P 3 (1 + s)P+ 1 9 (1 + s)P+2 

p + 3 1 5p + 27 1 p + 7 1 ] 
+ 3 (1 + s)P+3 - 15 (1 + s)P+4 + 9 (1 + s)P+S ' 

( 
2 - f3) 2 

[ llp - 9 1 -p + 1 1 5p - 5 1 
aP.2(s) = - {3- P 90 (1 + s)P-2 + - 3- (1 + s)P- 1 + - 6- (1 + s)P 

-lOp+ 3 1 5p + i 1 
+ 9 (1 + s)P+1 + 6 (1 + s)P+2 

-llp- 16 1 7p + 3 1 J 
+ 15 (1 + s)P+3 + 18 (1 + s)P+4 

2({3- 1)(4 - {3) [3p - 5 1 1 1 
+ /F p 90 (1 + s)P- 2 + 9 (1 + s)P+l 

-p 1 3p - 1 1 ] 
+ 5 (1 + s)v+3 + 18 (1 + s)P+4 · 

(B. l 2) 
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Substituting Eqs. (B.8), (B.lO) and (B.l2) into Eq . (B.3), the p-th moment of conduc
tance is given by 

(gP) = NPap,o(s) + NP-l ap,J(s) + NP- 2ap,2(s) + · · · 

= ~ - w-J 2 - f3 =-...:.p_s-,-3--;-;; + ... , 
(l +s)P 3{3 (l +s)P+2 

and the variance of conductance is calculated as 

Var(g) = (g2) - (g)2 

(B. l 3) 

= (N 2a2,o(s) + Na2,1(s) + a2,2( s)) - (NaJ,o(s) + a1,1(s) + N- 1a1,2(s))
2 

=N2 (a2,o(s)- aJ,o(sf) + N (a2,1(s)- 2aJ,o(s)aJ ,1(s)) 

+ (a2,2(s) - a1,1(s)2 - 2aJ,o(s)aJ,2(s)) + · · · 

=~ ( 115 - 5(1 ! s)5 + 3(1 : s) 6 ) + 0 (~) 
(B. l4) 

Finally, it is noted that the expansion coefficients in Eq. (B.3), such as ap,n, are 
dependent on the sample length L , and 1/N expansion used here becomes invalid when 
the sample length becomes larger than the localization length NIH, because expanded 
terms become comparable in order and 1/ N is no longer suitable for an expansion 
parameter. 
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The q summation of Eq. (5.9) is performed as follows. 

L ( D (q, lwil)- C (q, lwil)) 
q 

(C.1) 

where we defined ex] = lwil (L/2r.)2 / D and <p = ¢/¢o. To do this summation, we use 

Poisson summation formula which states that, for a given function f(z), 

~ J(" ) . r d f(z) 
L tn = t Jr z e2nz - 1' 

n;;-oo C 

(C.2) 

where the contour for this integral is shown in Fig. 38 . 

lm z 

- aj aj 
~~-~~---+tt--*---..-. Re z 

-aj- 2ic.p 
X 

Fig . 38 Contour for the integral Eq. (C.2). 

By use of Eq. (C.2), we eYaluate the second term of the last line in the summation 
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Eq. (C.1). 

~ -1 1 1 -1 L -----...,..---.,.. = i dz------~,..--
n,=-=(inx + 2i¢/¢o) 2 - ex] c ehz- 1 (z + 2i<p) 2 - ex] 

r. sinh 2r.ex · r. ( ~ ) =- J =- 1 + 2 L e-ha;p cos4r.n<p 
exi cosh 2r.exi - cos 4r.<p exi p=l ' 

where we used an expansion formula 

1 - x2 

2 
e 2 =1+2 '"' xncosne, IBI:'Or., lxi< L 

1- XCOS +X L 
n::::l 

From Eq. (C.3), we obtain for the q summation (C.1) as 

'""' (- -) 1 4r. ~ . 2 -2,.o ·p L: D - C = D(Zr./L) 2 exi ~sm 2r.p<pe ' . 

Similarly we can obtain the q summations in Eqs. (5.13) and (5.23) as 

L q2 (iJ2(q ,lwil)- (;2(q,lwJI) ) 
q 

1 ? 00 
- 7r '""' (1 2 ) . 2 2 -2,.n p 

= -::D"'2-o:(2:-r.--;/ L-::-)::-74 ex. L - r.pexi sm "P'Pe ' , 
J p=l 

and 
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(C.3) 

(C .4) 

(C.5) 

(C.6) 
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