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Duality for Dormant Opers

By Yasuhiro WAKABAYASHI

Abstract. In the present paper, we prove that on a fixed, pointed
stable curve over a field of characteristic p > 0, there exists a canon-
ical duality between dormant sl,-opers (1 <n < p — 1) and dormant
sl(p—n)-opers, and that there exists a unique (up to isomorphism) dor-

mant sl,_1)-oper.
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The purpose of the present paper is to establish a canonical duality for

dormant opers on a fixed algebraic curve of characteristic p > 0:

dormant sln—opers‘ =

dormant sl(,_py-opers

where n is an integer with 1 <n < p—1 and sl,, (resp., sl(,_,)) denotes the
special linear Lie algebra of rank n (resp., p — n).

0.1. Recall that a dormant sl,-oper is, roughly speaking, a principal ho-

mogenous space over an algebraic curve equipped with a connection satisfy-
ing certain conditions, including the condition that its p-curvature vanishes

2010 Mathematics Subject Classification.

Primary 14H10; Secondary 14H60.

Key words: p-adic Teichmiiller theory, pointed stable curves, logarithmic connections,

opers, dormant opers, p-curvature.

271



272 Yasuhiro WAKABAYASHI

identically. Various properties of (dormant) sl,,-opers in characteristic p > 0
and n = 2 were first discussed by S. Mochizuki in [14]. If n is general (but
the underlying curve is assumed to be unpointed and smooth over an alge-
braically closed field), then the study of these objects has been carried out
by K. Joshi, S. Ramanan, E. Z. Xia, J. K. Yu, C. Pauly, T. H. Chen, X.
Zhu et al. (cf. [7], [8], [9], [3]). Also, formulations and background knowl-
edge of dormant sl,-opers (or, more generally, a dormant (g, /)-opers for a
semisimple Lie algebra g and & € k) in the present paper were discussed in
the author’s papers (cf. [20], [21]). As we explained briefly in [21], §0.2,
dormant sl,-opers and their moduli, which are our principal objects, contain
diverse aspects and occur naturally in mathematics. At any rate, a detailed
understanding of them in generalized setting will be of use in various areas
relevant to the theory of opers in positive characteristic.

0.2. We shall describe the main theorem of the present paper. Let p a
prime number, n a positive integer with n < p, (g,7) a pair of nonnegative
integers satisfying the inequality 29 — 2 4+ r > 0, k a perfect field of char-
acteristic p, S a k-scheme, and X5 == (f : X — S, {o; : § — X}[_)) a
pointed stable curve over S of type (g,r) (cf. §1.3). Denote by ¢, the GIT
quotient of sl,, by the adjoint action of PGL,, (= the projective linear group
over k of rank n). In §6.1, we define a certain subset ¢, (F,)® (cf. (158)
for the precise definition of ¢, (F,)®) of the set of F,-rational points ¢, (F,)
of Fp. Let p be an element of (¢, (F,)*)*" (i.e., the product of r copies
of ¢, (F,)®). According to the discussion in §6.1, to each such g, one may
associate another element 5 of (¢, (F,)®)*". (Here, if 7 = 0, then we take
p = p* =0.) We shall write

Zzz... Zzz...
(1) Dps[mx/s (resp., Dpﬁ%,ﬁﬁ@g)
for the moduli stack classifying dormant sl,-opers (resp., dormant sl,-opers
of radii p) on X /s- Then, the main theorem of the present paper is the
following assertion (cf. Theorem 6.2.1).

THEOREM A. Suppose thatn < p— 1.
(i) There exists a canonical isomorphism

Zzz... Zzz...

* . ~
(2) 65[7%%/5 . Dpﬁ[n,X/s - Dpﬁ((p_n),%/s
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over S satisfying that @:E( | X5 © G):E X5 = id.
p—n)> 2]

(ii) By restricting @:En x50 We obtain a canonical isomorphism

* . Zzz... ~ Zzz...
(3) 65[71757%/5 ’ Dps[nrﬁvx/s - Dps[(pfn)rp_‘*vx/s

over S satisfying that @;(pw),ﬁ,%/s o G:En,ﬁ*,%/s =id.

Also, we obtain the following assertion (cf. Theorem 6.2.2), which is a
generalization (to the case of pointed stable curves) of [6], Theorem A (ii).
The unique dormant sl;,_1)-oper asserted in loc. cit. was studied explicitly
by means of (the Frobenius pull-back of) the sheaf of locally exact 1-forms.

. Zzz...
ZTHEOREM B. The structure morphism Dpﬁ[(p_n,%/s — S of
Psly1).%s
to isomorphism) dormant sl(p—1)-oper on X g.

is an isomorphism. That is to say, there exists a unique (up

One may apply Theorems A and B to the study toward explicit com-
putations of the number of dormant sl,-opers. Indeed, let ﬁgm denote
the moduli stack classifying pointed stable curves over k of type (g,r) and

Zzz... . . . .

Dps[m Zgr denote the moduli stack classifying pointed stable curves over
k of type (g,7) equipped with a dormant sl,-oper of radii § on it. Then,
Theorem A allows us to generalize the result of [20], Theorem H, which give

an explicit computation of the generic degree of Dpi:"'ﬁ, .0 OVer Mo (cf.
Corollary 6.3.1). Here, recall that since Dpi:ﬁ 9.0 is finite and generically
étale over My . (cf. [20], Theorem G), this generic degree coincides with the
number of dormant sl,-opers on a sufficiently general curve.

Moreover, by combining results in the present paper with results in
p-adic Teichmiiller theory, we will have (in §6.4) a rather explicit under-
standing of the case where n = p — 2. In particular, we will discuss (cf.
Corollary 6.4.2) the structure of the fusion ring S;?;f(‘pd) (cf. (178)) associ-

Zzz...
pvsl(p—Z)»O
— ® . Zzz... ~

p € (¢n(Fp)®)*", the generic degree of Dpﬁl(p_%ﬁ,o’r/fmow.

ated with the function (cf. (175)) assigning, to each data of radii
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1. Preliminaries

Throughout the present paper, let us fix a prime p, a perfect field k of
characteristic p (hence IF,, := Z/pZ C k), and a pair of nonnegative integers
(g,7) satisfying that 2g —2 4+ r > 0.

1.1. For a field k' over F, we shall denote by

(4) pal (resp., 2{;(/7):n>
the set of subsets of &k’ (resp., the set of subsets of k' with cardinality n).
Also, denote by

(5) N (resp., ng(l_):n>

the set of multisets over k' (resp., the set of multisets over k¥’ with cardinality
n). (For the definition and various notations concerning a multiset, we refer
to [18].) In particuler, 2 C N and 2{;('7):71 C Néﬁ(/f):n.

The symmetric group &,, of n letters acts, by permutation, on the prod-
uct k'™ of n copies of k’. The quotient set &,,\k'*™ may be identified with

N{;(L):n and, in particular, we have a natural surjection

(6) EX = (S, \K" =) N .
Let 79 := [10,1," - ,T0,n] be an element of Né“(/f):n and a € k’. Then, we
shall write
(7) TJ“ =l +a,--,Ton +a]
(resp., T = [r01—a, -+ ,Ton — al ) = N;f(lf):n.

C N

If, moreover, 7y is a subset of F,, (i.e., an element of 2];?(”7) H—)=n)»

then we shall write

(8) 70 =Fp\ 10 (CFp),

=N
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and
(9) 7—Ov = [_T071) _T0,27 MY _TO,n] (g Fp) .

Next, let r be a positive integer, and 7 := (7;);_; an r-tuple of multisets
over k', i.e., an element of the product (Nk,)x’" of r-copies of N¥'. Then, for
each @ := (a;)}_, € K'*", we shall write

(10) Fra .= (prenr_ (resp., 770 = (T._‘“);":J )

1 (2
If, moreover, 7 lies in (2?(1’_):n)x’“7 then we shall write

(11) = ()i, 7= (R )iz, and 7YX = (7))L,

all of which are elements of (2?(”_):71)”. One verifies immediately the equal-
ities

(12) (FR)* =7
and
(13) (FH* = (7%) 70,

1.2. Let T be a scheme over k (2 F,) and f : ¥ — T a scheme over
T. Denote by Fp : T — T (resp., Fy : Y — Y) the absolute Frobenius
morphism of 7" (resp., Y). The Frobenius twist of Y over T is, by definition,
the base-change Yj(}) (=Y xpp,T)of f:Y — T via Fp: T — T. Denote
by f) Yj(}) — T the structure morphism of the Frobenius twist of Y over
T. The relative Frobenius morphism of Y over T is the unique morphism
Fyr:Y — Yz(}) over T' that fits into a commutative diagram of the form

F .
y Y/T Yj(}) idy X Fp v

(14) fl f(l)J( fl

o _idr T Fr o
Here, the upper composite in this diagram coincides with Fy and the right-
hand square is, by the definition of Yir(,l) , cartesian.
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1.3. Denote by M, the moduli stack of r-pointed stable curves (cf. [13],
Definition 1.1) over k of genus g (i.e., of type (g,7)), and by fiau: Cgr —
ﬁgﬂa the tautological curve, with its r marked points s1, -+, 5, : ﬁg’r —
¢, Recall (cf. [13], Corollary 2.6 and Theorem 2.7; [5], §5) that 9, may
be represented by a geometrically connected, proper, and smooth Deligne-
Mumford stack over k of dimension 3g—3+7r. Also, recall (cf. [10], Theorem
4.5) that Wg,r has a natural log structure given by the divisor at infinity,

where we shall denote the resulting log stack by ﬁ;g. Also, by taking the
divisor which is the union of the s;’s and the pull-back of the divisor at
infinity of ﬁg,r’ we obtain a log structure on €, ,; we denote the resulting
log stack by ngj%, frau © Cgp — ﬁgyr extends naturally to a morphism
fioB g8 ﬁlg‘f% of log stacks.

Next, let S be a scheme, or more generally, a stack over k£ and
(15) Xg:=(f: X—85{0i:5— X}i_)

a pointed stable curve over S of type (g,r), consisting of a (proper) semi-
stable curve f: X — S over S of genus g and r marked points g; : § — X
(i=1,---,r). X5 determines its classifying morphism s : § — ﬁgyr and an
isomorphism X = S X 4w, g over S. By pulling-back the log structures

of ﬁlog

g and @}q(j%, we obtain log structures on S and X respectively; we
denote the resulting log stacks by S°¢ and X'°8. The structure morphism
f: X — S extends to a morphism f°& : X8 — §log of Jog stacks, which is

log smooth (cf. [11], §3; [10], Theorem 2.6). Write Txioq gi0s for the sheaf

of logarithmic derivations of X'°% over S8 and Q yios /Slog 1= 7. )\(/log /Sle for
its dual, i.e., the sheaf of logarithmic differentials of X'°8 over S'°2. Both
Tx108 /g108 and 2xiog /gios are line bundles on X. For each ¢ = 1,--- ,r, one

may obtain the residue isomorphism, which is, by definition, an isomorphism
(16) O’:(Qxlog/slog) :> OS

given by assigning 1 € Og to any local section of the form o (dlog(z)) €
07 (Qx108 /5105 ) (for a local function = defining the closed subscheme o; : S —
X of X).

If ¢ : T — S is an S-scheme, then we shall use the notation “X,7” for
indicating the base-change of X,g via t, i.e., the pointed stable curve

(17) %/T = (X XSt T/T,{O‘i Xg idT : (T :) S XSt T —X XSt T}?:l)
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over T'.

1.4. Let S, X5 be as above and V a vector bundle (i.e., a locally free
coherent Ox-module) on X. By an S-connection (resp., S-log connection)
on V, we mean (cf. [20], §4.1) an f~(Og)-linear morphism

(18) ViV QyseV (resp., v:vaaxlog/slomv)
satisfying the condition that
(19) V(a-m)=d(a) @m+a-V(m)

for local sections a € Ox and m € V, where d denotes the universal deriva-
tion OX — QX/S’ (g QXlog/Slog).

If V is an S-log connection on V), then we shall write det(V) (resp., V")
for the S-log connection on the determinant det()) (resp., the dual V) of
V induced naturally by V. Also, for m > 1, we shall write V®™ for the
S-log connection on the m-fold tensor product V™ of V induced by V. If,
moreover, we are given a vector bundle V' on X and an S-log connection
V' on V', then we shall write V ® V' for the S-log connection on the tensor
product V ® V' induced by V and V.

A log integrable vector bundle on X,g (of rank m > 1) is a pair § :=
(F,V ) consisting of a vector bundle F on X (of rank m) and an S-log
connection Vg on F. If, moreover, F is of rank 1, then we shall refer to
such an § as a log integrable line bundle on X /g.

Let § := (F,Vz) and & := (G, Vg) be log integrable vector bundles on
X/s. An isomorphism of log integrable vector bundles from § to & is an
isomorphism F = G of Ox-modules that is compatible with the respective
S-log connections Vr and Vg.

1.5. We recall the definition of the p-curvature of a logarithmic connection
(cf., e.g., [19], §3). Let § := (F, V) be a log integrable vector bundle on
X/s. If 9 is a logarithmic derivation corresponding to a local section of
Txi08jg10s, then we shall denote by 9®) the p-th symbolic power of 8 (i.e.,
“9 +—» 0P)” asserted in [16], Proposition 1.2.1), which is also a logarithmic
derivation corresponding to a local section of Txiog/gios. Then there exists
uniquely an Ox-linear morphism

(20) WV TE g — Endoy (F)
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determined by assigning
(21) 0% 1= V£(9) = Vx(0®)

for any local section 9 € Txiog /g10s, Where V£(9)° denotes the p-th iterate
of the f~1(Og)-linear endomorphism V £(9) of F. We shall refer to )V* as
the p-curvature of V.

1.6. Next, we recall the monodromy of a logarithmic connection. Let
(F,Vx) be as above, and suppose that » > 0. For each i = 1,---,r,
consider the composite

(22) f V—%: Qxlog/slog ®f — O-i*(a-;‘k(gxlog/slog) ® U,zk(f)) :> O‘Z*(O-;k(f)),

where the second arrow arises from the adjunction relation “o(—) 4 04 (—)”
(i.e., “the functor o;(—) is left adjoint to the functor o (—)"), and the
third arrow arises from the residue isomorphism (16). This composite cor-
responds (via the adjunction relation ‘c}(—) = 0;(—)") to an Og-linear
endomorphism o (F) — o7 (F), equivalently, a global section

(23) w " € T(S, Endog (o7 (F)))-

Vr

i

DEFINITION 1.6.1. We shall refer to
;.

as the monodromy of Vr at

REMARK 1.6.2. Let £ := (£,V) be a log integrable line bundle on
X/g. Then, Endog (07 (L)) = Og, and hence, ,uiv£ (¢ =1,---,r) may be
thought of as an element of I'(S,Og). In particular, it makes sense to ask
whether Y £ lies in k (C T'(S, Og)) or not.

REMARK 1.6.3. If G is a vector bundle on X él), then one may define
(cf. [20], §3.3) canonically an S-log connection

(24) V" Fxs(9) = Qxoe g0 @ Fx5(9)

on the pull-back F§ / 5(G) of G, which is uniquely determined by the condi-

tion that the sections of the subsheaf F);/IS(Q) (C F)*(/S(Q)) are contained
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in Ker(Vg™). We shall refer to VE*™ as the canonical S-log connection on
£y 5(G). One verifies immediately that
(25) Im(Vg™) € Qx5 ® Fy,5(9) (Q Qx105 /5105 ® F)?/s(g))

(ie., Vg™ arises from a non-logarithmic connection on Fy / 5(9)) and

(26) YVE = 18 =0

for any 1.

1.7. Let us write m := rk(F). For each i = 1,--- ,r, denote by (bl-vf(t) €
['(S, Og)[t] the characteristic polynomial of ,uivf, ie.,

(27) ¢ 7 (t) = det(t - idy= () — => a7,
7=0
where aivf € I'(S, Og) (satisfying that avf =1).

PROPOSITION 1.7.1.  Suppose further that V7 = 0. Then, for any
j=0,---,m, the element aivf lies in ).

PROOF. The condition “¢»VZ = 0” implies the equality

(28) (1 7P — iy =

Hence, (since S is of characteristic p) the following sequence of equalities
holds:

m

(29) f: Vet = (Y oy 7 )
=0 ]:0
= det((t - — ;7))
= det(t? - 1d (uZ )P)
= det(t” - id,» ul 7)
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This yields the equality

(30) (a.v.f)p = a.v.f

2¥) 2¥)

NERN= F,. This completes the proof of Proposition

(j=0,---,m), Le, a;;

1.7.1. O

DEFINITION 1.7.2. Let § := (F, V) be as above.

(i) Let 7 := [Ti1, -, Tim] be a multiset over I'(S, Og) with cardinality
m. We shall say that Vr is of exponent 7; at o; if (bivf(t) may be
described as

m

(31) H — Tij)-

(ii) Suppose that r > 0 and we are given an r-tuple 7 := (7;)]_; of multi-
sets over k with cardinality n (i.e., an element of (Ng( )= 2)<"). Then,
we shall say that § is of exponent T if Vx is of exponent 7; at o; for

any i € {1,---,r}.

(iii) Suppose that » = 0. Then, we shall say, for convenience, that any log
integrable vector bundle on X g is of exponent 0.

REMARK 1.7.3. Letie {1,---,r}, 7, € I'(S,0g), and let £ := (L, V)
be a log integrable line bundle on X,g. Then, V. is of exponent 7; at o; if

and only if ,uvﬁ =T

The following two propositions follow immediately from the various def-
initions involved.

PROPOSITION 1.7.4. Let § = (F,V ) be a log integrable vector bundle
on X,g, and suppose that Vr is of exponent 7; := [1i1, " ,Tim] (where
7i,j € I'(S,0s)) at ;. Then, the S-log connection det(Vr) on the line
bundle det(F) is of exponent 377" 7i; at o;.
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PROPOSITION 1.7.5. Let§ := (F, V) be a log integrable vector bundle
on X,g of exponent T 1= (7;){_; € (N H-)= ,) " and £:= (L£,V ) a log inte-
grable line bundle on X,g of exponent @ := (a;)i_; € k™" (= ( _)°7).
Then, the log integrable vector bundle

(32) FRL:=(FRLVFr® V)
is of exponent T+ (cf. (10)).
2. Determinant Data

In this section, we shall recall the notion of a determinant data (cf.
Definition 2.1.1, (i)), which was introduced in the author’s paper (cf. [20],
Definition 4.9.1 (i)). As we proved in [20] (cf. [20], Theorem D, or (165)
displayed later), one may realize, after fixing an n-determinant data U,
each sl,-oper as a certain integrable vector bundle, i.e., a (GL,, U)-oper.
Since we have assumed that the ground field k is of positive characteristic,
there exists (cf. Proposition 2.1.5) necessarily an n-determinant data with
prescribed monodromy.

2.1. Let S and X, be as before, and n a positive integer with n < p.

DEFINITION 2.1.1 (cf. [20], Definition 4.9.1).

(i) An n-determinant data for X,g is a pair

(33) U := (B, Vo)
consisting of a line bundle B on X and an S-log connection Vg on the
n(n 1)
line bundle TXlog / Slog @ ® B®",

(ii) Let U := (B, V) and U’ := (B', V) be n-determinant data for X/g.
An isomorphism of n-determinant data from U to U’ is an isomorphism
B 5 B’ of Ox-modules such that the induced isomorphism

n(n 1) n(n 1)

~

®n
B - TXlog/Slog

(34) T ® Bn

Xlog /Slog
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is compatible with the respective S-log connections Vg and Vg,

REMARK 2.1.2. Let U := (B,Vy) be an n-determinant data for X g
and s’ : 8’ — S a morphism of k-schemes. Then the base-change

(35) s"(U) := ((idx x ')"(B), (idx x s')"(Vo))
via s' forms an n-determinant for X,¢ (cf. (17)).

DEeFINITION 2.1.3. We shall say that an n-determinant data U :=
(B, Vo) for X,g is dormant if PpVo = 0.

DEFINITION 2.1.4. Let @ be an element of £*". We shall say that an n-
determinant data U := (B, V) for X g is of exponent d if the log integrable

line bundle (T;ﬁog /1o
and (iii)).

n(n 1)

® B®" V) is of exponent @ (cf. Definition 1.7.2 (ii)

PROPOSITION 2.1.5.  Suppose that v > 0, and let @ := (a;)i_; € F;".
Then, there exists a dormant n-determinant data U := (B,Vy) for %/S of
exponent d.

PROOF. Since n < p, one may choose a pair of nonnegative integers

(s,t) satisfying that p-s =n-t+ "( U Let us take B := T)%Zg/slog Then,
®n(n7 n "~ ~ * : * S
(36) Tyio Jsto ® BE 5 (T8, /Slog)®p = Fys((idx x Fs)*(T. e /Slog)).

n(n 1)

Denote by V{, the S-log connection on 75 ® B'®™ corresponding, via

Xlog/slog
this composite isomorphism, to the canonical S-log connection on

Fys((idx x Fg)* (T8 )) (cf. Remark 1.6.3). Then, the pair (B',V})

Xlog/Slog
forms a dormant n-determinant data for X,g of exponent (0,0,---,0) (cf.
(26)).
Now, for each ¢ = 1,---,r, we shall choose a nonnegative integer m;

such that m; - = a; in F),, where m; -n denotes the image of m;-n € Z via
the quotient Z — Fp. In particular, . ,(m; - n)o; is an effective relative
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divisor on X relative to S. By passing to the isomorphism

T

®n(n 1) n
(37) (Txlog/slog ® B/® )( Z(ml : n)o-l)
=1
n(n—1)

~ R——= /
- TXlog/Slog ® B Z mlal )

n(n 1)

we obtain an S-log connection Vg on TXlog/Slog QB (= >0 mioy)®™ (with
n(n—1)
vanishing p-curvature) corresponding to the restriction of V{, to (7, ﬁog /glog ®

B (=37 (mi - n)o;). This S-log connection is, by construction, of ex-
ponent m; - n = a; at g;. Thus, we obtain a dormant n-determinant data

(38) (B:=B(- Z:mmz Vo)

which satisfies the required conditions, as desired. [

2.2. Let U:= (B, Vp) be an n-determinant data for X,g and £ := (£, V)
be a log integrable line bundle on X,5. We shall consider the pair

(39) UwL:=(B®L Vo® VY,

where we regard Vg ® V%n (cf. §1.4) as an S-log connection on

®n(n 1) - ®n(n271) on on
(40) TXlog/Slog (B ® ‘C) - (TXIOg/Slog ® B ) ® E .

One verifies that U® £ forms an n-determinant data for X,g. If, moreover,
U is dormant and 1V = 0, then U® £ turns out to be dormant.

2.3. For each line bundle B on X, one may construct, in a canonical man-
ner, a dormant p-determinant data whose underlying line bundle coincides
with B.

Indeed, let us consider the natural composite isomorphism

oy w O ~ R
(41) FX/S((ldX X FS) (TxlogQ/Slog ® B)) - (TXlog/Slog @ B)
®p(p 1)
5T ® B®P.

Xlog/slog
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By passing to this composite, we obtain an S-log connection Vg on

2
TXlog/Slog

@ee=1) . . )
® B®P corresponding to the canonical S-log connection on

-
)*(/S((idx X FS)*(Tgog/Slog ® B)) (cf. Remark 1.6.3). Thus, the pair

(42) U%&H . (B VCal’l)

can

v
forms a dormant p-determinant data for X, satisfying that u, OB — 0 for
any i (cf. (26)).

2.4. Let U:= (B,Vy) be an n-determinant data for X5, and write

(43) B = Qo /Qlog @ BY.

Then, we have a natural composite isomorphism

n(n—1) n(n—1)

® ~ ® 1
(44) TXlog/Slog (Bv n) " - TXlog/?S'log (QX(lfg/S)log ® BV)®n
-~ ®n(n 1) on
- (TXlog/Slog B )
. v ®n(n 1) v . .
The S-log connection V| on (Txlog /loe ® B®™)V carries, by means of this

n(n—1)

o . . ® v
composite isomorphism, an S-log connection on Txlog /2510g ® (BY"™)®"; we

shall denote this connection by V. Thus, we obtain an n-determinant data
(45) UY = (B"",Vy)

for X,g, which is referred to as the dual n-determinant data of U. One
verifies that there exists a natural isomorphism

(46) (U")Y SU
of n-determinant data.
2.5. Let U:= (B,Vy) be as above, and write

(47) B = TEN o @ B.



Duality for Dormant Opers 285

Consider the canonical composite isomorphism

®p(p;1) op ®n(n271)
® B ) ® (TXlog/Slog

(48) (Txlog/slog

~ 95 (p*—p—n+n)

- TXlgg/Slog
(p—n)(p—n—1)

QEL—E

® B®n)\/

® B@(p—n)

~

= log /o ® (BRn)@(P*n)_

The product V{5 ® V§ of the S-log connections carries, by means of
(p=n)(p—n—1)
this composite isomorphism, an S-log connection V{ on 728 2

: &
Xlog/Slog
(B>™)®(P=") Thus, we obtain a (p — n)-determinant data
(49) U> .= (B>, Vp)

for X 5.

Moreover, we shall write
(50) U* .= (U”)Y

and refer to it as the y-dual (p — n)-determinant data of U. If BX denotes
the underlying line bundle of U*| i.e.,

(51) B* = (B>™)Vrr,
then there exist natural isomorphisms
(52) B* & Q?;Efg‘/g}bg ©BY and B* & BYP.

The following three propositions follow immediately from the various
definitions involved.

PrRoPOSITION 2.5.1. There exists a canonical isomorphism
(53) UH* S U
of n-determinant data.

PROPOSITION 2.5.2. Let £ := (L, V) be a log integrable line bundle on
X /g, and write £ := (LY, V}). Then, there exists a canonical isomorphism

(54) Ueg)* SU*e LY
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of (p — n)-determinant data.

PROPOSITION 2.5.3. Let B be a line bundle on X. Then, there exists
a canonical isomorphism

(55) (Ug, =) Ug = (wgmy”
of p-determinant data for X ,g.
3. Opers on Pointed Stable Curves

In this section, we recall the definition of a (dormant) GLy-oper (where
GL,, denotes the general linear group over k of rank n) and consider the
canonical construction of a dormant GL,-oper by means of a line bundle
(cf. Proposition 3.7.1).

Let S, X,g, and n be as before.

3.1. First, recall the definition of a GL,-oper, as follows.

DEFINITION 3.1.1 (cf. [20], Definition 4.2.1).

(i) A GLp-oper on X/g is a collection of data

(56) %’Q = (fa V}', {f]}?:0)7
where
e F is a vector bundle on X of rank n;
e Vr is an S-log connection F — Qxlog/slog ® F on F;
o {FJ o is a decreasing filtration
(57) o=Frcrrtc...crF=r
on F by vector bundles on X,

satisfying the following three conditions:

(1) The subquotients F7/F/*1 (0 < j < n — 1) are line bundles;
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(2) V]-'(F‘]) g QXlog/Slog ® f‘jil (1 S] S n — 1),
(3) The Ox-linear morphism

(58) Esjg@ P FJFIHY = Qo g0 @ (F/ 71/ F)

defined by assigning @ — Vr(a) for any local section a € F/
(where g’s denote the images in the respective quotients),
which is well-defined by virtue of the condition (2), is an iso-
morphism.

(ii) Let 3% := (F,V, {.7-'3 o), &Y := (G, Vg, {G’ ) be GLy,-opers on
X /5. An isomorphism of GL -opers from F¥ to &Y is an isomorphism
(F,Vr) = (G,Vg) of log integrable vector bundles (cf. §1. 4) that is
compatible with the respective filtrations {]—"J _o and {QJ

REMARK 3.1.2. Let §V := (F,Vx, {FI ?:0) be a GLj-oper on X/g
and fix j € {0,--- ,n — 1}. By composing the isomorphisms

1
(59) (FFH) ® Tl o = (FIT ) @ TG

arising from the isomorphisms Es%@ (J+1<1<n—-1)(cf. (58)), we obtain
a canonical composite isomorphism
(60) f]/f]+1 :> (.7'—]+1/f'7+2) ® TXlog/Slog :) M :) fn_l ® T)ggg/gloé

between line bundles on X. Moreover, by using these isomorphisms for all
7, we obtain a composite isomorphism

(61) detgo : det(F) 5 &)(ﬂ JFITh
j=0

® Tﬁ&z/s}logj) ® (Fr-1y8n

n(n 1)

—>T®

Xlog/Slog ® (F.Lil)@n
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In particular, the following equalities hold:

n(n—1)

& 2 n— n
(62) deg(F) = deg(Tyuos 10 ® (F"71)")

=n(n—1)(1 —g) +n-deg(F" ).

The following proposition will be used in the proof of Proposition 4.2.1.

PROPOSITION 3.1.3. Let §¥ := (F,VF, {FI 7o) be a GLy-oper on
X5 and (V,Vy) a log integrable vector bundle on X ;5. Suppose that we are
given two morphisms ¢1, ¢2 : F — V both of which are compatible with the
respective S-log connections Vg, Vy, and satisfying that ¢1|rn-—1 = ¢o|Fn-1.
Then, the equality ¢1 = ¢o holds.

PROOF. Suppose that ¢1|z = ¢2|x; for some j € {1,--- ;n —1}. By
the definition of a GL,-oper, F/~! may be generated by F’/ and V£ (F/).
Hence, since both ¢; and ¢ are compatible with the S-log connections V £
and Vy, the equality ¢1|z = ¢a|r; implies the equality ¢1|ri-1 = ¢o|ri-1.
Thus, the assertion follows from descending induction on j. [

DEFINITION 3.1.4. We shall say that a GL,-oper §° := (F,Vg,
{FI ") on X /g is dormant if PpVF = 0.

3.2. Let §:= (F,V#) be alog integrable vector bundle on X g of rank n.
We shall write

(63) Axer(vy) = Fx s(Fx/s«(Ker(Vr))).

Note that although Ker(V£) is not an Ox-module, one may equip, in a
natural manner, its direct image Fx/g.(Ker(Vx)) via Fx/g with a structure
Xg)—module. The OXg)—linear inclusion Fx/g.(Ker(V)) — Fx/g.(F)
corresponds, via the adjunction relation * )*(/S(—) A Fx/s.(=)" , to an
Ox-linear morphism

(64) VY Aer(vp) — F
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If we consider the canonical S-log connection V?;/S*(K er(V5)) O1 Aker(V5)

(cf. Remark 1.6.3), then the morphism vV# is compatible with the respec-

tive connections V?;/S (Ker(V £)) and V. The morphism vV~ fits into the

short exact sequence

r
v
(65) 0— AKer(V]:) V_f F— Asing D @ A —0
i=1

of Ox-modules (cf. [20], the short exact sequence (872)), where Agng and
A; (i=1,---,r) are Ox-modules supported on the nonsmooth locus of the
semistable curve X (over S) and the locus Im(o;) C X respectively.

Let us recall the following proposition.

ProrosiTIiON 3.2.1. In the above mnotation, suppose further that
YVF = 0 and S = Spec(k’) for some algebraically closed field k' over k.
Then, for each i (=1,--- 1), there exists uniquely a multiset [7; 1, , Tip]
over Z, with cardinality n satisfying the following three conditions:

(1) 0<7;<pforanyj=1,--- ,n;

(2) A; decomposes into the direct sum

(66) A S @OX(Ti,jUz’)/OXS

J=1

(3) V£ is of exponent [T 1, ,Tin) at o; (cf. Definition 1.7.2 (i)), where
each 7; j denotes the image of 7; ; via the quotient Z — F), (C k).

PRrROOF. The assertion follows from [17], Corollary 2.10, or the discus-
sion in [20] following Lemma 8.3.2. [

3.3. Next, we consider GLy-opers with prescribed determinant. Let U :=
(B, Vo) be an n-determinant data (cf. Definition 2.1.1, (i)) for X 5.

DEFINITION 3.3.1 (cf. [20], Definition 4.9.4).

(i) A (GLy,U)-oper on X /g is a collection of data
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(67) 30 = (fv Vr, {fj}?:O) 7730)7
where

e the collection of data

(68) §OY = (F, V£ {F})
is a GLp-oper on X/g (which is referred to as the underlying
GLy-oper of 3°);

® 730 is an isomorphism B = F"~! of Ox-modules such that the
composite isomorphism

n(n 1) Oet_
@ (FPhEn T ET det(F)

idon®
® B&™ 5 7%

(69) T Xlog/Slog

Xlog/slog
(cf. (61) for the definition of the isomorphism det(_)) is compat-
ible with Vo and det(V ) (cf. §1.4).

(ii) Let SO = (F, Vg, {‘7_-] j= 077730) and B9 := (g7v97{gj}?:0777@5<>)
be (GLy, U)-opers on X,g. An isomorphism of (GLy,U)-opers from
F° to 6° is an isomorphism « : 39V 2 89V between the respec-
tive underlying GLj,-opers (cf. Definition 3.1.1, (ii)) whose restriction
ol pn-1 2 F1 = G satisfies the equality afzn-1 0 ngo = ngo-

DEFINITION 3.3.2. Let 7 := (7;)]_; be an element of (2 ﬁ(_)fn)”
(where we take 7 := () if » = 0). Then, we shall say that a (GL,,U)-
oper §© := (F, V]-‘, {]: }j _0:M30) on X g is of exponent 7 if the underlying
log integrable vector bundle (F, V) is of exponent 7 (cf. Definition 1.7.2

(ii) and (iii)).

REMARK 3.3.3. Notice that the definition of a (GL,,, U)-oper in Defini-
tion 3.3.1 differs slightly from the definition of a (GLy,, 1, U)-oper proposed
in [20], Definition 4.9.4.
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REMARK 3.3.4. Let s’ : ' — S be a morphism of k-schemes and
3% = (F, Vg, {fj}?zo,ngo) a (GLy, U)-oper on X/g. Then, the collection
of data

(70) s*(F9)

obtained from pulling-back the collection of data F° via idy x5’ : X x5’ —
X forms a (GLy, s™(U))-oper (cf. (35)) on X,g (cf. (17)).

DEFINITION 3.3.5. We shall say that a (GL,,U)-oper §° := (F,Vz,
{}—j}?:omgo) is dormant if V7 = 0.

REMARK 3.3.6. If there exists a dormant (GL,, U)-oper §° := (F, V£,
{FI }i—0sm30) on X/g, then U is necessarily dormant (by [20], Proposition
3.2.2). Indeed, if Tr denotes the trace map Tr : End(F) — Ox, then we
have V0 = ¢pdetVF) = Tr o0 yV# = 0 (cf. [8], Proposition 2.1.2 (iii)).

REMARK 3.3.7. Suppose that n = 1. Let us consider the 1-step filtra-
tion {Bj}jl-zo on B given by B? := B and B! := 0. Then, the collection of
data

(71) B9 = (B, Vo, {B}]_,idp)

forms a unique (up to isomorphism) (GL1, U)-oper on X,g. If U is dormant,
then B is tautologically dormant.

PROPOSITION 3.3.8. Suppose that r > 0. Let U := (B,Vy) be an
n-determinant data for X,5 and 30 = (F, Vg, {-7'7}?:0,7730) a dormant
(GLy, U)-oper on X,g (hence U is dormant, as we explained in Remark
3.3.6). Then, there exists an element T := (1;)[_; of (Qipi):n)x’" such that

5 is of exponent 7.

Proor. It follows from Proposition 1.7.1 that for each i = 1,---r,
the characteristic polynomial cbivf (t) of ,uivf lies in [F,[t]. Thus, we may
assume, after possibly restricting X to a geometric fiber of f : X — S,
that S = £’ for some algebraically closed field k" over k. Let |71, -+, Tin]
(i =1,---,7) be the multiset asserted in Proposition 3.2.1 of the case where
the log integrable vector bundle under consideration is taken to be (F,V£).
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(In particular, V£ is of exponent 7; := [T; 1, -+ ,Tin) at 0;.) But, according
to [20], Proposition 8.3.3, the integers 7;1,--- ,7;, are mutually distinct.
This implies that 7; is consequently a subset of IF,,, and hence, completes
the proof of Proposition 3.3.8. [J

3.4. Let §© := (F, Vg {FI "_0:-ngo) be a (GLy, U)-oper on X /g of expo-
nent 7 € (Nﬁ(_):n)”, £ := (£,V) alog integrable line bundle on X g of
exponent @ := (a;);_; € k*". Then, one verifies from Proposition 1.7.5 that
the collection of data

(72) §o0=(FOLVFO Ve {F @ LY 150 @idg)
forms a (GL,,U ® £)-oper (cf. (39)) on X/g of exponent 7+ (cf. (10)).

3.5. Let 3° be as above. If we write (FV)? for the kernel of the dual
FY = (]:nfj)v of the inclusion F*7 < F, then the collection of data

(73) (FY, Vi A(FY i)

(cf. §1.4 for the definition of V) forms a GLj,-oper on X /g.
Moreover, consider the composite isomorphism
(T4)  no B S (Tl ke © B)Y S (Tolt g © FP71)Y
~ (]_-O/j:l)\/ ~ (]_-\/)n—l

(cf. (43) for the definition of BY"™), where the second isomorphism arise
from nro : B = Fr=1 and the third isomorphism denotes the dual of the
isomorphism (60) for the case where j = 0. One verifies that the collection
of data

(75) IO = (P VEAF Y Y0 m30)

forms a (GLy, UY)-oper on X /g (cf. (45) for the definition of U"). We shall
refer to FV as the dual (GL,,, U")-oper of . If, moreover, < is dormant,
then F°V is immediately verified to be dormant.

Finally, there exists a natural isomorphism

(76) 3 53¢
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of (GL,, U)-opers.

3.6. Recall (cf. [20], §4.4) that the sheaf of logarithmic crystalline differ-
ential operators (or ledo’s for short) on X8 over S'°8 is the Zariski sheaf

(77) D;?c?g/slog

on X generated, as a sheaf of rings, by Ox and Txiog/g0s subject to the
following relations:

o fixfa=f1- [z
o fix&i=[f1-&;
o Lix& —&x& =[G, &)
o fix&i =& * fi=&(f),

for local sections fi, fo € Ox and &1, & € Txiog /g1os, Where  denotes the
multiplication in DY In a usual sense, the order (> 0) of a given lcdo

Xlog/Slog
(i.e., a local section of DXlog/Slog) is well-defined. Hence, DXlog/Slog admits,
for each j > 0, the subsheaf
< <
(78) ,DX‘{og/Slog <C DX?(?g/Slog)
consisting of ledo’s of order < j. Dxlog/slog (j=0,1,2,--- ,00) admits two
different structures of Ox-module — one as given by left multiplication
(where we denote this Ox-module by lD;{Og / glog)» and the other given by
right multiplication (where we denote this Ox-module by rD;{Og y glog)
In particular, we have
(79) D;?Og/slog - O and DXlog/Slog — DXIOg/Slog = OX
The set {D Xlog /gos },>0 forms an increasing filtration on DS Yo g1os satisfying
that
— <j+1 ®j
U Dxlog/slog - DXIOg/Slog? and Dxlog/slog /DXlog/Slog TXlog/Slog
Jj>0

for any 57 > 0.
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Let F be a vector bundle on X, and consider the tensor product

D;{Og /Slox ® F of F with the Ox-module TD;{Og /5o In the following, we

shall regard the D;{og /Slo ® F as being equipped with a structure of Ox-

module arising from the structure of Ox-module lD;{og /glos OI D;{Og /glos
Next, V£ be an S-log connection on F. One may associate Vz with a

structure of left D;ﬁf’g / glog~module

(81) VD . D;?Oog/slog QF —F,

(which is Ox-linear) on F determined uniquely by the condition that
VP (0®v) = (V(v),0) for any local sections v € F and 9 € T 08 /5108, Where
(=, —) denotes the pairing (2x10s 5106 @ F) X Ty105 /g10e — F induced by the
natural paring Tyioggios X {lxios gz — Ox. This assignment V — vP
determines a bijective correspondence between the set of S-log connections

on F and the set of structures of left D;?fg y glog-module D;Cl’fg /5o QF - F
on F.

3.7. Let B be an arbitrary line bundle on X, and recall the p-determinant
data Ug" := (B, V{’5) constructed in §2.3. Then, one may construct a
canonical (GLj,, UZ")-oper as follows.

First, observe that there exists an Ox-linear morphism
(82) U Tl gios © B — D3 g0 © B

determined uniquely by assigning 0%P ® b — (9? — d®)) @ b for any local
sections 0 € Txiog /Slog, b € B. We shall write

(83) Dy

for the quotient of the left DL, y glog-module DL /glog ®B by the DY, Jiox™

submodule generated by the image of .
The structure of left D;f;’g / glog~mmodule on DZIS' corresponds (cf. §3.6) to
an S-log connection

(84) ng : Dg — QXlog/Slog & Dg



Duality for Dormant Opers 295

Next, let us write D\P’] for the image of DY ® B via the natu-

Xlog/Slog
ral surjection DX ® B — DB {D g p o forms a p-step decreasing

filtration

Xlog/slog

(85) 0=Dg? CDy? ' C...CcD" =DY

on DJ by vector bundles on X.
Finally, denote by

50 toge 5= D!

the isomorphism obtained by restricting the surjection DT ®B —» Dg’

to D;(llog/slog & B (: B) (Cf (79))

Then, the following proposition holds.

Xlog/Slog

ProprosSITION 3.7.1.  The collection of data
(87) 03¢ = (DE. Vpy AP Yo, o)
forms a dormant (GLy, UZ™")-oper on X /g of exponent (Fp,Fp,--- ,F}).

PROOF. One may verifies, by the various definitions involved, that

@mo is a dormant (GL,, UZ™)-oper on X,g. The remaining portion (i.e.,

@B is of exponent (F,,F,,--- ,F,)) follows from Proposition 3.3.8 (since a
subset of F,, with cardinality p coincides with F,, itself). OJ

PROPOSITION 3.7.2.  Let us identify the p-determinant data Ugy' with
(UE™)Y via the isomorphism asserted in Proposition 2.5.3. Then, there
exists a canonical isomorphism

(88) Dpf = (05%)°
of (GLy, (U$™)Y)-opers, where
(89) (95°)7 = (D", Vipu {(DE") Yo, niy)

denotes the dual (GL,, (UE™)Y)-oper of ng (cf. §3.5).
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Proor. Consider the Ox-linear composite

(90) Dj(?:g/slog ® B* = Dj(?:g/slog ® (ng)p_l
- D)<(?oog/510g ® D‘KISN - ngv

where

e the first arrow denotes the tensor product of the identity map of

D;‘ffg /510 and the composite isomorphism

(01)  B* S (T g © B)Y S (Dg0/DEYY S (DFY)

arising from the various definitions involved;
e the second arrow denotes the natural inclusion;

e the third arrow denotes the morphism defining the structure of left

Do / s1og-odule on DRV corresponding to Vlv)é, (cf. §3.6).

Since (ng,v%w) has vanishing p-curvature, this composite turns out to
B

factor through the quotient D;‘ffg /5108 ® BX —» Dg*. The resulting mor-
phism
(92) ag: Dg* — ng,

determines an isomorphism of (GL,, (UZ™)")-opers from ”Dgf to (DF)V, as
desired. [J

4. Duality for Dormant GL,-Opers

In this section , we discuss duality between dormant GL,-opers and
dormant GL;_p-opers. Let S, X,g, n, U be as before. Suppose further that
n < p and U is dormant. (It follows from Proposition 2.1.5 that such a U
necessarily exists.)

4.1. Let us consider a procedure for constructing a dormant GL;,_,)-oper
by means of a dormant GL,,-oper.
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Let 7 := (1;)]_; be an element of 2%_):” (where 7 := () if » = 0) and
30 = (F, Vg {FI}" 7_0sngo) a dormant (GLy, U)-oper on X /g of exponent
T. Con81der the composite

id®n
(93) D;?(?g/slog ® B SO D)<(looog/slog ® fn — DXlog/Slog ® f - fv

where the second arrow denotes the natural inclusion and the third arrow
denotes the morphism defining the structure of left Dxlog /glo
F corresponding to Vgz. Since (F,Vz) has vanishing p-curvature, this

composite turns out to factor through the natural surjection DL

-module on

Xlog/slog ®
B — DB' We denote the resulting morphism by

(94) ngo Dl\g — F,

which is surjective and compatible with the respective S-log connections
VDg and Vg. In particular, by restricting ng’» one may construct an
S-log connection

(95) err(ﬁgO) : Ker(ﬁgo) — Qxlog/slog X Kel‘(ﬁgo)
on Ker(7z¢ ). Moreover, for each j = 0,--- ,p, we shall write
(96) Ker(7igo )’ := Dy’ N Ker(7izo ).

The inclusions Ker (730 Ve Dg’j of the cases where j =p—n—1landp—n
give rise to a composite

(97) Mo Ker(ijz0 )P~ — Ker(7jgo )P~ /Ker (g0 )P~
‘—>DB’(p n)— l/D pP—n

- DB @ TXlog/Slog
— Bb,n

(cf. (47) for the definition of B>™), where the third arrow denotes the iso-
morphism (60) of the case where the GL,,-oper is taken to be the underlying
GL,-oper @‘I’O@ of @EO_ Thus, we obtain a collection of data

(98) SOD = (Ker(ﬁ§0)7 err(ﬁgo ) {Ker(ﬁgo )j }f;gv 77%0 ) .
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PROPOSITION 4.1.1. §% is a dormant (GL(p—ny, U?)-oper on X5 of
exponent 7% (cf. (49) for the definition of U> and (11) for the definition of

7).
ProoOF. First, let us prove the claim that the natural composite
(99) Ker(Tjzo) — Df — Dg /Dy~ "

is an isomorphism. To this end, (since both Ker(7zo) and Dg/Dg’p_n
are flat over S) we may assume, by considering various fibers over S, that
S = Spec(k) for an algebraically closed field k" over k. Write

(100) grj = Ker(ﬁgo)j/Ker(ﬁgo )j‘"1
(j=0,---,p—1). The inclusion Ker(rjzc) < Dy yields an inclusion
(101) grl < Dl /D7

into the line bundle Dg’j / Dg’j oo 1, -,z denote the generic points of
irreducible components of X, then the stalk gril ofgriatz; (I=1,---,L)is
either trivial or free of rank one. In particular, since the stalk of Ker(7zo) at
x; is free of rank n, the cardinality of the set I; := {j } gr?,;l #* O} is exactly n.
Here, recall that the inclusion Ker(ﬁgo) — Dl‘g is tautologically compatible
with the respective k’-log connections VKer(n ) and vag. Thus, it follows
from Proposition 3.7.1 that grgjl # 0 implies ngCl # 0. But this implies
that I; = {0,1,--- ,n—1}, and hence, the composite (99) is an isomorphism
at every generic point in X. Let us observe two sequences of equalities

(102) deg(Ker(nzs)
= deg(Dg) — deg(F)
=p(p—1)(1 —g) +p-deg(B) —n(n—1)(1 — g) — n-deg(B)
=@—-n)(p+n—1+deg(B))
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(where the second equality follows from (62)) and
(103)  deg(Dy /D“"”)

= deg(Dy) Z eg(DR P77t Dy P )

- deg DB Z Xlog/Slog )
=0

i
L

=p(p—1)(1—g) +p-deg(B) -

(]

(4(29 — 2) + deg(B))

<.

S 9
3 o

=p(p—1)(1 —g)+p-deg(B) —
=(p—n)(p+n—1+deg(B)).

—1(g—1) —n-deg(B)

By comparing deg(Ker(7jz)) with deg(Dyg /Dp?™™), we conclude that the
composite (99) is an isomorphism of Ox-modules. This completes the proof
of the claim.
By virtue of the claim, the morphism (101) for any j and the composite
% (cf. (97)) turn out to be isomorphisms. Hence, (since @EOQ is a GL,-
oper) the morphism gr/*! — Q yio /§log ®gr’ induced naturally by Vker(n )
(obtained in the same manner as (58)) is an isomorphism. Moreover, by the
definition of V§ (cf. §2.5), the composite isomorphism

(104) det(Ker(nzo)) = TXlog/Slog (Ker(ﬁgo))(p—”)_l)@’(p—")
AR5 )" g e=mp=n-1)

Xlog/Slog

@e=m)(p—n-1)

® (B>)®(p—n)

obtained in the same manner as (69) is compatible with the respective S-
log connections de‘c(VKer(T7 350))) and V{. Finally, observe that since @215’0

dormant (cf. Proposition 3.7.1), V(5 ) has vanishing p-curvature.

Consequently, the collection of data &> forms a dormant (GL(p—n), U%)-
oper, and we complete the proof of Proposition 4.1.1. [J

4.2. Consequently, by taking account of the discussions in §3.5 and §4.1,
we obtain a dormant (GL(p,n),U*)—oper

(105) 3:0* — (SOD)V
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on X,g of exponent 7*. The assignment (—)* (i.c., FO = FOK for each
dormant (GL,, U)-oper §©) is compatible with both base-changing s'*(—)
(cf. (70)) via any morphism s' : S — S of k-schemes and tensoring (—)g g
(cf. §3.4) with any log integrable line bundle £ := (£, V). More precisely,
there exist a natural isomorphism

(106) $HFO*) S (8 (F)*
of (GL,, s(U))-opers and a natural isomorphism
(107) FMee = F)*

of (GL,,U* ® £V)-opers, where we identify U* @ £¥ with (U® £)* via the
isomorphism asserted in Proposition 2.5.2.

PROPOSITION 4.2.1. Let us identify the n-determinant data (U*)*
with U via the isomorphism asserted in Proposition 2.5.1. Then, there exists
a natural isomorphism

(108) FO)* =3¢
of (GLy, U)-opers.
ProoF. For simplicity, we shall write

(109) %’OD = (57v57{5j}?:0777@<>)7

which is a dormant (GL(p_n), U”)-oper on X,g. The natural inclusion inc :
£ — Dl‘g induces, via the respective quotients, an isomorphism inc : £/ =
Dl‘g / Dg’l (cf. the discussion in the proof of Proposition 4.1.1, which assert
that the morphism (101) is an isomorphism). One verifies that the compos-
ite

(110)  B* 5O, o © BY = (D§/Dy")Y 5 (£/€N)Y = (€))7
coincides with 7, , where

e the first arrow denotes the first isomorphism in (52);

e the second arrow denotes the dual of the isomorphism (60) of the case
where the triple “(§%,n,j)” is taken to be “(@goo,p, 0)”;
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e the third arrow denotes the dual of inc.

On the other hand, this composite may be naturally considered as the re-
striction to D\é}f ~1 of the composite incY o ap of the isomorphism ag :
Dé* = DV asserted in Proposition 3.7.2 (cf. (92)) and the dual inc" :
Dg” — &Y of inc. Thus, it follows from Proposition 3.1.3 that g, =
inc¥ oap. In particular, by taking the kernels of both 7, and inc”, we have

a canonical isomorphism

(111) (")) = @)

of GL,-opers. This isomorphism induces a sequence of isomorphism
(112) FER)* = (@) = (@) =37,

where the last isomorphism follows from (76). The completes the proof of
Proposition 4.2.1. [

4.3. We shall write Get for the category of (small) sets. Also, for a scheme
(or, more generally, a stack) S over k, write &ch /g for the category of relative
S-schemes. Let us consider the Get-valued functor

Zzz...

Zzz...
(113) DpGLn,U%/s (resp.,DpGLmUT,x/S) : Gchg — Get

on &c¢bh /g which, to any S-schemes ¢ : T' — S, assigns the set of isomorphism
classes of dormant (GLy, t*(U))-opers on X7 (resp., dormant (GLy,t*(U))-
opers on X7 of exponent 7) (cf. Remark 2.1.2). As explained later (cf. §6.2),

Zzz... Zzz...

both DPGLH,U X and DpGLmUﬂ X, WAy be represented by relative finite S-

. .. . Zzz...
schemes. By virtue of Proposition 3.3.8, the relative S-scheme DpGLn,U X/s
decomposes into the disjoint union

Zzz...

Zzz...
(114) OPGL, U X5 = I1 OPGL, U7X s
= FP X7
T€(2u(_)=n)

THEOREM 4.3.1. The assignment F — FOK constructed in § 4.2 de-
fines a canonical isomorphism

Zzz... Zzz...

* _ ~
(115) OGL, Urx)s  OPGLUAXs — OPaL, ., Uk 7% X5
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over S satisfying the equality

(116) @gL(p,m,U*f*,x/s ° @éLn,U,f,ae/s =id
of automorphisms of Dpézi‘;u 2UX)s"

PrROOF. The assertion follows from the functoriality of the assignment
0 — FOK (cf. (106)) and Proposition 4.2.1. O

Also, the isomorphism @éLn U7 %) just obtained satisfies the following
property.

PROPOSITION 4.3.2.  Let @ be an element of F\" (where we take @ := ()
ifr =0) and £ := (L, V) be a log integrable line bundle on X 5 of exponent
@. Then, the assignment O — Sgg (cf. (72)) determines an isomorphism

(117) EGL, U7 X5, 8 P OPCL,UF X s — OPGL, Us £7+4,%) 5

over S. Moreover, the square diagram

X ..
GLp, U7, X
n,UT X g
OPGL, U7 % s OPGL,_ ) Uk, 7% X 5
(118) EGLn,U,?,X/S,Sl lEGLn,U,?,.’f/S,S
ao®*

QL U7+d, X g

OPaL, U&7+ X OPGL,_ ) T*a LY, 7%, %) s

is commutative, where the lower horizontal arrow denotes the composite of

* . .
GGLH,U®Q?+‘7,I£/S and the isomorphism

Z2%z... ~ Zzz...
(119) @ OpgL  Uegr (apr s — OPCL,_ ) Tx oSy (7%)-7,%)5

arising, in an evident fashion, from both the equality (7T)* = (7%)=% (cf.
(13)) and the isomorphism (U ® £)* = U* @ £V asserted in Proposition
2.5.2.

PrOOF. The former assertion follows from the discussion in §3.4. The
latter assertion follows from the isomorphism (107). O
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Moreover, the following corollary of Theorem 4.3.1 holds.

COROLLARY 4.3.3. The structure morphism DpéZE( Uxs — S of
p—1)»*

Zzz...

oL, ., U is an isomorphism. That is to say, there exists a unique
p—1)»*

(up to isomorphism) dormant GL,_1)-oper on X/g.

PrROOF. The assertion follows from Theorem 4.3.1 of the case where
n = 1 and the discussion in Remark 3.3.7. (J

5. Duality for Dormant GL,-Opers on a Proper Smooth Curve

In this section, we shall consider the duality (—)* (cf. (105)) for dormant
GL,-opers of the case where the underlying curve is smooth and there are
no marked points. In this case, one may describe the assignment & — o*
in a manner different from that provided in the previous section.

Suppose that » = 0 and X/S is smooth. In particular, the log structures
on both X and S defined in §1.3 are trivial (hence, Qx1os/g10s = 2x/5)-

5.1. To begin with, we shall describe the dormant (GL,, U5")-oper @213’0
(cf. (87)) in a manner different from that provided in §3.7. Let B be a line
bundle on X. We shall write

(120) Apv = Fy 5(Fx/s.(BY)).

Since the relative Frobenius morphism Fy;5: X — X él) is finite and faith-
fully flat of degree p, one verifies that Apv is a vector bundle on X of rank
p. Denote by

(121) Tv : Apv (: F)*(/S(FX/S*(BV))) — BY

the surjection determined by the adjunction relation “F;}/S(—) .

Fx/5+(—)". Then, msv and the canonical S-connection V?E/S*(BV) (cf. Re-

mark 1.6.3) on Apv give rise to a p-step decreasing filtration {A{gv }g'):o as
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follows.
(122) A% = Apv;
Apv = Ker(Agv 5 BY);
M, = Ker(Al! Y ot Qx5 ® Apy
= Qs ® (Ape/Aj)
(j =2,---,p). In particular, mgv induces an isomorphism
(123) 7y Apv/Agy = BY.

It follows from [20], Proposition 9.3.1 (or, [8], Theorem 3.1.6, for the case
where S = Spec(k) for an algebraically closed field k), that the collection of
data

Q
(124) U= (A VI o ov)s {4 o)
forms a dormant GLy-oper on X 5. We obtain an isomorphism

(125) QY @ (Apv [ Afy) S AR

determined by the composite isomorphism (60) of the case where the triple
(3%, n, ) is taken to be (ngv,p, 0). Let us define Ny, to be the composite
B

isomorphism
(126)
ider, _ (125)
ny,  (B7 =) 05 @By T Q;@;% Ve Apv /Al = AR

Then, the following proposition holds.
ProPOSITION 5.1.1.  The collection of data
(127) QLB\/ = (ABV VF)?/S (BY)> {Aigv};):o’nmgv)

forms a dormant (GLy,, UE™Y)-oper on X/s. Moreover, there exists a canon-
ical isomorphism

(128) 5 DR S AGY
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of (GLy,, UE™)-opers.

PRrROOF. The former assertion follows immediately from the definition
of e, - We shall prove the latter assertion. Consider the composite
B

idemy,
(129) Dy 1o @ B ZE D Jsiox ® (Apv JAB)Y
— D;?c?g/slog & .Az/gv

vcanVD
Fxys«BY)
N BV

where the second arrow arises from the natural inclusion (Agv /Ale)v —

Ajv. Since V?E/\{S*(Bv) has vanishing p-curvature, this composite factors

through the quotient DI, /gt ® B — Dg. The resulting morphism

(130) v5 : Dpp — A}y

is surjective and compatible with the respective connections Vpg and

V?;/\; (BY) (cf. the discussion at the beginning of §4.1). Since the vec-

tor bundles Dg’ and A%, have the same rank p, vz turns out to be an
isomorphism. One verifies that 75 is compatible with the respective filtra-
tions {Dg” ¥i_o and {(Agv )’ })_. Thus, by the definition of o, VB forms

an isomorphism @213’0 = 912\7 of (GL,, Ug™)-opers. O
5.2. Now, let us fix an n-determinant data U := (B, Vq) (where B is as

above) for X, and a dormant (GLy, U)-oper 30 = (F,Vr, {]—"j}?zo, nzo)
on X,g. Since V% has vanishing p-curvature, the morphism

(131) Fys(Fx/s«(Ker(Viy))) — FY

corresponding, via the adjunction relation “F /S(—) - Fx/s.(—)", to the
natural inclusion Fy/g.(Ker(VY)) < Fx/g.(F") is an isomorphism (cf.
[12], §5, p. 190, Theorem 5.1). Thus, we obtain a composite
(132) Ao+ FV 5 FYg(Fy s, (Ker(V4)))

— Fys(Fxysa(BY)) (= Agv).
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where the first arrow denotes the inverse of (131) and the second arrow
denotes the pull-back via Fx/g of the composite

(133) Fxs.(Ker(V)) — Fx/g.(F")
_ FX/S*(nV )
= FxysF7Y) TS Bysl(BY).
Next, let us write

(134) H = ABV/)\go(}—V).

If 3¢ : Agv — H denotes the natural surjection, then H may be equipped
with a (p — n)-step decreasing filtration {H’ ?;g given by

(135) H = (AR (=0, ,p—n).
For each j € {0,--- ,p — n}, mp restricts to a morphism
(136) Wg'_‘ : AZ‘W — H.

On the other hand, since Azo : FV — Agv is compatible with the re-
: _ : N can can : ;
spective S-connections Vr and VFX/S*(BV)7 VFX/S*(BV) induces, via 7, an

S-connection
(137) Vi 2H—>QX/S®H
on H. Then, the following lemma holds.

LEMMA 5.2.1. For each j € {0,--- ,p — n}, the morphism 77% is an
isomorphism. Moreover, the collection of data

(138) 97 = (H, Vi, {H}20)
Jorms a dormant GL,_p)-oper on Xg.

PROOF. Let us observe the following two facts (a), (b):

(a) The square diagram
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A
FY AN Apgv

- j [
j:n—l\/ BY
77V
3
is commutative, where the left-hand vertical arrow denotes the dual of
the inclusion F"~! < F. Moreover, the kernels of the left-hand and
right-hand vertical arrows coincide with (FV)! and A}, respectively.
In particular, (since 77§<> is an isomorphism) the diagram (139) induces
an isomorphism

(140) FYIFY S Apv [ Apy.

(b) For any j = 2,---,n, (by the definition of a GL,-oper) the following
equalities holds:
, VY v
(141) (FYY =Ker((FV)— 7S oy g0 FY
= Qs @ (FY/(F)Y),

can | i1
. . FX/S*(BV) Al
ALy = Kelr(.A{,Sv1 — B Qx/s @ Agv
j—1
— Qx/5 ® (Apv [ A )
These facts imply, by induction on j, that the morphism Aze restricts to
morphisms

(142) (FYY = Ay (7=0,---,n),
The resulting morphisms
(143) Ngo o (FYY J(FYH — ALy JAF (5=0,---,n—1)
between the respective subquotients of 7V and Agv make the square dia-
grams
bV , ,
j j 3 1
I .

(144) ’Eﬁj&@ lz zlﬁsjmgv

A L ideNLy o
Qx/s @ (FYYH(FYY) — Qxys @ (A [Apy)
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(j =0,---,n) commute. By induction on j, the commutativity of (144) and
the 1s0m0rphlsm (140) imply that all the )\@0 s are isomorphisms. Hence,

the composite F /\ﬁ? Apv — Agv/ A}y is an isomorphism, equivalently,
7rH is an isomorphism. It follows that all the 7rH ’s are isomorphisms. This
completes the proof of the former assertion.

Next, let us consider the latter assertion. The morphisms W% induce
commutative square diagrams

n+j/An+]+l Hj/Hj—H
e’ j
(145) %, l l%@

Qx/s @ (ARl AR ) —— Qx5 ® (R HY)

(j=0,---,n—p), where the upper and lower horizontal arrows are isomor-
phisms arising from 77% and 77%{1 respectively. Thus, the latter assertion
follows from the commutativity of (145) and the fact (cf. Proposition 5.1.1)
that (Agv, ;n/s Bv),{Aij }_o) is a GLy-oper (which implies that the

Es;[@ s are isomorphisms). [J

Finally, let us define ngo to be the composite isomorphism

dem v
(146) ngo : 5% a5 @ gV T QS0 @ (Ape ) Afy)
(13)5) %\/1 ﬂ;ft o Hn—p—l.

Then, by the following proposition, the assignment F° — F* may be
identified with the assignment F° +— $< (cf. (147)).

PROPOSITION 5.2.2.  The collection of data
(147) 9 = (H, Vg, {HYZ0 mgy0)
orms a dormant (GL,_,, UX)-oper on X, and is isomorphic to FOX.
P /S

PROOF. Denote by tque : B — Dg (resp., tzo : B < F) the injection
B
defined to be the composite of nyue : B = Dg’p_l (resp., ngo : B =
B
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F~1) and the inclusion Dg’p_l — Dy (resp., F*~! — F). The following
equalities hold:

(148) 7}3@ o ngo =130 = /\éo o ﬂ'gv = )\%Q og o ngo.

Hence, it follows from Proposition 3.1.3 that (since both 7z¢ and )‘%o o
are compatible with the respective connections ng and V) the diagram

= A
SX /*éo
f

is commutative. This commutative diagram induces an isomorphism

(149) Dy
n

(150) (Kex(ijge ), Vi, ) = (HY, 735)
of (log) integrable vector bundles. It follows from the various definitions
involved that the dual isomorphism

(151) : (Ker(ﬁgo)v,v = (H, V)

v
Nz )
of (150) is compatible with the respective filtrations {(Ker(7z0)")’ }/—§ and
{H };‘:_5’ , and moreover, satisfies the equality 0| (ker(n 0)¥)pn1 on%Z = Ng0 -
This completes the proof of Proposition 5.2.2. [J

REMARK 5.2.3. Once the proposition just above is proved, one may
describe the assignment § — 99 (= §*) more briefly, as follows. For

simplicity, suppose further that S = Spec(k) for an algebraically closed field
k over k. Let U and §© be as above. Denote by « : FX/E*(Ker(V}/E)) —

Fy /E*(Bv) the composite (133). Then, one verifies that $ is isomorphic to

(152)  (Fyp(Coker(a)), VS oy, {Fy p(Coker(a) 1),

a
where {F7 /E(Coker(a))[j]}g;g denotes the Harder-Narasimhan filtration on

the vector bundle F7 /E(Coker(a)).
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6. Duality for Dormant sl[,-Opers

In [20], we discussed the definition of a(n) (dormant) sl,-oper (or, more
generally, a g-oper for a semisimple Lie algebra g) on a pointed stable curve
and various properties concerning their moduli. In this last section, we
consider duality for dormant sl,-opers induced by Theorem 4.3.1 and some
applications (by means of results of p-adic Teichmiiller theory) to under-
standing the moduli stack of dormant sl,,-opers of the case where n = p—2.

6.1. Suppose that p —1 > n > 1. We shall identify the Lie algebra pgl,
of PGL,, with the spectrum of the symmetric algebra Sk (pgl)/) on pgl, over
k. Since n < p, one may identify sl, with pgl, via the natural composite
sl, — gl, — pgl, and moreover, identify PGL,, with the adjoint group of
sl,. Write ¢, for the GIT quotient pgl, /PGL,, of pgl, by the adjoint action
of PGL,, i.e., the spectrum Spec(Sg(pgly)PGLn) of the ring of polynomial
invariants on pgl,. Denote by

(153) Xn : pgln, — ¢,

the so-called Chevalley map, i.e., the morphism over k corresponding to the
inclusion S(pglY)PGLln — S (pglY) of k-algebras. Also, denote by t, the
Lie subalgebra of pgl, consisting of the image (via gl, — pgl,) of diagonal
matrices, and by « : t, — pgl, the natural inclusion.

Note that the various Lie algebras and morphisms between them men-
tioned above may be defined over F,. Hence, it makes sense to speak of
the sets of the F,-rational points pgl,(F,), cn(Fp), tn(Fp) of pgl,, cn, t,
respectively, and of the maps between the respective sets of IFj-rational
points xn(Fp) : pgln(Fp) — n(Fp), £(Fp) : t(Fp) — pgl,(Fy). The set
t,(Fp) may be identified with the quotient F;"/A(F,), where A denotes
the diagonal embedding I, — F;". The symmetric group &, of n let-
ters acts, by permutation, on F;"/A(F,) in such a way that the surjection
Fx* — F;"/A(Fp) is compatible with the respective &,-actions (cf. (6)).
Hence, we have the double quotient &, \F," /A(F;). The natural surjection

Fy" — &,\F,"/A(Fp) factors through the surjection F)" — N;F(pf):n (cf.

(6)), and we have the resulting surjection

(154) e NE

o S\ A,
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Next, observe that the composite

155)  FXVAF,) (= () " pala(F) 5 0 (F,)

factors through the surjection F;" /A(Fp) — &, \F,;"/A(Fy). The resulting
map of sets

(156) X S\FX JA(F,) — ¢u(Fy)

is injective. .
For each element a € F, and py € Im(x»") (C ¢,(Fp)), there exists a
unique multiset

(157) P = lpgd, o]

(where pgé? € F, for each j € {1,--- ,n}) over F,, with cardinality n (i.e., an
element of Ngﬂ(i):n) satisfying that XEP o WE” (pe™) = p and 2?21 pgf? = a.
Let us define a subset ¢, (F,)® of ¢, (Fp) to be

(158) ea(Fp)® = xn’ 0 wg‘”(ﬁ”_):n)-

If po € ¢, (F,)® and a € F, then (since pi® is a subset of F,,) the element

F F 5
(159) Y = Xt © Ty (05 ®)

is well-defined and lies in ¢(,_,)(F,)®. Note that the element p* does not
depend on the choice of a. Thus, the assignment p — p* defines a well-
defined bijection of sets

(160) ‘9: : CTL(FP)® — Yp—n) (FP)®7

which is verified to satisfy the equality 0(*p_n) 00X =id.

For each p':= (p;){—; € cn(Fp)*" and @ := (a;){_; € F,", we shall write
xq %a; F.
(161) PR = (7" )iz € (N )™

If, moreover, g lies in (¢, (F,)®)*", then one obtains

(162) P* = (pF )izt € (¢(pmn)(Fp)®) "
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In particular, (p*)* = g.
6.2. Let p:= (p;)i_; € ¢p(Fp)*" (where p:= 0 if r = 0). We shall write

Zzz... Zzz...
(163) Dps[mx/s (resp., Dpﬁ[n,ﬁ,%/s) : GC[']/S — Get

for the moduli functor, as introduced in [20] § 3.6, classifying (the isomor-
phism classes of) dormant sl,-opers on X,g (resp., dormant sl,-opers on
X /g of radii p). (For convenience, we shall say that any dormant sl,,-oper is
of radii ().) Both ngf::i/s and DPZ:,;%,%/S may be represented by (possibly
empty) relative finite S-schemes (cf. [20], Theorem C). Moreover, if r > 0,
then Dpzz;‘x/s decomposes into the disjoint union

Zzz... Zzz...
(164) Dp5[n»x/s = H Dps[mp—:x/s.

pecn (Fp)xr

(cf. [20], Theorem C (i)).

Now, let @ := (a;)j_; € F;", p:= (pi)i=; € cn(Fp)*" (where we take
a:=(and g:=0ifr = 0), and let U := (B, V() be a dormant n-determinant
data for X,5 of exponent @. Also, let 3% be a dormant (GL,, U)-oper
on X,g (resp., a dormant (GLp,U)-oper on X,g of exponent p*0 where
p € ¢, (Fp)*"). It induces, via the change of structure group GL,, - PGL,,
a dormant sl,-oper on X /g (resp., a dormant sl,-oper on X /g of radii P),
which we denote by FO®. The assignment F¢ — FO® defines a morphism

Zzz... Zzz...

(165) AcL, Ux)s : OPGL, UX s — OPsl, X
Zzz... Zzz...
(resp., AGLn,U,pjx/s : DPGLmUﬁ»:@x/S — DPg@,ﬁﬁ/S)

over S. By [20], Corollary 4.14.3 (i), AGLngg/S is an isomorphism. (In
particular, ngi‘;,ux/s, as well as ngﬁ U5 %) g0 may be represented by

a relative finite S-scheme.) On the other hand, it follows from Proposition
3.3.8 that if r > 0, then Dpézﬁ;’u X5 decomposes into the disjoint union

Zzz... Zzz...
(166) DpGLmU,%/S = H DpGLn,Uﬁ*&,f{/s'
pe(en (Fp)®)xr



Duality for Dormant Opers 313

Hence, the decomposition (164) may be described as

Zzz... Zzz...
(167) Opeinxs= Il Obstpzs
pe(cn (Fp)®)xr

and, by restricting AGLn,IU,BE/ 4> We obtain an isomorphism

Zzz...

Zzz... ~
(168) AGanU’ﬁax/S : DpGLn,U,ﬁ%,x/s - Dp5[nvﬁa-%/s
over S. Consider the composite isomorphisms

* o * -1
(169)  Ogp, x4 = AL UXss © OGL, U.x,s © AaL, U340
* o . * -1
es[nzﬁ,x/s T AGL(pfn)v.[Uv(pﬁ*a)*vx/S © (—)GLn,U,p_’%,%/S °© AGLn7U7ﬁvx/S‘

Proposition 4.3.2 implies that these morphisms do not depend on the choice
of U. By Theorem 4.3.1, the following theorem holds.

THEOREM 6.2.1 (= Theorem A).

(i) For each positive integer n with 1 < n < p—1, there exists a canonical
isomorphism

Zzz... Zzz...

* . ~
(170) 65%,%/5 : Dpﬁ[n,X/s - DpS[(pfnyX/S

(i.e., the first isomorphism in (169)) over S satisfying that
> .
65[(1,,”),%/5 © @5[n,X/S = id.

(ii) If, moreover, r > 0 and we are given an element f € (¢, (Fp)®)*",
then we obtain, by restricting @:[n x50 O canonical isomorphism

Zzz... ~ Zzz...

* .
(171) ) -Dpsin,ﬁ,%/s - ps[(p_nyﬁ*,x/s

5[nvﬁvx/s

(i.e., the second isomorphism in (169)) over S satisfying that

@5[(p—n)7ﬁ’x/s © @5[11,ﬁ*7x/s - ld'
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Also, by Corollary 4.3.3, the following assertion holds.

THEOREM 6.2.2 (=  Theorem B). The structure  morphism
pi?(z'“l) X S of Dpif:”'l) L is an isomorphism. That is to say, there
p—=1) p—1)»

exists a unique (up to isomorphism) dormant s, _1)-oper on X/g.

6.3. In order to achieve a detailed understanding of the moduli stack of
sl(p_n)-Opers (of the case where n is, in a certain sense, sufficiently small
relative to p), we will use, in this subsection, Theorem 6.2.1 and some results
concerning the moduli stack of dormant sl,-opers obtained in [20].

First, we shall recall the theory of dormant operatic fusion rings S]Z?Z;[n
discussed in [20], §7. For each integer n with 1 < n < p—1 and g :=
(pi)i_y € ¢ (Fp)*" (where p:= 0 if r = 0), write

Zzz...

(172) Dps[nﬁ,gﬁ,

for Dpi:‘ﬁx/s of the case where the pointed stable curve X g is taken to be
the tautological pointed stable curve

(173) (ftau : Q:gzr - ﬁgzr’ {51’ : ﬁgﬂq - Q"Q,T}Z:l)

(cf. §1.3) over M,,. That is, Dpii;’ﬁQT is defined to be the stack in
groupoids over &cbh /gpec(r) Whose category of sections over a k-scheme S is
the groupoid of the pairs (X /8 5‘) consisting of a pointed stable curve X /g
over S of type (g,7) and a dormant sl,-opers on X5 of radii p. (Indeed, it
follows from [20], Proposition 2.2.5, that any (dormant) sl,-oper does not
have nontrivial automorphisms.)

According to [20], Theorem C and Theorem G, Dpi:ﬁ g 18 finite and

generically étale over ﬁg,r. Let

Zzz.

(174) pﬁl;,ﬁ,g,r

denote the generic degree of Dpizﬁ g OVer ﬁg,r- For each finite set I,
N’ denotes the free commutative monoid generated by I, and moreover,
for each integer [, NI>Z denotes the submonoid of N’ consisting of elements
T o=y ai (where \; € I and a; € N for each i = 1,--- ,m) with
Y>oitia; > 1. Here, recall from [20], §5.8, that there exists an involution



Duality for Dormant Opers 315

A — A\ on cn(Fp) that comes, via sl, = pal, X ¢n, from the involution
on sl,, given by assigning (ai;)i;j — (—@nt1—jn+i—i)i;- This involution
extends by linearity to an involution z + z* on NI>Z (for each | € Z). Then,
the function B

Zzz...
. No) 7

,
Zzz...
i S
Z Pi P,50n, 0,9,
i=1

(175) Npstog:

is verified to be well-defined, i.e., the value N” 5[m G does not depend on the
ordering of p1,-- - , p, (cf. [20], the dlscussmn following Proposition 7.5.2). It
follows from [20], Theorem 7.10.4 (i), that if g;, g2 are nonnegative integers
and z € N;gg)gl, y € Ng‘:g’;; , then the collection of functions { N sln }g>0

satisfies the following rule:

Zzz
(176) Np,sln g1+gs (r+y) = Z 5[71 o (x+A)- pﬁLn 92(y+)\ ).
xecn (Fp)

Also, it follows from [20], Theorem E, that for any nonnegative integer g

and any = € N>3( 2)9, the following equality holds:

Zzz. Zzz...

(177) Np,s[,;,g(ffy) = Np,s[n,g(x)'

In particular, the functions N;Z;[;L"O forms a pseudo-fusion rule (cf. [20],
Definition 7.6.1) on the finite set ¢, (F,) (with involution z + z*), and
hence, one obtains the fusion ring

Zzz...

(178) Sp.sl,

associated with NZZ[;O (cf. [19], (834)).
The decomposition (167) implies that c(]F )\ cn(F )® is contained in
Zzz..

the kernel (cf. [20], Remark 7.7.1) of N, o, i.e., N’ 5Ln sor 7 0 only if
0 € (¢n(Fp)®)*". Hence, the restriction

Zzz...

(179) N’r/z = p75[m()|Nin3(Fp)®
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of N”%  to N )"

77z... . . . .
the natural 1nclu51on SN, — 3p o1, glves rise to an isomorphism
2

- N;”:))(Fp ) forms a pseudo-fusion rule on ¢, (F,)®, and

(180) (3N;L)red = (%;,Z;[n)red
(cf. [20], Remark 7.7.1) between the reduced rings associated with §x: and
3?;17 respectively. Let

(181) Casp st

be the element of (Sp sl Jred defined to be the image of ZAEcn(IF,,) AN e

Zzz...

3;5[n via the quotient Sp;[n — (gp,sln)red- Then, by means of Theorem
6.2.1, we have the following corollary. In particular, one may extend (cf.
Corollary 6.3.1 (ii)) a result in the paper [20] (cf [20], Theorem H) con-

cerning an explicit computation of the value N* 5[ 0.9.0°

COROLLARY 6.3.1.

(i) There exists a canonical isomorphism

Zzz ~ Zzz..

(182) (3p75t,;)red - (3;075[(;0_”))1@(1 (:: S)

of rings that sends Casy o, to @pﬁ[(%m (=: Cas). In particular, for
each p= (pi)i_y € (cn(Fp)®)*" (where p:=0 if r = 0), the following
equalities hold:

T
Zzz... Zzz... —
(183) Np75[nvﬁ797T - Np,S[(p_n),ﬁ*,g,r = Z X(C(lS)g b HX(pZ)’
x€Hom(§,C) =1

where Hom(§, C) denotes the set of ring homomorphisms § — C.

(i1) Suppose thatp > n-max{g—1,2}. Then, the generic degrees N” ﬁln 0

Zzz.
and Np,s[(p_n),ti)

9,0
9.0 07€ given by the following formula:
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Zzz... Zzz...
(184) Np,s[n,(?),g,O - Np,s((p_m,@,g,O

_ pn=Dlg-1)-1 ' Z (T, gi)(n—l)(g—l)‘
n! Hz;éj(Cz S C)

(Co+ Cn)ECXT
P=1, ¢;#¢;#9)

PROOF. Assertlon ( ) follows from [20] Theorem F, Theorem 6.2.1 (ii),
the definitions of N [n o and Sp s, and the isomorphism (180) (as well
as the isomorphism (180) of the case where the integer “n” is taken to be
“p—mn”). Assertion (ii) follows from [20], Theorem H, and Theorem 6.2.1
(i). O

6.4. In the following, we focus on the case where n = p — 2. By means
of Theorem 6.2.1 and results in the p-adic Teichmiiller developed by S.
Mochizuki (cf. [15]), one may prove Corollaries 6.4.1 and 6.4.2 described
below.

= Zzz...
COROLLARY 6.4.1. Let p € cp—2)(Fp)*". Then, the stack Dps[@#)@gm
is a (possibly empty) geometrically connected, proper, and smooth Deligne-
Mumford stack’ over k of dimension 3g — 3 + r. Moreover, the natural

morphism Dps[( — ﬁgﬂ“ 1s finite, faithfully flat, and generically

—2),P,9,T
étale.

PROOF. The assertion follows from Theorem 6.2.1 (ii) of the case n = 2
and [15], Chap.II, §2.8, Theorem 2.8, which asserts that Dpi?z'é* sat-

isfies the same properties as the properties desired for Dpi?: o) P in the

statement. OJ

Next, we consider the structure of the reduced ring (SZZ,Z;[( 2))red associ-
» p—
ated with S

in the ring 310’5[(177 . it suffices to understand the structure of (Sp 5[( )red

(cf. Corollary 6.3.1 (i))).
Let us write

5[( (In order to perform any computation that we will need

—3
(185) F::{an\ogang.
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The composite
(186) F — 2 #(—)=(p—2) C(p_2) (Fp)
is injective, where the first arrow denotes the map
(187) F — 2Ii( )=(p—2)
a—Fp\{0,—2a —1}.
We shall regard F as a subset of ¢(,_g) (F,) via this composite injection.

COROLLARY 6.4.2.  The complement of F in c(,_2)(F,) is contained in
the kernel (cf [20], Remark 7.7.1) of NZZSZ[( e Moreover, the structure
constants N 5[( o ola+ B +7) (where a, B, v € ¢p_2y(Fp)) of the fusion

ring {?nﬁ'['('pﬁ) are given as follows:

1 if (o, B,7) e W
0 if (o, 8,7) ¢ W,

where W denotes a subset of F** (C ¢(,_o)(Fp)*3) defined to be

Zzz

(188) Npraio pola+B+7) = {

s+t+u<p—2,and 0<t<u-+s,

0<s<t+u,
(189) W := {(s,t,u) cF*3 }
0<u<s+t.

ProoF. Consider the composite

F,
(190) F — siy(F,) 57 oo(F,),

where the first arrow denotes the map given by assigning a — <8 Oﬁ).

This composite factors through the inclusion ¢2(F))® — ¢2(F,). By passing
to the resulting injection w : F < ¢3(F,)®, we regard F as a subset of
¢2(F,)®. According to the discussion in [20], §7 11 (or, [15], Introduction,
§1.2, Theorem 1.3), the structure constants N? 5[ ola+B+7) (where a, 3,
v € co(IFy)®) of Ty (cf. (179)) are given as follows

if (o, 8,7) € W,

Zzz... 1
(191) Npsola+F+7) = {o if (o, B,7) ¢ W.
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On the other hand, the composite

(192)

w oX %
F — ¢2(Fp)® =2 ¢po2)(Fp)® — c(pn)(Fp)

coincides with the composite (186). Thus, the assertion follows from Corol-
lary 6.3.1 (i) of the case n =2. 0
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