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Thesis Preface 

Preface 

This thesis deals two phenomena concerned with modulated struc
tures of the semiconductor samples. 

In the former part of this thesis (Chapters 1-4) we deal with 
an angular dependent magnetoresistance oscillation (AD MRO) effect 
which originally has been discovered in organic compounds. 

We have succeeded in a semiclassical interpretation of the ADMRO 
effect in the framework of the Boltzmann transport theory. It is 
demonstrated that the essential physics of the ADMRO effect is the 
difference of the asymptotic behavior of the magnetoresistance at the 
peak and valley a.ngles. \Ve have pointed out that the condition for the 
occurrence of the ADMRO effect is approximately given by WeT "' 1. 
We have also shown the ADMRO effect occurs principally in the trans
port perpendicular to the two-dimensional plane. 

\Ve have demonstrated the ADMRO effect in a tailored Fermi sur
face using the GaAs/ AlGaAs superlattices. \Ve have observed two or 
three peaks of the ADMRO in the vertical transport samples. The po
sition of the peaks and its dependence on the carrier density strongly 
suggest that those peaks arise from ADMRO effect. The lateral trans
port properties, on the other hand, are featureless, which is consistent 
with our expectation. 

It is known that some organic compounds exhibit an ADMRO 
effect with an inverted peak structure as compared with ordinary 
type. We have discussed this problem by calculating a magnetore
sistance of some cylindrical Fermi surfaces with different corrugation 
symmetries. The ADMR.O effect exhibits wide variation depending 
on the corrugation patterns, and some Fermi surface exhibit an in
verted peak structure similar to the organic conductors. Although 
our caluclations explain some of the features of the inverted ADMRO 
effect, some features remain difficult to explain. 

Thesis R.Yagi 



Thesis Preface 

In the latter part of thesis (Chapters 5-6), we describe t he oscilla
tory magnetoresistance of two-dimensional electron systems in mod
ulated structures . 

We have investigated energy spectra of two-dimensional electron 
systems in a periodically modulated magnetic field. Based on the cal
culated energy spectra, we infer an occurrence of the magnetoresis
tance oscillation similar to the oscillatory magnetoresistance in a pe
riodic electri c potential modulation (Weiss oscillation). It was found 
that the peaks and valleys of the present case are interchanged as 
compared with the Weiss oscillation. We also describe our attempt 
towards experimental observation of the effect using a GaAs/ AlGaAs 
heterostructure with a striped ferromagnetic gate. 

It should be mentioned that although the ADMRO effect in 
a quasi-two-dimensional systems and the Weiss oscillation in two
dimensional system are different in outlook, they share a common 
physical origin in that they both arise from a periodic quenching of 
the electron drift in a strong magnetic field at certain commensura
bility condition s. 
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Chapter 1 
Introduction 

The ADMRO Effect in 
Organic Conductors 

1.1 Discovery of the ADMRO Effect 

The research for the superconductivity in organic materials has 
brought about a wide variety of organic materials. Some of these 
have superconductivity but some of these do not. (BEDT-TTF) fam
ily is one of the most famous family of organic superconductors. One 
famous example is the K:-(BEDT-TTF)2Cu(NCS)2 1

) whose supercon
ducting transition temperature has first transcend 10 K. 

Aside from the superconductivity, they often exhibit Shubnikov
de Haas (SdH) effect in low temperatures. The investigations of the 
SdH effect suggest that the Fermi surfaces for these materials are 
simple cylinder in shape. The cross-sectional area of the Fermi surface 
for these materials are successfully explained by band calculations8l. 

Kajita et af. 2 ) have discovered a new phenomenon in a quasi-two
dimensional organic conductor 8- (BEDT-TTF)2h. This material has 
a layered crystal structure and a large resistance anisotropy "' 1000. 
The material exhibits a metallic behavior down to low temperatures 
and also undergoes a superconducting transition at about T =3.6K. 
Kajita et a/. have found the magnetoresistance at low temperatures 
oscillates as a function of the angle of magnetic field measured from 
the direction perpendicular to the two-dimensional plane. Figure 1.1.1 
shows the magnetic field angle dependence of the in-plane magne
toresistance in 8-(BEDT-TTFhh for different field intensities. The 
oscillation is manifest. The angular dependent magnetoresistance os
cillation effect has been also found independently by Kartsovnik et 

af.3
) in the same family of organic conductor, ,8-(BEDT-TTF)2 IBr2. 

The salient features of the oscillatory magnetoresistance can be 
summarized as follows: 

Chapter 1 R.Yagi Thesis 1 
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O(dcgrcc) 

Fig 1.1.1 Angular dependence of the magnetoresistance of 
B-(BEDT-TTF)2 I3 . (After Kajita et al. 2l) 

(1) When a magnetic field of fixed intensity is rotated within the 
plane perpendicular to the conductive two-dimensional sheet the 

. . . ' 
res1stance shows osCillatory change w1th the field angle. 

(2) The newly found oscillations are different from the SdH oscil
lations in that the oscillations occur as a function of the field 
angle, but not as a function of the field intensity. It can be ob
served even when no SdH effect is seen in the H-dependence of 
the magnetoresistance . 

(3) The oscillations are periodic in tan B, B being the angle be
tween the magnetic field and the direction normal to the two
dimensional plane. This is to be contrasted with a 1/ cos B de
pendence expected for the SdH effect for a quasi-two-dimensional 
Fermi surface. 

(4) The oscillatory magnetoresistance appears for all azimuthal angle 
¢ of the B-rotation. 

(5) The oscillations appear to be independent of the current direction 
with respect to the crystal axes . 

2 R.Yagi Thesis Chapter 1 
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Open Orbit 

First Brillouin Zone 

Magnetic Field Angle 

Extended Zone 

Fig. 1.2.1 Cylindrical Fermi surface elongating in k.
direction with branches in kx-direction. The open orbit 
A (B ,C ) occurs when the magnetic field is in a (b ,c) di
rection, respectively. This occurs periodica.!ly in tan B. 

Prior to the discovery of the angular-dependent ma.gnetoresis
tance oscillations, Kaji ta et al. i) reported an anomalous linear H
dependence of the magnetoresistance in this system. 

1.2 Fermi Surfa ce Topology 

The measurement of magnetoresistance a.s a function of magnetic field 
angle often provides us the information on the sha.pe of the Fermi 
surface4 l . In some cases, the shape of the Fermi surface can be deter
mined. 

From a semiclassical point of view, the electron motion in a mag
netic field is described by a. following equation of motion : 

dk ndt = ev X B. (1.2.1) 

The Lorentz force changes the k-vector of an electron on the Fermi 
surface, in the direction perpendicular to B and v. It defines an 

Chapter 1 R.Yagi Thesis 3 
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electron orbit on a Fermi surface. This electron orbit is classified 
into two categories in terms of topology of the orbital shape, namely, 
open orbit and closed orbit . The topology of the Fermi surface can 
be inferred from the asymptotic behavior of magnetoresistance for 
different field angles, using the following rule: 

[a] If the magnetoresistance is divergent as H --+ co, the open orbit 
is present for the field angle. 

[b] If the magnetoresistance tends to saturate, all the orbits are 
closed. 

The first explanation for the ADMRO effect was sought in the 
topology of the Fermi surface i.e. angular periodic occurrence of open 
orbits. It seems we can construct a plausible Fermi surface using a 
extended zone scheme by adding branches to a cylinder for the open 
orbits to appear periodically in tan B 3 ) as illustrated in Fig. 1.2.1. 
However we encounter a trouble to construct a Fermi surface which 
satisfies a following experimental results. The measurement of the 
angular dependence of resistance by a two-axis ( B ,¢) rotation of mag
netic field does not cause a sudden change of the occurrence of the 
peaks. Here, ¢is the azimuthal angle defined in Fig. 1.2.2. The peak 
angle Bn of the ADMRO for given ¢ changes continuously in ¢ rota
tion. The peak of the ADMRO never suddenly appear or disappear in 
¢ rotation. If the peak arises from the occurrence of the open orbit, 
the peak angles are restricted in a narrow regime. Thus the origin for 
the oscillation must be sought in other causes. 

1.3 Yamaji's theory 
The key to the understanding of the phenomenon was first given by 
Yamaji 5 l. The angular dependence of the SdH effect suggests that 
the family of organic conductors have a corrugated cylindrical Fermi 
surface. The electronic state for these materials is often described, 
to a first approximation, by the following simple energy dispersion 
relation , 

7i2 ? ? 
E = - (k- + k-) - 2t cos(ak ). 2m x Y z (1.3.1) 

Here, E is the energy, m is the effective mass, kr(y) is the x(y) com
ponent of k vector , t is the int.erlayer transfer integral and a is a 
interlayer distance. Yamaji bas shown that the area, Sk(ko), of a 
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y 

X 

Fig.l.2.2 Schematic diagram of two-axis magnetic field ro
tation . 

cross-section of Fermi surface defined by the plane perpendicular to 
the field direction is given by 

sk (ko) = [ilk} + 4r.mt cos( aka )Jo ( akF tan B) + 0( t 2 
)] I cos e. (1.3.2) 

Here, Jo(z) is the zero-th order Bessel function and ko is a variable 
that specifies a particular cross-section. (See Fig. 2.3.1 in the next 
section.) The cross-sectional area Sk(ko) generally has a dispersion as 
a function of the variable ko due to the presence of the corrugat1on. 
Yamaji has pointed out that at special angles given by 

akF tan Bn = (n - 1/4)r. n : integer, (1.3.3) 

Sk(ko) takes a single value independent of k0 , namely the dispersion 
of Sk(ko) vanishes. Eq.(l.3.3) has given a natural explanation for the 
periodicity in tan B of the observed ADMRO. A nearly complete qu~n
tization occurs for this angles. Yamaji bas discussed the osCJllatJOn 
in the light of the localization effect arising from the nearly complete 
quantization. Based on the Yamaji's model, Osada et af. 6

) bas made a 
numerical calculation of the quantum mechanical energy eigenvalues. 
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1.4 Organization 

Although Yamaji succeeded in explaining the tan(} dependence, the 
origin of the oscillatory magnetoresistance remained unclear. 

In the following Chapters, we describe our theoretical and exper
imental efforts to elucidate the physical origin of the ADMRO effect . 
In Chapter 2, we present semiclassical interpretation of the ADMRO 
effect in terms of the Boltzmann transport theory. Chapter 3 describes 
the experimental observation of the ADMRO effect in GaAs/ AlGaAs 
superlattices. In Chapter 4, we discuss the anomalous ADMRO effect 
with an inverted peak structure observed in a certain class of organic 
conductors. 
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Chapter 2 

Semiclassical Interpretation of 
The ADMRO Effect in Quasi

Two-Dimensional Systems 

Calculation of magnetoresistance in quasi-two-dimensional sys
tems is ca.rried out in the framework of the Boltzmann transport 
t heory in an attempt to understand angular dependent oscillatory 
magnetoresistance phenomea discovered in organic conductors. Cal
culated magnetoresistance curves show the angular dependent oscil
lations reminiscent of those found experimentally. It is argued that 
t he essenti al physics underlying the resistance oscillations lies in the 
angular dependence of the high field asymptotic behavior (saturation 
vs. divergence) of semiclassical magnetoresistance which arises from 
Fermi surface topology. 

2.1 Introduct ion 

As seen in the previous Chapter, although Yamaji has succeeded in 
the explanation of the {}-dependence of the ADMRO effect, the origin 
of the ADMRO effect was still unclear . In this work, we present a 
semiclassical picture based on a Boltzmann transport theory, which 
gives a natural explanation for the angular dependent magnetoresis
tance oscillation (A D MRO) effect. 

This Chapter is organized as follows. In the next section we 
describe the Shockley tube integral formula for the calculation of the 
magnetoconductity in the Boltzmann transport theory. In Section 
2.3, we define a model to be discussed. In Sec. 2.4, we describe 
numerical calculation of magnetoresistance. In Sec . 2.5, we describe 
the analytica.l calculation of the magnetoconductivity. Sec. 2.6 is 
devoted to summary and concluding remarks . 
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kH 

Fermi Surface 

kH II B 

Magnetic 
Field 8 

dk ii .l V 1. 

Fig.2.2.1 Schematic diagram of the Fermi surface. 

2.2 Sh ockley T ub e I ntegral5l 

We start with the Boltzmann equation for the steady state dis
tribution function .f(k , r, t): 

( 
aj

0
) 9k e (agk) e -- E · vk = - + - (vk x B)· - . 

aE T " ak 
= 9k + agk. 

T at 

(2.2 .1) 

Here, .f0 is a distribution function for equilibrium, 9k is defined by 
9k = !k - I~, E is an electric field and T is a. relaxation t ime. Using 
the variables illustrated in Fig.2.2.1, the equation of motion can be 
written in the following form, 

(2.2.2) 

Here , V..L is the group velocity component perpendicular to the mag
netic field and k11 is the tangential component of the k-vector along 
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the circumference of the electron orbit. The time period T is written 
as 

f 1i/e 
T= Vj_Bdku. (2.2.3) 

The cyclotron frequency w and the cyclotron mass m* are defined by 

21r eB 
w= - = -- T m*' 

We define a phase vari able cp by 

dcp = wdt . 

By use of above formulae, 

a9 . ag ag - = cp - =w - , 
at acp acp 

then eq.(2.2.1) becomes 

e ( - 8!
0

) E . Vk = ~ + w ag 
aE T acp 

= we-<pfwr !_(e'Pfwr g). 
acp 

Eq.(2.2.8) can be transformed into an integral formula, 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

g(E,kH,'P) = ~ (- ~~ ) 1~ dcp' exp{(cp1 -cp)fwT}v k(E,kH,'P
1)· E. 

(2.2.9) 
Here kH is the k-vector component parallel to the magnetic field. The 
current J , on the other hand, is given by the following formula 
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Here, we used 

d3 k = dk dk dk X y Z 

= dkHdk1.dk11 
=dE, 

dk11 = ev1.Bdt 

ev1.B 
=--dr.p 

w 
m*v.L 

= -n-dr.p. 

. . (2.2. 11) 
The conductJvJty tensor components can be obtained by substituting 
eq.(2.2.9) into eq.(2.2.10). 

CTa(3 = 
471

e3

2
n2 j dE(-~~) j dkH 12-r. dt.p 1+oo dt.p1 

Va(r.p,kH,E) Vf3(r.p-<p1 ,kH,E)m* e-<p'/wr . (2 .2.12) 
w 

For ksT « EF, the magnetoconductivity tensor components are ap
proximated by 

CTa(3 = 4:32n_2 J dkH 12" dr.p 1+oo dt.pl 

Va(t.p,kH,EF) V(3(t.p-<p1 ,kH,EF)m* e-'P'/wr. (2.2. 13) 
w 

Eq.(2.2.12) or (2.2.13) is called Shockley tube integral. 

10 R.Yagi Thesis Chapter 2 

-~--~ 

Oscillatory Magnetoresistance in Modulated Structures 

B 

Fig.2.3.1 Schematic diagram of the Fermi surface of 
the model quasi-two-dimensional system . 

2.3 Mod el 

Both large resistance anisotropy ("' 1000) and band calculations in
dicate a two-dimensional character of the electronic structure of the 
organic compounds,B-(BEDT-TTF)zi3 etc. \Ve consider a quasi-two
dimensional Fermi surface expressed by the energy dispersion relation 
given by eq .(l.3.1). Vle restrict ourselves to a case, t « EF, which 
corresponds to the weak corrugation limit. The Fermi surface is a 
weakly corrugated cylinder as depicted in Fig.2.3.1. 

Based on the band model, we study the magnetoconductivity 
tensor components by use of the Shockley tube integral numerically 
as well as a.nalytically. The integral is taken over closed orbits in 
the extended zone scheme. The conductivity tensor components are 
calculated as a function of the tilt angle () of the magnetic field from 
the z-axis. Vle take the plane of the field rotation as the zx-plane. It 
is convenient to introduce a variable k0 (see Fig.2.3 .1) which satisfies 
the following relation: 

ko = k= + kxtanB. (2.3 .1) 
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This variable k 0 serves as an index of the slices of the Fermi surface 
perpendicular to the field direction. The electron trajectory follows 
the circumference of the Fermi surface on each slice. Using this k0 

variable, the Shockley tube integral for a given field angle is written 
as 

o-o:f3 = ~ /_!- cosBdk0 (" dcp (+= dcp' 
47r3 7i -!- Jo lo 

Vo:('P,kH) Vf3(cp-cp 1,kH)m* e-<p'fwr. (2.3.2) 
w 

For a field angle not too close to 1r /2, all the electron orbits are closed 
and singly connected in the extended zone scheme. For the closed 
electron orbits, the electron group velocity has the periodicity of 21r 
with respect to the phase variable cp: 

(2.3.3) 

Using this periodicity, the upper limit for the integration over cp' can 
be reduced from oo to 21r, to yield 

(2.3.4) 
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2.4 Numerical Calculation of the Magnetoresistance 

2.4.1 Method of Numerical Integration 

We briefly sketch the outline of the numerical integration of 
eq.(2.3.4). First we calculate a set of co-ordinates ( typically 512 
points ) of the circumference of the Fermi surface cross-section per
pendicular to the magnetic field. Using eqs.(2.2.4)-(2.2.6), we calcu
late the phase variable cp, the cyclotron mass m* as a function of ko, 
and group velocity Vo: as a function of cp. 

Fourier expansion is used to obtain the correlation function of Vo: 
and Vf3 in eq.(2.3.4). Since v(cp) has the periodicity, v(cp) = v(cp+27r), 
we expand v(cp) in a Fourier series, 

vo:('P) = f (an cos(ncp) + bn sin(ncp)), 
n=O 

(2.4.1) 

v(3('P) = f (en cos(ncp) + dn sin(ncp)). 
n=O 

Then the correlation function in eq.(2.3 .4) can be reduced formally, 
to yield 

(2.4.2) 

A set of group velocity for equally spaced cp values (2N) is com
puted by interpolation. Vl/e calculate the Fourier coefficients by a fast 
Fourier transform (FFT) technique. 

Then integration of eq.(2.4.2) is achieved by summation. We 
calculate the all independent components of the magnetoconductivity 
tensor. The resistivity tensor was then obtained by tensor inversion. 
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0 
" e <{ 10 

--->0 

" <{ 

5 tanO ~~~ 

~ 
0 

80 GO 40 20 0 
Angle [ degree ] 

Fig.2.4.1 Angular dependence of the zz component 
of the resistivity tensor for different magnetic fields. 
From top to bottom, the value of w0 T varies from 4 
to 0 with 0.4 step. The inset is the replot against 
tan e. The parameter values are Epjt = 100 and 
mta2 /n 2 = 0.045. 

2.4 .2 Results of t.he NumeTical Calculation 

Figure 2.4.1 shows the numerical result of P== for different values of 
WoT' where Wo = eB /m is the cyclotron frequency for e = 0. The 
parameter values for this figure are Epjt = 100 and mta2 /h 2 = 0.045 
and are chosen to approximately reproduce the Fermi surface of the 
BEDT-TTF salts . The calculated P= = shows oscillations for w0 T > 1. 
Note that for a. given WoT value, wT(;:::;;; WoT cos e) diminishes as e is 
increased . Inset of Fig. 2.4.1 is a replot of the P== curves as a function 
of tan e. It is seen that the oscillations are periodic in tan e, with a 
period .6.(tan e) = 1.05. This period agrees with the formula as first 
derived by Yamaji. 

Next we look at the same phenomenon as a function of ma.gnetic 
field at fued angles . Figure 2.4.2 shows the traces of P::(B) a.t three 
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Fig. 2.4.2 Magnetic field dependence of the zz com
ponent of the resistivity tensor at fixed angles. Here, 

B/Bo = WoT(= eBT/m). The positions of eS~in and 

e~~x are indicated in the inset . The parameter values 
are the same as in Fig. 2.4.1 

different angles: e = 0, e~~~x, and e~{n as indicated in the inset. At 
B = 0, P:: is constant because the zz component of the group velocity 
does not change with field for this field direction. It is noted that the 

high field magnetoresistance behavior is quite distinct for e = e~~x 
and B = e~~{11 • While P:z for 0 = O~lx shows no sign of saturation , 

that for e = e~{" saturates rather quickly. This angular dependence 
of the asymptotic behavior of the semiclassical magnetoresistance is 
the origin of the ADMRO. 

The amplitude of ADMRO increases with increasing wT. Since 
the Landau level quantization is not taken into account in the present 
semiclassical model, the Pzz(B) curves in Figs. 2.4.1 and 2.4.2 do 
not show the SdH oscillations. In an actual experiment, the SdH 
oscillations becomes increasingly prominent as wT is increased, and 
will dominate the ADMRO effect . Although the two effects can be 
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discriminated in principle, it is desirable to choose an appropriate 
experimental condition so that the SdH effect does not hinder the 
observation of ADMRO. 

So far we have discussed the behavior of Pzz . Other components 
of resistivity tensor can be calculated by the same method. Fig.2.4.3 
shows angular dependence of Pxx,Pyy, Pxy and Pyx· The ADMRO 
effect is not visible in the same magnetic field intensity as in Fig. 
2.4.1 while ADMRO effect is eminent in Pzz· Since the oscillation 
stems from a periodic occurrence of quenching of the drift velocity 
associated with the corrugation of the Fermi surface, the oscillation 
in the lateral conductivity coefficient are much smaller in magnitude 
around w0 T "' 1 so that we observe ADMRO principally in Pzz and 
not in Pxx or Pxy· 

It should be mentioned that in Kajita et al. 's experiment1), the 
nominal direction of the probe current is in the two-dimensional plane, 
so that Pxx and Pyy are supposed to be the measured quantities. Taken 
literally, this result is in contradiction with our calculation. However, 
we speculate that, considering the large conductivity anisotropy in 
these materials, it is not unlikely that the nominal basal plane resis
tivity contains some P~~ component depending on the actual electrode 
configuration and the current path. 
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2.5 Analytical Results 

2.5.1 Pictorial Explanation of the ADMRO Effect 
We derive a few relations to describe a semiclassical picture of 

the origin of the ADMRO effect . 

Although the Shockley tube integral is difficult to solve explicitly 
except for some simplified Fermi surfaces, we can make a qualitative 
discussion by expanding the integral in 1/wT, (i.e. 1/B). We restrict 
ourselves to a high magnetic field i.e. WT » 1. Expansion of the 
exponential factor in eq.(2.4.5) yields 

(2.5.1) 

Here, we approximated 

1 WT 
---~ ,....,_ 
1 - e-2rrfwr 2r. (2.5.2) 

The zero-th order term in 1/wT is 

This term determines the conductivity in the high field limit because 
the other terms in eq.(2.5.1) are higher order in 1/wT. 

The conductivity component given by eq.(2.5 .3) arises from elec
tron drift motion in the high field limit. Eq.(2.5.3) is written as 

i 2rr d<p 12rr d<p' { Vo(<p)vp(<p- <p')} 

= {i2rr Vo:(cp)d'P }{12rr vp('P- 'P')d'P'} (2.5.4) 

= {i2rr Vo(cp)dcp }{i2rr vp('P)d'P'} , 
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(a) 8=0 (b) e .. o 

Fig.2.5.1 The behavior of v= for (a)B 
g i= 0. 

1 {1 2

" } Va = - Vo:(cp)dcp 
2r. 0 

0 and (b) 

(2.5.5) 

is the time avera.ge of the group velocity since cp is proportional to t 
(eq.(2.2 .6) ), which goes from 0 to 2r. for one period. 

The physical origin for the ADMRO effect is understood by the 
drift motion picture. We consider the electron drift in z-direction. 
We first consider the case of g = 0°(H II z.) Fig.2.5.1-(a) illustrates 
v= of a certain point in the electron orbit for 11 = 0. The z-component 
of the group velocity, 

v _ = - - = - sm ( ak-) 1 ( fJE) 2ta . 
• n ok = n -

(2.5.6) 

does not change during a cyclotron motion . The drift velocity is 

1 12
" 2ta 2ta vz =- - sin(ako)d<p = -1i- sin(ako). 

2r. 0 1i ~ 
(2.5.7) 
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Thus, the z-component of the electron drift velocity has a finite dis
persion as a function of ko. This leads to a finite conductivity along 
the z-direction. It is given by 

CTzz C( J v;(ko)dko, (2.5.8) 

in the high field limit. 
Next we consider general cases, i.e. () # 0. As illustrated in 

Fig.2.5.1-(b) the z-component of group velocity oscillates during cy
clotron motion. The group velocity averaged over the trajectory is 

f 2ta 
Vz = h sin(akz(cp, ko, B))dcp 

1 121r 2ta . = - - sm(ako- akp tan() cos 0dcp. 
27i 0 1i 

(2 .5.9) 

Here, we used (kx,ky) = (kcosCksinO and k2 = k~ + k~. Ana
lytical integration of eq.(2.5.9) for a. general case is not easy because 
of a. complicated dependence of k and ~ on cp . For (t/ Ep) « 1, we 
can approximate the phase variable cp by ~' and we replace k by kp 
(Appendix A). Then eq.(2.5.9) becomes 

v. = ~ (" dcp{
2
ta sin(ako- akptan(}coscp) } 

27i Jo 1i 

= 2
ta sin(ako){~ (" dcpcos(akptan(}coscp) } 
1i 27r Jo (2 .5.10) 

2ta . = h lo ( akp tan(}) sm( aka). 

Recalling that lo(z) is approximated for z > 1 by 

the zeros occur at 
1 

akp tan(}= (n- 4)7i. 

(2.5.11) 

(2.5.12) 

(2.5.13) 

When the field angle satisfy the above condition, the electron drift 
vanishes for all values of k0 . The periodic occurrence of such quench
ing of the drift motion leads to the ADMRO effect. 
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2.5.2 The ADMRO Effect in 1/eTtical TmnspoTt 

The final result for cr zz in the approximation is written as follows: 

o { 2 ~ J~(A) } 
CTzz=CT __ la(A)+2~ 1 ( B)?, 

-- v=l + WoTVCOS -
(2.5.14) 

where A= akp tan() , and cr~= given by 

2e2
mt

2
aT ( Vz ) 

2 
nee

2
T (T~z = ---.--- - - -

1it14 - Vp m 
(2.5 .15) 

is the conductivity along the z-direction in the absence of magnetic 
field. Here ne is the number density of the electrons, and ii: = 2taf1i. 
The derivation of eq.(2.5.14) is described in Appendix A. 

Here, we only discuss the meaning of eq.(2.5.14). First we note 
that Pzz rv 1/CTzz for a. quasi-two-dimensional electron system. The 
terms with v > 1 in the summation diminish with increasing field 
strength (incre~sing woT). The conductivity in the high field limit 
(woT _ , oo) is therefore governed by lo(A). 

This term arise from the electron drift motion discussed in Sec . 
2.5.1. The term becomes negligible when the angle() satisfies the con
dition, eq.(2.5.13). For these values of(} , cr •• vanishes in the high field 
limit, and Pzz(rv 1/cr •• ) diverges . For other values of(}, CTzz remains 
finite so that P:: becomes saturated at high fields. The anaytical re
sults for Pz:((}) rv 1/cr:: with CT:z given by eq.(2.5.14) actually agree 
very well with the numerically obtajned curves shown in Figs. 2.4.1 
and 2.4.2, indicating that the replacement of cp of~ employed in the 
analytic calculation is a good approximation. 

The decrease of the v ;:::: 1 terms at higher field becomes less rapid 
for a larcrer value of(} because of the cos(} factor in the denominator . 
This co;;esponds to the obvious fact that as (} increases, the same 
value of WT requires a progressively higher field. Thus, for a given 
value of w0 T as in Fig. 2.4.1 , the P:: maxima are less pronounced 
at higher angles. Turning to the P:: minima, because the peak value 
of J0 (z) decreases with increasing z, the maximum of cr •• decreases 
with increasing(}. This means that the saturation value of P:: in the 
high field limit increases with (}. The a.bove two arguments give an 
explanation for the decrease of the amplitude of the angular dependent 
oscillations with increasing(}. 
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(a) 

ky dk II dky v .L 

(b) 

Fermi Surface 
Cross-sectional Area 

Fig 2.5 .2 (a)Schematic diagram of the u- and w-axes. 
(b) Definition of(. 

2.5.3 On the Lateral TranspoTt Coefficients 

As mentioned in Sec. 2.4, the ADMRO effect in the lateral transport 
coefficients are so small that they are not visible in the numerical 
results of Fig. 2.4.3. Here we estimate the ADMRO effect in the 
lateral transport coefficients. Strictly speaking, the lateral transport 
coefficient, l7xx also contains [17xx]o ~ [17zz]o tan2 e, where [17xx]o is 
the conductivity due to the electron drift in high field limit. It can 
be seen by rotatiting the principa.l axes of the conductivity tensor 
components. \Ve define u- and w- axes as shown in Fig 2.5.2-(a), 
where the u-axis is in the direction of magnetic field and the w-axis 
is perpendicular to it in the z-x plane. 

For a closed orbit, the electron drift m the w- and y-direction 
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vanishes5l because 

12,. f 1i dku 
Vw(<,o)dcp = V_L COS(-.-

o m VJ. 

= __!!__ J dk 
1n* Y 

(2.5.16) 

= 0. 

Here, ( is the angle defined in Fig.2.5.2-(b ). Non-vanishing electron 
drift occurs only in the direction of magnetic field( u-direction). Thus 
it follows from eq.(2.5.3) that the conductivity components arising 
from electron drift vanish except for 17 ww. 

We can determine [17 xx]o by transformation of the principal axes, 

(::: :::) = (_~~~:e ~~~~) (::: :::) c~~: ~~~n/). 
(2.5.17) 

Since only 17 ww contains the conductivity due to the electron drift, we 
obtain 

[17xxlo = [17zz]o tan2 e 
(2.5.18) 

= tan2 817~zJ6(akF tan 8). 

The lateral conductivity components for tj EF « 1 can be ap
proximated by the pure two-dimensional cond ucti vi ty (i.e. t / E = 
0) , 

2 ( l )2 2 ...L e neT ~ - e neT WT 

17 XX = ---;:;:;- 1 + ( ...L )2 l (J xy - ----;:;:;- 1 + ( ..1_ )2 l 

wr w; 
(2.5.19) 

CJyy = l7xx, CJyx = -(Jxy, 

where WT = w0Tcos8. The most important correction is the [17xx]o. 
Since t/EF « 1, l7xx » [CJxx]o around wT"' 1, thus ADMRO effect 
is small ( negligible ), as seen in Sec. 2.4. For a sufficiently large 
magnetic field, on the other hand, it becomes increasingly important 
because CJ xx "' [17 xx]o since two-dimensional conductivity component 
in l7xx given by eq.(2.5.19) vanishes. On the other hand, the SdH 
oscillations will become prominent at the same field range and may 
mask the ADMRO effect. By contrast, the ADMRO effect is already 
manifest in Pzz for woT "' 1 so that Pzz have the advantage in the 
observa.tion of the large ADMRO effect . 
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2.6 Summary and Concluding Remarks 

We have made semiclassical calculations of the conductivity tensor for 
a model quasi-two-dimensional system by use of the Shockley tube 
integral formula. The calculated resistivity Pzz exhibits angular de
pendent oscillations reminiscent of those recently found in the BEDT
TTF salts. The physical origin of the angular dependent oscillation 
lies in the distinct asymptotic behavior of the high field magnetoresis
tance (divergence vs. saturation) depending on the field angle relative 
to the corrugated Fermi surface. Since this is essentially a semiclas
sical effect, the ADMRO effect can be observed even when no SdH 
quantum oscillations are visible, in agreement with Kajita et al. 's 
observation. Similar phenomena should be observable in other quasi
two-dimensional conductors, provided that the shape of the Fermi 
surface is a weakly corrugated cylinder. 
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Chapter 3 
The ADMRO Effect in 

GaAs/ AlGaAs Superlattice 
Magnetotransport studies of GaAs/ AlxGa1 _xAs super lattice hav

ing a tailored Fermi surface of a weakly corrugated cylindrical shape 
have revealed an angular dependent ma.gnetoresistance oscillation ef
fect similar to the one found in quasi-two-dimensional organic con
ductors. The present observation provides evidence that the effect 
should commonly occur in a general class of nearly two-dimensional 
electron systems. Transport behavior has been studied both in the 
vertical and the lateral direction of the superlattice , and is discussed 
in the light of our semiclassica.l calculation described in the previous 
Chapter. 

3.1 Introduct ion 

Ever since the original proposal by Esaki and Tsull, world-wide in
tensive efforts have been paid to the development of science and tech
nology of artificial semiconductor superlattices. Vlith the advent of 
molecular beam epitaxy (MBE), superlattice technology has made 
a. great progress, and it is now established that to a. great extent 
semiconductor systems with tailored electronic structure can be fab
ricated. One of the early demonstrations of artificial electronic band 
structure was made by Chang et a/. 2 ) who observed the SdH effect in 
GaAs/ AlxGa1 _xAs super lattices and discussed in terms of minigap 
and miniband formation associated with the superla.ttice periodicity. 

In a semiconductor superla.ttice, periodicity along the stacking di
rection (z-direction) leads to formation of one-dimensional subbands 
and subgaps in the energy dispersion along the k.-direction. If the 
Fermi level resides within a 1D subband, the Fermi surface is closed 
within the first Brillouin zone. In this case the electronic structure 
is essentially three-dimensional , albeit anisotropic. If, on the other 
hand, it falls in a 1D subgap, the Fermi surface becomes a corrugated 
cylinder extended along the kz-direction and the system is more two
dimensional in character. Thus, one can tailor the topology of the 
Fermi surface by appropriate choice of parameters. such as superlat
tice periodicity, barrier height, and doping level 9l. 

Chapter 3 R .Yagi Thesis 25 



Oscillatory Magnetoresistance in Modulated Structures 

In this work, we tailor a Fermi surface appropriate for occur
rence of the ADMRO effect by fabricating GaAs/ AlxGa1_xAs super
lattices and study their magnetotransport behavior as a function of 
field angle. The primary purpose of the present study using semicon
ductor superlattices is, of course, an experimental verification of the 
occurrence of the ADMRO effect in a system other than the organic 
conductors. Once it is achieved, superlattice system has a number of 
merits. Namely, we can study the effect with a tailored Fermi surface . 
Furthermore, different resistivity components can be unambiguously 
measured by fabricating devices of appropriate geometry. The latter 
point is related with the discrepancy mentioned in the previous Chap
ter between the experimental observation in organic conductors and 
our results. 

This Chapter is organized as follows. In the next section the 
experimental methods including the superlattice design and fabrica
tion is described. Experimental results are presented and discussed 
in Section 3.3, and Section 3.4 gives concluding remarks. 

3.2 Experimental 

3.2.1 Dtsign and Fabrication of Superlattice Samples 

In order to optimize the experimental condition for observation of the 
ADMRO effect in a GaAs/ AlxGa1_xAs superlattice, the following 
factors have to be taken into consideration: 

(i) The shape of the Fermi surface should be a weakly corrugated 
cylinder. The Fermi surface can be designed by adjusting such 
parameters as the superlattice period, the alloy composition x, 
and the doping concentration. 

(ii) The corrugation should be weak, which requires the interlayer 
transfer matrix element to be small. However, it should not be 
smaller than the energy broadening by impurity scattering. 

(iii) High carrier density is favored in order to attain the a semiclas
sical situation at high fields . It has to be compromised, however, 
with decreasing carrier mobility (and hence wr) with increased 
doping. 

(iv) In order to measure the vertical transport, the number of layers 
should be made as large as possible within the limit of practical 
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Device J.D. Type EF [meV} ne {em ·3} 
L1 Pxx,Pxy 29 5 x10 1 

vl Pzz 29 5 x10 17 

12 Pxx' Pxy 45 7.5 x 10li 
v2 Pzz 45 7.5 x1017 

Table 3.2 .1 Designed device parameters . Ep: Fermi 
energy, ne:Designed carrier density. 

growth conditions. 

With the above considerations, the following parameter values have 
been chosen. The thickness of the GaAs layer is 100 A. The AlxGaJ-xAs 
layer is 60 A thick with the alloy composition, x = 0.15. \ i\lith this su
perlattice structure, the lowest subband width is 6 meV and the first 
minigap width is 50 me V. To realize a corrugated cylindrical Fermi 
surface, the Fermi energy must lie in the first minigap . The structure 
and the parameter values of superlattice devices are summarized in 
Table 3.2. 

Samples of GaAs/ AlxGa1_xAs superlattice used in the present 
study were grown by a molecular beam epitaxy (MBE) method. Two 
types of devices ( vertical and lateral transport) for the above super
lattice structure were grown under the same growth condition. 

The device I.D .'s have the following meaning. The symbol L(V) 
means that the device is fabricated into a geometry for lateral (verti
cal) transport measurement . Devices with the same suffix (like 11 and 
V1) are the cut out of the samples grown under the same condition. 

Devices V 1 and V 2 for the vertical transport (p =;) were prepared 
by successively growing on a (100)n+ -GaAs substrate, a 500 A truck of 
n+ -GaAs buffer layer, 100 units of GaAs (100 A)/ AlxGaJ-xAs (60 A) 
superlattice (total thickness 16,000 A), and finally a 5000 A of n+
GaAs cap layer . Si donors were doped only in the AlxGa1_xAs layers 
to attain a high mobility. Typical growth rate was"' 2A/sec. 

Devices 11 ,Lz for measurements of lateral transport (Pxx and Pxy) 
were prepared by successively growing on a semi- in sulating (100)GaAs 
substrate, a 500 A thick GaAs buffer, 100 units of GaAs (100 A)/ 
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GaAs/AIGaAs 
superlattice 

Au pad sooA 

Ohmic Contact 
AuGe 

OMR83 
(Photoresist) 

n+GaAs substrate ~ 
::~/:·:::::~:::·~~-::::-~::~::~-~::::~::~::::~::~·Z::~::-:-:~~~·::::~~~~:~~z:::-:~i~:-:~~r$. 

Ohmic Contact 
AuGe 

Fig 3.2.1 Schematic diagram of the device structure 
of the vertical transport sample. 

AlxGal-xAs (60 A), 100 A thick of AlxGal-xAs, n+-AJxGal-xAs 
and GaAs. 

We have examined the superlattice periodicity by X-ray diffrac
tion. The period of the grown superlattices turned out to be 130A, 
about 19% smaller than the designed value. 

The device structure for the vertical transport measurement was 
depicted in Fig. 3.2.1. The fabrication was done by the following pro
cess. First AuGe alloy was deposited("-' 2000A thick) on both side 
of the substrate and patterned by a usual photolithography technique 
to form Ohmic contacts . The alloying was done at about 400°C for 
1 min in Ar. The superlattice samples were patterned by wet etching 
in lHzOz : 1HJP04 : 8H2 0 solution. A series of Devices with differ
ent lateral dimensions (50 x 50,100 x 100,200, x200JLm2 etc.) were 
prepared, in order to confirm that the measured conductance scaled 
with the cross-sectional area. Insulating layer was formed with a pho
toresist OMR-83 ("' 1JLm thick ), and then Au ("-' 500A thick) was 
deposited to spread the top electrode. 

Devices for the lateral transport measurement was patterned in 
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a standard Hall bar geometry by wet etching. The channel of the Hall 
bar is 50 JLm wide and the distance between the voltage probe was 
200 JLm. Ohmic contacts were achieved with A uGe alloy. 

3.2.2 Magn etotransport Measurements 
The magnetotransport measurements were carried out in a 9 T 

superconducting solenoid using the rotating sample holder. Trans
port measurements were done using a direct current, typically 100 JLA. 
Both Pxx and Pxy were simultaneously measured for devices for lat
eral transport in a standard way. Because of its structure, resistance 
measurements of vertical transport device were done by a two-probe 
method. By a method described in the next section, we were able to 
extract the vertical resistance of the superla.ttice part from the mea
sured two-probe resistance. The angle of magnetic field is monitored 
by a set of Hall sensors on the sample mounting stage. Tempera
ture was monitored by a carbon glass thermometer. The temperature 
control was done by use of an analog P.I.D. temperature controller. 
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Room Temperature Part 

Low Temperature Part 

Driving Wire 
(Stainless Steel 0.1 ~) 

/ 

Fig. 3.2.2 Schematic diagram of rotating sample holder. 
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3.2.3 Rotating Sample HoldeT 

Fig.3.2.2 shows the structure of the rotating sample holder. The sam
ple mounting stage is rotated by a. set of pulley and wire. The rotating 
action is delivered from the top of the cryostat by a thin wire to the 
sample mounting stage. The tension and twists of the driving wire 
are tuned by the apparatus inserted in the wire loop. The action of 
the driving wire is precisely controlled by a stepping motor (minimum 
step rv 0.03°) on top of the cryostat. Two Ha.ll sensors a.re mounted 
on the rotating stage so that they monitor the vertical a.nd horizontal 
components of magnetic field. This type of rotating mechanism en
ables us to sweep the field angle more smoothly than those using gear 
assemblies, and to investigate subtle features in angular dependence. 

3.3 Results and Discussion 

3.3.1. Sample ChamcteTization 

The electron densities of the present samples are estimated from the 
Hall coefficient and the SdH effect of Devices 1 1 and 12 for lateral 
transport measurement at T = 4.2 I<. The obtained parameters are 
summarized in Table 3.3.3. These values are obtained by assuming a 
cylindrical Fermi surfaces. The analysis of the angular dependence of 
the SdH period indicates that the Fermi surface is a weakly corrugated 
cylinder, as designed. The Devices V1 ,V 2 for the vertical transport 
measurement also show the SdH oscillations at low temperatures. The 
SdH periods for Devices V; and 1; agree with each other, as they 
should. 
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Device J.D. nH{cm 3
} nsdH [em ·3 J 11 [cm2 jVsec} 

Ll 6.5 X 1017 6.8 X 101 2040 
12 8.9 X 1017 9.9 X 1017 2960 

Table 3.3.3 
Carrier density and mobility of grown superlattice sam
ples. nH :Carrier density determined by Hall effect at 
T=4 .2K, nsdH: Carrier density determined by the SdH 
effect at T=4.2K, p.: Electron mobility. 

3.3.2 VeTtical TmnspoTt 

Figure 3.3 .1 shows the angular dependence of the resistance of the 
Device V 1 at T = 30 K under different magnetic fields up to 9 T. 
With increasing field intensity, resistance peaks at &};2x "'39° and at 
a};2x "' 62° become manifest. It should be noted that the field angle 
of the peak structure does not depend on the field intensity. This fact 
rules out the usual SdH effect or magnetophonon effect as the origin 
of these features. 

The reason why the above measurement is done at T = 30 K is 
because the SdH oscillations becomes increasingly dominant at lower 
temperatures. Figure 3.3.2 shows the magnetic field dependence of 
resistance for different field angles at T = 30 K. A weak SdH oscilla
tion is seen at B = 0° (Trace a) even at this high temperature, but the 
amplitude of the SdH oscillations rapidly diminishes with tilt angle. 
It is emphasized that at B "' 39° (Trace b) where the most promi
nent peak structure occurs in the angular traces, the field dependence 
shows no structure.Thus, the structures in the Pzz(B) traces shown in 
Fig. 3.3 .1 have the characteristics of the AD. 1RO in common with 
that in the organic conductors. 

Figure 3.3.3 shows the angular traces of resistance at different 
temperatures from 4.2 K to 145 K. At higher temperatures (T > 
100 K) , only the resistance peak at B = &~;2, is visible. The second 

peak at B = B~~~x becomes clearly discernible at intermediate tern-
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Fig. 3.3.1 The angular dependence of the vertical 
resistance, Pzz, of Device V1 at T = 30 K for different 
field intensities. 
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Fig. 3.3.2 Magnetic field dependence of the vertical 
resistance, Pzz, of Device V1 at T = 30 K for different 
field angles . The selected field angles (a to e) are 
indicated in the inset . 
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Fig. 3.3.3 The angular dependence of the vertical re
sistance, Pzz, of Device V1 at different temperatures. 
From top to bottom, T = 4.2K, 10.3I<.:, 15.31<, 19.61<, 30K, 
38K, 44K, 53 I<, 671<.:, 83K, 1101<.:, and 1451<.:. The peaks 
in the low temperature traces marked by arrows are 
due to the SdH effect . The ADMRO peaks are most 
clearly seen in the intermediate temperature range. 

perature range (100 I< > T > 15 I<.:). This is the temperature range 
in which the ADMRO can be most clearly observed, and the data in 
Figs. 3.3.1 and 3.3.2 were taken in this range. Note that peak angles 
are independent of temperature in this temperature range. At still 
lower temperatures (T < 15 I< ), other peaks (marked by arrows) due 
to the SdH effect emerge and grow with decreasing temperature. The 
positions of the two ADMRO peaks apparently shift by interference 
wi th the SdH peaks. 

It is necessary to confirm that the observed phenomenon is in
trinsic to the superlattice part of Device V 1 , since the measured two
probe resistance is a series sum of the resistances of the superlattice, 
the n+ -GaAs substrate and the n+ -GaAs cap layer, and the contact 
resistances. For this purpose, we prepared three types of devices ill us-
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Fig. 3.3.4 Comparison of the angular dependence of 
Pzz for three devices (Devices V 1, V '1 and B) with 
structures illustrated in the inset. The resistance be
havior is consistent with the series sum of the resis
tances of different layers. 

trated in the inset of Fig. 3.3.4. The middle figure shows the vertical 
structure of Device V 1 . Device V'1 on the left is identical with Device 
V 1 except that the etching process is stopped right at the bottom of 
the superlattice part. Device Bon the right is a mesa of bulk n+ -GaAs 
which corresponds to the lower half of the Device V 1 . 

The main panel of Fig. 3.3.4 shows the angular dependence of 
macrnetoresistance of the three devices at T = 30 I< and B = 9 T. 

0 

The angular tra.ces of resistance of Devices V 1 and V'1 show the iden-
tical peak structure. They differ by an amount corresponding to the 
resistance of Device B, which depends very weakly and monotonically 
on the magnetic field direction. The contact resistance and the resis
tance of the unetched n+-GaAs substrate part are negligible in this 
scale. Thus, it is firmly established tha.t the peak structures seen in 
Devices V1 and V'1 are intrinsic to the superlattice part. 

Next we turn to the carrier density dependence. The left panel 
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Fig. 3.3.5 Left:Angular dependence of Pzz of De
vice V2 at B=9T, T = 30K. Data for Device V1 are 
also plotted for comparison. Right: Enhanced plot 
of Pzz(O) of Device \12. 

70 75 

of Fig.3.3.5 shows the angular dependence of magnetoresistance for 
Device V2 at T = 30K,B = 9T. The result for Device V1 is also 
plotted in the same figure for comparison . It is seen that the resistance 
curve for Device V 2 is approximately the same as Device V 1 although 
peaks are shifted to the lower angles. The peaks in Device V 2 occur at 
0 = 34°, 57° and 68° The right panel of Fig.3.3.5 shows the enhanced 
plot of the angular dependence of resistance around t he third peak. 
The deviation from linearity is plotted. The thi rd peak 0 = 68° is 
visible in this plot. 

In contrast to the case of organic conductors where the ADMRO 
peaks up to n "' 8 have been observed, only a few peaks are seen 
in the present case. According to our calculation6l (Fig.2.4.1 ), the 
ADMRO starts to develop above WT rv 1. From the basal-plane Hall 
mobility at this temperatu re, we estimate wT "' 1.8 at B = 9 T for 
0 = 0° , which is the reason why only two or three peaks are observed 
in V 1 . In Device V 2 we could observe three pea.ks since it has a larger 
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Fig. 3.3.6 Comparison of the observed peak angles 
of the ADMRO in (a.) Device 111 and (b) Device V2, 
with the peak condition (eq .(2.5 .13)). Solid points 
are observed peak data at T = 30K. Lines are the 
eq.(2.5 .1 3)with the carrier density determined by the 
Hall effect and the SdH effect. 

electron mobili ty than Device V 1 . 

Another possible origin of the rapid decrease of the ADMRO at 
higher angles may be sought in the fact tha.t the deviation from a 
weak corrugation condition tends to smear the ADMRO effect more 
effectively at higher angles . 

Next we compare the observed peak angles with eq .(2.5 .13). Fig. 
3.3.6- (a) and (b) show the plot of the peak a.ngles tan On against the 
peak index n. The tanO values obtained by eq.(2.5. 13) using the 
superlattice parameters are also plotted for comparison. The observed 
peaks for both Devices V 1 and V 2 exhibit fairly good agreement with 

eq.(2.5.13). 

The peak angles of V 2 shifts to lower angles because Device V 2 

has larger kF since carrier density for V 2 is larger than V 1. As seen 
in eq.(2.5 .13) larger kF cause a small ()n for the same a. The angle 
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Fig. 3.3.7 Numerically calculated angular dependence 
of e7 :z in the high field limit for different tempera
tures. Here, EF = 3501<. 

for the first peaks gives the relation 

tan(;l(Vl) kF(V2) 
_ ___,_____!, = - - = 1 21 
tan (;l(V2) k F(Vl) . ' 

(3 .3.1) 

which fairly agrees with the same value obtained from carrier density, 

kF(V2) lnH(V2) - - ;:::;; = 1.17, 
kF(Vl) · nH(V1) 

(3.3.2) 

nsdH(V2) 
( = 1.20. 

nsdH Vl) 
(3.3.3) 

We were able to observe the ADMRO effect by conducting the ex
periment in an intermediate temperature range so as to avoid interven
tion of the SdH oscillations. This fact indicates that the temperature
induced smearing acts differently on the ADMRO effect and on the 
SdH effect. 
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The amplitude of the SdH effect for wT » 1 is determined by 
1iw and kBT. The SdH amplitude is approximately given by the 
relation 1 O), 

(SdH amplitude) ex X/sinhX, (3.3.4) 

where X= 21i2kBT/1iw. The condition for the occurrence of the SdH 
effect is often roughly approximated by 1iw > k8 T . 

On the other hand, the temperature effect on the ADMRO is 
determined by the - (8!0 foE) factor in eq.(2.2.12). The electrons 
with different E (hence different k ) contribute to e7 with different 
angular period (eq.(2.5.13)). In the case of wT » 1, kBT should be 
compared with EF. The distribution 6k is approximately given by 
(6.k/kF)""' (1/2)(kBT/EF). We formulate the condition for occur
rence of the n-th peak of the ADMRO effect as follows: 

( 7i 7i ) 1(7i) 
n a(kF- 6./) - a(kF + ~k) < 2 akF · 

(3.3.5) 

This is the condition where the phase difference of the ADMRO effect 
between k""' kF- (6k/2) and k ""'kF + (6k/2) states becomes 7i. In 
terms of kBT and EF, the above condition can be written as 

kBT 
n· -- < 1 EF . (3.3.6) 

We note that for large n, the temperature effect becomes significant. 
In the case of usual metals, EF » kBT (and usually EF » 1iw) , so 
that the ADMRO effect survives much higher temperatures than the 
SdH effect when WT > 1. 

In the present case (EF ""'3501<), we have observed the ADMRO 
effect at T = 30K where the SdH effect is diminished. We estimate 
t he amplitude of the both effects. First we note that the carrier 
density and the zero-field resistance does not exhibit significant change 
between T = 4.2K and 301.,: so that the value of wT does not change. 
Fig. 3.3.7 shows the numerical result of e7 z: ( 11) in the high field limit 
for T = 4.2K and T = 30K. We can see the temperature induced 
broadening of the oscillation forT= 30K , but the ADMRO amplitude 
is still comparable to that forT= 4.21<. On the other hand, the SdH 
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Fig. 3.3.8 . The angular dependence of the lateral 
resistance of Device 11 at T = 44 K for different field 
intensities. The traces in this figure were obtained by 
rotating the magnetic field from the direction normal 
to the layer to the direction of the current. The same 
result was obtained when the field was rotated within 
the plane perpendicular to the current direction. 

amplitude obtained by eq.(3.3.4) with B = gT, T = 301<, (} = 60° is 
about 1% of that at T = 4.21< so that it is negligible at T = 30K. 
Thus we can observe only the ADMRO effect by suppressing the SdH 
effect around T.-v 301\. 

Since the ADMRO effect is attributed to the semiclassical be
havior of electrons in magnetic field, it can survive up to much higher 
temperatures than the quantum magneto-oscillation effect. Quantita
tive discussions of the temperature dependence of both the ADMRO 
effect and the SdH effect require a quantum mechanical calculation of 
the conductivity tensor components . 
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Fig.3 .3.g The field dependence of the lateral resis
tance of Device 1 1 at T = 4.2 K for different field 
angles. 

3.3.3 Lateml Tmnsport 

Figure 3.3.8 shows the angular dependence of Pxx of Device L1 at 
different field intensities. Although the measurement was done at 
T = 44 K to suppress the amplitude of the SdH oscillations, the main 
features in the angular dependence are due to the SdH effect. Apart 
from the features due to the SdH effect and a cusp-like structure at 
(} = goo, the angular dependence of Pxx is featureless. In particular, 
it is noted that there is no peak structure at around (} = 3go which 
corresponds to the first peak of p z z in Device V 1 . The absence of the 
ADMRO in Pxx is in agreement with our calculation6l. The cusp-like 
structure at () = goo is attributed to the negative ma.gnetoresistance 
due to localization effect, which will be discussed in Appendix B. 
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Figure 3.3.9 shows the magnetoresistance, Pxx(B), of Device 1 1 

at different angles at T = 4.2K. As (} is increased, the period of the 
SdH oscillations decreases and the amplitude diminishes, as expected 
for a cyundrical Fermi surface. The SdH amplitude, however , does 
not appear to decrease monotonically with (}, although it is difficult 
to judge based on the small number of observed oscillations. It is 
noted that the amplitude diminishes rapidly between (} = 40° and 
50°, and appears to take a local maximum between (} "' 20° and 
40°. The angle at which the SdH amplitude becomes maximum is in 
the neighborhood of the first peak angle of P:: in Device V 1 . This 
is consistent with the prediction based on Yamaji's model, because 
all the Fermi surface cross-sections coincide at this angle. Because its 
physical origin lies in a coincidental enhancement of the Fermi surface 
density of state effect, this SdH ampli tude modulation is expected to 
occur regardless of the current direction, which is in contrast with 
the semiclassical ADMRO effect . It has to be added, however, that 
the observed amplitude change could possibly arise from beating of 
the SdH oscillations with different periods, so that it is difficult to 
make any definite statement about the ampli tude based on the small 
number of oscillations observed. 

3 .4 Conclusion 

We have succeeded in the experimentally demonstrating the angular 
dependent magnetoresistance oscillation effect in GaAs/ AlxGa1 _xAs 
superlattices. The present result provides an evidence that the ADMRO 
effect can occur in a. general class of nearly two-dimensional electron 
systems. We ha.ve observed a qualitative difference in the a.ngula.r 
dependent magnetoresista.nce between lateral and vertical transport. 
Namely, a.s we proposed in the previous Chapter, the ADMRO ef
fect is manifest only in P::. On the other ha.nd, the amplitude of 
the SdH oscillations of Pxx a.ppea.rs to show a.n a.ngula.r dependence 
a.s predicted by Ya.maji 's theory5l. The physical origin is common to 
the both effects, and lies in the occurrence of special situation of the 
electron orbits for particular set of field angles specified by eq .(2.5 .13). 

For the study of the ADMRO effect, the semiconductor superlat
tice system offers a. large degree of freedom for Fermi surface tailoring 
by adjusting the superlattice periodicity and doping. On the other 
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hand, the achievable carrier density is rather limited a.nd at the sac
rifice of carrier mobility. As mentioned in the previous section, this 
makes a. quantitative discussion of the a.ngula.r dependence of the SdH 
amplitude difficult. It would be interesting to study the ADMRO ef
fect in systems with higher electron densities (larger Fermi surfaces). 
Artificial metallic superla.ttices a.nd graphite intercalation compounds 
are possible candidates for such studies. 

We ha.ve tried to observe the ADMRO effect in graphite interca
lation compounds C24 SbC15 a.n d in Si/ Ag metallic multilayers . 

In the ca.se of graph ite intercalation compounds, although we 
observed a. subtle hump-like structure in the angular dependence of 
ma.gnetoresista.nce around(}"' 75°,the feature wa.s too wea.k to ma.ke 
any definite statement. 

In the experiments on the a.rtificia.l metallic superla.ttices, we have 
encountered difficulties in the sample fabrication. First, the epitaxial 
growth of artificially structured superla.ttice is difficult to achieve. 
Secondly, the vertical resistance of metallic multilayer film is so small 
tha.t films have to be patterned in a small enough dimension by use 
of a. photolithograph technique. V>/e have confronted troubles in the 
etching of the multilayer film. 

These attempts a.re so fa.r unsuccessful and are left for futu re 
challenge. 
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Chapter 4 

The ADMRO Effect of 
Cylindrical Fermi Surfaces with 

Different Corrugation Symmetries 

We have studied the angular dependence of magnetoresistance for 
some cylindrical Fermi surfaces with different corrugation symme
tries. It is shown that angular dependent magnetoresistance oscil
lation (ADMRO) exhibits a wide variety of behavior depending on 
the corrugation symmetry. In particular, some types of corrugation 
symmetry yield an inverted peak and valley structure. \Ve discuss the 
possible relevance of the present result to the experimentally observed 
peak inversion of the ADMRO in a certain class of organic conductors. 

4 .1 Int ro ductio n 

As seen in Chapters 1-3, the standard ADMRO effect has been 
successfully explained by a cylindrical Fermi surfaces. In the mean
while it has been recognized that some compounds in the same family 
such as (BEDT-TTF)2KHg(SCN)4 

6l and (BEDT-TTF)2 TlHg(SCN)4 ') 
exhibit an anomalous ADMRO effect. 

Figure 4.1.1 shows the angular dependence of magnetoresistance 
in (BEDT-TTFh KHg(SCN) 4 6l . As seen in the figure, the ADMRO 
effect exhibit an inverted peak as compared with the standard ADMRO 
effect in that () = 0° is the peak angle while it is a valley in the stan
dard ADMRO effect. 

The origin of the "inverted" ADMRO is currently unknown. \Ve 
address to this issue by investigating the ADMRO effect of a few 
cylindrical Fermi surfaces with different types of corrugation sym
metries. Since the ADMRO effect originates from the Fermi surface 
corrugation, a slight change of the corrugation pattern may result in 
a significant difference in ADMRO phenomenon. We investigate the 
ADMRO effect for four model Fermi surfaces with different corruga
tion symmetries. within the framework of the Boltzmann transport 
theory. 
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Fig. 4.1.1 Angular dependence of magnetoresistance 
of (BEDT-TTF) 2 I\:Hg(SCN)4. T = 4.21\:. From top 
to bottom, B = 12, 10, 8, 6, 4, 2T. (After Osada and 
Yagi et al. 6)) 

This Chapter is organized as follows . In the next section, we 
define the model Fermi surfaces with different corrugation patterns. 
In Section 4.3, we present the calculated results and discuss their 
possible relevance to the experimental findings. 

4.2 Mode l 

\Ve consider four model Fermi surfaces with different corrugation sym
metries as shown in Fig. 4.2.1. These Fermi surfaces correspond to 
the following energy dispersion relations arising from different k, ,ky
dependences of the transfer integral. 

[A] 
7i2 

E = -2 (k~ + k~)- 2tcos (akz), (4.2. 1) m 

7i2 ( ? ?) k, ( ) E = - k; + ky - 2L cos (akz) 4.2.2 
2n~ /k2 + 1;;2 v X y 

[B] 
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ky 

(a) (b) 

(c) (d) 

Fig 4.2.1 Schematic diagram of model Fermi sur
faces with different corrugation symmetries: ( a)s
type,(b )p-type,( c)d,y-type,( d)dxx-type corrugation. 
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[C] ( 4.2.3) 

[D] ( 4.2.4) 

\Ve do not concern ourselves here to the microscopic origins of these 
energy dispersions, but only discuss the magnetotransport properties 
of the resultant Fermi surfaces. In what follows, we calculate the 
angular dependence of magnetoresistance for each of the model Fermi 
surfaces within the framework of the Boltzmann transport theory. 

For a weak corrugation, we study the B-dependence of magnetore
sistance for different values of¢ by Shockley tube integral (eq.(2.3.4)) 
numerically, and in some cases analytically. The variable k0 in eq.(2.3.1) 
for this case is changed to the following equation: 

ko = k, + kx tan B cos¢+ ky tan B sin¢. (4.2.5) 

The methods of the numerical and analytical calculation are the same 
as described in Chapter 2. 

V/e simply call the Fermi surface corrugation given by eq.(4.2.1) 
s-type referring to its radial symmetry. In the same manner, the types 
of Fermi surface corrugation corresponding to eq.(4.2.2), eq.(4.2.3) 
and eq.(4.2.4) are simply called p-type, dxy-type and dxx-type, re
spectively. 

4 .3 R es ults and Discuss io n 

As we have pointed out in Chapter 2, the angular dependent magne
toresistance oscillation in a weakly corrugated cylindrical Fermi sur
face occurs principally in the vertical transport. For this reason, we 
restrict ourselves to the vertical conductivity. 
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Fig. 4.3.1 Numerically calculated p,,(B) for different 
values of¢ for (a)s-type, (b)p-type, (c)dxy-type and 
( d)dxx-type corrugation Fermi surface. The p~rai~~-
ter values for these figures are Epjt = lOO,mta /1i. -0.045. 
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4.3.1 s-Type Corrugation 

The ADMRO effect for this Fermi surface is the standard ADMRO 
effect. We only comment on the ¢-dependence. Figure 4.3.1-(a) shows 
a numerically obtained B-dependence of magnetoresistance (Pzz (B)) 
for different values of¢. The parameter values for this figure are the 
same as Fig.2.4.1. As expected from the radial symmetry, the Pzz(B) 
curves for different ¢ are the same with one another. 

4.3.2 p-Type Corrugation 

Next we consider the Fermi surface depicted in Fig 4.2.1-(b) whose 
energy dispersion is given by eq.(4.2.2). Figure 4.3.1-(b) shows t he B
dependence of Pz = (B) for different values of¢. The parameter values 
are taken the same as before. It is seen that the ADMRO effect for 
this Fermi surface exhibits a considerable difference from that for the 
s-type corrugation. First, the Pzz(B) curve depends on the angle¢. 
The AD 1RO effect is most clearly seen at ¢ = 0°. With increasing 
¢,the value of Pz:(B) increases and the relative amplitude of oscilla
tion illminishes . Secondly, the Pzz(B) curves exhibit an inverted peak 
and valley structure as compared with the case of s-type corrugation, 
namely, B = 0° is a peak instead of a valley. For ¢ = 0°, the peaks 
occur at B "' 0°,52°, 67°,73° ,etc. These peak positions are given by 
the condition, 

n : integer. (4.3.1) 

The analytic formula for 0'~= can be obtained for 6 = 0° and goo. 
The final expression for ¢ = 0° is 

P( _ 0 )- o ~ ~(Jv-J(akptan8)-lv+J(akptan8)) 2 

0' __ 8,¢- 0 - 0' •• 0 ( B)" 
- - -- 4 1 + VWo T COS -

u=-oo 

( 4.3.2) 
Here, 0'~= is given by eq.(2.5.15). The high field magnetoresistance is 
governed by the v = 0 term in the summation. The asymptotic form 
of 0'~= is given by 

(4 .3.3) 
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The peak position of P:z(B) for this case is given by the zeros of the 
first order Bessel function. For akp tan B » 1 this condition is given 
by eq.(4.3.1), which however exhibits deviation for small akp tan B. 

The analytic formula for 0'~= for ¢=goo is given by 

0 0 2:= 1 (lv-l(akptanB)+lv+l(akptanB))
2 

O'P (B -+.. = go ) = 0' - _,___.:....._ _ ___,.-'--- -::-:-::----
== >'+' == 4 1 + (vw0 TcosB) 2 

v=-cx::> 

( 4.3.4) 
The v = 0 terms in the summation, 

(0'?)4)(11 (akp tan B)+J( - J)(akp tan B))
2 

vanish since J(-J)(z) = 
- ] 1 (z). In the high field li mit, 0'~= vanishes for all B, thus the ADMRO 
effect becomes much smaller in ma.gnitude at ¢ = goo. 

4.3.3 dxy-Type Corrugation 

Next we consider the ADMRO effect for the Fermi surface illustrated 
in Fig.4.2.1-(c). The energy dispersion for this Fermi surfa.ce is given 
by eq.(4.2.3). Fig.4.3.1-(c) shows a numerically obtained Pzz(B) for 
different values of ¢ . The largest ADMRO effect occurs at ¢ = 45° 
and the smallest at¢= 0° and goo. The ADMRO effect for this Fermi 
surface has a four-fold symmetry in ¢-rotation. The Pzz (B) for¢ = 45° 
has peaks at B ;::::: 0°,60°,70°,76°, etc. The first peak occurs at B = 0° 
simil arly to the case of t he p-type corrugation, but the oscillations at 
larger B have the same phase as for the s-type corrugation. 

The analytic formula for O'~~Y for ¢ = 45° is obtained as follows 

0 ~ 1 (lv-2(akptan8)+1v+2(akptan8))
2 

O'~~Y(B,¢ = 45°) = O'zz 0 16 1 + (vw
0
Tcos8) 2 

v=-cx::> 

In the high field limit, O'~;Y is approximated by 

0 

O'~~Y(B,¢ = 45°);::::: 0'~= Ji(akptanB). 

(4.3.5) 

( 4.3.6) 

Thus, the peak angles Bn of the ADMRO effect are given by the zeros 
of the second order Bessel function. The zeros for large akp tan 8 is 
given approximately by 

akptanBn = (n- ~) n: integer, (4.3.7) 
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which is the same as the s-type case. 
For ¢ = 0° the final expression for O"~~Y is 

d 0 Loo 1 (lv-2(akp tan B) - lv+2(akp tan B))
2 

0" xy (B ¢ = Oo) = 0" - -'----'------,---'--':-::----'-'-
zz ' zz 16 1 + (vwoT cos B)2 

v=-oo 

(4.3 .8) 
Since the term for v = 0 in the summation vanishes, the ADMRO 
amplitude is small . 

4 .3.4 dxx- Type Corrugation 
We consider the ADMRO effect of the Fermi surface illustrated in Fig. 
4.2.1-(d). It is simi lar to the s-type corrugation but the corrugation is 
flat at kx = 0. Fig. 4.3.1-(d) shows the numerically calculated Pzz(B) 
for different values of¢. It is seen that the overall shape of the curves 
is similar to that for s-type corrugation but the amplitude as well as 
the peak position of the oscillation depend on ¢. T he peak positions 
shift to higher angles with increasing ¢. For ¢ = 0° , the peak of the 
oscillation occurs at B "' 31°,61°,71° ,etc, while it occurs at B "' 53°, 
67°, 73°, etc. for ¢ = goo. The peaks and valleys at higher angles are 
inverted between curves at ¢ = 0° and goo. The final expression of 
O"~~x for ¢ = 0° is 

( 4.3.g) 
where A= akp tan B. In the high field limit, eq. (4.3 .g ) becomes 

0 

O"~~x(B, ¢ = 0°) ~ (]"~= (J2 (akp tan B) - J0 (akp tan B)t (4.3.10) 

The zeTos of (Jo(A)- J2 (A)) occur at approximately the same po
sitions as those of Jo (A) for A » 1, so that the peak angle of the 
oscillation is given by eq .(2.5 .13 ). 

For ¢ = goo, on the other hand, the analytic expression for O"~~x 
IS 

(4.3 .11 ) 

52 R.Ya.gi Thesis Chapter 4 

Oscillatory Magnetoresistance in Modulated Structures 

The high field asymptotic form of O"~~x is determined by the v = 0 
term in the summation , 

0 

O"~:x(B, ¢=goo)~ O"~ = (h (akp tan B)+ J0 (akp tan B)) 2
. (4.3.12) 

The zeros are approximately given by the condition, 

akptanBn=7r(n+~) for n»1, n :integer. (4.3 .13 ) 

This condition is the same as eq.(4.3.1 ), except that the first peak is 
missing. Inverted peaks occur for large n a.s compared to the s-type 
corrugation. 

4-3.5 Discussion 

\Ve have studied the angular dependence of magnetoresistance for four 
types of cylindrical Fermi surface with different corrugati on symme
tries. It has been shown that the ADMRO effect exhibits significant 
variations depending on the type of the corrugation symmetry. \Ve 
summarize the characteristics of the ADMRO effect for each Fermi 
surface in terms of (a.) the ¢-dependence and (b) the behavior of the 
peak angles Bn. 

(a) For the s-type corrugation, the Am11RO is independent of 
¢ . For the p- or dxy-type corrugation the ADMRO effect becomes 
much weaker for special values of ¢ . The ADMRO for the p-type 
corrugation has a two-fold symmetry with respect to the azimuthal 
angle ¢, and the dxy-type corrugation has a four-fold symmetry. The 
ADMRO effect for the dxx-type corrugation also exhibits a two-fold 
symmetry in¢. 

(b) The peak angles B, of the ADMRO for the s-type corrugation 
is given by eq.(2.5.13) . The phase factor in the (tan B vs. n) plot is 
( - 7r /4) . For the p-type corrugation, the ADMRO exhibits an inverted 
peak structure a.s compared with the s-type case. The peak positions 
for large n are given by eq.(4.3 .1 ) and the phase factor is ( -371"/4). 
For the dxy-type corrugation a peak occurs at B = 0° , but the peak 
angles Bn for large n are approximately the same as the s-type case 
so that the phase factor is ( -7!" / 4). Thus the (tan B vs. n) plot has 
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a significant deviation from linearity at small n. For the dxx-type 
corrugation, both the peak position and the phase factor depend on 
¢. The phase factor for ¢ = 0° is ( -1r / 4) for large n, and that for 
¢ = 90° is (7r/4). 

Thus we can extract useful information on the corrugation sym
metry of a cylindrical Fermi surface from the ¢-dependence and the 
phase factor of the ADMRO. 

We comment on the possible relevance of the present results to 
the inverted ADMRO observed in (BEDT-TTF) 2 TlHg(SCN) 4 and 
(BEDT-TTF)2KHg(SC )4. Kartsovnik et a/. 7 ) have investigated the 
ADMRO in (BEDT-TTF)2 TlHg(SCN)4 by two-axis rotation of mag
netic field . The ADMRO in this material shows an inverted peak 
structure. It is also strongly dependent on ¢,i.e. the ADMRO effect 
which is the largest at¢:::::; ¢max disappears at¢:::::; (¢max±90°). It was 
also seen that the peak positions are approximately proportional to 
tan e,. (i .e. tan Bn ex n ) They have discussed the inver ted ADMRO 
effect in the light of the angular dependent commensurability effect 
in open orbit of a quasi-one-dimensional Fermi surfa.ce. 12) 

We have shown that a p-type symmetry of corrugation of a cylin
drical Fermi surface can lead to an inverted peak structure of the 
ADMRO effect. This may explain the basic features of the "inverted 
" ADMRO observed in (BEDT-TTF)2 TlHg (SCN) 4 and (BEDT
TTF)2 KHg(SCN) 4 • Whether or not the corrugation symmetries con
sidered here are appropriate for these materials has to be judged by 
further experimental studies and band calculations . The ADMRO 
in these ma.terials, however, has additional features that are not ex
plained with the present model. First, the periodicity in tan e in
creases with increasing¢, roughly as"' 1/ cos¢. Secondly, the ADMRO 
curve is such that it has downward cusps, i.e. the change in resistiv
ity is much sharper near the valleys than near the peaks. While the 
former feature may be explained by considering a cylindrical Fermi 
surface \\·ith an highly-elongated elliptic cross-section, the latter seems 
more difficult to explain. 

To summarize, we have shown that types of corrugation symme
try for a cylindrical Fermi surface can give rise to a variety of the 
ADMRO effect differing in its phase factor and in its dependence on 
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the azimuthal angle. In particular, the behavior for the p-type corru
gation may have some relevance to the inverted peak structure of the 
ADMRO experimentally observed in some organic conductors. 
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Chapter 5 
Historical Survey 

Oscillatory Magnetoresistance in 
Two-Dimensional Electron Systems 

Subject to Modulated Structures 

5.1 Weiss O scillation in T wo-Dimensiona l Electron Sys t e m s 

T he energy spectrum of an electron system under the infl uence of both 
a periodic potential and a magnetic field has long been a fascinating, 
but only theoretical subject. Recent development of microfabrication 
t echnique and availability of high mobili ty two-dimensional electron 
syst ems in semiconductor heterostructures has brought the subject to 
t he experimental feasibi li ty. 

Recently, a novel type of oscillatory magnetoresistance has been 
demonstrated in the two-dimensional electron system subject to a 
periodic potential by Winkler et al. 1 ) and Gerhardts et a/2 ), which 
is often called \iVeiss oscillation. The magnetoresistance oscillation 
occurs as a result of the interference between the cyclotron motion and 
t he spatial period of the electric potential. The potential modulation 
was realized by different methods by the two groups. Wink ler et a/. 1

) 

formed a one-dimensional periodic potential by a modulated metal 
gate structure as illustrated in Fig. 5.1.1. Gerhardts et al. used 
a holographic interference pattern of laser and formed the periodic 
potential modulation exploiting the persistent photoconductivity. 

Figure 5.1.2 shows the data of magnetoresistance by Gerhardts et 
al. Two types of oscillation are seen. The rapid oscillations in higher 
fields are due to the usual SdH effect. The oscillations in the lower 
fields are the \~\Ieiss oscillation. We can summarize the salient features 
of this oscillation as follows: 

1) Oscillation is periodic in 1/ B. But it differs from the Sd H effect. 
2) It survives much higher temperatures as contrasted to the SdH 

effect. 
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Fig.5 .l.1 Sample structure for one dimensional potential modulation. 
(After \!\Tinkler et al.ll) 
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Fig.5.l.2 (a) Magnetore
sistance as a function 
of magnetic field. The 
rapid oscillations in p 1. (Pxx) 
in low fields are due to 
Weiss oscillation . 

Ns = 3.16 x 1011 cm-2 , p, = 1.3 x 10-6 cm2 /Ys, a= 382 nm and 
T = 2.2K. (b) Calculation for T = 2.2K and for 4.2K using 110 =0.3 
meY . (After Gerhardts et aZ.2l) 
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3) The oscillation is dependent on the current direction. The oscilla
tion in Pxx is larger than that in Pyy. (The x-axis is the direction 
of potential modulation.) 

5.2 Explanation 

The physical origin of the magnetoresistance oscillation is discussed 
by Winkler et al. 1l and Gerhardts et al. 2 l We consider a periodic elec
tric potential modulation 1/(x) in x-direction with period d, (V(x) = 
11 cos(K x ), [{ = 21r /d), and the magnetic fi eld B in z-direction. The 

vector potent ial in the Landau gauge is A= (0, Ex , 0). The Schodinger 
equation is 

{ 
n? fJ2 e2 Bz ? } 

-
2

m fJxZ + 
2

m (x- xo)- + Vo cos(I<x) ¢(x) = E¢(x). (5.2.1) 

Here, Xo = -Z1ky ,(ZB = ~). The first order perturbation theory 
gives the energy spectrum for a weak electric potential modulation as 

E(N, ky) = (.N + Dnw+ < N,kyl 11(x)IN,ky > + ·· ·. (5 .2.2) 

The presence of the periodic potential lifts the degeneracy of Landau 
subband by the matrix element term in eq.(5 .2.2). 

To evaluate the ma.trix element, different method s are taken. One 
is the explicit evaluation , and the other is to approximate the matrix 
element by a semiclassical expectation value. These methods result 
in the same though slightly different functional form. 

The semiclassical approximation is based on the assumption that 
the cyclotron motion is only slightly perturbed by the presence of 
the potential modulation. For this case, the semiclassical trajectory 
of an electron can be written by (Rccos(wt) + xo,Rccos(wt) +Yo), 
where (xo, Yo) is a center coordinate of the cyclotron motion. The 
expectation value for the spatially varying potential is 

< V(x) >=~ faT 1fo cos(I{x)dt (5.2.3) 

o cos \. x dx. = J
xo+Rc \/, (}' ) 

xo-Rc ~t.jR~ - (x- .r.o)2 
(5.2.4) 
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Here, Rc = TikF I eB is the cyclotron radius. We obtain the results of 
eq.(5.2.2) as follows: 

E(N,ky) = (N + D + Volo(I<Rc)cos(I<xa). (5.2.5) 

Since J0 (z) is approximated by eq.(2.5.12), the Landau subband be
comes dispersionless when the cyclotron radius satisfies the condition, 

(5.2.6) 

The matrix element in eq.(5.2.2) can be also calculated by inte
gration with eigen function. The result is 

E(N, xa) = (N + D Tiw + Vo cos(I< xa)e-X/2 LN(X). (5.2.7) 

Here,X = t K 2 l1, and L N are the N-th order Laguerre polynomials. 
The zeros (LN(X) = 0) of the Laguerre polynomials are given by 

x~ 
[ 1 ]2 
211(-\- 114) 
N + (112) 

,\:integer. (5.2.8) 

The flat subband condition occurs when eq.(5.2.6) is satisfied. Since 
the correction to the Drude conductivity form these magnetic band 
conduction is written as 

b _ e
2

T j dky 2 
17 y y - 1iw --:;;:- v y 

2m*eT 110
2 cos2 [(211Rcla)- 1TI4J 

~ 1T1i3 Ba (21Tne)l/2 

(5.2.9) 

in high temperature approximation, the oscillations appear in Pxx 

since Pxx = <7yyi(<7;Y + <7yyl7xx) ~ <7yyi<7;Y for WT » 1. Here, Vy is 
(1 In)( 8E I 8ky ). Thus oscillatory magnetoresista.nce arises from the 
periodic occurrence of flat Landau subbands. 
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Another explanation of the oscillation in a semiclassical picture 
is given by Beenakker3l. He has shown that the oscillation arise from 
the periodic quenching of the electron drift . 

An electron executes a so-called E x B drift in magnetic field 
under the influence of the electric field, with the drift velocity Vdrift = 
E x B IIBI 2 . When the amplitude of the spatially varying potential is 
weak and the cyclotron radius is sufficiently large (i.e. Rc » d, and 
EF » 110 ), we can treat the cyclotron motion and theE x Bdrift sep
arately. Since E is given by (1le)\7V(x), the spatially varying electric 
field is formulated as E = (-¥sin(I<x),O,O). The corresponding 
drift velocity is 

Vai< 
Vdrift = eB sin(I<x) (5.2.10) 

in they-direction. The resulting drift velocity under a modulated elec
tric potential is obtained by averaging over a trajectory of a cyclotron 
motion. 

(5.2.11) 

The averaged drift velocity vanishes for J0 (RJ<:) = 0, regardless of 
the guiding center co-ordinate x 0 . This leads to the oscillatory mag
netoresistance. 
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5.3 The Weiss Oscillation and the ADMRO E ffect 

Here we comment on the relation between the Weiss oscillation in 
a two-dimensional system and the ADMRO effect in a quasi-two
dimensional system. 

In the case of the Weiss oscillation, the periodic electric potential 
modulation causes a E x B drift . The E x B drift averaged over a 
trajectory ( eq.(5 .2.11) ) vanishes when eq.(5.2.6) is satisfied. The 
number of the potential peaks electrons feel in a cyclotron motion 
varies with the cyclotron radius and hence with field intensity. 

For the case of ADMRO effect, the Fermi surface corrugation 
is related with the group velocity by Vz = (1/7i)(8E/8kz) . As seen 
in eq.(2.5.11), the group velocity averaged over a. trajectory vanishes 
when eq.(2.5.13) is satisfied. The number of corrugation of the Fermi 
surface which electron experiences during a. cyclotron motion is de
termined by the angle of the magnetic field. 
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Chapter 6 

Oscillatory Magnetoresistance 1n a 
Two-Dimensional Electron Systems in a 
Periodically Modulated Magnetic Field 

We have studied energy spectra. of a. two-dimensional electron 
syst em in the presence of a weak magnetic field modulation. It is 
found that the ma.gnetoresistance shows an oscilla.tory behavior simi
lar to the so-called Weiss oscillation for the case of an electric potential 
modulation. The main difference between the two cases is that the 
phase of the ma.gnetoresista.nce oscillation is shifted by 71/2. This re
sults in an inverted peak and valley structure for the magnetic field 
modulation as compared to the \Veiss oscillation. 

6.1 Int r oduction 

In this Chapter, we investigate the effect of magnetic modulation 
to the two-dimensional electron gas. Experimentally as well as theo
retically, the two-dimensional electron system in a. magnetic field mod
ulation is less explored in comparison to the electric potential modu
lat ion. Yoshioka and Iye9 l studied the case of two-dimensionally mod
ulated magnetic field. We investigate the energy spectrum of a two
dimensional electron system in the presence of a one-dimensionally 
modulated magnetic field and we discuss in the light of the Weiss 
oscilla.ti on. 

This Chapter is organized as follows. In the next section, we 
define the model and the Schrodinger equation to be solved. The 
results of calculations, both numerical and analytic, are presented and 
discussed in Sec .6.3. In Sec.6.4, we describe our experimenta.l efforts 
to observe the predicted effect. Section 6.5 is devoted to summary 
and concluding remarks. 
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6.2 Model 

We consider a two-dimensional electron gas subject to a perpendicular 
magnetic field whose strength is one-dimensionally modulated with a 
period d. We take the two-dimensional plane as the xy-plane, with 
the x-axis along the direction of modulation. The magnetic field is 
expressed as iJ = (O,O,B0 + B1 cos(Kx)), where K = 21rjd, Bo 
is the uniform field and B 1 denotes the field modulation amplitude. 
The corresponding vector potential is, in the Landau gauge, A = 
(O , B0 x+ (BJ/K)sin(I{x),O) . The Schrodinger equation for the two
dimensional electrons is 

{ 
1i 2 

{} 2 1 . {} eB 1 ? - -- + -( -11i-- eBox - -sin(I{x)t 
2m 8x2 2m oy ]{ 

-g~J-BS(Bo + B1 cos(Kx)) }l,b(x , y) = El,b(x,y) . (6.2.1) 

Here, g is the g-factor, /J-B is the Bohr magneton and S( = ± t) is the 
spin quantum number. Using l,b(x,y) = exp(-ikyy)¢(x), eq.(6.2.1) is 
reduced to a one-dimensional form, 

-g~J-BS(Bo + E 1 cos(Kx)) }¢(x) = E¢(x). (6.2.2) 

In order to make the discussion transparent, we shall treat the or
bital effect and the Zeeman effect of the modulated magnetic field, 
separately. 

6.3 Results and Discussion 

6.3.1 Numerical Solution - Orbital Effect 

We first consider the case of pure orbital effect. We drop off the 
Zeeman term from eq.(6.2.2), and solve it numerically to obtain the 
energy eigenvalues as a function of the guiding center coordinate 
xo = -kyl~, (/B = (1ijeEo)~ is the magnetic length). The presence 

64 R.Yagi Thesis Chapter 6 

Oscillatory Magnetoresistance in Modulated Structures 

d/ls = 4 

40 

20 

20 40 60 
Kxo (d/ls)2 

Fig.6.3.1 Left Panel: Numerical solution of the en
ergy eigenvalues for the orbital effect of magnetic field 
modulation. The parameter values for the figure are 
(d/lB) = 4 and (EJ/ Eo) = 0.5. Landau levels lose 
the dispersion for 2E/1iw0 = 7, 20,40 . Right Panel: 
Evolution of the energy eigenvalues as a function of 
(d/1 8 ) 2 , for the same magnetic field modulation am
plitude. The fiat band condition is 2R.c = d(n- 3/4). 

of magnetic field modulation lifts the degeneracy of Landau levels to 
yield an energy dispersion as a function of the guiding center coordi
nate xo. 

The left panel of Fig.6.3.1 shows the di spersion of the Landau 
sub bands for d/lB = 4, BJ/ Eo = 0.5. It is seen that the subband 
width varies with 2E/1iwo, (wo = eEo/m) . For this figure, the flat 
band condition occurs at 2E/1iwo ;::::; 7, 20 and 40 . 

The right panel shows the evolution of the nergy spectrum with 
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Fig.6 .3.2 lumerical solution of the energy eigenval
ues for the orbital effect, for a smaller modulation 
amplitude, BJ/Bo = 0.1. The flat band position is 
the same as Fig.l. 

(djl 3 ) 2 . The ratio BJ/Bo = 0.5 is fixed for this calculation. The 
subband width oscillates as a function of (d/lB) 2

. Flat subbands 
occur periodically at the condition given by 

( ~!) = ~ (n- D 2 C~) 2, 

An equivalent formula is 

2Rc = d(n + o), 
3 

0 = - -
4' 

n : integer. (6.3.1) 

n: integer. (6 .3.2) 

By the same argument as the case of the Weiss oscillation, the period
ical occurrence of fla.t band condition leads to an oscillatory magne
toresista.nce. The hallmark of the present effect as contrasted to the 
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Fig 6.3.3 Numerical solution of the energy eigenval
ues for the Zeeman effect. The parameter va.lues are 
indicated in the figure . The flat band condition is 
2Rc = d(n- 1/4) which is the same as that for the 
Weiss oscillation. 

Weiss oscillation is the change in the phase of the oscillation by 7r /2, 
namely the positions of peaks and valleys are interchanged. . 

Fio-ure 6.3.2 shows a similar result for a weaker magnet1c field 
modul:tion, BJ/ Eo = 0.1. The Landau sub band dispersion becomes 
smaller because of the smaller amplitude of modulation. The condi
tion for the occurrence of flat band, however , remains the same as 
Fig.6.3 .1. Equation (6.3.2) for the flat band condition is independent 
of the modulation amplitude as long as the modulat10n 1s not too 
strong. Discussion on the case of strong modulation is deferred to the 
end of this section. 
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6.3.2 Numerical Solution - Zeeman Effect 

Next, we consider the case of pure Zeeman effect by neglecting the 
vector potential term in the momentum expression in eq.(6.2.2). It is 
immediately noticed that the spatial modulation of the Zeeman term 
is equivalent to the potential modulation if two electron subsystems 
with opposite spin orientations are treated separately. 

Figure 6.3.3 shows a numerically obtained energy spectrum for 
(il-.Eol/7iwo)(BJ/Bo) = 0.5, here l-.Eo = -(+)gJ.LsBo/2 is the Zee
man energy for up (down) spin . Since the problem is mathematically 
equivalent to the case of potential modulation (Weiss oscillation), the 
fiat band condition is given straightforwardly by 

2R~ = d(n + o), 
1 

(j = --, 
4 

n: integer. (6.3.3) 

Here, Rt(-) represents the cyclotron radius for the up(down) spin 
electron subsystem. This leads to magnetoresistance oscillations with 
two independent periods. 

6. 3. 3 Analytical Results 

In this section, we solve eq .(6.2 .2) analytically with a simplifying as
sumption. \Vhen the magnetic field modulation is weak, the energy 
eigenvalues are given by a perturbation as 

E(N,xo) = (N + Dnwo+ < N,xoiVIN,xo > + · · ·. (6.3.4) 

V•/e approximate the second term by the semiclassical expectation 
value of V. For the case of the orbital effect, retaining only the term 
first order in (B1 / B0 K), eq.(6 .3.4) becomes 

The flat band condition is giYen by zeros of the first order Bessel 
function, J1 (I< Rc) = 0. For sufficiently large J{ Rc: the ::eTos occur at 
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2Rc = d(n-3/4). For the Zeeman energy modulation, the eigenvalues 
are 

The flat band condition in this case is given by the zeros of the zeroth 
order Bessel function J0 (I{ Kf-). Again for sufficiently large J{ Kf-, 
this translates to 2Kf- = d(n- 1/4). 

6. 3.4 Simple Physical Interpretation for the Peak Inversion 

As mentioned earlier, the principal difference between the magnetic 
field modulation (orbital effect) and the scalar potential modulation( 
Weiss oscillation ) lies in the positions of peaks and valleys. This 
difference can be easily understood by the following argument. 

The magnetic field modulation gives rise to an effective potential 
(e2 /2m)(B0 x + (BJ/K)sin(K(x + x0 )))

2
. For a weak modulation ( 

IBJ/Bol « 1), the dominant contribution comes from the first order 
term, (e2 /m)(B0 BJ/ K)x sin(K(x+xo)). This means that the effective 
potential modulation term changes its phase by 7i a.t x = 0. The phase 
jump occurs because the Lorentz force changes its sign depending on 
the sign of the electron velocity. The effect of inverted phase between 
+x and -x on the eigen function results in the phase shift by 7i /2 
from the case of ordinary potential modulation. 

In the present case, we can also explain the effect by the guiding 
center drift motion picture as discussed by Beenakker3l for the case 
of scalar potential modulation. \Ve describe the electron motion for a 
uniform magnetic field as (x,y) = (Rccos(wot)+xo,Rcsin(wot)+Yo), 
where (x0 , y0 ) denotes a center of a cyclotron motion. If we assume a 
sufficiently weak magnetic field modulation (B1 « B0 ), then we can 
treat cyclotron motion and the orbital center drift motion separately. 
We define a equivalent electric field for a magnetic field modulation 
as (v x Bmod ), and apply theE x iJ drift motion in a uniform mag
netic field. Here Bmod = ( 0, 0. B1 cos(!{ x)) is the spatially varying 
component of the magnetic field and v is the electron velocity. The 
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time averaged drift velocity, Vdrift = (vx, vy) is expressed as 

(6.3.7) 

T' 
1 E1Rcwo 1 

Vx = T' cos(I<x)sin(w0 t )dt 
Eo o (6.3.8) 

= 0. 

Here, T' (= 27ijw0 ) is the period of the cyclotron motion. Non
vanishing cyclotron-motion-center drift occurs only in the y-direction. 
For ] 1 (I< Rc) = 0 in eq. (6 .3. 7) the drift velocity vanishes regardless 
of x0 . When Rc satisfies the condition, the guiding center drift is 
quenched and hence CYyy takes a minimum. The Landau subband 
dispersion for eq .(6.3.5) arises from t his guiding center drift motion. 
Equation (6.3.7) can be also derived from Vy = (l/7i)(8E/8ky) with 
E given by eq .(6.3.5). 

6.3.5 Strong Modulation 

In the above, we treated the case of weak magnetic field modulation. 
Here we discuss the case of strong modulation, such that EJ/ Eo ~ 1. 
We only consider the orbital effect, since the Zeeman effect does not 
give anything parti cularly new. 

Figure 6.3.4 shows a numerically obtained subband structures 
for four different values of E 1 / E0 . It is seen that the flat bands 
become less distin ct with increasing modulation amplitude. It is also 
recognized that a new branch becomes increasingly well defined for 
EJ/ Eo > 1. For EJ/ Eo = 2 (the right most panel), the branch 
becomes almost continuous. This new branch is attributed to the 
bound state formed with in the local minima of the strongly modulated 
potential. As seen in the figure, this state has a large dispersion and 
therefore can give a large contribution to the electrical transport in 
high fields. In such a case, the band conductivity correction to CY YY 
is dominated by this state, so that the oscillatory magnetoresistance 
is masked . Since the Lorentz force depends on the velocity as well as 
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Fig.6.3.4 Numerical solution of the energy eigenval
ues for the orbital effect for four different values of 
field modulation amplitude. With increasing modu
lation, the flat band becomes less discernible and new 
brancl1es emerge. 

on the field intensity, the case of the sufficiently large Fermi energy ( 
Fermi veiocity ) may result in a similar effect. 

6.4 Experimental Attempt 

\Ve describe our current experimental attempt to observe the oscilla
tory magnetoresistance due to magnetic field modulation by using a. 
two-dimensional electron gas (2DEG) in a. Ga.As/ AlGa.As heterostruc
ture. The device structure (Device M) is depicted in the inset of 
Fig.6.4.1. The structure is basically the same as the standard high 
electron mobility transistor (HEMT), except that the gate electrode 
is lithogra.phicaJly patterned . Since we do not want a. scalar poten-

Chapter 6 R. Yagi Thesis 71 



Oscillatory Magnetoresistance in Modulated Structures 

200 

150 

s: 
100 

a." 

50 

e·Beam Resist 
N' 2000 A (PMMA) 5000A 

-~~~~1;'' 
; 2DEG ( 

.,_... 

~ _i"' 
"---vv-'\./ T ·1 .3K 

v .... o.sv .. 
0.2 o.• o.6 o.s 

Magnetic Field [T] 

Fig.6.4.1 Magnetoresistance measurement of a two 
dimensional electron gas in GaAs/ AIGaAs heterostruc
ture with a stripline-magnetic metal gate (Device M). 
The sample structure is illustrated in the inset . The 
oscillations in the low field regime arise from the 
metal gate structure, while those at higher fields are 
the Shubnikov-de Haas effect. Details are discussed 
in the text. 

tial modulation, a uniform layer (500A thick AI) of a non-magnetic 
metal is first deposited on the surface of a GaAs/ AIGaAs single het
erostructure to form a Schottky gate. The surface is covered by an 
electron beam resist and a stripline a.rray ( periodicity 5000A, line 
width 2500A) is defined by electron beam lithography. A layer (2000A 
thick ) of ferromagnetic metal (Ni) is then deposited. The distance 
between the 2DEG and the bottom of the magnetic layer is rv 1000A. 
\Vi th this structure, an externally applied uniform magnetic field is 
spatially modulated at the plane of 2DEG. 

72 R.Yagi Thesis Chapter 6 

Oscillatory Magnetoresistance in Modulated Structures 

The main part of Fig.6.4.1 shows a magnetoresistivity Pxx of 
Device M at T = 1.3I<. The areal density of the 2DEG is ne 
3.9 x lOllcm- 2

, and the mobility is 3.2 x 105 cm 2 /Vsec. The cur
rent is passed along the direction of modulation. The rapid resistance 
oscillation above B = 0.5T are due to the Sbubnikov-de Haas effect. 
The oscillatory features in the lower field regime (B < 0.6T) are at
tributed to the modulated structure. The same result is obtained in 
the devices with ferromagnetic stripline gate formed by permalloy. 

Further investigation, however , has clarified that the major part 
of the low-field oscillatory magnetoresistance has its origin other than 
the magnetic field modulation. The positions of the peaks and valleys 
are found to obey the condition 2Rc = d( n - i) for \Veiss oscilla
tion rather than that expected for the orbital effect of magnetic field 
modulation. 

\Ne have examined the oscillation by preparing three different 
devices. Device A as depicted in the right panel of Fig. 6.4.2-(a) 
has the same device structure as Device M except that the magnetic 
metal is replaced by a nonmagnetic metal (Al). Device B has only the 
patterned electron beam resist as depicted in Fig. 6.4.2-(b). Device 
C has no modulated structure on the metal gate as depicted in Fig 
6.4.2-( c). The patterned resist of Device C was removed after electron 
beam deposition. 

The left panel of Fig. 6.4.2-( a) shows magnetoresistance of Device 
A. In the absence of the magnetic stripline metal structure, we can 
see essentially the same oscillatory magnetoresistance as Fig. 6.4.1 
with a comparable amplitude. The left panel of Fig. 6.4.2-(b) shows 
magnetoresistance of a Device B. The low field oscillation is still visible 
with only the patterned electron beam resist. The left panel of Fig. 
6.4.2- ( c) shows magnetoresistance of Device C. For this Device, the 
low field magnetoresistance oscillation is no longer visible. 

The oscillation in Fig. 6.4.1 does not arise from magnetic field 
modulation because we could see the same oscillation in Device A 
and B. One of the possible origin for the electric potential modula
tion is the formation of defects by electron beam deposition. This 
however is excluded by the fact that Device C exhibits no Weiss 
oscillation-like effect . Considering that the electric field potential is 
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Fig. 6.4.2 Device structure and magnetoresistance of Devices A,B,C. 
Details are discribed in the text . 
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made constant at the surface of the GaAsl AlGa As heterostructure 
by the presence of a uniform metal gate , the Weiss oscillation-like ef
fect presumably arises from the effective potential formed by spatially 
modulated strain caused by the presence of the patterned resist and 
t he stripline metal layer. 

We estimate the effective electric potential modulation amplitude 
determined by Fig. 6.4.1 with eq.(5.2.9) is rv 1 meV. The correspond-
ing value in eq.(6.3.5) for magnetic field modulation (( e2 lm)(BoB1 Rei I<)) 
is rv 1[meV IT] x BJ[T]. We estimate that the magnetic field modula
tion B 1 I Bo in Device M is Jess than 10 % by a local magnetic field 
calculation. Thus the magnetic field modulation in Device M is much 
smaller effect than the observed Weiss oscillation-like effect. 

Thus far, our attempt to observe the oscillatory magnetoresis
tance due to magnetic field modulation is hindered by the dominance 
of t he \Veiss oscillation-like effect which possibly arises from the sen
sitiveness of the 2DEG in our heterostructure to unintentionally in
troduced strain effect. 

6 .5 Summa r y a nd Concluding R e m a rks 

\Ve have examined the energy spectrum of a two-dimensional electron 
system subject to a spatially modulated magnetic field, both numeri
cally and analytica.lly. Similar to the case of periodic scalar potential, 
the modulation gives rise to finite dispersions of the Landau sub
bands, but the dispersion vanishes whenever the condition given by 
eq.(6 .3.2) is met. This flat band condition occurs periodically as a 
function of 1 I B and manifest itself as an oscillatory magnetoresis
tance phenomenon. The Zeeman effect of a. modula.ted magnetic field 
is the same as a. potential modulation if two subsystems with opposite 
spin orientations are treated separately. The orbital effect of a. mod
ulated magnetic field yields a similar oscillatory magnetoresistance 
except that the positions of peaks and valleys are interchanged. 

\".le have made an attempt for experimental observation of the 
predicted phenomenon . So far, the experimental observation is hin
dered by the dominant Weiss oscillation phenomenon arising possibly 
from the sensitiveness of the two-dimensional electron system to an 
inadvertent strain effect. 
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Chapter 7 

Conclusion 

7.1 Achievement of this Thes is 

In the former part of this thesis we have discussed the angular depen
dent magnetoresistance oscillation in quasi-two-dimensional electron 
system. 

• In Chapter 2, we have described a semiclassical interpretation of the 
angular dependent magnetoresistance oscillation (ADMRO) effect re
cently found in organic conductors. \Ve have calculated magnetocon
ductivity tensor components of a corrugated cylindrical Fermi surface 
within the framework of Boltzmann transport theory. The following 
facts are found and clarified: 

1. Overall shape of the angular dependence of magnetoresistance 
curves could be explained by the Boltzmann transport theory 
with a corrugated cylindrical Fermi surface. 

11. The ADMRO effect emerges around wT "' 1. 
m. The ADMRO effect occurs as a result of the angular periodic 

occurrence of t he difference of the high field asymptotic behav
ior (B-dependence )of magnetoresistance. This occurs from the 
angular oscill atory change of the conductivity component due to 
the electron drift in high fields. 

1v . The magnitude of the ADMRO depends on the current direction. 
The ADMRO effect is largest in the resistivity component in the 
direction perpendicular to the two-dimensional plane. 

T he last point iv in our results exhibit difference from the experi
mental results. We have discussed them in the light of the actual 
experimental situation. 

• In Chapter 3, we have demonstrated that the ADMRO effect indeed 
occurs in quasi-two-dimensional systems. We have tailored corrugated 
cylindrical Fermi surfaces using GaAs/ AlGaAs super lattices. V/e have 
prepared two types of devices for the measurement of Pzz (vertical 
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transport) and Pxx (lateral transport ) and compared the magneto
transport property. In the superlattice device for vertical transport, 
we have succeeded to observe the ADMRO effect by conducting the 
measurement in higher temperatures (T "' 30K). We have also ob
served that the peak angles of the ADMRO shift lower angles for 
increased carrier density. On the other hand, the angular dependence 
of the magnetoresistance of device for lateral transport measurement 
was featureless except for the SdH effect and the cusp-like structure 
around () = goo arising from a localization effect . These results are 
consistent with our expectation described in Chapter 2. 

• In Chapter 4, we have discussed a possible origin of an inverted 
ADMRO effect observed in organic conductors. We have calculated 
the angular dependence of magnetoresistance of four model cylindrical 
Fermi surfaces with different corrugation symmetries. The ADMRO 
effect is strongly dependent on corrugation patterns. The p-type cor
rugation Fermi surface in our calculation explains some features of the 
inverted ADMRO effect in organic conductors, such as (1) the occur
rence of an inverted peak structure, (2) the absence of the ADMRO 
effect at cf> ~ (cf>max +goo) where cl>max is the angle where largest 
ADMRO effect is seen. However the shape of the ADMRO is differ
ent in that sharp dips are impressive in the organic conductors while 
our calculations exhibit sharp peaks. The validity of our calculation 
in this Chapter will be clarified by further experiments and band cal
culations. 

In the latter part of this thesis we have concerned ourselves with 
the oscillatory magnetoresista.nce of a two-dimensional electron sys
tem subject to modulated structures. Especially, we have discussed 
the \!\Ieiss oscillation and the related phenomenon in the case of mag
netic field modulation. 

• In Chapter 6, we have discussed the energy spectra of a two-dimensional 
electron system in one-dimensionally modulated magnetic field . We 
have found that the energy spectra exhibit flat Landau subbands simi
lar to the Weiss oscillation. We inferred the magnetoresistance oscilla
tion due to flat Landau subband similar to the Weiss oscillation. The 
remarkable difference between the Weiss oscillation and the present 
oscillation is the phase factor of the flat band condition by 7T. Re-
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fleeting this fact, peak structure of the magnetoresistance oscillation 
in magnetic field modulation is inverted as compared with the Weiss 
oscillation. The physical picture by a guiding center drift motion was 
also discussed. 

We have also tried to observe the magnetoresistance oscillation 
using two-dimensional electrons of the GaAs/ AlGaAs heterostructure. 
\Ve have only observed Weiss-like oscillation arising from unintention
ally formed electric potential modulation. \Ve have not succeeded in 
the experimental observation at the present stage. 
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Appendix A 

Appendix A.l D erivat io n of CTzz (CY:z) 

In this section derivation of eq.(2.5.14) is given. \11/e assume a 
weak corrugation limit ( t « Ep ). Then we can approximate the 
phase variable r.p by ~ ( Appendix A.3 ) where ~ is defined by kx = 
kcos(, ky = ksin~, k = Jki + k~. The cyclotron mass m* and 

cyclotron frequency w has a weak dependence on ko. We further 
approximate m* ;::;; m/ cos Band w;::;; wo cos B. 

The z-component of the group velocity for a magnetic field angle 
B can be given by 

2ta 
Vz = h sin(akz) 

2ta 
= h sin(a(ko- kx tan B)) 

2ta . 
;::;; --;:;sm(a(ko- kptanBcoscp)). (.4.1.1) 

in second order in t / E p . 

The velocity in the integrand of the Shockley tube integral is 

Vz(!f')vz('P- cp') 

= 
4
t

2

:

2 

sin(a(ka- kptanBcoscp))sin(a(ka- kptanBcos(<p- cp ' )) 
7i 

4t2 a2 

= - ?-{sin(ak0 )cos(akptanBcos<p) 
li" 

- cos( ak0 ) sin( akp tan B cos cp)} 

x {sin( aka) cos( akp tan B cos( cp - cp') 

- cos( aka) sin( akp tan B cos( <p - <p 1
))}. (A.1.2) 

First, we integrate the Shockley tube integral with respect to ko 
using the above formulae. Then the tube integral is reduced to the 
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following form. 

e2 cos(} m* 7r 12" 12" 
O"z-=-- -- dip drp'exp(-rp'jwT) 

• 47r3Ji2 1- exp(-21rjwT) w a 0 o 

4t2a
2 

{ x ---,;z- sin( akp tan(} cos 'P)) sin( akp tan(} cos( 'P - rp')) 

+ cos(akp tan(}cosrp) cos(akp tan(} cos(rp- rp')) }· 

(A.l.3) 

Using Bessel functions (Appendix A.2), eq.(A.1.3) is expanded 
as follows: 

e2 cos(} m* 1r 4t2a2 

47r3Ji2 1- exp( -21rjwT) -::;-;,---,;z-
oo 00 {2" {2" 

X L L J,(akptan())J,,(akptan(}) X Jn d<p Jn dcp'e-'1''/wr 
v=-oov'=-oo 0 0 

X { cos((<p + ~1r)v) cos((<p- <p1 + ~1r)v') 

+sin( ( <p + ~7r )v) sin( ( cp - rp1 + ~7r )v')}. 

(A.1.4) 

Using relation among trigonometrical functions, the integration in 
eq.(A.1.4) can be done. 

(" dcp (" d<p1 exp( -<pjwT) cos((v- v')cp + v 1<p1 + ~1r(v- v')) lo lo 2 

{ 211" 
= 27r6,,,, Jo dcp'e-"'fwr cos(v'rp') 

1/wT = 27r6 ' (1- e-2?r/wr) 
"•" v'2 + (1jwT)2 

(A.l.5) 
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Here Ov,v' is defined by 

{ 
1 for 

Ov,v' = Q for 

Eq.(A.l.4) then becomes, 

e2 cos(} m* 1r 4t2a2 

47r3Ji2 1- exp(-27r/wT) w -;,7 

v = v' 
v f:. v'. 

x f. f. {J,(akptan())J,,(akptan(}) 
v=-oo v'=-oo 

(A.l.6) 

1/wT ( -27r/wr)} X 27r6, v' f? ( I )2 1 - e 
' l/ • + 1 WT 

2t2am*e2Tcos(} 
7rli 4 L

oo ? 1 
J,(akptan())·( )? 

1 WTl/ • + . 
v=-oo 

(A.1.7) 

Using m• ~ m/ cos(}, and hence, wT ~ w0 cos(}, the final result is 
given by 

0 { 2 Loo J~ (A) } 
O"zz=O",_ Jo(A)+2 1+( ())? 

• WoTl/ COS • 
v=l 

(A.l.8) 

where A= akp tan(}, and the zero field conductivity o-~z is given by 
eq.(2.5.15). 
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Appendix A.2 Bessel Functions 

The generating function of Bessel functions is 

+oo 
eizsin 'P = 2:..::: Jv( z)ei"'P. (A.2.1) 

v=-oo 

since sin(IP +f)= cos(1,9), we obtain 

+oo 
eizcos<p = 2:..::: J.,(z)eiv('P+t) (A.2.2) 

v=-oo 

Separation of the real and the imaginary parts yields , 

+oo 
sin(zcos1,9) = 2:..::: J.,(z)sin(v(IP+ %)), (A.2.3) 

v=-oo 

+oo 
cos(zcos1,9) = 2:..::: J.,(z) cos(v(ip +% )). (A.2.4) 

v=-oo 

Appendix A.3 Approximation 

A.3.1 Approximation of k 

We consider a corrugated cylindrical Fermi surface whose energy dis
persion is given by eq.(l.3.1). In the weak corrugation limit, k = 
Jk~ + k~ can be written as 

t 
k;::::: kp(l + EF cos(ak:)) 

rv kF X { 1 + O(t/EF) }· (A.3.1) 
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A.3.2 Approximation of vl. 

Next we approximate ih = (vxl.,VyJ.,VzJ.). It can be expressed by 
the following equation 

ih = v- (v. ii). n, (A.3.2) 

where ii is the unit vector ii = (sinB, O,cosB) in the direction of the 
magnetic field. Then v 1. is written as follows: 

v1. = lv1.l = Jv~l. + v;l. + v;l. 

Here, Vz = 2taf1i. 

Appendix A 

= j( Vx cos B - v z sin B)2 + v~ 

;::::: Jv~ cos2 B + v~ x (l + O(v./vF )) 

;::::: jv} cos2 ~ cos2 B + v} sin2 ~ 
x {1 + O(vz/vF) + O(t/EF)}. 

(A.3.3) 
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A.3.3 Appmximation of dk11 

The definition of dk11 is 

dkll = Jdk; + dk~ + dk;. (A.3.4) 

Differentiating eq.(2.3.1) we obtain dk. =-tan Bdkx. Then eq.(A.3.4) 
IS 

dk11 = J(l + tan2 B)dk; + dk~ 

= -
1
- I dk2 + cos2 Bdk2 . 

cos e V "' y 

Using the polar coordinates (k, (), dkx and dky are 

dkx = cos ~dk- ksin ~d~ 

dky = sin ~dk + k cos ~d~. 

(A.3.5) 

(A.3.6) 

(A .3.7) 

The relation between dk and d~ can be derived by differentiating 
eq .(l.3.1) withE= Ep. 

dk = ? 2tasin(ako ~ aktanBcos()ktanBsin~d~ 
-li-kim+ 2ta sm(a(ko - k tan e cos()) tan e cos~ 

rvd~{ - 1~v.tan8sin~} x {1+0 (vztanBivF) } 

rv -d~kp ( v. ~:ne) sin~ X { 1 + O(iiz tanBivF) }· 

Using the above equation, eq.(A.3.6),(A.3.7) becomes 

(A.3.8) 

dk X rv d~ { - k F sin ~ + k F . 0 (tIE F) + k F . 0 ( v z tan e I v F) } (A. 3. 9) 

dky rv d~{ kp cos~+ kp · O(tiEF) + kp · O(iiz tanBivF) }· (A.3.10) 

Substitution of these relations into eq.(A.3.5) yields 

dk11 = d~ { c~:e Vsin
2 ~ + cos2 e cos2 ~} x { l+O(tl Ep )+O(iiz tanBivF)} 

(A.3.11) 
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A.3.4 Approximation ofm* and r.p 

Using the relation derived in Sees. A.3.1-A.3.3, the cyclotron mass is 
approximated by 

m*:;:::: !!:._ f dk11 "'~x{l+O(tiEF)+O(iizlvF)+O(ii: tanBivF)}, 
2r. v 1. cos e 

(A.3.13) 
and the phase variable is 

dr.p = __ II rv d~ X 1 + O(t/EF) + O(v.jvp ) + O(vz tanBivF) . li dk { } 
m* VJ. 

(A.3.14) 
Thus we can approximate the phase variable r.p by ~· It is manifest 
from the above discussion that the explicit equality holds between ~ 
and r.p when tl Ep = 0. 
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Appendix B 

Cusp in the 
Angular Dependence of the 

Magnetoresistance in 
GaAs/ AlGaAs Super lattice 

Measurements of magnetoresistance as a function of field angle in 
GaAs/ Al:r:Ga1 _:r:As superlattices have revealed a cusp-like structure 
when the magnetic field is parallel to the layer plane. We show that 
this cusp-like structure results from the anisotropy of negative magne
toresistance possibly due to localization effect rather than the diver
gent semi-classical magnetoresistance due to the open orbit of Fermi 
surface. The relation between the cusp-like structure and the Fermi 
surface topology is also discussed. 

B.l Introduction 

During the course of our study of the angular dependent magneto
transport in GaAs/ Al:r:Ga1 _:r:As superlattice, we have found that the 
resistance as a function of magnetic field angle exhibits a character
istic cusp-like structure when the field is parallel to the basal plane. 
In this Appendix, we report on our detailed study of this cusp-like 
structure. 

B.2 Experimental 

Three different samples of GaAs/ Al:r:Ga1 _:r:As superlattice have been 
grown by MBE. The relevant parameters for the three superlattices 
are summarized in Table B.l. The schematic diagram of the band 
structure and the Fermi surface shape are illustrated in Fig.B.l. The 
parameters for Device A were so chosen that it had a quasi-two
dimensional (i .e. cylindrical) Fermi surface. (This is the same sample 
as "Device L1 " in Chapter 3.) In Device B, the total carrier density 
was approximately the same as Device A, but the thickness of the 
AlxGal-xAs barrier layer was reduced. The size of the Brillouin zone 
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Device I.D. A B 
GaAs layer thickness [A] 100 62 

Al:r;Gal-:r;As layer thickness [A] 60 23 

Number of periods 100 50 

Alloy composition X 0.154 0.25 

Carrier density nH[cm - 3] X 1017 4.6 4.0 

Ground subband width [meY) 6 43 

First mini-gap width [meY) 50 83 

Fermi level [meY) 29 27 

Fermi surface topology 2D 3D 

Hall mobility (4.2K) [cm
2

/Ys) 2370 1810 

Table B.l Superlattice device parameters. 
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Fig. B.l Schematic diagram of the subband structure and the Fermi 
surface shape. 
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in the k:-direction was accordingly larger, and the Fermi surface was 
closed within the first Brillouin zone. In Device C, the superlattice 
structure was made the same as Device B, but the total carrier den
sity was increased so that the Fermi surface became extended in the 
kz-direction. 

Details of the sample fabrication and the magnetotransport mea
surements were described in Chapter 3. 

B.3 Results and Discussion 

First we describe the cusp-like structure observed in the angular de
pendence of magnetoresistance in Device A. 

B .3.1 Cusp-Like Feature at (} = goo 

Figure B.2 shows the angular dependence of magnetoresistance in 
Device A for different field intensities at T = 4.2K. The field angle 
B is measured from the normal of the two-dimensional plane of the 
superlattice. The SdH oscillations are seen in the high field data. The 
amplitude of the SdH oscillations decreases rapidly with increasing 
field angle, and decreasing field intensity. The resistance shows a 
cusp at B = goo. The cusp-like structure depends on the magnetic 
field strength, i.e. it is broad at low fields, and becomes narrower at 
higher fields. 

Figure B .3 shows the angular dependence of magnetoresistance at 
44K. At this higher temperature, the SdH amplitude is much reduced, 
and the overall shape of the curves is quite different from Fig. B.2. 
However, the cusp at (} = goo is still clearly visible. 

Figure B.4 shows the angular dependence of magnetoresistance 
at B = gT for different temperatures . The cusp at B = goo grows with 
decreasing temperature. It is seen that ignoring the oscillatory part 
of the resistance the O\'erall angular dependence is opposite between 
the 4.2K curve and the 61K curve. 
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Fig.B.2 Angular dependence of magnetoresistance of De
vice A for different field intensities. T = 4.2K. 
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Fig.B.3 Angular dependence of ma.gnetoresistance of De
vice A for different field intensities. T = 44K. 
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Fig. B.4 Angular dependence of ma.gnetoresistance of De
vice A for different temperatures. B = gT. 
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Fig. B.5 (a) Field dependence of resistance of Device A 
for different field angles. T = 4.21\ . (b) Detailed field 
dependence of resistance of Device A around 0 = goo. 
T = 4.21\. 
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B.3. 2 Field Dependence 

Next we look at the magnetoresista.nce a.s a. function of magnetic field. 
Figure B.5( a.) shows the ma.gnetoresista.nce a.t T = 4.21\ a.t different 
field angles a.s a. function of magnetic field. For field angles not too 
close to (} = goo, the SdH oscillations ~re observed. In the low field 
regime, negative ma.gnetoresista.nce is observed. The magnitude of 
the negative ma.gnetoresista.nce is largest a.t (} = 0°. It decreases with 
increasing field angle toward (} = goo. 

The high field asymptotic behavior near (} = goo is different from 
other angles. Figure B.5(b) shows the detailed measurement of ma.g
netoresista.nce between (} = goo and (} = 80° as a function of magnetic 
field. At (} = goo, a large positive ma.gnetoresistance is observed for 
B > 1 T. As the field is tilted away from (} = goo positive ma.gnetore
sistance diminishes while the negative magnetoresista.nce grows so the 
resistance minimum occurs a.t progressively higher fields. 

B.3.3 Origin of the Cusp-Like Feature 

One of the candidates for the origin of the cusp is the appearance of 
an open orbit at (} = goo. It is quite natural to expect an open orbit 
along the k=-direction in our quasi-two-dimensional Fermi surface. 
Indeed, the high field asymptotic behavior at (} = goo is reminiscent 
of a divergent ma.gnetoresistance associated with an open orbit. 

However , the explanation in terms of an open orbit runs into diffi
culty. The inset of Figure B.6 shows the detailed angular dependence 
of the data shown in Fig. B.3 near (} = goo The cusp-like structure 
becomes sharper with increasing field. The main panel of Fig. B.6 
shows the replot of Fig. B .3 as a. function of field component perpen
dicular to the two-dimensional plane of superlattice(B j_ = B cos 8). 
Aside from the vertical shift, all curves look similar to one another. 
Thus the shape of the cusp-like structure is determined only by the 
perpendicular field component BJ_. On the other hand the vertical 
shift of each curve is determined by the total field intensity. 

From these results , the same positive magnetoresistance as that 
at (} = goo also exists at other field angles. Therefore, it cannot be 
attributed to an open orbit, because the open orbit only exists in the 
vicinity of(} = goo. 
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Fig. B.6 The scaled plot of the angular dependence of 
magnetoresista.nce of Device A as a. function of B cos e. 
T = 441\. Field dependence a.t (} = 0 is plotted together for 
comparison. The inset is the detailed angular dependence 
of ma.gnetoresistance around(}= 90°. T = 44K. 

From the scaled plot of Fig. B.6, it is evident that the angu
lar dependence for a fixed field intensity basically reflects the field 
dependence at (} = 0°. The negative ma.gnetoresista.nce and the re
sistance minimum of the field dependence correspond to the cusp-like 
feature and to the resistance minimum of the field angle dependence, 
respectively. We conclude tha.t the cusp-like structure arises from the 
negative ma.gnetoresista.nce which is solely determined by the perpen
dicular component of the magnetic field . 
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Fig.B.7 Plot of the conductivity of Device A for one su
perlattice layer vs. lnB. 

B. 3.4 Negative Magnetoresistance 

Next we discuss the origin of the negative magnetoresistance. We first 
exclude the effect arising from the magnetic impurity such a.s a Kondo 
effect because the MBE ma.chine a.s well a.s the deposition sources used 
in the super lattice growth are clea.n enough to make a. Ga.As/ AlGa.As 
heterostructure two-dimensional electron gas whose mobility exceeds 
1 x 106 cm2 /Vsec. The most probable candidates for the origin of the 
negative ma.gnetoresista.nce is the weak localization effect widely seen 
in semiconductors. 

Fig. B.7 shows a. plot of the magneto-conductivity l':,.(Jsheet v.s. 
lnB, where (Jsh.e et is the conductivity of Device A for one superlattice 
layer. The ma.gnetoconductivity is linear in lnB forB > 0.05T, which 
can be described a.s b(6.(J) = o-(e2 /27r2 1i)lnB, with o-=0.19. 

We are aware of that the present analysis is rough. The results 
however strongly suggest that the negative ma.gnetoresista.nce is due 
to a weak localization effect. We do not further concern with the 
origin of the negative magnetoresistance since it is irrelevant to the 
main subject in this thesis. 
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If we consider the negative magnetoresistance is due to the local
ization effect, it is natural that it is scaled by the perpendicular field 
component for the case of the quasi-two-dimensional system. The 
interpretation is also consistent with the fact that the negative mag
netoresistance diminishes at higher temperatures, so does the cusp. 

B.3.5 Isotropic Positive Magnetoresistance 

We have pointed out the distinct temperature dependence of positive 
magnetoresistance at B = 90°. It might seem possible to associate the 
field angular independent positive magnetoresistance to the Zeeman 
part of the localization effect. This, however, encounters a difficulty. 

Figure B.8 shows the temperature dependence of resistance for 
different field angles with the field intensity fixed at gT. The tem
perature dependence of resistance at B = OT is also plotted for 
comparison t. The temperature dependence of magnetoresistance at 
B = gT,B = goo is similar to that at zero field, as seen in Fig. B.8. 
Therefore, it is difficult to attribute the positive magnetoresistance at 
B = goo, which survives up toT "' 200K, to the localization effect . \Ve 
have not obtained a. clear explanation of the temperature independent 
isotropic ma.gnetoresistance observed at B = goo. 

B.4. Fermi Surface Topology and the Cusp-Like Feature 

In case of Device A, cusp-like structure of the angular dependence 
arises from anisotropy of the localization effect, and the shape is de
termined by B J. = B cos B. We compare these results with two other 
Devices B and C. 

Device B has the same carrier density as Device A, but a larger lD 
sub band width . The Fermi level of Device B falls in the lD subba.nd . 
As a. consequence, the Fermi surface of Device B is closed within the 
first Brillouin zone. This is seen from the fact that SdH oscillations 
are observed for all field angles, as seen in Fig. B.g(b). Figure B.g(a.) 
shows the angular dependence of magnetoresistance for Device B at 
different field intensities. The shape of the curves of the angular de
pendence is quite different from Device A. What draws our attention 
is that there is no cusp-like feature at B = goo in this sample. We also 
note that positiYe magnetoresistance is not observed even at B = goo, 
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Fig.B.8 Temperature dependence of resistance of Device 
A for different field angles. B = gT. Zero field resistance 
is plotted for comparison. 

t.e. the non-oscillatory part of the ma.gnetoresistance is negative at 
all angles. 

Device C has an identical superlattice structure as Device B. But 
its electron density is about eight times as high as that of Device 
B. The Fermi surface of Device C touches the Brillouin zone bound
ary in the k:-direction. Namely the Fermi surface is cylindrical and 
topologically similar to Device A. 

Figure B.lO(a) shows the angular dependence of magnetoresis
ta.nce for Device C at different field intensities. The general shape of 
the curves is the same as Device A. There is an oscillatory magnetore
sistance around B = 0°. It diminishes with increasing field angle. The 
oscillatory change of ma.gnetoresistance with angle is also due to the 
SdH effect. A cusp-like structure at B = goo similar to that observed 
in Device A is seen . Figure B.lO(b) is the magnetoresistance as a 
function of magnetic field at different field angles. At B = goo, where 
the cusp occurs, the positive magnetoresista.nce is seen. 

From these results, we could see that the cusp at B = goo has 
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Fig. B.9 (a) Angular dependence of magnetoresistance 
of Device B for different field angles.T = 4.2K. (b) Field 
dependence of magnetoresistance of Device B for different 
field angles. T = 4.2K. 

relevance to the quasi-two-dimensional Fermi surface. This effect is 
commonly observed in Devices A and C, both of which have cylindrical 
Fermi surface albeit with widely different electron densities. 
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Fig. B .lO (a) Angular dependence of magnetoresistance 
of Device C for different field angles. T = 1.31<. (b) Field 
dependence of magnetoresistance of Device C for different 
field angles. T = 1.3K. 

B.5.Conclusion 

During the course of the study of the angular dependent magnetoresis
tance oscillation effect, we have found the anomalous cusp-like struc
ture a.t () = 90° in the lateral transport of GaAs/AlxGaJ-xAs super
lattice. We ha.ve characterized the cusp-like structure as follows: 

1) The cusp-like structure is manifest especially in low temperature 
regime, and disappears gradually at higher temperatures. 

2) It accompanies positive magnetoresistance in high field regime. 
3) Its angular dependence can be scaled by the perpendicular field 

component, B cos e. 
We attribute the cusp-like structure to the anisotropy of the negative 
magnetoresistance arising from the localization effect. It is demon
strated that the appearance of this cusp is correlated with the Fermi 
surface topology. 
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t The increase of resistance at low temperatures partly stems from 
the localization effect. The major part of this temperature depen
dence, however, comes from change in the Fermi-Dirac distribution 
of electrons since the Fermi energy in the present system is rather 
small. This aspect is discussed in Ref[1] in connection with the 
behavior of the Hall effect. 
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