表面に衝突する単原子気体分子の動力学

表面に衝突する単原子気体分子の動力学

1992年12月 提出

松井 純

目次

第1章	序論	
	1.1	本研究の意義および目的2
	1.2	関連する従来の研究
	1.3	本研究の概要11
	1.4	主な記号12
第2章	数値計算	手法
	2.1	序14
	2.2	基礎方程式14
	2.3	分子間ポテンシャル15
	2.4	境界条件16
	2.5	時間積分法16
	2.6	変数の基準化18
	2.7	計算の概要
	2.8	制御の手法
第3章	Xe-Pt,	系についての解析
	3.1	序
	3.2	計算パラメタの決定
	3.3	系の挙動の可視化と確認
	3.4	初期捕獲確率
	3.5	散乱角度分布
	3.6	エネルギの伝達
	3.7	衝突直後の速度平均および速度分布
	3.8	衝突後の挙動
	3.9	壁面の温度の影響
	3.1	0 本章のまとめ
第4章	パラメタの	D異なる系についての解析
	4.1	序
	4.2	簡単な理論解
	4.3	初期加速への影響
	4.4	ポテンシャル係数の異なる場合
	4.5	相対質量の異なる場合
	4.6	本章のまとめ
第5章	モデル化	
	5.1	モデル化
	5.2	モデルの検証
第6章	結論	
付録		
参考文南	犬	
謝辞		

第1章 序論

1.1 本研究の意義および目的

気体の圧力が極めて低い場合、あるいは非常に狭い隙間の中の流れのように、 代表長さが極めて小さい場合には、気体を連続体として扱うことができなくなる。 このような流れを一般に希薄気体rarefied gas の流れと呼ぶ。気体の希薄さの程度は Knudsen数で表される。これは気体分子の平均自由行程を λ、系の代表長さをしと して

 $Kn = \lambda / L$

(1-1-1)

と定義される数であり、Kn>0.01となる領域では、熱や物体の流れを考える際に に入の大きさを考慮する必要がある。Knが0.01から0.1の範囲では流れ場としては 連続体として取り扱うことが可能であるが、壁面での境界条件に「滑べり」と呼ば れる速度のスリップを考慮する必要がある。このような流れを「滑べり流」と呼ぶ。 Knが10以上である場合には、気体分子どうしが衝突することはほとんどなくなる。 このような流れを「自由分子流」と呼ぶ。Knが0.1から10程度の場合には分子間衝 突も盛んに生じている、「中間流」の領域であり、Direct Simulation Monte Carlo法 [1]が確立されるまでは、解析がもっとも困難であった領域である。

自由分子流や中間流においては、気体分子が固体表面に衝突した時、どのよう な速度分布で表面から反射してくるかという問題は、特に重用となる。この速度分 布の平均から、表面の受ける圧力が定まり、これから物体の受ける抗力が定められ る。また、反射する壁の表面荒さにより、流れ場そのものが影響される場合もある [2]。滑べり流の領域では後に示すように、滑べりの量が気体分子と固体表面の干 渉の強さで決定される。また、半導体の成膜過程においては、分子が表面に付着す る確率が、溝部にできる膜の厚さを支配する場合がある[3]。

このように、気体分子と表面の相互作用の問題は工学的に極めて重要であるため、従来さまざまの研究がなされてきたが、表面の状態は、物性、温度、汚れ度、 表面荒さ、格子欠陥、など様々の要素で大きく変化するためもあって、まだ一般的 な理論やモデルは得られていない。

本論文は、シミュレーションの1手法である分子動力学法を用いて、表面に衝 突する気体分子の挙動を数値的に再現し、表面から反射してくる気体分子の速度分 布や、気体分子と表面の間で伝達されるエネルギの値などについて、詳しく解析を 行ったものである。また、この解析から簡単なモデルを構成する事を試みている。

まず、実際の現象と比較を行うために、気体分子としてキセノン(Xe)を選 び、表面はプラチナ(Pt)原子からなる結晶であるとして、シミュレーションを 行なう。既に報告されている実験結果[4]と、シミュレーション結果を比較すると 共に、エネルギの時間履歴や固体内部への伝播など、実験では測定不能なデータに ついて解析を行った。この知見を基に、気体分子の質量等のパラメタを変化させた シミュレーションを行い、解析する。シミュレーションでは現実には存在しない系 を作成して試験することが可能であり、各バラメタの影響を独立に調べることがで きる。最後に、得られた知見を基に簡単な散乱モデルを構築し、検討を行った。

1.2 関連する従来の研究

Gas-Surface に関する研究の歴史は古く、Maxwell, Knudsen らを始めとして現在 に至るまで、数多くの研究がなされてきている。個別の物性や反応に関する研究も 含めれば、列挙することすら不可能である。

ここでは、化学反応を伴わない場合かつ、気体分子の重心の運動(並進運動) に話を限ることにして、簡単に概要を述べることにする。

1.2.1 解析手法について

固体表面近傍における気体分子の挙動を解析する手法は、近年になって実験と シミュレーションについて、精度の高い方法が確立されている。まず簡単にこれら をまとめておく。

まず実験的に気体分子の挙動を調べる方法としては、気体分子を小孔から噴出 させてビーム状にした、いわゆる「分子線」を試験表面に照射し、散乱する気体分 子の空間分布と速度分布を調べる方法がよく用いられる。実験及びデータの詳細は 文献[5]に詳しい。従来、照射直前の試料表面の状態を知ることは非常に困難であっ たが、近年になってRHEED,オージェ電子分光などの手法が確立されて、表面の結 晶格子の詳細、表面に付着している気体分子の状況等が容易に把握できるようにな り、実験精度が格段に向上している。最近の実験結果では、二原子分子の回転運動 や角運動量を測定しているKummelらの一連の報告[6][7][8][9]や、固体表面に一旦、 物理吸着した分子が離脱してくる現象を解析した[10][11][12]ものもある。

理論的に気体分子の挙動を把握する試みとしては大きく分けて2種類のアプロー チがある。1つは、熱平衡状態における壁面近傍での速度分布関数について解析を 行う手法である。Cercignaniらのモデルの導出[13]は壁面近傍での詳細釣合を満足 するよう導かれたものである。またBormanらは気相、表面近傍の束縛領域、非束 縛領域の3つの相についての平衡状態を考えることで、回転運動を含む種々の適応 係数についての関係を導いている[14][15]。Porodnovら[16]は低温における適応係数 の算定においては、従来用いられている1つのphononの移動のみが生じるという近 似(1-phonon近似)が成立しないことを示している。もう1つのアプローチとして は、分子散乱の実験を模擬するものがある。この手法では、解析的に系の挙動を求 められる場合は限られているため、数値シミュレーションを伴う場合がほとんどで ある。Goodmanは[17]固体結晶をバネと質点からなる格子で表現し、この格子の応 答関数を求めることで格子に衝突する気体分子の運動を解析している。Manson[18] は1-phonon近似の場合の量子的な計算からエネルギ適応係数についてのモデルを導 いている。近年ではJacksonがsemi-classicalの仮定の下で多数のphononが作用する場合の解析を行っている。[19][20]

実験、理論に次ぐ第三の解析手法として数値シミュレーションの方法がある。 表面の分子と気体分子の全てについて、波動関数を計算しつつ挙動を時間的に追跡 することは、現在の計算機の能力の点から不可能であるので、幾つかの仮定を導入 して解析をおこなうことになる。完全な量子力学的計算に近い手法として、固体結 晶を格子として扱う一方で、波動関数を重ね合わせて気体分子を表現し、これらの 波動関数の変化を追跡する"Wave-Packet "の手法[21][22]がある。もう少し効率的な 手法として、Stochastic-trajectory法[23]がある。これは、4から150程度の分子につい てシミュレーションを行うものであるが、計算する系の境界条件を工夫することに より、系の周りに疑似的に熱浴の状態を作り出す手法である。各分子については、 古典的に計算するやり方[24]もあれば、量子効果を組み入れる[25]場合、化学反応 まで組み入れた場合[26]など、様々に応用されている。系の挙動の全てを古典論で 取り扱う分子動力学の手法あるいはclassical-trajectory法を用いた試みもなされてい る。例えばBlackらはPt表面に吸着したXe分子が2次元的に集まって後状にな ることを示している[27]。

1.2.2 気体分子散乱の分類

気体分子が表面分子と相互作用して散乱する現象は、いくつかのタイプに分類 できる。ここではGoodman[28]とHurlbut[29]の分類を参考にして概説する。なおこ こで示すのは気体分子の並進運動エネルギについての議論であり、2原子分子等に おける回転運動、振動運動については、まだ一般的な結論は得られていない。また 以下で用いているパラメタ ω_pは表面のDebye 温度による格子振動の角振動数であ り、bulkのDebve温度 θ_nとは

 $\omega_{\rm p} = \theta_{\rm p} k_{\rm B} / h$

(1-2-1)

の関係がある。(hはプランク定数、 k_{B} はBoltzmann定数)。またては気体分子が 表面と相互作用をなす時間とする。 E_{m} を入射前の気体分子のエネルギとし、壁面 温度をTsとする。

(1) 準弾性散乱の生じる領域(quasielastic regime)

まず、大きく分けて量子効果が支配的である場合と、そうでない場合がある。 前者ではエネルギ準位の不連続のために気体分子と固体とのエネルギ伝達が制限され、ほぼ弾性的な散乱が得られるので、これを"quasielastic"の領域と称する。古典 的な扱いが可能であるかを示す指標としては、次の2つのパラメタがある。

 $\varepsilon_{\rm q} = E_{\rm in} / k_{\rm B} \theta_{\rm D}$

 $T_{a} = Ts / \theta_{D}$

(1-2-2)

ε。>>1の時、エネルギの移動はmulti-phonon プロセスとなるので、これを古典

論で扱っても問題はない。これに対して ε_q <<1の時には、1-phonon あるいは0-phononプロセスが卓越し、ほぼ弾性衝突となる。このとき、入射前の気体分子のエネルギE_nと散乱後のエネルギE_{ou}はほぼ等しく、気体分子と固体結晶の間でエネルギの交換は行われない。ただし、 ε_q が小さい場合にでも、古典的モデルがうまくいくことがある。この理由はよくわかっていない[28]。また、Tq<<1 となる場合にも量子効果が無視できなくなる。

(2)入射エネルギの極めて大きな領域

入射エネルギE」が極めて大きな場合には、気体分子は固体結晶の中へもぐり込んだり、固体結晶の分子を弾き飛ばしたりする。気体分子のエネルギが1eVのオー ダーを越える領域では、このような透過やスパッタリング等の現象がみられる。これは通常の散乱現象とは全く異なる状況になるので、ここでは扱わない。

(3) 非弾性衝突が見られる領域(Inelastic regime)

系をほぼ古典論で表せるような場合については、熱的な要因が支配的な"thermal scattering regime"と、固体表面分子の配置による凹凸が表れてくる"structure scattering regime"に二分できる。いずれの場合も気体分子と表面とでエネルギの交換が生じており、"inelastic"な領域と呼ばれている。

structure scatteringは、気体分子が固体表面原子と作用している時間 r が、固体分子の振動周期より十分小さい場合に見られるとされる。衝突作用の時間が短いため、 この間は固体側の分子は動かないとしてよい。すなわち近似的に固体の熱振動を無 視できる。このような場合には気体分子の入射エネルギが大きいのが普通であるの で、気体分子は表面分子のごく近傍まで接近することができる。このために表面の 原子の位置による凹凸の影響が散乱角度の分布に複数のビークとなって表れる現象 が見られる。このstructureの散乱は、完全な結晶表面でも見られる現象であり、表 面の荒さ(roughness)効果による散乱現象とは異なることに注意する必要がある。

このStructure-scattering が見られる条件は

 $\tau << \omega_{\rm D}^{-1}$

(1-2-4)

Ein >> k_B Ts

あるいは

(1-2-5)

とされている。しかしHurlbut[29]は、気体分子の入射運動量が非常に大きい場合に、 固体結晶の振動に非線形成分が生じる場合にstructure scatteringが表れるとしている。

Thermal scattering は、表面分子の熱振動からの寄与が支配的となっている領域で 生じる。その場合の条件は

 $\omega_{\rm D} \tau \doteq 1$

(1-2-6)

である。この場合には壁面温度その他の影響により、気体分子から表面へ熱が移動 することもあれば、逆の場合もある。気体分子のエネルギはそれほど大きくないた めに、あまり表面のそばに近寄ることができず、このため表面を比較的平らな面と して扱うことが可能となる。散乱角度分布はlobular(葉状)の形をなす。

1.2.3 分子散乱モデル

前節に示したような各々の領域(regime)において、それぞれ特徴のある散乱角 度分布や散乱後の速度分布が観察できる。これを再現できるような散乱モデルが数 多く提唱されているが、ここではInelastic-regimeにおける代表的なものを数例、挙 げる。ただし、いずれも単原子分子的な気体分子についてのモデルであり、気体分 子の回転運動等はまた別個に考える必要がある。また、壁は移動していないものと する。便宜上、表面をz=0の面とし、x軸とy軸が表面上にあるものとする。また 気相はz>0の領域であるとする。さらに、角度 θ を散乱後の速度ベクトルが表面の 法線ベクトルとなす角度とし、 η は速度ベクトルを表面に投影したベクトルが x 軸 となす角度とする。

[1] Diffuse scattering (拡散反射) モデル

cosine散乱(余弦散乱)と呼ばれることがあるが、厳密に言えば両者は区別され るものである[28]。これらは共に、散乱された流れの強さがcosθに比例し、ηに 独立であるような散乱プロセスである。特に「余弦則による散乱」あるいは 「Knudsen散乱」と言う場合には、散乱の空間分布がcosθに従うパターンを持つ場 合を示す。その速度分布は、壁面温度に必ずしも従うものではない。これに対して 「拡散反射」と言う場合には、散乱流れの量が、壁の向こうに平衡気体があるもの と区別できないような反射を指す。この場合には散乱角度の分布は余弦則に従い、 その速度分布は壁の温度によるBoltzmann分布となっている。(Appendix Aを参照)

拡散反射モデルは、表面仕上げの荒い場合、あるいは表面が汚れている場合、 表面で気体分子が吸着しやすい場合等に、観察されるとされている。特に、非弾性 衝突や多重衝突、トラッピング衝突により温度適合が強くなっている表面から散乱 してくる気体分子の速度の方向は、入射方向とは独立になる傾向があるとされてい る。また、表面仕上げの荒い場合には、表面の凸凹の部分で何度も反射を繰り返す ため、光の乱反射に似た過程から余弦法則に従うパターンが表れる。これは前に 示した分子レベルの凹凸によって生じるStructure-regimeの現象とは異なる。

[2] Specular scattering (鏡面反射) モデル

このモデルは表面の法線に平行な速度成分を反転し、垂直な速度成分はそのま ま保存するものである。式の単純さと取り扱いの容易さから、関数展開による解析 等で用いられることが多い。また、このモデルでは入射前の気体分子の運動エネル ギが保存されるため、弾性散乱に近い状態に対して用いられることがある。表面へ の適応が全くない状態であり、散乱後の速度は入射時の速度のみから決定される。

[3] Maxwell モデル

ある確率 α で拡散反射、 $1-\alpha$ で鏡面反射が生じるとしたモデルである。 α の値を 調整することによって、表面における気体分子の「適応」(accommodation)の程度 を変化させられるため、広く用いられている。非常に実用的なモデルと言えるが、 lobularな散乱分布の形を再現できないのが欠点である。

[3] Cube モデル

Thermal-regime の領域での気体分子の散乱を精密に再現するべく考案されたモデ ルである。基本的なHard-Cube モデルの他、様々の改善を加えたモデルが提案され ている。ここでは代表的な3つのみ、示しておく。

[3-1] Hard-Cube モデル

このモデルでは気体分子を剛体球と考え、表面は硬い箱(Cube)の集合体であ るとする。Cube表面は平面とし、気体分子のCube表面に平行な速度成分は、衝突 において不変とする。すなわち、平らな表面に垂直な方向の運動量のみが気体分子 とキューブの間で交換しうる。このとき、分子は入射平面内にとどまるので、この モデルは2次元的な散乱角度分布を持つ。なお、Cubeは壁面温度Tsに相当する熱 速度を持っており、衝突の際にはこの速度を持つ質点として作用する。

このモデルでは、Cube質量は固体結晶の分子質量などとすることで、一切の実 験的パラメタを廃してモデルを構築することができる。定量的には実験結果と合致 しないが、定性的にはthermal-regimeでの気体分子の散乱角度分布等をかなり良く 再現できる。このモデルの欠点としては、

1. ポテンシャルの井戸を考慮していない。

2.固体分子間の相互作用を無視している。

3.モデルが2次元的で、入射平面の外に飛び出す散乱を考えていない。 の3点が挙げられる。

[3-2] Soft-Cube モデル

Hard-Cubeに対して定常なポテンシャルの井戸(Well)を導入し、さらにCubeをパ ネを用いて不動の平面に連結するという改善を施したモデルである。気体分子と CubeはMorseポテンシャル(2-3-2)に似た形の指数的な反発を行なうとする。また、 Cubeを保持するパネの強さは表面の熱振動の振動周波数ωpを再現できるよう、選 ばれる。

このモデルには3つの可変パラメタがある。

(1)ポテンシャル井戸の深さW

(2)表面振動のDebye温度 Θc

(3) 斥力の大きさの代表値 σ

Wは吸着熱Qとほぼ一致すると考えられる。また、一般的に Θ cはbulkのDebye温度 Θ dの半分のオーダーであるが、固体の物質によってその程度は異なる。例えば、 金Au では Θ cは Θ dとほぼ同じになる。 σ は指数形のMorseポテンシャルの式(2-3-2) に表れる値である。

[3-3] Washboard モデル[30]

これもHard-Cubeモデルの改良版であり、ボテンシャルの井戸Wと表面の分子レベルの凹凸を加味したものである。soft-cubeモデルのバネの下側が分子レベルの凹凸に沿って波うつように配置される。このため散乱は3次元的となり、thermal-regimeの散乱角度分布を良く再現できる。

[4] Cercignani-Lampis モデル[13]

実験定数として2つの適応係数を使うモデルであるが、lobularの散乱角度パター ンを良く再現できるモデルである。熱平衡状態での詳細釣合条件を満たすような式 を用いて、表面の法線方向の速度の変化と接線方向の速度の変化が独立な確率過程 に従うと仮定している。

具体的には衝突前後の接線方向速度をv',vとし、運動量の接線方向成分に関する 適応係数を a,とすると、接線方向速度v*で入射した分子が速度vで散乱する確率を

 $P(v^* \to v) = \frac{1}{\sqrt{\pi \alpha_1 (2 - \alpha_1)}} \exp\left[-\frac{(v - (1 - \alpha_1)v^*)^2}{\alpha_1 (2 - \alpha_1)}\right]$ (1-2-7)

とする。また運動エネルギの法線方向に関する適応係数を a ne とすると、法線方向 についての速度変化の確率密度関数は

$$P(w^* \to w) = \frac{2}{\alpha_{nE}} W \left[0 \left[\frac{2\sqrt{(1-\alpha_{nE})}}{\alpha_{nE}} w w^* \right] exp \left[-\frac{w^2 + (1-\alpha_{nE})w^{*2}}{\alpha_{nE}} \right]$$
(1-2-8)

と表す。ここで I_0 は修正ペッセル関数。運動エネルギの接線方向に関する適応係数 $a_{n=a_1}(1-a_n)$ の関係がある。

これらの確率密度の式をモンテカルロ法のような粒子法に適用する方法も報告 されている[31]。xy平面が表面であり、入射分子の速度が(0,v*,w*)となるように座 標系を取る。(全て異なる) 0から1までの一様乱数をU、壁面温度をTs、気体定 数をRとして、 $r_n \equiv \sqrt{2RT_s} \sqrt{-\alpha_{nE} \log_e U}, r_t \equiv \sqrt{2RT_s} \sqrt{-\alpha_{tE} \log_e U}, \theta = 2\pi U, \eta = 2\pi U$ を求め、 $w_m = |w^*| \sqrt{1-\alpha_{nE}}, v_m = |v^*| \sqrt{1-\alpha_{tE}}$ からu = $r_t \sin \eta$, v = $v_m + r_t \cos \eta$, w = $\sqrt{r_t^2 + w_m^2 + 2r_n w_m \cos \theta}$ のように散乱後速度を定める。

このモデルで用いる2つの定数の値が異なる場合には、法線方向と接線方向に 関して熱平衡の温度が異なる場合があるという欠点がある。

図1-2-2 Hard Cube モデル

図1-2-3 Soft-Cube モデル

1.2.4 マクロな量との関連

ここで上に述べてきた表面の現象が、特に希薄な気体において温度や速度のジャ ンプの形で流れ場に影響する様子を示しておく。

まず、壁面に平行な速度成分について考える。固定された壁面をz = 0の面と し、z > 0の領域で気体分子が流れているとする。壁面から平均自由行程 λ の程度 離れた位置における、x方向の平均速度が u_{in} であるとする。壁面までの距離が平均 自由行程のオーダーであるので、平均速度 u_{in} を持つ分子が壁面に達するまで、他の 分子と衝突する可能性は低く、壁面に衝突する分子のx方向の平均速度 u_{in} に等し いと考えてよい。

壁面で衝突した後の気体分子のx方向平均速度をu_{out}とすると、接線方向に関す る、運動量の適応係数α,が定義できる。

$\alpha_t \equiv \frac{u_{in} - u_{out}}{u_{in} - u_s}$

(1-2-15)

ここでu_sは壁面の速度である。今は0であるが、一般性を考えて残しておく。 適応係数は通常は0から1の間の数であり、1のときには、散乱後の気体分子 の挙動が入射前のものと完全に独立である(気体分子が表面の状態に完全に適合し た)ことを意味している。逆に、適応係数が0の場合には気体分子は表面の状態に 一切依存しないで反射することになる。

表面のごく近傍における気体の平均速度u。はu,,u,oの平均で

 $u_e = \frac{u_{in} + u_{out}}{2}$

(1-2-16)

と書ける。また、表面近傍での z 方向の速度の勾配が既知であるとすれば、 u_e は u_i を用いて

 $u_{in} = u_e + \lambda \frac{du}{dz}$ (1-2-17) と表せる。これらの式からu_eを求めると、

$$u_{e} = \lambda \frac{du}{dz} + u_{out}$$

$$= \lambda \frac{du}{dz} + (1 - \alpha_{c})u_{c} + u_{c}$$
(1-2-18)

= Λ_{dz}^{ee} +(1- α_t) u_{in} + u_s となる。この u_e は α_t が1に近く、かつ λ が小さい場合にはほぼ0となる。通常の連 続体の流れにおいては後者の条件が成り立つので、壁面での流体の速度を0として よいが、 λ が代表長さに比べて大きい場合、すなわち希薄な流体の場合には、 u_e は 無視できなくなる。この場合、速度にジャンプがある、あるいは壁面でスリップが ある、という。

u_cの大きさには接線方向の適応係数α_iが大きく関与している。このように、表面での分子の挙動が適応係数の形でマクロな量に結び付けられることがしばしばある。

壁面の温度と気相の温度に関しても、類似の関係が見られる。壁面に入射する 気体の温度(運動エネルギ)をT_{in}散乱後の気体の温度をT_{au}とすると、エネルギに 関する適応係数(Energy Accommodation Coefficient, E.A.C.)が定義できる。 $\alpha_E \equiv \frac{T_{in} - T_{out}}{T_{in} - T_s}$ (1-2-19) 速度の場合と同様の議論により、壁面における気体の平均温度T_はT_とは異なる

11

ことを示すことができる。

1.3 本研究の概要

先に述べたように本論文においては、分子動力学法を用いたシミュレーション により、固体表面の近傍における気体分子の並進運動について解析を行う。第2章 では数値シミュレーションの手法について、詳しく述べる。第3章では気体分子と してXe、固体結晶分子としてPtを選び、この系に関してシミュレーションを行っ た結果を示す。この結果とArumanyami[4]らの実験値を比較すると共に、シミュレー ションによる散乱角度分布、物理吸着確率、エネルギ伝達の分布と平均値、散乱後 の速度分布などについて、詳しい解析を行う。第4章では物理パラメタを変化させ た系についての解析を行い、Xe-Ptの系の場合との比較を交えて、各パラメタ が気体分子の挙動、特にエネルギの伝達におよぼす影響を解析する。第5章では、 ここまでの解析結果を踏まえて簡単な散乱モデルを作成し、このモデルの検討を行 う。

1.4 主な記号

Е	エネルギ
F	力
K	バネ定数
k	モデル化の定数
m	質量
Q	エネルギや運動量の流束(flux)
R,r	距離、長さ
s	(標準)偏差
Т	温度、運動エネルギ
t	時間
U	内部エネルギ
u,v,w	速度成分、速度
x,y,z	位置座標
α	適応係数
γ	補正のための係数
Δ	差分
ε	ポテンシャルの係数
η,θ	速度ベクトルの方向を示す角度
к	バネ定数の比
μ	質量の比
λ	気体分子の平均自由行程
σ	ポテンシャルの係数
ø	ポテンシャル・エネルギ
χ	速度の比率
Ω.ω	鱼振動数 立体鱼

添え字

g	気体、気体分子
S	固体、固体結晶、表面
in	入射時の値
out	散乱後(衝突後)の値
R	基準値
e	熱平衡状態
A,B	運動エネルギが極大となる時刻での値

その他

$\langle X \rangle$	Xのアンサンブル半均

第2章 数值計算手法

ANTER CONTRACTOR DECOMPANY, ANTER AN

2.1 序

本章では、分子動力学シミュレーションに用いた仮定、基礎式、数値解析法に ついて述べる。

2.1.1 分子動力学法について

まず、本研究で用いている分子動力学の手法について、簡単に述べる。

分子動力学法は分子を古典的な粒子と仮定して、各分子の速度と位置をニュー トンの運動方程式に基づいて求める手法である。各時間ステップにおける分子の 位置に対して分子間ボテンシャルから分子間力を求め、これから分子に働く加速 度を求める。この加速度を積分して次の時間ステップにおける速度と位置を求め る。このような手順を全ての分子について行うことを繰り返して、系の動的な挙 動をシミュレートする。

なお、実現象においてはさまざまの量子力学的な効果が表れる場合があるが、 一般の分子動力学法ではこれらの効果はすでに分子間ポテンシャルの表現に含ま れていると仮定している。

本研究では気体分子、結晶分子共に単原子的、等方的なポテンシャルを有する ものを想定し、分子内部の自由度はないものとする。すなわち、分子の回転や振 動の自由度は存在しないものとした。

2.2 基礎方程式

2.2.1 座標系

シミュレーションはデカルト座標系で行った。z軸の負の部分を気体の領域とし、壁面がxy平面に重なるように座標軸を取る。(図2-1参照)この時、壁面に衝突する気体分子はz軸の負の方向から壁面に接近して反射することになる。

2.2.2 運動方程式

上に述べたように、系を構成する分子は古典的な力学に従うと仮定しているの で、分子の運動の支配方程式は

$$m_{i} \frac{d^{2} \mathbf{x}_{i}}{dt^{2}} = \mathbf{F}_{i} = -\frac{\partial}{\partial \mathbf{x}} \sum_{i \neq i} \phi(\mathbf{r}_{ij})$$

(2-2-1)

14

と表せる。ここで、ijは分子の通し番号を、Fは分子に作用する力を、mは分子の質量を、xは分子の位置を、rは分子間の距離を、tは時間を表している。 $\phi(r)$ は2分子間ポテンシャルであり、詳細は次節で述べる。ここでは、分子間ポテン

シャルが2分子間ボテンシャルの総和で表されることを仮定している。

2.3 分子間ポテンシャル

分子の間に働く分子間力を表現するのが分子間ボテンシャルである。このよう なボテンシャルを求める測定は数多く行われており、特に2つの同種の希ガス分 子に働くボテンシャルについては多くのデータが報告されている。

また最近では量子力学計算により、一切の経験的な仮定をおかずに分子間ボテ ンシャルを求める手法が実用化されつつあり、いくつかの分子やクラスタに関し て、ボテンシャルの曲面が求められている。

このような分子間ボテンシャルは本来、1つの分子に対する多数の分子からの 寄与が総合されたものである。3つ以上の分子の相対位置により決定される多体 分子間ボテンシャルを求めた例も報告されているが、ここではこのような寄与は 小さいと考え、総合としての分子間ボテンシャルは2分子の間のボテンシャルの 単純な和として表すことができると仮定している。

2分子間のボテンシャルを比較的単純な式で近似した、経験的ボテンシャルの モデルが、数多く提唱されている。希ガス分子的な、等方的ボテンシャルについ てのモデルとしては、

Lennard-Jones の12乗-6乗ポテンシャル $\phi(r)=4\epsilon \left\{ \left(\frac{r_0}{r}\right)^{12} - \left(\frac{r_0}{r}\right)^6 \right\}$

(2-3-1)

Morse のポテンシャル

 $\phi(\mathbf{r}) = \varepsilon \left[\exp\{-2\sigma(\mathbf{r} - \mathbf{r}_0)\} - 2\exp\{-\sigma(\mathbf{r} - \mathbf{r}_0)\} \right]$

Hard-Spheres (剛体球) モデル

 $\phi(\mathbf{r}) = \begin{cases} 0 & \text{for } \mathbf{r} > \mathbf{r}_0 \\ & \\ \infty & \text{for } \mathbf{r} \le \mathbf{r}_0 \end{cases}$

(2-3-3)

(2-5-2)

などがある。上の式中の ε , $r_0\sigma$ は、実験あるいは計算の値を基に定められる。 本論文ではこのうち、気体分子と結晶分子との間にはLennard-Jonesのものと Morseのポテンシャルとを併用し、また結晶分子間のポテンシャルとしては Lennard-Jonesのものを使用して、シミュレーションを行った。

2.4 境界条件

上に述べたように、x y 平面を表面とするように結晶分子を配置する。このとき、x 方向、y 方向にそれぞれ周期境界条件を課し、仮想的に無限の壁面をなすようにした。気体分子も同様の周期境界条件の下で運動する。

一方、結晶の z 方向に関しては特に条件を設定していない。このため、気体分子に衝突しない側の面も、表面としての性質を備えたものとなっており、系全体 としては、非常に薄い膜が真空中に張られている状態をシミュレートしているこ とになる。

2.5 時間積分法

運動方程式(2-2-1)と前節に述べた分子間ボテンシャルから各分子の位置と速度 を求めるには、二階の常微分方程式(2-2-1)を数値積分する必要がある。このよう な積分の方法としては、Runge-Kutta法や予測子-修正子法等の高精度の手法が提 唱されているが、分子動力学法においては、各タイムステップでの力Fの計算に 最も計算時間を要するので、分子間力を何度も求めることが必要な方法は不適で ある。ここでは下に示すような比較的単純なVerlet法の積分を用いたが、精度と 計算時間の両面から高精度積分法と遜色はないことを確かめてある。(付録B参 照)

Verlet法は

 $\frac{d^{2}x}{dt^{2}} = \frac{x(t+\Delta t) - 2 x(\Delta t) + x(t-\Delta t)}{\Delta t^{2}}$ (2-5-1) の中心差分の近似式を変形して得られる

 $x(t+\Delta t)=2x(t) - x(t-\Delta t) + (\Delta t^2) \frac{d^2x}{dt^2}$ の式を用いて積分を行う手法である。速度は

16

(2 - 3 - 2)

$v = \frac{x(t+\Delta t) - x(t-\Delta t)}{\Delta t}$

 $2\Delta t$

(2-5-3)

17

のように求める。式(2-5-1)での誤差は∆ťのオーダーであり、精度は高い。ただ し上の式に見られるように計算途中で同じオーダーの数の引算を行うため、特に 速度に関して桁落ちを生じる可能性があるのが欠点である。後述するMultiple-Time-Step法との整合性が良いので、この手法を用いることにした。

時間ステップΔtは系全体のエネルギが保存されるように、十分小さく取るこ とが必要である。ここで試みるシミュレーションにおいては、気体分子は結晶の 分子よりも高い温度をもっており、移動速度も大きいことが多い。すなわち、気 体分子およびこれと密接に相関をもつ表面の分子については、Δtを十分小さく 取る必要がある。ところが結晶の内部の計算ではそれほどΔtを小さくする必要 がない。従って、気体分子および表面の分子の運動に適したΔtごとに系の全て の分子間力を計算することは、無駄の多い計算となってしまう。そこで、必要最 小限の分子間力の計算を行うよう、工夫をすることにし、このような目的に適し た方法として提唱されている、Multiple-Time-Step法[32]を適用した。

この手法は必要に応じて基本時間ステップ Δ tを分割し、系の緩やかな変化を する部分については Δ tごとに分子間力を計算する一方で、急激な変化をする領 域に関しては分割された時間ステップ Δ t、毎に力を計算するものである。時間積 分は Δ t、毎に行うので、この各時刻での分子間力を求めないものについては Δ tご との力の値から補間して求めている。

すなわち、

(1)ある時刻t_oでの分子の位置関係から、ある分子に働く力Fとその時間微分、二階微分を求めておく。

(2) 時刻 $t = t_0 + n \Delta t_n$ における力は、一部は分子問距離から計算して求 めるが、緩やかに変化する部分に関しては、 $F(t_0+n\Delta t_n) \equiv F(t_0) + \frac{(n\Delta t_n)}{1} \frac{dF(t_0)}{dt} + \frac{(n\Delta t_n)^2}{2} \frac{d^2F(t_0)}{dt^2}$ (2-5-4) のようにテーラー展開式で近似する。具体的には、時刻 t_0 での値を用いて $\mathbf{r} \equiv \mathbf{r}_i - \mathbf{r}_j, \frac{d\mathbf{r}}{dt} \equiv \frac{d}{dt}\mathbf{r}_i - \frac{d}{dt}\mathbf{r}_j, F \equiv -\frac{\mathbf{r}}{\mathbf{r}} \frac{\partial \phi(r)}{\partial r}$ (2-5-5) などとおき、 $C_A = -\frac{1}{r} \frac{d\phi}{dr}$ $C_B = \frac{1}{r} \frac{dC_A}{dr}$ $C_C = \frac{1}{r} \frac{dC_A}{dr}$ (2-5-6) とすれば、 $\mathbf{F} = C_A \mathbf{r}$

 $\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{F} = \mathbf{C}_{\mathrm{A}}\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} + \mathbf{C}_{\mathrm{B}}\left(\mathbf{r}\cdot\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right)\mathbf{r}$

$$\frac{d^2 \mathbf{F}}{dt^2} = \left\{ C_B(\mathbf{r} \cdot \frac{d^2 \mathbf{r}}{dt^2} + \frac{d\mathbf{r}}{dt} \cdot \frac{d\mathbf{r}}{dt}) + C_C(\mathbf{r} \cdot \mathbf{r})^2 \mathbf{r} \right\} + 2C_B(\mathbf{r} \cdot \frac{d^2 \mathbf{r}}{dt^2}) \frac{d\mathbf{r}}{dt} + C_A \frac{d^2 \mathbf{r}}{dt^2}$$

のように表すことができる。

ここで用いた係数 C_A, C_B, C_c は、分子間ポテンシャルにLennard-Jonesポテンシャルを用いる場合には

 $C_A = 24\epsilon r^{-8}(2r^{-6}-1)$

 $C_B = 96 \epsilon r^{-10}(-7r^{-6}+2)$

 $C_C = 384 \epsilon r^{-12} (28r^{-6}-5)$

のように書くことができる。

ここでは、特に気体分子およびこれと直接関与する第1層の結晶分子に対して は毎時間ステップムなごとに分子間力を求め、第2層以下の分子に上の手法を適 用した。

2.6 変数の基準化

本研究で扱うシミュレーションはpsec.のオーダの計算であり、またBoltzmann 定数のような10²³オーダの数値を扱う必要がある。

このような数値を取り扱うためには、通常のFortran言語における倍精度実数 (64Bit)で計算を行えば、精度上特に問題はない。しかし、適当な基準量を用い て基準化(無次元化)した変数を用いると、基準の取り方によって式を簡単化で きる。また基準化された系の挙動は、基準値を変更すればそのまま他の系に当て はめることができる。そこで、次に述べるような基準化を行った。

2.6.1 基準値の決定

基準化の方針としては、まず質量、長さ、エネルギについての基準量を定め、 他の物理量の基準量はこれらを基に決めるものとした。また、シミュレーション 中では固体結晶分子どうしの計算がその大半を占めると想定できるので、固体結 晶分子間の物性値を基準にとることにする。以下、添え字Sは固体結晶分子につ いての値を、添え字Rは基準値を示すものとする。また、前節で述べたように、 固体結晶分子の間にはLennard-Jonesの式(2-3-1)に基づく分子間ポテンシャルを採 用しているので、以後、これを添え字S-Sで表す。

質量

質量は固体結晶分子の質量をそのまま基準値とする。

 $m_R = m_S$

(2-6-1)

長さ

長さの基準量は、固体結晶分子の間の分子間ボテンシャルの定義式 における長さの単位r_oを用いる。

x_R = r_{0,S-S} エネルギ (2-6-2)

やはり分子間ポテンシャルより、

 $E_R = 24 \varepsilon_{s.s}$ (2-6-3) とする。これは後述するように、分子間力の式が簡単になるように 定めた。

速度

D.	_	1	
C	-	2 1111	

の関係において係数の1/2を無視して、	
$v_{R} = (E_{R} / m_{R})^{1/2}$	(2-6-4)

時間

$$t_{\rm R} = x_{\rm R} / v_{\rm R}$$
 (2-6-5

温度

力

並進運動のエネルギと絶対温度の間の関係

$\frac{3}{2}k_{\rm B}T_{\rm R} = \frac{1}{2}mv^2 = \frac{1}{2}E_{\rm R}$	
において、Boltzmann定数以外の係数を無視して	
$T_R = E_R / k_B$	(2-6-6)
$F_R = E_R / x_R$	(2-6-7)

基準値を定めるのに大半の係数を無視したのは、基準化した変数での演算にお いて、その係数を使用するためである。

たとえば基準化されたエネルギはやはり基準化された変数を用いて

 $E = \frac{1}{2}mv^2$ と書ける。もし基準値に係数1/2を含めて定義した場合には、

 $E=mv^2$ のようにしなくてはならない。ただし、Boltzmann定数だけは、毎回計 算にいれるのが繁雑であるので、これを基準値 T_R に繰り入れた。従って基準化された変数では温度は

 $\frac{3}{2}T = \frac{1}{2}mv^2$

(2-6-8)

の関係をなす。

2.6.2 実際の式展開

分子間ボテンシャルがLennard-Jonesのものである場合の実際の式の形をここに 書き下しておく。まず、分子i,jの間の距離r_iを

$$r_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$
(2-6-9)

とおく。ポテンシャル(2-3-1)をrについて偏微分すると

$$\frac{\partial \varphi}{\partial r} = -24 \frac{\varepsilon}{r_0} \left\{ 2 \left(\frac{r_0}{r} \right)^{13} - \left(\frac{r_0}{r} \right)^7 \right\}$$
(2-6-10)

また、式(2-6-9)より

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} = \frac{\mathbf{x}_i - \mathbf{x}_j}{\mathbf{r}_{i,j}} \tag{2-6-11}$$

よって、分子iが分子jから受けるx方向の力は、

$$F_{x,ij} = -\frac{\partial \phi}{\partial x} = 24 \frac{\epsilon}{r_0^2} (x_i - x_j) \left\{ 2 \left(\frac{r_0}{r_{ij}} \right)^{14} - \left(\frac{r_0}{r_{ij}} \right)^8 \right\}$$

次に、前節に示した基準化を行うことを考える。基準化された量の肩に*をつけて区別すると、 $x = x_R x^*, F = F_R F^*$ 等となり、これらを(2-6-12)に代入して

$$F_{R}F_{x,ij}^{*} = 24\frac{\varepsilon}{r_{0}^{2}} \left(x_{R}x_{i}^{*} - x_{R}x_{j}^{*} \right) \left\{ 2\left(\frac{r_{0}}{x_{R}r_{ij}^{*}}\right)^{14} - \left(\frac{r_{0}}{x_{R}r_{ij}^{*}}\right)^{8} \right\}$$
(2-6-13)

定義式(2-6-1),(2-6-3),(2-6-7)等を用いて整理すると、

(2-6-12)

2.7 計算の概要

ここで、シミュレーションで仮定した事項および全体の手順について、簡単に まとめておく。

2.7.1 仮定

- (1) 分子は全て単原子分子的な分子とし、分子内回転運動、分子内振動運動は考 慮しない。
- (2) 分子の運動は古典的な運動方程式で記述できるものとする。
- (3) 分子が他の分子から受ける力は、二体分子の間のボテンシャルの総和から求 められるものとする。
- (4) デカルト座標で系を表現し、気体分子が衝突する平面は x y 平面(z=0) に等しいとする。
- (5) 系はx方向とy方向について周期境界条件が課されている。

固体結晶について:

(6) この結晶は真空中に張られた、非常に薄い膜であるとする。

- (7) 結晶は面心立方格子をとるものとする。
- (8) z方向に関しては、特に境界条件は与えず、自由に運動させるものとする。
- (9) 結晶表面のミラー指数は基本的には(111)とする。
- (10) 864個の分子を用いて結晶をシミュレートするものとし、表面には12x12 の分子を配する。(各層は144個とし、6層とした。)
- (11) 結晶は完全であり、欠陥や転移などはないとする。

気体分子の衝突について:

(12)気体分子は1つのみ考え、気体分子同志の干渉等はないものとする。

(13)気体分子が衝突する前には壁面状にあらかじめ付着している分子はないものとする。

2.7.2 計算の手順

シミュレーションは、次に示す手順で行った。

(1)絶対零度での結晶を作成する。

適切な分子間距離と周期境界長さを定めるために、まず温度0[K]に相当する 状態のデータを作成した。

まず二体ポテンシャルが最低となる距離r₀を用いて、このr₀を最近接の分子間 距離として持つように、固体分子を配置する。このとき結晶格子が面心立方の形 になり、かつ、表面が(111)面となるようにした。

これらの分子の速度を全て0とした状態から運動方程式の積分を10000ステップにわたって行った。ただし、このとき各ステップにおいて、全ての分子の速度 を強制的に0に戻した。同時に次節に示すような「周期境界長さの制御」を行った。

10000ステップ後には各分子に働く力はほぼ0となり、系は0[K]の平衡状態に 達していた。

(2)得られた結晶の状態から、T_s[K]の熱平衡状態を得る。

ここで結晶の各分子にT_s[K]に相当する運動エネルギを与えた。エネルギの大きさは一定であるが、その速度の向きはランダムである。

上の状態を初期状態として、20000ステップの時間積分を行う。このとき、次節に示す「温度の制御」を行い、系の温度をT。に保つ。

(3) 制御の影響を小さくする。

前の段階では系のエネルギのコントロールを行っているので、その影響を減ら すと共に、温度の制御がなくても熱平衡を保つかどうかをチェックするため、制 御を行わずに20000ステップの時間積分を行った。

系の温度はほぼ一定を保っており、熱平衡状態にある結晶のデータが得られた ことが確認できた。

(4) このようにして得られた薄膜状の固体結晶に気体分子を衝突させる。

気体分子は分子ビームの状態とする。すなわち、その初期速さは一定であり、 結晶表面に対する入射角度 θ も一定である。初期速さと入射角度とを1つのパラ メタの組とし、この一つの組に対して100から400回のシミュレーションを、気体 分子の初期位置を変えて行う。

気体分子と平面の距離および x y 方向の向きがランダムに選ばれるので、気体 分子は様々の振動状態にある固体分子群に衝突することが期待できる。

ただし、ここでは1個の気体分子のみを考えて計算を行い、この気体分子に関 する計算が終った段階で固体結晶を(3)の段階まで戻してから次の気体分子の 衝突計算を開始するものとした。 2.8 制御の手法

シミュレーションを行う際に、特殊な手法を用いて系の状態を制御することが ある。ここでは、本研究のシミュレーションで行う必要のあった、固体結晶の温 度の制御と周期境界長さの制御について述べる。

2.8.1 温度の制御

固体結晶の計算においては、各分子の運動を長く計算を続けていれば結晶は自 然と熱平衡状態に達するが、結晶全体の平均温度を目的とする値 T_sに合致させ ることは、初期条件の調整のみでは難しい。これは、初期状態で各分子に与えた 運動エネルギの約半分が、結晶が熱平衡に至る過程で位置エネルギに転化してし まうためである。そこで、計算の途中で結晶に対して運動エネルギを与える/奪 うことにより、系の温度を調整する。

まず、結晶全体の集合平均温度<T_{sol}>を

$$\frac{3}{2}k_{\rm B} < T_{\rm sol} > = \sum_{i=1}^{M} \frac{1}{2} m_i v_i^2 / M \tag{2-8-1}$$

より求める。ここで結晶はM個の分子から構成されているものとする。次に、系の温度をT_sにするために、修正係数

 $\gamma_{T} = \sqrt{T_{s} / \langle T_{sol} \rangle}$ (2-8-2) を用いて、各分子の速度を $v_{i}^{*} = v_{i} \{1+0.2 (\gamma_{T} - 1)\}$ (2-8-3)

のように修正する。0.2は急激すぎる修正を押えるための緩和係数である。

2.8.2 境界長さの調整

周期境界を境界条件に用いた場合、その長さをどれだけに設定するかは大きな 問題である。周期境界長さLが不適切な場合には固体結晶に応力がかかった状態 となり、シミュレーション結果に影響を与える可能性があるので、適切な値を設 定する必要がある。ここでは、固体結晶の内部エネルギを最小にするようなLを 以下に示す手法で求め、設定した。

結晶の内部エネルギUは

$$U = \left\{ \sum_{i < j}^{M} \phi(r_{ij}) + \sum_{i=1}^{M} \frac{1}{2} m_i v_i^2 \right\} / M$$
(2-8-4)

と表せる。今、固体結晶が熱平衡状態にあるものと仮定すれば温度は一定であり、 上の式の右辺第2項は一定と考えてよい。ここで、

δU=0 (2-8-5)
 を満たすように、系の大きさを変更する。すなわち修正係数γLを用いて、
 x*= Y, x (200)

$$U^* = \sum_{i < j}^{M} \phi(r_{ij}^*) / M + \text{Const.}$$
(2-8-7)

としたときに、

$$\frac{\partial U^{*}}{\partial \gamma_{L}} = \sum_{i < j}^{M} \frac{\partial \phi(r_{ij}^{*})}{\partial \gamma_{L}} = 0$$
(2-8-8)
を満たすような_{γ_L}を求めればよい。

分子間ボテンシャルにLennard-Jonesボテンシャルを用いる場合には、

$$0 = \frac{\partial U^{+}}{\partial \gamma_{u}} = \sum_{i < j} \frac{1}{6} \{ -12r (\gamma_{L} r)^{-13} + 6r (\gamma_{L} r)^{-7} \}$$

から、

$$\gamma_{L} = \left(\frac{\sum_{i < j} r^{-12}}{\sum_{i < j} r^{-6}}\right)^{\frac{1}{6}}$$

(2-8-9)

が得られる。

このようにして求めたγιを用いて系を伸縮させ、周期境界の長さを決定した。

第3章 Xe-Pt系についての解析

3.1 序

この章では気体分子としてXeを、固体結晶を構成する分子としてPtを想定 し、この系を再現できるよう物理定数を定めてシミュレーションを行った結果の 解析を行う。まず、結晶の温度が95[K]の場合についてシミュレーションを行い、 解析を行った後、壁面温度を変えた場合について簡単に考察する。

3.2 計算パラメタの決定

X e-P t 系でのX e の挙動に関しては、以下に示すような研究が既になされて いる。ここではそれらを参考にして、分子間ポテンシャル等を決定した。

前章に示したように、固体分子(Pt)間に働く力に関してははLennard-Jones ポテンシャルを用いることにする。また、気体分子(Xe)とPtの間には Morse ポテンシャルとLennard-Jones の両方を用いて比較を行うことにした。

3.2.1 Pt-Ptの分子間ポテンシャルの決定

まず、Pt-Ptの間のポテンシャルについては、Blackら[27] が論文中で用いている二体ポテンシャル

 $\phi(r) = \frac{1}{2} K (r - R_0)^2$

(3-2-1)

を参考にした。この式はバネ近似であり、K=46800[dyn/cm], R_0 =2.77[Å] であるという。このKはbulkのphonon散乱曲線の実験値から得られている。

さて、前章に示した手法により0[K]の薄膜の状態を計算した結果によれば、隣接分子間距離はxy方向について約1.0978 r_0 となる。計算を始める前の隣接分子間距離は二体ポテンシャルが最小値をとる距離2^{1/6} r_0 としてあったので、系は1.0832/2^{1/6}=0.978 だけ縮んで平衡に達したことになる。

そこで、この縮小率を見越して隣接分子間距離が式(3-2-1)のR₀と等しくなるよう、二体ポテンシャルのパラメタr₀を

 $\mathbf{r}_{0} = \mathbf{R}_{0} / 0.978 / 2^{1/6} = 2.523 \, [\dot{\mathbf{A}}] \tag{3-2-2}$

のように設定した。この距離が長さの基準量となる。

次にエネルギのバラメタである ε は、 φ の極小点での 2 次微分の値が一致する と考えて、

K=	$d^2\phi(r_0\gamma 2)$	_ 24e <u>3</u>	(3.2.3)
	dr ²	$r_0^2 \sqrt{2}$	(3-2-3)

より、

	1
$\varepsilon = 0.3254 [eV]$	(3-2-4)
と推定できる。このとき、エネルギの基準量は	
$E_{R} = 24 \ \epsilon = 7.810 [eV]$	(3-2-5)
となる。	

3.2.2 X e-P t の分子間ポテンシャルの決定

次に、Xe分子とPt分子の間の分子間ボテンシャルについて、パラメタを推定する。これについてはArumainayagamら[4]が、分子の吸着確率の測定とそのシ ミュレーションから推定した値を参考にした。

彼らの示した値は Morse ポテンシャルの形で

$r_0 = 3.2 [Å]$	(3-2-6)
$\sigma = 1.050[1/Å]$	(3-2-7)
$\varepsilon = 2.628 [kJ/mol]$	(3-2-8)

である。このうちroとのに関しては、そのまま採用することにした。

彼らの用いた分子間ボテンシャルは通常の Morse ボテンシャルの式に、固体結 晶全体からの寄与分の補正項を加えているため、εの値については、そのまま用 いることはできない。

X e の P t 表面における束縛エネルギの値は0.268[eV]であると報告されている [41]ので、これを再現するように ϵ を定めることにする。すなわち、0[K]における 平衡状態の固体結晶の上空に形成されるポテンシャルの最低値を求め、これが丁 度0.268[eV]となるよう、 ϵ を調整した。その結果、

ε =0.0275[eV]

(3-2-9)

とした。この Morse の形のポテンシャルを以下、type A とする。

次に Lennard-Jones ポテンシャルをXe-Pt間に適用する場合のポテンシャル定数を決定する。ここでは決め方の異なる2組のポテンシャルを用いるものとした。

1つめは、やはりArumainayagam らの示したパラメタをそのまま用いたもので あり、これをtype B とした。もう1つは、二体ポテンシャルが極小となる距離と 極小値が type A の Morse ポテンシャルを用いたものと一致するように定めたもの である。これを type C とする。

これらポテンシャルの係数を表3-1-1にまとめておく。

表3-1-1 ポテンシャル定数

	σ[Å ⁻¹]	r ₀ [Å]	ε[eV]
Xe-Pt (type A)	1.05	3.20	0.0275
Xe-Pt (type B)		3.28	0.0378
Xe-Pt (type C)		2.85	0.0275
Pt - Pt		2.523	0.325

3.2.3 その他の物性値

Ptの分子量は195.09, X eは131.30である[36]。シミュレーションに用いる分子の質量はPtの質量を基準とした比率を用いるので、ここでは固体分子(Pt)の質量1.0に対して気体分子の質量を131.30/195.09=0.673とした。

また、Pt表面の温度Tsを95[K] とする。これは前述のArumainayagamらの実験及び計算での値と同一であり、彼らの結果と比較を行うことができる。

3.3 系の挙動の可視化と確認

気体分子の挙動を計算する前に、衝突される固体結晶の状態を確認しておく。 また、気体分子および衝突点付近の結晶分子の全軌跡を記録しておき、これを三 次元グラフィクスで表示することで、気体分子の運動の履歴を可視化し、その運 動の様子を把握する。

3.3.1 固体結晶分子の挙動

まず、Ts=95[K]の熱平衡状態にある固体結晶を構成する分子の状態を確認して おく。結晶は z 軸方向に 6 層をなしており、層の間の距離は微妙に異なっている。 その様子を示したのが表3-3-1である。

表から、第1層と第2層の間の距離は、その他の層の間の距離に比べて7%ほど 大きくなっており、一般に「表面緩和」と呼ばれる現象が生じていることがわか る。また第2層と第3層の間の距離は第3層と第4層の距離とほぼ同じである。z 方向に12層を持つ大きな結晶を作成した場合の中央部での層の間の距離は6層の 場合の第3層と第4層の距離に等しい。すなわち第3層と4層は静的にはbulkの状態 になっていると言える。

図3-3-3に、各層の平均温度を示す。各ラインは、1000ステップの時間平均の値 である。系全体では95[K]を保ってはいるが、内部ではかなり激しいエネルギの移 動が行われている様子がわかる。

Layer	Distance	
1-2	0.9007	
2-3	0.8939	
3-4	0.8938	
4-5	0.8939	
5-6	0.9007	Lot I Link
-to a	to the state of the state of the	1

表3-3-1 z方向の層の間の距離(6層の結晶の場合)

図3-3-4 固体結晶の速度履歴の例(表面第1層)

表面第1層、第2層、第3層から1つずつ分子を選び、その速度の時間変化を 記録した。図3-3-4は第1層にある1分子のx軸方向の速度の履歴である。基本的 な振動モードの他に、不規則な擾乱が加わっており、他の分子との干渉が非常に 大きいことがわかる。

このような速度変化および分子の温度の時間変化を周波数解析したものを図3-3-5から3-3-7に示す。それぞれ、第3層、第2層、第1層に位置する特定の分子に関 する結果であり、u,v,wはxyz各軸方向の速度に関する周波数解析を、tempはそ の分子の温度の変化に関する周波数解析を表している。どの場合においても、速 度の振動周波数200以上の成分は極めて小さいが、これは格子のブリルアル・ゾー

ンによる高調波成分の制限ではない。ここで見られている振動は、ほぼ、格子の 基本振動周波数に近いものである。また、温度の振動スペクトルには周波数50以 下の低周波成分が強く表れているが、各方向の速度の周波数成分に見られていな い。従ってこの低周波成分は周期境界等の影響ではなく、複数の独立な振動モー ドが存在するために生じた、ビート(うなり)の現象であると考えられる。

図3-3-5の第3層の分子の振動を見ると、x,y,z3方向の速度の振動スペクトルは ほぼ等しい形状を示しており、第3層における分子の熱振動がほぼ等方的である ことがわかる。すなわち、第3層の分子は定常的にはbulkとしての挙動を示してい ることが確認できる。これと第2層の振動には大差は見られないが、図3-3-7の第 1層の分子の振動スペクトルは、wの成分について顕著な差を示している。他の場 合では周波数100付近にある振動のビークが60付近に表れており、この影響を受け てか、温度のスペクトルも周波数の高い方のビークが不明瞭な分布となっている。 表面第1層の分子に隣接する分子の個数はbulkのそれの半分に近い。そのため、第 1層の分子の、特に法線方向(z方向) に働く分子間力はbulkの約半分であると考え られる。これがz方向の振動周波数が低くなった理由であろう。

図3-3-7 第1層(表面)に位置する分子の振動解析

3.3.2 散乱現象の可視化

次に、熱平衡状態にある固体結晶表面に気体分子を衝突させた場合の気体分子 の挙動を可視化した例を示す。固体結晶を構成する分子は、衝突位置近傍の42個 のみを示した。系の大きな円で示してあるのが第1層の分子群、系の小さな円は 第2層の分子群の位置である。軌跡を残しながら動いている円が気体分子である。 時間が進むにつれ、気体分子は何度も表面との衝突を繰り返している。図からは 若干読取りにくいが、固体結晶分子も熱振動を行い、さらに気体分子からの力を 受けて衝突点の結晶分子が沈みこんでいる様子が観察できる。この場合では、気 体分子は衝突を繰り返しながら表面の上空を大きく移動しているが、一度の衝突 で離れて行ってしまう場合や、ほぼ同じ位置で衝突を繰り返す場合など、入射条 件や入射のタイミングに依存して、その挙動は大きく変化する。

図3-3-8 衝突の際の軌跡の例。表面の温度は300[K],入射エネルギは0.014[eV]

表面上空に形成されるボテンシャルの様相を示したのが図3-3-9である。図3-3-9 (A)に示される平面の上でのボテンシャルの値を計算し、その面の上での等ボテン シャル曲線を描かせたものが図(B)である。この面は表面の(111)面を形成す る正三角形を二等分する線を一辺とし、表面に垂直な平面であり、この面内でz 方向(法線方向)座標が0.1から2.0までの領域について計算している。

ボテンシャルの値は z->∞では0であり、そこから徐々に小さくなり、図の中ほ どの領域で最小値を取る。この、ボテンシャルが最小値(に近い)値をとる領域 を一般にボテンシャルの「井戸」(Well)と呼ぶ。井戸の部分から表面にかけて の z が小さい領域ではボテンシャルは急激に大きくなり、表面分子のごく近傍で は非常に大きな正の値となる。図の左下隅に丸く残されている部分がこれに当る。 この部分ではボテンシャルの値が大きいため、この部分に合わせて等高線を引く と、井戸の部分が全く見えなくなってしまう。

図3-3-10には「井戸」の内部の等ポテンシャル曲線を示した。ポテンシャルが最 も小さい値を取るのは、図3-3-9(A)の表面格子の正三角形の重心の上空であること が観察できる。また、ポテンシャルの最も小さい値にごく近い値をとる領域が図 のように広く分布していることは、気体分子の挙動にも大きく影響を与えること となる。以上のように、Xe-Ptの系における表面ポテンシャルは比較的緩やか な分布をもっている。ただし、実際にXe分子が衝突する歳には、固体分子の熱 振動のためにこのポテンシャルは常に揺らいでいる。

図3-3-9(A) 等ポテンシャル曲線を調べた平面

図3-3-9(B) 表面上空の等ポテンシャル面の断面

図3-3-10 ポテンシャルの値が-0.41 (最低値)から-0.38の間をとる領域の等ポテンシャル線

3.4 初期捕獲確率

清浄な表面に対して、飛来した気体分子が物理吸着する確率を初期捕獲確率 Initial Trapping Probability と呼ぶ。ここでは、この確率を算出し、実験値[4]と比較 を行う。

初期捕獲確率の算出は以下の手順で行った。

一つの気体分子については基本時間ステップで10000ステップまで計算を行うが、 それまでに気体分子が表面から無次元距離4以上離れた場合には、そこで計算を打 ち切る。この場合、この気体分子は表面に吸着せずに離脱したとみなす。

また、計算中の約10ステップおきに気体分子のポテンシャル・エネルギの値お よび気体分子の全エネルギの値を求めておき、この値が-2k_BTsを下回った場合に は、気体分子は表面に吸着されたと見なして、やはり計算を打ち切った。

10000ステップまで計算を行った場合には、その最後の時刻での全エネルギが正 であれば離脱、負であれば吸着と判定する。

このようにして求めた初期捕獲確率を表3-4-1に示す。"Expr."の欄は Arumainayagamらの実験の結果[4] であり、"type A","type B","type C" はそれぞれ のタイプの分子間ポテンシャルを用いた場合の計算結果である。(表3-1-1参照) X e-P t の計算はこの表に示した17種類の入射条件の組み合せについて行った。

type BのLennard-Jonesポテンシャルを用いた場合の初期捕獲確率は実験値よりも 顕著に高くなっており、気体分子が表面上に捕獲されすぎている。一方type Aの Morseポテンシャルを用いた計算では全体に実験値よりも低めの値を示しているが、 捕獲確率の変化の傾向はよく再現できている。ポテンシャルの式の形はtypeBと同 一で、係数に修正を加えたtype Cのポテンシャルでは、実験値との相違はtype Aよ りも小さくなる。しかし、このポテンシャルを用いた場合には表面における束縛 エネルギが実測値と異なるものとなるので、エネルギの伝達量等が実験と合致し なくなる恐れがある。

このような計算値と実験値とのずれはポテンシャル係数推定に起因するものの 他にも、計算サンプルの少なさに起因する統計的ばらつきによるものと、実験に おける入射速度のばらつきによるもの等が挙げられるが、やはり分子間ボテンシャ ル、特に斥力の項の大きさの評価が最も大きく影響していると考えられる。実験 と並行して行われたStochastic Trajectory法による計算から得られた捕獲確率は筆者 らの結果よりも良い一致を示している[4]が、これは実験に合致するようポテンシャ ル係数を修正した効果が大きいものと考えられる。

以上のように、ボテンシャルの係数を適切に設定すれば、実現象における捕獲 確率の挙動の変化を再現しうることが示された。特にtype Aのボテンシャル係数に 関しては、捕獲確率を完全には再現できておらず改善の余地があるが、Xe-Pt(111) 系の動的な挙動を把握するためには十分な精度を持つと考えられる。以下ではtype Aのボテンシャルを用いた場合の計算値について考察する。

表3-4-1 初期捕獲確率

Case	Tin [eV]	θ [゜]	I.T.P. "Exper."	type A	type B	type C	Sample for typeA
1	0.0363	0		0.848	***		342
2	0.0363	40		0.826			317
3	0.0726	0	0.87	0.551			365
4	0.0726	20	0.87	0.651			350
5	0.0726	40	0.88	0.684			307
6	0.0726	60	0.90	0.705			288
7	0.1866	0	0.51	0.180	0.99	0.68	400
8	0.1866	40	0.64	0.261	1.00		349
9	0.1866	60	0.76	0.376			306
10	0.3835	0	0.15	0.010	0.94	0.28	205
11	0.3835	40	0.20	0.046		0.26	262
12	0.3835	60	0.45	0.072			209
13	0.6531	0	0.06	0.000	0.71	0.21	277
14	0.6531	20	0.09	0.008			253
15	0.6531	40	0.01	0.003			291
16	0.6531	60	0.17	0.005			218
17	0.7823	40		0.000			118
18	0.5161	13		0.009			118
19	0.5161	77		0.009			115

3.5 散乱角度の分布

表面に捕獲されずに結晶表面を離脱した気体分子について、その散乱方向の分 布を示したのが図3-5-1である。各図の下側の半円の部分は結晶表面に置いた半球 を 2 軸方向すなわち結晶の上方から眺めたものを表しており、黒丸は1個の気体 分子が散乱して飛び出した方向を示している。四角のマークの位置が入射時の速 度の向きであり、この位置を基準に表面に平行な方向の散乱角度 η を定めた。気 体分子の初期位置、初期のxy方向の速度はランダムであったので表面の接線方向 に関する散乱角度 η の正負には統計的な意味がない。そこで図では下半分を折り 返して重ねて表示してある。また半球面を等しい立体角をもつ区画で区切ってい るので、区画あたりのマークの個数が散乱分布となる。図中の半円で半径の最も 小さいものは θ = 33.5° に相当する。また二番目の半円は、 θ = 48° にあたる。等 立体角あたりの散乱個数の分布を示したのが各図の上側の図である。左側に示し た線分が入射の角度であり、図中のA,B,Cは下側の図で対応する扇状の区画への散 乱を示している。

散乱分布の形は葉状のものになっており、マックスウェルモデルでは表現でき ない分布形を成しているのが観察される。また、入射エネルギの同じである(B), (C), (D)において入射角度が大きいほど、鏡面反射の状況に近付いているのが観察 できる。ここでは、一旦物理吸着した後に離脱する分子を分布に含めていないた め、散乱実験で得られる分布とは若干異なる分布が得られている。

⊠3-5-3Tin=0.653[eV], θ in=20°

 \boxtimes 3-5-4(D)Tin=0.653[eV], θ in=60°

37

図3-5-1 散乱角度の分布図

ここで散乱の様子を2つの代表値で表すことにする。一つは散乱の中心方向の 角度 θ cであり、もう1つは θ cからの偏差の平均<R>である。まず、 θ cを次のように定義する。

 (θ, η) の組で定義される散乱角度を半径1の半球面上にブロットし、j番目 の気体分子の散乱角度をこのブロット点G_jで表すことにする。また、散乱の中心 方向の位置を点Cとする。点Cと点Gjを結ぶ円弧の長さをR_jとし、R_jの総和が最小 となるように点Cを定めることにする。点Cは対称性から $\eta = 0$ の位置にあると考 えられるので、この1つの条件で点Cを決定することができる。具体的には、j番 目の気体分子の散乱角度を (θ, η) として、円弧の長さR_iは

 $\cos R_j = \sin \theta_j \cos \theta_j \sin \theta_C + \cos \theta_j \cos \theta_C$

と書ける。R_jの総和Rを θ cで偏微分したものが0となるように θ cを選べば良いの であるが、この計算は若干面倒であるため、ここでは θ cを1度ずつ変化させて、 Rが最小となる θ cを求めた。また、散乱角度の広がりの程度を表す量として θ cの 時のRjの平均<R>を採った。表3-5-1に θ cと<R>を示す。

Case	Tin[eV]	θ in	θc	<r></r>
1	0.0363	0	6.	0.8876
2	0.0363	40	17.	0.8237
3	0.0726	0	6.	0.7067
4	0.0726	20	13.	0.7135
5	0.0726	40	28.	0.7066
6	0.0726	60	38.	0.7109
7	0.1866	0	3.	0.6510
8	0.1866	40	35.	0.6328
9	0.1866	60	47.	0.5607
10	0.3835	0	1.	0.5716
11	0.3835	40	38.	0.5698
12	0.3835	60	59.	0.4593
13	0.6531	0	2.	0.4077
14	0.6531	20	7.	0.4878
15	0.6531	40	38.	0.4832
16	0.6531	60	62.	0.3714
17	0.7823	40	38.	0.5111
18	0.5161	13	1.	0.5454
19	0.5161	77	72.	0.3378

表3-5-1 散乱角度の分布の中央値と広がりの程度

図3-5-2 代表値の定義

入射エネルギが大きい場合は<R>が小さくなっている。また、θが大きくなる につれ<R>は小さくなり、ビーム状の分布が得られることがわかる。一方、入射エ ネルギが小さい場合には入射角度の影響は小さくなり、分布は広く乱れたものと なっている。これは表面上で複数回の衝突を行った後で離脱する気体分子の個数 が増えるのと、表面分子の熱振動および初期入射位置による影響が大きくなるた めと考えられる。

また散乱の中心角度 θ cは、入射エネルギの大きい場合にはほぼ入射角度と同じ であり、鏡面反射的な傾向を持つが、エネルギが小さい場合には小さくなる、す なわち壁面の法線方向に近付く傾向がある。

図3-5-3に、横軸に入射時の接線方向速度Vtangをとった場合の<R>の変化をしめ す。入射角度が0でない場合を別とすれば、分布の広がりはVtangによって大きく 影響されている。入射時の接線方向の運動量が大きい場合には接線方向の運動量 は良く保存されて鏡面反射方向に飛び出す分子が多くなり、分布の広がりは小さ くなるといえる。このような場合には気体分子と表面の分子との相互作用は小さ い。

図3-5-3 入射時の接線方向速度と<R>の関係

3.6 エネルギの伝達

ここまで見てきたのは、気体分子の散乱の結果であるが、この節からは散乱の 過程に着目して解析を行う。この過程については、実際の実験で追跡するのが非 常に困難であり、シミュレーションならではの解析を行うことができる。

まず、気体分子と固体結晶を構成する分子群との間で生じているエネルギの授 受に着目する。この章で行った計算条件では、気体分子の初期エネルギの大きさ が壁面の分子の運動エネルギより大きい。このため、エネルギの移動は主として 気体分子から結晶分子の向きへ生じることになる。以後、エネルギの変化ΔEは、 気体分子がエネルギを失うときにΔEが負であると定義する。

3.6.1 気体分子のエネルギの時間変化

図3-6-1にCase 14の条件における、気体分子の散乱過程の1例を示す。

図3-6-1(A) 気体分子の表面との距離の変化。Case14の一例。入射エネルギは0.653[eV]、初期入 射角度は20°。横軸は基準化された時間。縦軸はやはり基準化された距離である。

ここでは分子の内部エネルギは無視しているので、気体分子の全エネルギ(total energy)は運動エネルギと位置エネルギ(ボテンシャル・エネルギ)の単純な和と なる。図では、気体分子がまず表面の位置エネルギにより加速されながら接近し、 減速しながらエネルギの伝達を行った後、再び加速、減速を経由して離脱してい る過程が表されている。

図3-6-1における全エネルギは、変化の途中で一度低く落ち込んでから復帰して いる。これはX e-P t 間の作用の特性時間とP t-P t の作用の時定数の違いによ り生じるものと考えられる。同様の現象はすべての力をバネ近似した系でも、確 認される。(後述)

また、気体分子が表面に最接近する前後に、運動エネルギが明瞭なピークを持 つことが観察できる。これはX e-P t 間の二体ボテンシャルの総和として表面の 上空に形成されるボテンシャルに、周りよりも値が小さくなっている、通称「ボ テンシャルの井戸(Well)と呼ばれる領域ができており、気体分子がこの部分を 通過していることを示している。

ここで重要な観察として、気体分子の全エネルギは、このビークの間でのみ変 化していることがある。すなわち、小さなエネルギの凹凸を無視すれば、エネル ギの伝達は運動エネルギが極大となる2時刻のあいだでのみ、生じていると言っ てよい。このことは、Case14だけでなく、今回計算したほぼすべての気体分子の 衝突に関しても確認できた。

上に述べたように、運動エネルギが極大となるのは、表面上空のポテンシャル の井戸の部分を通過しているときであり、2つのビークの間では、気体分子は斥 力をうけ、それ以外の時刻では引力を受けている。したがって、上の観察は、エ ネルギの伝達は気体分子が斥力を受けている間に行われる、ということになる。 気体分子に働く引力はエネルギ伝達には直接は関与しない、ともいえる。

図3-6-2にはCase15の例を示す。これは図3-6-1と入射エネルギは同じであるが入 射角度は40°と大きくなっている場合の例である。図3-6-1の例では気体分子は1 回の衝突で離脱していたが、この場合には2回、3回と衝突を繰り返している。 ここでは最後まで示していないが、この分子はこの後、全エネルギが負(<-2k_BT_s) となり、表面に吸着された。分子の最終的な挙動は前の図の場合とは異なるが、 各々の衝突におけるエネルギの変化の様子はほとんど同じになっている。

図3-6-2(A) 気体分子の表面との距離の変化 Case15の一例。入射エネルギは0.653[eV]、初期入 射角度は40°。

3.6.2 衝突前の運動エネルギ増加

ここで、気体分子が接近を開始してから最初に行う衝突の過程に着目する。説明のため、気体分子の運動エネルギが極大をとる最初の状態をサフィックスAであらわし、この時刻をt_A、このときの運動エネルギをT_Aなどと表記する。同様に、最接近の後に運動エネルギが極大となる時刻をt_Bなどとする。t_A、t_Bは、二次の多項式近似を用いた平滑化微分法[34]を用いて算出することにより、エネルギの小さな揺らぎを極大と誤判定しないよう、注意を払った。

まず、気体分子が固体表面から十分離れている初期状態で持っていた運動エネ ルギと時刻 t_A における運動エネルギ T_A の差 $\Delta T_{in,A}$ の平均値と標準偏差を求めた。 これらを表3-6-1に示す。

平均値は初期入射角度や初期エネルギによらず、ほほ一定であり、標準偏差も 小さなものとなっている。従って、このΔT_{inA} はどのような入射条件でも一定で あるとしてよいであろう。この増加分は束縛エネルギの0.268[eV]の約90%の値で あり、平均としてはこの値だけの深さの「井戸」の領域を気体分子が通過してき ていることがわかる。

また、この増加分 ΔT_{in} は、そのほとんどが固体表面に垂直な方向の運動エネ ルギに転化されている。すなわち、時刻 t_A において、気体分子は ΔT_{in} に相当す る加速を、法線方向について受けていることになる。そこで、時刻 t_A における気 体分子の速度ベクトル v_A 、入射角度 θ_A は、良い精度で予測することが可能である。

Case	T _{in}	$\theta_{\rm in}$	$<\Delta E_{in,A}>$	S.D.	<t_>></t_>	<t<sub>B></t<sub>	S.D.
1	0.46505E-02	0	0.33128E-01	0.99663E-03	0.37779E-01	0.32606E-01	0.38387E-0
2	0.46499E-02	40	0.33151E-01	0.10818E-02	0.37801E-01	0.32770E-01	0.39159E-0
3	0.93005E-02	0	0.33213E-01	0.10230E-02	0.42514E-01	0.36632E-01	0.40825E-0
4	0.92999E-02	20	0.33076E-01	0.11216E-02	0.42376E-01	0.35840E-01	0.41861E-0
5	0.93000E-02	40	0.33066E-01	0.10632E-02	0.42366E-01	0.36050E-01	0.40062E-0
6	0.92997E-02	60	0.33147E-01	0.10716E-02	0.42448E-01	0.36188E-01	0.42727E-02
7	0.23897E-01	0	0.33083E-01	0.11152E-02	0.56980E-01	0.47386E-01	0.57809E-0
8	0.23896E-01	40	0.33126E-01	0.11058E-02	0.57022E-01	0.46716E-01	0.47688E-0
9	0.23896E-01	60	0.33137E-01	0.10791E-02	0.57033E-01	0.47291E-01	0.48797E-02
10	0.49101E-01	0	0.33071E-01	0.11574E-02	0.82171E-01	0.65209E-01	0.81693E-02
11	0.49100E-01	40	0.33059E-01	0.11294E-02	0.82160E-01	0.62720E-01	0.69575E-02
12	0.49100E-01	60	0.33128E-01	0.11111E-02	0.82230E-01	0.65488E-01	0.63856E-02
13	0.83621E-01	0	0.33067E-01	0.11315E-02	0.11669E+00	0.92218E-01	0.12719E-01
14	0.83622E-01	20	0.32979E-01	0.11355E-02	0.11660E+00	0.87218E-01	0.10337E-01
15	0.83624E-01	40	0.33009E-01	0.11311E-02	0.11663E+00	0.85010E-01	0.96938E-02
16	0.83621E-01	60	0.33025E-01	0.11169E-02	0.11665E+00	0.88418E-01	0.89993E-02
17	0.10017E+00	40	0.32993E-01	0.10805E-02	0.13317E+00	0.94729E-01	0.10954E-01
18	0.66082E-01	13	0.32979E-01	0.10292E-02	0.99061E-01	0.76623E-01	0.91578E-02
19	0.66081E-01	77	0.33166E-01	0.11119E-02	0.99247E-01	0.81883E-01	0.69110E-02

表3-6-1 t_Aまでの運動エネルギの増加および衝突前後での運動エネルギの変化

S.D: Standard Deviation

エネルギの単位は全て基準化されたものを用いた。

3.6.3 エネルギ伝達量△Eの平均値

表3-6-1の右側の欄に、時刻 t_A 、 t_B における気体分子の運動エネルギの平均値を示した。初期入射エネルギTinが大きい場合には、時刻 t_B での平均
イB>は入射角度
 θ in に大きく影響されているのに対して、Tin が小さい場合には
 θ in の影響は小さいものとなっている。これは、上に述べた t_A までの法線方向の運動エネルギの増加
加
ムTinAのために時刻 t_A における気体分子の入射角度
 θ_A はが小さくなり、その差異が小さくなっているためである。

次に、時刻 t_{B} までに、気体分子から固体表面へ伝達されたエネルギ Δ Eについて 考える。 Δ Eは初期状態と時刻 t_{B} における各々の全エネルギの差として定義した。 符号は気体分子がエネルギを失う向きを正とする。初期状態と時刻 t_{A} での全エネ ルギはほとんど同一であるので、 Δ Eは時刻 t_{B} と t_{A} でのエネルギの差と考えてよい。 Δ Eの平均値< Δ E>および標準偏差を表3-6-2に示す。エネルギ値は基準化された単 位で表している。同じ入射エネルギであっても、 $\theta = 40$ °付近で Δ Eが最大となっ ていることが、特にT₆が大きい領域で観察できる。

表3-6-2	エネル	ギ伝達	量の	平均	値と	標準	偏差
--------	-----	-----	----	----	----	----	----

Case	T _{in}	$\theta_{\rm in}$	<t<sub>A></t<sub>	θ	<∆E>	S.D.
1	0.46505E-02	0	0.37779E-01	0.56719E+00	0.60385E-02	0.37686E-02
2	0.46499E-02	40	0.37801E-01	0.13039E+02	0.57280E-02	0.38393E-02
3	0.93005E-02	0	0.42514E-01	0.48884E+00	0.68014E-02	0.39976E-02
4	0.92999E-02	20	0.42376E-01	0.92398E+01	0.74579E-02	0.39772E-02
5	0.93000E-02	40	0.42366E-01	0.17533E+02	0.70571E-02	0.39228E-02
6	0.92997E-02	60	0.42448E-01	0.24026E+02	0.68328E-02	0.42420E-02
7	0.23897E-01	0	0.56980E-01	0.38469E+00	0.10579E-01	0.55951E-02
8	0.23896E-01	40	0.57022E-01	0.24633E+02	0.10986E-01	0.47548E-02
9	0.23896E-01	60	0.57033E-01	0.34109E+02	0.10136E-01	0.48061E-02
10	0.49101E-01	0	0.82171E-01	0.24457E+00	0.18068E-01	0.79396E-02
11	0.49100E-01	40	0.82160E-01	0.29795E+02	0.20195E-01	0.67217E-02
12	0.49100E-01	60	0.82230E-01	0.42003E+02	0.17330E-01	0.62075E-02
13	0.83621E-01	0	0.11669E+00	0.17721E+00	0.25642E-01	0.12578E-01
14	0.83622E-01	20	0.11660E+00	0.16852E+02	0.30598E-01	0.10304E-01
15	0.83624E-01	40	0.11663E+00	0.33001E+02	0.32778E-01	0.95714E-02
16	0.83621E-01	60	0.11665E+00	0.47216E+02	0.29347E-01	0.90129E-02
17	0.10017E+00	40	0.13317E+00	0.33901E+02	0.39729E-01	0.10803E-01
18	0.66082E-01	13	0.99061E-01	0.10590E+02	0.23713E-01	0.91520E-02
19	0.66081E-01	77	0.99247E-01	0.52706E+02	0.18103E-01	0.70333E-02

*角度の単位は度 (degree)

図3-6-3にT_A と Δ Eの平均値の関係を示す。T_{in} との関係はこの図に示されるもの とほぼ同一であるが、入射温度が小さい場合に、異なるTin に対してほぼ同一の Δ Eが得られる場合があり(例: Case1,3,4)、T_{in}よりは初期加速を考慮したT_A で整 理するのが妥当であろう。また、< Δ E>とその標準偏差の大きさについては、図3-6-3に重ねて描いては、横軸の値が非常に近いために判別できないので、別図を図 3-6-4に示す。横軸にT_Aを取り、縦軸にその Δ Eの標準偏差および分散を取った図3-6-4(B)からは、偏差の大きさがT_Aの増大にしたがって増加している様子がわかる。 標準偏差の二乗が分散であるから、双方が共にT_Aに正比例することはありえない。 グラフからはどちらが正比例しているのか、明確ではない。これに関しては、第 5章での理論解析結果から導くことにする。その結果によれば、T_Aに比例するの は分散であることになる。

図3-6-3 時刻t_Aの運動エネルギとエネルギ伝達量△Eとの関係 縦軸、横軸共に基準化したエネルギの単位で表示している。

図3-6-4(A) 各Case における ΔEとその 偏差。 エラーバーは標準 偏差を表す。

図3-6-4(B) 各Case における △Eとその標準偏差、分散の関係

3.6.4 エネルギ伝達量△Eの分布

図3-6-5にΔEの分布の例を示す。図中のヒストグラムが計算結果であり、実線 はこのヒストグラムを正規分布の形に最小2乗近似した場合の分布である。 AEが 負となっている場合もあることから、表面結晶の温度Tsが0でない影響が表れて いることがわかる。また、図に見られるように、初期エネルギが小さい場合には、 分布はほぼ対称形となり、正規分布に非常に近い形をとっている。

図3-6-5(B) エネルギ伝達量の分布 (Case 5)

これらの分布形が正規分布にどの程度近いものか、検定を行った。正規分布の 検定には手法がいくつかあるが、ここでは歪度と尖度を用いた検定法[35]を用いた。 データ数をN データをX X その平均をマレオス時の否定には

$$\sqrt{b_1} = \frac{\sqrt{n} \sum (X_i - \overline{X})^2}{\left\{ \sum_{i=1}^{n} (X_i - \overline{X})^2 \right\}^{3/2}}$$

のように定義される3次のモーメントであり、尖度b,は

$$b_{2} = \frac{n \sum (X_{i} - \overline{X})^{4}}{\left\langle \sum_{i}^{n} (X_{i} - \overline{X})^{2} \right\rangle^{2}}$$

(3-6-2)

(3-6-1)

で定義される4次のモーメントである。正規分布ではb1=0,b2=3となる。

ある有意水準とNに対して棄却すべきb,,b2は数表の形で与えられているが、任意 のNに対して棄却域を求める式はない。ここでは、Cornish-Fisher展開による近似 式[43]を用いることにした。これは有意水準をaとし、正規分布のa%点をu。で表す とき、まず

$$|b_1| > \sqrt{\frac{6(n-2)}{(n+1)(n+3)}} \left\{ u_{a/2} + \frac{3}{2n} (u_{a/2}^3 - 3 u_{a/2}) \right\}$$
(3-6-3)

ならば棄却する。さらに、

$$b_2^* = \sqrt{\frac{(n+1)^2 (n+3)(n+5)}{24 n (n-2)(n-3)}} \left\{ b_2 - \frac{3(n-1)}{n+3} \right\}$$
(3-6-4)
で定められるb_*について、

 $b_2^* > u_{a/2} + \frac{\sqrt{6}}{\sqrt{n}} (u_{a/2}^2 - 1)$

または

$$b_2 <- u_{a/2} + \frac{y_0}{\sqrt{2}} (u_{a/2}^2 - 1)$$

(3-6-5 (B))

(3-6-5 (A))

ならば棄却するという手法である。この手法を用いて棄却判定を行った結果を表 3-6-3に示す。表で、b₁,b₂の欄はそれぞれのCaseにおける歪度、尖度であり、 Judge1,Judge2 はそれぞれ式(3-6-3), (3-6-5)による検定で、棄却された場合には×、 されなかった場合には○とした。なお、この検定は有意水準1%で行った。ほと んどのCaseでは棄却されない。すなわち、ΔEの分布は正規分布に従うと考えてよ いことがわかる。棄却されたCase10,13であるが、エネルギや入射角度に特に関連 がない。この2例のみが棄却された理由は不明である。

表3-6-3 ΔEの正規検定

Case	b ₁	b ₂ -3.0	Judge1	Judge2
1	-0.01729	-0.26720	0	0
2	0.04189	0.68914	Õ	Õ
3	-0.04005	0.04716	Ō	Ō
4	-0.17573	-0.31090	Ō	Ō
5	-0.24542	-0.12428	Ō	Ō
6	0.09784	0.02098	Õ	Ô
7	0.13366	-0.03283	Õ	Õ
8	-0.08519	0.69490	Ō	Õ
9	0.12549	0.05265	Ō	Ō
10	0.46343	-0.23878	×	Ō
11	0.20504	-0.05147	0	0
12	0.13446	-0.28512	0	0
13	0.62915	-0.19894	×	Ō
14	0.20432	-0.46594	0	Ō
15	0.27900	0.12393	0	0
16	0.17846	-0.46417	0	0
17	0.25106	-0.54160	0	0
18	0.41623	0.24925	0	0
19	0.45615	0.57322	0	0

3.6.5 衝突の位置と△Eの関係

ここで、気体分子が表面格子のどの位置に衝突したかとΔEとの関連を調べてみ る。衝突の位置は、気体分子の位置エネルギが最大となった時刻における表面上 での気体分子の位置として定義した。ミラー指数(111)の格子は図3-6-6のよ うに正三角形の格子となる。ここで表面の分子は格子の交点上に位置していると 考える。衝突位置を考えるには、格子の対称性から図の斜線部に衝突位置を射影 すれば良い。図の斜線部の三角形を10×10のセルに分割し、それぞれのセルにお けるΔEの平均を求めたものが図3-6-7である。

図3-6-6 表面格子および衝突位置の解析領域

 \boxtimes 3-6-7(C) Case15 Tin=5053[K], θ =40°

 \boxtimes 3-6-7(D) Case16 Tin=5053[K], θ =60^{*}

図3-6-7 格子内部の衝突位置による ΔEの分布 高さ方向にΔEを取ってある。斜め左の軸が x 方向、斜め右の軸が y 方向である。図3-6-6の斜線部に対 応する部分のみ値が存在している。 図3-6-7では、図の奥の隅に表面分子が位置している。ΔEの分布は、衝突位置 が表面分子に近いほど大きな値を示している。この傾向は入射角度が0°の場合 には当然ながら顕著となるが、入射角度が40°、60°の場合には、分子が結 晶格子を横切って通過するため、衝突位置による差は比較的小さい。ここで図に 示しているのはセルあたりの平均のΔEであり、実際には衝突の際の固体分子の熱 振動の位相によって、ΔEは大きく変化している。

3.6.5 < ΔE>への入射角度の影響

すでに3.6.2節において、入射エネルギが小さい場合には初期入射角度の影響 は小さいことを示した。ここでは、時刻 t_A での入射角度 θ_A が、どのように Δ Eに 影響を及ぼすかについて考察する。

図3-6-3 に見られたように、同じ入射エネルギに対して、 $\Delta E t \theta in = 40^{\circ}$ 近辺 で最大となる。これは θin のかわりに θ_{A} を用いた場合でも同様である。 $\Delta E n \lambda$ 射時の(あるいは時刻 t_{A} での)法線方向のエネルギにのみ比例しているのであれ ば、このような複雑な挙動は見られない。すなわち、なんらかのかたちで表面に 平行な接線方向のエネルギ成分を考慮にいれる必要がある。

ここでは、以下のような仮定をおいた場合に、 $\theta_A \sigma \Delta E \sim \sigma \delta^2$ きることを示す。以下の仮説の物理的な根拠は薄弱ではあるが、接線方向成分の 組み入れ方の一提案である。

仮説:m_sを気体分子の質量、v_Aをt_Aにおける気体分子の速さとする。このとき、 接線方向、法線方向にそれぞれ伝達されるエネルギは、それぞれの方向の気体分 子の運動量の大きさm_sv_Aの流束に比例する。

すなわち、法線方向に関するエネルギの伝達量△E_nの平均値は比例定数C_nを用いて

(3-6-11)

を用いて、

$$\langle \Delta E \rangle = k_n T_A (\cos \theta_A + \frac{k_L}{k_-} \sin \theta_A)$$

のように定式化できる。

この時、入射角度 θ_A の影響は、 $\zeta(\theta) \equiv \cos \theta + \frac{k_t}{k_n} \sin \theta$

(3-6-10)

(3-6-12)

の形にまとめられる。

 k_n および k_i/k_n はデータにfit させて決定することになる。図3-6-8(A) にその様子をしめす。縦軸が計算から得られた Δ Eの値であり、横軸は $T_A \xi$ (θ) である。 このプロットを直線近似した傾きが k_n となる。なお、ここでは、いくつかの値を 試した結果から、 $k_i/k_n = 0.6$ とした。図の直線は最小2乗近似を行ったもので、傾 きは約2.8。なお、図中のエラーバーは Δ Eの標準偏差である。横軸が0に近いと ころで< Δ E>が負となっているが、実際には T_A には常に先に記したオフセットが加 えられるのでこの部分が使われることはありえない。また、 Δ Eの標準偏差、分散 にも平均値と同様の入射角度依存性が見られているので、やはり $\xi(\theta)$ でその影響 を評価できる。その様子を図3-6-8(B)に示す。

図3-6-8(A) < ΔE>への入射角度の影響の推定

図3-6-8(B)入射角度依存性を考慮した場合の分散および標準偏差の変化

3.6.7 結晶内部でのエネルギの伝播

この節では、固体結晶内部において、気体分子から伝達されたエネルギ△Eがど のように伝達されるかについて考える。このために固体結晶を構成する8個の分 子に着目し、各分子の全エネルギの変化を記録した。まず、比較のために気体分 子が衝突しない場合の変化を記録したものの例を図3-6-9に示す。横軸は時間、縦 軸は基準化したエネルギである。

8個の固体分子の位置は、x、y、zのインデックスで示すとNo.1=[7,7,1]、No.2=[6,7,1]、No.3=[6,8,1]、No.4=[5,8,1]、No.5=[6,7,2]、No.6=[6,7,3]、No.7=[6,7,5]、No.8=[7,8,1]である。zのインデックスが1の分子は表面の第1層に位置し、3のものは第3層にある。図3-6-9にその様子を示す。

次に、気体分子を衝突させた場合の分子の全エネルギの変化を記録し、そこか ら上に示した擾乱のない場合の全エネルギを差し引いたものの例を図3-6-11と3-6-12に示す。これらの図は気体分子が衝突したことにより生じた、エネルギの擾乱 を表している。

どちらの場合においてもNo.1の分子のごく近傍で気体分子が1回目の衝突をす るように設定した。Example 1では入射エネルギが1444[K], Example 2では入射エ ネルギ3000[K]で入射角度はどちらも0°である。

No.1 の分子の全エネルギは衝突の時刻付近で極めて大きな物となり、気体分子 から大きな力を受けていることが読み取れる。ただし、その変化は極めて短い時 間であり、気体分子がまだ近傍にいるうちに、全エネルギはほぼ以前のオーダー

へ戻っている。衝突後のエネルギは衝突前よりも若干大きくなった程度である。

54

衝突点の周囲の結晶分子については、気体分子が衝突したことによる擾乱が極めて早く伝わっていることが観察される。すなわち、5層はなれたNo.7の分子においても、衝突の直後に全エネルギの変動が見られ、しかも、その擾乱の程度はその後変らない。従って、気体分子から伝達されるエネルギは、まずNo.1のような最近接の数個の分子に伝達された後、極めて早い伝達速度で衝突点近傍に伝わっていることがわかる。

これらの事から、気体分子が複数回、表面上で衝突を繰り返す場合でも、以前前の衝突による履歴効果は考慮する必要は小さいと考えられる。

図3-6-9 調査した分子の位置 zのインデックスが1の分子のみを示す。No.5の分子はNo.1,2,3に接する形で第2層に位置している。

図3-6-10(A) 分子No.1 [7,7,1] の無擾乱の場合の全エネルギの変化

図3-6-10(B) 分子No.2 [6,7,1] の無擾乱の場合の全エネルギの変化

3.7 衝突直後の平均速度および速度分布

エネルギに関しての議論をひとまずおいて、時刻tgにおける気体分子の速度について検討する。

3.7.1 速度平均

図3-7-1に時刻t_Bに法線方向の速度の平均値の変化を示す。縦軸は時刻t_Bにおける 気体分子の平均速度<V_{n,B}>、横軸は時刻t_Aにおける平均速度<V_{n,A}>を表す。運動エ ネルギのばらつきが小さい為、<V_{n,A}>のばらつきも小さいものとなっている。図に 見られるように、法線方向の平均速度の間には線型の関係が得られているのがわ かる。図中のエラーバーは速度の標準偏差の大きさを表す。横軸には3.6.2節に示 した、位置エネルギの転化による法線方向への加速が加わっているためのオフセッ トが見られる。従って入射エネルギが本シミュレーションで行ったものよりも小 さい場合においても、図3-7-1の関係は成立するものと考えられる。

この章では気体分子の質量は全て同一であるので、図に示した平均速度は平均の運動量と同じ意味を持っている。松本らのLennard-Jones 系におけるシミュレーションでは[12]離脱した気体分子の法線方向の運動量が入射前後でほぼ線型の関係にあることを示しているが、このX e-P t の系においても、法線方向の運動量によって衝突直後の気体分子の挙動を良く記述できることが確認された。

図3-7-1 時刻t_A、t_Bにおける法線方向の速度平均の関係

散乱後の気体分子の速度ベクトル V_B のうちで表面に平行な成分は、入射時の向きに平行な成分 V_y とこれに垂直な成分 V_z とに分けられる。これらの定義を図3-7-2に示す。

図3-7-3に、散乱後の接線方向速度ベクトルの大きさV_{LB}の平均値の変化を示した。 横軸は時刻t_Aでの接線方向速さV_{LA}の平均であり、エラーバーはV_{LB}の標準偏差で ある。法線方向の場合のように、全体がほぼ同一の関係に従っているわけではな いが、各初期入射角度ごとの平均値はほぼ線型の関係になっていることがわかる。 また衝突前の接線方向速度が0である場合でも、散乱後には0.1から0.15程度の接 線方向成分が生じており、<V_{LB}>には常にこの程度のオフセットが存在すると考え られる。

図3-7-4には V_{η} の平均値と V_{LA} との相関を示す。初期入射角度が0であるCase でも、僅かながら存在する V_{LA} の方向から V_{η} を定義できるが、その物理的な意味はない。 $\theta = 0$ の場合を無視して図を見ると、ほぼ原点を通る直線状にプロット点が並んでいることがわかる。ただし、その傾きは入射角度によって変っている。

 V_y と垂直な成分の大きさの平均 V_x は、初期入射方向からのばらつきの程度を表していると考えられる。この大きさは $\theta = 0$ の場合を除いて、上に述べた< V_{LB} >のオフセットとほぼ同じ値となっており、図3-7-3に見られたオフセットはこの V_x の成分であったと考えられる。

図3-7-2 表面に平行なベクトルの定義

図3-7-3 接線方向速さの衝突前後での変化

図3-7-4 入射時の接線方向に平行な速度成分の変化

次に、速度の分布を求めた結果の例を示す。接線方向の速度としては接線速度 ベクトルの大きさV_{LB}を取った。図3-7-6(A)から(F)まで、6つのCaseを例として示 してある。

法線、接線各々の速度分布にはほぼ3種類のパターンがあることが見て取れる。 1つは正規分布に近い形のもので、最頻値を中心に左右対称の分布を持つもので ある。これをtype I とする。次に、単峰の形ではあるが、正規分布よりも、速度の 大きい側に偏った分布形が見られる。これをtype II とする。3番目のパターンと して、2つビークを持つものがあり、これをtype III とする。type IIではその最頻 値は平均値の約1.1倍の速度値を持っている。

分布には小さな凹凸が多く、また特にtype I とtype II の区別は明かとはいえない が、今回計算した範囲の速度分布がどのtype に属するかを示したのが表3-7-1であ る。表ではCase 順ではなくt_A でのの接線方向速度<Vt,A>の小さい順にならべてあ る。<Vt,A>が小さい場合にはtype III がみられるが、接線方向の速度が大きくなる につれ、反射後の接線方向速度の分布はtype II が多くなり、法線方向ではtype I が 多く見られている。この傾向は図3-6-7においても見ることが出来、同じ入射エネ ルギである(A)-(C), (D)-(F)では、入射角度が大きく、接線方向入射速度の大きな Case ほど、散乱後の法線方向の速度分布はtype I に近付き、接線方向速度はtype II の分布をなすようになる。

Case	<vn,a></vn,a>	<vn,b></vn,b>	<vt,a></vt,a>	<vt,b></vt,b>	Tangential	Normal	
13	0.5889	0.4924	0.0018	0.1499	III	III	*
10	0.4941	0.4070	0.0021	0.1482	III	III	
7	0.4115	0.3452	0.0028	0.1314	III	II	
3	0.3554	0.3041	0.0030	0.1136	III	III	*
1	0.3350	0.2847	0.0033	0.1136	III	II	
4	0.3502	0.2970	0.0570	0.1212	II	I	
2	0.3265	0.2843	0.0756	0.1151	I	II	
18	0.5333	0.4362	0.0997	0.1690	III	III	
5	0.3383	0.2922	0.1069	0.1325	II	Ι	*
6	0.3244	0.2856	0.1446	0.1459	11	1	*
14	0.5634	0.4663	0.1706	0.1796	1	II	
8	0.3742	0.3246	0.1716	0.1673	II	II	
9	0.3408	0.3064	0.2308	0.2032	11	11	
11	0.4288	0.3656	0.2455	0.2111	II	П	
15	0.4937	0.4184	0.3206	0.2605	11	II	*
12	0.3673	0.3282	0.3308	0.2828	II	I	
17	0.5221	0.4386	0.3509	0.2748	III	II	
19	0.3290	0.2958	0.4320	0.3888	11	1	
16	0.3999	0.3563	0.4321	0.3596	II	II	*

表3-7-1 平均速度の変化及び速度分布の形状

*:図に分布の例として示してあるもの

ここで、散乱後速度V_{t,B},V_{nB}の間の相関関係を調べてみたところ、速度の大きさよりもその2乗である運動エネルギにおいて図3-6-7に見られるような強い一次の 相関関係が認められた。図(A)はCase 13 の場合で、時刻t_bにおける接線方向の運動 エネルギの値を縦軸に取り、横軸は同時刻での法線方向の運動エネルギとして、 その組み合せをプロットした。

同様のプロットをCase 3 のデータで行ったものが図3-7-3(B)、Case 15の場合が 図3-7-3(C)、Case9が(D)である。速度分布のタイプにかかわらず、強い相関関係が あることがわかる。Cercignani-Lampis のモデルに代表されるような、接線方向と 法線方向の運動を独立に扱う散乱モデルは、この系では成立し得ないといえる。

プロットを直線で最小2乗近似した場合の直線の傾きを相関係数として求めた ものを表3-7-2に示す。相関関係が傾き-1の直線になっているのであれば、Tn+Tt= Const. であり、気体分子の運動エネルギが、ある比率で各々の方向へ分配されて いることになる。Case 12, 16, 17, 19 ではこれに近い現象が生じているものと考え られる。

図3-7-3(B) 法線方向運動エネルギと接線方向運動エネルギとの相関 (Case3)

図3-7-3(C) 法線方向運動エネルギと接線方向運動エネルギとの相関(Case15)

主272	To	LT.M	問の	+11	PR	15 *4	
123-1-2	INC		国ワノ	TH.	送	尔安	l

Case	Correlation	Error
1	-0.464374	0.0021907
2	-0.490376	0.00226268
3	-0.478761	0.00191243
4	-0.506736	0.00288332
5	-0.609661	0.00297177
6	-0.658699	0.00372498
7	-0.42782	0.00350329
8	-0.757019	0.00675206
9	-0.804571	0.00656457
10	-0.425753	0.00304215
11	-0.750875	0.0107313
12	-1.02437	0.00850971
13	-0.373502	0.00531815
14	-0.497798	0.00883599
15	-0.784328	0.0250105
16	-1.00833	0.0176531
17	-0.882778	0.0137721
18	-0.488485	0.00273312
19	-1.0687	0.00544317

3.8 衝突後の挙動

以上のように、一回目の衝突において、エネルギの伝達が終了した時刻t_aにおける気体分子の運動エネルギおよび速度については、平均値、分布ともに解析することが出来た。この節では時刻t_a以降の気体分子の挙動を考える。

シミュレーションにおいて、時刻 t_{b} 以降、表面近傍から離脱した気体分子と、引き続き二回目の衝突過程に進んだ気体分子とを比較したところ、離脱できた気体分子はいずれのCaseにおいても、法線方向の無次元速度が約0.3以上であることが観察された。この速度は運動エネルギに換算すると、接近時に運動エネルギとして受け取ったエネルギの平均値< $\Delta T_{in,A}$ >にほぼ等しい。すなわち、時刻 t_{b} で法線方向の運動エネルギが< $\Delta T_{in,A}$ >に満たない気体分子は、表面から離脱しきれなかったことになる。

気体分子の離脱/捕獲の判定はシミュレーションでは全エネルギの大きさに基 づいて行ったが、ここでは気体分子の運動エネルギ、とくに法線方向の運動エネ ルギの大きさが決定要因であるという結果となった。これは時刻tgにおける気体分 子のボテンシャル・エネルギを考えれば容易に説明できる。

運動エネルギが時刻t_Bにおいて2回目の極大となっている状態では、気体分子は 入射時に通過してきた、ボテンシャルの井戸の領域に達しており、この領域では ボテンシャルエネルギが、偏差の小さい、一定に近い値を取ることは既に3.6.2 節で示した。この井戸の領域は表面上空を広く浅く覆っていると考えられ、表面 分子の変位や振動から受ける影響は小さい。すなわち、衝突によって生じた固体 表面分子の擾乱の影響はt_Bにおいては無視してよいであろう。従って時刻t_Bにおけ る気体分子のボテンシャルエネルギは時刻t_Aとほぼ同じであり、平均としては <∆T_{in A}>に等しいと考えられる。

このとき、t_bにおける気体分子の全エネルギは、運動エネルギに<ΔT_{in,A}>を加え たものに等しいと考えられるので、時刻t_bでの運動エネルギの値により、気体分子 が表面から離脱するか否かを判定することが可能となる。さらに、この井戸の領 域では表面ポテンシャルはすでに壁面と平行になっていると考えてよいので、気 体分子の挙動はその法線方向の運動エネルギのみで決定されるとしてよい。

さて、離脱した気体分子はそのまま気相へともどるので、ここでこれ以上考慮 する必要はない。離脱できなかった分子は、ふたたび固体表面への衝突過程に入 ることになる。この過程について、簡単に考察する。

まず、図3-6-2(B)に示されたように、2回目の衝突では入射角度が90°である ことを除けば、エネルギの変化の様相は1回目と2回目の衝突で変わらないもの と考えられる。気体分子は表面上空のポテンシャルの井戸の部分で折り返し、再 び運動エネルギ極大の点を通り、エネルギの交換をし、2度目の運動エネルギ極 大の点で、再び離脱できるかどうか、判定されることになる。3.6.7節に示した ように、固体結晶内部でのエネルギの拡散は極めて早くおこなわれ、たとえ気体 分子が1回目の衝突と同じ分子に再び衝突したとしても、その履歴効果は小さい と考えられる。そこで、2回目の衝突過程は1回目のものとは独立に考えてよい と推定できる。

このような衝突を繰り返すうちに、ある分子は結晶分子からエネルギを得て離 脱し、ある分子は離脱不能なエネルギのレベルにおちてしまうであろう。後者の、 いわゆる吸着した分子は、すでに表面と熱的な平行状態にあるものと考えられ、 このような分子が表面から離れて来る際には、壁面温度に完全に適応した、拡散 反射に近い速度分布をもつものと考えられる。

3.9 壁面の温度の影響

ここまでの全てのシミュレーションでは、壁面の温度Tsは95[K]一定としてきた。 この節ではTsを変化させた場合の影響を考察する。

これまでと同様の手法で、Ts=300[K]の場合、Ts=600[K]の場合の2種類の固体 結晶をシミュレートし、気体分子散乱の様子を計算する。表3-9-1に計算のパラメ タと散乱角度分布の結果を示す。気体分子の入射条件が同じCaseの番号を Compareing Case の項に示すと同時に、表の中に斜体文字で記した。

散乱の中心角度 θ cは若干変っているが、散布の平均<R>はほぼ同じ値となっている。

次に、表3-9-2に、時刻t_Aまでの運動エネルギの増加および時刻t_A、t_Bにおける 運動エネルギの平均値とその偏差を示した。表3-9-1と同様、壁面温度が95[K]の場 合のデータを斜体文字で併記してある。平均値に関してはほとんど変化は見られ ていないが、偏差は壁面温度が高いほど、大きくなっている。これはTs=600Kの 場合での計算サンプル数が約50と少ないことも一因ではある。

表3-9-3から3-9-5までに、Ts=95[K]の場合の計算で行った解析を壁面温度が高い 場合のデータに対して行った結果を示す。表3-9-3は気体分子が1回目の衝突で失っ たエネルギΔEの平均と偏差であり、表3-9-5は衝突前後の平均速度である。これら の平均値は、Ts=95[K]の場合とほとんど変らないのに対して、標準偏差はどの物 理量についても、壁面温度が高い方が大きくなっている。ここではまだデータが 不足ではあるが、壁面温度の変化は、個々の衝突における物理量の平均値への影 響は小さいが、その偏差への影響は大きいといえる。また、表3-9-4に見られるよ うに、ΔEの分布はほぼ正規分布と見なしてよい。

表3-9-1 計算パラメタおよび散乱角度分布

Case	Ts [K]	Tin [eV]	θ [deg.]	θς	<r></r>	Sample	Compareing Case
20	300	0.0363	0.0	10.0	0.7468	185	1
1	95	0.0363	0.0	6.0	0.8876		
21	300	0.0726	0.0	1.0	0.7149	186	3
22	600	0.0726	0.0	1.0	0.6941	51	3
3	95	0.0726	0.0	6.0	0.7067		
23	300	0.0726	40.0	21.0	0.7306	149	5
24	600	0.0726	40.0	8.0	0.8077	43	5
5	95	0.0726	40.0	28.0	0.7066		

表3-9-2 衝突直前、直後の運動エネルギ

CaseT		Case T_{in} θ_{in}		$\theta_{in} < \Delta T_{in, \delta} > S.D.$		S.D.	<t,></t,>	<t<sub>B></t<sub>	S.D.	
20	0.46505E-02	0	0.32877E-01	0.13181E-02	0.37528E-01	0.32327E-01	0.64643E-02			
1	0.46505E-02	0	0.33128E-01	0.99663E-03	0.37779E-01	0.32606E-01	0.38387E-02			
21	0.93005E-02	0	0.33075E-01	0.14308E-02	0.42375E-01	0.36234E-01	0.54237E-02			
22	0.93005E-02	0	0.33278E-01	0.23732E-02	0.42578E-01	0.35671E-01	0.11503E-01			
3	0.93005E-02	0	0.33213E-01	0.10230E-02	0.42514E-01	0.36632E-01	0.40825E-02			
23	0.93003E-02	40	0.32870E-01	0.14149E-02	0.42170E-01	0.35860E-01	0.61887E-02			
24	0.92999E-02 ·	40	0.33299E-01	0.14398E-02	0.42599E-01	0.38455E-01	0.97499E-02			
5	0.93000E-02	40	0.33066E-01	0.10632E-02	0.42366E-01	0.36050E-01	0.40062E-02			

表3-9-3 エネルギ伝達

Case	Tin	θ in	T	θ	< \$ E>	S.D.
20	0.46505E-02	0	0.37528E-01	0.57228E+00	0.62426E-02	0.62674E-02
1	0.46505E-02	0	0.37779E-01	0.56719E+00	0.60385E-02	0.37686E-02
21	0.93005E-02	0	0.42375E-01	0.51840E+00	0.71088E-02	0.53923E-02
22	0.93005E-02	0	0.42578E-01	0.58739E+00	0.74909E-02	0.12326E-01
3	0.93005E-02	0	0.42514E-01	0.48884E+00	0.68014E-02	0.39976E-02
23	0.93003E-02	40	0.42170E-01	0.17572E+02	0.71632E-02	0.63227E-02
24	0.92999E-02	40	0.42599E-01	0.17446E+02	0.46657E-02	0.10347E-01
5	0.93000E-02	40	0.42366E-01	0.17533E+02	0.70571E-02	0.39228E-02

表3-9-4 ΔEの正規性検定

Case	b,	b,-3.0	Judge1	Judge2
20	-0.20026	-0.20616	0	0
21	-0.14073	-0.18747	0	0
22	-0.59146	-0.04438	0	0
23	-0.20473	1.25002	0	×
24	-0.26542	0.04961	0	0

表3-9-5 衝突前後の平均速度

Case	<vn,a></vn,a>	<vn,b></vn,b>	S.D.	<vt,a></vt,a>	<vt,b></vt,b>	S.D.
20	0.3339	0.2822	0.0400	0.0033	0.1125	0.0465
1	0.3350	0.2847	0.0285	0.0033	0.1136	0.0463
21	0.3548	0.3014	0.0335	0.0032	0.1134	0.0535
23	0.3555	0.2956	0.0605	0.0036	0.1117	0.0497
3	0.3554	0.3041	0.0322	0.0030	0.1136	0.0495
22	0.3374	0.2883	0.0391	0.1069	0.1380	0.0537
24	0.3394	0.3027	0.0505	0.1067	0.1309	0.0547
5	0.3383	0.2922	0.0340	0.1069	0.1325	0.0553

3.10 本章のまとめ

X e-P t の系について、熱散乱から構造散乱の範囲にわたってシミュレーションを行い、次のような結果を得た。

(1)表面に近付いた気体分子はまず、表面全体から引力を受けて、表面の法 線方向に加速を受ける。この加速の量は、表面上空でのボテンシャルの最低値の 96%程度のエネルギに相当する。

(2)気体分子とPtの固体結晶との間でエネルギの伝達が行われるのは、1 回の衝突過程の間の、気体分子の運動エネルギが極大となる2時刻t_A,t_Bの間である。

(3) 一回の衝突で気体分子の失うエネルギは、平均としては時刻t_Aでの運動量のFluxに比例すると考えられる。またその分布の形状はほぼ正規分布となる。

(4) 一回の衝突前後における気体分子の法線方向の平均速度の間にはほぼ比 例関係が成り立ち、入射角度の影響は小さい。接線方向の平均速度に関しては入 射角度の影響が見られる。
第4章 パラメタの異なる系についての解析

4.1 序

前章までに得た結果を踏まえ、ボテンシャル係数や相対質量の異なる系につい て、シミュレーションを行った結果を示し、解析する。解析の目安とするために まず、簡単な系の場合の理論解を求めておく。この解は特に、質量比の影響およ び壁面温度の影響を見積もる際に役立つ。次に、下の表4-1-1に示すようなパラメ タの組について、3章と同様の手法を用いてシミュレーションを行った。 Comparing Case は、同じ入射条件で計算したX e-P t 系のCase 番号を意味してい る。表中、太字で表してあるパラメタが、X e-P t 系と異なるものである。この 章では以後、X e-P t 系の結果を表などに併記する場合には斜体文字で表すこと にする。

表4-1-4 計算を行ったパラメタの組み合わせ

	Case	24 ε	T _o	σ	m,	Tin[K]	θ in[Degree]	Comparing Cas
	25	0.01	1.2681	2.645	0.673	562	0	3
	26	0.02	1.2681	2.645	0.673	562	0	3
	27	0.04	1.2681	2.645	0.673	562	0	3
-	28	0.01	1.2681	2.645	0.673	562	40	5
	29	0.02	1.2681	2.645	0.673	562	40	5
	30	0.04	1.2681	2.645	0.673	562	40	5
	31	0.04	1.2681	2.645	0.673	2967	0	10
	32	0.02	1.2681	2.645	0.673	2967	40	11
	33	0.02	1.2681	2.645	0.673	2967	40	11
	34	0.0845	1.5	2.645	0.673	562	40	5
-	35	0.0845	1.2681	2.645	0.1	562	40	5
	36	0.0845	1.2681	2.645	0.4	562	40	5
	37	0.0845	1.2681	2.645	0.3	562	0	3
	38	0.0845	1.2681	2.645	0.3	1444	0	7
	39	0.0845	1.2681	2.645	0.3	1444	20	
	40	0.0845	1.2681	2.645	0.3	1444	40	8
	41	0.0845	1.2681	3.0	0.673	562	40	5
	42	0.0845	1.2681	3.0	0.673	2967	40	11
	43	0.0845	1.2681	2.3	0.673	562	40	5
	44	0.0845	1.2681	2.3	0.673	2967	40	11
-	45	0.02	1.2681	2.3	0.673	562	40	5
	46	0.02	1.2681	3.0	0.673	562	40	5
	47	0.02	1.2681	3.0	0.673	2967	40	11
	48	0.0845	1.2681	2.645	0.1	562	0	3

注:単位のない値はは全て基準化された単位系での値とする。

4.2 簡単な系の理論解析

これまでの解析において、気体分子と表面の間でエネルギの交換が生じるのは、 気体分子が斥力を受けている間であることが明かとなっている。このエネルギ伝 達について、その入射角度への依存の様子は明かとなったが、入射エネルギの何 割が伝達されるかに関しては、シミュレーションの結果しか得られておらず、理 論的な裏付けに乏しい。そこで、非常に簡単な系におけるエネルギ伝達を解析し、 これをシミュレーションと比較する。考慮するのは気体分子と1つの固体結晶分 子であり、気体分子と固体分子の間には斥力のみが働くものとする。また運動は 1次元に制限した。

4.2.1 剛体球の系

最も解析の容易なものとして、弾性衝突をする二つの質点からなる系を考える。 質点1を気体分子、質点2を表面分子とし、この両者の質量比μを

μ=m₁/m₂ (4-2-1) とおく。質点1が初期速度v,を持ち、はじめ静止していた質点2と弾性衝突をする

とき、質点1が失うエネルギΔEは

$$\Delta E = \frac{4\mu}{(1+\mu)^2} \left(\frac{1}{2}m_1 v_1^2\right)$$
(4-2-2)

となる。 質点 2 が初期速度v₂を持つ場合には ΔEは

$$\Delta E = \frac{4\mu(\frac{1}{2}m_1v_1^2 - \frac{1}{2}m_2v_2^2) + 2m_1v_1(1-\mu)v_2}{(1+\mu)^2}$$
(4-2-3)
ここでv₂は表面分子の速度であるので温度TsのMaxwell分布
 $f_v(v) = \frac{\beta}{\sqrt{\pi}} \exp(-\beta^2 v^2)$

に基づく分布を持つとすると、その平均<v>は0、自乗平均は B=√____

$$V 2k_{\rm B}T_{\rm s}$$

の関係より

2

$$\langle v_2^2 \rangle = \int_{-\infty} v^2 f_v(v) dv = \frac{k_B T_S}{m_2}$$
 (4-2-4)

なる。これらより、
$$\Delta E$$
の平均値は
 $\langle \Delta E \rangle = \frac{4\mu}{(1+\mu)^2} (\frac{1}{2}m_1v_1^2 - \frac{1}{2}k_BT_S)$ (4-2-5)

となり、またその分散は

$$s^{2} = \int_{-}^{-} \left(\Delta E - \left\langle \Delta E \right\rangle \right)^{2} f_{v}(v_{2}) dv_{2} = \frac{8\mu \left(1 - \mu \right)^{2}}{\left(1 + \mu \right)^{2}} k_{B} T_{s} \left(\frac{1}{2} m_{1} v_{1}^{2} \right)$$
(4-2-6)

と整理できる。

(4-2-5)式によれば、X e-P t の系では μ =0.673であることから、Tsが小さい場合には、エネルギ損失の平均値は入射エネルギの約96.2%を占めることになる。これはあまりに過大であり、このモデルで Δ Eを定量的に表すことは不可能である。ただし定性的には Δ Eが入射エネルギに比例している点でシミュレーション結果と一致している。また式(4-2-6)によれば、 Δ Eの統計分布の分散は入射エネルギと壁面温度の積に比例することになるが、3.6.3節で見たように、 Δ Eの標準偏差は入射エネルギとほぼ比例しており、この点に関しても定性的な一致がみられる。

4.2.2 バネ-質点系

図4-2-1 解析するバネと質点の系

バネ定数 K_1 のバネで結ばれた2つの質点1,2を考え、質点2はバネ定数 K_2 のバネ を介して固定点に束縛されているものとする(図4-2-1参照)。両質点の質量をそ れぞれ m_1,m_2 、固定点からの距離を x_1,x_2 、バネの自然長を L_1,L_2 とおくと、質点の運 動方程式は

$$m_1 \frac{d^2 x_1}{dt^2} = -K_1(x_1 - x_2 - L_1)$$

$$m_2 \frac{d^2 x_2}{dt^2} = -K_2(x_2 - L_2) + K_1(x_1 - x_2 - L_1)$$
(4-2-4)

となる。

ここで、 $y_1 \equiv x_1 - x_2 - L_1$, $y_2 \equiv x_2 - L_2$, $\mu \equiv \frac{m_1}{m_2}$, $\kappa \equiv \frac{K_1}{K_2}$, $\mathbf{y} \equiv \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ とおいて上の式を整理すると、 $\frac{d^2}{dt^2} \mathbf{y} = \frac{K_2}{m_2} \mathbf{B} \mathbf{y}$

のように運動方程式を表すことができる。ここで

	$-\frac{1+\mu}{\mu}\kappa$	1
B =	κ	-1

である。以後、簡単のために

$$\omega_2 \equiv \sqrt{\frac{K_2}{m_2}}$$
, t* = ω_2 t (4-2-5)
と表すことにする。この運動方程式の解を

$$\mathbf{v} = \mathbf{z} \exp(i \Omega \omega_2 t)$$

の形に仮定すると、運動方程式から

-
$$\Omega^2 z = B z$$

が得られる。このような固有値Ωと固有ベクトルzを:

oれる。このような固有値Ωと固有ベクトルzを求めればよい。固有値は $\Omega^{2} = \frac{1}{2} \left((1 + \frac{1+\mu}{\mu} \kappa) \pm \sqrt{\left(1 + \frac{1+\mu}{\mu} \kappa \right)^{2} - \frac{4\kappa}{\mu}} \right)$ (4-2-6)

であり、任意の正の μ 、 κ について、常に正の実数となる。この式を満たす Ω を Ω_1 、 Ω_2 とおく。 Ω_1 、 Ω_2 に対応する固有ベクトルは

$$\begin{aligned} \mathbf{z}_{1} = \begin{bmatrix} 1 \\ z_{1} \end{bmatrix}, \ \mathbf{z}_{2} = \begin{bmatrix} 1 \\ z_{2} \end{bmatrix} \succeq \exists i \dagger i \sharp, \\ \mathbf{z}_{1} = -\Omega_{1}^{2} + \frac{1+\mu}{\mu} \kappa, \ \mathbf{z}_{2} = -\Omega_{2}^{2} + \frac{1+\mu}{\mu} \kappa \end{aligned}$$
(4-2-7)

のように求められる。このとき、一般解は
$$\Omega$$
が実数であることから、
 $\mathbf{y} = C_1 \mathbf{z}_1 \cos (\Omega_1 t^*) + C_2 \mathbf{z}_2 \cos (\Omega_2 t^*) + C_3 \mathbf{z}_1 \sin (\Omega_1 t^*) + C_4 \mathbf{z}_2 \sin (\Omega_2 t^*)$
(4-2-8)

となる。ここで初期条件を考える。t=0において質点2は単振動をしているものと 仮定する。その振動の初期位相をθ₀とすると初期条件は

$$y_1=0$$
, $y_2=A\sin\theta_0$, $\dot{y}_1=-v_1-\dot{y}_2$, $\dot{y}_2=\omega_2A\cos\theta_0$ (4-2-9)

となり、式(4-2-10)の定数は

$$C_{1} = \frac{A \sin \theta_{0}}{z_{1} - z_{2}} , C_{2} = -C_{1}$$

$$C_{3} = \frac{v_{1} z_{2} + (1 + z_{2})\omega_{2}A \cos \theta_{0}}{(z_{1} - z_{2}) \Omega_{1}\omega_{2}}$$

$$C_{4} = -\frac{v_{1} z_{1} + (1 + z_{1})\omega_{2}A \cos \theta_{0}}{(z_{1} - z_{2}) \Omega_{2}\omega_{2}}$$

(4-2-10)

と書ける。

今、壁面の温度をTsとすると、Aは

$$\frac{3}{2}k_{B}T_{s} = \frac{1}{2}m_{2}(v_{2}^{2}) = \frac{1}{2}m_{2}\frac{(A\omega_{2})^{2}}{2}$$
(4-2-11)

の関係から定めることができる。ここで

 $v_s \equiv A\omega_2$

(4 - 2 - 12)

という速度v,を基にしてAやTsを表現することにする。ここでv,は、単振動の場合

にy2=0となる瞬間の質点2の速度である。さらに、速度の比

(4-2-13)

75

を新しい無次元パラメタとして用いることにすると、

$$\begin{split} C_{1} &= \frac{\chi \sin \theta_{0}}{z_{1} - z_{2}} \frac{v_{1}}{\omega_{2}} \\ C_{3} &= \frac{z_{2} + (1 + z_{2})\chi \cos \theta_{0}}{(z_{1} - z_{2})\Omega_{1}} \frac{v_{1}}{\omega_{2}} \\ C_{4} &= -\frac{z_{1} + (1 + z_{1})\chi \cos \theta_{0}}{(z_{1} - z_{2})\Omega_{2}} \frac{v_{1}}{\omega_{2}} \end{split}$$

 $\chi \equiv v_s / v_1$

(4 - 2 - 14)

となり、v₁をくくり出すことができる。

上の結果を用いて、この系において質点1(気体分子に相当)から質点2(固体 結晶分子に相当)へ移動するエネルギ ΔE を見積もる。エネルギが移動するのは2 質点間に斥力が働く間のみと仮定しているので、 $y_i=0$ となる最初の時刻 t_B までの エネルギの移動を考えれば良い。($t_B>0$ とする。)時刻 t_B ではバネ K_1 の持つエネル ギは0であるので、この時刻での質点1の速度 v_B が分かれば、エネルギ保存則から ΔE を求めることができる。

この速度 v_B は、 t_B *= $t_B \omega_2$ を用いて

$$\begin{split} \mathbf{v}_{B} &= \sqrt{\frac{K_{2}}{m_{2}}} (1+z_{1}) \left\{ -C_{1} \Omega_{1} \sin \Omega_{1} \mathbf{t}_{B}^{*} + C_{3} \Omega_{1} \cos \Omega_{1} \mathbf{t}_{B}^{*} \right\} \\ &+ \sqrt{\frac{K_{2}}{m_{2}}} (1+z_{2}) \left\{ C_{1} \Omega_{2} \sin \Omega_{2} \mathbf{t}_{B}^{*} + C_{4} \Omega_{2} \cos \Omega_{2} \mathbf{t}_{B}^{*} \right\} \end{split} \tag{4-2-15}$$

と表せる。固体分子の初期位相 θ_0 を変えて平均を取れば、 v_B の平均値を得ることができる。 v_B を解析的に求めることは困難であるが、数値的に

<v_B>=v₁g(μ,κ,χ) (4-2-16) の形で衝突後の平均速度<vB>を求める関数g(μ、κ、χ)を定めることはできる。

固体表面の温度を無視できる(Ts=0)場合には、式はもう少し簡単な形になる。 すなわち、式(4-2-14)でA=0とおいて、

 $C_1 = C_2 = 0$

$$C_3 = \frac{v_1 \, z_2}{(z_1 - z_2) \, \Omega_1 \omega_2}$$

$$C_4 = \frac{-v_1 z_1}{(z_1 - z_2) \Omega_2 \omega_2}$$

(4-2-17)

となる。当然ながらこの場合には χ は無視できて、衝突後速度 v_B は単一の値となる。この場合も v_B を解析的に求めることはできないが、数値的に

$$\mathbf{v}_{\mathrm{B}} = \mathbf{v}_{1} \mathbf{f}(\mu, \kappa)$$

となる関数fを求めることができる。また、このとき関数fはv,とは完全に独立と

なるので、 $\Delta E \delta v_1^{-2}$ に比例することは容易に導ける。 $\Delta E = \frac{1}{2} m_1 v_1^2 - \frac{1}{2} m_1 v_B^2 = \frac{1}{2} m_1 v_1^2 \left\{ 1 - (f(\mu, \kappa)^2) \right\}$ (4-2-18)

図4-2-2 に f (μ 、 κ)の様子を示す。横軸に κ 、縦軸に f をとり、幾つかの異なる μ の値について、プロットしている。図では f の値が不連続になっている箇所があるが、これは y_1 =0となる位相が変化することに対応している。

このバネ-質点系のモデルをシミュレーション結果あるいは実験結果と比較する 場合に問題となるのは気体-固体間のバネ定数K₁の決定である。固体分子のバネK₂ に関しては、第3章で示したように、固体結晶間の振動周波数より定めることが できる。K₁についても、Morseボテンシャル(2-3-2)を二次関数で近似して求めるこ とは可能であるが、K₁の値は、二次式に展開する位置rに強く依存し、場合によっ ては一桁以上異なる値を取り得る。図4-2-2に見られるように、fの変化すなわち Δ Eの変化は κ に敏感であるので、 κ の推定誤差は Δ Eを大きく変化させてしまう。 ここではシミュレーションでの Δ Eの値から κ を推定し、K₁=1.5の値を得た。この 値によって推定される< Δ E>は、第3章でシミュレートしたX e-P t の系につい ては、どの入射エネルギの場合に対しても良く一致させることができる。

実際に、K₁=1.5、Ts=95[K]として上のモデルにおける Δ Eの平均と標準偏差を求め、これをシミュレーション結果と比較した結果を下に示す。モデルにおける気体分子の初期速度はシミュレーションにおける時刻t_A での運動エネルギから定めたもの(model 1)と、時刻t_A t_A でのz方向速度から定めたもの(model 2)とを用いた。比較結果を図4-2-3、4-2-4に示す。model(1)の平均値は良く一致している。model(2)では、初期に持っていた接線方向の運動エネルギが Δ Eに反映されないために、入射角度が大きい場合にはどうしても平均の Δ Eはシミュレーションの結果より小さくなる。標準偏差についてはmodel(1)ではCase12--15に見られるような、標準偏差の入射角度依存性が見られない。model(2)では、平均値はシミュレーション結果と異なるが、標準偏差の変化の様子は定性的に一致している。どちらのモデルも、入射エネルギが比較的低く、 Δ Eの平均が小さくなるような場合については、モデルの標準偏差は大きすぎる傾向がある。

図4-2-4 バネ-質点モデルから推定した ΔEとシミュレーションの比較(標準偏差)

次に壁面温度Tsの影響を調べるため、 $\mu と \kappa を固定しておいてTsを変化させ、$ $<math>\Delta E \ \delta E$ るの標準偏差を調べた。このモデルにおいては ΔE は入射エネルギにほぼ比 例しているので、 v_1 も無次元値1.0に固定しておく。この場合の平均の伝達エネル ギ< ΔE >とTsの関係を図4-2-5に示す。壁面温度が高くなると、表面から気体分子 へのエネルギ伝達量が大きくなるので、結果として気体分子のエネルギ損失は小 さくなっている。しかし、その変化の程度は緩やかである。図4-2-6には表面温度 と ΔE の分散との関係を示す。分散は表面温度に正比例する関係が得られており、 これは剛体球モデルでの結果および、第3章で示したシミュレーション結果と一 致している。

図4-2-5 バネ-質点系における△Eと壁面温度の関係

4.3 初期加速への物理パラメタの影響

表4-1-1に示した計算の条件に基づきシミュレーションを行った。まず、気体分子に対して、結晶表面上空に形成されるポテンシャルの様子をみることから解析 を始める。

表4-3-1に、表面上空のポテンシャルの最小値(束縛エネルギ) ϕ_{B} を求めたものを示す。この値を ε で割った値は結晶格子の幾何学的な形状によってのみ決まるので、 r_{0} の同じである複数の系について同一となる。そこでCasesの欄に同じものをまとめて記した。

表4-3-1 束縛エネルギの値

r _o	σ	\$B / ε	Cases
1.2681	2.645	-9.8136	2533,3740 *
1.5	2.645	-10.911	34
1.2681	3.0	-7.9418	41,42
1.2681	2.3	-12.720	43,44

*: Xe-Pt系のデータも全てこの値を取る。

このような束縛エネルギの大きさに対して、3章の3-4節で見たような、最初の運動エネルギ極大の時刻 t_{A} までの運動エネルギの増加 $\Delta T_{in,A}$ の平均値を求めた。その結果を表4-3-2に示す。Xe-Ptの系と同様、標準偏差S.D.は平均値に比べて十分小さく、 $\langle \Delta T_{in,A} \rangle$ はほぼ一定値をとるとしてよいことがわかる。

この< $\Delta T_{in,A}$ >と束縛エネルギ ϕ_B の比を取ったものを図4-3-1に示す。横軸はCase である。いずれの場合においても、< $\Delta T_{in,A}$ >は ϕ_B の約96%となっている。この ϕ_B の値は $\varepsilon \geq \sigma$ 、 r_o および表面の分子の配置と格子間距離がわかれば、比較的簡単な 加算計算から求めることができる。

表4-3-2 < ΔT_{in,A}>の変化

Case	Tin	θ in	<∆Tin,A>	S.D.	- \$ B
25	0.93005E-02	0	0.39257E-02	0.11979E-03	4.089E-03
26	0.93005E-02	0	0.78327E-02	0.23665E-03	8.178E-03
27	0.93005E-02	0	0.15693E-01	0.49250E-03	1.636E-02
28	0.93005E-02	40	0.39237E-02	0.12051E-03	4.089E-03
29	0.93004E-02	40	0.78381E-02	0.25134E-03	8.178E-03
30	0.93004E-02	40	0.15710E-01	0.48102E-03	1.636E-02
31	0.49101E-01	0	0.15997E-01	0.76683E-03	1.636E-02
32	0.49101E-01	40	0.79063E-02	0.35292E-03	8.178E-03
33	0.49101E-01	40	0.15883E-01	0.79858E-03	1.636E-02
34	0.93003E-02	40	0.37691E-01	0.10732E-02	3.841E-02
35	0.93006E-02	40	0.33114E-01	0.10950E-02	3.455E-02
36	0.93003E-02	40	0.33020E-01	0.12202E-02	3.455E-02
37	0.93009E-02	0	0.32947E-01	0.13035E-02	3.455E-02
38	0.23897E-01	0	0.33242E-01	0.95614E-03	3.455E-02
39	0.23897E-01	20	0.33197E-01	0.10152E-02	3.455E-02
40	0.23897E-01	40	0.33105E-01	0.10689E-02	3.455E-02
41	0.92998E-02	40	0.26873E-01	0.12119E-02	2.796E-02
42	0.49100E-01	40	0.27211E-01	0.25278E-02	2.796E-02
43	0.92998E-02	40	0.43276E-01	0.11468E-02	4.479E-02
44	0.49100E-01	40	0.43596E-01	0.21279E-02	4.479E-02
45	0.92999E-02	40	0.10222E-01	0.25244E-03	1.060E-02
46	0.92999E-02	40	0.62990E-02	0.25219E-03	6.618E-03
47	0.49101E-01	40	0.62959E-02	0.26888E-03	6.618E-03
48	0.93003E-02	0	0.37691E-01	0.10732E-02	3.841E-02

4.4 ポテンシャル係数の異なる系の場合

4.4.1 εの異なる系

物理パラメタのうち、式(2-3-2)のMorseボテンシャルにおける、エネルギの定数 ε を変化させた場合について、X e-P t 系の場合の結果と比較する。これは Case25から33までのパラメタの組み合せに相当する。まず、1回目の衝突におけ るエネルギ伝達量 ΔEの平均を比較したものを表4-4-1に示す。同じT_{in}であっても、 ε が異なれば初期の加速が異なるため、T₄および ΔE は著しく異なっている。

表4-4-1 εのみを変化させた場合の比較

Case	T _{in}	$\theta_{\rm in}$	TA	θ	<∆E>	S.D.	24 ε
25	0.93005E-02	0	0.13226E-01	0.18985E+00	0.14282E-03	0.73428E-03	0.010
26	0.93005E-02	0	0.17133E-01	0.30892E+00	0.53065E-03	0.12289E-02	0.020
27	0.93005E-02	0	0.24993E-01	0.40112E+00	0.15529E-02	0.19171E-02	0.040
3	0.93005E-02	0	0.42514E-01	0.48884E+00	0.68014E-02	0.39976E-02	0.0845
28	0.93005E-02	40	0.13224E-01	0.32625E+02	0.20834E-03	0.82359E-03	0.010
29	0.93004E-02	40	0.17138E-01	0.28286E+02	0.38465E-03	0.10622E-02	0.020
30	0.93004E-02	40	0.25010E-01	0.23124E+02	0.16146E-02	0.20238E-02	0.040
5	0.93000E-02	40	0.42366E-01	0.17533E+02	0.70571E-02	0.39228E-02	0.0845
31	0.49101E-01	0	0.65098E-01	0.15872E+00	0.75287E-02	0.54343E-02	0.040
10	0.49101E-01	0	0.82171E-01	0.24457E+00	0.18068E-01	0.79396E-02	0.0845
32	0.49101E-01	40	0.57007E-01	0.36654E+02	0.58934E-02	0.36091E-02	0.020
33	0.49101E-01	40	0.64984E-01	0.34009E+02	0.96517E-02	0.52569E-02	0.040
11	0.49100E-01	40	0.82160E-01	0.29795E+02	0.20195E-01	0.67217E-02	0.0845

3章で示したように、X e-P t 系における Δ EはTin よりもT_Aにより支配されて いた。そこでここでも、Tinではなく、T_Aで整理することを試みる。図4-4-1に Δ E の平均値を時刻t_Aの運動エネルギT_Aで割った比を取ったものを示す。図より Δ Eの 比をみると、ほぼ ε の比率になっていることがわかる。

図4-4-2 ΔEとT,およびεの関係

そこで Δ Eは ε とT_Aの両方に比例すると考えられる。その様子を図4-4-2に示す。 横軸は ε とT_A および角度依存関数 ζ の積であり、縦軸に Δ Eの平均値とその標準 偏差を示した。ここでの ζ は 3.6節で得られたものをそのまま用いている。最小 2 乗近似した直線は y= 59.90 x - 0.0001866であり、原点を通る傾き60.0の直線とな る。

このように、 Δ Eは ϵ にほぼ比例するという結果が得られた。これは方程式の上からも期待できることである。1つの固体結晶分子が気体分子におよぼす力Fは Morseポテンシャル(2-3-2)を用いた場合、

 $F(r) = -\frac{\partial \phi}{\partial r} = 2\varepsilon \sigma [\exp\{-2(r-r_0)\} - \exp\{-(r-r_0)\}]$ (4-4-1)

の形になる。すなわちFは ε に比例することがわかる。実際には系全体の固体分子からの寄与が加算されるのであるが、式(4-4-1)での ε は共通項としてくくり出す事が可能であり、 ε の大きさは気体分子に加わる力に比例すると考えてよい。従って、相互作用の結果である Δ Eと ε が比例関係になることは納得できる。

表4-4-2に、ΔEの分布について、尖度、歪度および正規性検定の結果を示す。 いずれのCaseにおいてもΔEの分布は、ほぼ正規分布と見なせることがわかる。

表4-4-2 εが異なる系におけるΔEの統計量と正規性検定

Case	b,	b ₂ -3.0	sample	judge1	judge2
25	-0.14871	0.56576	158	0	0
26	0.23260	-0.34892	162	0	0
27	0.21185	0.01197	135	0	0
28	0.19571	-0.23785	135	0	0
29	-0.31317	0.34779	174	0	0
30	0.33557	0.46349	154	0	0
31	0.52697	0.12628	333	×	0
32	0.01537	-0.23832	270	0	0
33	0.20984	0.01583	278	0	0

4.4.2 ポテンシャル係数 o、 r の異なる系について

次に、ボテンシャル係数 σ の影響を調べる。 σ のみの異なる場合、及び σ と ϵ のみが異なる系について、その条件と計算結果を表4-4-3に示す。

4.3.2節での考察と式(4-4-1)より、 σ も ε と同様、 Δ Eに比例する形で影響を 与えると考えられる。これを確認したものが図4-4-3と4-44である。表4-3-3に示し たCaseについて、縦軸に Δ Eの平均と標準偏差をとり、横軸に T_A を取ったものが図 4-3-3である。これに対して図4-4-では、横軸に T_A と ε 、 σ 、および ζ の積を取っ ている。ここでは入射角度は全て40度ではあるが、 ε の違いにより実質入射角 度 θ_A は異なっているので、 $\zeta(\theta)$ も含めて整理した。

図4-4-3では不明瞭な入射エネルギと ΔE との関係が、図4-4-4では明確になって いることが観察できる。 σ のみを変化させた場合、 σ と ϵ の両方を変化させた場 合の双方において同じ考えに基づく整理が有効であることがわかった。以上より、 ΔE の平均値については、式(4-4-1)に基づき、 ϵ と σ 、T_Aの積が支配的であるこ とが明かとなった。

ボテンシャル変数roについては、これを変化させても結果にあまり影響が見られ ない。この変数はエネルギーや力ではなく結晶上空でのボテンシャルの幾何的な 形状を変化させているものであり△Eや衝突後速度分布に直接には影響することは ないと考えられる。

表4-4-3	計算	条件お	よびエネ	ルギ	伝達量
--------	----	-----	------	----	-----

Cas	e Tin	θ in	Τ,	θ,	< \$ E>	S.D.	24 ε	r _o	σ
41	0.92998E-02	40	0.36173E-01	0.19105E+02	0.75836E-02	0.47731E-02	0.0845	1.268	3.000
42	0.49100E-01	40	0.76312E-01	0.31169E+02	0.22221E-01	0.77922E-02	0.0845	1.268	3.000
43	0.92998E-02	40	0.52576E-01	0.15733E+02	0.67673E-02	0.49320E-02	0.0845	1.268	2.300
44	0.49100E-01	40	0.92697E-01	0.28014E+02	0.19368E-01	0.76413E-02	0.0845	1.268	2.300
45	0.92999E-02	40	0.19523E-01	0.26360E+02	0.35771E-03	0.11675E-02	0.020	1.268	2.300
46	0.92999E-02	40	0.15599E-01	0.29797E+02	0.48350E-03	0.11474E-02	0.020	1.268	3.000
47	0.49101E-01	40	0.55397E-01	0.37252E+02	0.63939E-02	0.38723E-02	0.020	1.268	3.000
5	0.93005E-02	40	0.42366E-01	0.17533E+02	0.70571E-02	0.39228E-02	0.0845	1.268	2.645
11	0.49100E-01	40	0.82160E-01	0.29795E+02	0.20195E-01	0.67217E-02	0.0845	1.268	2.645

図4-3-4 横軸を $\varepsilon \sigma T_A$ に取った場合の ΔE の変化

4.5 相対質量の影響

気体分子の質量と結晶分子の質量の比 μ が変化する場合を考える。 μ のみを変化させた Case35からCase40およびCase48について比較する。まず、表4-5-1に、 Δ E等の値を示す。前節と同様、比較対象となるX e-P t の系の条件と結果を斜体文字で併記する。

表4-5-1 計算条件とΔEの平均値

Case	Tin	θ in	T,	0	< \$ E>	S.D.	m,
35	0.93006E-02	40	0.42391E-01	0.17515E+02	0.10199E-01	0.46141E-02	0.100
36	0.93003E-02	40	0.42320E-01	0.17493E+02	0.10119E-01	0.49462E-02	0.400
5	0.93000E-02	40	0.42366E-01	0.17533E+02	0.70571E-02	0.39228E-02	0.673
48	0.93006E-02	0	0.42421E-01	0.50989E+00	0.10343E-01	0.44495E-02	0.100
37	0.93009E-02	0	0.42248E-01	0.55360E+00	0.10922E-01	0.62883E-02	0.300
3	0.93005E-02	0	0.42514E-01	0.48884E+00	0.68014E-02	0.39976E-02	0.673
38	0.23897E-01	0	0.57139E-01	0.37183E+00	0.13364E-01	0.51043E-02	0.300
7	0.23897E-01	0	0.56980E-01	0.38469E+00	0.10579E-01	0.55951E-02	0.673
39	0.23897E-01	20	0.57094E-01	0.12786E+02	0.13919E-01	0.63682E-02	0.300
40	0.23897E-01	40	0.57002E-01	0.24665E+02	0.15347E-01	0.60891E-02	0.300
8	0.23896E-01	40	0.57022E-01	0.24633E+02	0.10986E-01	0.47548E-02	0.673

前節では、気体分子に加わる力の式(4-4-1)に基づき、気体分子に働く力が($\epsilon \sigma$) に比例することから Δ Eの変化を説明することに成功した。ここで、この考えを進 めて、気体分子に働く加速度を考えれば、その加速度は ($\epsilon \sigma / m_g$) に比例する と考えられる。表4-5-1に示した計算条件は全て $\epsilon \ge r_o$ 、 σ が同じであるので質量比 の影響のみが表れているはずである。そこで、横軸にT_A*(1/m_g)をとり、縦軸に Δ Eを取ったグラフ上にプロットしたものが図4-5-1である。

図4-5-1 エネルギ伝達△Eに対する質量の影響

全体の傾向として、気体分子の質量が大きい、すなわち μ が大きい場合には ΔE は小さくなることは確認できる。しかしCase35,48に見られるように、質量の影響は単に加速度($\epsilon \sigma / m_s$)の形で表れるのではない。

そこで、4.2節で示した理論の結果を用いて質量の影響を見積もることを試みる。まず、気体分子と固体分子が弾性衝突する場合のエネルギの伝達量に対しては、式(4-2-2)に見られるように、質量比μはγ(μ) = $(4 \mu / (1 + \mu^2))$ の形で影響する。この関数γ(μ)を用いて Δ Eを整理してみたものが図4-5-2である。 横軸にT_Aζ(θ_{λ})γ(μ)を取ってプロットしているが、図に見られるようにほぼ同じ横軸の値に対して、異なる Δ Eの値が対応しており、 Δ Eの変化を説明できていない。すなわち、弾性衝突の理論ではシミュレーションにおける質量比の効果はうまく表現できていないことになる。

次に、バネ-質点系の理論式から、質量比 μ の影響を見積もることを試みる。Ts が無視できる場合の式(4-2-18)において、この場合に適切と考えられるバネ定数 K1=1.5を用いてf(μ, κ),およびF(μ, κ)=1-f²を求めるたものを表4-5-2に示す。関 数Fは入射エネルギに対しての Δ Eの割合 Δ E/Eを意味している。

表4-5-2	バネ-質点糸	の埋論解の結果	$(\kappa = 0.236)$

μ	$f(\mu,\kappa)$	$F(\mu,\kappa) = 1 - f^2$
0.673	0.890	0.21
0.400	0.730	0.46
0.300	0.726	0.47
0.100	0.848	0.28

87 このFの値を用いてΔEの結果を整理したものを図4-5-3に示す。横軸T_AζFの値 に対して△Eはほぼ単調増加の関係にある。質量比の影響は、バネ-質点系の関係 式で表現できることが確認できた。

図4-5-3 質量の影響をバネ-質点系のモデルで見積もった場合のΔEの値

4.6 本章のまとめ

本章では、3章で得たX e-P t 系の結果を、他の物性値をもつ系に適用するための知見を得るために、物理バラメタを独立に変化させた系についてのシミュレーションを行い、特にエネルギ伝達に関して解析を行った。また、2質点からなる 簡単な系の理論解を求めた。その結果、以下の事項を明かにした。

(1) 簡単な理論解によれば、エネルギ伝達 △Eの分布における分散は、壁面温 度に比例する。

(2) シミュレーションにおいて、ポテンシャル係数 ε 、 σ は式(4-4-1)に見られるように積 ε σ が Δ Eに比例する形で影響を与えている。係数 r_{o} は直接には Δ Eには影響していない。

(3)質量比µの△Eに関する影響は、バネ-質点系における解の示すものと一致している。

第5章 モデル化

Tommal des legitates signations being and a series of the series of the

この章ではこれまでの解析を基にして気体分子の散乱を再現するモデルを構成 し、その検証を行う。

5.1 モデル化

ここまでに得られた結果を基に、モデル化を行う。その方針として、気体分子 が表面上で行う衝突の1回1回を再現するように行うことにする。気体分子があ る回数以上、衝突を繰り返した場合には、物理吸着の後に離脱するものと見なし て壁面温度に相当する拡散反射の速度分布を与えるものとする。

第3章で示したように、気体分子の散乱後の速度分布は複数のビークを持つ極 めて複雑な挙動を示しているが、エネルギ損失は基本的には正規分布を示す。ま た、固体側に伝達されなかったエネルギの内いくらかが、法線方向と接線方向で 交換されていることが分った。そこで、把握の容易なエネルギ損失と、法線/接 線のエネルギ交換とをモデルに取り入れ、シミュレーションの結果をどの程度再 現できるかを調べることにした。これらは各々独立の段階(Stage)として処理を 行う。以後、本モデルをMulti-Stage モデル、あるいはMSモデルと称することにす る。

5.2.1 モデルの詳細

気体分子の1回の衝突を4つの段階(stage)に分割する。便宜上、壁面はz=0とし、入射前の気体分子の速度を $v_{in}=(u_{in},v_{in},w_{in})とする。また気体分子の質量を<math>m_e$ とする。

(1) 壁面に接近した気体分子はまず、2.1節で示したような初期の加速<
 $\Delta E_{in,A}$ >を法線方向に受けて、

 $\frac{1}{2}m_{g}w_{A}^{2} = \frac{1}{2}m_{g}w_{in}^{2} + \langle \Delta E_{in,A} \rangle$ (5-1-1) となる。 $u_{s}, v_{s} (\Delta u_{in}, v_{in})$ から変化しない。この時、運動エネルギT_Aおよび実質入射角 度 θ_{A} は

$T_{A} = \frac{1}{2}m_{g}(u_{A}^{2} + v_{A}^{2} + w_{A}^{2})$	(5-1-2)
$\theta_{A} = \tan^{-1} \left(\frac{ w_{A} }{\sqrt{w^{2} + w^{2}}} \right)$	(5-1-3)
で表される。	

(2)次に、気体分子と壁面の間のエネルギの伝達を行うことを考える。これま での解析結果より、気体分子が失うエネルギムEは気体分子の法線方向、接線方向 それぞれにおける運動量の流束Qに比例すると考えられる。法線方向、接線方向 それぞれについて、

	9
$Q_n \equiv T_A \cos \theta_A$	(5-1-4)
$Q_t \equiv T_A \sin \theta_A$	(5-1-5)
定義できて、これらとモデル定数kn,s1,ktから	
$\Delta Q_n = f_N(k_n Q_n, s_1 Q_n)$	(5-1-6)
$\Delta Q_t = f_N(k_t Q_t, s_1 Q_t)$	(5-1-7)
A A	and the second se

のようにエネルギの損失が定まるものとする。ここで $f_N(m,s^2)$ は平均m、分散 s²の 正規分布に基づく乱数であるとする。すなわち、 ΔQn は平均値が k_nQ_n 、分散が s_1Q_n に等しい正規分布をなすと仮定する。残ったエネルギ

$Q_n^* = Q_n - \Delta Q_n$	(5-1-8)
$Q_t^* = Q_t - \Delta Q_t$	(5-1-9)

から、この時点での速度v_e=(u_e,v_e,w_e)が求められる。Qn,Qtの*を省略して書くと、

$u_{\rm C} = \frac{\sqrt{2}Q_{\rm t}}{\sqrt[4]{m_{\rm g}^2(Q_{\rm n}^2 + Q_{\rm t}^2)}} \frac{u_{\rm A}}{\sqrt{u_{\rm A}^2 + v_{\rm A}^2}}$	(5-1-10)
$V_{C} = \frac{\sqrt[4]{2}Q_{t}}{\sqrt[4]{m_{g}^{2}(Q_{n}^{2}+Q_{t}^{2})}} \frac{v_{A}}{\sqrt{u_{A}^{2}+v_{A}^{2}}}$	(5-1-11)
$w_{\rm C} = \frac{\sqrt{2}Q_{\rm n}}{\sqrt[4]{m_{\rm H}^2(Q_{\rm p}^2 + Q_{\rm r}^2)}}$	(5-1-12)

なお、 $u_A = v_A = 0$ の場合には、 $u_c = v_c = 0$ とする。

t

(3) 続いて、気体分子の法線方向、接線方向の運動量の交換を考慮する。この ような交換が生じるのは表面における分子レベルの凹凸の影響と考えることがで きる。そこでそのような凹凸を模擬してやれば良い。

ここではz=Λ(x,y)という曲面で気体分子が鏡面反射を行うものとした。鏡面反 射ではエネルギが保存されるため、(2)の操作と干渉することはない。

この曲面を決める最も素朴な方法は、入射エネルギEinあるいはT_Aに等しいポテ ンシャルを持つ点を結んだ、等ポテンシャル面をΛとすることであろう。しかし、 等ポテンシャル面およびその傾きををいちいち求めるのには手間がかかるため、 これをCos関数で近似しておく。本来、壁面の分子の熱振動の影響を受けてΛの面 は振動をしているはずであるが、今はこれを無視することにする。

まず(111)面で座標系を図5-1-1のようにとる。この時x方向の格子長さを L_x とし、y方向の長さを L_y とする。図の斜線部に対して、 $\Lambda(x,y)$ を定義し、

$$\begin{split} \Lambda(\mathbf{x},\mathbf{y}) &\equiv \frac{\mathbf{a}_1}{2} \left(1 - \cos\left(\frac{2\pi}{L_{\mathbf{x}}}\mathbf{y}\right) \right) + \frac{\mathbf{a}_2}{2} \left(\cos\left(\frac{2\pi}{L_{\mathbf{y}}}\mathbf{y}\right) - 1 \right) + \mathbf{a}_3 \quad (5\text{-}1\text{-}13) \\ \mathcal{O} \mathcal{H} \mathbf{c} \mathbf{\mathbb{Z}}^d \left(\mathbf{a}_1 \mathbf{b} \mathbf{b} \mathbf{a}_3 \mathbf{d} \mathbf{z} \mathbf{\mathcal{T}} \mathcal{H} \mathbf{b} \mathbf{z} \mathbf{\mathbf{x}} \mathbf{c} \mathbf{\mathbf{b}} \mathbf{b} \right) , \\ \mathbf{g} \mathcal{K}_o \end{split}$$

まず、図の斜線部からランダムに1点(xc,yc)を選ぶ。x=xcとなる確率が $\frac{L_y}{2} - \frac{L_y}{L_x} x_c$ に比例するように、乱数を用いてxcを選ぶ。ycは0とy= $\frac{L_y}{2} - \frac{L_y}{L_x} x_c$ との間 で一様に選ぶ。この位置に置ける曲面 Λ の法線ベクトルは

(5 - 1 - 14)

92

と書ける。特に調整した表面でない限り、図5-1-1の格子の並ぶ向きは実際の座標系に対して任意の角度を持っているとしてよいので、これを考慮して図5-1-1におけるxy方向のnの方向を回転角度2 π Uだけ回転させる。(Uは0から1の一様乱数)曲面 Λ で反射する直前の速度ベクトルをv_e、反射後の速度ベクトルをv_Bとすれば、鏡面反射の性質より

$ \mathbf{v}_{\mathrm{C}} = \mathbf{v}_{\mathrm{B}} $	(5-1-15)
$\mathbf{v}_{\mathbf{C}} \cdot \mathbf{n} + \mathbf{v}_{\mathbf{B}} \cdot \mathbf{n} = 0$	(5-1-16)
の関係が得られる。これより	
$\mathbf{v}_{\mathrm{B}} = \mathbf{v}_{\mathrm{C}} - 2(\mathbf{n} \cdot \mathbf{v}_{\mathrm{C}}) \mathbf{n}$	(5-1-17)
が得られる	

(4) このような段階を経たあとで、気体分子は一旦壁面から離れようとする。 このときに(1)とは逆の作用を受け、気体分子はその法線方向に<ΔE_{mA}>だけ の滅速を受ける。滅速後の速度の正負により、気体分子を離脱するものと、引き 続いて次の衝突過程に入るものとに分類する。後者の場合は(1)へ戻る。ただ し、5ないし6回の衝突の後には、気体分子はほぼ完全に物理吸着したものと判 断して、壁面の温度のMaxwell分布の速度分布で気体分子を離脱させる。

図5-1-2 模擬した等ポテンシャル面A(x,y)の3次元投影図

モデルの定数としては系によって選定する必要がある。例えば、壁面温度95[K] のX e-P t の系であったなら、Stage (2) においてはkn= 0.286, kt= 0.6 kn, s1= 0.054 となる。またStage (3) におけるa1,a2についてはX e-P t の間の分子間ポ テンシャルの総和から求めることが出来る。入射エネルギをLaをとし、表面で

 $\sum \phi(0,0,z) = E_0$ を満たす高さzをz₁,

 $\sum \phi(0, \frac{L_y}{2}, z) = E_0$ を満たす高さを z_2 ,

 $\sum \phi(\frac{L_x}{2}, 0, z) = E_0$ を満たす高さをz,として求める。式の中の和は14程度の表面分子からの寄与の和とする。これを衝突の度に求めるのは計算が大変であるので、入射エネルギの平均値あるいはオーダーであらかじめ求めておく。X e-P t の系で、今回の計算の入射エネルギのオーダーでは、 z1=0.6562, z2=0.6385, z3= 0.7693となる。これらから、

$a_1 = Z_3 - Z_1$	(5-1-18)
$a_2 = Z_1 - Z_2$	(5-1-19)
- 2 。1+中際には使われたいので、あいていまい	,/

とする。a,は実際には使われないので、求める必要はない。

5.2.2 モデルとシミュレーションの比較

本モデルはシミュレーションのエネルギ伝達についての知見を基に構成した。 そこで、モデルの表現力を調べるために、3章のシミュレーション結果における 時刻t_Bでの速度の分布を比較した。速度は法線方向、接線方向のそれぞれで比較 を行った。図5-1-3から図5-1-14に、比較の結果を示す。入射エネルギが小さい場合 には速度分布は比較的一致するものが得られているが、入射エネルギが大きい場 合には分布の広がりがシミュレーションに比べて若干広がっている。

図5-1-4 平均速度の比較(法線方向)

図5-1-5 速度分布の比較(case 3)

図5-1-6 速度分布の比較 (case 5)

図5-1-7 速度分布の比較 (case6)

図5-1-9 速度分布の比較 (case8)

図5-1-10 速度分布の比較 (case10)

図5-1-11 速度分布の比較 (case11)

図5-1-12 速度分布の比較 (case13)

図5-1-13 速度分布の比較 (case15)

図5-1-14 速度分布の比較 (case16)

5.1.3 モデル定数の決定

上の節ではモデル定数として、壁面温度が95[K]の場合のX e-P t (111)の系での値を示した。ここでは他の物体の場合での定数の決め方について考える。

まず、初期加速のエネルギ<ΔE_{inA}>は、固体表面上空でのボテンシャルの井戸 の最低値の約96%であると考えられる。このボテンシャルの最低値は、固体表面の 分子間距離とミラー指数、および気体-固体分子間のボテンシャル係数がわかって いれば比較的容易に求めることができる。

等ポテンシャル面Λ(x,y)も同様であり、前節に示した方法で求めることができ る。入射エネルギの平均値でa1,a2を固定したが、入射エネルギが広い範囲に広が る場合には、その値に応じて求め直した法が正確であろう。

Stage (2)のエネルギの交換に関しては、第4章での考察を基に気体-固体間の ボテンシャル係数 ε 、 σ および相対質量 μ からモデル定数を決めることが出来る。 4章の結果によれば、 Δ Eの平均値はTAと $\zeta(\theta A)$ の積に、更に $\varepsilon \geq \sigma$ が積の形で 影響し、 μ はパネ-質点系の理論解f(μ 、 κ)の積の形で影響する。すなわち、

< $\Delta E^{b} = \varsigma \varepsilon_{\sigma} (1 - f'(\mu, \kappa)) T_{\kappa} \zeta(\theta_{\lambda})$ (5-1-20) と表現できる。ここで次元を考えると、 $\Delta E^{b} TA (L + \lambda) \mu \pi \sigma$ 次元を持ち、1-f'と なは無次元、 $\varepsilon_{\sigma} (L + \lambda) F \sigma$ 次元を持っている。比例定数c1は1/Fの次元を持つ

量となり、ここで用いた基準化された物理量についてのみ、値が意味をもつ量と なる。knの定義より、

 $kn = c_1 \epsilon \sigma (1 - f'(\mu, \kappa))$ (5-1-21) と定義できる。fを求めるためには μ の他に κ が必要であるが、バネの定数を Morse ポテンシャルだけから見積もることは非常に難しい。この推定法を確立する ことは、今後の課題である。

また今回確認のできた範囲では全て

kt= 0.6 kn

とおいて問題ない。第3章9節の結果および5章1、2節の結果より、エネルギ 伝達量の分散s²は壁面温度と入射エネルギに比例すると考えられる。このとき

 $s^2 = c_2 k_B Ts T_A$ (5-1-22) とかける。ここで分散s²はエネルギ分布の分散であるので、次元はエネルギの2乗 となる。上の式の右辺は($k_B Ts$)と T_A が共にエネルギの次元を持つものであるから、 比例定数c₂は座標系や基準量に関係なく、一定と考えてよい。第3章9節の結果よ り

 $c_2 = 0.9268$

(5-1-23)

とする。ここでの基準の取り方では k_B は既にTsに含まれているので、モデルで用いた定数s1は

 $s1 = c_2 Ts$

のように決めることができる。

5.2 モデルの検証

構成したモデルがどのような挙動を示すかを調べ、また、実際に希薄気体流れ の境界条件としてこのモデルを用いた場合の流れ場への影響について調べた。

5.2.1 捕獲確率の変化

従来のX e-P t 系における知見として、その捕獲確率(物理吸着確率)が入射 エネルギE₀と入射角度 θ_0 に対して、 $E_0\cos^2\theta_0$ ではなく $E_0\cos^4\theta_0$ でに比例するという ものがある[4]。cosのべき乗のaは0から2の程度に変化するとされる。本モデルで は入射エネルギに井戸の深さを加えてから衝突過程に入るため、このような複雑 な挙動を良く整理できることが期待できる。そこで本モデルにおいて入射エネル ギと入射角度を変化させ、捕獲確率を求めた。その様子を図5-2-1に示す。横軸は $E_0\cos\theta_0$ であり、縦軸は捕獲確率である。ほぼ、 $E_0\cos^4\theta_0$ で整理できている様子が わかる。

図5-2-1 捕獲確率の変化

5.2.2 平衡状態

このモデルを用いて、熱的な平衡状態が得られるかどうか、を調べた。このた めに2次元の正方形の領域を設定し、この中に分子間相互作用のない気体分子を おく。初め気体分子の平均温度を500[K]とする。四方の壁での反射をM.S.モデルと して、Direct Simulation Monte Carlo 法に準じた方法で分子の運動を計算し、十分時 間がたった後の平均温度を求める。この温度はM.S.モデルにおける壁面温度に一 致している必要がある。ここでは壁面温度を300[K]として、計算を行った。

30000ステップの後に、気体分子の平均温度は約298[K]となり、M.S.モデルが熱 平衡状態を実現できることが確認できた。

5.2.3 希薄気体流れ場への影響

次に、モデルの差異によって流れ場がどれほど影響を受けるかを調べた例を示 す。計算対象としては、隙間流れを選んだ。この流れにおいては、隙間部の表面 荒さが流量に大きく影響することがすでに宇佐美らによって示されている。[2]

図5-2-2にシミュレーション空間を示す。図の左から右へ向かって流れが生じる。 下流側は真空状態として、 $P_2=0[Pa]$ とした。上流側は圧力 $P_1=3.48[Pa]$,温度 $T_1=300$ [K]で静止した状態とする。圧力差により、気体は厚さsのスリットを通って真空 側へ吹き出す。このとき、スリット部の壁面の条件を変化させて、流出速度等の 変化を見た。系の代表長さを $s=1.0x10^4[m]$ とし、中の気体分子をXeとすれば、 Knudsen数はKn=10となる。

この系における気体分子の流れを、Direct Simulation Monte Carlo 法を用いて計算 する。気体分子はX e の物性を与えたが、気体分子同志の衝突はHard Sphereで行 うものとし、衝突処理はKouraによるNull-Collision法[41]を用いた。ただしこの計

算条件では分子間衝突はほとんど生じない。位置座標系は2次元アカルト座標系 とし、速度成分に関しては3次元で求めた。計算は平衡状態が得られるまで継続 した。

壁面の境界条件としては"test wall"の部分以外は拡散反射モデルを用いた。"Test wall" 部には、(A)鏡面反射モデル、(B)拡散反射モデル、(C)Cercignani-Lampisモデル、(D)Multi-Stageモデルの4種類を用いて比較を行う。ただし、全ての場合で壁面の温度は300[K]で一定とした。(C)のCercignani-Lampisモデルでは2つの適応係数を調節すれば(A),(B)の両モデルを表現することができるが、ここでは、法線方向の運動量適応係数 $\alpha_n=0.8$,接線方向の運動量適応係数 $\alpha_i=0.1$ としたものを用いた。Multi-Stageモデルでは上で定めたモデル定数を用いた。壁面温度は100[K]とした。

計算セルは正方形形状とし、スリット部の高さ方向に20個配置した。

図5-2-3にスリット部から真空へ噴出する気体分子の、セル毎の平均速度<u>を 比較した結果を示す。横軸は y の値の小さい順に並べたセルの番号である。また 図5-2-4にはセル毎の平均温度の比較を示した。

図5-2-2 計算領域。s=1.0x10⁴[m], L=7.5x10⁴[m], t=1.5x10⁴[m], H=6.0x10⁴[m]。

図5-2-4 スリット部の温度の比較

速度の分布を比較すると、鏡面反射以外のモデルでは壁付近の速度は、壁の影響を受けて低下している。M.S. modelと拡散反射モデルではこの低下が著しい。ここで用いたC.L.モデルは壁の法線方向の適応係数が0.8、接線方向の適応係数が0.1で、法線方向の適応係数が比較的高い割には速度分布はむしろ鏡面反射のものに近くなっている。M.S.モデルよりも拡散反射の方がわずかながら平均速度が大きいが、これら2つはほとんど同一の結果を示している。

平均温度を比較した図5-3-4では、鏡面反射モデルの場合が平均温度が最も高い という結果が得られた。拡散反射とM.S.モデルはやはりほとんど同一の結果とな り、C.L.モデルは中間の値を示した。鏡面反射はもともと壁面の状態とは独立で あるが、他のモデルは壁面温度が100[K]と低いことの影響を受けている。この場 合、速度増加に伴う温度の低下と壁面温度による冷却の両方の効果が見られてい る。

ここで示した計算条件の下ではM.S.モデルはほとんど拡散反射と同一の結果を 示している。これは計算条件の設定が不適切であり、このような場合にはM.S.モ デルではほとんどの場合で拡散反射モデルを選択してしまう。顕著な差があらわ れるのは、より気体のエネルギの大きい場合であろう。

第6章 結論

単原子分子の気体分子が清浄な固体結晶の表面に衝突する過程を分子動力学の 手法を用いてシミュレーションし、解析を行った。

まず、気体分子としてX e、固体結晶としてP tを選び、P t の(111)面 についてのシミュレーションを行った。このシミュレーション結果の捕獲確率が 報告されている実験結果とよく一致していることを確認した。さらに散乱の角度 分布を2つの代表値を用いて定量化し、その初期条件との関係を調べた。つぎに、 1回目の衝突過程に着目し、この過程におけるエネルギの変化を調べた。その結 果、表面全体から加速を受けるStage,エネルギの伝達を行うStage,表面全体から滅 速を受けるStageに、1回の衝突過程を分離できることを明かとした。また気体分 子が1回の衝突で失うエネルギムEに関して、入射エネルギ、入射角度と Δ Eの平 均値の関係を得ることが出来た。 Δ Eの分布がほぼ正規分布となることも確認した。 この際の速度分布については、表面に垂直な速度成分の散乱後の値は、入射前の 運動量の大きさにほぼ比例すること、表面に平行な成分に関しては、入射角度の 依存性が強く見られること等を示した。

次に、壁面温度や分子間ボテンシャルの係数や気体分子の相対質量を変化させ、 そのΔEへの影響を調べることを行った。その結果、壁面温度は衝突における平均 のΔEにはあまり大きな影響を与えてはおらず、その分散に影響すること、ボテン シャル係数は気体分子に加わる斥力の式の形でΔEに影響すること、相対質量の影響はバネ-質点系における質量の効果に相似であること等を示した。

これらの解析の結果と、簡単な理論計算の結果から得た知見とを基にして、単 原子分子の壁面での散乱モデルを構成した。このモデルを用いることで、気体分 子の物理吸着確率の挙動について、実験と一致するという結果を得た。また実際 の希薄気体流れの計算にこのモデルを適用し、その流れ場に対する影響を評価し た。

付録

(A)拡散反射の式の導出

拡散反射の式を導出し、この反射が余弦則であることを示す。

拡散反射モデルの式は次のようにして導くことができる。面の法線方向がz方向であるとし、z=0の面が表面であるとする。この面のz<0の側には温度Tsの平衡状態の気体があるものとする。この時平衡の熱速度は

$$\frac{1}{\beta} \equiv \sqrt{\frac{2k_{\rm B}T_{\rm S}}{m_{\rm g}}}$$

(A-1)

(A-2)

と書ける。また、分子の速さがcとc+dcの間にある確率が $f_{c}(c)$ dcとなるような、分子の速さの分布関数fcは

$$f_c(c) = \frac{4}{\sqrt{\pi}} \beta^3 c^2 \exp(-\beta^2 c^2)$$

と表せる。また、分子はz<0で一様に分布しているものとする。

さて、微小時間dtの間に、表面上の微小面積dAを通過して、散乱角度(θ、η) でz>0の領域に飛び込むことの出来る、速さcを持つような分子の個数を考える。

図A-1 x y 平面を通過して流入する分子数

まず、図の斜めの円筒の内部に存在する、速さ c の分子の個数は、上で示した 式より、

 $\{\rho f_c(c) dc\} (c \cos \theta dt dA)$

(A-3)
と書ける。ただし、pはz<0での気体分子の数密度とする。

これらの分子は速さは c であるが、その速度の方向は様々である。そこで速度 ベクトルの向きが角度(θ 、 η)の方向を向いている分子の割合を考える必要が ある。角度(θ 、 η)から(θ + d θ 、 η + d η)の範囲を微小立体角 d Ω で表 すことにすれば、上の割合は、半径1の球の面積に対する d Ω の値に等しくなる。 すなわち

 $\frac{d\Omega}{4\pi}$

が、分子の速度方向がランダムである場合にその向きが (θ 、 η) を向く確率で ある。この微小立体角 d Ω は

 $d\Omega = \sin \theta \, d\theta \, d\eta$

(A-5)

(A-4)

と表せる。以上より、dAの面積をdtの間に通過する、速さが c で速度の立体角が Ωであるような分子の個数は

 $\frac{d\Omega}{4\pi} \rho c \cos \theta dA dt f_c(c) dc$

(A-6)

zとなる。そこで、単位面積、単位時間あたりでは

 $c \cos \theta f_c(c) dc d\Omega$

に比例する個数の分子が、壁面を通過することになる。壁面を通過して飛び出してくる分子の速度分布fm(c)は、確率密度関数に対する規格条件

$$1 = \int_0^{\infty} dc \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\pi} d\eta \ f_m(c)$$

から比例定数を定めることができて、

$$f_{m}(c) = \frac{2}{\beta} \beta^{4} c^{3} \cos \theta \exp(-\beta^{2} c^{2}) dc d\Omega$$

(A-8)

(A-7)

となる。すなわち、単位立体角あたりに散乱する分子の個数は、cosθに比例する。

(B) 積分手法による計算精度の比較

時間積分の手法の選定とチェックをかねて、異なる積分方法で同一の計算を行い、計算途中での全エネルギの保存の程度を比較した。比較計算は1次元の系で気体分子1つと結晶分子4つからなる系において行った。基準化された時間で時刻t=11まで計算を行う。

積分方法として、

1. Verlet: 通常のverlet法

2. R.K.F.: 時間刻み自動変更の4次ルンゲクッタ法

M.T.S.: Verletで気体分子と1層目の結晶分子のみ時間分割

の3つを選んだ。R.K.F.は基本の Δt を計算状況に応じて自動分割するもの、 M.T.S.は基本の Δt をN等分するとして、Nを変化させて比較を行う。これらの結 果を表B-1に示す。Wg はt=11における気体分子の速度であり、max(ΔE)は系の全 エネルギの誤差の最大値、Timesは計算終了までに分子間力を計算した回数である。

自動的にΔtを計算するR.K.F.は非常に優秀であり、同等の計算回数に対して Verlet法に優越していると考えられる。しかし、10⁶程度の誤差を許すのであれば、 M.T.S.法の法が1/10近い計算回数の削減が可能である。

表B-1

Method	Δt	N-divided	Wg	max(ΔE)	Times
Verlet	1.0E-2		-0.1567077E+00	3.71513E-05	1101
	1.0E-3 1.0E-4		-0.1567222E+00	3.69760E-09	11001
R.K.F.	1.0E-2		-0.1567220E+00	8.18709E-12	46279
M.T.S.	1.0E-2 1.0E-2 1.0E-2 1.0E-3 1.0E-3	1 4 10 1 10	-0.1567077E+00 -0.1567194E+00 -0.1567255E+00 -0.1567222E+00 -0.1567218E+00	3.71513E-05 2.32561E-06 1.82976E-06 3.70601E-07 1.79701E-08	1101 *1101 *1101 11001 *11001

*基本周期の計算のみを数えた。

参考文献

- 1 Bird,G.A., "Molecular Gas Dynamics", Oxford Univ. Press, London (1976)
- 2 宇佐美、藤本、加藤、「スリットを通る希薄気体流の表面荒さによ る流量減少効果」、日本機械学会論文集、No87-0610A,54巻501号、 昭和63年
- 3 池川、小林、"Deposition Profile Simulation Using the Direct Simulation Monte Carlo Method", J. Electrochem. Soc., Vol. 136, No.10, (1989), pp.2983-2986
- 4 Arumainayagam, C.R., Madix, R.J., Mcmaster, M.C., Suzawa, V.M., Tully, J.C., "Trapping Dynamics of Xenon On Pt(111)", Surface Science 226, (1990), pp.180-190
- 5 小間、他編、「表面物性工学ハンドブック」、丸善、昭和62年
- 6 Sitz,G.O, Kummel,A.C., Zare,R.N, "Direct Inelastic Scattering on N₂ from Ag(111). 1.Rotational Populations and Alignment", J.Chem.Phys. 89(4), (1988), pp.2558-2571
- 7 Sitz,G.O, Kummel,A.C., Zare,R.N, Tully,J.C., "Direct Inelastic Scattering on N₂ from Ag(111). 2. Orientation", J.Chem.Phys. 89(4), (1988), pp.2572-2582
- 8 Kummel.A.C, Sitz,G.O., Zare,R.N, Tully,J.C., "Direct Inelastic Scattering of N₂ from Ag(111). 3. Normal Incident N₂", J.Chem.Phys.89(11), (1988), pp.6947-6955
- 9 Hanisco, T.F., Yan, C., Kummel, A.C., "Energy and Momentum Distributions and Projections in the Scattering of CO from Ag(111)", J.Chem.Phys. 97(2), (1992), pp. 1484-1490
- 10 Koehler,B.G., Mak,C.H., Arthur,D.A., Coon,P.A., George,S.M., "Desorption Kinetics of Hydrogen and Deuterium from Si(111)7x7 Studied using Laser Induced Thermal Desorption", J. Chem. Phys. 89(3), (1988), pp.1709-1718
- 11 Peterlinz,K.A., Curtiss,T.J., Sibener,S.J., "Coverage Dependent Desorption Kinetics of Co from Rh(111) using Time-Resolved Specular Helium Scattering", J.Chem.Phys. 95(9), (1991), pp.6972-6985
- 12 Head-Gordon, M., Tully, J.C., Schlichiting, H., Menzel, D., "The Coverage Dependence of the Sticking Probability of Ar on Ru(001)", J.Chem.Phys. 95(12), (1991), pp.9266-9276
- 13 Cercignani, Lampis, M., "Kinetic Models for Gas-Surface Interactions", Transport Theory and Statistical Physics, Vol 1(2), (1971), pp.101-114
- 14 Borman, V.D., Krylov, S.Y., Harmans, L.J.F., "Theory of Nonequilibrium Phenomena at a Gas-Solid Interface", Sov. Phys. JETP, Vol. 67, (1988), pp. 2110-2121

- 15 Hoogeveen, R.W.M., Harmans, L.J.F., Borman, V.D., Krylov, S.Y., "Unified Description of Rotating-Molecule - Surface Interactions: Comparison with Experiment", Physical Review A, Vol.42, No.11, (1990), pp.6480-6485
- 16 Porodnov, B.T., Balakhonov, N.Ph., Seleznev, V.D., Tokmantsev, V., "Temperature dependence of gas atom s energy accommodation on the surface of equilibrium and non-equilibrium solid", 15th R.G.D. Symp.
- 17 Goodmann,F.O., "The Dynamics of Simple Cubic Lattices. 1. Applications to the Theory of Thermal Accommodation Coefficients", J. Phys. Chem. Solids, Vol. 23, (1962), pp.1269-1290
- 18 Manson, J.R, "Simple Model for the Energy Accommodation Coefficient", J.Chem.Phys. vol 56, No.7 (1972),pp.3451-3456
- 19 Jackson, B., "The Effect of Impact Angle and Corrugation on Gas-Surface Energy Trasfer and Sticking: A Semiclassical Study", J.Chem.Phys. 94(1), (1991), pp.787-800
- 20 Jackson, B., "A Semiclassical Study of He, Ne and Ar Sticking on Metal Surfaces", J.Chem.Phys. 94(7), (1991), pp.5126-5134
- 21 Agrawal,P.M., Raff,L.M., "A Semiclassical Wave Packet Model for the Investigation of Elastic and Inelastic Gas-Surface Scattering", J.Chem.Phys. 77(7), (1982), pp.3946-3952
- 22 Drolshagen,G., Heller,E.J.,"A Wave Packet Approach to Inelastic Scattering from Large Targets", J.Chem.Phys.82(1), (1985) pp.226-235
- 23 Adelman,S.A., Doll,J.D., "Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering : General Formulation for Classical Scattering off Harmonic Solids", J.Chem.Phys, 64(6), (1976), pp.2375-2388
- 24 Tully,J.C.,"Dynamics of Gas-Surface Interactions : 3D Generalized Langevin Model Applied to fcc and bcc Surfaces", J.Chem.Phys. 73(4), (1980), pp.1975-1985
- 26 Brooks III, C.L., Berkowitz.M, Adelman,S.A., "Generalized Langevin Theory for Many-Body Problems in Chemical Dynamics: Gas-Surface Collisions, Vibrational Energy Relaxation in Solids, and Recombination Reactions in Liquids", J.Chem.Phys. 73(9), (1980), pp.4353-4362
- 27 Black, J.E., Bopp, P, "A molecular Dynamics Study of the Behaviour of Xenon Physisorbed on Pt(111): Coverages Less than One Monolayer", Surface Science 182, (1987), pp.98-124
- 28 Goodman,F.O, Wachman,H.Y." Dynamics of Gas-Surface Scattering", ACADEMIC PRESS, 1976
- 29 Hurlbut,F.C., "Gas/Surface Scatter models for satellite applications", Thermophysical Aspects of Re-entry Flows, Vol. 103 of Progress in Astronautics and Aeronautics, AIAA, (1986), pp. 97-118
- 30 Tully, J.C., "Washboard Model of Gas-Surface Scattering", J.Chem.Phys. 92(1), (1990), pp.680-685

- 31 Lord,R.G., "Application of the Cercignani-Lampis Scattering Kernel to Direct Simulation Monte Carlo Calculations", 16th Rarefied Gas Dynamics symposium, (1989)
- 32 Streett, W.B. Tildesley, D.J., "Multiple Time-Step Methods in Molecular Dynamics", Molecular Phys., Vol.35, (1978), pp.639-648
- 33 Koura,K. "Null-Collision Techique in the Direct-Simulation Monte Carlo Method", Phys. Fluids, 29(11), (1986), pp.3509-3212
- 34 南 茂夫 編著「科学計測のための波形データ処理 -計測システムに おけるマイコン/パソコン活用技術」CQ出版,(1986),pp.111-113
- 35 柴田義貞,「正規分布」UP数学全書、東京大学出版会、pp.228-230
- 36 東京天文台編纂「理科年表」、丸善(1990)

謝辞

本論文の執筆にあたっては、指導教官である東京大学工学部・機械工学科教授 の松本洋一郎先生に終始、懇切丁寧な御指導をいただいた。時として視野狭窄を 起こして暴走しがちであった著者に対して、適切な助言と明解な指針を与え、分 子熱流体という未知の分野で研究を進める上での依り処を与えていただいた。ま た、国際会議を含む数々のシンポジウムに参加する機会を与えていただいた事は 著者にとっての大きな刺激となった。二原子分子の散乱、表面の汚れの影響など、 当初先生の掲げられた目標は本論文よりも遥かに高いところにあったのであるが、 著者の力量不足のために全て達成することが出来なかった。感謝と共にお詫びを 申し上げたい。

現工学院大学教授の大橋秀雄先生には、通常の流体力学からかなり逸脱してし まった著者の研究に対して深い理解を示していただき、研究を続ける上での大き な励みとなった。

東京大学教授の小竹進先生には、毎週金曜日の小竹研究室の研究会に参加させ ていただき、計算手法から考察に至るまで御指導をいただいた。本論文での考察 はその多くをこの研究会での議論に依っている。毎週、何等かの結果を発表しな ければならないこの研究会に参加しつづけることは柔弱な著者に取っては試練と もいうべき体験であったが、分子熱流体の専門家の方々から示唆に満ちた御指摘 を受け、議論できたことは、正に得難い経験である。このような機会を与えてい ただいたことに対して、ここにあらためて感謝の意を表す。

本学工学部教授の庄司正弘先生、小林敏雄先生、同じく助教授の荒川忠一先生 は、本論文をまとめるにあたり、多くの有益な御指摘、御助言を下さった。また、 本学工学部講師の丸山茂夫先生には毎週の研究会において並々ならぬ熱意を持っ て議論に参加していただいた。

流体工学研究室の川田達雄氏には、本研究に関する物品購入等の事務処理に関 して全面的にお世話になった。同じく市川保正氏には計算機環境の整備に関して 多大な指導と援助を賜った。

流体工学研究室に在籍された、現琉球大学の照屋功氏には、研究の進め方から 測定器の作り方、素麺の作り方まで、一から教えていただいた。全身全霊を研究 に打ち込む氏の姿勢は、研究者としての心構えを著者にしらしめるものであった。 また、現上智大学の野々下知泰氏には研究面のみならず公私共に頼れる先輩とし てずいぶんお世話になった。現石川島播磨重工業の西川秀次氏には計算機の使い 方、プログラムの方針等について実地に即した教示をいただいた。また現東北大 学の小原拓氏には、計算機と数値計算全般について御指導をいただいた。本研究 は、氏の精力的な研究活動に引張られる形で進められたと言っても過言ではない。 現新日本製鉄の黒木雅嗣氏には研究の初期の段階で、分子動力学と量子力学につ いて教示をいただいた。

流体工学研究室博士課程2年の亀田正治君には研究面や計算機環境の整備のみ ならず公私にわたり御世話になった。また希薄気体および分子熱流体についての 研究を進めた宮川和也君(現川崎製鉄)、中原淳二君、谷中一勝君(現NTTデー 夕通信)、徳増崇君、奥坂潤君とは、非常に興味深い議論をすることができた。 特に奥坂君には本論文第5章のモデルの検証に関して精力的な支援をいただいた。 現博士課程3年の竹村文男君には本論文を完成するにあたり、負うところが非常 に大きい。実験と計算の両面に熟達した竹村君の鋭い発想は幾多の有益な示唆を 与えてくれたのみならず、その研究への真摯な努力は、怠惰な著者を常に戒める ものであった。

著者が流体工学研究室に所属して既に6年が経過したが、懐の深い先生・先輩 諸氏と個性豊かな方々に囲まれて心穏やかに学生生活を過ごすことができた。こ こに本論文を完成させることができたのも、方々の御理解、御支援があればこそ である。ここに深く感謝の意をあらわし、御礼を申し上げる。

以上

1p-- 113ページ 完

学位論文

1992年12月21日 提出

07039 松井 純

