
Chapter 7 Systematic Methodology of Earth-Moon Transfer Trajectory Design 

with Gravitational Capture 

This chapter focuses on trajectory design method for earth-moon transfer which 

fully takes advantage of gravitational capture mechanism. In the course of orbit design, we 

assume that two analyses concerning gravitational capture (Chapter 4) and solar effect 

(Chapter 6) are given beforehand which provide the outline of orbital profile to 

considerable extent. A systematic orbit design method, with previously given information, 

is newly proposed and applied for earth-moon path construction in multi-body system. 

7.1 Formulation of Earth-Moon Transfer Trajectory Design 

From the numerical analysis of gravitational capture (Chapter 4), semi-major axis 

and perigee distance conditions prior to gravitational capture was obtained. Besides, orbital 

shape in the vicinity of the moon as well as resultant perilune conditions at lunar insertion 

point were given. On the whole, Chapter 4 describes the orbital profile of near-capture 

phase of earth-moon transfer trajectory. On the other hand, the analysis of solar effect in 

sun-earth-SIC three-body system (Chapter 6) provides possible orbital profile of 

geocentric portion of earth-moon transfer which satisfies pre-capture conditions given in 

Chapter 4. 

With the accumulated information through these two analyses, potential way for 

effective procedure for earth-moon transfer trajectory design is discussed in this section. 

7 .1.1 Miscellaneous Approaches for Earth-Moon Path Construction 

with Gravitational Capture 

We can imagine as an ideal case that earth-moon transfer trajectory is accomplished 

without using correction maneuver en route to the goal, namely lunar insertion point. 

Actually, it is possible to construct this 'natural' type transfer in a troublesome way. For 

example, firstly, assume a perilune at a certain location corresponding to the mission 
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objective. Secondly, propagate in backward time from perilune and see whether S/C could 

reach the earth within a reasonable flight time . If not, search perilune velocity until 

trajectory reaches the earth with prespecified perigee distance. By thi s trial and error 

method, so to say, we can for the time being obtain what we call 'natural' earth-moon 

transfer trajectory with gravitational capture at moon. However, sensitivity to perilune 

velocity is so high that it is nearly impossible to adopt this method from practical point of 

view. Besides, this method is not able to utilize the previously given information. 

Here, midcourse velocity correction is introduced taking advantage of artificial 

spacecraft controllability. First, single delta-V case is considered. Single midcourse 

maneuver requires direct targeting from both earth departure and lunar insertion point (see 

Fig.7-l ). However, this approach is still extremely sensitive for targeting due to high 

nonlinearity. Similar concept was utilized by J.Miller et al.[67]. 

Next, to relieve this high nonlinearity, velocity correction opportunity is doubled 

(see Fig.7-2). Namely, in the first place, trajectories starting from perigee and perilune are 

propagated in forward and backward time for a certain flight time respectively. Secondly, 

these tenninal trajectories are connected by some targeting method. This achieves earth­

moon transfer for the time being which includes velocity correction twice at tenninal points 

for targeting. 

Still there is quite a problem to solve. Amount of midcourse maneuvers is generally 

beyond the capability of spacecraft and hard to reduce, since it is quite sensitive to 

boundary conditions at earth departure as well as lunar insertion. Thereby, for refining the 

boundary conditions, some optimization method is needed. 

7 .1.2 Formulation as a Parameter Optimization Problem 

Now, attention is paid to well-known design approach of multi-swingby orbit. It is 

conventionally constructed as parameter optimization problem, where control parameters 

are constituted of B-plane parameters (see Appendix J). The sum of trajectory correction 

maneuver is usually taken as performance index. For the generation of trajectory, patched 
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conic method [87-88] as well as multi-conic method [89-90] are occasionally utilized (see 

Appendix F for multi-conic method). 

Here, this concept is extended to gravitational capture orbit. In gravitational capture 

orbit, two-body conic approximation is insufficient from precision point of view even for 

preliminary analysis, as can be imagined from the studies in previous chapters. This 

inevitably requires trajectory generation in multi-body system consisting of at least three 

bodies. 

With this observation, we construct a novel trajectory construction procedure for 

earth-moon transfer with gravitational capture, whose underlying concept is parameter 

optimization. Characteristics of the proposed method are as follows (see Fig.7-3); 

(a) Earth-moon transfer trajectory is divided into three segments, by which inherent 

sensitivity to boundary conditions at earth departure and lunar insertion is localized and 

lowered as well. The length of each segment is arbitrarily selected. 

(b) Results of analyses concerning gravitational capture (Chapter 4) as well as solar effect 

(Chapter 6) are effectively utilized for the initial guess of control parameters, i.e. boundary 

conditions. 

(c) Midcourse velocity correction is taken into account by use of FT A target which 

connects two terminal trajectory segments (inner loop) (cf. Appendix G for FT A target). 

(d) Control parameters are updated and optimized so that performance index constituted of 

total velocity correction maneuver is minimized (outer loop). 

It may be said the use of midcourse maneuvers alleviates the high nonlinearity 

inherent to gravitational capture mechanism, and simultaneously enhances feasibility of 

orbital profile. Precise scheme of the proposed orbit design method is shown below. 

(I) Control Parameters 
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As to control parameters, the following are possibly utilized which correspond to 

boundary condi tions at earth departure and lunar insertion (see Fig.7-4). Control 

parameters shown here are for planar case (i.e. within the plane defi ned by earth-moon 

motion), while perigee and perilune distances are assumed to be given; 

a) perigee velocity and position at earth departure (V perigee• 9perigee). 

b) perilune velocity and position at lunar insertion (V perilune• 9perilune). 

c) total flight time (t 101at). 

d) sun phase defined at a certain epoch (a), 

e.g. moon's position in sun-earth fixed rotating frame at lunar orbit insertion, 

e) epochs at both ends of intermediate trajectory segment (t1, t2), 

Initial guess of parameters b) is obtained from the analysis of gravitational capture, 

while parameters a), c) and d) are from that of so lar effect. Here, we handle them as 

control parameter vector X as follows; 

XT= ( Y perigee' 9 perigee' Y perilune' 9peri lune' t totah a , l J, tz) (7- 1) 

Control parameters are arbitrary in number and flexibly chosen corresponding to 

the miss ion objective. For example, when out-of-plane motion has to be taken into 

account, it can be responded by introducing control parameters such as inclination and 

ascending node. 

(2) Fixed Time-of-Arrival Target (Inner Loop) 

For the inner loop, first, two trajectory segments, eatth-departure and lunar capture 

legs, are propagated forward and backward respectively, assuming some boundary 

conditions given by control parameter X. Then FT A target is utilized for connecting these 

two terminal trajectory segments (see Fig.7-3). This inner loop procedure assures earth-
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moon transfer closed path for the time being, setting aside the amount of midcourse 

maneuvers. 

(3) Performance Index 

Performance index consists of cost function and penalty function. Cost function is 

defined as the sum of trajectory correction maneuvers at both ends of inte rmediate 

trajectory segment for Ff A target. The reduction of this cost function would realize earth-

moon transfer with reasonable delta-V. 

Penalty function may be introduced as additive term to cost function. Apogee 

position information or swingby distance constraint may be included in thi s penalty 

function corresponding to the orbital profile. They are summarized as follows; 

Cost function 

Penaltv function 

Perf onnance index 

The sum of trajectory correction maneuvers 

at tenninal points of Ff A target 

Apogee position infom1ation 

Swingby distance constraint 

Performance index consists of cost and penalty function as shown below. 

(7-2) 

where f1, f2, f3, f4, fs are weight factors as follows (f3, f4, fs may take null value); 

f1 = - 1
- , f2 = -

1
- , etc. 

lt.V 11 lt.V21 
(7-3) 

(4) Modified Newton Algorithm (Outer Loop) 

Modified Newton algorithm is used for obtaining optimal control parameters by 

minimizing perfonnance index. Its algori thm is summarized below. 
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Modified Newton algorithm 

Derivative of perfonnance index F with regard to control parameter vector X, g, is 

expressed as follows; 

Second derivative of performance index F, H (Hessian), has the following form. 

(7-5) 

which is approximated as follows postulating that second derivative of each term 

constituting performance index can be ignored when compared with its first derivati ve; 

H=~2F =2f (MY tT ~~Yt )+ 2f (MV2T ~~V2) 
~X2 1 ~X ~X 2 ~X ~X 

2 f (~Map/ ~~rapo l_2 f (~~eapoT ~~eapo \, (~~rswbT~~rswb) 
+ 3 ~X ~X r 4 ~X ~X f2fs ~X ~X 

(7-6) 
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Now, performance index F and its derivative g are expanded in Taylor series 

around X0 as shown below, 

F = Fo + goT(X-Xo) + ~ (X-Xo)THo(X-Xo) + ... 

g = go + Ho(X-Xo) .... 

(7-7) 

(7-8) 

Provided there exists local minimum of performance index, control parameter 

vector X is updated to minimize performance index F in the following manner 

X= Xo- yHo· 1g (7-9) 

where optimal coefficient y is determined by linear search in the optimal direction 

expressed by Ho·lg. Eq.(7-9) is obtained by equating the right side of Eq.(7-8) to zero. 

When the difference in performance index, between the states before and after updating 

control parameters, gets lower than a certain value, it is regarded as converged. 

(5) Apogee Information 

The proposed method is able to make use of apogee information derived in the 

analysis of solar effect in sun-earth-SIC three-body system (see Chapter 6). Apogee 

positional phase and its geocentric distance may be included in penalty function as additive 

term of performance index (see Sec.7.1.2.(3)). At the initial stage of convergence, this 

works as an insurance against trajectory divergence from what was originally aimed at. 

(6) Use of Lunar Swingby 

When lunar swingby is utilized after earth departure, orbit design would be 

considerably complicated since phasing of the moon between lunar swingby and lunar 

orbit insertion have to be taken into consideration. 
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In the proposed method, use of lunar swingby is coped with as follows; initial 

guess of total flight time is calculated so that both apogee position and lunar swingby lie in 

the same direction in sun-earth fixed rotating frame as seen from the earth (see Fig.7-5). 

As though in the use of apogee information, lunar swingby distance may be included in 

penalty function to ensure lunar swingby use. 

7.2 Orbit Design in Multi-Body System 

In this section, earth-moon transfer trajectory with gravitational capture is actually 

designed in multi-body system using the proposed method. Various profile orbits are 

designed with the variation on the revolution number around the earth, on the use of lunar 

swingby and on capture direction at perilune. 

Sun-earth-moon-SIC four-body system is assumed for the model, where sun, earth 

and moon move in the same plane (see Appendix D). However, the discussion hereafter 

may well adopt precise model with planetary ephemeris, since model error such as solar 

pressure and inclination of moon's motion w.r.t. the ecliptic plane is negligible, and hardly 

affects the orbit design procedure based on the previous analyses in simplified model (i.e. 

earth-moon-SIC three-body model in Chapter 4 and sun-earth-SIC three-body model in 

Chapter 6). 

Fig.7-6 through Fig.7-15 show several examples of earth-moon transfer trajectory 

with gravitational capture at moon. They are numbered from orbit 1 to orbit 10. Each 

orbital profile is plotted in geocentric sun-earth fixed frame as well as in inertial frame. 

Moreover, earth-moon fixed frame is used to describe trajectories in the vicinity of the 

moon. Their orbital sequences with numerical data are tabulated in Table 7 -I. 

Perigee altitude at earth departure is assumed at 200km, while peri lune height at 

lunar orbit insertion is frozen at lOOkm. Lunar insertion points are located at earth side on 

or near earth-moon line except for orbit 9, where perilune is situated over lunar north pole. 

Perilunes are attained by in-plane direct capture for orbit 1-6, 8 and 10. Orbit 7 and 9 

realize in-plane retrograde capture and polar capture, severally. 
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Concerning orbital profile, orbit 1-4 and orbit 7-9 depict single revolution around 

the earth, while orbit 5 and 6 accompany double revolutions. Orbit 8 realizes so-called 

'natural capture' since S/C rotates around the moon after approaching from outside the 

moon's sphere of influence, essentially without trajectory correction maneuver. Orbit I 0 

embodies Halo-type earth-moon transfer where exist three apogees as local maxima of 

geocentric distance. 

SIC incorporates lunar swingby right after earth departure in orbit 3 through orbit 

10. And in every case (orbit 1- 10), final approach to the moon is from anti-earth side as 

discussed in Sec.5.3. These observations are clearly derived when seen in earth-moon 

fixed frame plots. 

As to control parameters assumed in orbit design procedure, the following five are 

used for orbit 1-8 and orbit I 0: perigee position and velocity at earth departure, peri lune 

velocity at lunar orbit insertion, total flight time, and sun phase. Exceptionally, polar 

capture case (orbit 9) requires inclination at earth departure to be the sixth control 

parameter. 

Initial values of control parameters in orbit 2, 4 and 6 correspond to the converged 

ones of orbit I, 3 and 5, respectively (see Table 7-2 for numerical data) . Concerning 

penalty function, apogee information is taken into account in orbit I , 3 and 5, while 

swingby distance is constrained in orbit 3, 5, 7 and 9 (see Table 7-3, Sec.7 .1.2.(5), (6)). 

Thus, it may be said that orbit 2, 4 and 6, which are exempt from constraints during 

optimization procedure, are finally obtained from orbit 1, 3 and 5 respectively by further 

optimization. 

Each orbit converged in around 5 loops (15 minutes CPU time in M780 of Fujitsu 

Ltd.), where one loop corresponds to an update of control parameters (i.e. outer loop). 

Convergence of trajectories are depicted in Fig.7-16 for orbit 3-6 in sun-earth fixed frame. 

In Fig.7-17 are illustrated the convergence of performance index and its derivative with 

respect to control parameters also for orbit 3-6. During design procedure, it was observed 
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that total trajectory correction maneuver is particularly sensitive to perilune velocity as well 

as sun phase (not shown in Fig.7- 17). 

The proposed method shows satisfactory convergence corresponding to initially 

guessed control parameters through the information of Chapter 4 and 6. Inversely 

speaking, the analyses concerning gravitational capture (Chapter 4) and solar effect on 

geocentric orbit (Chapter 6) provide enough information for the design of thi s kind of 

trajectory. 

7.3 Conventional Approaches for Earth-Moon Transfer 

Before proceeding to the discussion of the merit in the use of gravitational capture, 

conventional approaches for earth-moon transfer are thoroughly investigated. Well-known 

transfer geometries are Hohmann transfer and bi-elliptic transfer (see Fig.7- I 8). Bi­

parabolic transfer is categorized into an extreme case of bi -elliptic transfer. 

Hohmann transfer is optimal in case of transfer from circular (rad ius r1) to circular 

(radius r2) trajectory by use of two delta-Vs at terminal points. When the ratio rv r t is 

larger than 15.58172, bi-elliptic transfer is superior to Hohmann transfer in terms of total 

delta-V as far as apogee distance is larger than r2 [91]. When applied to earth-moon 

transfer, r1 and r2 take the value of 6,578km (200km altitude) and 384,400km severally, 

which yields rvrt of 58.44. Therefore, bi-elliptic transfer is preferable on the assumption 

of circular-to-circular transfer. 

However, when lunar orbit insertion is taken into account, the result changes 

drastically. Table 7-4 summarizes required velocity increments in Hohmann, bi-elliptic and 

bi -parabolic transfers. Delta-Vat lunar insertion is calculated based on one-point patched 

conic method (see Fig.7-18 and Appendix F) except for numerically integrated Hohmann 

transfer case. Initial earth orbit is assumed to be 200km-altitude circular orbit, and lunar 

insertion point is fixed at the altitude of I OOkm. The following three delta-Vs are tabulated: 

injection at earth departure, delta-V at apogee and required velocity reduction at lunar 

insertion point into osculating parabolic orbit (i.e.zero C3 w.r.t. moon) . Fig.7-19 focuses 
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on bi-elliptic transfer where magnitude of each delta-Y is shown as a function of apogee 

distance. 

It is shown in Table 7-4 and also in Fig.7-19 that bi-elliptic transfer becomes 

equivalent to Hohmann transfer in terms of total delta-V, only when its apogee distance is 

as much as 28,200,000km (comparison is made for one-point patched conic cases). This 

in turn states that bi-elliptic transfer, to say nothing of hi-parabolic transfer, is quite 

impractical from flight time point of view when lunar orbit insertion is considered. Based 

on these results, gravitational capture type earth-moon transfer is mainly compared with 

Hohmann-type transfer in the following section. 

7.4 Comparison in Delta-V and Right Time 

Table 7-5 summarizes previously designed gravitational capture trajectory (orbit 

1-1 0) in terms of flight time and trajectory correction maneuver. Also attached is the 

optimal Hohmann transfer trajectory information (see Fig.7-20), which is compared with 

gravitational capture orbits. 

Here, Hohmann transfer case is integrated in earth-moon-SIC three-body system, 

different from gravitational capture orbits. However, it would make negligible difference 

in total delta-V even if designed in four-body model (i.e. within 1-2 mls depending on the 

relative position of the sun), which guarantees the validity of the comparison shown in 

Table 7-5. 

SIC is postulated in a 200km-altitude circular orbit at earth departure, while lunar 

orbit insertion point is located at the altitude of I OOkm for every case. Delta-V gain at lunar 

orbit insertion is defined as the difference between perilune velocity and corresponding 

osculating parabolic velocity. Every gravitational capture orbit achieves negat ive value of 

delta-V gain, since C3 w.r.t. the moon is negative at perilune. 

With the use of gravitational capture, flight time of at least three months is needed, 

while total delta-V is reduced by as much as 150mls (cf. orbit 4, 7 and 8) in comparison 

with that of optimal Hohmann-type transfer. lf this velocity gain is entirely allotted to the 
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reaction control system with specific impulse (lsp) of 180sec (300sec), then 9% (5%) of 

total SIC weight can be saved. These results show that earth-moon transfer trajectory with 

gravitational capture is practical from delta-V and flight time point of view. 

When lunar swingby is utilized after earth departure, around 40mls is earned at 

earth injection (compare orbit 1-2 with orbit 3-4). Concerning midcourse delta-Ys, they 

are almost zero in orbit 2, 4 and 6-8, since orbital configuration was not so constrained in 

trajectory design procedure (i.e. penally function was not severe). As to achievable C3 

w.r.t. the moon at perilune, polar capture (orbit 9) is inferior to other in-plane captures as 

discussed in Sec.4-7. 

Now, velocity gain produced in gravitational capture type transfer is investigated 

more precisely. Table 7-6 summarizes what we pursue now. Gravitational capture type 

trajectory (orbit 4) is compared with Hohmann type as well as with bi-elliptic type transfer 

with apogee distance of I ,SOO,OOOkm. The latter resembles gravitational capture type 

transfer in terms of its orbital shape. Delta-Vs are simply calculated by patched conic 

method, which provides the ideal case without solar perturbation. As to Hohmann type 

transfer, it corresponds to optimal case from delta-V point of view and is numerically 

integrated in earth-moon-SIC three-body model. The validity of using three-body model is 

noted previously in this section. 

It is shown that velocity gain over Hohmann transfer is completely attributed to the 

low relative velocity with respect to the moon at perilune. On the other hand, velocity gain 

over bi-elliptic transfer (396mls in total) is mainly owing to the positive use of solar 

perturbation whose equivalent delta-Y is 28lmls. 

7.5 Possible Lunar Insertion Point 

As stated in Sec.5.4, one of the merits in using gravitational capture is the wide 

possible range of lunar insertion points, which has been already pointed out by J.Miller et 

al.(67] . For in-plane case, possible range is distributed from 0 through 270 deg measured 

from anti-earth direction for both direct and retrograde capture (see Fig.4-16). 
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Here , lunar insertion points that can be attained by Hohmann transfer are 

investigated for compari son. In Hohmann transfer, lunar encounter trajectory is 

approximated by !unice ntri c hyperbola which states that argument of perilune is coupled 

with the direction of approach asymptotes. Therefore, possible range of lunar inserti on 

point is anticipated not so wide. 

Fig.7-20 shows total delta-V and fli ght time with regard to perilune positional 

phase obtained by numerical integration in earth-moon-SIC three-body system. Fig.7-21 

visualizes perilune phases that can be achieved by Hohmann transfer based on Fig.7-20. It 

is shown that direct capture can attain perilunes located at 170-260deg measured from anti­

earth direction, while retrograde capture at -80 through +60deg. 

These results validate the merit of gravitational capture in terms o f wide range of 

possible lunar insertion point in comparison with Hohmann transfer. Besides, it is shown 

that prohibited region for Hohmann transfer ( i.e. positional phase of 70-160deg) can be 

chosen for lunar insertion points if gravitational capture is adopted. 

7.6 Launch Window 

Finally, launch window analys is is performed based on previously designed 

trajectories i.e . orbit 2, 4 and 6. Fig.7-22 depicts the relation between launch window 

(i.e. total flight time) and delta-V gain over Hohmann-type transfer (i .e. optimal case 

shown in Table 7-5). Corresponding apogee di stance and swingby distance are also 

shown. For each launch date , optimization is performed using the proposed method 

assuming that lunar insertion point is fixed even launch date is varied. 

The width of launch window is estimated around ten days for orbit 2, three days 

for orbit 4 and only one day for orbit 6. Thus, launch window of gravitational capture type 

earth-moon transfer considerably depends on its orbital profile. 

7. 7 Summary (Chapter 7) 
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A systematic trajectory design procedure for earth-moon transfer trajectory with 

gravitational capture is newly proposed. Information accumulated through the analyses of 

gravitational capture (Chapter 4) and solar effect (Chapter 6) is effectively used for initial 

guess of boundary conditions at earth departure and lunar insertion. Positional continuity 

required for forming a loop between earth departure and lunar insertion is guaranteed by 

Ff A target method. Then, boundary conditions are optimized by use of modified Newton 

algorithm. 

The proposed method was actually applied to trajectory design in multi-body 

system with satisfactory convergence. At the same time, it was shown that the analyses of 

gravitational capture (Chapter 4) and solar effect (Chapter 6) provide sufficient information 

for the initial guess of the proposed method. 

It was also shown that earth-moon transfer trajectory with gravitational capture at 

moon is practical from flight time and delta-V point of view. Flight time takes the value 

from three to four months on the average, while the sum of required delta-V can be 

reduced by approximately 150m/s in comparison with conventional Hohmann-type 

transfer. This velocity gain is mainly indebted to the low relative velocity (C3) w.r.t. the 

moon at lunar insertion point, which would save 5% (9%) of SIC mass assuming specific 

impulse of 300 (180) seconds. 
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Fig.7-3 Earth-Moon Transfer Trajectory Model and Control Parameters 
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Fig.7-6 Orbital Profile (Orbit 1) 
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Fig.7-7 Orbital Profile (Orbit 2) 
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earth-moon-line fixed rotating frame 
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Fig.7-8 Orbital Profile (Orbit 3) 
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Fig.7-9 Orbital Profile (Orbit 4) 
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Fig.?-10 Orbital Profile (Orbit 5) 
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Fig.7-11 Orbital Profile (Orbit6) 
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Fig.7-13 Orbital Profile (Orbi t 8) 
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Fig.7-14 Orbital Profile (Orbit 9) 
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Table 7-1 Orbital Sequences (orbit !-orbit 5) 

earth departure at 200km altitude circular orbit 

lunar insertion at lOOlan altitude perilune 

Orbit No. l 2. .J. 1 2 

Revolution No. 

around the earth 2 

Swingby 

time( day) 2.9 2.8 3.0 

swingby distance(km) 13,438 12,645 12,368 

Midcourse delta-V 

time( day) 32.5 31.8 21.5 19.6 

geocentric distance( J04Ian) 136 136 103 107 

1st aoogee 

time( day) 40.4 40.5 30.9 31.5 38.0 

geocentric distance( I 04km) 138 139 109 117 125 

Midcourse delta-V 

time( day) 92.5 91.8 51.5 49.6 71.2 

geocentric distance(! 04km) 54 54 87 97 66 

2nd apogee 

time( day) 101.1 

geocentric distance( I 04km) 95 

Midcou!]e delta-V 

time( day) 111.2 

geocentric distance( I 04km) 83 

Q w.r.t. moon 

at perilune (km2fs2) -0.165 -0.166 -0. 154 -0.158 -0.169 

Thtal flight time( day) 102.5 101.8 81.5 79.6 131.2 
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Table 7-1 Orbital Sequences (Cont., orbit 6-orbit 10) 

earth departure at 200km altitude circular orbit 

lunar insertion at IOOkm altitude perilune 

Orbit No. Q 7. 1l. 2. lQ 

RevolutiQn No. 

around the earth 2 (2) 

~ 
time( day) 2.9 3.3 2.7 2.9 2.7 

swingby distance(km) 12,835 8,000 13,726 10,000 13,430 

Midcourse delta-V 

time( day) 13.0 25.1 9.9 

geocentric distance(104km) 94 125 83 

1st apogee 

time( day) 32.8 32.1 32.5 34.3 83.2 

geocentric distance( I 04km) 114 125 129 135 168 

Midcourse delta-V 

time( day) 73.8 33 .0 45.1 70.0 

geocentric distance(! 04km) 43 132 117 51 

2nd apogee 

time( day) 95.8 215.1, 235.0 

geocentric distance( I 04km) 101 171, 171 

Midcourse delta-V 

time( day) 113.8 307.0, 327.0 

geocentric distance( I 04km) 78 105, 59 

Q w.r.t. mQQn 

ililerilune (km2js2) -0.151 -0.179 -0.214 -0.085 -0.130 

Total flight time( day) 133.8 83.0 95.1 84.9 337.0 
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Table 7-2 Control Parameters (orbit !-orbit 5) 

initial values converged values 

orbit l (five 12arameters) 

total flight time (day) 91.00000000000 ---> 102.4623754967 
perigee velocity (km/s) 10.97600000000 ---> 10.96100326574 
perigee positional phase*(deg) 0.000000000000 ---> -2.069316624121 
perilune velocity(km/s) 2.271000000000 ---> 2.273715189030 
sun phase (deg) 284.0000000000 ---> 334.5199310366 

grl:!it 2 (five 12arameters) 

total flight time (day) I 02.4623754967 ---> I 01.8226393154 
perigee velocity (km/s) I 0.96100326574 ---> 10.96155893600 
perigee positional phase*(deg) -2.069316624121 ---> -2.140 144319776 
perilune velocity(km/s) 2.273715189030 ---> 2.273547922620 
sun phase (deg) 334.5199310366 ---> 330.6500168868 

orbit 3 (five 12arameters) 

total flight time (day) 71.45000000000 ---> 81.46830054050 
perigee velocity (km/s) I 0.94800000000 ---> I 0.91906529792 
perigee positional phase**(deg) 217.0000000000 ---> 224.1162076621 
perilune velocity(km/s) 2.271 000000000 ---> 2.276136217605 
sun phase (deg) 112.0000000000 ---> 172.93 15129920 

orbit 4 (five 12arameters) 

total flight time (day) 81.46830054050 ---> 79.6344 77 40564 
perigee velocity (km/s) I 0. 91906529792 ---> 10.91974266971 
perigee positional phase**(deg) 224.1162076621 ---> 224.1963985226 
perilune velocity(km/s) 2.276136217605 ---> 2.275270643666 
sun phase (deg) 172.9315129920 ---> 146.9058202842 

Qrl:!i t 5 (fiv~ 12arameters) 

total flight time (day) 130.0200000000 ---> 131.1559378862 
perigee velocity (km/s) I 0.92000000000 ---> 10.91599857060 
perigee positional phase**(deg) 224.0000000000 ---> 224.8490508696 
perilune velocity(km/s) 2.275000000000 ---> 2.272870181158 
sun phase (deg) 260.0000000000 ---> 275.5814753462 

in earth-moon fixed frame (measured from anti-earth direction) .. 
in sun-earth fixed frame (measured from anti-sun direction) 
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Table 7-2 Control Parameters (Cont., orbit 6-orbit 10) 

QL!lit 6 (five parameters) 

total flight time (day) 
perigee velocity (km/s) 
perigee positional phase**(deg) 
perilune velocity(km/s) 
sun phase (deg) 

Qrbit 7 (five parameters) 

total flight time (day) 
perigee velocity (km/s) 
perigee positional phase**(deg) 
perilune velocity(km/s) 
sun phase (deg) 

orbit 8 (five parameters) 

total flight time (day) 
perigee velocity (km/s) 
perigee positional phase**(deg) 
perilune velocity(km/s) 
sun phase (deg) 

orbit 9 Csix parameters) 

total flight time (day) 
perigee velocity (km/s) 
perigee positional phase**(deg) 
perilune velocity(km/s) 
sun phase (deg) 
inclination at earth departure(deg) 

orbit I 0 (five parameters) 

total flight time (day) 
perigee velocity (km/s) 
perigee positional phase**(deg) 
perilune velocity(km/s) 
sun phase (deg) 

initial values 

131.1559378862 ---> 
I 0.91599857060 ---> 
224.8490508696 ---> 
2.272870181158 ---> 
27 5.5814753462 ---> 

79.63447740564 ---> 
I 0.91974266971 ---> 
224.1963985226 ---> 
2.2 71 000000000 ---> 
146.9058202842 ---> 

90.00000000000 ---> 
10.91974266971 ---> 
224.1963985226 ---> 
2.263000000000 ---> 
146.9058202842 ---> 

71.45000000000 ---> 
10.94800000000 ---> 
217.0000000000 ---> 
2.295000000000 ---> 
112.0000000000 ---> 
0.000000000000 ---> 

337.0000000000 ---> 
I 0.92645660000 ---> 
222.9999747416 ---> 
2.295000000000 ---> 
309.9765603397 ---> 

in earth-moon fixed frame (measured from anti-earth direction) .. 
in sun-earth fixed frame (measured from anti-sun direction) 
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converged values 

133.7990164752 
10.91651861347 
224.6612070070 
2.276922147800 
293.4721887222 

83.04529163305 
10.90828658585 
228.4349347552 
2.270605 I 05662 
141.6512135532 

95.05061284180 
I 0.92838606967 
222.8074401938 
2.263038603500 
144.9935176422 

84.85621334952 
10.91919288213 
225.0762130555 
2.291386553349 
179.3663976858 
4.494869940 13 7 

336.9999981607 
I 0. 92645658353 
222.9999822552 
2.281514915287 
309.9765599648 



Table 7-3 Performance Index (orbit 1-10) 

QL!li1J. 
cost function dVI+dV2 
penalty function apogee constraint geocentric distance 1 ,380,000km , 

positional phase* 150deg 
swingby constraint none 

Orbit2 
cost function dVI+dV2 
penalty function apogee constraint none 

swingby constraint none 
Orbit3 

cost function dV1+dV2 
penalty function apogee constraint geocentric distance I ,080,000km, 

positional phase* 331deg 
swingby constraint I unicentric distance 8,900km 

Orbit4 
cost function dV1+dV2 
penalty function apogee constraint none 

swingby constraint none 
OrbitS 

cost function dVI +dV2 
penalty function apogee constraint geocentric distance 880,000km, 

positional phase* 115deg (2nd apogee) 
swingby constraint )unicentric distance 8,900km 

Orbit6 
cost function dV1+dV2 
penalty function apogee constraint none 

swingby constraint none 
Orbit? 

cost function dV1+dV2 
penalty function apogee constraint none 

swingby constraint I unicentric distance 8,000km 
OrbitS 

cost function dV1+dV2 
penalty function apogee constraint none 

swingby constraint none 
Orbit 9 

cost function dV1+dV2 
penalty function apogee constraint none 

swingby constraint I unicentric distance 10,000km 
Orbit 10 

cost function dVI+dV2 
penalty function apogee constraint none 

swingby constraint none 

positional phase in sun-earth fixed frame (measured from anti-sun direction) 
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lunar orbit insertion 

Hohmann Type Transfer 

\ hyperbolic orbit 1 (one point patched conic method) 

moon 

velocity reduction for lunar orbit insertion 
(into osculating parabolic orbit) 

Bi-Elliptic Transfer (assuming patched conic method) 

Fig.?-18 Schematic Diagram of Hohmann Transfer and Bi-EIIiptic Transfer 
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earth injection 

(m/s) 

delta-V at apogee 

(m/s) 

lunar orbit 

insertion%(rnfs) 

total delta-V(rn/s) 

Table 7-4 Conventional Transfer 

earth departure at 200km altitude circular orbit 

lunar insertion at IOOkm altitude perilune 

Hohmann Hohmann Bi~lliRti!:; Bi-ellil!tic 

transfer transfer transfer# transfer## 

(Num. Int. *) (PCM .. ) (PCM**) (PCM .. ) 

3,116 3, 131 3,200 3,223 

281 17 

134 145 15 36 

Bi-11ara!1Qlic 

transfer 
(PCM .. ) 

3,224 

0 

38 

optimal solution numerical ly integrated in earth-moon-SIC three-body system (see Fig.7-20) 

(perigee positional phase=242deg, veloicty=l0.900km/s, 

## 

perilune positional phase=240deg, velocity=2.4434km/s, 

flight time=4.44days, direct motion at perilune) 

Patched Conic Method 

apogee distance =1 ,500,000 km 

apogee di stance =28,200,000 km 

delta-V required for insertion into osculating parabolic orbit (C3 w.r.t. moon=O) 

- 158-
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delta-V at lunar orbit insertion is based 
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Fig.7-19 Effect of Apogee Distance on Bi-Elliptic Earth-Moon Transfer 
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Table 7-5 Total Velocity Correction 

earth departure at 200km altitude circular orbit 

lunar insertion at lOOkm altitude perilune 

GravitaliQnal CalJlure Hohmann• 

Orbit No. l 2. J 1: ~ Q 1 .8. 2. lQ 

Revolution No.around the Earth 

2 2 2 

Swingb:L Use 

No No Yes Yes Yes Yes Yes Yes Yes Yes 

Flight time (day) 

102 102 81 80 131 134 83 95 85 337 4.4 

Earth Injection (m/s) 

3,177 3,177 3,135 3, 135 3,132 3,132 3,124 3,144 3,135 3,142 3,116 

Midcourse delta-V (m/s) 

dVl 14 0 78 0 54 II 0 24 47 0 

dV2 0 0 33 0 166 II 0 2 31 60 0 

delta-V gain at lunar insertion (m/s)** 

-36 -36 -34 -34 -37 -33 -39 -47 -18 -28 +134 

Total delta-V (m/s) 

3,155 3,141 3,212 3,101 3,314 3,121 3,085 3,100 3,172 3,220 3,249 

Comllarison with Hohmann transfer (m/s) 

- 94# - 108 - 37# - 148 +65# - 129 - 165 - 149 - 78 - 29 0 

optimal case from viewpoint of total delta-V (see Table 7-6 and Fig.7-20) 

" velocity gain under osculating parabolic velocity at lunar insertion (C3 w.r.t. moon=O) 

# Orbit I, 3 and 5 are further optimized into orbit 2, 4 and 6 respectively by removing constraints. 
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Table 7-6 Velocity Gain Allotment in Earth-Moon Transfer with Gravitational Capture 

earth departure at 200km altitude circular orbit 

lunar insertion at I OOkm altitude perilune 

Hohmann bi-elliptic gravitational ca11ture velocit:i gain 

transfer transfer# t:i11e transfer allotment## 

(Num. Int.*) (PCM**) (Num. Int:**) Hohmann bi-elli!1tiC 

earth injection 3,116 3,200 3,135 lunar swingby and apogee 

(m/s) distance combined effect 

+20 -65 

delta-V at apogee 281 0 solar perturbation 

(m/s) 0 -281 

lunar orbit 134 15 -34 gravitational capture 

insertion%(rnfs) -168 -49 

total delta-V(m/s) 3,249 3,497 3,101 -148 -396 

apogee distance =1,500,000 km 
## in comparison with Hohmann and bi -elliptic transfer 

optimal solution numerically integrated in earth-moon-SIC three-body system 

(perigee positional phase=242deg, veloicty=l0.900km/s, 

perilune positional phase=240deg, velocity=2.4434km/s, 

flight time=4.44days, direct capture at perilune) 

Patched Conic Method ... numerical integration in sun-earth-moon-SIC four-body system (orbit 4) 

delta-V required for insertion into osculating parabolic orbit (C3 w.r.t. moon=O) 

- 161 -



direc1 capture 
retrograde capture 

~ ~ 400 1-············~0/:~ 
~-; 
~ ~ 300 F-·''····· ~~~~0J·+···················· I:1 ············· -1 
g E 
a E 2oo 
g :s 
·15 E 1 00 i-··············10/:0/:0/:'%<···+•• ··················F1•·················Ai 
·;;: E 

~g 0 !----~~~~~~~~~~~~~ 

90 180 270 360 
perilune positional phase(deg) 

total delta-V 

assumptions 

direct capture 
retrograde capture 

90 180 270 
perilune positional phase(deg) 

flight time 

I) total delta-V =earth injection at 200km altitude circular orbit 

360 

+lunar orbit insertion into osculating parabolic orbit at the altitude of !OOkm 

2) numerical integration in earth-moon-SIC thre-body system 

Fig. 7-20 Effect of Perilune Location in Hohmann Transfer 

moon 

perilune positional phase 

direct capture case 

y 

possible perilune phase 
by direct capture 

-o:;:;;;J" 
earth moon 

retrograde capture case 

possible perilune phase 
by retrograde capture 

Fig.7-21 Perilune Phase Attainable in Hohmann Transfer 

- 162-



20 

0 

-20 

-40 

-60 

-80 

-100 

-120 
-4 -2 

velocity gain over 
Hohmann transfer(m/s) apogee distance (km) 

1,300,000 

1 ,250,000 <£<L_J_JLJ...._J_JL.L..L.JL.L..L..i__L_.li<Lill 

0 2 4 8 10 12 -4 -2 0 2 4 6 8 10 12 
launch window(day) launch window( day) 

orbit 2 (single revolution around the earth without swingby) 

velocity gain over apogee ----~>---· swingby distance swingby 
distance(km) ----+--- apogee distance distance(km) 
1 ,200,000 30000 

1,190,000 

15000 

10000 

-1 50 .0 """'ill____L_.J..__--L.___l_-'-"""" 1 '150 ,000 "'-"'"-L-L....__L__L.____L__L"-£<£; 5000 

-4 

150.0 

100.0 

50.0 

0.0 

-50.0 

-100 .0 

-150 .0 
-2 

-3 -2 -1 0 2 3 -4 -3 -2 -1 0 2 3 
launch window(day) launch window(day) 

orbit 4 (single revolution around the earth with swingby) 

velocity gain over 
Hohmann transfer(m/s) 

apogee swing by 
----+--- apogee d1stance distance(km) 

dlstance(km)_ ___ , ___ sw1ngby d1stance , 1,100 ,000 13000 

I r·--
1,050,000 ... I -:-,_\ 

""-: V.-

\. 

\ I 
\ / 1,000,000 

\ I 950,000 

I ~ 
900,000 

-1 0 2 3 -2 -1 0 2 
launch window(day) launch window(day) 

orbit 6 (double revolutions around the earth with swingby) 

Fig.7-22 Launch Window Analysis 

- 163-

12800 

~ 12600 

' 
12400 

12200 

~ 
12000 

3 



Chapter 8 Concluding Remarks 

In this di ssertation, I) gravitational capture mechanism was revealed both 

analytically and numerically and 2) systematic procedure for its application to earth-moon 

transfer was established by positive use of solar perturbation. 

Gravitational capture was defined as a phenomenon by which SIC can achieve 

elliptic osculating state at perilune (i.e . negative C3 w.r.t. the moon), although 

approaching from outside the sphere of influence. Its mechanism was analysed in terms 

of local C3 reduction in earth-moon-SIC three-body system, whose results predict that 

gravitational capture is classified into two categories: approach from earth side and from 

anti-earth side (Chapter 3). It was derived that outward force from the moon in the 

direction of earth-moon line due to moon's revolution around the earth (i.e . centrifugal 

force) is instrumental in reducing local C3 w.r.t. the moon. 

Then, orbital profile in the vicinity of the moon prior to perilune arrival and 

resultant perilune conditions were numerically obtained, which confirmed the existence of 

both earth-side and anti-earth-side approach categories (Chapter 4). Furthermore, semi­

major axis and perigee distance conditions prior to gravitational capture was concretely 

given: When approaching from earth side, semi-major axis and perigee distance prior to 

capture are around 200,000km and IOO,OOOkm, severally. As to anti-earth side approach, 

perigee distance is around earth-moon distance, while semi-major axis takes the value 

from 500,000km up to several million km. Satisfaction of these pre-capture conditions 

guarantees achievement of gravitational capture at moon. It was also shown that out-of­

plane motion does not work in favor of gravitational capture mechanism in terms of 

reduction of local C3 w.r.t. the moon. 

In the latter half, attention was paid to earth-moon transfer trajectory with 

gravitational capture at moon, which fully takes advantage of low relative velocity at lunar 

orbit insertion (Chapter 5). Firstly, possible solar effect to realize pre-gravitational 

capture conditions concerning semi-major axis and perigee distance was analyzed 

(Chapter 6). It was shown that SIC location in 2nd or 4th quadrant in geocentric sun-
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earth fixed frame enhances local perigee distance mainly by decreasing local eccentricity, 

which yields that perigee distance may be enlarged from initially low earth orbit to finally 

earth-moon distance. This mechanism reveals the possibility of earth-moon transfer 

trajectory by positive use of solar perturbation. Based on this perigee raise dynamics, 

orbital profile of geocentric portion of earth-moon transfer was outlined in sun-earth-S/C 

three-body system in a quantitative way. 

Furthermore, systematic orbit design methodology was newly proposed which 

effectively makes use of gravitational capture (Chapter 4) as well as solar effect analyses 

(Chapter 6). Underlying concept of the proposed method is parameter optimization 

problem, where midcourse velocity correction is taken into account (Chapter 7). Earth­

moon transfer trajectory followed by gravitational capture was actually designed in multi­

body system using the proposed method with satisfactory convergence. It was confirmed 

that analyses concerning gravitational capture (Chapter 4) and solar effect (Chapter 6) 

provide sufficient information for the initial guess in the proposed method. 

Numerical examples show the feasibility of gravitational capture trajectory from 

flight time and delta-V point of view in comparison with conventional approaches such as 

Hohmann transfer and bi-elliptic transfer. Velocity gain of as much as 150 m/s can be 

obtained when compared with Hohmann-type transfer postulating lunar insertion point at 

lOOkm altitude. This corresponds to saving of 5% (9%) of SIC mass with specific 

impulse of 300 (180) seconds. 

As noted in Chapter 2, MUSES-A spacecraft successfully reduced relative 

velocity with respect to the moon utilizing trajectory of the same kind in Oct., 1991 

(i.e.swingby with low relative velocity [8]). With this experience, we consider that 

gravitational capture trajectory can be realized from navigational accuracy point of view 

and will contribute to lunar missions in the near future. 
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Appendix A. Polar Coordinate Formulation of Three-Body System 

Restricted three-body problem is formulated in polar coordinate with the smaller 

primary as origin. The•earth and moon are postulated as two primary bodies. When sun­

earth system is considered, the same derivation can be applied by exchanging gravity 

constant. 

(I) Equations of Motion 

Firstly, equations of motion are derived by use of Lagrangian fonnulation. In 

Fig.A-1, (/;,T).s) coordinate denotes the inertial frame with the barycenter of the primaries 

as origin. On the other hand, (x ,y,z) and (r,q>,X) coordinates are defined in a rotating frame 

where positions of the primaries are fixed . In-plane positional phase q> is measured from 

anti-earth direction, while X denotes elevation angle. Origin is situated at the barycenter of 

the primaries for (x,y,z) cartesian coordinate, while at the moon for (r,q>,X) polar 

coordinate. Dimensionless mass of the earth and the moon is ~~ (=0.9878493317) and 

~2(=0.0 121506683), respectively. The moon is assumed to orbit around the earth in 

circular motion with unit angular velocity i.e.dljl/dt=l. 

Fig.A-1 Restricted Three-Body Model (Cartesian and Polar Coordinate) 
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Transformation between three coordinates is expressed as shown below. 

[~}[+co s ljl -sin ljl 0 l x J 
11 +s m ljl +cos ljl 0 Y 

r, 0 0 1 z 

(A-1) 

(

x }[~J+r cosxcosq> J 
Y r cosxsmq> 

z r sinx 

(A-2) 

Using Eq.(A-1) and Eq.(A-2), kinetic energy T, potential energy U and velocity 

magnitude v in earth-moon-fixed rotating frame are now expressed in polar coordinate as 

follows; 

T = t ((~~J +(~~J +(~?)) 
= 1 ((~~J +(~J +(*J)+ (X %f- dd~ y r 1 (x2+y2) 

= i((*J +r2(~~J +r
2 (~;Jcos2x) 

2dq> -u., (dr . dX . . dq> ) 
+r ~os-A +~1 dt cosxsmq>-r(j(Smxsmq>+rdt cosxcosq> 

+1 c~J 2+2~1r cosxcosq>+r2cos2x) (A-3) 

(A-4) 

2 (dx )2 (s!}')2 (dz)2 (dr)2 2(dX j2 2 (dq> j2 v = dt + dt + dt = dt +r dt) +r dt) cos2x (A-S) 

where r1 and r2 are distances between SIC and the earth and moon, respectively. Using 

Eq.(A-3) and Eq.(A-4), Lagrangian is derived in the following well-known fonn. 
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L=T-U (A-6) 

Equations of motion are derived from Eq.(A-3), Eq.(A-4) and Eq.(A-6) by 

Lagrange's formulation as follows; 

~:~- {~~)- {~iJ cos2x- 2r~os2x- !J.1cosxcosq>- rcos2x 

+ !J.l(r+cosxcosq>) + !J.i = 0 (A-7) 
(I +r2+2rcosxcosq> ) 312 r 

2 
dr dq> 2 2d2q> 2 ~ dq> . dr 2 l(jt dt cos x + r ~os x -2r dt (j(Smxcosx+ 2l(jt cos x 

dx . !J.lrcosxsinq> 
-2rTt SlnXCOSX+ !J.lr COSXStn(jl- ( ) = 0 

I +r2+2rcosxcosq> 3/2 
(A-8) 

dr dX ~ 2( dq>'j2 . 2dq> . 
2l(jtdl+r dt2 +r dt) cosxsmx +2r dt cosxsmx 

. . 111 r sinxcosq> 
+!11 r smxcosq> +r2cosxsmx- ( ) 

I +r2+2rcosxcosq> 3/2 
0 (A-9) 

The same equations of motion are derived as long as the origin of the rotating frame 

(x,y,z) is located on the line connecting the two primaries. 

(2) Jacobi Integral (Jacobi Constant) 

Here, we define modified potential energy Q as shown below. 

Q = ~ (!J.l+rCOSXCOS(jl ) 2 + ~(rcosxsinq> )2 

+ Ill + 112 + !11!12 
(l+r2+2rcosxcosq>)ll2 r 2 

(A-10) 

Using Eq.(A-1 0), equations of motion Eq.(A-7) through Eq.(A-8) are transformed 

to as follows; 
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d2r JdxY (d<rY 2 d<p 2 _on 
dt2 - ' \.. dt) - r dt) cos X - 2r~os X- or 

2 s!!: d<p 2 2d2<p bv 5 d<p . 
r dt ~OS X+ r dt2cos-.~, -2r dt dt smxcosx 

dr dx . on 
+ 2'dt cos2x -2 r2ft' smxcosx = O<p 

dr dx ~ 2(d<pj2 . 2d<p . on 
2r dt dt + r dt2 + r dt) cosxsmx +2r ~osxsmx = ox 

(A-ll) 

(A-12) 

(A-13) 

By use of Eq.(A-5), energy integral of Eq.(A-11) through Eq.(A-13) multiplied by 

dr/dt, d<p/dt and dxfdt, respectively gives the following equation, where C is the integration 

constant, 

2- - +2 - -+2- - dt=2n=v2+C ~( dron d<pon dxon) 
dt or dt O<p dt ox 

(A- 14) 

which in turn gives, 

C=2n- v2 

= (!!t+r cosxcos<p ) 2 + (r cosxsin<p ) 2 

+ 2lJ.I + 2lJ.2 + !lt!l2- y 2 
(I +r2+ 2r COSX COS<p) 1/2 r 

(A-15) 

This integration constant C is called Jacobi integral that stands for energy level in 

restricted three-body problem. 

(3) C3 with Respect to the Moon and Earth 

C3, which is energy level in osculating state defined originally in inertial sense, is 

derived by use of polar coordinates. Differentiation of Eq.(A-1) yields the following 

equation describing S/C velocity in inertial frame; 
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d~ 
dt 

dx . ~. 
+~OS\j/ -XStn\j/ - dt Sln\j/ -yCOS\j/ 

dx . dv . 
+ dt Slll\j/+XCOS\j/+(j(COS\j/-ySm\j/ 

dz 
dt 

(A-16) 

On the other hand, position and velocity of two primaries in inertial frame are 

expressed as follows postulating their barycenter as origin (see Fig.A-1); 

( ~moon J- (+!ltCOS\j/} 
Tlmoon - +!ltSlll\j/ 

Smoon 0 
( d(~moon)/dt J-( -!ltSin\j/ J 

d(llmoonJ/dt - +!ltCOS\j/ 

d(smoon)/dt 0 

(A-17) 

[ ~earth J- (-!l2COSijl) 
lleanh - -!l2Slllljl 

Seanh 0 

(A-18) 

SIC's relative position and velocity with respect to the earth (rE,VE) and moon (rM. 

VM) in inertial frame are obtained by use of Eqs.(A-1) and (A-16)-(A- 18) as follows; 

(A-19) 

2 _ ( dx )2 (s!Y)2 (~)2 ( <!Y d2 \. ( 2 2) VE - dt + dt + dt + 2 X dt - dt y) X +y 

+ 2!.!2( + X + %f) + 1.122 (A-20) 

(A-21) 

(A-22) 
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Now we express C3 with respect to earth and moon (C3.earth and C3.moon) in 

polar coordinate formulation. Relation between cartesian and polar coordinate in primaries-

fixed rotating frame is expressed by Eq.(A-2) and the following equation. 

dr dx . d<p . 
dt cosxcos<p -rdt smxcos<p -rdt cosxsm<p 

dr . dx . . d<p 
+dt cosxsm<p -rdt smxsm<p+rdt cosxcos<p (A-23) 

Substituting Eqs.(A-2) and (A-23) into Eqs.(A-19)-(A-22) yields the next 

expressions. 

rM2 = r2 

2 (dr)2 2(dX)2 2(d<p)2 z-v 2d<p z-v 2 2 VM = dt +r dt +r dt cos-,._+2r~os,._+rcosx 

rE2 = r2 + 2r cos <p + l 

2 (dr)
2 

2(dX)
2 

2(d<p)
2 

2 2d<p 2 2 2 VE = dt + r dt + r dt cos X+ 2r ~OS X+ r cos x+l 

+2(* cosxsm<p -~mxsm<p+rcosxcos<p+r ~i cosxcos<p) 

With Eqs.(A-24)-(A-27), C3.moon and C3.earth are derived as follows; 

(
dr)

2 
(dx)

2 
(d<p)

2 
2d<p 2 C3.moon = dt + r2 dt + r2 dt cosZ;t+ 2r ~osZ;t + r cosZ;t 

2Jl2 
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(A-24) 

(A-25) 

(A-26) 

(A-27) 

(A-28) 



(
dr)

2 
2(dX)

2 
2(dq>)

2 
2 2dq> 2 2 2 C3.earth = dt + r dt + r dt cos X + 2r ~os X + r cos X+ I 

dr dX . dq> 
+2(dt cosxsmq> -l'(j[ smxsmq>+rcosxcosq>+rdt cosxcosq>) 

2!11 (A-29) 

(4) Conditions for Non-Positive C3 wi th respect to Moon 

Now, attention is paid to C3 with respect to the moon. Non-positive C3 conditions 

(C3.moon ~ 0) are obtained on various assumptions mainly for in-plane case. 

a) General Case (In-plane motion) 

The following non-positive C3 condition is s imply derived from Eq.(A-28) by 

assuming x=O and dx/dt=O. 

2 ( dq>) (2 dq>) < - (i':Y- ( 2- 2E) r dt + dt = dt) r r 
(A-30) 

When r is greater than (2!12)113, the second term on the right side becomes negative 

so that angular velocity dq>/dt is restricted to as follows; 

- 2 ~ dq> ~ 0 
- dt-

(A-31) 

These observation yields the following proposition, where the value (2!12) 113 is 

defined as critical distance, which is Ill ,342 km in the earth-moon system. 

Proposition A-I Direct in-plane motion orbit (dq>/dt>O) does not exist under non-

positive C3 condition, in case distance from the moon exceeds the critical distance 

END 
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b) Zero Radial Velocity Case (In-plane motion assuming dr/dt=O) 

Equation below states the non-positive C3 condition which corresponds to the 

periapsis passage i.e . dr/dt=O. Similarly to the general case stated above, when distance 

from the moon surpasses the critical distance (21J.2)Ii3, no direct motion orbit (dq>/dt>O) 

exists, as maximum value of angular component becomes negative. 

- r - - r;;;; < r dq> < - r + - ~ '\J 7 = dt = '\j --"r' · (A-32) 

c) Zero Total Velocity Case (cusps where dr/dt=O, dq>/dt=O and dxfdt=O) 

Zero total velocity in earth-moon fixed rotating frame (i.e.v=O) would form a cusp 

in the orbital shape, while C3 with respect to the moon becomes a function of only distance 

from the moon. Thus the following propositions are derived. 

Proposition A-2 At cusps (where v=O) located over lunar pole (X=90 deg), C3 w.r.t. 

the moon is always negative, as seen from the equation below derived from Eq.(A-28). 

2112 
C3.moon = - -r- (A-33) 

END 

Proposition A-3 At cusps (where v=O) located on the plane defined by the primaries' 

motion Cx=O), !unicentric distance below the critical distance (21J.z) 1i3 always results in 

non-positive C3 w.r.t. the moon (see Eq.(A-34) and Fig.A-2)). 

C3.moon;O if r;~. 

C3.moon > 0 if r>~. 
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(A-34) 

END 



y 
C3 w.r.t. moon>O 

X 

cusp (v=O) 

Fig.A-2 Cusp Location 

(5) Time Derivative of C3 with Respect to the Moon 

Differentiation of Eq.(A-28) with respect to time yields the following Eq.(A-35). 

d(C3.moon) 
dt 

dr ct2r dr (dX'\2 B. (d
2
X} dr(d<p'\2 2 

2 dt dt2 + 2rdt dt) + 2r dt (j(2 2rdt\.dt) cos X 

2d<p d2<p 2 2<Jx( d<p 'J2 . dr d<p b., 
+ 2r dt ""(j"(ZCos x -2r dt\ dt) cosxsmx+ 4~ dt cos-,~, 

2& 2 4 B. d<p . Q.r: 2 
+2r dt2 cos X - r dt dt cosxsmx+ 2r dt cos X 

dX . 2f.l2 dr 
- 2r2([(Cosxsmx+ rz dt (A-35) 

Substitution of d2rfdt2, d2<p/dt2 and d2Xfdt2 derived from equations of motion, 

Eqs.(A-7)-Eq.(A-9), transforms Eq.(A-35) into the following form. This operation is 

equivalent to the use of constancy of Jacobi integral as seen from the derivation of Eq.(A-

IS). 
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d(C3.moon) ((dr dq> . . dx . ) dt = 2J.lt ac:osxcosq> - r~osxsmq>- rcosxsmq> -rdt stnxcosq> 

+ -rdt- ac:osxcosq> + r~osxsmq>+ rcosxsmq>+7tsmxcosq> dr d r d q> . . dx. . J 
( 1 +r2+2r cosxcosq> ) 312 

(A-36) 

Here, we postulate that the analysis deals with the regions in the vicinity of the 

moon. On this assumption, the following approximation as a result of Taylor expansion is 

used. 

( 1 +r2+2r cosxcosq>)-3/2 = 1 - 3r cosxcosq> (A-37) 

where the power of S/C- moon di stance higher than the second order i. e.r" (n=2,3, ... ) is 

ignored. Substitution ofEq.(A-37) for Eq.(A-36) yields, 

d(C3.moon) 2 dr ( 3 2 2 l) 
dt = J.ltr dt cos xcos q> - (A-38) 

Note that Eq.(A-38) is independent of the direction of revolution around the moon, 

that is dq>/dt and dxfdt. From Eq.(A-38), the following propositions are derived. 

Proposition A-4 Suppose that S/C is approaching the moon (dr/dt<O and r<< l) in 

planar motion (X,=O). Then C3 with respect to the moon decreases (d(C3.moon)/dt<0), if 

the positional phase q> in the earth-moon fixed rotating frame satisfies the following 

conditions (see Fig.A-3). 

-q>o ~ q> ~ +q>o or 7t-q>o ~ q> ~ n+q>o 

where q>o = cos· 1( ~) = 54.74 deg (A-39) 

END 
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The proposition above predicts that grav itational capture orbit, which requires C3 to 

be finally negative at perilune, tends to approach the moon from the earth side or anti-earth 

side. 

dr/dt <0 

X 

moon 

Fig.A-3 Regions for d{C3.moon)/dt < 0 

Proposition A-5 Suppose that S/C is approaching the moon (dr/dt<O and r<< l ). Then 

it is derived that out-of-plane motion does not work in favor of reduction in C3 with 

respect to the moon, s ince magnitude of the right side of Eq.(A-38), concerning 

d(C3.moon)/dt, decreases in accordance with out-of-plane displacement (cosx) if 

!unicentric distance rand in-plane position <pare constant. 

(6) Time Derivative ofC3 with Respect to the Earth 

Differentiation of Eq.(A-29) with respect to time yields, 

d(C3.earth) _ Q!: d2r dr (dX')2 2dx d2X dr (d<p')2 2 
dt - +2dt dt2 +ZI(jt dt ) +Zr dt dt2 +Zl(jt dt) cos X 

2d<p d2<p 2 ~ (d<p')2 . 
4 

dr(d<p\_ 2-v 
+2r dt dt2 cos X -2r dt dt) cosxsmx+ rdt\_ dt fos- A 
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~ 2 t!X dq> . dr 2 +2r dt2 cos X - 4r dt dt cosxsmx+ 2rac:os X 

2 
,dx_ . 

2
d2r . 

2
dr dx . . 

- r~osxsmx+ dt2 cosxsmq>- dt dt smxsmq> 

2
dr dq> 

2
dr dx . . 

2 
d2x . . 

+ dt dt cosxcosq> - dt dt smxsmq>- tcti2' smxsmq> 

Jdx'\2 . dq> dX . dr 
-2, \. dt) cosxsmq> -2rdt dt smxcosq> +2dt cosxcosq> 

dx . dq> . dr dq> 
-21([!Smxcosq> -271 cosxsmq> +2dt (j(Cosxcosq> 

d2q> dx dq> . ( dq> y . 
+2r?osxcosq> -2l([l dt smxcosq> -2r dt) cosxsmq> 

[ 
dr dr dx . dq> . J 

~ 1 2'dt+ 2ac:osxcosq>-21([!SinXCOS(j>-2r(j(COSXSin(j> 
+ (A-40) 

[I +r2+2rcosxcosq> )312 

Substitution of d2r/dt2, d2q>fdt2 and d2Xfdt2 derived from equations of motion, 

Eq.(A-7)-(A-9), transforms Eq.(A-40) into the following simple form. 

d(C3.earth) dt +cosxsmq> 
[ 

dr . ] 

dt 2~2 - r2 

2 [ 
dq> . dr . dx . J 

+ ~2 rdt cosxs 1nq> - dt cosxcosq> + r cosxsmq>+ rdt smxcosq> (A-41) 

When in the vicinity of the moon (r<d), Eq.(A-41) is approximated as follows since 

the first term on the right side becomes overwhelming; 

d(C3.earth) 
dt 

dt +cosxsmq> 
[ 

dr . ] 

2~2 - r2 (A-42) 

Now, condition for C3 w.r.t. earth reduction is investigated using Eq.(A-42) 

assuming in-plane motion (cosx=I). Negative derivative of C3 w.r.t. earth 

(d(C3.earth)/dt<0) requires summation of derivative of !unicentric distance (dr/dt) and sine 
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of positional phase (simp) to be positive. As far as SIC approaches the moon, derivative of 

!unicentric distance (drldt) is negative. Thus, the following proposition is derived. 

Proposition A-6 Assume that SIC is approaching the moon in planar motion (drldt<O, 

r<< I and x=O). Then, as far as local C3 with respect to the earth decreases, positional 

phase cp in the earth-moon fixed rotating frame is restricted to the region ahead of moon's 

motion (O<cp< 180deg). 

END 

(7) Angular Momentum around the Moon and Earth 

Next, angular momentum w.r.t. the primaries is derived in polar coordinates 

focusing on in-plane motion. With Eq.(A-1) and Eq.(A-16)-(A-18), first, angular 

momentum around the axis perpendicular to the plane defined by the primaries' motion is 

expressed by cartesian cooridnate as follows; 

(A-43) 

(A-44) 

Substitution of Eq.(A-2) and Eq.(A-23) assuming x=dxfdt=O into Eqs.(A-43) and 

(A-44) yields the following. 

h. moon = r2 + r2 dd; (A-45) 

dr . dcp 2 2 dcp 
h.earth = I +2rcoscp+dl smcp+r~oscp+r +r dt (A-46) 

(8) Time Derivative of Angular Momentum around the Moon and Earth 

Differentiation ofEq.(A-45) and Eq.(A-46) yields, 
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(A-47) 

(A-48) 

By use of equations of motion, Eqs.(A-7)-(A-9), Eq.(A-47) and Eq.(A-48) are 

transformed into the following fonn. 

d(h.moon) . [ 1 I J 
d =-JltrSin<:p -

t (l+r2+2rcosq>)3/2 
(A-49) 

d(h.earth) . . [ 2 I J 
dt = - r smq> + Jl2Smq> r - [2 (A-50) 

From Eqs.(A-49) and (A-50), the following proposition can be found. 

Proposition A-7 Concerning both primaries, derivative of angular momentum is a 

function of SIC position in earth-moon fixed frame and is independent of velocity. 

END 
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Appendix B. Cartesian Coordinate Formulation of Three-Body System (Rotating Frame) 

Restricted three-body problem is formulated by use of cartesian coordinate in 

rotating frame where positions of the primaries are fixed. Two primary bodies are assumed 

to be constituted of the earth and moon. 

(I) Equations of Motion 

In Fig.B-1, ((,,11,/;;) denotes inertial frame, while (x,y,z) is primaries-fixed rotating 

frame with barycenter of two primaries as origin. In each frame, 1;; (z) axis is defined so 

that it constitutes right-hand system. In the adopted model, the moon is assumed to orbit 

around the earth in circular motion. Mass of the earth and the moon is !11(=0.9878493317) 

and 112C =0.0 121506683) respectively, whose positions are fixed at ( -112.0,0) and (!J.~oO,O) 

under normalization. 

Earth 
(-j.J2,0) 

X 

Fig.B-1 Restricted Three-Body Model (Cartesian Coordinate) 

The transformation between (x,y,z) and ((,,11,/;;) coordinates is expressed as 

follows; 
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(B-1) 

For the derivation of equations of motion, we use Lagrange's formulation. 

Lagrangian is shown below in the well-known form. 

L=T- U (B-2) 

where T is kinetic energy and U is potential energy as follows; 

(B-3) 

(B-4) 

r1 and r2 is SIC-earth and SIC-moon distance, respectively. By virtue of coordinate 

transformation, Eq.(B-1 ), kinetic energy T and potential energy U are expressed in earth­

moon fixed cartesian coordinate (x,y,z) as follows; 

where 

_.!. ((dx)2 (Qy)2 (~)2) ( c!1. d~ \..!. 2 2 
T- 2 dt + dt + dt + X dt - dt y) 2 (x +y ) 

rl = (Cx+J.11)2 + y2+ z2) 1/2 

r2 = (Cx-J.12)2 + y2+ z2) 112 
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(B-6) 

(B-7) 



By use of Lagrange's formulation, equations of motion are derived as shown 

below from Eq.(B-2) and Eq.(B-5) through Eq.(B-7). 

d2x _ 
2

s!Y _ _ _ dU 
dt2 dt x- dx 

~ dx dU 
dt2 + 2ctt - y =-cry 

d2z dU 
dt2 = -dZ (B-8) 

Introducing modified potential energy n, equations of motion are transformed to as 

follows; 

d2x - 2~= on 
dt2 dt ox 

~+2dx_ on 
dt2 dt- oy 

d2z on 

dt2 oz 
(B-9) 

where nand partial derivatives on! ox, onloy and onloz equal to as follows; 

or 

and 

on 

OX 
on 

oy 

on 

oz 
~~ (z) ~2 (z) - ;:-;z f;" - r

2
2 f2 

(B-10) 

(fortwo-dimensional case) (B-11) 

(B-12) 
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(2) Jacobi Integral (Jacobi Constant) 

Energy integral of Eq.(B-9) gives the following . 

2- - + 2 :..L ---+ 2 - - dt = 2Q = v2 + c f( dx 8 n d v 8 n dz 8 n) 
dt 8x dt 8y dt 8z 

(B-13) 

where C is the integration constant and v is total velocity in rotating frame as follows: 

2= (dx)2 (Q1)2 (~)2 v dt + dt + dt 
(B-14) 

These in turn give the following Eq.(B-15). 

2flt 2fl2 
C = 2Q-v2= x2 + y2 + - + - + f1Ifl2- v2 r 1 r2 

(B-15) 

This integration constant C is called Jacobi integral that stands for energy level in 

restricted three-body problem. Jacobi integral expressed by Eq.(B-15) has the opposite 

sense of energy as velocity increase brings about decrease in Jacobi integral. 

(3) C3 with Respect to the Moon and Earth 

Next, C3 with respect to the primaries is highlighted. Differentiation of Eq.(B-1) 

yields the following. 

dE, 
dt 

dTJ 
dt 

ds 
dt 

dz 
dt 
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Eq.(B-16) corresponds to SIC velocity in inertial frame, while state vectors of the 

earth and moon are expressed as follows (see Fig.B-1); 

( ~moon J- (+J.!JCOSIJI J 
llmoon - +J.!JSII11Jf 

Smoon 0 
( 

d(~moon)ldt J _ ( -JlJSiniJI J 
d(llmoon)ldt - +J.!JCOSIJI 

d(smoon)!dt 0 

(B-17) 

( ~earth J _ (-Jl2C~SIJI J 
llearth - -Jl2SII11Jf 

Searth 0 
( 

d(~eanh)ldt J (+J.12sin1J1 J 
d(llearth)ldt = -Jl2COSIJI 

d(seanh)ldt 0 

(B-18) 

Then SIC's relative position and velocity w.r.t. primaries (rM, VM: moon, rE,VE: 

earth) in inertial frame are obtained as follows; 

(B-19) 

2 _ ((dx)2 (~)2 (~)2) ( <1_y ~ \. 2 2 
VM - dt + dt + dt + 2 x dt - dt Y J (x +y ) 

+ 2J.!l(- X- ¥r) + J.11 2 (B-20) 

(B-21) 

_ ((dx )2 (~)2 (~)2) ( <1_y d~ \. 2 2 
VE2 - dt + dt + dt + 2 X dt - dt y) (x +y ) 

+ 2J.!2( + x + ¥t) + !.!22 (B-22) 

Finally, C3 w.r.t.moon and earth are derived from the following Eq.(B-23). 

(B-23) 

where rM. VM, rE,VEcan be found in Eq.(B-19)-Eq.(B-22). 
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(4) Expression in Polar Coord inate 

Here, !unicentri c polar coordinate defined in primaries-fixed rotating frame shown 

below is introduced. Note that position and velocity are defined separately (see Fig.B-2). 

position 

velocity 

x = iJ.t +rM cosaMcoseM 

y = rM cosaMsin9M 

z = rM sinaM 

dx/dt = VMCOS~MCOS0M 
dy/dt = VMCOS~MsinOM 

dz/dt = VMSin~M 

(B-24) 

(B-25) 

rM and vM are !unicentric di stance and magnitude of velocity in rotating frame, 

severally . Directions of SIC pos ition and velocity are designated by (9M,aM) and 

(liM.~M), independently. 

z velocity VM 

earth 

Fig.B-2 State Vector in Polar Coordinate 
where Position and Velocity are Independently Defined 

With this coordinate, C3 w.r.t. moon and Jacobi integral are expressed as shown 

below by use of Eq.(B- 15) and Eq.(B- 19) through Eq.(B-23). 
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(B-26) 

C3.earth = vM2 + 2rM VM COSUM COS~M sin(OM-8M) + rM2 cos2aM + I 

. 2111 
+ 2rMcosaMcos8M + 2vMcos~MsmoM - -------'-'"-'-----­

( 1 +rM2+2rMcosaMcos8M) 112 

(B-27) 

C = (11 1+ rMcosaM cos8M)2 + (rM cosaM sin8M)2 

2 2112 
+ + -r-M + 111112- VM2 

(1+2rM cosaM coseM + rM2) 112 
(B-28) 

Now, some specific cases are investigated concerning C3 w.r.t. primaries at 

perilune. Eq.(B-26) and Eq.(B-27) are simplified to the equations below on the 

assumptions noted there. 

(a) at perilune with planar direct motion (aM=~M=O and oM-8M=+90 de g) 

(B-29) 

(B-30) 

(b) at perilune with planar retrograde motion (aM=~M=O and oM-8M= -90 deg) 

(B-31) 

(B-32) 
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(c) at perilune over lunar pole (aM=90deg, ~M=O) 

(B-33) 

(B-34) 

Note that C3 w.r.t. moon is independent of positional phase (i.e.9M) for planar 

cases (see Eq.B-29) and Eq.(B-31)), and of velocity direction (i.e.OM) for perilune located 

over lunar pole (see Eq.(B-33)). 
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Appendix C Cartesian Coordinate Formulation of Three-Body System (Inertial Frame) 

Restricted three-body problem is formulated in inertial frame with the moon as 

origin by use of cartesian coordinate. Two primary bodies are assumed to be constituted of 

the earth and moon. The moon is assumed to orbit around the earth in circular motion. 

Mass of the earth and the moon is IJ.t(=0.9878493317) and 1J. z(=0.0 121506683), 

severally. In Fig.C-1 , (~,TJ,/;) denotes inertial frame where earth and moon are pos tulated 

to be coincidentally located at ( -~J. I ,O,Q) and ( +1J.2,0,0). 

Earth 
(-1 ,0) 

Fig.C-1 Moon-Centered Coordinate 

SIC 

Equations of motion are derived based on Lagrange's formulation. Kinetic energy 

T and effective potential energy U, which contains the effect that moon rotates around 

earth, are expressed as follows; 

(C-1) 

U = _ 112 _ 1-Lt[.!.. _ (r sic · r eanh)J 
f2 ft r o-carth3 

(C-2) 
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where r1. r2 and ro-earth are SIC-earth, SIC-moon and origin-earth (i.e .earth-moon) 

distance, respectively as shown below. 

r1 = (<s+, )2 + T\ 2+ v) 112 

r2 = (1;2 + T\ 2+ s2) 1/2 

ro-earth = I (C-3) 

rs/c and reanh are position vectors of SIC and the earth severally as follows; 

(C-4) 

Using Eq.(C-3) and Eq.(C-4), effective potential energy U is rewritten as follows; 

(C-5) 

By use of Lagrange's formulation, equations of motion are derived from Eq.(C-1) 

and Eq.(C-5) as shown below. 

d21; 
dt2 = - ll~<s+Il[<s+l)2+ll2+s2P'2_ ll2s[<s2+ll 2+s2l-312] + 111 

d~ d(2 =- !ll(ll )((s+I)2+T)2+~2}JIL ll2ll( (/;2+T)2+~2)-312) (C-6) 

d2~ 
dt2 = - Ill ( ~ ) ( (/;+!)2+T)2+~2}JIL 112 ~ ( (/;2+T)2+~2)-312] 
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Appendix D. Cartesian Coordinate Formulation of Four-Body Problem 

Fonnulation of restricted four-body problem is outlined where the earth and moon 

comprise two primaries [81]. The moon is postulated to orbit around the earth in circular 

motion. In addition, the sun depicts a circular orbit around the barycenter of the earth and 

the moon in the same plane (see Fig.D-1 ). In Fig.D-1, (E,,T),s) and (x,y ,z) denotes SIC 

position in inertial and primaries-fixed rotating frame, respectively. In both frames, 

barycenter of the earth and moon is taken as the origin. Mass of the earth and the moon is 

1-lt (=0.9878493317) and 1!2 (=0.0121506683) and their positions are denoted as (-1!2,0,0) 

and (l!t.O,O), respectively in primaries-fixed rotating frame. Restricted three-body problem 

results simply by setting solar gravity constant as zero in this four-body fonnulation. 

y 

Sun (xs,ys,zs) 

SIC (x,y) 

0 
Moon 
(1-lt,O) 

X 

Fig.D-1 Restricted Four-Body Model (Cartesian Coordinate) 

(I) Equations of Motion 

Derivation of equations of motion in Lagrange's fonnulation is summarized below. 

Firstly, Lagrangian is expressed as follows; 
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L=T-U (D-1) 

where Tis kinetic energy and U is potential energy as shown below. U takes the fonn of 

effective potential energy where the effect that sun rotates around the barycenter of earth-

moon system (origin) is taken into account. 

_.!. ((dx)2 (Qy_)2 (~)2) ( c!_y ~ \,..!. ( 2 2) - 2 dt + dt + dt + X dt - dt y) 2 X +y (D-2) 

U = _!:..!. _ [.1.2 _ f.l. su{_!_ _ xx,+yy,~zz,J 
fJ T2 f sun R sun 

(D-3) 

where r1 r2 and rsun are SIC-earth, SIC-moon and SIC-sun distance respectively, while 

Rsun (=389.1723985) is the distance between sun and the origin. (x,,y,,z,) corresponds to 

sun's position with regard to origin in earth-moon fixed rotating frame . f.l.sun is gravity 

constant of the sun (=328900.48) under normalization. r1 r2 and rsun are expressed as 

follows; 

r12 = (x + [.1.2)2 + y2 + z2 

r22 = (x _ [.1. 1)2 + y2 + z2 

rsun2 = (x - x,)2 + (y- y,)2 + (z- z,)2 

= (x + Rsun cos lj/moon)2 + (y - Rsun sin lj/moon)2 + z2 

(D-4) 

(D-5) 

(D-6) 

where lj/moon corresponds to moon's positional phase in sun-earth fixed rotating frame (see 

Fig.D-1). lj/moon is described as follows; 
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where 

and 

\jfmoon =a+ (WE-M- flsun) t (D-7) 

Each parameter used in Eq.(D-7) is summarized here. 

a: initial sun phase angle expressed by (anti-sun direction)-(origin)-(moon) 

which is equivalent to initial moon's positional phase in sun-earth fixed 

rotating frame, 

WE-M: angular velocity of the earth and moon around their origin (= 1.00), 

rlsun: angular velocity of the sun around the origin (=0.07480133). 

By use of Lagrangian formulation , equations of motion are expressed as follows; 

d2x Qy_ !lsun _ OUn 
dt2 - 2 dt - X - Rsun2 COS \jfmoon-- Ox 

Q2 dx !lsun . _ OUn 
d 2 + 2 dt - y + R 2 sm \jfmoon - -

t sun Oy 

OUn 

oz 

OUn Ill ( ) . !12 ( ) !lsun ( R "' ) --=3 X+!l-2 +3 X-!11 +-3- X+ sunCOSTmoon 
ox r1 r2 r3 

OUn Ill !12 !lsun ( . m ) -- = 3 (y) + 3 (y) + --3 Y - RsunSin T moon 
Oy r1 r2 rsun 

OUn = ~ (z) + !12 (z) + !lsun (z) 
Oz rl 3 r23 rsun3 
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(2) SIC Positional Phase in Different Frames 

Here, relation between SIC's positional phase in different frames is discussed. 

First, SIC positional phase in sun-earth and earth-moon fixed frame are denoted as 9s-E 

and eE-M• respectively. Remembering that 'I' moon is moon's position in sun-earth fixed 

frame, their relation is expressed as follows (see Fig.D-2); 

'!'moon= 9s-E- 9E-M (D-11) 

Substitution of Eq.(D-7) for Eq.(D-11) yields Eq.(D-12) below which gives 

transformation of SIC position in earth-moon fixed frame (9E-M) to that in sun-earth fixed 

frame (9s-E) at an arbitrary epoch. 

(D-12) 

SIC 

Earth 

Fig.D-2 SIC Positional Phase 
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Appendix E Boundary between Central Attraction and Disturbing Bodies 

( 1) Classical Sphere of Influence 

The concept of sphere of influence (SOl) was originally suggested by Laplace. 

SOl gives the appropriate body to which the motion of SIC is to be referred, when 

considering the motion of SIC in the presence of two primary bodies (92]. First, the ratio 

of the disturbing force to the corresponding central attraction is defined at both primaries. 

SOl is defined at the boundary where these two ratios are equal, and expressed 

numerically as shown below. Planetary sphere of influences are tabulated in Table 4-1. 

!. = (m 1)2/5 
p m3 

(E-1) 

where m 1 and m3 are mass of the primary body and mass of disturbing third body, 

respectively. r is SIC-primary body distance, while pis primary-third body di stance. 

(2) Weak Stability Boundary 

Weak stability boundary (WSB) corresponds to realistic sphere of influence 

defined at some primary body due to other bodies [64, 69, 71-72]. WSB is a six-

dimensional position-velocity space defined by the altitude with certain initial velocity, 

where eccentricity becomes one (corresponding to parabola) after one cycle around the 

primary (see Fig.E-1) . WSB yields an estimate of the transition regions about 

gravitational mass points in the n-body problem. 

Poincare's mapping 

Fig.E-1 Schematic Diagram of Weak Stability Boundary 
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Appendix F Orbit Design Method under Two-Body Conic Approximation 

(I) Patched Conic Method 

Patched conic method is the most fundamental technique conventionally used in 

preliminary mission analysis. Suppose that S/C is moving outside the sphere of influence 

of primary body, the motion is ruled by the third primary body (e.g. in interplanetary 

trajectory, Jupiter is considered the primary body with sun as the third primary.), When it 

is inside the sphere of influence, S/C motion is described by two-body conic trajectory 

with primary body as a central attraction (usually hyperbolic trajectory). At the sphere of 

influence, these two-body trajectories are connected by exchanging their central body. 

When the radius of sphere of influence is reduced to zero, this method is called one-point 

patched conic method. 

(2) Pseudo-State Theory 

The objective of pseudo-state theory is the reduction of computing cost while 

retaining considerably higher precision than acquired by patched conic method [93] . 

Pseudo-state theory is based on the assumption that SIC conic motion around the primary 

and the pseudo-conic displacement due to a third body may be superimposed under some 

restrictions. Lambert problem (two-body problem) is solved between two pseudostates, 

obtained by iteration on two displacement vectors off the planetary ephemeris positions 

on the dates of departure and arrival. 

(3) Multi-Conic Theory 

Multi-conic method is an extension of pseudo-state theory [94]. Pseudo-conic 

displacement due to a third body is extended to multi-disturbing bodies, which is 

superimposed with conic motion around the primary. This results in trajectory generation 

by multi-conic combination. 
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Appendix G Fixed Time-of-Arrival Target 

When positional deviation at a prescribed epoch (tfi) exists, Fixed Time-of-Arrival 

(FTA) guidance provides initial velocity correction at to to cancel positional deviation at tp 

(see Fig.G-1). 

Suppose that both initial epoch (to) and position are given [92]. Here, transition 

matrix from to to tr is assumed in the following form. 

(G-1) 

where <!>11. <!>12. <!>21 and <l>zz are 3x3 partitioned transition matrix . With Eq.(G-1), the 

following equations are derived. 

( 
dr(tr)· ) ( dr(to) ) 

= <l>(tr, to)x(to) = <l>(tr,to) 
dv(tr)- dv(to) 

(G-2) 

( 
dr(tr)+ ) ( dr(to) ) 

= <l>(tr.to) 
dv(tr)+ dv(to)+dVo 

(G-3) 

where dV0 is velocity correction at to and dr and dv are position and velocity deviation, 

respectively. Superscript+ and -each corresponds to the case with and without dVo.· 

Here, considering that the objective of FT A is to cancel dr(tr)+, the following equation is 

satisfied referring to Eq.(G-3). 

<l>ll(tr,to)dr(to) + <l>n(tr,to)(dv(to)+dVo) = 0 (G-4) 

which yields, 

<l>12dVo =- <l>ll(tr,to)dr(to)- <l>n(tr,to)dv(to) 

=- [<I> 11 (tr,to) <!> n(tr,to) ]dx(to) (G-5) 
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Therefore, 

(G-6) 

From Eq.(G-2), when dVo is not performed at to. positional deviation at tr is as 

follows; 

(G-7) 

With Eq.(G-6) and Eq.(G-7), velocity correction at to (i.e. dVo) is obtained as 

follows; 

dVo =- <1> t2(tr.to)-1 dr(tr)- (G-8) 

w1thout veloc1ty correct1on at to w1th veloc1ty correction at to 

d~ l;;y,,. 
dr(KJ) ' lt 

10 
nominal traJectory 

Fig.G-1 FTA Guidance 
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Appendix H Runge-Kutta-Merson Integration Method 

Runge-Kutta-Merson method is a fifth order numerical integration method. It 

contains automatic step size control based on the magnitude of error. Algorithm is shown 

below. 

Consider differential equations as follows; 

dx dt = f(x,t) (t: time, x: n x !-state vector) 

Then state vectors at t = t+h are calculated as follows; 

kt = h * f[t' 

kz = h * {t+~, 

k3=h * {t+~' 

x] 

x+ ~] 
kt+kz] x+ - 6-

E 
k 1 -4.5k3+4k4 -0.5k5 

15 

(H-1) 

(H-2) 

(H-3) 

(H-4) 

where kt, kz, k3, k4, ks and E are n x !-vectors. E corresponds to magnitude of error. 
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Appendix I Numerical Example of Swingby Trajectory 

In Fig.l-1, an example of swingby trajectory is depicted in inertial and earth-moon 

fixed frame. Also local variation of C3 w.r.t. earth as well C3 w.r.t. moon are shown. In 

earth-moon fixed frame, trajectory goes mainly through 2nd and 1st quadrant whose 

orbital profile is quite different from that of gravitational capture trajectory (see Fig.3-24). 

Note that C3 w.r.t. earth (semi-major axis) is almost constant outside the sphere of 

influence, which validates the use of patched conic approximation for swingby trajectory. 
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Fig.I-1 Example of Swingby Trajectory (earth-moon-SIC three-body system) 
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Appendix J Multi-Swingby Trajectory Design by B-Plane Parameters 

In trajectory design accompanying multi-swingbys, B-plane parameters are 

occasionally utilized. The outline of the algorithm is shown below [89, 90]. 

First, trajectory is divided into n segments, where ith epoch is defined as ti. 

Velocity at the same epoch ti in ith segment (from ti·I to ti) and in (i+ I )th segment (from ti 

to ti+I) are nominated vc and vi+, respectively . Performance index is defined as the sum 

of delta-Vs at respective joint point as follows; 

n-1 

F = L.fil'wiT6.vi 
i=O 

where 6.vi is the required maneuver delta-V and fi is weight factor. 

fi= -
1
-

16.vil 

(J-1) 

(J-2) 

(J-3) 

To minimize F, B-plane parameters Pi and epochs ti are updated as control parameters. 

Here, swingby of n times is considered where independent variables are defined as 

follows; 

X = (PI II P2 lz ....... Pn)T (J-4) 

Pi = (hi 9i lpi)T (J-5) 

where hi ei lpi are perilune distance (swingby distance), approaching angle defined at B-

plane and perilune passage time, respectively. Here, both the gradient and Hessian are 

considered. 

(J-6) 
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(J-7) 

which yields the following equation when postulating that ~~2~~i can be ignored when 

M.v-
compared with ~X'. 

(J-8) 

Next, performance index F and its derivative g are expanded in Taylor series. 

I 
F = Fo + goT(X-Xo) + 2 (X-Xo)THo(X-Xo) + ... (J-9) 

g = go+Ho(X-Xo) + ... (J-10) 

Provided that local minimum of performance index F exists, control parameter X which 

minimize F is obtained in the following manner. 

~F 
g =~X= 0 (J-11) 

which yields 

X= X0 - Ho-I go (J-12) 

The partial derivatives of the velocity discontinuities with respect to the independent 

. ~LlVj f d f . h d . th . f d" vanables ~X are oun as ollows whJc are use m e computation o gra 1ent vector 

and Hessian matrix of performance index F; 
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0 (0$i$j-2) 

Ui 
(i=j-1) 

bllV j _ (Wj+1BtDi)Uj (i=j) 

bpi - (Wj+2ABWj+1-CDWj+1)BjUj (i=j+1) 

i- 1 
(Wi+1ABWi-CDWi)( DABWk)BjUj U+2$i$n-l) 

k=j+1 

0 (0$i$j-l) 

- Wj+1 llVj (i=j) 

bllVj _ 
- (Wj+2ABWj+1-CDWj+1)1lvj (i=j+ 1) 

btj -
i-1 

- (Wi+1ABWi- CDWi)( ITABWk)llvj U+2$iSn-l) 
k=j+l 

where 

<l>(ti,ti_ 1) is state transition matrix of the ith trajectory segment. 

bvi-1+ 1 Wi=-- ti-1 pi 
bRi-1 ' 

(J-13) 

(J-14) 

(J-15) 

(J-16) 

(J-17) 

(J-18) 

(J-19) 

where Ri.
1 

is initial position at ith trajectory segment. Wi gives the effect of initial 

position of the ith trajectory segment on initial velocity when targeting from a fixed initial 

time to fixed B-plane parameters, while Ui gives the variation of the initial velocity on the 

ith trajectory segment with respect to B-plane parameters when targeting from a fixed 

time and position. 
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cartesian coordinate of the moon in inertial frame, 

(Smoono'Tlmoon.Smoon) 

cartesian coordinate of the moon in inertial frame, 

(Seartho'Tl earthoSeanh) 

Tleanh cartesian coord inate of the moon in inertial frame, 

(Searth• TJ earth•Seanh) 

Searth cartesian coordinate of the moon in inertial frame, 

(Seartho'Tl earth•Scanh) 

rE SIC-earth distance 

rM S/C-moon distance 

VE SIC relative velocity w.r.t. the earth in inertial frame 

VM SIC relative velocity w.r. t. the moon in inertial frame 

Appendix B 

VM 

eM 
aM 

OM 
~M 

Appendix C 

rstc 

r earth 

fmoon 

fo -earth 

AppendixD 

f sun 

Rsun 
llsun 
IV moon 

a 

SIC velocity in primaries-fixed rotating frame 

in-plane SIC positional phase in primaries-fixed rotating frame 

out-of-plane SIC positional phase in primaries-fixed rotating frame 

in-plane SIC velocity direction in primaries-fixed rotating frame 

out-of-plane SIC velocity direction 

in primaries-fixed rotating frame 

SIC position in inertial frame with moon as origin 

earth's position in inertial frame with moon as origin 

moon's position in inertial frame with moon as origin 

distance between origin and the earth 

SIC-sun distance 

di stance between the sun and barycenter of earth-moon system 

gravity constant of the sun (=328900.48) under normalization 

moon's positional phase in sun-earth fixed rotating frame 

initial sun phase angle expressed by (anti-sun direction)-(origin)­

(moon) which is equivalent to initial moon's positional phase 

in sun-earth fi xed rotating frame 

<OE-M angular velocity of the earth and moon around their origin (=1.00) 

n sun angular velocity of the sun around the origin (=0.07480133) 

U n quasi-potential energy 

9s-E SIC posi tiona! phase in sun-earth fixed frame 

9E-M SIC positional phase in earth-moon fixed frame 

Appendix E 

mt mass of the primary body 
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p 

AppendixG 

to 
tr 
c;!>(tr,to) 

c;!>ij(i ,j=l,2) 

dVo 

dr 

dv 

+ 

AppendixH 

kk(k=l,S) 

E 

Appendix J 

Vj" 

Vj+ 

t.vi 

fi 

Pi 
hi 

ei 
tpi 

c;!>(ti,ti-tl 

ABWi 

CDWi 

Ai 

Bi 

ci 
Di 

Ri-t 
wi 

ui 

mass of di sturbing third body 

SIC-primary body distance 

primary-third body distance 

initial epoch 

prescribed final epoch 
transition matrix 

3x3 partitioned transition matrix 

velocity correction at to 
position deviation 

velocity deviation 

superscript: with dVo 

superscript: without dVo 

coefficient for Runge-Kutta-Merson method 

magnitude of error. 

velocity at the epoch ti in ith segment (from t;. 1 to ti) 

velocity at the epoch ti in (i+l)th segment (from ti to ti+I) 

required maneuver delta-V 

weight factor 

B-plane parameters 

perilune distance (swingby distance) 

approaching angle defined at B-plane 

perilune passage time 

state transition matrix of the ith trajectory segment 

Ai+BiWi 

Ci+DiWi 
partitioned transition matrix of c;l>(ti,ti-I) 

partitioned transition matrix of c;!>(ti,ti-t) 

partitioned transition matrix of c;!>(ti,ti-t) 

partitioned transition matrix of c;!>(ti,ti-t) 

initial position at ith trajectory segment 

the effect of initial position of the ith trajectory segment 

on initial velocity when targeting from a fixed initial time 

to fixed B-plane parameters 
the variation of the initial velocity on the ith trajectory segment 

with respect to B-plane parameters 

when targeting from a fixed time and position 
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