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Abstract 

 

Most strong tornadoes are spawned by supercells: convective storms having persistent mesocyclones which are 

mesoscale vortices of diameters of O(1) km. Such tornadoes in supercells (supercell tornadoes) are considered to be 

generated in the following processes that proceed in order of (i) genesis of midlevel mesocyclones (MMCs) due to tilting 

environmental horizontal vorticity, (ii) genesis of low-level mesocyclones (LMCs) due to tilting baroclinically generated 

horizontal vorticity in downdrafts of the storm, and (iii) tornadogenesis due to stretching vertical vorticity in updrafts 

near the surface induced by vertical perturbation pressure gradient force (VPPGF) below LMCs. However, these 

processes are considered based on limited observations, deterministic numerical simulations, and idealized sensitivity 

numerical experiments. In fact, the mechanisms of actual tornadogenesis have been examined only for several cases. 

Furthermore, several different origins of vorticity and circulation of tornadoes have been proposed: horizontal vorticity 

due to the baroclinity, the surface friction, and vertical shear of the environmental wind. In order to clarify the 

relationship between tornadoes, LMCs, and the surrounding environment, the origin of vorticity and circulation of the 

tornado, and conditions for tornadogenesis, we performed ensemble forecasts of an actual supercell tornado generated in 

Japan through assimilation of dense observations and ensemble-based statistical analyses. Such ensemble-based analyses 

give new approaches for analyzing mesocyclogenesis and tornadogenesis. 

The case we studied in this thesis is a supercell tornado that passed through Tsukuba city on the Kanto Plain, Japan, 

at about 1230–1250 Japan Standard Time (JST) 6 May 2012. The ensemble forecasts of the tornado were performed with 

Japan Meteorological Agency non-hydrostatic model (JMANHM), where the initial states were prepared by a nested 

four-dimensional local ensemble transform Kalman filter (4D-LETKF) of 32 members. In outer LETKF, the grid interval 

was 15 km horizontally, and hourly observations used in the mesoscale analysis of JMA were assimilated in a 6-h 

assimilation window from 0900 JST 3 May 2012. In inner LETKF, the grid interval was 1.875 km horizontally, and 

dense surface and radar data observed every 10 minutes were assimilated in an hourly assimilation window from 0300 

JST 6 May 2012. The surface meteorological data were horizontal winds, temperature, and relative humidity observed at 

Meteorological Observatories and by Automated Meteorological Data Acquisition System (AMeDAS; operated by JMA) 

and Environmental Sensor Network (ESN; operated by NTT DOCOMO, Inc.). These surface data were assimilated after 

transformed to the data at 20-m height. Radar data consist of radial velocities observed by the Meteorological Research 

Institute advanced C-band solid-state polarimetric radar (MACS-POL) and three operational C-band Doppler radars in 

Kashiwa city and at Haneda and Narita airports, and the amount of rainwater estimated from reflectivity and specific 

differential phase of MACS-POL. These radar data were assimilated after interpolated to the model grid points of inner 

LETKF on the plan position indicator surface at each elevation angle. To predict LMCs in supercells, the downscaling 

ensemble forecasts with a 350-m horizontal resolution were performed. The inner-LETKF analyses of 32 members and 

their ensemble mean at 1100 JST 6 May 2012 and their forecasts were used as the initial and boundary conditions of the 
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ensemble forecasts. Furthermore, realistic strong tornadoes were predicted with the higher-resolution downscaling 

ensemble forecasts with a 50-m horizontal resolution, where the 33-member ensemble forecasts with a 350-m horizontal 

resolution from 1110 to 1210 JST 6 May 2012 were used as the initial and boundary conditions. 

In all 33 members of the ensemble forecasts with a 350-m horizontal resolution, strong LMCs (defined as maximum 

vertical vorticity at 0.8-km height ߞሺ୐୑େሻ ൐ 0.03	sିଵ) were successfully predicted near the path of the actual tornado. 

However, the strength of the predicted LMC, ߞ୑୅ଡ଼
ሺ୐୑େሻ, defined as a 20-min moving average of ߞሺ୐୑େሻ around the time of 

the maximum ߞሺ୐୑େሻ had a large spread among the ensemble members. Hence, the sensitivities of ߞ୑୅ଡ଼
ሺ୐୑େሻ to variables 

at the time of maximum ߞሺ୐୑େሻ and at 1100 JST were clarified by an ensemble-based sensitivity analysis (ESA), where 

inclinations of regression lines of ߞ୑୅ଡ଼
ሺ୐୑େሻ and variables at each grid were regarded as sensitivities. The ESA showed that 

the sensitivities to southerly wind below 1-km height on the forward right side of the storm and to water vapor below 

1-km height on the rear side of the storm at 1100 JST were especially large. Therefore, the LMCs are considered to be 

intensified by low-level convergence on the forward side of the storm and by low-level water vapor on the rear side of 

the storm. 

Some members of the ensemble forecasts with a 50-m horizontal resolution successfully predicted strong vortices, 

where maximum vertical vorticity at 30-m height ߞሺ୘୓ୖሻ exceeded 1.0 s–1. If tornadoes are defined as vortices having 

୑୅ଡ଼ߞ
ሺ୘୓ୖሻ ൐ 1.0	sିଵ, where ߞ୑୅ଡ଼

ሺ୘୓ୖሻ is a 5-min moving average of ߞሺ୘୓ୖሻ around the time of the maximum ߞሺ୘୓ୖሻ, seven 

of 33 members produced tornadoes. To clarify the mechanism of tornadogenesis, backward trajectories of the parcels 

around the point of ߞሺ୘୓ୖሻ ൐ 0.6	sିଵ for several members of largest ߞ୑୅ଡ଼
ሺ୘୓ୖሻ were obtained and the vorticity budget, 

changes of the circulations, and their generation terms were examined. Vorticity budget analyses show that frictionally 

generated crosswise vorticity was mainly transformed to the vertical vorticity. Furthermore, circulation analyses show 

that the changes of the circulations of the vortices were caused more dominantly by the friction terms than by the 

baroclinic terms. However, the friction terms did not necessarily contributed to increase the circulations and ߞ୑୅ଡ଼
ሺ୘୓ୖሻ was 

not closely related to changes of circulation by friction and baroclinic terms. Therefore, generation terms of vorticity and 

circulations of the vortices near the surface were changeable and do not seem to be essential for tornadogenesis. 

To clarify essential factors for tornadogenesis, we produced the composite fields with respect to the point and time of 

the maximum ߞሺ୘୓ୖሻ, and calculated correlations between ߞ୑୅ଡ଼
ሺ୘୓ୖሻ and mesocyclone-scale variables in these composite 

fields. The results show that ߞ୑୅ଡ଼
ሺ୘୓ୖሻ were strongly correlated to mesocyclone-scale maximum vertical vorticity ߞ୫ୟ୶ at 

1-km height and to water vapor mixing ratio QV୫ୣୟ୬ averaged below 100-m height at several minutes before the time of 

the maximum ߞሺ୘୓ୖሻ. On the other hand, correlation to potential temperature was not significant. Importance of ߞ୫ୟ୶ at 

about 1-km height for tornadogenesis is explained by stronger VPPGF below the LMC, which is associated with negative 

perturbation pressure. Importance of near-surface QV୫ୣୟ୬ is explained by weaker negative buoyancy above lifted 

condensation level (LCL), stronger positive buoyancy above level of free convection (LFC), and stronger VPPGF due to 

vertical buoyancy gradient near LCL. In the ensemble forecasts of this study, the necessary conditions of ߞ୫ୟ୶ at 1-km 

height and QV୫ୣୟ୬ averaged below 100-m height for tornadogenesis at three minutes before the time of the maximum 

୫ୟ୶ߞ ሺ୘୓ୖሻ areߞ ൐ 0.077	sିଵ and QV୫ୣୟ୬ ൐ 10.6	g	kgିଵ, respectively, and the sufficient condition is “ߞ୫ୟ୶ ൐ 0.1	sିଵ 
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and QV୫ୣୟ୬ ൐ 10.7	g	kgିଵ.” 

In this study, ensemble forecasts of an observed supercell tornado and ensemble-based analyses were performed for 

the first time, and clarified the following three points: (i) Low-level convergence on the forward side of the storm and 

low-level water vapor on the rear side of the storm play an important role in intensifying LMCs. (ii) Strong LMCs at 

about 1-km height and near-surface humid air are essential factors for tornadogenesis. (iii) The generation processes of 

the horizontal vorticity to be tilted into vertical vorticity of tornadoes can be due to both the surface friction and the 

baroclinity, but are not essential for determining whether tornadoes are generated or not. The conclusions (i) and (ii) are 

consistent with the mechanisms of the low-level mesocyclogenesis suggested in the recent studies. Because strong LMCs 

have more potential for tornadogenesis, larger-scale low-level convergence and water vapor, which intensify LMCs, are 

also important factors for tornadogenesis. In fact, the strong LMC was not predicted accurately when either surface or 

radar data were not assimilated. This means that improvement of low-level variables through assimilating dense surface 

and radar data was essential for successful forecasts of LMCs and associated tornadoes. The conclusion (iii) was firstly 

clarified in this study, and implies that the high-resolution forecasts resolving tornado vortices may not be necessarily 

required for improving tornado forecasts. 
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1.1. Supercell tornadoes 

Tornadoes are violently rotating columns of air extending from the cumuliform cloud to the surface. Their typical 

diameters and vertical vorticities are O(10–1) km and O(1) s–1, respectively, near the surface. Extremely strong gusty 

winds due to tornadoes cause severe damage to buildings and human life. Most of strong tornadoes are generated in 

supercells (Browning 1964): a special type of convective storms with persistent mesocyclones, which are rotating 

updrafts having diameters of O(1) km and vertical vorticities of O(10–2) s–1. Tornadoes generated in supercells are 

hereafter called “supercell tornadoes.” Although a considerable fraction of tornadoes detected in Japan were not 

associated with supercells1, strong tornadoes ranked EF2 or stronger on the EF-scale2 (Table 1.1) are often generated in 

supercells (Markowski and Richardson, 2010). Hence, it is important to understand mechanisms of supercell 

tornadogenesis for improving forecasts for tornadoes and mitigating their disasters. 

In this chapter, a review of the processes and mechanisms of supercell tornadogenesis is presented in section 1.2. 

Section 1.3 introduces data assimilation and ensemble forecasts, which are useful for realistically reproducing supercell 

tornadoes with numerical simulations and accurately analyzing the tornadogenesis. Section 1.4 summarizes motivation 

and structure of this thesis. 

 

1.2. Mechanism of supercell tornadogenesis 

1.2.1. Midlevel mesocyclogenesis 
Supercells are known to develop in an environment with strong vertical wind shear and unstable stratification 

(Weisman and Klemp 1982). In such an environment, a pair of midlevel (above 1-km height) mesocyclone (MMC) and 

mesoanticyclone (MMAC) are generated through tilting horizontal vorticity associated with an environmental vertical 

wind shear (e.g., Klemp 1987; Figs. 1.1a and 1.1b). Rotunno and Klemp (1982) theoretically explained that streamwise 

horizontal vorticity associated with an environmental veering (backing) shear tends to enhance MMCs (MMACs) with 

the following equation: 
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(1.1) 

This is derived from governing equations of motion in Boussinesq approximation by taking the divergence and using 

an approximation that perturbation pressure ݌ᇱ is roughly proportional to െ׏ଶ݌ᇱ/ߩ (ߩ: density), where velocity is 

denoted by ܞ ൌ ሻݖሺ܄ ൅ ᇱܞ ൌ ሺܷሺݖሻ, ܸሺݖሻ, 0ሻ ൅ ሺݑᇱ, ,ᇱݒ  ,Because the horizontal scale is small .ܤ ᇱሻ, and buoyancy isݓ

Coriolis force and ߚ effect are neglected. If a shear vector of the environmental wind ܁ሺݖሻ ൌ ݖ݀/܄݀ ൌ ሺܷ݀/݀ݖ, ܸ݀/

                                                           
1 For example, some tornadoes are generated by horizontal shear instability without mesocyclones. 
2 Six-level (EF0–EF5) classification of wind speed estimated from damage used in the U.S., Canada, France, and so on 
(McDonald and Mehta 2004). It is enhanced based on F-scale (Fujita 1971) for the local features of damage (Table 1.1). 
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,ݖ݀ 0ሻ is dominant over that of the perturbation winds, then 

ᇱ݌  ൎ ୈ୐݌
ᇱ ∝ ܁2 ⋅ .ᇱݓ୦׏ (1.2) 

Therefore, upshear (downshear) side of an updraft region tends to have high (low) pressure. 

If an environmental vertical wind shear does not change its direction with height (horizontal vorticity is crosswise), a 

pair of MMC and MMAC is generated symmetrically with respect to the direction of ܄ because ܁ is parallel to ܄. In 

this case, the storm is symmetrically separated into right-moving and left-moving storms because precipitation at the 

center and associated cold outflow tend to shift low-level convergence regions symmetrically to left and right (Fig.1.1c). 

When an environmental wind has veering (backing) shear, however, ܁ directs to the left (right) of ܄ in the lower 

(upper) layer (red and green arrows in Fig. 1.2) and perturbation pressure becomes asymmetric (labels H and L in Fig. 

1.2). Because of this asymmetric perturbation pressure due to the veering (backing) shear, upward (downward) dynamic 

vertical perturbation pressure gradient force (VPPGF) is generated in right-moving (left-moving) storms (yellow arrows 

in Fig.1.2). Therefore, the veering (backing) shear selectively intensifies right-moving (left-moving) storms and 

associated MMCs (MMACs). 

Considering that the vertical vorticity of MMCs is produced through tilting horizontal vorticity of the environmental 

wind by the storm updraft, Davies-Jones et al. (1990) proposed that storm-relative environmental helicity (SREH) is a 

useful parameters for estimating the production of vertical vorticity through the tilting horizontal vorticity associated 

with environmental veering shear. SREH at 0–ݖ km height is defined as 

 SREH ൌ න ሼ܁ሺݖᇱሻ ൈ ሾ܄ሺݖᇱሻ െ ۱ሿሽ ⋅ ᇱݖ݀ܓ
௭

଴
, (1.3) 

where ܓ is the vertical unit vector and ۱ is the moving vector of the storm. It is given by vertically integrated 

streamwise vorticity multiplied by storm-relative wind. 

Another useful parameter for estimating potential for supercell storms is convective available potential energy 

(CAPE), which gives potential intensity of convective updrafts. CAPE is defined as 

 CAPE ൌ න ݃ ௩ܶ௣ሺݖሻ െ ௩ܶሺݖሻ

௩ܶሺݖሻ
ݖ݀

୉୐

୐୊େ
, (1.4) 

where ௩ܶሺݖሻ is the virtual temperature at height ݖ, ௩ܶ௣ሺݖሻ is the virtual temperature of the air parcel adiabatically lifted 

to height ݖ, EL is the equilibrium level of the parcel, LFC is the level of free convection of the parcel, and ݃ ൌ

9.8	m	sିଶ is the gravitational acceleration. CAPE is the energy of the parcel obtained from buoyancy, which is largely 

affected by initial temperature and water vapor of the parcel, and gives a measure for the maximum vertical velocity once 

convection is initiated. When both CAPE and SREH are large, atmospheric fields are favorable for midlevel 

mesocyclogenesis. 

 

1.2.2. Low-level mesocyclogenesis 
It is known that the presence of a low-level (below 1-km height) mesocyclones (LMCs) raises potential for 

tornadogenesis. However, the presence of MMCs does not assure the occurrence of LMCs because tilting midlevel 
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environmental horizontal vorticity by an updraft does not lead to an increase in low-level vertical vorticity. The genesis 

mechanism of LMCs, which is important for tornado forecasts, is different from that of MMCs. 

It is argued that, without initial vertical vorticity in the lower layer, a downdraft is required for low-level 

mesocyclogenesis (Davies-Jones 1982; Rotunno and Klemp 1985; Wicker and Wilhelmson 1995; Adlerman et al. 1999). 

Markowski et al. (2002, 2003, 2008) and Straka et al. (2007) have suggested that the rear-flank downdraft (RFD) of the 

storm baroclinically generates horizontal vorticity, which in turn is tilted by the updraft near the rear-flank gust front 

(RFGF) to form LMCs (Fig. 1.3). In this mechanism of low-level mesocyclogenesis, environmental low-level vertical 

shear and water vapor may also play an important role. In fact, Craven and Brooks (2004) statistically clarified that 

storms are more tornadic in the stronger vertical wind shear at 0–1-km height and with the lower lifted condensation 

level (LCL) of the parcel averaged in the lowest 100 hPa. 

Several results of idealized numerical experiments also support that baroclinically generated horizontal vorticity by 

the RFD and this vorticity tilted by the updraft are important for low-level mesocyclogenesis. Richardson et al. (2007) 

pointed out a gradient of vertical shear across the storm as favorable conditions for the intensification of right-moving 

supercells associated with strong LMCs. Markowski and Richardson (2014) showed that the strength of the cold pool is a 

“Goldilocks” problem for low-level mesocyclogenesis: it should be intermediate because horizontal vorticity is not 

generated near the surface by the downdraft in too weak cold pool and vertical vorticity is not intensified by the updraft 

in too strong cold pool. Parker and Dahl (2015) showed that low-level environmental vertical wind shear and the 

downdraft intensify vertical vorticity near the surface. 

 

1.2.3. Tornadogenesis 
Tornadoes are not necessarily generated even if MMCs and LMCs are generated (Trapp et al 2005). Therefore, the 

origin of vorticity and circulation of tornadoes is considered to be different from that of MMCs and LMCs. The origin of 

rotation of tornadoes may be clarified with simulations that resolve tornadoes. To resolve tornadoes having diameters of 

O(10–1) km with a numerical model, however, huge computational resources are required. It becomes only recently 

possible to conduct such high-resolution simulations owing to improvement of computer performance (Mashiko et al. 

2009; Schenkman et al. 2012, 2014; Mashiko 2016a, b). 

Mashiko et al. (2009) succeeded in reproducing the Nobeoka city tornado in Japan, on 17 September 2006, with a 

model of 50-m horizontal grid interval, and showed that the origin of vorticity and circulation of the tornado was the 

environmental low-level streamwise vorticity associated with the Typhoon Shanshan (Fig. 1.4a). Schenkman et al. (2012, 

2014) also analyzed vorticity budget about two typical supercell tornadoes generated in Oklahoma city, U.S., on 8–9 May 

2007 and on 8 May 2003 with models of 100-m and 50-m horizontal grid interval, respectively, and showed that main 

origins of the rotation of these tornadoes were frictionally generated crosswise vorticity (Fig. 1.4b). Roberts et al. (2016) 

also showed that the frictionally generated crosswise vorticity can be a main origin of tornadoes with idealized numerical 

experiments. 

Because such vorticity and circulation budget analyses are sensitive to location and timing of parcels used for the 
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trajectory analysis, however, the principal origin of vorticity of tornadoes has not been clarified in a satisfactory manner. 

Mashiko (2016b) analyzed circulation budget of the typical supercell tornado in Tsukuba city, Japan, on 6 May 2012, 

which was reproduced with a model of 50-m horizontal grid interval, and showed that frictionally generated circulation 

was the main origin of the weak vortex before developing to the tornado while baroclinically generated circulation was 

the main origin of the rapidly developing tornado (Fig. 1.4c). Using idealized numerical experiments, Markowski (2016) 

showed that the main origin of the circulation of tornadoes is changeable depending on environmental wind and the 

strength of the friction. 

Once weak vortices are generated near the surface, they are likely to be intensified by the updraft associated with 

LMCs. For strong vertical vorticity of LMCs, Eq. (1.1) may be simplified to 

ᇱ݌  ൎ ୈ୒୐݌
ᇱ ∝ െ

1
2
ᇱଶߞ , (1.5) 

where fluid extension, deformation, and horizontal vorticity can be neglected. This equation means that pressure drops at 

the centers of LMCs and non-linear dynamic VPPGF is generated below the LMCs. This non-linear dynamic VPPGF 

strengthens the low-level updraft and convergence near the surface, which in turn stretches weak vorticity near the 

surface and causes tornadogenesis (e.g., Markowski and Richardson 2014). Therefore, tornadoes are likely to be 

generated when LMCs are strong and are located just above the local points of maximum vertical vorticity near the 

surface. However, whether the strength of LMCs is the essential factor for tornadogenesis or not has not been clarified. 

 

1.3. Data assimilation and ensemble forecasts to analyze tornadoes 

Although the several mechanisms for geneses of mesocyclones and tornadoes have been suggested, important 

conditions for their geneses are not identified. Most of the previous studies about mesocyclogenesis and tornadogenesis 

are based on observations (e.g., Craven and Brooks 2004), numerical simulations of observed cases, and sensitivity 

studies in idealized numerical experiments by artificially eliminating effects of the friction, evaporation, and so on (e.g., 

Mashiko et al. 2009; Mashiko 2016b). However, it is not easy to clarify the mechanisms of mesocyclogenesis and 

tornadogenesis only from observations which have limited spatiotemporal resolutions. A successful simulations of 

observed tornadoes are useful because detailed analyses of three-dimensional data with high temporal resolution can be 

made. However, uncertainty in the initial and boundary conditions due to insufficient observational data makes difficult 

to evaluate the processes of tornadogenesis in deterministic simulations against the true processes occurring in nature. 

Thus, the sensitivity studies using deterministic simulations are also difficult to evaluate. Therefore, numerical 

experiments with more reliable initial and boundary conditions using assimilation of dense observations are desired to 

clarify the observed mesocyclogenesis and tornadogenesis. In addition, ensemble experiments with multiple initial and 

boundary conditions are also desired to find possibility of mesocyclogenesis and tornadogenesis that cannot be forecasted 

deterministically and what is especially important for mesocyclogenesis and tornadogenesis. 

In the U.S., various kinds of dense observations around tornadoes are obtained with many instruments in field 
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campaigns such as VORTEX (Rasmussen et al. 1994) and VORTEX2 (Wurman et al. 2012). One of their aims is to give 

warnings of tornadoes based on realistic ensemble forecasts of storm features conducted with several kilometer 

horizontal grid intervals by assimilating such dense observations (e.g., Warn-on-forecast; Stensrud et al. 2009, 2013; 

Cintineo and Stensrud 2013). 

In Japan, strong supercell tornadoes occur much less frequently than they do in the U.S. Once they occur, however, 

they can be observed by the dense surface observation network and the operational C-band radars covering the whole 

Japan. In particular, the supercell that spawned the tornado in Tsukuba city on 6 May 2012 was observed not only by 

these observational systems but also by the C-band polarimetric radar located very close to the supercell. Therefore, 

assimilating observational data around the tornadic supercell on 6 May 2012 is useful for clarifying the supercell 

tornadogenesis. 

For assimilating dense observations and making initial states of ensemble experiments, three-demensional variational 

method (3D-VAR, Sasaki 1958) and ensemble Kalman filter (EnKF, Kalman 1960; Evensen 1994) are commonly used. 

These two methods are explained in the following subsections. 

 

1.3.1. Variational method (3D-VAR, 4D-VAR) 
Three-demensional variational method (3D-VAR) is one of the data assimilation methods based on the Baysian 

probability theory (Lorenc 1986). In 3D-VAR, the analysis ܠ௔ is solved by minimization of cost function ܬ defined as 

ܬ  ൌ
1
2
ሺܠ௔ െ ௔ܠ௙ሻ்Bିଵሺܠ െ ௙ሻܠ ൅

1
2
ሾܪሺܠ௔ሻ െ ௔ሻܠሺܪሿ்Rିଵሾܡ െ  , (1.6)	ሿܡ

where ܠ௙ is the first guess obtained by forecast from the previous analysis and ܡ is the observation. 	ܪ is the 

observation operator to convert values in the model space corresponding to those in the observation space (interpolation 

to observation point when ܠ௔ and ܡ are same variables). B and R are background and observation error covariance 

matrices, respectively. Non-diagonal components of R (error covariance between different observations each other) are 

usually set to zero for simplification. The first and second terms in right hand side (rhs) of Eq. (1.6) (called background 

and observation terms) are small when the analysis is close to the first guess and the observation, respectively. 

Minimization of ܬ is conducted by making 

ܬߘ  ൌ Bିଵሺܠ௔ െ ௙ሻܠ ൅ H்Rିଵሾܪሺܠ௔ሻ െ  ሿ (1.7)ܡ

close to zero with conjugate gradient method (e.g., Navon and Legler 1987), quasi-Newton method (e.g., Nocedal 1980), 

and so on, where H is tangent linear ܪ [Jacobian matrix of ܪሺܠ௙ሻ]. 

3D-VAR assimilation is useful for forecasting supercell storms easily with the high-resolution model. In 3D-VAR, 

however, analyses based on flow-dependent (varying according to the atmospheric fields) B cannot be accomplished 

because the components of B  are climatologically determined. Moreover, correlations between variables in 

non-diagonal components of B are usually set to zero because it is difficult to estimate them. In this case, assimilation 

of radar reflectivity does not correct atmospheric fields except water contents. Therefore, “cloud analysis,” which directly 
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corrects atmospheric fields with radar reflectivity, has been often used together with 3D-VAR for forecasting the tornadic 

supercells: for example, supercells in Fort Worth, Texas, on 23 March 2000 (Hu et al. 2006a, b), in Oklahoma in 4–5 

May 2003 (Hu and Xue 2007; Xue et al. 2014), in Greensburg, Kansas, on 4–5 May 2007 (Stensrud and Gao 2010), and 

in Oklahoma on 9 May 2007 (Schenkman et al. 2011a, b, 2012). In particular, Xue et al. (2014) and Schenkman et al. 

(2011b, 2012) succeeded to reproduce tornado-like vortices with the experiments of 100-m and 50-m horizontal grid 

intervals, respectively, where initial conditions were made by 3D-VAR and cloud analysis. 

In four-demensional variational method (4D-VAR, Sasaki 1969, 1970; Thompson 1969), which is the extension of 

3D-VAR, observations at different time periods in the analysis window are assimilated simultaneously with 

flow-dependent B. However, huge cost is required to develop the tangent linear forecast model, which is used to 

calculate flow-dependency of B. Furthermore, if the forecast model is strongly non-linear, flow-dependency of B is not 

accurately calculated with the tangent linear model. Therefore, there are few studies to make high-resolution initial states 

with 4D-VAR. In fact, Caya et al. (2005) have shown that EnKF can produce better analyses than 4D-VAR after several 

assimilation cycles in observation system simulation experiments (OSSEs) using radar observations of a supercell storm. 

 

1.3.2. Ensemble Kalman filter 
Ensemble Kalman filter (EnKF) makes flow-dependent analyses more efficiently for forecasting strongly non-linear 

phenomena, such as supercell tornadoes, with linear minimum variances estimation. Using ܪሺܠ௔ሻ ൎ ௙ሻܠሺܪ ൅ Hሺܠ௔ െ

ܬߘ ,௙ሻ in 3D-VARܠ ൌ 0 can be solved explicitly as 

௔ܠ  ൌ ௙ܠ ൅ Kሾܡ െ ௙ሻሿܠሺܪ , (1.8) 

 K ൌ ൫BH்RିଵH൅ I൯
ିଵ

BH்Rିଵ ൌ BH்൫HBH் ൅ R൯
ିଵ
, (1.9) 

where K is called Kalman gain. In EnKF, on the other hand, analyses are solved by Eq. (1.8) and 

 K ൌ ௙ሻ்ሿܪߜ௙ሺܪߜሾܧ௙ሻ்ሿሼܪߜ௙ሺܠߜሾܧ ൅ Rሽିଵ , (1.10) 

where ܠߜ௙ and ܪߜ௙ are ensemble perturbations of 	ܠ௙ and ܪሺܠ௙ሻ, respectively. ܠ௙ and ܪሺܠ௙ሻ are ensemble means. 

 is a matrix consisting of expected values calculated with ensemble forecasts. In these formulations, components of B ܧ

are flow-dependent because ܧሾܠߜ௙ሺܪߜ௙ሻ்ሿ and ܧሾܪߜ௙ሺܪߜ௙ሻ்ሿ calculated with ensemble forecasts are used instead of 

BH் and HBH், respectively. Because this ensemble-based analysis does not use the tangent linear forecast model, the 

EnKF system is simpler than the 4D-VAR one. However, enormous computational resources are required for ensemble 

forecasts by a number of members to calculate ܧሾܠߜ௙ሺܪߜ௙ሻ்ሿ and ܧሾܪߜ௙ሺܪߜ௙ሻ்ሿ accurately. Therefore, “covariance 

localization,” where the covariance between two points distant each other is artificially made smaller, and “covariance 

inflation,” where the ensemble perturbation is artificially made larger, are usually used to suppress sampling error and 

underestimation of the forecast error because of limited ensemble members in EnKF. 

One of the advantages of EnKF is that ensemble perturbations ܠߜ௔ based on the analysis error covariance matrix, 
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௔ሻ்ሿܠߜ௔ሺܠߜሾܧ  ൌ ௙ሻ்ሿܠߜ௙ሺܠߜሾܧ ൅ Kܧሾܪߜ௙ሺܠߜ௙ሻ்ሿ , (1.11) 

are explicitly calculated with the perturbed observation method (Burgers et al. 1998) or square root filters (Anderson 

2001; Whitaker and Hamill 2002; Hunt et al. 2007). Ensemble forecasts with initial perturbations made by these methods 

are used for the first guess of the next assimilation cycle. For example, EnKF with square root filters were used to 

assimilate dense observations for improving severe weather forecasts in Snyder and Zhang (2003), Zhang et al. (2004), 

Dowell et al. (2004, 2011), Caya et al. (2005), Tong and Xue (2005), Xue et al. (2006), Dawson et al. (2012), Marquis et 

al. (2012, 2014), Snook et al. (2012, 2015), Yussouf et al. (2013a, b), Tanamachi et al. (2013), Putnum et al. (2014), and 

so on. 

Although larger computational resources are generally required in EnKF assimilation than in 3D-VAR assimilation, 

EnKF assimilation can produce dynamically balanced analyses of supercell storms with the flow-dependent B estimated 

by ensemble forecasts. Furthermore, EnKF can make multiple atmospheric fields within the range of analysis error 

through assimilation of dense observations around the tornadoes. Therefore, ensemble forecasts from EnKF analyses 

accomplish ensemble-based analyses about tornadogenesis, which statistically clarify the relationship between tornadoes 

and the surrounding environment and also examine what is especially important for tornadogenesis [e.g., ensemble-based 

sensitivity analyses (ESA), Ancell and Hakim 2007; Torn and Hakim 2008]. 

In fact, Seko et al. (2015) performed ensemble-based analyses of the typical tornadic supercell generated in Japan on 

6 May 2012 using 12-member ensemble experiments from EnKF analyses, and showed that low-level water vapor and 

vertical shear affected low-level mesocyclogenesis. However, the number of ensemble members and assimilated 

observations in Seko et al. (2015) were too small to do more reliable analyses. 

 

1.4. Motivation and structure of this thesis 

As reviewed above, important conditions for tornadogenesis have not been clarified well. Although it has been shown 

that modification of small-scale fields through assimilation of low-level dense observations helps to improve the 

predictability of mesocyclogenesis and tornadoegenesis, which physical variables are important to be assimilated for 

improving forecasts of LMCs has not been clarified. To clarify this, we conducts realistic ensemble forecasts of an LMC 

and a tornado with sub-kilometer horizontal grid intervals, and analyzes the results in this thesis. 

The objective of this study is to clarify the conditions for strong LMCs and associated supercell tornadogenesis in 

more detail. Impacts of assimilating dense observations on the improvement of the prediction of LMCs and potential of 

warn-on-forecasts of tornadoes are also discussed. To fulfill these objectives, we conducted 33-member ensemble 

forecasts of the typical supercell tornado generated in Japan on 6 May 2012 by assimilating dense surface and radar 

observations with EnKF, and examined the sensitivities of the strength of LMCs to environmental parameters such as 

SREH and CAPE. The origins of vorticity and circulation of simulated tornadoes and mesocyclone-scale variables that 

are strongly correlated to tornadogenesis are also clarified based on the ensemble forecasts. 
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The rest of the thesis is structured as follows: The design of the assimilation experiment is described in chapter 2, and 

the results of the ensemble forecasts to clarify the mechanisms of intensification of the LMC and the tornadogenesis are 

presented in chapters 3 and 4, respectively. In chapter 5, conditions for tornadogenesis and potential for tornado forecasts 

are discussed. Finally, chapter 6 presents conclusions and remarks. 

It is noted that parts of this thesis are related to the findings of the author and collaborators, which have already been 

published in scientific journals. Analyses of the synoptic field associated with the supercell tornado on 6 May 2012 in 

Seko et al. (2015) are referred to in chapter 2. The ensemble-based data assimilation method that is explained in chapters 

2 and 6 is the same as that used in Yokota et al. (2016a). The ensemble forecasts of the LMC, which constitute the main 

parts of chapters 2 and 3 and are related to chapters 1, 5, and 6, have been described in Yokota et al. (2016b). This thesis 

synthesizes these works to clarify the essential conditions for supercell tornadogenesis more reliably. 
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Table 1.1. F-, EF-, JEF-scale wind speeds (cf., Fujita 1971; McDonald and Mehta 2004; Japan Meteorological Agency 

2015). F-scale wind speed is fastest quarter-mile wind, while EF- and JEF-scale wind speeds are 3-min average. 

 F-scale (m s–1) EF-scale (m s–1) JEF-scale (m s–1)

0 17–32 29–38 25–38 

1 33–49 39–49 39–52 

2 50–69 50–60 53–66 

3 70–92 61–74 67–80 

4 93–116 75–89 81–94 

5 117–141 90– 95– 
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Fig. 1.1. Schematic illustrations of midlevel mesocyclogenesis due to tilting horizontal vorticity due to the environmental 

vertical wind shear. Red and blue arrows denote directions of velocity and vorticity vectors, respectively. 

  

 

5 年以内に雑誌等で公表予定のため、非公開。 
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Fig. 1.2. Schematic illustrations of the asymmetric perturbation pressure in veering shear. Red arrows denote directions 

of velocity ܄ and ݓᇱ. Green, purple, and yellow arrows denote vertical shear vectors (of horizontal velocity) ܁, 

horizontal gradient of the updraft ׏୦ݓᇱ, and the linear dynamic VPPGF, respectively. This shows that the veering shear 

selectively intensifies right-moving storms and associated MMCs. 

  

 

5 年以内に雑誌等で公表予定のため、非公開。 
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Fig. 1.3. Schematic illustrations of low-level mesocyclogenesis due to baroclinically generated vorticity that is tilted by 

the updraft. Red and blue arrows denote directions of velocity and vorticity vectors, respectively. 

  

 

5 年以内に雑誌等で公表予定のため、非公開。 
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Fig. 1.4. Schematic illustrations of three possible origins of rotation of tornadoes: (a) environmental streamwise vorticity, 

(b) frictionally generated crosswise vorticity, and (c) baroclinically generated horizontal vorticity. Red and blue arrows 

denote directions of velocity and vorticity vectors, respectively. 

  

 

5 年以内に雑誌等で公表予定のため、非公開。 
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2. Methodology 
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2.1. The tornadoes on 6 May 2012 

In this study, we focused on three tornadoes that occurred almost simultaneously on the northern Kanto Plain at about 

1230 Japan Standard Time (JST; 0900 JST corresponds to 0000 UTC) on 6 May 2012 (Japan Meteorological Agency 

2012). The three tornadoes passed through Tsukuba, Chikusei, and Moka cities in order from the south, and they are 

hereafter called the Tsukuba, Chikusei, and Moka tornadoes, respectively. Their paths were determined by Japan 

Meteorological Agency (JMA) (black solid lines in Figs. 2.1–2.3). The Tsukuba, Chikusei and Moka tornadoes were 

ranked F3, F1 and F2, respectively, on the F-scale (Fujita 1971) by JMA. We focused particularly on the Tsukuba tornado, 

which caused the most severe damage of the three. It had the characteristics of a typical supercell tornado (Yamauchi et 

al. 2013; Mashiko 2016a, b). The damage path of the Tsukuba tornado was 17 km long and 500 m wide. It damaged 

about 800 houses, killed one person, and injured 37 people. 

In Japan, no tornadoes have been ranked F4 or more and the number of tornadoes ranked F3 are only four between 

1990 and March 20163: they are the Mobara city tornado in 1990 (e.g., Niino et al. 1993), the Toyohashi city tornado in 

1999 (e.g., Yoshino et al. 2002), the Saroma city tornado in 2006 (e.g., Kato and Niino 2007), and the Tsukuba tornado. 

These four toandoes are caused by supercells. Because there were much denser observations around the Tsukuba tornado 

than other three F3 tornadoes, however, the Tsukuba tornado is suitable for clarifying the mechanisms of supercell 

tornadogenesis in Japan. 

At 0900 JST 6 May 2012, southerly winds prevailed near the surface of the Kanto Plain due to a low-pressure system 

centered over the Japan Sea, northwest of the Kanto Plain (Fig. 2.4a). At that time, a low-pressure system accompanying 

a cold air mass was located in the upper troposphere over the Japan Sea (Fig. 2.4b), and moved southeastward toward the 

Kanto Plain. Subsequently, band-shaped precipitation system extending from southwest to northeast over the central 

Japan started to develop in the western part of the Kanto Plain and moved northeastward across the Kanto Plain while 

developing. On the other hand, surface temperature and horizontal winds showed that a warm moist southerly flow in the 

southeast and a cold northerly flow in the northwest converged over the northern Kanto Plain. The warm moist flow was 

characterized by a water vapor mixing ratio exceeding 12 g kg–1, which was supplied to the precipitation system 

(Meteorological Research Institute 2012). Cold advection due to the northwesterly winds in the upper troposphere and 

warm advection due to the southerly moist winds near the surface increased static instability and contributed to the 

intensification of the storm. 

On the Kanto Plain, a considerable number of observations captured the structure and environment of the three 

tornadoes. In particular, the Meteorological Research Institute Advanced C-band Solid-state Polarimetric Radar 

(MACS-POL) observed the detailed structure and behavior of the tornado and its parent storm. MACS-POL has radial 

and azimuthal resolutions of 150 m and 0.7° (Adachi et al. 2013), and the Tsukuba tornado passed only about 15 km 

                                                           
3 JMA used F-scale to estimate the strength of tornadoes until March 2016, but started to use JEF-scale (Japan 
Meteorological Agency 2015) from April 2016 to improve accuracy of estimation based on damage indicators and degree 
of damage (Table 1.1). 
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north of MACS-POL. The three tornadoes were generated at the southern edges of intense rainfall regions observed by 

MACS-POL. A region of strong horizontal shear and an associated low-level vortex observed by MACS-POL moved 

above the path of the Tsukuba tornado at the tip of a hook echo (southernmost solid black line in Figs. 2.1–2.3). The 

diameter and vorticity of this vortex, calculated from the local minimum and maximum velocities and their locations, 

were O(1) km and O(10–2) s–1, respectively, at about 1230 JST, and they became O(10–1) km and O(10–1) s–1, respectively, 

by 1250 JST (Yamauchi et al. 2013). In addition, the high-resolution surface observation network, comprising Automated 

Meteorological Data Acquisition System (AMeDAS; operated by JMA) and Environmental Sensor Network (ESN; 

operated by NTT DOCOMO, Inc.) stations, recorded the horizontal distributions of surface winds, temperature, and 

relative humidity on the Kanto Plain before and after the geneses of the three tornadoes. The average spatial interval of 

these surface observations was about 10 km (Figs. 2.1a–c). 

Shoji et al. (2015) and Mashiko (2016a, b) deterministically simulated an LMC and a tornado corresponding to the 

Tsukuba tornado by a numerical simulation with a horizontal grid interval of 250 m and 50 m using JMA’s operational 

mesoscale analysis. Although Shoji et al. (2015) and Mashiko (2016a, b) did not discuss the predictability of LMCs, 

Seko et al. (2015) simulated three LMCs corresponding to the three tornadoes and discussed their predictability by 

conducting ensemble experiments with a horizontal grid interval of 350 m from EnKF analyses. However, owing to 

model bias and inaccurate initial conditions due to the assimilation of spatially coarse conventional observations, the 

LMC outbreaks simulated by Seko et al. (2015) were about 45 minutes earlier than the actual outbreak, and the position 

of the LMC associated with the Tsukuba tornado was shifted 15–20 km north of the actual tornado. 

 

2.2. Numerical model and data assimilation system 

In this study, JMA non-hydrostatic model (JMANHM, Saito et al. 2006)4 was used for the model of ensemble 

forecasts, and four-dimensional local ensemble transform Kalman filter (4D-LETKF, Hunt et al. 2004, 2007; Miyoshi et 

al. 2007) was used for the data assimilation. LETKF is a kind of EnKF based on Eqs. (1.8), (1.10), and (1.11), and “4D” 

means that observations at a plurality of times in a finite time window are assimilated together. In 4D-LETKF, analysis 

and analysis perturbation used for initial conditions of ensemble forecasts are given by 

ప,௧ݔ 
௔തതതത ൌ ప,௧ݔ

௙തതതത ൅෍ݔߜ௜௝,௧
௙ ௜௝ݓ

௠

௝ୀଵ

 (2.1) 

௜௝,௧ݔߜ 
௔ ൌ ෍ ௜௝భ,௧ݔߜ

௙
௜ܶ௝భ௝

௠

௝భୀଵ

, (2.2) 

where ݔప,௧
௔ሺ௙ሻതതതതതതത and ݔߜ௜௝,௧

௔ሺ௙ሻ are an ensemble mean and perturbation of ݔ௜௝,௧
௔ሺ௙ሻ, which is the analysis variable (ܽ: analysis, 

݂: first guess) of ensemble member ݆	ሺ1 ൑ ݆ ൑ ݉ሻ at point ݅	ሺ1 ൑ ݅ ൑ ݊ሻ at time slot ݐ	ሺ0 ൑ ݐ ൑ ܶሻ. 	ݓ௜௝ and ௜ܶ௝భ௝ 

are calculated by 

                                                           
4 In this model, a hybrid terrain-following vertical coordinate system (Ishida 2007) is used. Hereafter, height (written as 
z*) is given in this coordinate system. 
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௜௝ݓ  ൌ ෍ ቎෍
1
௜௝మߣ

௜ܷ௝భ௝మ ௜ܷ௝௝మ

௠

௝మୀଵ

෍෍
௜௞ܮ
ܴ௞,௧

௞௝భ,௧ܪߜ
௙ ቀݕ௞,௧ െ ௞,௧ܪ

௙തതതതതቁ

௄

௞ୀଵ

்

௧ୀ଴

቏

௠

௝భୀଵ

	, (2.3) 

 ௜ܶ௝భ௝ ൌ √݉ െ 1 ෍
1

ඥߣ௜௝మ
௜ܷ௝భ௝మ ௜ܷ௝௝మ

௠

௝మୀଵ

, (2.4) 

 
݉െ 1
ଶߙ

௝భ௝ߜ ൅෍෍
௜௞ܮ
ܴ௞

௞௝భ,௧ܪߜ
௙ ௞௝,௧ܪߜ

௙
௄

௞ୀଵ

்

௧ୀ଴

ൌ ෍ ௜௝మߣ ௜ܷ௝భ௝మ ௜ܷ௝௝మ

௠

௝మୀଵ

, (2.5) 

where ݕ௞,௧  is an observation at point ݇	ሺ1 ൑ ݇ ൑ ሻܭ  at time slot ݐ ௞,௧ܪ .
௙തതതതത  and ܪߜ௞௝,௧

௙  are ensemble mean and 

perturbation of the first guess converted to the value corresponding to observation ݕ௞,௧ by the observation operator. ܴ௞,௧ 

is error variance of observation ݕ௞,௧. ߣ௜௝మ and ൫ ௜ܷଵ௝మ, … , ௜ܷ௠௝మ൯ are the ݆ଶth eigenvalue and eigenvector of an ݉ ൈ݉ 

matrix: ሺ݆ଵ, ݆ሻ component is the left hand side of Eq. (2.5). This method to make the transformation matrix ௜ܶ௝భ௝ of 

analysis perturbation ݔߜ௜௝,௧
௔  with the eigenvalue decomposition is called “square root filter.” 	ߙ is the multiplicative 

inflation parameter to increase the underestimated forecast error perturbation (Anderson and Anderson 1999). ܮ௜௞ is the 

localization factor between points ݅ and ݇, defined as 

௜௞ܮ  ൌ ቐ
exp ቆെ

௜௞ݎ
ଶ

ଶߪ2
ቇ ሺݎ௜௞ ൑ ୫ୟ୶ሻݎ

0 ሺݎ௜௞ ൐ ୫ୟ୶ሻݎ
, (2.6) 

where ݎ௜௞  is the distance between points ݅  and ݇  (R-localization). ߪ  and ݎ୫ୟ୶  are constants and ߪ  is called 

“localization length” (cf. Miyoshi et al. 2007). Eqs. (2.1)–(2.6) are the equations of EnKF assimilating observations at a 

plurality of times with R-localization. If ߪ → ୫ୟ୶ݎ ,∞ → ∞, and ܶ ൌ 0, so that Eqs. (2.1)–(2.6) satisfy Eqs. (1.8), 

(1.10), and (1.11). 

The resulting values of ݔప,௧
௔തതതത and ݔߜ௜௝,௧

௔  become the initial values for the ensemble forecasts of the next cycle. 

Because ݔప,௧
௔തതതത and ݔߜ௜௝,௧

௔  are solved at each analysis point ݅ independently with the distance to the observation point ݇, 

the computation of LETKF can be parallelized efficiently. In this study, we used 2-scale (outer and inner) nested 

4D-LETKF system (Seko et al. 2013) to assimilate observations with smaller spatial representativeness as well as larger 

one. Figure 2.5 outlines the calculation procedures and shows the computational domains of this system. The settings of 

the nested 4D-LETKF system are summarized in Table 2.1. 

 

2.2.1. Outer LETKF (resolution: 15 km) 
In outer LETKF, the grid interval was 15 km horizontally, and it varied vertically from 40 m near the surface to 886 

m near the top of the calculation domain. The number of vertical levels was 50. For the boundary conditions, the 

mesoscale analysis (until 0900 JST 6 May) and the global forecast (after 0900 JST 6 May) of JMA without any ensemble 

perturbations were used by all members. A bulk-type single-moment cloud microphysics scheme with water vapor, cloud 

water, rain, cloud ice, snow, and graupel (Lin et al. 1983) and Kain-Fritsch cumulus parameterization (Kain and Fritsch 

1990; Kain 2004) were adopted. A second-order turbulence closure scheme based on Nakanishi (2001) and Nakanishi 

and Niino (2004, 2006) was also adopted. Hourly observations of surface stations (pressure), radiosondes (horizontal 

winds, temperature, and relative humidity), commercial aircraft (horizontal winds and temperature), wind profiler radars 
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(horizontal winds), and Doppler radars [Doppler velocity and relative humidity estimated from reflectivity (Ikuta and 

Honda 2011; Ikuta 2012)], which are used in the mesoscale analysis of JMA (Honda et al. 2005), were assimilated in a 

6-h assimilation window. 

 

2.2.2. Inner LETKF (resolution: 1.875 km) 
In inner LETKF, the grid interval was 1.875 km horizontally, which is eight times finer than that of outer LETKF. 

The vertical grid interval was the same as that in outer LETKF to suppress the effect of inconsistency with the 

horizontally coarse lateral boundary. No cumulus parameterization was used. Surface and radar data observed every 10 

minutes were assimilated in an hourly assimilation window. The hourly 32-member outer-LETKF analyses and forecasts 

were used for the boundary conditions of the 1-h inner-LETKF ensemble forecasts. Surface observations consisted of 

horizontal winds, temperature, and relative humidity observed at Meteorological Observatories and by AMeDAS and 

ESN. Radar observations consisted of radial velocity observed by MACS-POL and three operational C-band Doppler 

radars, in Kashiwa city and at Haneda and Narita airports (hereafter, the Kashiwa, Haneda, and Narita radars, 

respectively) and the amount of rainwater estimated by MACS-POL. The methods used to assimilate surface and radar 

observations are explained in subsections 2.3.1 and 2.3.2, respectively. 

Only in making the analysis at 1100 JST 6 May 2012, observations from 1100 to 1200 JST were assimilated in 

addition to those before 1100 JST with an ensemble Kalman smoother (EnKS; Kalnay et al. 2007; Yang et al. 2009), 

which is a simple extension of EnKF in a time direction because in the LETKF formulation any time in the assimilation 

window can be an analysis time. In EnKS, ݔప,଴
௔തതതത and ݔߜ௜௝,଴

௔  in Eqs. (2.1) and (2.2) (start of the assimilation window) are 

used as the initial states for next ensemble forecasts, while ݔప,்
௔തതതത and ݔߜ௜௝,்

௔  (end of the assimilation window) are used in 

EnKF. With EnKS, requirements for a long spin-up time and the assimilation of observations just before the tornado 

outbreak are accomplished simultaneously. 

 

2.2.3. Downscaling ensemble forecasts (resolution: 350 m) 
In the downscale ensemble experiments (hereafter referred to as 350m-EXPs) used to forecast the LMC associated 

with the Tsukuba tornado, the grid interval was 350 m horizontally, and it varied vertically from 40 m near the surface to 

609.5 m near the top of the calculation domain. The number of vertical levels was 70. A first-order turbulence closure 

scheme based on Deardorff (1980) was adopted, and no cumulus parameterization was used. The 32-member 

inner-LETKF analyses and their ensemble mean at 1100 JST 6 May 2012 and their forecasts were used as the initial and 

boundary conditions, respectively, for the 33 members of 350m-EXPs. Hereafter, forecast from the ensemble mean of the 

inner-LETKF analyses is called “350m-EXPm.” In this thesis, the mechanism of low-level mesocyclogenesis is clarified 

using the results of these 33 members of 350m-EXPs (Chapter 3). 

 

2.2.4. High-resolution downscaling ensemble forecasts (resolution: 50 m) 
In the high-resolution downscale ensemble experiments (hereafter referred to as 50m-EXPs) used to forecast the 
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Tsukuba tornado, the grid interval was 50 m horizontally, and it varied vertically from 10 m near the surface to 445 m 

near the top of the calculation domain. The number of vertical levels was 90. The turbulence closure scheme was same as 

350m-EXPs and no cumulus parameterization was used. The 33-member ensemble forecasts of 350m-EXPs from 1110 to 

1210 JST were used as the initial and boundary conditions for the 33 members of 50m-EXPs. In this thesis, the 

mechanism of tornadogenesis is examined with the results of these 33 members of 50m-EXPs (Chapter 4). 

 

2.2.5. Experimental design to assimilate dense observations 
Seko et al. (2015) reproduced LMCs of the supercells that spawned the several tornadoes by ensemble experiments 

with a horizontal grid interval of 350 m. In this study, the expetimental design was changed from that of Seko et al. 

(2015) to assimilate dense observation data more efficiently. The experiments in this study differ from those of Seko et al. 

(2015) with respect to the following points: (i) Dense surface and radar data were assimilated by inner LETKF; (ii) the 

number of ensemble members was increased from 12 to 32; (iii) multiplicative inflation parameters were increased from 

1.1 to 1.5 in outer LETKF and from 1.1 to 1.2 in inner LETKF to increase the impact of the assimilation of the dense 

observations; (iv) the horizontal domain size of inner LETKF was increased from 300 km  300 km to 450 km  450 km 

to assimilate the dense surface observations in the larger domain; (v) observations assimilated by outer LETKF were not 

assimilated again by inner LETKF, and the inner-LETKF analyses did not affect the outer-LETKF analyses, to clarify the 

impact of the assimilation of the dense observations; (vi) the initial time of the 350m-EXPs was changed from 1030 to 

1100 JST, and EnKS (Kalnay et al. 2007; Yang et al. 2009) was used to assimilate the dense observations near the time 

when the actual tornadoes were generated; (vii) the JMA global forecast was used for the boundary conditions of outer 

LETKF after 0900 JST 6 May 2012 to demonstrate the predictability of the LMC. 

 

2.3. Verification of assimilation of dense observations 

2.3.1. Assimilation of surface observations 
Surface meteorological data directly capture the dynamic and thermodynamic characteristics of the planetary 

boundary layer, and these characteristics are closely related to low-level convergence and static instability. Therefore, 

assimilation of surface data can potentially improve the modeled state of the planetary boundary layer and associated 

forecasts of convective systems (Hacker and Snyder 2005; Zhang et al. 2006; Meng and Zhang 2007, 2008; Fujita et al. 

2007; Ancell et al. 2011; Ha and Snyder 2014; Sobash and Stensrud 2015). 

In inner LETKF, zonal and meridional winds, temperature, and relative humidity (ݑଶ଴, ,ଶ଴ݒ ଶܶ଴, RHଶ଴) at 20-m height, 

which is the lowest model level (Figs. 2.1a–c), were assimilated. These variables were transformed from the 

corresponding surface data (ݑ୭ୠୱ, ,୭ୠୱݒ ୭ܶୠୱ, RH୭ୠୱ) with the following equations: 

 ቀ
ଶ଴ݑ
ଶ଴ݒ

ቁ ൌ
lnሺ20.0/ݖ଴ሻ

lnሺݖobs/ݖ଴ሻ
ቀ
୭ୠୱݑ
୭ୠୱݒ

ቁ , (2.7) 
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 ଶܶ଴ ൌ oܶbs െ Γሾሺݖ୫ ൅ 20.0ሻ െ ሺݖୱ ൅ obsሻሿݖ , (2.8) 

 RHଶ଴ ൌ
୫ݖሺ݌ ൅ 20.0ሻ/݁௦ሺݖ୫ ൅ 20.0ሻ

ୱݖሺ݌ ൅ ୱݖobsሻ/݁௦ሺݖ ൅ obsሻݖ
RHobs , (2.9) 

where ݖ଴ (Fig. 2.1d) is the roughness length of the model surface (m), ݖ୫ (Fig. 2.1d) and ݖୱ are altitudes of the model 

and the actual surface, respectively, above sea level (m), ݖobs is the height of the observation instruments above the 

surface (m), ݌ሺݖሻ and ݁௦ሺݖሻ are pressure and saturated water vapor pressure, respectively, at height ݖ (m) of the 

model, ܿ௣ ൌ 1.01 ൈ 10ଷ	J	Kିଵ	kgିଵ is the specific heat at constant pressure, ܴ ൌ 2.87 ൈ 10ଶ	J	Kିଵ	kgିଵ is the gas 

constant, and Γ ൌ 6.5 ൈ 10ିଷ	K	m–1 is the temperature lapse rate. ESN observations from only those sites that passed 

quality check procedures (ݑଶ଴ and ݒଶ଴ from 228 and ଶܶ଴ and RHଶ଴ from 215 of 332 total sites) were assimilated in 

the experiments; for details, see Appendix A. 

Equation (2.7) assumes a neutrally stratified atmosphere in which vertical changes of horizontal winds are 

logarithmic. However, the assumption of neutral stratification is not appropriate for temperature and relative humidity 

because differences in their values at 20-m height between the model and the observation were mainly caused by the 

difference between ݖ୫ and ݖୱ. Therefore, Eqs. (2.8) and (2.9) assume a constant Γ instead of neutral stratification. Eq. 

(2.9) also assumes a constant water vapor mixing ratio with height. 

In the present study, variables at the lowest model level (20-m height above the surface) were diagnosed from the 

surface observations and assimilated. This assimilation method is different from that used by previous studies, in which 

variables at 10 or 2 m above the surface were diagnosed from model grid values to assimilate surface observations 

directly (e.g., Hacker and Snyder 2005; Fujita et al. 2007; Ancell et al. 2011; Ha and Snyder, 2014; Sobash and Stensrud 

2015). In our method, the impacts of the assimilation of surface data observed at various heights would be on the same 

level. Moreover, the present study also considered the difference between ݖ୫ and ݖୱ. 

Figures 2.1a–c show the distributions of (ݑଶ଴, ,ଶ଴ݒ ଶܶ଴, RHଶ଴) assimilated at 1200 JST 6 May 2012. A mesoscale cold 

front dividing the northwestern region from the southeastern region was analyzed near the actual paths of the tornadoes 

(black lines): A warm humid southerly flow prevailed south of the front, whereas a cold dry northerly flow prevailed on 

its northern side. 

Figures 2.6a–d show histograms of observation minus forecast (ܱ െ  of all surface observations during 1100–1200 (ܨ

JST assimilated by inner LETKF. All (ܱ െ ܱ) distributions were close to Gaussian, and, although the (ܨ െ  averages (ܨ

were not zero because of biases of the model or observations, their standard deviations were larger than the averages and 

close to the radiosonde observational error variances at the surface used in the JMA operational mesoscale data 

assimilation system (2.2 m s–1 for ݑଶ଴ and ݒଶ଴, 1.3 K for ଶܶ଴, and 10.8% for RHଶ଴; Honda 2010). Therefore, we used 

these observational error variances in the JMA system (Honda 2010) for the surface observations in this experiment. 

The observational error variances were partly caused by the assumptions of neutral stratification in Eq. (2.7) and of 

constant Γ and water vapor mixing ratio in Eqs. (2.8) and (2.9). Typical scales of these transformation errors caused by 

Eqs. (2.7)–(2.9) were estimated as the difference between Eqs. (2.7)–(2.9) and the empirical functions proposed by 
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Beljaars and Holtslag (1991). First, horizontal winds at 10-m height and temperature and relative humidity at 1.5-m 

height were obtained hourly from the 1-h forecasts of inner LETKF from 0400 to 1200 JST on 6 May. Then, the root 

mean square (RMS) differences of variables at 20-m height were diagnosed by both methods hourly from the 1-h 

forecasts. The resulting RMS differences turned out to be 0.32 m s–1 for ݑଶ଴, 0.62 m s–1 for ݒଶ଴, 0.47 K for ଶܶ଴, and 

3.7% for RHଶ଴, and are smaller than the observational error variances given in the previous paragraph. 

 

2.3.2. Assimilation of radar observations 
Doppler radar data assimilation is also useful for improving forecasts of convective systems because distributions of 

Doppler velocity and reflectivity observed by radar contain information on the structure and development of convective 

systems (Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004, 2011; Caya et al. 2005; Tong and Xue 2005; 

Xue et al. 2006, 2014; Hu et al. 2006a, b; Hu and Xue 2007; Stensrud and Gao 2010; Schenkman et al. 2011a, b; Dawson 

et al. 2012; Marquis et al. 2012, 2014; Snook et al. 2012, 2015; Yussouf et al. 2013a, b; Tanamachi et al. 2013; Putnam et 

al. 2014). Although polarimetric radar information also has large potential to improve short-term forecasts of convective 

systems, their assimilation does not necessarily improve forecasts because quantitative forecasting of cloud microphysics 

is difficult (Jung et al. 2008a, b, 2010a, b; Li and Mecikalski 2010, 2012, 2013). 

In inner LETKF, radial velocity ோܸ	ሺm	sିଵሻ observed by four radars (Fig. 2.2), and reflectivity ܼ	ሺdBZሻ (Fig. 2.3a) 

and specific differential phase ܭ஽௉	ሺ°	kmିଵሻ observed by MACS-POL were assimilated. ோܸ was obtained by the dual 

pulse repetition frequency technique (Dazhang et al. 1984) and dealiased by the hybrid multiple pulse-repetition interval 

method (Yamauchi et al. 2006). ܭ஽௉ is defined as 

஽௉ܭ  ൌ
1
2
߲߶஽௉
ݎ߲

, (2.10) 

where ݎ is the distance from the radar, and ߶஽௉ is the differential phase. Because the observed ߶஽௉ (Fig. 2.3b) is 

noisy (Sachidananda and Zrnic 1986, 1987; Chandrasekar et al. 1990; Hubbert and Bringi 1995), the present study 

obtained ܭ஽௉ after taking a 6-km moving average of ߶஽௉ in the radial direction. The backscatter differential phase 

included in the observed ߶஽௉, which is caused by large raindrops or small melting hail (Hubbert and Bringi 1995; Carey 

et al. 2000; Tabary et al. 2009; Borowska et al. 2011; Tromel et al. 2013), was ignored because the observed ߶஽௉ until 

1200 JST increased almost monotonically in the radial direction, even when the backscatter differential phase was not 

removed. 

Because the radar data were not uniformly distributed, we adopted the “superobservation” method for the radar data 

assimilation: uniform data of ோܸ, ܼ, and ܭ஽௉ were produced by interpolation to the model grid points of inner LETKF 

within a 1-km influence radius (Cressman 1959; Seko et al. 2004) on the plan position indicator surface at each elevation 

angle. Data for elevation angles larger than 5.4° were not used (cf., Seko et al. 2004) because (i) vertical air motion and 

hydrometeor fall speeds at high elevation angles cannot be ignored and (ii) ܼ and ܭ஽௉ above the environmental 0ºC 

level, which were observed at high elevation angles, cannot be caused by rainwater only. 

In this study, ܼ  and ܭ஽௉  were not directly assimilated, but rainwater, ܳோ , retrieved from ܼ  and ܭ஽௉ , was 
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assimilated (cf. Kawabata et al. 2011). To retrieve ܳோ	ሺg	mିଷሻ from ܼ	ሺdBZሻ and ܭ஽௉	ሺ°	kmିଵሻ, we used equations 

 ܳோ௓ ሺg mିଷሻ ൌ 10ሺ௓ିସଷ.ଵሻ/ଵ଻.ହ (2.11) 

(Sun and Crook 1997) and 

 ܳோ௄	ሺg mିଷሻ ൌ 3.565 ൈ ൬
஽௉ܭ
݂
൰
଴.଻଻

 (2.12) 

(Bringi and Chandrasekar 2001), respectively, where ݂ ൌ 5.370	GHz is the frequency of the MACS-POL (Adachi et al. 

2013). Data with values of ܼ ൏ 15	dBZ or ܭ஽௉ ൏ 0 were not used because such echoes may not be caused by 

rainwater. Although ܼ is affected by radar wave attenuation, ܼ in Eq. (2.11) was not corrected for the attenuation effect. 

In general, ܳோ௄ is more accurate than ܳோ௓ because ܭ஽௉ in Eq. (2.12) is less affected by the drop size distribution 

than	ܼ in Eq. (2.11), and it is not affected by radar wave attenuation caused by rainfall. When ܭ஽௉ is small, however, 

 ஽௉, which is calculated by finite difference approximation ofܭ ஽௉ is noisier than ܼ because the amount of noise ofܭ

߶஽௉, is not small even when ܭ஽௉ is small (Sachidananda and Zrnic 1986, 1987; Chandrasekar et al. 1990; Hubbert and 

Bringi 1995). Therefore, as the equation for the retrieval of ܳோ we used 

 ܳோ	ሺg mିଷሻ ൌ ቐ
ܳோ௄ ሺ2 g mିଷ ൑ ܳோ௄ሻ
ோ௄ܳߙ ൅ ሺ1 െ ሻܳோ௓ߙ ሺ1 g mିଷ ൑ ܳோ௄ ൑ 2 g mିଷሻ
ܳோ௓ ሺܳோ௄ ൑ 1 g mିଷሻ

, (2.13) 

where ߙ ൌ ܳோ௄ െ 1. The quality control of ܳோ mentioned above is very simple, and there is room for its improvement. 

However, the impact of improving the quality of ܳோ is expected to be small because the impact of assimilating ܳோ was 

not remarkable, as described later in subsection 3.2.2. 

Figure 2.2 shows the distribution of ோܸ for the four radars, and Figs. 2.3c and 2.3d show that of ܳோ௓ and ܳோ, 

respectively, for MACS-POL at an elevation angle of 1.0° at 1200 JST 6 May 2012. A precipitation band elongated in the 

meridional direction was located at around 139.5°E (Fig. 2.3d). This precipitation system was accompanied by a cyclonic 

shear line (red circles in Fig. 2.2), and peaks of ܳோ that corresponded to the parent storms of the three tornadoes were 

present near the shear line (red circle in Fig. 2.3d). These three ܳோ peaks are clearer than the ܳோ௓ peaks (Fig. 2.3c) 

because they were estimated by using ܭ஽௉ as well as ܼ. 

Because the (ܱ െ  distribution of ோܸ is close to Gaussian (Fig. 2.6e) and its standard deviation is larger than both (ܨ

the averages and standard deviations of ݑଶ଴ and ݒଶ଴ (Figs. 2.6a and 2.6b), a constant value of 3.0 m s–1 was used for 

the observational error variance of ோܸ in this experiment. Since the (ܱ െ  distribution of ܳோ is far from Gaussian (ܨ

(Fig. 2.6f), however, we used a similar method to Koizumi et al. (2005) to set the observational error variance of ܳோ. 

Because the absolute value of (ܱ െ  increases when ܳோ is larger, the observational error variance of ܳோ set in this (ܨ

experiment should be varied according to ܳோ. However, it is expected to have a certain finite value even if ܳோ is small 

because of the radar wave attenuation. Thus, the observational error variance of ܳோ was set to 0.1ܳோ	ሺܳோ ൒ 1	g	mିଷሻ 

and 0.1	ሺܳோ ൏ 1	g	mିଷሻ. 
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Table 2.1. Setting of the nested 4D-LETKF. 

 

 

 

 

  

 

5 年以内に雑誌等で公表予定のため、非公開。 
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Fig. 2.1. Observations at 1200 JST used in the inner-LETKF analysis: (a) horizontal winds (m s–1), (b) temperature (K), 

and (c) relative humidity (%) at 20-m height. Black lines denote the paths of the Tsukuba, Chikusei, and Moka tornadoes 

in order from south to north. (d) Roughness length of the modeled surface ݖ଴ (color shading, m) and altitude in the 

model ݖ୫ (thin contours, 100 m; thick contours, 1000 m) used in Eqs. (2.7)–(2.9). 
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Fig. 2.2. Radial velocity (m s–1) at 1.0° elevation used in the inner-LETKF analysis observed by (a) Kashiwa, (b) Haneda, 

and (c) Narita radars and by (d) MACS-POL at 1200 JST. The black dot denotes the position of each radar site. Black 

lines are as in Fig. 2.1. The red circles denote the position of cyclonic shear line. 
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Fig. 2.3. (a) ܼ (dBZ) and (b) ߶஽௉ (degrees) at 1.0° elevation observed by MACS-POL at 1200 JST, and (c) ܳோ௓ (g m–

3) and (d) ܳோ (g m–3) estimated from Z and ܭ஽௉ at 1.0° elevation. The black dot and the black lines are as in Fig. 2.2. 

The red circle denotes the position of ܳோ peaks. 
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Fig. 2.4. Temperature (color shading, K) and pressure (contours, hPa) at the surface and (b) temperature (color shading, 

K) and height (contours, m) on the 500-hPa surface in the global analysis of JMA at 0900 JST 6 May 2012. 
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Fig. 2.5. Outline of the calculation procedure and the calculation domains of the nested 4D-LETKF system. Shading is 

altitude in each model (m). 
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Fig. 2.6. Frequency distributions of (ܱ െ  results of the inner-LETKF analysis during (observation minus forecast) (ܨ

1100–1200 JST: (a) zonal wind (m s–1), (b) meridional wind (m s–1), (c) temperature (K), and (d) relative humidity (%) at 

20-m height, (e) radial velocity (m s–1) observed by four radars, and (f) rainwater (g m–3) observed by MACS-POL. 

“AVE” and “STD” are average and standard deviation, respectively. 
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3. Ensemble forecasts for low-level mesocyclogenesis 
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3.1. LMCs generated in the ensemble forecasts 

3.1.1. Process of low-level mesocyclogenesis 
350m-EXPm successfully predicted an LMC near the path of the Tsukuba tornado. Figure 3.1 shows the generation 

process of the predicted LMC in 350m-EXPm, where an LMC is defined as a vortex having maximum vertical vorticity 

at 0.8 km height, ߞሺ୐୑େሻ, exceeding 0.03 s–1. At 1100 JST, the weak convective system that later spawned the LMC was 

already present (region C in Fig. 3.1a). This convective storm was a “right-moving storm”: it moved to the right of the 

averaged horizontal wind velocity at 0–6-km height, and a strong LMC was generated at its southern edge at about 1140 

JST (Fig. 3.1b). ߞሺ୐୑େሻ reached a maximum at 1150 JST (Fig. 3.1c), and by this time, the region of large vertical 

vorticity reached from the surface to a height of over 6 km. The path of the LMC was several kilometers north of the 

damage path of the Tsukuba tornado and was closer to the damage path than the LMC path in Seko et al. (2015) (Fig. 

3.1c and Fig. 3.2a). The LMC, which was accompanied by a hook-shaped rainwater distribution, started to dissipate after 

1150 JST, and had disappeared by about 1210 JST (Fig. 3.1d). 

Figure 3.3 shows the time series of ߞሺ୐୑େሻ within the region 139.4°–140.2°E and 36.0°–36.4°N for the 33 members 

of 350m-EXPs. Temporal fluctuations of ߞሺ୐୑େሻ were so large that it was not appropriate to estimate the strength of 

LMCs from ߞሺ୐୑େሻ at a particular time. If “the strength of LMCs” is defined as the 20-min moving average of ߞሺ୐୑େሻ 

around the time of the maximum ߞሺ୐୑େሻ in each member (hereafter denoted by ߞ୑୅ଡ଼
ሺ୐୑େሻ), then ߞ୑୅ଡ଼

ሺ୐୑େሻ ൌ 0.052	sିଵ at 

1150 JST for a member in which the mean of the LETKF analyses at 1100 JST is used for the initial conditions (red line 

in Fig. 3.3). The radius of the maximum horizontal wind and maximum vorticity of the predicted LMC at that time were 

O(1) km and O(10–2) s–1, respectively, which agree with those of the observed low-level vortex at about 1230 JST 

(Yamauchi et al. 2013). Note that no tornado vortices were predicted near the surface in this experiment because the 

horizontal grid interval of 350 m is too large to resolve tornadoes. The period with ߞሺ୐୑େሻ ൐ 0.04	sିଵ was between 

1142 and 1206 JST, and the time of maximum ߞሺ୐୑େሻ (1150 JST) was about 45 minutes before the Tsukuba tornado was 

generated at about 1235 JST (Japan Meteorological Agency 2012; Yamauchi et al 2013); this timing is similar to that of 

Seko et al. (2015). 

A probability that LMCs appear within 5 km between 1100 and 1300 JST is shown in Fig. 3.4 based on the 33 

members of 350m-EXPs. In Fig. 3.4, the genesis points of the Tsukuba, Chikusei, and Moka tornadoes are located in 

areas with a probability of 50–70%, 10–30%, and 0–10%, respectively; this result confirms potential of the 

warn-on-forecast approach for the tornadoes (Stensrud et al. 2009, 2013; Cintineo and Stensrud 2013), and also suggests 

that the LMC generated at the southern edge of the storm was more easily predicted than the weak northern LMCs. 

 

3.1.2. Environmental parameters related to the LMC 
To clarify the cause of low-level mesocyclogenesis, we focused on the inner-LETKF analysis at 1100 JST, which was 

used for the initial condition of 350m-EXPm. Figure 3.5a shows the distribution of the ensemble mean SREH at 0–3-km 

height, which is a measure of the environmental vertical wind shear for the development of a right-moving storm. Here, 
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SREH was calculated for each member by assuming a storm motion vector based on the method of Maddox (1976): the 

speed of the storm was assumed to be 75% of the averaged horizontal wind velocity at 0–6 km height, and the storm was 

assumed to move at 30° to the right of this averaged wind. Because this storm motion vector was consistent with the 

motion of the simulated LMC (Figs. 3.1b–d), the distribution of SREH calculated with this storm motion vector is almost 

the same as that with the motion of the simulated LMC (not shown). 

SREH at 0–3-km height was particularly large in the area south of the convective system [region H+ (large SREH) in 

Fig. 3.5a]. This large-SREH region corresponds to the region of strong low-level southerly wind (region H+ in Fig. 3.5c). 

This large-SREH field, which is favorable for development of a right-moving storm (Rotunno and Klemp 1982), is 

consistent with the genesis point of the LMC. 

Static stability is another important factor for low-level mesocyclogenesis. Figure 3.5b shows the distribution of the 

ensemble mean mixed-layer CAPE (MLCAPE) of the inner-LETKF analysis at 1100 JST. MLCAPE is the maximum 

energy available to a lifted air parcel, which is averaged in the lowest 100 hPa, and gives an estimate of the maximum 

vertical velocity once convection is initiated. 

In the inner-LETKF analysis at 1100 JST, the ensemble mean MLCAPE was particularly large around the path of the 

predicted LMC [region E+ (large MLCAPE) in Fig. 3.5b]. This distribution is similar to that of the low-level water vapor 

(region E+ in Fig. 3.5c). 

 

3.2. Impact of assimilation of dense observations 

Four additional experiments were performed to clarify the impacts of dense surface and radar data assimilation by 

inner LETKF on low-level mesocyclogenesis: In the first experiment, surface horizontal winds, temperature, and relative 

humidity were not assimilated. In the second experiment, radar data (both radial velocity and rainwater) were not 

assimilated. In the third experiment, only rainwater data were not assimilated. In the fourth experiment, observations 

during 1100–1200 JST 6 May were not assimilated. These experiments are hereafter called “NSRF” (no surface data), 

“NRAD” (no radar data), “NQR” (no ܳோ), and “NSMT” (no smoother), respectively. The experiment with all surface 

and radar data as described in section 3.1 is called “CTL.” 

 

3.2.1. Assimilation of surface observations 
In NSRF, in which no surface data were assimilated, an LMC still appeared at the southern edge of the storm in 

350m-EXPm (Fig. 3.2b), but the precipitation distribution in CTL (Fig. 3.1c) was more similar to ܳோ at 1230 JST (Fig. 

3.2f) than that in NSRF (Fig. 3.2b). The LMC generated in NSRF shifted northward compared with that in CTL (Fig. 

3.1c), and ߞ୑୅ଡ଼
ሺ୐୑େሻ ൌ 0.036	sିଵ was weaker in NSRF than it was in CTL. 

In the initial condition of 350m-EXPm (NSRF), SREH (Fig. 3.5d) and low-level southerly wind velocity (Fig. 3.5f) 

were smaller than those in CTL in the area south of the convective system (region H+ in Figs. 3.5a and 3.5c). MLCAPE 

(Fig. 3.5e) and low-level water vapor (Fig. 3.5f) were also smaller along the path of the predicted LMC (region E+ in 
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Figs. 3.5b and 3.5c) than those in CTL. Thus, the assimilation of surface observations contributes to an increase in the 

low-level southerly wind velocity in the area south of the convective system and to an increase in water vapor near the 

path of the predicted LMC. These increments of low-level southerly wind and water vapor improved the predictability of 

the LMC. 

 

3.2.2. Assimilation of radar observations 
In 350m-EXPm without radar data assimilation (NRAD), storms did not develop well compared to that in CTL (Fig. 

3.1c) or observations (Fig. 3.2f), although a weak LMC was generated (Fig. 3.2c). The strength of the LMC (ߞ୑୅ଡ଼
ሺ୐୑େሻ ൌ

0.025	sିଵሻ was weaker in NRAD than it was in either CTL or NSRF. 

In the initial condition of 350m-EXPm (NRAD), as in NSRF, SREH (Fig. 3.5g) and low-level southerly wind 

velocity (Fig. 3.5i) were smaller than those in CTL in the area south of the convective system (region H+ in Figs. 3.5a 

and 3.5c). These differences in SREH and southerly wind indicate that assimilation of both radar and surface data 

contributes to the increase in the low-level southerly wind velocity in this region. The increase in the low-level southerly 

wind velocity in the area south of the convective system causes larger SREH there and thus affects supercell 

development (cf. Schenkman et al. 2011b). 

The distributions of MLCAPE (Fig. 3.5h) and low-level water vapor (Fig. 3.5i) were mostly similar to those in CTL 

(Figs. 3.5b and 3.5c). This similarity shows that radar data assimilation hardly affects low-level water vapor and 

associated MLCAPE. However, MLCAPE and low-level water vapor in some regions, especially in the southwest of the 

precipitation system (region e+ in Figs. 3.5b and 3.5c), were smaller than those in CTL. These differences indicate that 

low-level water vapor is related to horizontal winds and rainwater, and that radar data assimilation in region e+ increased 

low-level water vapor there. 

Low-level water vapor in places where rainwater was assimilated as in region e+ was greater in the inner-LETKF 

analysis (CTL) at 1100 JST than it was in NQR (Figs. 3.5c and 3.5l). This result suggests that rainwater assimilation 

affected the predicted precipitation distribution associated with low-level water vapor. However, it hardly affected other 

variables (Figs. 3.5j–l), and the LMC predicted in 350m-EXPm (NQR) (Fig. 3.2d) was very similar to that predicted in 

CTL (Fig. 3.1c). These findings indicate that the impact of rainwater assimilation on development of the LMC was not 

large in this experimental design. 

In NSMT, the generated LMC (ߞ୑୅ଡ଼
ሺ୐୑େሻ ൌ 0.029	sିଵ; Fig. 3.2e) was weaker than that in CTL (Fig. 3.1c). Therefore, 

the assimilation of observations during 1100–1200 JST with EnKS, including radar data on the forward side of the storm, 

importantly modified the variables at 1100 JST in a reliable manner (Figs. 3.5m–o). 

 

3.3. Ensemble-based sensitivity analysis 

3.3.1. Method 
In 350m-EXPm (CTL), the predicted LMC was closer to the path of the Tsukuba tornado than the LMC predicted by 
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Seko et al. (2015) or in NSRF, NRAD, and NSMT. The southward shift of the path of the LMC in CTL indicates that 

dense surface and radar data assimilation and other differences between CTL and the experiment of Seko et al. (2015), 

described in subsection 2.2.5, improved the LMC forecast. Using this improved forecast, we conducted an ESA to clarify 

further the factors important in low-level mesocyclogenesis. 

The maximum and minimum strengths of the LMC among ߞ୑୅ଡ଼
ሺ୐୑େሻሺ݆ሻ (݆ ൌ 1,… , 33: indices of ensemble members) 

of the 350m-EXPs (CTL), in which the 32 LETKF analyses and their ensemble mean were used as the initial conditions, 

were 0.107 s–1 (blue line in Fig. 3.3) and 0.036 s–1 (green line in Fig. 3.3), respectively. We investigated the relationship 

between ߞ୑୅ଡ଼
ሺ୐୑େሻ and environmental parameters simulated in the 350m-EXPs with the ESA. 

In the ESA, the sensitivity of ߞ୑୅ଡ଼
ሺ୐୑େሻ to variable ݔ௜ that characterizes the environment at each point ݅ (݅ ൌ 1,… , ݊) 

was calculated as 

୑୅ଡ଼ߞ݀ 
ሺ୐୑େሻ

௜ݔ݀
ൌ
∑ ቂߞ୑୅ଡ଼

ሺ୐୑େሻሺ݆ሻ െ ୑୅ଡ଼ߞ
ሺ୐୑େሻതതതതതതതതቃ ሾݔ௜ሺ݆ሻ െ పഥሿݔ

ଷଷ
௝ୀଵ

∑ ሾݔ௜ሺ݆ሻ െ పഥሿଶଷଷݔ
௝ୀଵ

 (3.1) 

(Ancell and Hakim 2007; Torn and Hakim 2008), where the overbar denotes the ensemble mean. This method gives 

quantitative information about the impacts of ݔ௜  on ߞ୑୅ଡ଼
ሺ୐୑େሻ  In this study, environmental parameters horizontally 

smoothed over 15.75 km  15.75 km (45  45 grids) were used as ݔ௜ to discuss impacts of the mesoscale environment 

on the forecast of the strength of LMCs. 

 

3.3.2. Sensitivities of the strength of LMCs to environmental parameters in the 

composite field 
First, environmental parameters at the time of the maximum ߞሺ୐୑େሻ were composited relative to the point of ߞሺ୐୑େሻ 

to clarify the no-time-lag relationship between ߞ୑୅ଡ଼
ሺ୐୑େሻ and these parameters. Figures 3.6a and 3.6b show the ensemble 

means of SREH and MLCAPE, respectively, in the composite field around the LMC (region C). SREH was large in the 

area south of the LMC (region H+ in Fig. 3.6a) and small in the area north of the LMC (region H– in Fig. 3.6a); this 

distribution indicates that the large SREH (the clockwise-turning vertical wind shear) south of the LMC was favorable 

for the development of a supercell. Similar to the distribution of SREH, the low-level southerly wind velocity was large 

(small) south (north) of the LMC (regions H+ and H– in Fig. 3.6c). This wind distribution also indicates convergence of 

low-level horizontal winds at the position of the LMC (region C in Fig. 3.6c). Low-level water vapor and associated 

MLCAPE were large southeast of the LMC (region E+ in Figs. 3.6b and 3.6c). These large MLCAPE and water vapor 

values were caused by the low-level southerly winds, which blew from Tokyo Bay to the Kanto Plain. 

The vectors in Fig. 3.6f show the sensitivity of the strength of LMCs to low-level zonal and meridional winds. The 

stronger the low-level winds were in the direction of these vectors, the stronger the LMC was. The vectors point toward 

the LMC, indicating that a strong low-level convergence was associated with a strong LMC. The distribution of the 

sensitivity to SREH, which was positive southeast of the LMC (region h+ in Fig. 3.6d) and negative northwest of the 

LMC (region h– in Fig. 3.6d), was similar to that of the sensitivity to the low-level southerly wind (regions h+ and h– in 

Fig. 3.6f). 
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Sensitivities to low-level water vapor and associated MLCAPE were positive in almost the whole region around the 

LMC, except to its west (region e– in Figs. 3.6e and 3.6f). These positive sensitivities were larger on the low-level 

southwest (windward) side of the LMC (region e+ in Figs. 3.6e and 3.6f) than in the region where the ensemble means of 

MLCAPE and low-level water vapor were large (region E+ in Figs. 3.6b and 3.6c). West of the LMC, where the 

sensitivity to MLCAPE was negative (region e– in Figs. 3.6e and 3.6f), low-level water vapor and associated MLCAPE 

were relatively small (Figs. 3.6b and 3.6c). 

 

3.3.3. Sensitivities of the strength of LMCs to environmental parameters in the 

initial field 
The sensitivities in the composite field described in subsection 3.3.2 resulted from the initial and boundary conditions. 

Clarification of the regions, in which the sensitivities of ߞ୑୅ଡ଼
ሺ୐୑େሻ to the initial perturbations are large before the 

occurrence of the LMC, is important for forecasting the LMC. Figures 3.7a–c show the sensitivities to variables in the 

initial field (1100 JST), which were totally much larger than those in the composite field (Figs. 3.6d–f). 

In the initial field, the sensitivity to SREH was positive on the southeastern (forward right) side of the storm, which 

corresponds to the area south of the path of the LMC that developed later (region h+ in Fig. 3.7a). In contrast, the 

sensitivity to SREH was not large near the storm (region C in Fig. 3.7a), and it was negative on the northeastern (forward 

left) side of the storm (region h– in Fig. 3.7a). The sensitivity to MLCAPE was positive in almost all of the area, and it 

was especially large on the southwestern (rear) side of the storm (region e+ in Fig. 3.7b). 

Sensitivities to SREH and MLCAPE correspond to those to the low-level southerly wind and water vapor, 

respectively (Figs. 3.7a–c), in both the initial and composite fields. These distributions of sensitivities to wind and water 

vapor indicate that the LMC became strong when the initial low-level horizontal winds converged toward the forward 

side of the storm (between region h+ and h– in Fig. 3.7c) and initial low-level water vapor was large on the rear side of 

the storm (region e+ in Fig. 3.7c). 

 

3.4. Discussion about low-level mesocyclogenesis 

The ensemble-based sensitivities of the strength of the predicted LMCs to SREH and MLCAPE before their geneses 

(Figs. 3.7a and 3.7b) were larger than those when the LMCs were strongest (Figs. 3.6d and 3.6e). This result indicates 

that SREH and MLCAPE were highly correlated with the strength of LMCs not only when the LMCs were strongest, but 

also before their geneses. The larger sensitivities to SREH and MLCAPE before low-level mesocyclogenesis can be 

explained by the increase of the spread of SREH and MLCAPE with time in the denominator of Eq. (3.1) without a 

noticeable increase of the covariance of the strength of LMCs to SREH and MLCAPE in the numerator of Eq. (3.1) in 

the ensemble forecasts. 

In the present case, the sensitivities to SREH and MLCAPE were large in the region where SREH and MLCAPE 

were relatively small in the initial field (regions h+ and e+ in Figs. 3.7a–c); this result suggests that areas with high SREH 
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or high MLCAPE are not necessarily the most important for the strength of LMCs. Furthermore, the sensitivities to 

SREH and MLCAPE, as well as their distributions, were similar to the sensitivities to the low-level southerly wind and 

water vapor, respectively, both before and after low-level mesocyclogenesis (Figs. 3.6d–f and 3.7a–c); these results 

suggest that large-scale, low-level southerly wind and water vapor played especially important roles in determining the 

strength of LMCs in this case. 

The sensitivity to the low-level southerly wind before low-level mesocyclogenesis was positive on the forward right 

side with respect to the storm's direction of movement (region h+ in Fig. 3.7c) and negative on the forward left side 

(region h– in Fig. 3.7c). This sensitivity distribution shows that convergence of low-level meridional winds within the 

storm and high SREH on the forward right side relative to storm movement direction strengthened the predicted LMC. In 

a numerical model that assumes a horizontally uniform environment, an environmental wind with veering shear (i.e., 

high SREH) is suitable for development of a right-moving supercell (Rotunno and Klemp 1982). Richardson et al. (2007) 

additionally showed in idealized numerical experiments that the meridional gradient of vertical shear can intensify the 

supercell. The present study showed that, when horizontal inhomogeneity exists in the real atmosphere, a wide 

high-SREH region just on the forward right side of the storm (i.e., low-level southerly winds toward the storm's position 

at a later time) contributes to the strengthening of the LMC. The negative sensitivity to SREH (region h- in Fig. 3.7a) 

indicates that large SREH associated with strong southerly winds in the northeast of the LMC would weaken the LMC, 

because low-level convergence would be weak if southerly winds were strong in the northeast of the LMC. 

The sensitivity to low-level water vapor both before and after low-level mesocyclogenesis was positive in almost the 

whole region and was particularly large on the rear side of the storm (region e+ in Figs. 3.6f and 3.7c). However, 

sensitivity to low-level potential temperature was negative (Fig. 3.8d) and correlation was weak (Fig. 3.9d) there after 

low-level mesocyclogenesis. When low-level water vapor is larger (Figs. 3.6f and 3.9b) and potential temperature is 

lower (Figs. 3.8d and 3.9d), relative humidity is higher (Figs. 3.8e and 3.9f), mixed-layer LFC (MLLFC) is lower (Figs. 

3.8f and 3.9h), and the parcel is more easily lifted despite negative buoyancy in the updraft area. Therefore, these 

sensitivities seem to be consistent with the findings of the previous studies that tilting of baroclinically generated 

horizontal vorticity (Markowski et al. 2002, 2003, 2008; Straka et al. 2007) and stretching of vertical vorticity by the 

convection associated with large amounts of low-level water vapor behind the rear-flank gust front are important for 

low-level mesocyclogenesis. 

The negative sensitivity to low-level water vapor and the positive sensitivity to potential temperature in the region 

indicated by e– in Figs. 3.6f and 3.8d were caused by low-level dry and high potential temperature air advected from 

above by downdrafts in the precipitation area (Figs. 3.8a–c), which are more intense in the case of a relatively strong 

LMC. Although this positive sensitivity to potential temperature shows that cold pool in the RFD area tends to be weaker 

in the stronger LMC, correlation of the strength of the LMC to the cold pool was weak (Fig. 3.9c). Moreover, 

correlations of the strength of LMCs to low-level water vapor, relative humidity, and MLLFC were also weak there (Figs. 

3.9a, 3.9e, and 3.9g). These results are consistent with the idealized experiments which showed that a cold pool in the 

strong supercell has to be neither too strong nor too weak for intensifying LMCs (Markowski and Richardson 2014).
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Fig. 3.1. The total of rain, snow, and graupel (color shading, g m–3) and horizontal winds (arrows, m s–1) at 0.8-km height 

at (a) 1100, (b) 1142, (c) 1150, and (d) 1206 JST in 350m-EXPm (CTL). Red dots denote the location of maximum 

 ሺ୐୑େሻ [value given below (b)–(d)]. Black lines are as in Fig. 2.1. Region C denotes the position of the convectiveߞ

system. 
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Fig. 3.2. The total of rain, snow, and graupel (color shading, g m–3) and horizontal winds (arrows, m s–1) at 0.8-km height 

when ߞሺ୐୑େሻ reached a maximum in (a) the experimental design of Seko et al. (2015), (b) NSRF, (c) NRAD, (d) NQR, 

and (e) NSMT. (f) Rainwater ܳோ (g m–3) estimated from Z and ܭ஽௉ at 1.0° elevation at 1230 JST. In the gray area, 0 g 

m–3 rainwater was estimated. The dark gray shows the heights of 1 km and 2 km. 
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Fig. 3.3. Time series of maximum vertical vorticity (s–1) at 0.8-km height, ߞሺ୐୑େሻ, within the region of 139.4°–140.2°E 

and 36.0°–36.4°N in 350m-EXPs (CTL) (red line, member with mean initial condition; blue line, member with 

maximum ߞ୑୅ଡ଼
ሺ୐୑େሻ; green line, member with minimum ߞ୑୅ଡ଼

ሺ୐୑େሻ). 
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Fig. 3.4. Probability map that high vertical vorticity (exceeding 0.03 s–1) at 0.8-km height appears within 5 km from each 

point, based on the 33 members of 350m-EXPs (CTL) (%). Black lines denote the paths of Tsukuba, Chikusei, and Moka 

tornadoes in order from the south. The gray rectangle indicates the region where ߞሺ୐୑େሻ was calculated (see Fig. 3.3). 
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Fig. 3.5. Horizontally smoothed (a),(d),(g),(j),(m) SREH at 0–3-km height (m2 s–2), (b),(e),(h),(k),(n) MLCAPE (J kg–1), 

and (c),(f),(i),(l),(o) horizontal winds (arrows, m s–1) and water vapor (color shading, g kg–1) averaged below the height 

of 1 km at 1100 JST in 350m-EXPm: (a)–(c) CTL; (d)–(f) NSRF; (g)–(i) NRAD; (j)–(l) NQR; (m)–(o) NSMT. Thick 

black lines in (a)–(c) indicate the path of the predicted LMC. Region C is as in Fig. 3.1. Regions H+, H–, and E+ denote 

the positions of large SREH, small SREH, and large MLCAPE, respectively. Region e+ is explained in Fig. 3.6. 
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Fig. 3.5. (Continued) 
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Fig. 3.6. Ensemble mean of horizontally smoothed (a) SREH at 0–3-km height (m2 s–2), (b) MLCAPE (J kg–1), and (c) 

horizontal winds (arrows, m s–1) and water vapor (color shading, g kg–1) averaged below a height of 1 km, and 

sensitivities of ߞ୑୅ଡ଼
ሺ୐୑େሻ (s–1) to (d) SREH at 0–3-km height [s–1 (102 m2 s–2)–1], (e) MLCAPE [s–1 (103 J kg–1)–1], and (f) 

zonal and meridional winds [arrows, s–1 (m s–1)–1] and water vapor [color shading, s–1 (g kg–1)–1] averaged below a height 

of 1 km in the composite field to the position of ߞሺ୐୑େሻ for 350m-EXPs (CTL). Only higher reliability than 50% 

(absolute value of correlation > 0.122) was shown in (d)–(f), and MLCAPE > 100 J kg–1 was shown in (e). Region C 

denotes the position of ߞሺ୐୑େሻ. Regions h+(–) and e+(–) denote the positions of positive (negative) sensitivities to SREH 

and MLCAPE, respectively. The other letters are as in Fig. 3.5. 
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Fig. 3.7. Sensitivities of ߞ୑୅ଡ଼
ሺ୐୑େሻ (s–1) to (a) SREH at 0–3-km height [s–1 (102 m2 s–2)–1], (b) MLCAPE [s–1 (103 J kg–1)–1], 

and (c) zonal and meridional winds [arrows, s–1 (m s–1)–1] and water vapor [color shading, s–1 (g kg–1)–1] averaged below 

a height of 1 km in the initial (1100 JST) field in 350m-EXPs (CTL). Only higher reliability than 50% (absolute value of 

correlation > 0.122) was shown, and MLCAPE > 100 J kg–1 was shown in (b). The thick black line denotes the path of 

the predicted LMC. Letters are as in Figs. 3.5 and 3.6. 
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Fig. 3.8. Ensemble mean of horizontally smoothed (a) potential temperature (color shading, K) and the total of rain, snow, 

and graupel (white contours, 0.2 g kg–1), (b) relative humidity (color shading, %) and horizontal winds relative to that of 

the center (arrows, m s–1), and (c) MLLFC (color shading, km) and vertical velocity (white and black contours, ±0.2 m s–

1) in the composite field to the position of ߞሺ୐୑େሻ for 350m-EXPs (CTL), and sensitivities of ߞ୑୅ଡ଼
ሺ୐୑େሻ (s–1) to (d) 

potential temperature (s–1 K–1), (e) relative humidity [s–1 (10%)–1], and (f) MLLFC (s–1 km–1). Variables shown here have 

been averaged below a height of 1 km. Only higher reliability than 50% (absolute value of correlation > 0.122) were 

shown in (d)–(f). Letters are as in Fig. 3.6. 
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Fig. 3.9. Scatter plots of ߞ୑୅ଡ଼
ሺ୐୑େሻ (s–1) and (a),(b) water vapor (g kg–1), (c),(d) potential temperature (K), and (e),(f) 

relative humidity (%) averaged below a height of 1 km, and (g),(h) MLLFC (km) at regions (a),(c),(e),(g) e– and 

(b),(d),(f),(h) e+. The numbers written at top left are correlation coefficient. 
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4. Ensemble forecasts for tornadogenesis 
 

本章については、5 年以内に雑誌等で公表予定のため、非公開。 

  



 55

 

 

 

 

 

5. Discussion 
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6. Conclusions and remarks 
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A. Quality control of ESN data 

In the present experiments, surface observation data from AMeDAS and ESN were transformed to data at 20-m 

height before they were assimilated. AMeDAS instruments are located at about 10-m height, which is high enough for 

them to be applied in Eq. (2.7) for transformation to 20-m height. However, some ESN instruments are located at a 

height of just a few meters, which is too low for the data to be transformed to data at 20-m height. In addition, some ESN 

stations are located in an environment that is not suitable for surface observations. Therefore, we controlled the quality of 

ESN surface data for reliable assimilation results. 

To evaluate the ESN data, surface zonal and meridional winds and temperature of the JMA hourly analysis (Muroi et 

al. 2008) were first interpolated to the horizontal positions of the ESN instruments. Because the heights of the 

interpolated winds (ݑ஺ and ݒ஺) and temperature ( ஺ܶ) were 10 m and 1.5 m, respectively, the ESN data (ݑ୭ୠୱ, ,୭ୠୱݒ ୭ܶୠୱ) 

were transformed to data at heights of 10 m, 10 m, and 1.5 m for comparison with (ݑ஺, ,஺ݒ ஺ܶ), respectively. The 

differences between the transformed ESN data and (ݑ஺, ,஺ݒ ஺ܶ) are given as 

 ቀݑߜ
ݒߜ
ቁ ൌ

lnሺ10.0/ݖ଴ሻ

lnሺݖobs/ݖ଴ሻ
ቀ
୭ୠୱݑ
୭ୠୱݒ

ቁ െ ቀ
஺ݑ
஺ݒ
ቁ , (A.1) 

ܶߜ  ൌ ୭ܶୠୱ െ ୫ݖሾሺ߁ ൅ 1.5ሻ െ ሺݖୱ ൅ ୭ୠୱሻሿݖ െ ஺ܶ . (A.2) 

In this study, ݑଶ଴ and ݒଶ଴ were not assimilated at points where the bias of ݑߜ or ݒߜ was more than 2.0 m s–1 or the 

RMS of ݑߜ or ݒߜ was more than 1.5 m s–1. Similarly, ଶܶ଴ was not assimilated at points where the bias or RMS of ܶߜ 

was more than 1.0 K. These thresholds are the same as those used by Nishi et al. (2015). Biases and RMSs were 

calculated from hourly surface data for 29 April to 13 May 2012 and 26 August to 9 September 2013; both of these 

periods include the time when tornadoes were generated on the Kanto Plain. 

Relative humidity data from ESN were not evaluated in this study because the horizontal interval between JMA 

meteorological observatories where relative humidity is observed is too coarse (50–100 km) to be used as a reference for 

the ESN data. In the present study, relative humidity was assimilated only at points where temperature data were used, 

because ESN hygrometers are located at the same locations as ESN thermometers. 
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B. Ensemble-based sensitivity analysis of the case in 2 September 2013 

本章については、5 年以内に雑誌等で公表予定のため、非公開。 
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C. Ensemble-based variational data assimilation compared to LETKF 

The analytical method in EnKF assumes linearity of the observation operator and Gaussianity of the probability 

density function (PDF) to explicitly solve the analysis from the first guess. These assumptions in EnKF cause problems 

in data assimilation with a multi-scale model (Tsuyuki 2014). In particular, analyses of mixing ratios of water vapor, 

water, and ice are not expected to be accurate with EnKF because their PDFs are not Gaussian. One way to avoid such 

assumptions in EnKF is to minimize the cost function implicitly with an ensemble-based variational method (EnVAR, 

Zupanski 2005; Zupanski et al. 2008; Liu et al. 2008, 2009). In this appendix, we show some advantages of 4D-EnVAR 

compared to 4D-LETKF. 

It is not simple to make clean comparisons between EnVAR and EnKF because generic variational data assimilation 

systems and EnKF systems differ in many respects of solution algorithm, which are optimized for each system to 

improve efficiency of the calculation, dynamical balance of the analysis, and so on (Buehner et al. 2010). Although Liu et 

al. (2008) showed that the result of 4D-EnVAR is closer to the true value than that of EnKF, they did not compare 

4D-EnVAR to 4D-EnKF, which performs the analysis with observations for any time in the assimilation window. It is not 

yet known whether 4D-EnVAR is better than 4D-EnKF from the viewpoint of minimizing the cost function either 

implicitly or explicitly. 

One unavoidable problem in developing an ensemble data assimilation system is the sampling error generated by 

limiting the number of ensemble members. To reduce this error, spatial localization should be used in EnVAR as well as 

in EnKF. In the previous EnVAR systems (e.g., Buehner 2005; Liu et al. 2009; Aonashi and Eito 2011), spatial 

localization has been applied to non-diagonal components of the forecast error covariance matrix (model space 

localization). To make clean comparisons between EnVAR and LETKF, however, we need to apply same localization 

factor as Eq. (2.6), the practice adopted in LETKF. Hence, we designed a 4D-EnVAR system with observation space 

localization to demonstrate that the result of 4D-EnVAR was closer to the true value than that of 4D-LETKF. 

The formulation of 4D-EnVAR with observation space localization is derived from the cost function ܬሚ with the 

localized forecast error covariance matrix (model space localization) defined as 

ሚܬ  ൌ
1
2
ቀܠ଴

௔തതത െ ଴ܠ
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1
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்
R௧
ିଵൣܪ൫ܠ௧

௔തതത൯ െ ௧൧ܡ

்

௧ୀ଴

	, (C.1) 

where ܠ௧
௔ሺ௙ሻതതതതതത ൌ ൬ݔଵ௝,௧

௔ሺ௙ሻ, … , ௡௝,௧ݔ
௔ሺ௙ሻ൰, ܡ௧ ൌ ൫ݕଵ,௧, … , ௧ܠ൫ܪ ௄,௧൯, andݕ

௔തതത൯ ൌ ௧ܠଵ൫ܪൣ
௔തതത൯,… , ௧ܠ௄൫ܪ

௔തതത൯൧. ܪ௞൫ܠ௧
௔തതത൯ is the observation 

operator to convert the value corresponding to observation ݕ௞,௧ from analysis ܠ௧
௔തതത. R௧ is ܭ ൈ  observation error ܭ

covariance matrix at time slot ݐ, and ሺ݇ଵ, ݇ଶሻ component of R௧ is 

 ሺR௧ሻ௞భ௞మ ൌ ൜
ܴ௞భ,௧ ሺ݇ଵ ൌ ݇ଶሻ
0 ሺ݇ଵ ് ݇ଶሻ

. (C.2) 

B௧ is ݊ ൈ ݊ localized forecast error covariance matrix at time slot ݐ, and ሺ݅ଵ, ݅ଶሻ component of B௧ is 
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 ሺB௧ሻ௜భ௜మ ൌ
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where ܮ௜భ௜మ is the localization factor between points ݅ଵ and ݅ଶ. 

Using Eqs. (C.2) and (C.3) and variable transformation from ݔప,௧
௔തതതത to ݓ෥௟௝ by 

ప,௧ݔ 
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where ܮ௜భ௜మ ൌ ∑ ௜భ௟ܮ
ଵ/ଶܮ௜మ௟

ଵ/ଶ௡
௟ୀଵ , Eq. (C.1) is rearranged to 
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To minimize ܬሚ in Eq. (C.5) as a function of ݓ෥௟௝, 
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is required, where 
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When ܪ௞൫ܠ௧
௔തതത൯ is linear and calculated only at observation point ݇, the right hand side of Eq. (C.7) is equal to 

௞௟ܮ
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is obtained. When ݓ௜௝ is defined as ݓ௜௝ ൌ ∑ ௜௟ܮ
ଵ/ଶݓ෥௟௝

௡
௟ୀଵ , Eq. (C.4) is rearranged to Eq. (2.1) and Eq. (C.8) is to 
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where the left hand side of Eq. (C.9) is defined as ߲ݓ߲/ܬ௜௝. Eq. (C.6) is approximately equal to Eq. (C.9); in other words, 

the cost function ܬሚ is minimized by solving Eq. (C.9). Because ݔప,௧
௔തതതത can be calculated independently for each analysis 

point through Eq. (2.1), solving ݓ௜௝ in Eq. (C.9) is easier than solving ݓ෥௟௝ in Eq. (C.6) with parallel computing. For 

that reason, Eq. (C.9) was used in this system instead of Eq. (C.6). 

The analysis ensemble perturbation in this 4D-EnVAR system is calculated independently for each analysis point with 

Eqs. (2.2) and (2.4), where ߣ௜௝మ  and ൫ ௜ܷଵ௝మ, … , ௜ܷ௠௝మ൯ in Eq. (2.4) are the ݆ଶth eigenvalue and eigenvector of the 

Hessian ׏௜
ଶ׏ .ܬ௜

ଶܬ is an ݉ ൈ݉ matrix and its ሺ݆ଵ, ݆ሻ component, derived from the left hand side of Eq. (C.9), is shown 

as 
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To summarize the above formulation, Eqs. (C.9) and (C.10) are used in 4D-EnVAR to calculate ݔప,௧
௔തതതത and ݔߜ௜௝,௧

௔  

instead of Eqs. (2.3) and (2.5) used in 4D-LETKF. If the observation operator ܪ௞ is a linear function, then Eq. (C.10) is 

equivalent to Eq. (2.5) because ܪߜ௞௝,௧
௔ ൌ ௞௝,௧ܪߜ

௙ . Moreover, if ܪ௞ in Eq. (C.9) is linear and can be calculated from ݔప,௧
௔തതതത 



 63

alone, then ߲ݓ߲/ܬ௜௝ in Eq. (C.9) is a linear function of ݓ௜௝ because ܪ௞൫ܠ௧
௔തതത൯ ൌ ௞,௧ܪ

௙തതതതത ൅ ∑ ௞௝,௧ܪߜ
௙௠

௝ୀଵ  ௜௝ݓ߲/ܬ߲ ௜௝. Linearݓ

means that expሺെܬሻ, which is assumed to be the PDF in the variational method, is Gaussian. In this case, the equations 

to solve ݓ௜௝ and ௜ܶ௝భ௝ are identical to the equations of 4D-LETKF (Hunt et al. 2004, 2007; Miyoshi et al. 2007). 

Therefore, the analysis and its perturbation of 4D-EnVAR are the same as those of 4D-LETKF when ܪ௞ሺ࢞ሻ is linear and 

analysis point ݅ is located at observation point ݇. In other words, the analysis and its perturbation of LETKF are 

obtained with Eqs. (C.9) and (C.10) if ܪ௞ሺ࢞ሻ is linear and ܬ is locally defined. 

We confirmed above conformity between EnVAR and LETKF using single-observation assimilation experiments, in 

which 20-member ensemble forecasts with the “simplified parameterizations, primitive-equation dynamics” (SPEEDY) 

model (Molteni 2003) were used for the first guess. The SPEEDY model is an AGCM with a T30L7 resolution 

(represented by 96 × 48 × 7 grid points), and the model variables are zonal and meridional winds ሺݑ,  ,ܶ ሻ, temperatureݒ

specific humidity ݍ, and surface pressure ݌௦. Here, these variables are also used as control variables in assimilation with 

LETKF and EnVAR. If the observation operator is the identity transformation (linear), the EnVAR and LETKF analyses 

are identical at the observation point (Fig. C.1a and C.1b). However, except for the zonal wind at the observation point, 

the analysis increment in EnVAR (Fig. C.1b) was smaller than that in LETKF (Fig. C.1a). This increment was smaller 

because the observation space localization in EnVAR, which was shown to be almost the same as model space 

localization, was stronger (i.e., it ignored observation information more quickly with distance) than the localization in 

LETKF (Greybush et al. 2011). If the observation operator was the non-linear, even at the observation point, the EnVAR 

analysis (Fig. C.1d) is different from the LETKF analysis (Fig. C.1c). 

In the weak non-Gaussian PDF, then expሺെܬሻ is a good approximation of the PDF (Tsuyuki 2014). Therefore, the 

result from EnVAR, which minimizes globally defined ܬ without assuming linearity of ܪ௞, should be closer to the true 

value than that of LETKF when ܪ௞ሺ࢞ሻ is non-linear or when observations globally affect physically distant analysis 

points. To show this advantage of EnVAR, we also performed OSSEs with the SPEEDY model that compared 

20-member ensemble forecasts from 4D-LETKF and 4D-EnVAR. In the OSSEs, the true value was defined as the 

forecast with the SPEEDY model. We used 20 forecasts from the initial true value, in which forecast times ranged from 

744 to 972 hours at 12-hour intervals, for the initial values of the 20-member ensemble forecasts. A 6-hour assimilation 

window was used, extending 3 hours before and after the analysis time. Assimilated observations were created by adding 

random errors to the true values at 2-hour intervals at the points shown in Fig. C.2, which were ݌ ,ܶ ,ݒ ,ݑ௦, and the 

relative humidity as calculated from ܶ, ݍ, and ݌௦. The amplitudes of these random errors were 1 m s–1 for ݑ and 1 ,ݒ 

K for ܶ, 100 hPa for ݌௦, and 10% for relative humidity. The horizontal and vertical localization lengths were same as in 

the single-observation assimilation experiments (1000 km and 0.1σ, respectively). The multiplicative inflation parameter 

 .was 1.1. The analysis-forecast cycle was repeated 160 times (40 days) (Anderson and Anderson 1999) ߙ

Histograms of differences of observations assimilated in EnVAR from ensemble means of their forecasts (ܱ െ  at (ܨ

all analysis times were close to Gaussian (Figs. C.3a–e). However, the histogram for specific humidity (which was not 

assimilated directly) was far from Gaussian (Fig. C.3f), which is consistent with the result of ensemble experiments with 

10,240 members (Miyoshi et al. 2014). Differences from true values of the ensemble means of every-6-hour ensemble 
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forecasts from the LETKF and EnVAR analyses are shown in Fig. C.4. The root mean square errors (RMSEs) from 

EnVAR were generally smaller than those from LETKF (Figs. C.4b and C.4d). The biases of variables in EnVAR and 

LETKF were almost the same (e.g., Fig. C.4a) except that the bias of specific humidity was smaller from EnVAR than 

from LETKF (Fig. C.4c). 

Locally calculating the observation operator is a major reasons why the LETKF analysis in this OSSE was worse than 

the EnVAR analysis. In fact, even when all observation operators were linear (including direct assimilation of specific 

humidity rather than relative humidity), the RMSEs and the bias of specific humidity from EnVAR were smaller than 

those from LETKF (not shown). Moreover, when only non-linear ܪ௞ was treated like EnVAR but analyses were solved 

independently for every analysis point ݅ as in LETKF, RMSEs and biases almost equaled those from LETKF (blue lines 

in Fig. C.4). These results show that the effect of non-linearity of the observation operator is relatively small and the 

improvement resulting from globally calculating the observation operator is particularly important for accurate analyses 

in EnVAR. 
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Fig. C.1. Analysis increments of zonal wind (arrows; m s–1) and relative humidity (color shading; %) after assimilation of 

a single observation at 180°E, 20°N, and 0.835σ (sigma coordinate): zonal wind of 5.0 m s–1 with (a) LETKF and (b) 

EnVAR and relative humidity of 30.0% with (c) LETKF and (d) EnVAR. The horizontal and vertical localization lengths 

are 1000 km and 0.1σ, respectively. First guesses of a zonal wind and relative humidity at the observation point are –9.8 

m s–1 and 53.2%, respectively. In the case assimilating zonal wind, the observation operator is the identity transformation 

(linear), and the LETKF and EnVAR analyses of zonal wind at the observation point are identical (–0.9 m s–1). In the case 

assimilating relative humidity, the observation operator is the non-linear function of ܶ, ݍ, and ݌௦, and the LETKF and 

EnVAR analyses of relative humidity at the observation point are 44.2% and 39.6%, respectively. 

  



 66

 

Fig. C.2. Distribution of observations assimilated in OSSEs. 
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Fig. C.3. Histograms of (ܱ െ –for all analysis times in 4D-EnVAR: (a) zonal winds (m s (observation minus forecast) (ܨ

1), (b) meridional winds (m s–1), (c) temperature (K), (d) surface pressure (hPa), (e) relative humidity (%), and (f) specific 

humidity (g kg–1). Note that specific humidity was not assimilated in the experiments shown in Fig. C.4. 

  



 68

 
Fig. C.4. (a) Bias and (b) RMSE of ensemble means of zonal wind (m s–1) and (c) bias and (d) RMSE of those of specific 

humidity (g kg–1) that were predicted for 6 hours from 4D-LETKF analyses (black lines), 4D-EnVAR analyses (red lines), 

and 4D-EnVAR analyses solved independently for every analysis point (blue lines). 
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