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Chapter 1

Introduction

1.1 Problem of traffic jam

Jams have frequently occurred in road traffic in many countries. Many people suffer

from wasted times because of the jams. In fact, the economic losses caused by traffic jams

in Japan were approximately 11 trillion yen in 2005 [1]. In highway traffic, there have

frequently occurred large scale of jams around urban areas especially in weekends.

What is the causes of the occurrence of the jams? According to NEXCO, which is a

company managing expressways in Japan, over 70 % of the jams occurred in expressways

are caused by “traffic concentration” [2]. Traffic concentration means the states that too

many cars move on a road. It is well known that the traffic concentration is occurred in

specific locations and at the time or the days when many cars enter and pass the location.

Of the locations of the occurrence of traffic concentration, about 62 % is the uphill or

the “sag”, about 30 % is the junction points such as the entrance of expressways and the

junction of two expressways, and about 3 % is the entrance or the exit of tunnels [2]. At

these locations, cars are easy to brake unconsciously. Sag is a concaved road composed of

a downhill and an uphill. If both of the hills are gradual, drivers on the sag are difficult

to recognize the gradient and they decelerate unconsciously by the uphill. At junctions,

when a car joins a slow lane (a cruising lane) from the junction, a car on the lane moving

behind the car brakes to keep a headway for safety. Otherwise, for the reason such that

the car on the lane does not want to brake, the car moves to the fast lane (the overtaking

lane). Then another car on the fast lane decelerates as well as the car on the slow lane

does. In the case of tunnels, drivers sometimes decelerate because of feeling oppressive

and dark in tunnels. They also sometimes brake at the exit of the tunnels because of

feeling bright. Therefore, at the time such as a rush hour or in a day such as in weekends,
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the traffic concentration occurs due to the decrease of cars’ velocity at such locations.

The relationship between traffic concentration and traffic jams has been revealed in the

field of the study of traffic flow. Traffic flow belongs to a complex system because each of

cars composing of traffic flow moves with its own intention. It has been studied in physics

for revealing the mechanism of it and in engineering for solving the traffic jams.

Fundamental studies have developed methods to analyze traffic flow and revealed the

mechanisms of traffic jams [3–9]. In these studies of traffic flow, the density and flux of the

traffic flow are defined: density is the number of cars on a certain load and it represents the

degree of traffic congestion on the load. Flux is the number of cars passing a certain point

on a load for a period. Flux also can be represented by the product of the density and the

mean velocity of the load for the period. The relationship between traffic concentration

and jams can be found from the relationship between density and flux of traffic flow.

Figure 1.1 shows the density and flux in a two-dimensional diagram at Thuo expressway

in Japan in a day. Such the diagram of the density and flux is called a “fundamental

diagram” in the field of the study of traffic flow. In this figure, the relationship between

the density and the flux clearly changes at the certain value of the density, which is called

the “critical density”. The traffic concentration corresponds to the state that the density

is around the critical density.

If density is smaller than the critical density, the flux increases linearly as the density

increases. This state is called “free flow”. In free flow, cars can keep at a high velocity thus

the flux is proportional to the density. On the other hand, if density is beyond the critical

density, the flux rather decrease as the density increases. This state is called “congested

flow” and corresponds to the state of traffic jam. A traffic concentration often transfers

into a traffic jam by some perturbations on a road such as the velocity fluctuation of

cars and the reaction time delay by human. In this case, a car on the road decelerates

or stops by the perturbations and the following car also decelerates or stops influenced

by the behavior of the car. The chain of this deceleration occurs from cars to cars and

propagate like a wave. The wave is called “shock wave”. Shock wave propagates at the

velocity from 10 km/h to 20 km/h from the downstream direction (travel direction of cars)

to the upstream direction (opposite direction of the travel direction), and the velocity is

commonly observed in many countries.

In the field of traffic flow, researchers have found some universality such as the occur-

rence of the two phases of free flow and congestion flow and the velocity of shock wave.

Due to this universality, it is valuable that we model the essence of the phenomenon of
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Fig. 1.1. The fundamental diagram of the traffic flow from the empirical data in Thuo
expressway.

the traffic flow to understand the phenomenon and to apply for solving the traffic jam.

1.2 Basic research

1.2.1 Mathematical models for the explication of traffic flow

The mechanism of traffic flow has been studied with mathematical models produced

in past several decades [4, 5, 9–11]. The models are categorized into “macroscopic” and

“microscopic” model, and are further distinguished whether the variables in the models are

continuous or discrete (Tab. 1.1). Macroscopic and microscopic models have progressed

separately. Macroscopic models are also called “fluid model”. In fluid model, traffic

is described in macroscopic parameters such as density and flux. On the other hand, in

microscopic models, the variables of each car such as the position and velocity are defined.

The traffic flow is expressed by the mass of the cars that interact each other. Some of



4 Chapter 1 Introduction

the microscopic models treat continuous values and the behavior of each car is described

in differential equations. These model are called “car–following model”. In the decade of

1990, the evolution of computation has improved the performance of calculation thus the

traffic flow can be observed by numerical simulations with car–following models. Due to

this evolution, the study with car–following models has rapidly progressed. At the same

time, the study with another type of models which treat discrete parameters also has

developed because of the simplicity. In these models, the road is divided into cells and

cars move from one cell to another cell. Such models are called “cellular automaton (CA)

model”. We explain details of the fluid, car-following and CA models in the following.

Model Time Space

macroscopic model fluid model continuous continuous

microscopic model
car-following model continuous continuous

cellular automaton model discrete discrete

Table. 1.1. The table which describes the characteristics of the three traffic models.

Fluid model

Fluid model is of course based on fluid dynamics and defines the density and flux of

traffic flow. It can reproduce the basic characteristic, the relationship between the density

and the flow, observed in real traffic. One of the first fluid model was proposed by Lighthill

[12] in 1955. It discusses the propagation speed of the shock waves with the knowledge

of fluid dynamics. In a model based on Burgers equation, the exact solution of a shock

wave behavior in one-dimension fluid has been obtained [13]. Then many researchers have

proposed fluid models based on the fluid dynamics [14–18].

Cellular Automaton (CA) model

CA model is simple but can reproduce free flow and congestion flow, which is funda-

mental property observed in traffic flow. One of the representative CA model is Nagel-

Schreckenberg (NS) model proposed in 1992 [19]. In NS model, cars move by four rules

described as follows

R1 acceleration:　 vt+1
n ←

 vtn + 1 (vtn < vMAX)

vtn otherwise

R2 deceleration: vt+1
n ← min

(
vt+1
n , dtn

)
R3 random braking: vt+1

n ← max
(
vt+1
n − 1, 0

)
with probability p

R4 moving:　 xt+1
n ← xt

n + vt+1
n ,
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where xt
n and vtn are the location and velocity of the car n at time t respectively, and

the car n − 1 represents the car in front of the nth car. dtn is the gap between the car n

and car n − 1, that is dtn = xt
n−1 − xt

n − 1. Because cars move no more than dtn in one

time step, each of them is certified not to collide the car in front. In the rule R3, the

randomization is introduced in order to cause the fluctuation of each car’s velocity. NS

model can reproduce both a free flow and a congestion flow.

Despite of the simplicity of NS model, it can be used to anticipate basic properties such

as the occurrence of a jam in a location. Besides, CA model is easy to add the rules that

cars obey on moving compared to fluid and car–following models. On the basis of the

NS model, many CA model considering several effects on driving have been proposed and

have been used for the investigation of the effect on the whole traffic flow [20–22].

Car following model

One of the familiar Car–following models proposed earlier is Gazis model [23] described

as follows

v̇i (t+ τ) = a [vi−1 (t)− vi (t)] , (1.1)

where xi (t) and vi (t) are the location and velocity of car i at time t respectively, and car

i − 1 represents the car in front of car i. Therefore each car determines its acceleration

by the relative velocity to the car in front. Parameter a is defined as a sensitivity of a

reaction of cars and is set to a positive value. It represents the strength of the influence

by the changes of the relative velocity to the car’s acceleration. τ is a drivers’ reaction

time. It is natural that it takes a certain period for human to recognize the change of

relative velocity. In Eq. (1.1), if the relative velocity is positive i.e., (vi > vi+1), the

right hand side of the equation becomes negative and the i th car decelerates. To the

contrary, the car accelerates if the relative velocity is negative. These behavior is natural

for the driving action. It should be noted that the term of reaction time makes the

differential equation difficult to analyze the behavior of cars theoretically. In Ref. [23],

the fundamental diagram was investigated with the model in the case where a is not only

constant value but also depends on the relative distance (xi − xi+1).

As another familiar car–following model, Bando et, al. have proposed “optimal velocity

(OV)” model [24]. In this model, a new function “optimal velocity function” is introduced

to each car. Each car aims the velocity determined by the function. The equation is
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described as follows

v̇i (t) = a [V (∆x)− vi (t)] , (1.2)

where a is a sensitivity of the reaction of cars and V is the optimal velocity function.

The function monotonously increases with the relative position to the preceding car ∆x

and it goes asymptotically to a maximal velocity as ∆x → ∞. The function is set to be

considered for human’s psychology of driving and the maximal velocity is considered for

the restriction of the velocity caused by the performance of cars. Cars obeying this model

keep a relative distance ∆̄x and the velocity v̄ = V
(
∆̄x
)
in a uniform flow, which is the

state where all cars move at the same velocity. In this model, the stability of a uniform

flow against perturbations is analytically derived by the linear stability analysis. Figure

1.2 shows the stability and instability regions in a two-dimensional parameter diagram.

The stability and instability regions is the region (i) and (ii), respectively. In the region

(i), any perturbation decays and a uniform flow can be maintained. In the region (ii), on

the other hand, some perturbations grow and eventually the uniform flow is collapsed. In

this case, there coexist two clusters of cars, that of cars moving at a high velocity and

others moving at a low velocity. The boundary line between (i) and (ii) is described as

the equation

a = 2V ′ (∆̄x
)
, (1.3)

where V ′ (∆̄x
)
is the value of V differentiated with ∆x and substituted ∆̄x into. If

a > 2V ′ (∆̄x
)
, the uniform flow is stable against any perturbation.

Other than there car–following models, one of model often used in a control engineering

is Helly model [25]. The model is described as follows
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Fig. 1.2. The linear stability condition of OV model. We use tanh(∆x − 2) + tanh 2 as
the equation of V (∆x), which is identical with Eq. (24) in Ref. [24]

v̇i (t+ τ) = k1 [xi−1 (t)− xi (t)−Di (t)] + k2 [vi−1 (t)− vi (t)] (1.4)

+k3Bi−1 + k4Bi−2, (1.5)

Di (t) = α+ βvi (t) + γv̇i (t) , (1.6)

Bn−1 =

 0 if car i− 1 is not braking

1 if car i− 1 is braking,
(1.7)

Bn−2 =

 0 if car i− 2 is not braking

1 if car i− 2 is braking,
(1.8)

where xi (t) and vi (t) are the location and velocity of car i at time t respectively, and car

i − 1 represents the car in front of car i. Each car determines the value of acceleration

in response to the relative position and velocity of the car in front. k1 and k2 are the

sensitivities toward the relative distance and velocity, respectively. Di is car i’s desired

gap and depends on vi and v̇i. The parameter α in Di is the desired gap in a halting
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state. It should be noted that each car’s desired gap includes the length of the car. k3

and k4 are the coefficients of the brake factors of car i − 1 and car i − 2, respectively.

Due to the factors, the behavior of each car is affected by brake lamps of the preceding

cars. In a uniform flow, each car keeps a common velocity v (t) = v̄ and a common gap

Di = α+ βv̄.

Here, we explain the stability of the uniform flow composed of cars obeying the Helly

model [Eq. (1.5)] with omitting the time delay τ , the brake factors and the term of v̇i in

Di for simplicity. We describe the simplified Helly model as follows

v̇i (t) = k1 [xi−1 (t)− xi (t)−Di (t)] + k2 [vi−1 (t)− vi (t)] , (1.9)

Di (t) = d+ Tdesvi (t) , (1.10)

where in Di is the desired gap in a halting state (corresponds to α in [Eq. (1.5)]) and Tdes

corresponds to the target inter-vehicular time. A target inter-vehicular time of a car is

defined as a period from when the preceding car’s tail passes a certain position to when

the car’s head passes the position. Each car’s desired gap is the function of vi and can

be written in the notation, Di = D (vi) = d + Tdesvi. In the simplified Helly model, the

stability of the uniform flow can be derived analytically with the string stability. The

string stability is defined to a column of cars composing of a flow (Note that it is defined

even if the flow is not a uniform flow.) and judged whether a fluctuation of the tail car of

the column is smaller than that of the head car of the column. If the fluctuation of the tail

car is equal to or smaller than that of the head car, the column shrinks the perturbation

caused by the head car and translates the shrunken perturbation to the tail car. In this

case, the column is defined to satisfy the string stability condition. On the other hand,

if the fluctuation of the tail car is larger than that of the head car, the column amplifies

the perturbation caused by the head car and translates the amplified perturbation to the

tail car. In this case, the column does not to satisfy the string stability condition. In a

uniform flow with a common velocity v̄ and a common gap D (v̄) obeying the Helly model

expressed in Eqs. (1.9) and (1.10), the string stability condition is known [26], which is

described by the following inequality

Tdes ≥
−k2 +

√
k2

2 + 2k1
k1

. (1.11)

The calculation process of the stability condition in the Helly model is explained in detail



1.2 Basic research 9

in Appendix A.1.

1.2.2 Studies for solving traffic jam

Strategies for traffic jam are categorized into macroscopic approaches and microscopic

approaches. The macroscopic strategies, as mentioned in the section 1.1, aim to avoid the

excessive density by restricting the inflow of cars. These strategies have been proposed

in the field of traffic engineering and operated such as ramp metering [27, 28], variable

speed limits (VSL) [29–31] and congestion pricing [32–34]. Ramp metering is operated

in an intersection or a ramp in highway. VSL restricts the maximal velocity on highway

dynamically depending on the scale of the congestion. Congestion pricing forces drivers to

pay an extra tall to pass a certain highway in a certain period such as rash hour. On the

other hand, in the the strategies based on microscopic car behaviors, a jam is prevented

from growing by introducing car’s which satisfy the stability condition mentioned in the

section 1.2.1. These strategies have been studied in the field of physics, separately from

that of traffic engineering. One effective development in this microscopic scope is the

adaptive cruise control (ACC) [35], an on-board system that controls time-headways and

velocities with a headway sensor, enabling the car to adopt car-following behaviors more

accurately than is possible by human driving. The efficiency of ACC in preventing traffic

jams has been reported through several numerical simulations [36–38] and experiments

with real cars [39–41]. Although ACC as a microscopic strategy for solving traffic jam has

a high potential to ease traffic jams, ACC is yet to gain widespread use; among standard-

size cars manufactured in 2010 for use in Japan, only 2.8% (122, 750/4, 377, 953) were

equipped with ACC (ACC in full range speed) [42]. This penetration rate is much smaller

than the penetration rates succeeding in suppressing traffic jams predicted by numerical

simulations: 20 % [36, 37] and 25 % [38].

The problem comes from the dynamical driving in ACC. The car equipped ACC has a

characteristic of pursuing dynamically the preceding car all the time. Due to the char-

acteristic, for a single car, the behavior does not affect greatly the whole traffic flow.

Therefore, the whole traffic flow is possibly changed greatly by the behavior of a few cars

tuning dynamic ON and OFF.

As this strategy based on the driving tuning dynamic ON and OFF, Beaty discussed

how a traffic jam changes if a car does not pursue the preceding car but takes a large

headway before encountering the traffic jam in advance [43]. If the car has a quite larger
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headway than its desired headway, even if the preceding car is involved a jam, the car

can keep a constant speed with consuming the large headway. While keeping a large

headway, the car’s behavior is not influenced by the jam. According to Beaty, if a car

catches up with the preceding car in the right timing, its followers can avoid braking,

i.e., the jam is removed. The advantage of Beaty’s method is that a jam is removed by

a single car. However, Beaty’s driving method lacks theoretical supports; for instance,

the appropriate headway distance required for removing jam is not derived. Recently, a

theoretical framework based on a simple model has been developed which demonstrates

the ability of a single car to remove a jam [44]. The method in the theory is called

“jam-absorption driving”, and in this paper, we abbreviate the jam-absorption driving

to “JAD”. The name of jam-absorption is derived from the behavior of a single car

which is not influenced a jam entirely and passes through as if no jam occurs from the

beginning. Cars that perform JAD (“absorbing cars”) undertake a chain of two actions,

“slow-in” and “fast-out”. Slow-in allows the car to circumvent a jam, and remove it

by decelerating and enlarging its own headway in advance. Fast-out is performed after

slow-in, and involves following the car in front with sufficient acceleration to prevent time

delay. Consecutive applications of the two actions are expected to prevent the following

cars from falling into the so-called “memory effect”, the prolonged net time-gaps after

staying in a jam [45, 46]. On the other hand, JAD itself causes perturbations such as

compression and expansion waves due to its irregular motion (See Fig 2.1 in chapter 2).

The theory predicts the condition under which a jam can be removed without forming the

so-called “secondary jam.” Under this condition, the compression and expansion waves

caused by the absorbing car intercept and cancel out. The explicit form of this meeting

point in a time-space diagram can be derived from the theory, and the trajectory of this

point can be altered by changing the slow-in timings.

1.3 Purpose of the study

We only know about the new theory JAD the theoretical analysis using a simple model

and we need to discuss the effect of JAD on the traffic jam from several aspects such

as numerical simulations and experiments. In this study, we investigate and report the

effect of JAD in numerical simulations and an experiment. We introduce a car-following

model which does not considered in the previous study of JAD and classify the condition

of the behavior of the absorbing car to remove a jam and avoid a secondary jam with the
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simulations. Furthermore, we experimentally demonstrates JAD with human driving cars

to confirm that JAD does not worsen the traffic flow. Then, to observe the effect of JAD

in real driving situations,

1.4 Composition of this paper

This paper is composed as follows. We have already explained the mechanism of the

traffic jam and models to reveal the mechanism briefly and have introduced the previous

studies for solving traffic jam as the introduction in chapter 1. Then, we explain the

description of the strategy proposed in Ref. [44] in chapter 2. In chapter 3, we conduct

the numerical simulations of JAD and describe the result. Section 4 is the results of

our experiment. In the end, we conclude the findings in chapter 2, 3 and 4 and discuss

potential future works in section 5.
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Chapter 2

Theory of JAD

2.1 Strategy of JAD

JAD is performed in a situation where a jam occurs in the downstream direction of the

absorbing car and is propagating toward the car as shown in Fig. 2.1. In this situation, a

jam occurs and develops by catching cars. The caught cars stop in order of the column.

The action of JAD is mentioned as follows. As the first step of JAD, the absorbing car

decelerates and keeps its velocity in advance before the jam reaches it (slow–in). By slow–

in, the absorbing car enlarges its inter-vehicular distance. When the preceding car of the

absorbing car is involved in the jam and stops, because the absorbing car maintains a

large gap, it is not involved in the jam but does keep its velocity. Then, as the second

step of JAD, when the preceding car comes out of the jam and changes its velocity at a

high speed, the absorbing car changes its velocity at the high speed (fast–out). Due to

these actions of JAD, the absorbing car is not forced to stop by the jam and can intercept

the propagation of the jam.

In this situation, the cars behind the absorbing car are affected by the behavior of JAD.

Due to their behaviors affected by JAD, the compression wave and expression wave occur

and propagate to them. In the study of Ref. [44], secondary jams do not occur if the two

waves intersect. JAD has the strategy aiming at the intersection of the two waves.
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Fig. 2.1. Schematic view of the slow-in and fast-out performed by the absorbing car.
The horizontal and vertical axes correspond to the position and the time, re-
spectively. The circled icons represent the absorbing car. The cars behind the
absorbing car follow it. The compression and expansion waves occur due to the
slow-in and fast-out, respectively.

2.2 Model for traffic flow

We describe the simple microscopic car behavior model used in the jam–absorption

theory in Ref. [44]. In the model, each car’s velocity depends on the gap to the car in

front. The velocity v is determined according to the following equation

v =


(
h− d

l − d

)m

vMAX d ≤ h ≤ l,

vMAX h ≥ l,

(2.1)

where h is the gap of each car to the car in front, and d is the sum of the gap and the length

of the car in the halting state. vMAX is the maximal velocity of cars and l is the minimal

gap which cars can maintain at the velocity vMAX. When a car’s gap is smaller than l, the

velocity of the car changes into a smaller value than vMAX by obeying Eq. (2.1). Here, m is
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the parameter which controls the degree of the velocity variation. It should be noted that

each car does not consider the acceleration and changes its velocity immediately. With

Eq. (2.1), the relationship between the traffic density and flux composed of by massive cars

can be calculated. The fundamental diagram of the traffic flow can be drawn in Fig. 2.2.

The free flow and congestion flow can be expressed. In both cases of the parameter m > 1

and m < 1, the curves corresponding to the congestion flow are convex ones. In the

scenario mentioned as follows, the scale of a jam growth does not depend on the value of

m. Therefore, in this paper, we discusses the effect of JAD on the traffic jam in the case

of m = 1 for simplicity.

m=0.8
m=1
m=1.2
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Fig. 2.2. Fundamental diagram calculated with the relationship between the velocity v
and the gap of cars h described by the Eq. 2.1. The density and the flow are
described as 1000

h
[1/km] and 3600v

h
[1/hour], respectively. The gap h is changed

from d = 7.5 [m] to a sufficiently large value such as 10000 [m]. In the diagram,
l and vMAX are set to 25 [m] and 25 [m/s], respectively. If h > l, the lines in
all cases of m = 0.8, m = 1.0, m = 1.2 overlap each other. On the other hand,
if d < h < l, the lines in the cases of m = 0.8 and m = 1.2 are bended. In all
cases, the flows at the point of h = d are the same each other.

Here, we explain a scenario where a jam develops and propagates to the upstream

direction by using the simple car following model (Fig. 2.3). The scenario is described as

follows: All cars keep the velocity with vMAX and the gap with h1 (h1 > l). At a time,

a car located in the downstream direction (called car 1) stops for a period T and then

changes the velocity into vMAX. Car 1’s action causes a perturbation and it propagates

to the following cars. Each of the following cars keeps vMAX until its gap becomes d,

and then it changes its velocity into 0 and have the gap d. After a halting state, the car

changes its velocity into vMAX when the gap of the car is enlarged to h2 (> h1). The



2.2 Model for traffic flow 15

enlargement of the gap is caused by the memory effect.

We analytically investigate the characteristics of the compression and expansion waves

due to the perturbation caused by the car 1. The two waves can be obtained as lines by

connecting the collective points on which each car’s trajectory are bended in the time–

space diagram. It should be noted that both the two waves do not have their width in

the simple model. The propagation speeds of the compression and expression waves are

defined as the parameter vS and vR, respectively. They can be calculated as the gradients

of the lines as follows

vS =
0− vMAX/h1

1/d− 1/h1
= −dvMAX

h1 − d
, (2.2)

vR =
0− vMAX/h2

1/d− 1/h2
= −dvMAX

h2 − d
. (2.3)

From Eqs. (2.2) and (2.3), if h1 < h2, vS < vR is satisfied thus the jam grows. With

using the equation vS(tA − tG + T ) = vR(tB − tG) = −(N1 − 1)d, we can calculate the

position xA and the time tA at which a car located in N1−1 th behind the car 1 (car N1)

is involved in the jam as follows

xA − xG = −(N1 − 1)d, (2.4)

tA − tG = −T − (N1 − 1)d

vS
= −T +

(N1 − 1)(h1 − d)

vMAX
, (2.5)

(2.6)

where xG and tG are the position and time at the point G in the Fig. 2.3, which represents

the states in which the car 1 changes the velocity into 0 and halts. As well as xA and tA,

xB and tB at which car N1 comes out of the jam can be calculated as

xB − xG = −(N1 − 1)d, (2.7)

tB − tG = − (N1 − 1)d

vR
=

(N1 − 1)(h2 − d)

vMAX
. (2.8)

Therefore, the period for which the car N1 is involved in the jam is calculated as

tB − tA = T +
N1 − 1

vMAX
(h2 − h1) . (2.9)
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Fig. 2.3. Time–space diagram of a traffic flow reproduced by a simple car behavior model
in Ref. [44]. The horizontal and vertical axes correspond to the time and the
position, respectively. Each line represents the trajectory of a car and its gra-
dient at a time corresponds to the velocity at the time. The horizontal line of
each trajectory represents the halting state of the car.
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2.3 Theoretical analysis

Here, we analytically investigate the influence of JAD on the jam in the simple car

behavior model with JAD. To discuss it, we introduce a scenario described as follows.

The initial state and the action of car 1 is the same as those in the scenario without JAD.

We assign car N1 +1 to the absorbing car. The behavior performed by the absorbing car

is drawn in Fig. 2.4. As the first step of JAD, the absorbing car performs slow–in and

changes its velocity into va (< vMAX) when it passes a point C in the diagram. It aims to

pass the point D in the diagram, which is the point of the states where the absorbing car’s

gap is d when the car N1 comes out of the jam. As the second step of JAD, the absorbing

car performs fast–out (changes its velocity into vMAX) when it passes the point E in the

diagram, which is the point of the states where the absorbing car keeps the velocity va and

its gap is l. We denote the period for which the absorbing car performs slow–in from the

point C to the point E as Ta. In this situation, Ta and va have an relationship described

as the following equation

Ta =
TvMAX + (N1 − 1) (h2 − h1)− (h1 − l)

vMAX − va
. (2.10)

xC , tC , xE and tE are described with va as follows

tC − tG =
1

vMAX − va

(
−TvMAX + (N1 − 1) (h1 − d) + h1 −

va
vMAX

(N1 − 1) (h2 − d)− d

)
,

(2.11)

tE − tG =
(N1 − 1) (h2 − d)

vMAX
+

l − d

vMAX − va
, (2.12)

xC − xG = − (N1 − 1) d− h1 −
vMAX

vMAX − va

(
va

vMAX
(N1 − 1) (h2 − h1) + vaT − h1 + d

)
,

(2.13)

xE − xG = − (N1 − 1) d− vMAXd− val

vMAX − va
. (2.14)

The following cars of the absorbing car also change the velocities into va affected by

slow–in. The timing of changing into va is that when each car’s gap is h3, which is obtained



18 Chapter 2 Theory of JAD

by substituting va into Eq. (2.1) as follows

h3 = d+
va

vMAX
(l − d) . (2.15)

Then each car changes the velocity into vMAX when its gap is l. Note that the memory-

effect does not occur to the cars in this situation because they are not involved in a jam.

As well as the perturbations caused by the car 1, JAD also causes the compression and

expression wave. The velocity of the compression wave vb and the expression wave vc are

calculated as the following equation

vb =
va/ha − vMAX/h1

1/ha − 1/h1
=

vah1 − vMAXha

h1 − ha
(2.16)

and

vc =
va/ha − vMAX/l

1/ha − 1/l
=

val − vMAXha

l − ha
, (2.17)

respectively. If vb > vc, the two waves intersect in a certain position in the upstream

direction from the position of the absorbing car. We define the point in time–space

diagram where the two waves intersect as F , and denote the certain position and the

certain time as xF and tF , respectively. We also define the car which moves just behind

the position xF at tF as car N2. In this case, car N2’s gap is always above h3 even if it

keeps the velocity vMAX. Thus, car N2 and the following cars can keep the velocity vMAX

and the two waves disappear, i.e., the jam which develops and propagates to the absorbing

car is absorbed by its following cars and finally disappears. By using the inequality vb > vc

with substituting Eq. (2.16) into vb and Eq. (2.17) into vc, we can obtain the condition of

jam absorption described as

h1 > l (2.18)

Here, we assume the inequality (2.18). With the assumption, we calculate the point F

and the number of cars which is required to absorb the jam. The position xF and the
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time tF are calculated as

tF − tG =
va

(vMAX − va) vMAX
(l − d)

+
1

(h1 − l) vMAX
(TvMAX (l − d) + (N1 − 1) (h1 − d) (h2 − l)) , (2.19)

xF − xG = − d

h1 − l
(TvMAX + (N1 − 1) (h2 − h1)) +

va
vMAX − va

(l − d)− (N1 − 1) d.

(2.20)

We can obtain a relationship between tF and xF by uniting Eq. (2.19) and Eq. (2.20),

and deleting va
vMAX−va

from them as follows

xF − xG = (tF − tG) vMAX −
1

h1 − l
(TvMAXl + (N1 − 1) (h2 − l)h1) . (2.21)

In the time–space diagram, the line obtained from Eq. (2.21) has gradient vMAX (Fig. 2.5).

Thus the line is depicted in parallel with the trajectories of the car N2 and is located

between the trajectories of the car N2 − 1 and car N2. Therefore, the number N2 does

not depend on va.

Suppose N2 is a sufficiently large value, xG − xF |tF=0 approximately equals to the

relative position of the car N2 at time 0 to xG. The relative position is calculated as the

sum of the gaps from car 1 to car N2. Thus the relationship is derived as follows

xG − xF |tF=0≈ (N2 − 1)h1. (2.22)

N2 can be calculated from Eq. (2.21) and Eq. (2.22) as follows

N2 ≈
1

h1 − l

(
l

h1
TvMAX + (N1 − 1) (h2 − l)

)
(2.23)

Suppose that both N1 and N2 are sufficiently large, the number of cars which is required

to absorb the jam N2 −N1 is in proportion to N1 and the proportion N1−N2

N1
is

h2 − l

h1 − l
− 1 =

h2 − h1

h1 − l
. (2.24)

Moreover, both tF and xF can be regarded as linear functions of va

vMAX−va
. Because

va
vMAX−va

monotonously increases with va, the point F moves to the right direction in the

time-space diagram as shown in Fig. 2.5 as va increases. In the case of va = 0, tF and xF
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are described as

tF |va=0 −tG =
1

(h1 − l) vMAX
(TvMAX (l − d) + (N1 − 1) (h1 − d) (h2 − l)) , (2.25)

xF |va=0 −xG = − d

h1 − l
(TvMAX + (N1 − 1) (h2 − h1))− (N1 − 1) d. (2.26)

In the case of va → vMAX, both tF and xF go to infinity. Note that in the case of va = 0,

although the memory effect must occur to the cars from the car N1+1 to the car N2, the

point F in this case represents the case without the effect.
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Fig. 2.4. Time–space diagram representing a situation where the absorbing car performs
JAD to remove a jam propagating from the downstream direction. Each line is
the trajectory of a car. The green one is that of the absorbing car. The absorbing
car starts slow–in at the point C. It aims at the point D and then ends slow–in
and starts fast–out immediately after passing the point E. The compression
and expansion waves caused by JAD are drawn by the line segment CF and
EF , respectively. The velocities of the compression and expansion waves are
denoted by vb and vc, respectively. Because of JAD, the memory effect does
not occur to the following car of the absorbing car and vc becomes smaller due
to the absence of the effect. In this situation, vb > vc is satisfied and the two
waves intersect and finally disappear.
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Fig. 2.5. JAD with various va in the kinematic–like model. As examples of patterns of
JAD with various va, we draw four patterns of JAD with changing va. In each
pattern of JAD, the absorbing car starts slow–in at the point Ci and aims at the
point D, then ends slow–in and starts fast–out after passing the point Ei, where
i has the value of 0, 1, 2 and 3. Here, va is equal to 0 in the case of i = 0 and
it becomes larger as i increases. Each line segments CiFi and EiFi represent
each compression and expansion waves,respectively. Fi is the vanishing point of
the two waves in each pattern of JAD. The bold half line which starts from F0

corresponds to the trajectory of F with changing va from 0 to vMAX.
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2.4 Conclusion

The jam–absorption theory in Ref. [44] aims at the construction of theoretical framework

in order to bring a simple comprehension to the effect of JAD on a traffic jam. The

theory expresses a traffic flow composed of massive cars with a simple microscopic car

behavior model and formalizes the behavior of JAD in the situation where a jam occurs

and propagates to the upstream direction. In that study, the behaviors of the compression

and expansion waves caused by JAD were analytically investigated. In this paper, we

introduce the results of the analysis of the behaviors in that study with the parameter

m restricted to 1. One important findings from the results is that the condition of the

disappearance of jam is h1 > l. This condition means JAD succeeds if it is performed in

advance when the traffic density is smaller than the critical density. The other important

one is that the number of cars which is required to absorb the jam N2 − N1 does not

depend on the velocity va. The study in Ref. [44] does not investigate the behavior of

the two waves only for m = 1 but also for m < 1 and m > 1. In these cases, the study

confirms the same condition of the disappearance of jam with the case of m = 1 and the

independence of N2−N1 on va as wall as the case of m = 1. These results bring a simple

comprehension of the influence of JAD on the traffic flow. Thus the study concludes that

the theoretical framework is accomplished to be constructed.

It is a new idea that a car removes a jam by avoiding the occurrence of the memory

effect. However, this theory uses a very simple car behavior model so that it is unclear

JAD method is available to remove the jam in real highway traffic. Therefore, as the

next step, it needs to study the effect of the JAD method on a traffic flow with numerical

simulations by using a more realistic car behavior model in anticipation of application.
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Chapter 3

Numerical simulation of JAD

3.1 Introduction

JAD is composed of two actions: “slow-in” and “fast-out,” as shown in Fig. 2.1 in Chap.

2. Slow-in consists of keeping a large headway to avoid being involved in a traffic jam.

The traffic jam is removed because of this large headway. Fast-out is performed after

slow-in and consists of following the car in front, which has exited from the traffic jam,

with a short headway. The theory considers the so-called “memory effect” (or “frustration

effect”) [45, 46], which is the enlargement of the net time gap after being involved in a

traffic jam and which causes the growth of traffic jams. Cars following the absorbing

car avoid being involved in a traffic jam by JAD. Therefore, the memory effect is not

expected to occur for these cars. Thus, JAD prevents the aggravation of the car-following

behavior of the following cars. However, because of its irregular motion, JAD itself causes

perturbations such as compression and expansion waves (Fig. 2.1). In the framework of

this theory [44], the compression and expansion waves should collide with each other and

disappear to avoid the so-called “secondary traffic jams.” The theory indicates that a

headway threshold exists that prevents secondary traffic jams.

The theory [44] does not consider some points. The first is that it does not consider the

accelerations of cars. The second is the lack of the stability of traffic flow, which deter-

mines whether secondary jams occur. The stability of traffic flow is closely related to the

magnitude of perturbations. Below the critical density, there is a density region in which

a perturbation grows if its amplitude exceeds the critical amplitude observed in macro-

scopic [14, 16], microscopic car-following [47] and cellular automaton [48] traffic models.

In addition, Bando et al. concluded from a microscopic car-following traffic model that

density ranges exist where homogeneous flow and congested flow coexist [24]. Moreover,
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Helbing and Moussaid analytically calculated the critical amplitudes of perturbations in

a microscopic car-following traffic model [49]. Based on these studies, we do not expect

secondary jams to occur if the perturbations caused by the absorbing car are sufficiently

small. According to these previous studies, we anticipate that in traffic flow composed of

cars obeying a car-following model and maintaining extra-large gaps instead of minimal

headway, traffic-flow stability depends on the magnitude of perturbations.

In this paper, we construct a framework of JAD that takes into account accelerations of

cars and stability of traffic flow by introduction of car-following behaviors. First, we use

a microscopic car-following model to numerically verify how the stability of traffic flow

depends on the magnitude of perturbations. Next, we verify that a parameter region exists

where the absorbing car avoids a traffic jam and prevents the growth of secondary jams.

We also show that the validity of JAD is not influenced by the choice of a acceleration

parameter value and a car-following model.

3.2 Model

Among the numerous car-following models proposed in the last several decades [4, 5, 9–

11], simple classical models are sufficient for confirming that the stability of traffic flow

depends on the magnitude of the perturbations. For a simple model, we use the Helly

model [25], which is described by a set of linear differential equations

v̇i (t) = k1 [xi−1 (t)− xi (t)−Di (t)] + k2 [vi−1 (t)− vi (t)] , (3.1)

Di (t) = d+ Tdesvi (t) , (3.2)

where xi (t) and vi (t) are the location and velocity of the car i at time t, and the car i−1

represents the car in front of car i. Each car determines its own acceleration in response

to the relative position and velocity of the car in front. The quantities k1 and k2 are the

sensitivities to relative distance and velocity, respectively. Di (t) is the desired gap for

car i and d is the desired gap when the car is stopped. Tdes is the target intervehicular

time. The target intervehicular time of a car is defined as the time period between when

the preceding car’s tail passes a certain position to when the car’s head passes the same

position. Note that, for simplicity, we ignore time delay, brake factors, and the term of

v̇i in Di that were defined in the original Helly model [25]. Each car’s desired gap is the

function of vi and can be written as Di = D (vi) = d+Tdesvi. In the Helly model, uniform
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flow can be attained, in which each car keeps a common velocity v (t) = v̄ and a common

gap D (v̄) = d+ Tdesv̄.

However, the Helly model has unrealistic behavior. If a car gap is infinitely long, it

continues to accelerate and its velocity reaches infinity. To avoid such behavior, we limit

each car’s velocity to the range 0 ≤ v (t) ≤ vMAX, where vMAX is the maximum velocity.

The Helly model is good for analyzing the stability of uniform flow by “string stabil-

ity” [26]. In a flow composed of a column of cars, a perturbation, such as the leading

car braking, propagates toward the following cars. Depending on the situation, a chain

of responses of the following cars may grow to produce a traffic jam. If the braking of

each car is less than or equal to the braking of the car in front, the perturbation is not

amplified as it propagates toward the following cars. In this case, the flow satisfies the

string-stability condition. However, if the braking of each car is greater than the braking

of the car in front, the perturbation grows. In this case, the flow does not satisfy the

string-stability condition.

In uniform flow obeying the Helly model [Eqs. (3.1) and (3.2)] and with a common

velocity v̄ and a common gap D (v̄), the string-stability condition is described by the

following inequality [26]:

Tdes ≥
−k2 +

√
k2

2 + 2k1
k1

. (3.3)

3.3 Numerical simulations without JAD

3.3.1 Settings

First, we describe the scenario used for numerical simulations without JAD: 1000 cars

labeled i = 1, . . . , 1000 from the head car to the tail car move in a uniform platoon in a

single-lane road of infinite length, as shown in Fig. 3.1. Although we use a finite number

of cars in the simulations, we assume that many cars run in columns in front of car 1 and

behind car 1000. At time t = 0, all the cars move at the same velocity vMAX and have

the same gap D (vMAX)hbuf = (d+ TdesvMAX)hbuf , which is greater than the desired gap

D (vMAX). Here, hbuf denotes the degree of gap extension compared toD (vMAX) and is set

to hbuf ≥ 1. Because of the restriction v ≤ vMAX, once the gap is set, cars 2, . . . , 1000 keep

the gap D (vMAX)hbuf . This preservation of the extended gap reflects the behavior in real

highway traffic: cars that do not continually keep the desired headway Di that is uniquely
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determined by their velocity [Eq. (3.2)]. Instead, they maintain a gap greater than Di

in a situation where traffic uncongested. Here we emphasize the difference between Tdes

and hbuf as follows. Tdes is an internal parameter in the Helly model that determines

the value of the desired gap. On the other hand, hbuf is a parameter of initial conditions

independent of traffic models, which indicates the degree of gap extension compared to

the desired gap. The extended initial gap is expected to cause the dependence of the

magnitude of perturbations for the stability of the platoon’s flow. If hbuf is set to 1,

the stability against perturbations is given by Eq. (3.3) regardless of the magnitude of

perturbations. In contrast, if hbuf is set to be larger than 1, the stability depends on the

magnitude of perturbations. In this case, the quantitative discussion of the stability will

need numerical simulations (but see [49]). It should be noted that we use hbuf because

hbuf is closely related to the occurrence of the secondary traffic jams of JAD which are

discussed later. If hbuf is large enough to be stable against the perturbation caused by

the absorbing car, this perturbation does not grow to be a secondary jam.

Fig. 3.1. Uniform flow states with velocity vMAX at the beginning of scenario. (a) hbuf =
1. (b) hbuf > 1. When hbuf > 1, although each car’s gap is greater than
the desired gap D (vMAX), cars maintain vMAX because of the restriction that
v ≤ vMAX.

We assume that at time t = tS1 , car 1 is captured by a perturbation propagating from

the downstream area. At that time, it starts to decelerate from vMAX to vp with a constant

acceleration −αp. After its velocity reaches vp, it remains at vp for the interval Tp. Next,

it starts to exit the perturbation and accelerates from vp to vMAX with the acceleration
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αp. Subsequently, it maintains the velocity vMAX. This motion of car 1 is a perturbation

in itself and propagates toward the following cars 2, . . . , 1000 as per the Helly model with

the velocity limit 0 ≤ v ≤ vMAX. We set Tp = 10 [s], vp = 15 [m/s], αp = 0.4 [m/s2],

tS1 = 20 [s], and vMAX = 25 [m/s]. The value of vMAX is the maximum highway speed.

The parameters of the Helly model are set to k1 = 0.2 [s−2], k2 = 0.6 [s−1], Tdes = 1.0

[s], and d = 7.5 [m]. We set Tdes according to the distribution of netto time gaps for

cars found in empirical data from highway traffic [45]. Note that, although Fig. 2 of

Ref. [45] reports that the typical peaking netto time gaps varies from roughly 0.7 to 1.5

[s], for simplicity we choose a value within this range and keep it fixed throughout the

simulations. The range 7 [m] ≤ d ≤ 7.5 [m] is often used in physics [19, 37, 50]. String

stability in uniform flow with the desired gap, which is a criterion for stability against

perturbations [Eq. (3.3)], remains unattained with these parameters. Thus, for hbuf = 1,

a car’s braking is amplified and finally the flow is converted into a traffic jam.

The behavior of cars 2, . . . , 1000 is calculated with the fourth-order Runge-Kutta

method. One time step of the calculation is approximately 0.001 [s]. In one scenario,

this calculation is conducted for 3000 [s]. This numerical scheme is also used for other

numerical simulations which are explained later.

3.3.2 Results

The time-space diagrams in Fig. 3.2 show the numerically obtained trajectories of cars

for hbuf = 1, 1.03, 1.06, 1.09, and 1.15. The perturbation caused by car 1 grows into a

traffic jam for hbuf = 1, 1.03, 1.06, and 1.09 and decays for hbuf = 1.15. The velocities at

the front and end of the traffic jam are -14.66 [km/h] and -12.40 [km/h] for hbuf = 1, -8.84

[km/h] and -8.17 [km/h] for hbuf = 1.03, -7.64 [km/h] and -6.97 [km/h] for hbuf = 1.06,

and -7.02 [km/h] and -6.60 [km/h] for hbuf = 1.09. To investigate the magnitude of traffic

jams, we show the period of the tail car (car 1000) in the stopped state in Table 3.1. The

period becomes smaller as hbuf becomes larger. The dependence of traffic jam development

on hbuf results from each car having an extra gap (hbuf − 1)D(vMAX) to mitigate the

perturbation.

3.3.3 Criterion for determining the development of a traffic jam

If the perturbation caused by car 1 is sufficiently amplified, it is expected that a car

located far upstream of car 1, such as car 1000, will be stopped by the perturbation.
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Fig. 3.2. Time-space diagrams without JAD. (a) hbuf = 1. (b) hbuf = 1.03. (c)
hbuf = 1.06. (d)hbuf = 1.09. (e) hbuf = 1.15. The horizontal and vertical
axes correspond to time and position, respectively. Each line represents the
trajectory of each car. The spatial origin is defined as the position of car 1000
at t = 0. The trajectories of every 30 cars from car 10 to car 1000 are shown.
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hbuf period for which v1000 = 0 [s]
1 182.8

1.03 153.7
1.06 116.8
1.09 79.0
1.15 —

Table. 3.1. List of periods for which velocity of tail car of column (car 1000) equals zero.
The periods represent the magnitude of the traffic jam.

Thus, the condition whereby the car-1 perturbation grows to become a jam is given by

the following criterion:

min
0<t<3000

v1000 (t) = 0. (3.4)

On the basis of this criterion, we investigate the vp–Tp parameter space where car 1

perturbation is sufficiently amplified to cause a traffic jam. Where the perturbation grows

to form a traffic jam [i.e., where Eq. (3.4) is satisfied] is called the “perturbation growth

(PG)” region and where the perturbation does not grow or decays [i.e., Eq. (3.4) is not

satisfied] is called the “perturbation decay (PD)” region.

Figure 3.3 shows the boundary between PG and PD in a vp–Tp diagram for hbuf = 1.03,

1.06, and 1.09. All values except for vp, Tp, and hbuf are the same as for Fig. 3.2. We

determine the boundary lines by binary searches. PG is the region to the left of the

boundary and PD is the region to the right of the boundary for each hbuf . The quantity

Tp increases with vp on each boundary because the perturbation is large for small vp and

large Tp. The PG region is small for large hbuf .

3.4 Numerical simulations with JAD

Consider the situation in which the absorbing car performs JAD. The initial condition

and the movement of the leading car are the same as in the scenario without JAD. Cars

2, . . . ,m − 1,m + 1, . . . , 1000 obey the Helly model with the restriction 0 ≤ v ≤ vMAX.

Car m is the absorbing car and its movement is described as follows: At t = tS1 , when

the leading car starts to perturb traffic, car m starts to decelerate from vMAX to va with

a constant acceleration −αa. After reaching va, it maintains va for a period Ta. The

absorbing car attempts to avoid the traffic jam by this deceleration (slow-in). Then, it

accelerates with a constant acceleration αa from va to vMAX (fast-out). Subsequently, it
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Fig. 3.3. Perturbation growth (PG) and perturbation decay (PD) in a vp-Tp diagram.
Each boundary line is numerically determined by the condition [Eq. (3.4)] with
binary searches. PG and PD are in the left and right side of each boundary,
respectively. The cross corresponds to the point (15, 10) as the parameters of
the perturbation caused by car 1 in the scenarios with and without JAD.

again follows car m− 1 with velocity vMAX.

3.4.1 Settings of va and Ta

The parameters va and Ta must satisfy the condition that the absorbing car’s velocity

should be vMAX and its gap should be the initial gap D (vMAX)hbuf , when car m−1 exits

a traffic jam with the maximum velocity vMAX. We express this condition by introducing

the two distances ∆i and ∆a as shown in Fig. 3.4. The distance ∆i is defined as the loss of

the travel distance of car i caused by the leading car’s perturbation in the absence of JAD.

It is the difference between the actual position xi (tGi) and a virtual position xI
i (tGi). The

time tGi
is defined to be the moment when car i attains the velocity vMAX. The imaginary

position xI
i (t) is defined as the position of car i at time t assuming that it keeps vMAX

from time 0 to t. The distance ∆a is defined as the decrease in the absorbing car’s travel

distance caused by JAD. It is the difference between the actual position xm (tGm) and

the imaginary position xI
m (tGm), where car m is designated as the absorbing car. The

distance ∆a is given as

∆a =
(vMAX − va)

2

αa
+ (vMAX − va)Ta. (3.5)
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The criteria that Ta and va must satisfy comes from the following equations:

∆m−1 = ∆a, (3.6)

where ∆m−1 is determined by numerical simulations. Thus, we obtain

Ta =
∆m−1

vMAX − va
− vMAX − va

αa
. (3.7)

Fig. 3.4. Time-space diagram showing ∆i and ∆a. Thick broken lines represent the move-
ments of cars i and m if the leading car’s perturbation is absent and car m does
not perform JAD. The thick solid lines represent the movements of cars i and
m if the leading car’s perturbation is present and car m performs JAD. ∆i is
the difference between the positions of the thick broken line and the thick solid
line at time tGi . The distance ∆a is the difference between positions shown by
the thick broken line and the thick solid line at time tGm .

We set αa = 0.4 [m/s2] and hbuf = 1.03, 1.06, and 1.09 to obtain ∆m−1 for m =

2, . . . , 1000. Other values are the same as those in Fig. 3.2. By using the measured values

of ∆m−1, we get Ta as a function of va, as shown in Fig. 3.5. This relationship gives a

reasonable set of (Ta, va) when performing JAD. We show only Ta for m ≥ 100 because

∆m−1 for extremely small m (i.e., when the absorbing car is extremely close to car 1) is

qualitatively different from ∆m−1 for larger m (see appendix for a detailed discussion).

The quantity Ta monotonically increases with va and sharply increases at nearby
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vMAX = 25 [m/s]. This monotonic increase arises because of the long time taken to exit

a traffic jam if va is close to vMAX. The quantity Ta increases with m because the traffic

jam grows as it propagates upstream. Ta decreases as hbuf increases because the traffic

jam growth rate decreases as the initial gap increases.

3.4.2 Conditions for secondary traffic jam in JAD

The manner in which the absorbing car drives causes compression and expansion waves

in the following cars. For a successful JAD, these waves should not grow into a secondary

traffic jam. A secondary traffic jam is caused by the absorbing car (car m) if the velocity

of an imaginary car m + 999, which is behind the tail car (car 1000), approaches zero

as a result of the action of the absorbing car (car m). Otherwise, no secondary traffic

jam results. To depict the boundary of the secondary traffic jam in a va-Ta diagram, we

focus on the motions of the absorbing car and car 1. Their motions are identical: braking

with fixed acceleration (αa or αp) from the maximum velocity vMAX to a lower velocity

(va or vp), maintaining the low velocity for a time (Ta or Tp), and then accelerating at

a fixed rate back to the maximum velocity. Therefore, if αa = αp, the threshold for the

occurrence of the secondary traffic jam in a va-Ta diagram is identical to the threshold

for the occurrence of the traffic jam caused by car 1 in a vp-Tp diagram (Fig. 3.3). The

threshold for the occurrence of the secondary traffic jam are depicted in va-Ta planes, as

shown in Fig. 3.5. We set αa = αp = 0.4 [m/s2] and hbuf = 1.03, 1.06, and 1.09. Other

values are same as for Fig. 3.2. The left side of each boundary is where the secondary

traffic jam occurs and the right side of each boundary is where no secondary traffic jam

occurs. JAD can be performed without causing a secondary traffic jam with the values of

va and Ta on the lines of Eq. (3.7), which is on the right side of the boundary. As hbuf

increases, the region where JAD is successful increases.

3.4.3 Restricting JAD starting time

Because the absorbing car has to obtain information about the traffic jam, it cannot

start JAD when there is no traffic jam. In other words, it is only able to start JAD after

car 1 starts braking. Note that we assume that the perturbation is not observed by the

absorbing car when it propagates through the cars preceding car 1. This restriction is
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given by

Ta + 2
vMAX − va

αa
≤ tGm−1 − tS1 , (3.8)

where the left side of this inequality is the JAD period, which spans from the time at which

deceleration begins to the time at which acceleration finishes. Here, tGm−1 is the time at

which car m−1 exits the traffic jam and is calculated by numerical simulations. The time

tS1 is when the leading car starts causing a perturbation. The boundaries defined by the

inequality (3.8) in the va-Ta plane are shown by the thick black lines in Fig. 3.5. We set

αa = 0.4 [m/s2] and hbuf = 1.03, 1.06, and 1.09. Other values are the same as Fig. 3.2.

The left side of each thick black line corresponds to the region where the restriction is

satisfied. It is possible to successfully perform JAD on the line defined by Eq. (3.7) in the

region sandwiched between the thick line on the right boundary and the boundary of the

secondary traffic jam on the left. When hbuf = 1.03, the thick line is plotted in the region

where secondary jams occur. Thus, it is impossible to perform JAD for any m (≥ 100)

without causing a secondary traffic jam. When hbuf = 1.06, JAD succeeds in a narrow

region in the va–Ta plane. When hbuf = 1.09, the region in which JAD succeeds in the

va-Ta plane is larger than for hbuf = 1.06.

3.4.4 Examples of success and failure in JAD

We set hbuf = 1.09, αa = 0.4 [m/s2], m = 300, and va = 20 [m/s] and 22 [m/s]. Other

values are the same as those in Fig. 3.2. The values of Ta are calculated to be 236.9 [s]

for va = 22 [m/s] and 129.3 [s] for va = 20 [m/s]. Figure 3.6 show numerically obtained

trajectories of cars in time-space diagrams. For va = 22 [m/s] [Fig. 3.6(a)], car 1 starts

braking at t = tS1 . This perturbation grows to a traffic jam that propagates to car m− 1.

The thick line corresponds to the trajectory of the absorbing car (car m). The absorbing

car starts JAD at t = tS1 and enlarges its headway by maintaining its velocity at va = 22

[m/s]. Because of the extended gap, the absorbing car avoids being involved in the traffic

jam. The compression and expansion waves caused by the absorbing car decay and finally

disappear. However, in the diagram for va = 20 [m/s], the compression wave grows to

become a traffic jam [Fig. 3.6(b)].

We plot the point (va,Ta) = (22, 236.9) in the va-Ta plane as a circle and (va, Ta) =

(20, 129.3) as a triangle, as shown in Fig 3.5(c). We also mark the point (vp, Tp) with a

cross in Fig 3.3. The cross is inside the region where traffic jams occur, which agrees with
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Fig. 3.5. Regions of successful JAD in va-Ta diagrams. (a) hbuf = 1.03. (b) hbuf = 1.06.
(c) hbuf = 1.09. The thin black lines represent Eq. (3.7) from m = 100 to
m = 1000 in steps of 30. The thresholds for the occurrence of secondary traffic
jams are depicted by broken black lines. The boundaries of the restriction of the
starting time for JAD are depicted as thick black lines. They are obtained by
connecting the points (va, Ta) that satisfy the simultaneous equations Eq. (3.7)
and Ta + 2 vMAX−va

αa
= tGm−1 − tS1 for m from 100 to 1000 in steps of 10.

JAD succeeds in the va–Ta region on the line of Eq. (3.7) sandwiched between
the boundary of the secondary traffic jam on the left and the boundary of the
JAD starting-time restriction on the right. The circle and triangle in panel (c)
correspond to the point (va, Ta) = (22, 236.9) in the case of successful JAD and
(va, Ta) = (20, 129.3) in the case of the failure of JAD, respectively.
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the occurrence of the traffic jam caused by car 1, as shown in Fig. 3.6. The perturbation

situated at (vp,Tp) is removed by JAD and a new perturbation occurs at (va,Ta). The

circle is in the region where no secondary traffic jam occurs, which agrees with the no

secondary traffic jam being observed in Fig. 3.6(a). However, the triangle is in the region

where a secondary traffic jam occurs, which agrees with the occurrence of a secondary

traffic jam in Fig. 3.6(b).

3.5 Discussion

We developed a JAD with car-following behaviors to represent accelerations of cars and

the stability of traffic flows. We investigated relationships between the growth of the

perturbations caused by the leading car and an extra amount of initial gap. In addition,

we formalized the relationships between the absorbing car’s low velocity va during JAD

and the duration Ta during which the low velocity is maintained. We integrated the

condition for which no secondary traffic jam is caused by JAD with various increases in

the initial gap. Moreover, we investigated the restriction imposed by the starting time

for JAD. By combining these conditions, we verified the existence of a region in the va-

Ta plane where JAD succeeds in avoiding a traffic jam. Furthermore, we numerically

confirmed the accuracy of our classification of the regions of parameter space into regions

of success and failure for JAD. Finally, we demonstrate that JAD is robust against αa (see

B.2) and robust against the choice of car-following models through investigations with the

intelligent driver model (IDM) [46, 50] (see B.3).

We found that the region of success for JAD in the va-Ta plane increases as hbuf in-

creases. In real highway traffic, in the region far upstream of a traffic jam, the traffic

density is expected to be lower than in the region of the traffic jam. Therefore, JAD

should be started far upstream of a traffic jam.

According to the kinematic theory in Ref. [44], JAD does not cause a secondary traffic

jam if the traffic density upstream of a traffic jam is lower than a critical density. Our

study indicates a richer phenomenon whereby, even if cars have an extra gap, there exists

the case where a secondary traffic jam occurs by JAD. This phenomenon is because of

the introduction of car-following behavior and to the treatment of the growth and decay

of perturbations into JAD.

Regarding the influence of JAD on the capacity of bottlenecks [51], we would like to

emphasize that JAD does not reduce the capacity of bottlenecks. This is because JAD is
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Fig. 3.6. Time–space diagrams for JAD. (a) Success with va = 22 [m/s]. (b) Failure with
va = 20 [m/s] because of the occurrence of a secondary traffic jam. The thick
red lines are trajectories of the absorbing car.
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performed in the PD region (see Fig. 3.3). In the PD region, the following cars weaken the

perturbation of the absorbing car by consuming their inter-vehicular distances; therefore,

the perturbation finally disappears. After the disappearance of the perturbation, the

following cars do not have to decelerate nor shorten their headways.

When hbuf = 1, the compression wave caused by car 1 propagates at −14.66 [km/h],

which is reasonable when compared with real measurements (e.g., −15 [km/h] [52] and

roughly−19 feet per second≈ −21 [km/h] [53]; see Figs. 3.3 and 3.4 of Ref. [53]). However,

the velocities for larger hbuf are much less. Although it may seem unnatural, in real traffic

the propagation velocity is unknown for traffic density below the critical density (i.e., for

large hbuf). The relationship between the propagation velocity and traffic density will be

the focus of future studies.

Explicit relations of parameters for the success of JAD will be helpful for guiding JAD.

However, it is difficult to derive them because the stability depends on the magnitude of

perturbations. To derive them is our future works.
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Chapter 4

Demonstration experiment of JAD

In this chapter, we demonstrate an experiment to observe the effect of JAD in the

presence of drivers’ reaction delay and the inaccuracy of human driving. The experi-

ment involves five human-driven cars riding in a platoon around a circuit. Perturbations

caused by the first car are absorbed by the third car, which prepares a long headway in

advance. We investigate the affection of JAD on the traffic flow in the aspect of travel

time. Furthermore, the reduced acceleration requirements lead to clear improvements in

fuel consumption.

4.1 Description of experiment

4.1.1 Experimental scenario

The experiment involves five cars driving in a column around a circuit. The cars are

named car-1, . . ., car-5 in order from the leading car and only car-3 is the absorbing car.

We assume that a traffic jam has occurred far upstream of them and car-1 and car-2 are

eventually caught up in it, by contrast, car-3 attempts to remove it. We define hi as the

sum of car-i’ s inter-vehicular distance and its length. All cars are initially stationary

with the intervals such that car-2, car-4 and car-5 have hi = h0 (i = 2, 4, 5) and car-

3 has h3 = ha. All cars are ordered to start simultaneously and run in a platoon at

velocity vF. Car-2, car-4, and car-5 are ordered to retain hi = h0 (i = 2, 4, 5) and car-3 is

ordered to retain h3 = ha. Once a stable platoon is formed, car-1 causes a perturbation

by a sequence of actions: decelerating from vF to vJ, maintaining vJ over period T and

accelerating to vF. These actions correspond to the situation in which car-1 enters the

jam, is trapped within the jam for time T , and then exits. If ha is insufficiently large,



40 Chapter 4 Demonstration experiment of JAD

car-3 and its followers become involved in the perturbation and must brake in turn. If

ha is large enough, car-3 removes the perturbation by maintaining vF and decreasing h3

from ha; thus, the following cars need not brake at all.

Because drivers are situated in a circuit and they are aware that they participate in an

experiment, their psychological conditions in our experiment are probably different from

those in real traffic. Accordingly, the so-called memory effect, which is observed in real

highway traffic, is probably absent in our experiment. This effect is the extension of net

time gaps between two successive cars trapped in a jam over a considerably long period

[45, 46]. Hence, we assume hi (i = 2, . . . , 5) do not extend from h0 after entangled in the

perturbation.

4.1.2 Experimental setup

The circuit is composed of two straight lines and two circular curves, as shown in Fig.

4.2 and in Fig. 4.3. Car-1 was ordered to drive at vF = 9.72 [m/s] (35 [km/h]). The

points A and B, where car-1 induced the perturbation, are shown in Fig. 4.2. At Point A,

the car was ordered to decelerate to vJ = 5.56 [m/s] (20 km/h) and maintain this velocity.

At Point B, it was ordered to accelerate to vF. The period over which car-1 drives at vJ

was set to T = 15 [s], and the interval between A and B was set to vJT = 83.3 [m]. The

initial h was set to h1 = 13 [m]. The effect of the action of car-3 on the following cars was

investigated at different ha. We show typical two examples of haI in Fig. 4.2.

It should be noted that values of vF, vJ and T are fixed throughout all trials. This

fixed setting is due to the effect of learning of drivers, which largely affects the result.

If the number of trials were increased, drivers would be likely to learn the braking point

(deceleration point) of car-1 and thus maintain a greater distance before braking. It should

be also noted that car-5 does not come into the sight of car-1 during our experiment.
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Fig. 4.1. Time-space diagrams of the kinematic-like model for two initial gaps of car-3:
(Left) ha = h0 and (Right) ha = l + (vF − vJ)T . In the left panel, cars move in
the positive x direction (denoting upstream to downstream) in a homogeneous
platoon at velocity v = vF with gap hi = h0 (i = 2, . . . , 5). Points “A” and “B”
correspond to the deceleration and acceleration points, respectively, mentioned
in Sec. 4.1.2. Once the second and succeeding cars encounter the perturbation
caused by car-1, they decelerate to v = vJ. After running at v = vJ for time T ,
the velocity of car-1 alters to v = vF, then the gaps of the following cars return
to hi = h0 (i = 2, . . . , 5) in turn. It should be noted that we do not assume the
memory effect [45, 46] in our experiment. In the right panel, the long gap of
car-3 buffers it from the perturbation. Thus, car-3 and its followers do not need
to brake at all.
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Fig. 4.2. Overhead view of the experimental setup for different ha. Five cars run coun-
terclockwise around the circuit. As a visual guide, the circuit is delineated by
black lines. Points “A” and “B” correspond to the deceleration and accelera-
tion points, respectively. The black car (car-3) is the absorbing car. The initial
settings of car-3 are given as (Top) haI = 13 [m] and (Middle) haI = 80 [m].
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Fig. 4.3. The circuit track (black line) together with a car’s trajectory during a test run
before the experiment (gray dots). The car completed seven laps. The horizontal
and vertical axes denote the longitude (positive direction is West) and latitude
(positive direction is South), respectively.

4.2 Experimental results

Because cars were driven by human drivers, car-3 is not able to keep h3 = ha. Hence,

we distinguish between the setting values and the measured values of ha. We denote haI

as the value of h3 initially set in the halting state and haM as the measured value of h3

immediately before car-1’s perturbation. The subscripts I and M denote “initial” and

“measured”, respectively (The measuring procedure is explained in Fig. 4.4 (a)(b) and

Fig. C.1 in appendix C.1.). The relationship of haI and haM is shown in Tab. 4.1. Most

of haM are larger than haI because the absorbing car, which has a larger gap, is likely to

start more slowly than other cars at the beginning of the trials.

We conduct 19 trials at various values of haM. They are categorized into “success” or

“failure” based on the minimal velocity of car-3; absorption driving is considered suc-

cessful if the minimal velocity exceeds vJ = 5.56 [m/s] (20 [km/h]). At this velocity, the

perturbation generated by car-1 is not amplified when it passes through car-3. The results

are also shown in Tab. 4.1. Jam absorption success are likely when haM > 50 [m]. Clearly,

JAD implemented at middle or large haM absorbs the impact of jamming. Comparing the

travel time, defined as the time interval between the passing of car-1 through deceleration

point A and the arrival of car-5 at acceleration point B, in the trials haM > 50 with that

in the trials haM < 50, middle haM such as around 60 [m] does not worsen the travel time.

On the other hand, excessively large haM such as haM > 80 worsens the travel time.
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Fig. 4.4. (a) An example of time-velocity diagram of car-1 and (b) time-headway diagram
of car-3 from trial 11. To measure haM, we define tb as the time when car-1
begins to brake. In each trial, we measure tb as the time when the acceleration
of car-1 first falls below −1 [m/s2] (see (a)). haM is calculated as the averaged
gap of the absorbing car (car-3) for 20 [s] immediately before tb (see (b)).
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No. haI [m] haM [m] vmin [m/s] success/failure travel time [s]
1 13 16.3 3.89 × 25.57
2 13 14.1 4.53 × 23.73
3 13 15.3 4.46 × 24.87
4 13 15.4 4.50 × 24.67
5 13 15.9 4.84 × 23.77
6 13 17.2 4.22 × 23.03
7 13 21.4 4.37 × 25.30
8 13 20.9 5.07 × 25.80
9 13 18.5 4.50 × 24.20
10 13 18.3 4.49 × 24.07
11 100 143.8 8.69 ⃝ 32.63
12 80 120.2 7.65 ⃝ 31.03
13 50 64.1 6.89 ⃝ 24.00
14 50 62.6 7.17 ⃝ 23.57
15 40 71.1 6.50 ⃝ 27.37
16 40 56.4 6.19 ⃝ 23.67
17 40 40.4 4.70 × 23.10
18 40 39.6 3.86 × 25.04
19 35 42.9 3.46 × 24.26

Table. 4.1. Trial number, initial values of the gap of the absorbing car haI, measured min-
imal velocity of the absorbing car vmin, measured parameter haM, success or
failure of JAD and travel time. The procedure of measuring haM is described
in Fig. 4.4 (a)(b) and its caption. vmin is measured between the start time
of car-1’s perturbation and the time 10 [s] before the absorbing car stops at
the end of a run. In each trial, absorption driving is said to succeed if vmin

exceeds 5.56 [m/s] (=20 [km/h]), and to fail otherwise. Success and failure of
JAD are denoted by ⃝ and ×, respectively.

We next investigate the fuel consumptions of car-4. Data from car-5 are not used in this

assessment because car-5 received no rear pressure to accelerate. Figure 4.5 is a bar chart

of the specific fuel consumption of car-4 in each of the 19 trials, defined as the ratio of

the fuel consumption to that of car-4 in trial 1. When haM exceeds 50 [m] (corresponding

to the trials 11 − 16, in which jam reduction succeeded), the fuel consumption is likely

to be lower than when haM is below 50 [m]. This difference arises because the absorbing

car’s deceleration is small when haM > 50 [m]. The fuel consumption at haM < 50 [m]

was roughly constant because, under this condition, the absorbing car and its followers

were forced to brake and then accelerate. This action consumes approximately the same

amount of fuel regardless of inter-vehicle distance.
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Fig. 4.5. Specific fuel consumptions of car-4, defined as the ratio of the fuel consumption
to that of trial 1. The horizontal labels of the chart denote the trial number.
Darker and lighter gray bars denote the trials at haM > 50 [m] and haM < 50
[m], respectively.

4.3 Discussion

This paper demonstrates the performance of JAD in an experiment involving five

human-driven cars around a closed circuit. Car-3 attempted to absorb perturbations

caused by car-1 by its initially enlarged space haI. The experiment neglected the memory

effect observed in real highway traffic [45, 46]. If measured value haM was insufficiently

large, the perturbation absorption failed, resulting in larger fuel consumption. On the

other hand, excessively large haM increased the travel time. JAD at middle haM success-

fully absorbed the perturbation and maintained an appropriate travel time. In appendix

C.1, we calculate the boundary of the headway haM which distinguishes success and failure

of JAD.

In the aspect of saving fuel consumption with microscopic strategies, previous experi-

mental studies reported the improvement of fuel consumption with ACC systems [54, 55].

By contrast, in this paper, we report the improvement only by manually-driven cars.

Because actual traffic demand is controlled in open systems, the experiments should

ideally be conducted on a real open highway rather than in a closed system. Nevertheless,

changing the initial positions of the cars in a closed system corresponds to controlling

specific inflow in an open system. Hence, we believe that it is reasonable to use a closed

circuit throughout the experiment.
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If two or more absorbing cars exist, we recommend each of them to behave as the

sole absorbing car. In this case, the absorbing cars except the first absorbing car cause

unnecessary gaps. However, similar to the first absorbing car, the second and succeeding

absorbing cars initiate JAD far upstream of the jam, where the traffic density is sufficiently

small. Therefore, the unnecessary gaps do not decelerate the cars far upstream. If the

absorbing cars catch up with the preceding cars, they should avoid collisions and maintain

synchronized movement with those cars.

Lastly, we list future works as follows. We must include the memory effect by performing

social JAD experiments in real highway traffic. In our experiment, The travel times in

the trials in which the absorption driving is successful are not smaller than those in the

trials without absorption driving (haI = 13 [m]). In real traffic in which drivers are

likely to be affected by the memory effect, JAD is expected to improve the travel time

by preventing the occurrence of this effect. Because the length of the straight track

was limited, our present experiment was conducted at low velocity (around 35 [km/h]).

Further investigations of JAD should be conducted at speeds typically reached on Japanese

highways, i.e., around 100 [km/h]. In addition, the current experiment tested a simplified

JAD with initially enlarged gaps. As the next step, we aim to examine JAD under the

consecutive actions of “slow-in” and “fast-out” [44].
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Chapter 5

Conclusion

In this paper, we explained the mechanism of the traffic jam and models to reveal the

mechanism and have introduced the previous studies for solving traffic jam in chapter 1.

As a new solution of the problem, we focused ”jam-absorption driving (JAD)” proposed

in Ref. [44]. In chapter 2, we described the previous result that JAD is revealed to remove

traffic jam with a kinetic model. Then, we conduct the numerical simulations of JAD with

the system which represents the dynamical behaviors of cars such as the accelerations and

the stability of traffic flow in chapter 3. With the simulation, we explained that JAD has

an effect on removing traffic jam. In chapter 4, we conclude that the method of JAD does

not worsen the traffic jam under the existence of the fluctuations by human driving. From

these findings, we believe JAD valid for solving traffic jam.

There are other strategies to reduce traffic jams. One strategy is to make drivers more

reactive and anticipative, which can be achieved by simple local driver-assistance systems

such as ACC [26, 36, 37, 39, 40] or driving lessons. Moreover, efficient driving behaviors

and location-dependent ACC systems are reported to have robust effects in reducing jams

[38, 51]. To conduct JAD together with these other methods would be possible and should

be investigated as a future work.

In Ref. [44] and the present study, the absorbing car actively ceases its car-following

behavior and then begins again. This active switching off and on of the car-following

behavior is different from the studies to improve car-following behaviors with ACC [36–

41]. Related to the elimination of jams, Kerner reported that jam growth was disrupted

and jams were considerably dissolved by the cars keeping large headways by empirical

data and numerical simulations [56]. In the simulations performed in Ref. [56], each car

did not intend to remove a jam nor avoid a secondary traffic jam. In contrast, in our

study the absorbing car aims to remove the traffic jam and avoid a secondary traffic jam.
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In the present study, we assumed that the absorbing car has information about the

growth and propagation of the perturbation caused by car 1. The problem of transmit-

ting information on the jam is possibly solved by vehicle-to-vehicle [57, 58] or vehicle-to-

infrastructure communications [59], which give the absorbing car the information about

the position and velocity of the cars in the downstream direction.

In the future, we believe that JAD will be useful as a function of the automated driv-

ing technologies, which has been developed progressively. At the current stage, each

automated driving cars aim to move safely by recognizing the surroundings such as the

neighbor cars and road signs. As the next stage, automated driving technologies will have

been expected to improve the whole traffic flow in a highway. The automated cars can

solve the problem by predicting the transmission of jam and automatically moving with

va for ta calculated by method of JAD.

In operating JAD, it is necessary to predict the behaviors of the driver performing

JAD and other drivers surrounding it. This prediction is a challenging problem in the

current stage. It is also necessary to predict the influence of reactions of other drivers with

adverse effects (e.g., changing lanes aggressively and causing jam-stirring disturbances)

on the performance of JAD. These adverse effects would impose road conditions on JAD

(e.g., single-lane roads where overtaking is banned or roads where overtaking possibility

is restricted). Hence the road conditions suitable for JAD should be investigated.

Although the research of JAD is in the primary stage, we believe that it is worth

considering and that it will also stimulate other studies related to jam mitigation.
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Appendix A

Appendix from Theory of JAD

A.1 Derivation of the stability of Helly model

In the case of Helly model, from the result of C Liang and H Peng [26], the condition

of stability can be calculated, even with a reaction time delay of drivers.

Considering a platoon of vehicles with the same velocity and the same inter-vehicular

distance, each vehicle in this string can be modeled as following:

xi =
1

s
vi

vi = Gi(s) · vi−1 (A.1)

where vi is the velocity of the ith vehicle and Gi represents the car-following algorithm

of the ith vehicle. For each vehicle, the following errors are defined:

ϵi = xi−1 − xi −Di

ϵvi = vi−1 − vi (A.2)

where Di denotes the desired range for the ith vehicle. In this paper we have assumed

constant time-headway policy is adopted for all vehicles, that is, the desired ranges are

proportional to vehicle speeds. Let Di = hi · vi (hi is the constant time-headway for the

ith vehicle), then the range errors ϵi can be rewritten as:
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ϵi = xi−1 − xi − hi · vi (A.3)

To investigate the string stability of such a system, a propagation transfer function Ḡi

, is defined as the transfer function from range error of ith vehicle to the range error of

the i+ 1th vehicle.

Ḡi =
ϵi+1

ϵi
(A.4)

Substituting (A.1) and (A.2) into (A.3), we have

Ḡi =
ϵi+1

ϵi

=
xi − xi+1 −Di+1

xi−1 − xi −Di

=
1
svi −

1
svi+1 − hi+1 · vi+1

1
svi−1 − 1

svi − hi+1 · vi+1

=
1
svi −

1
s ·Gi+1(s) · vi − hi+1 ·Gi+1(s) · vi
1
s ·

1
Gi(s)

· vi − 1
svi − hi · vi

=
1−Gi+1(s)− s · hi+1 ·Gi+1(s)

1
Gi(s)

− 1− s · hi

(A.5)

if Gi+1 = Gi and hi+1 = hi i.e. the consecutive ith and i + 1th vehicle is the same

policy of determining the vehicle’s velocity, the transfer function Ḡi is mentioned bellow

Ḡi = Gi = G. (A.6)

As the case of Helly model, the formula of Helly model is written as following statement

v̇i + τ v̈i = k1(xi−1 − xi − Tmvi − d) + k2(vi−1 − vi), (A.7)

where we assume Tm is the time-headway and the value is constant. Giving Laplace

transform into (A.7), the formula is changed into
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svi + s2τvi = k1(
1

s
vi−1 +

xi−1(0)

s
− 1

s
vi −

xi(0)

s
− Tm · vi −

d

s
) + k2(vi−1 − vi)

= k1(
1

s
vi−1 −

1

s
vi − Tmvi) + k2(vi−1 − vi). (A.8)

we divide the formula (A.8) into vi and vi−1

(τs3 + s2 + (k1Tm + k2)s+ k1)vi = (k2s+ k1)vi−1. (A.9)

We can obtain the system gain G as

G =
k2s+ k1

τs3 + s2 + (k1Tm + k2)s+ k1
. (A.10)

if traffic system is stable, for the transfer function Ḡi = G,

∀s = jω |G| ≤ 1 (A.11)

is needed, where j is the imaginary unit and ω is a frequency of input wave.

Substituting s = jω into |G|,

|G| = | jk2ω + k1
−jτω3 − ω2 + j(k1Tm + k2)ω + k1

|

=
|jk2ω + k1|

|j(−τω3 + (k1Tm + k2)ω)− ω2 + k1|
≤ 1. (A.12)

Transposing left hand side to right hand side, we can obtain

|j(−τω3 + (k1Tm + k2)ω)− ω2 + k1| ≥ |jk2ω + k1|

(τω3 − (k1Tm + k2)ω)
2 + (ω2 − k1)

2 ≥ k2
2ω2 + k1

2

τ2ω6 − 2τ(k1Tm + k2)ω
4 + (k1Tm + k2)

2ω2 + ω4 − k2
2ω2 − 2k1ω

2 ≥ 0

τ2ω4 + (1− 2τ(k1Tm + k2))ω
2 + (k1Tm + k2)

2 − k2
2 − 2k1 ≥ 0

τ2X2 + (1− 2τ(k1Tm + k2))X + (k1Tm + k2)
2 − k2

2 − 2k1 ≥ 0, (A.13)
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where we are replace ω2 into X. To satisfy (A.11) is equal with that all X > 0 satisfies

(A.13). For that, it is good to satisfy

(i) The discriminant of existence of second degree equation :D ≤ 0 (A.14)

or

(ii) 1− 2τ(k1Tm + k2) > 0 and (k1Tm + k2)
2 − k2

2 − 2k1 ≥ 0. (A.15)

That is

(i) D = (1− 2τ(k1Tm + k2))
2 − 4τ2((k1Tm + k2)

2 − k2
2 − 2k1)

= 1− 4τ(k1Tm + k2) + 4τ2k2
2 + 8k1τ

2 ≤ 0

⇔ k1Tm + k2 ≥ (k2
2 + 2k1)τ +

1

4τ

⇔ Tm ≥ −
k2
k1

+
1

4k1τ
+

k2
2

k1
τ + 2τ (A.16)

or

(ii) Tm ≤ −
k2
k1

+
1

2k1τ
and Tm ≥

−k2 +
√
k2

2 + 2k1
k1

. (A.17)

In the case where vehicles has no reaction time delay, that is, τ = 0, the inequality

(A.16) is not always satisfied and the left side of the inequality (A.17) is always satisfied.

Thus the the condition of the stability is

Tm ≥
−k2 +

√
k2

2 + 2k1
k1

. (A.18)
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Appendix B

Appendix from Numerical simulation of

JAD

B.1 JAD for cars close to leading car

We only discuss the case hbuf = 1.09 because the approach is the same for other values

of hbuf . The dotted lines in Fig. B.1 depict the relationship between Ta and va required

to satisfy JAD [Eq. (3.7)] from m = 10 to m = 90 in steps of 10. In addition, we depict

Eq. (3.7) from m = 100 to large values of m in steps of 10. We use black dashed lines to

show the boundary for secondary traffic jams and thick black lines to show the boundary

for the restriction of the onset of JAD [given by inequality (3.8)]. As m increases from

50 to 100, each dotted line shifts to the upper region, which agrees with the positional

relationship of the lines of Eq.(3.7) for m > 100. In contrast, each dotted line shifts to

a lower region as m increases from 10 to 50. Tentatively, we attribute this nonconstant

nature of m to the nonconstant dependence of ∆m on m. When the perturbation caused

by car 1 propagates to nearby cars, the perturbation does not grow to a sufficiently large

magnitude. Because of the small magnitude of the perturbation, the car preceding the

absorbing car (car m − 1) is close to car 1 and does not have to increase its headway.

Thus, the headway of car m − 1 is less than the initial headway Dhbuf after coming

out of the perturbation. Because the headway of car m − 1 after coming out of the

traffic jam is less than Dhbuf , ∆m−1 is less than ∆m−2. Thus, the Ta line for the

absorbing car m is depicted below that of the absorbing car m − 1. In addition, the

boundary for starting JAD for m < 50 differs from that for m > 50. The boundary of

the restriction for each m corresponds to the intersection point that satisfies Eq. (3.7)
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and Ta + 2 vMAX−va

αa
= tGm−1 − tS1 ; i.e., the boundary is affected by the characteristics

of Ta [Eq. (3.7)]. Thus we guess the different boundary is caused by the nonconstant

characteristic of Ta.

m = 50m = 10

m = 100

18 19 20 21 22 23 24
0

50

100

150

200

va@m�sD

T
a
@s
D

Fig. B.1. The relationships between Ta and va that must be satisfied for JAD [Eq. (3.7)]
depicted by black dotted lines for m = 10, 20, . . . , 90 and by black thin lines
for m = 100, 110, . . .. The boundary for the onset of secondary traffic jams is
depicted by a broken black line and the line representing the JAD starting-time
restriction is depicted by a thick black line. The restriction line is obtained by
connecting the points of (va, Ta) that satisfy the simultaneous equations (3.7)
and Ta + 2 vMAX−va

αa
= tGm−1 − tS1 for m from 10 to 1000 in steps of 10.

B.2 Robustness of JAD against αa

We numerically investigate the robustness of JAD against a parameter of acceleration

αa. Figs. B.2(a) and B.2(b) display the region of successful JAD in va − Ta diagrams

obtained with αa = 0.2 [m/s2] and 0.8 [m/s2], respectively. Note that we set αp = αa.

The regions of successful JAD exist among all the three αa values: αa = 0.2 [m/s2]

[Fig. B.2(a)], αa = 0.4 [m/s2] [Fig. 3.5(c)] and αa = 0.8 [m/s2] [Fig. B.2(b)]. Moreover,

shapes of the three regions are mostly unchanged. Thus, qualitative results of JAD are

not influenced significantly by the choice of αa.
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Fig. B.2. Regions of successful JAD in va-Ta diagrams with values of αa other than αa =
0.4 [m/s2] set in Fig. 3.5. (a) αa = 0.2 [m/s2]. (b) αa = 0.8 [m/s2]. We set
hbuf = 1.09. Thick lines, thin lines and broken lines are depicted the same as
in Fig. 3.5.

B.3 Robustness of JAD against the choice of car-following

models

To show the validity of JAD in a car-following model other than the Helly model, we

conduct simulations of JAD with the intelligent driver model (IDM) [50]. The definition
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of IDM in our paper is the same as that in [46] as described in the following equations:

v̇i (t) = a

[
1−

(
vi (t)

v0

)4

−
(
s∗ (vi (t) , vi (t)− vi−1 (t))

xi−1 (t)− xi (t)− l

)2
]
, (B.1)

s∗ (vi (t) ,∆vi (t)) = s0 + vi (t)T +
vi (t)∆vi (t)

2
√
ab

. (B.2)

We use the same parameter values as in the original paper [46]: The desired velocity

v0 = 120 [km/h] = 33.3 [m/s], the time headway T = 0.85 [s], the maximum acceleration

a = 0.8 [m/s2], the comfortable deceleration b = 1.8 [m/s2], the minimum gap s0 = 1.6

[m] and the length of car l = 6 [m]. As in the simulations with the Helly model, each

car’s velocity is limited to the range 0 ≤ v (t) ≤ vMAX, where vMAX = 25 [m/s]. In the

simulation, at time t = 0, all the cars move at the same velocity vMAX and cars 2, . . ., 1000

have the same gap (l + se (vMAX))hbuf , where se (v) is the desired gap in a homogeneous

flow with velocity v, given by [50]

se (v) = (s0 + vT )

(
1−

(
v

v0

)4
)− 1

2

. (B.3)

Other parameters such as the number of cars (1000 cars), αp, Tp and αa are the same as

those in the simulation with the Helly model. The condition whereby the car-1 perturba-

tion grows to become a jam is given by the same condition described by (3.4). It should

be noted that the behavior of car 1 and the strategy of JAD that the absorbing car per-

forms do not depend on car-following models. Fig. B.4 shows the region of successful JAD

in the case of hbuf = 1.03 obtained from numerical simulations. A region of successful

JAD surely exists in Fig. B.4 similar to Fig. 3.5(c). Thus, JAD is robust in the two car–

following models: the Helly model and IDM. We show numerically obtained trajectories

of cars in time-space diagram of two patterns: (a) none of the absorbing car exists and

(b) car-300 is the absorbing car and the parameter (va, Ta) = (22.2, 246) in Fig.B.3(a) and

(b), respectively. For (a), the perturbation caused by car-1 grows to a traffic jam. For (b),

on the other hand, the absorbing car avoids being involved in the traffic jam and avoid

the occurrence of the secondary jam. The boundary of the restriction of the starting time

for JAD with IDM (depicted as a thick black line in Fig. B.4) goes toward smaller values

of va as Ta increases in large values of Ta, compared to the boundary with the Helly model

(depicted as a thick black line in Fig. 3.5 (c)). This difference between the two boundaries

arises because the cars obeying IDM have a longer gap after accelerating from a small
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velocity to vMAX than those obeying the Helly model. The lengthened gap of each car

makes the length of a jam larger. Therefore, in the numerical simulations with IDM, if

the absorbing car situates in a more upstream position in the platoon, it has to perform

JAD with smaller va.
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Fig. B.3. Time–space diagrams for JAD. (a) none of the absorbing car exists and (b)
car-300 is the absorbing car and the parameter (va, Ta) = (22.2, 246) The thick
lines are trajectories of the absorbing car.
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Fig. B.4. Region of successful JAD in va-Ta diagrams with IDM. The degree of the initial
gap extension is given by hbuf = 1.03. The boundary for the onset of secondary
traffic jams is depicted by a broken line. The line representing the restriction of
starting time for JAD is depicted by a thick line. The line of the restriction of
the starting time for JAD is obtained by connecting the points of (va, Ta) that
satisfy the simultaneous equations (3.7) and Ta + 2 vMAX−va

αa
= tGm−1 − tS1 for

m from 100 to 1000 in steps of 10.
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Appendix C

Appendix from Demonstration

experiment of JAD

C.1 The boundary which distinguishes the success and failure of

JAD

From chapter.4, it is found that the jam absorbing car which has middle headway (such

as haM = 50 [m]) does not avoid the traffic flow in the aspect of the travel time. In

this section, we estimate the boundary of the headway which distinguishes the success

and failure of JAD. Here, to estimate the boundary, we only focus the influence of the

magnitude of the perturbation caused by car-1. As we mentioned in Sec.4.1.1, we assume

hi (i = 2, . . ., 5) do not extend from h0 after entangled in the perturbation. Under the

assumption, in the kinematic theory in Ref. [44], the minimal distance that the absorbing

car should have for JAD is determined by only the magnitude of the perturbation from

car-1. In this section, we regard the perturbation as the loss of the travel distance of

car-1. We denoted the loss as ∆ and it is calculated by
∫
vFM>v

(vFM − v)dt, where vFM

is the measured values of car-1 near the perturbation. The measuring procedure of ∆ is

explained in the caption of Fig. C.1. We list haM and ∆ in Tab. C.1.

To calculate the boundary, we use the support vector machine (SVM) in two dimensions

of haM and ∆. As the calculation technique, we use the function “svmtrain” in LIBSVM,

a library for SVM, on MATLAB. We choose the parameter “cost”, which is an optional

parameter of svmtrain, as 1000. Other parameters are set to the initial values. With the
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Fig. C.1. A time series velocity and vFM of car-1 from trial 11. tb is determined as the
same way as that in Sec.4.2. vFM is calculated as the mean velocity of car-1 for
20 [s] immediately before tb. The magnitude of the perturbation corresponds
to the region which is sandwiched by the diagram and the black horizontal line.

No. haM [m] ∆ success/failure
1 16.3 58.6 ×
2 14.1 67.5 ×
3 15.3 64.4 ×
4 15.4 57.6 ×
5 15.9 51.6 ×
6 17.2 52.6 ×
7 21.4 58.5 ×
8 20.9 58.1 ×
9 18.5 51.9 ×
10 18.3 50.5 ×
11 143.8 51.8 ⃝
12 120.2 61.5 ⃝
13 64.1 58.3 ⃝
14 62.6 58.3 ⃝
15 71.1 57.8 ⃝
16 56.4 52.9 ⃝
17 40.4 52.2 ×
18 39.6 55.5 ×
19 42.9 53.4 ×

Table. C.1. Trial number, measured parameters haM, ∆, and success or failure of JAD.
The procedure of measuring haM and ∆ is described in Fig. C.1 and its
caption. In each trial, absorption driving is said to succeed if vmin exceeds
5.56 [m/s] (=20 [km/h]), and to fail otherwise. vmin is shown in Tab.4.1in
Sec.4.2. Success and failure of JAD are denoted by ⃝ and ×, respectively.
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technique, we obtain the boundary which is given by

haM = 0.1853∆ + 39.803. (C.1)

Figure C.2 plots the relationship between haM and ∆ for each trial, where successful

and failed trials are represented by circles and cross marks, respectively, and the boundary

as the solid straight line. In the situation of our experiment, ∆ is from 50 to 70. Thus,

the value of the headway of the absorbing car on the boundary is around 50 [m].
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Fig. C.2. Two-dimensional diagram of haM versus ∆ in the 19 trials. Circles and cross
marks denote success and failure of JAD, respectively, judged by the crite-
rion 5.56 [m/s]. The straight line in the diagram corresponds to the boundary
calculated with the SVM. The slope and haM-intercepts are 0.185 and 39.8,
respectively.


