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ABSTRACT 

In recent times, with the development of advanced technologies, the connectivity of 

devices has significantly improved in smart buildings. Remote data access and device 

control are enabled through open RESTful interfaces and the application paradigm has 

changed as a result of interface unification. Further, the smart building has become a 

programmable architecture that can now be regarded as a distributed-hardware computer. 

Consequently, residents can now be regarded as users who will become a constant part 

of the smart environment in the near future. 

Meanwhile, improving energy efficiency is a major issue in building automation. 

Energy efficiency involves several sub-factors, such as energy consumption, human 

comfort, and productivity. The factor(s) that needs to be addressed first depends on the 

specific real-time context. Building automation applications usually have to make 

compromises among these factors. Therefore, it is important to design a programming 

environment for such a ―computer‖ to perform personalized, precise, and collaborative 

control as we did in classic computers for smart buildings. However, these users are 

usually ordinary people who are not good at programming or may not be familiar with 

the target building. Describing available services and providing an easier programming 

environment for these users is a significant challenge. 

State-of-the-art protocol suites such as 6LoWPAN and CoAP connect constrained 

devices to the Internet. With RESTful open APIs, the heterogeneous networks in smart 

buildings have become homogeneous, resulting in such a building becoming a 

programmable architecture. Further, devices from different subsystems now cooperate 

very easily. However, a unified lightweight distributed programming framework for 

personalized, precise, flexible, and collaborative control of smart buildings is needed. 

Consequently, we propose a programming framework for automatic management of 

smart buildings that addresses these issues. This framework abstracts and hides 

lower-layer building structure and service details and provides descriptive automatic 

management languages for smart building users such as building administrators, IT 

managers, facility managers, and developers. A building resource description schema is 

also provided to enable these users to refer to services when writing management 

policies using proposed descriptive languages.  

We evaluated the proposed framework via field experiments in the Daiwa Ubiquitous 

Computing Research Buildings (DUCRB). Several energy management policies were 



written using the proposed framework. Prototypes of supporting tools were also 

implemented to provide an efficient programming environment for smart buildings. The 

results demonstrate that the proposed framework enables the users to develop efficient 

automatic management applications in IoT-enabled smart buildings. 

The main contributions of this research include two descriptive languages for 

automatic management of IoT-enabled smart buildings, a smart building resource 

representation schema for describing the available resources in a building, and tools 

such as compiler, interpreter, and programming language editor to simplify the 

programming process for smart building users. 
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1 INTRODUCTION 

In this chapter, we look at the history of building automation in brief and then analyze 

building management system architecture. Some research issues are discussed in the 

second section of this chapter. Finally, we present the objective of our research and 

discuss the main challenges to realize that objective. 

1.1 Background 

1.1.1 Brief History of Building Automation 

The advent of Building Automation Systems (BASs) can be traced back to the 1960s 

when the centralized computer systems were first used for building control [1]. They 

evolved from industrial process control systems with the deployment of 

―computer-controlled systems in the late 1960s‖ [1]. The energy crisis in the 1970s 

inspired researchers to study intelligent control algorithms for lighting and HVAC 

systems to address the energy efficiency issue. Minicomputers and programmable logic 

controllers (PLCs) were progressively adopted in BASs at that time [2] for 

automatically managing building services. The main focus was reduction of the energy 

consumption of buildings. 

With the introduction of Direct Digital Control (DDC) [3] into building automation in 
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the 1980s, the term ―Intelligent Building‖ was coined. Energy control technologies 

subsequently became progressively sophisticated, integrated energy management 

systems appeared, and researchers began to study the feedback approach for advanced 

energy reservation [4]. The feedback approach informs users in real-time of the energy 

consumption in buildings to affect positive behavior changes. Initial studies, primarily 

conducted by psychologists, showed that energy could potentially be reserved by 

introducing a feedback approach [4]. For example, Pallack et al. studied how 

consumption feedback information affected residents‘ behavior in reducing energy 

consumption [5] within residential buildings in 1980. 

In the 1990s, environmental parameters were introduced to control lighting and 

Heating, Ventilating, and Air Conditioning (HVAC) [6] systems. Many control 

algorithms (e.g., Proportional-Integral-Derivative Control, Model-Predictive Control, 

Fuzzy Control, and Adaptive Control) [7]-[14] were also studied with a view to develop 

efficient facility controllers. However, those algorithms depend on environmental inputs, 

which are a set of real-time and detailed energy-related information. This was a major 

challenge for the researchers at that time. Many energy measurement approaches were 

studied; these approaches were divided into two categories: ―single-point monitoring 

(NILM) and distributed monitoring (ILM)‖ [4], [15]-[16]. 

The adoption of Wireless Sensor Networks (WSNs) significantly improved 

information harvesting from smart buildings in the 2000s [4]. They enabled exhaustive 

inside information to be collected by wireless sensors deployed in the buildings [17]. 

The information collected primarily included environmental parameters (e.g., 

temperature, humidity, and PM2.5 (i.e., particulate matter with a diameter of less than 2.5 

micrometers)[18]), various energy consumption levels (e.g., building level, appliance 

level, and user level), and human-related information (e.g., activities and preferences). 

Thus, flexible and detailed control could be performed based on the harvested 

exhaustive context information. Stand-alone facility controllers and subsystems became 

sophisticated as a result of increased computer power and monitoring tools and 

technologies. Feedback systems were further studied to motivate users to save energy. 

Data communication protocols such as BACnet [19] and LonTalk [20] were 
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progressively developed, and significantly improved data sharing among subsystems. 

However, the subsystems were still isolated information islands and devices in different 

systems could not operate in a collaborative way to adapt to human activities. As a 

result, they could not optimize the overall energy efficiency of the building. 

Technological advancements in the era of the Internet of Things (IoT) (e.g., device 

connectivity, big data analytics, and open API [21]-[23]) facilitate the collection and 

analysis of detailed information related to energy consumption in a building [4]. Further, 

improved connectivity enables web-based access to collected data [24]-[28] and control 

of appliances [29], [30] through open APIs. Hence, data acquisition services (e.g., 

energy consumption, environmental conditions, and human activities) and appliance 

control services are integrated into building management systems, and developing 

energy control applications across different subsystems to make devices operate in a 

collaborative manner is becoming possible. 

Thus, the application programming paradigm has changed (see Figure 1-2), and smart 

buildings have become ―Highly Functionally Distributed Systems‖ [31] as energy 

sensing and control have become ubiquitous through unified web-based services. 

Consequently, the overall building as a whole can be regarded as a programmable 

architecture when designing building automation applications, instead of focusing on 

designing the facility controller for an individual device or a sub-system. All 

energy-efficiency related factors (e.g., energy consumption, environmental conditions, 

and human activities) should be considered and energy control policies instituted. 

In other words, the overall building is considered a distributed-hardware computer 

and embedded real-time operating systems inside the smart devices constitute a huge 

distributed operating system [32] for smart buildings. Users are living in this operating 

system and they need to interact with distributed components (smart devices). We will 

study how different kinds of users can be enabled to program with IoT-enabled smart 

buildings by providing simpler descriptive programming languages and resource 

representation schema to support the proposed programming architecture. 
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Figure 1-1. Isolated subsystems; devices in different systems cannot work in a collaborative way 

1.1.2 Building Automation System 

In this section, we introduce basic concepts associated with BAS, which is also 

sometimes referred to as Building Management System (BMS) or Building Energy 

Management System (BEMS). A BAS usually consists of many subsystems such as 

HVAC, lighting system, sensor network, metering system, appliances, and security 

system. A classic BAS conceptually follows a three-layer approach [4], [24]: 

Field Layer (sensors and actuators) 

This layer mainly consists of sensors, meters, appliances, etc. It is the physical layer 

that interacts with the environment and human beings inside buildings. These devices 

collect information called context from the building; these context serve as inputs for 

upper-layer algorithms and applications. For example, 

 environmental conditions (e.g., temperature, humidity, and lighting); 

 energy consumption at various levels; and 

 human-related information (e.g., user preference and activities). 

Such exhaustive detailed contexts provide a chance for fine-grained control in smart 

buildings. Actuation devices such as air conditioners, lights, and ventilators have 

autonomous controls [4], [33] based on contexts acquired from the environment. They 

accept commands and decision sent from upper-layer applications. 
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Integration Layer 

This layer collects and stores raw data from the real world, and then performs 

analysis based on the gathered data to provide more abstract and meaningful data or 

interface for the upper layer. For example, by analyzing raw data from human sensors, 

we can ascertain the user distribution status along floors, and stop available elevators at 

the floors where there are more users in the building. Applying such rules to an elevator 

system will inevitably improve human comfort and productivity because it saves time 

for most users. We can regard this layer as the integration and abstraction layer for 

devices deployed in the building. 

Application Layer 

The application layer is the central part of the BAS [4], [33]. It acquires information 

from the environment and makes decisions based on the obtained information to adjust 

environmental parameters and device status; thereby, reducing energy consumption, 

improving human comfort and productivity, and enhancing the security of buildings. As 

shown in Figure 1-1, the functionality of a BAS is realized in this layer. 

1.1.3 IoT-enabled Smart Buildings 

The primary devices that comprised the Internet about 10 years ago were desktops 

and laptops. Things changed rapidly as other computing devices (e.g., consumer devices 

and industrial machines) were gradually connected to the Internet. In particular, after 

2012, the number of connected machines and other devices increased exponentially and 

networks became homogeneous [34]. Facilitated by protocols such as 6LoWPAN [35] 

and CoAP [36] that were designed to enable resource constraint devices connected as 

the Internet does, data access and device control have become easy through open 

RESTful [37], [38] APIs. The area of smart buildings is a leading area adapting such 

evolution. This new paradigm is called IoT-enabled smart buildings (see Figure 1-2). 
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Figure 1-2. The new programming paradigm of IoT-enabled smart buildings 

1.1.4 Descriptive Programming Languages 

We define descriptive programming languages as the converse of procedural 

programming languages such as C, Java, and PHP. In this research, descriptive 

programming languages are usually high-level languages for non-expert users to 

describe control logics for the smart building systems. For example, we designed a 

device control rule definition language based on XML format to enable users to describe 

fine-grained rules for smart devices. Visual programming languages are also classified 

as descriptive programming languages in our research. Such languages enable users to 

create programs by ―operating graphical program elements rather than by typing text‖ 

[39]. 

Owing to heterogeneous networks and the structures of smart buildings, it is quite 

difficult for non-expert users to program them with procedural programming languages. 

For example, a rule that turns off the air conditioners in room A when the temperature in 

this room exceeds 26 
°
C requires the programmer knowing the following: 

 the number of air conditioners in room A; 

 how to turn off each air conditioner; and 

 how to ascertain the temperature of room A. 

A domain expert can read professional documents of related techniques to get the above 
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necessary information to create automation applications. However, as various users will 

be a constant part of smart environments in the near future, a simpler descriptive 

programming language is needed for non-expert users to program smart buildings. 

1.2 Problems 

1.2.1 Energy Efficiency 

Building automation issues include ―reducing energy consumption, improving human 

comfort, productivity, safety, and security‖ [40]. Our definition of energy efficiency in 

this article includes all these issues except safety and security. Improving the energy 

efficiency of smart buildings is always complicated because of the complexity of smart 

buildings and the energy efficiency issue itself. 

Many building automation applications in which intelligent algorithms [33], [41]-[44] 

are used to control actuator systems have been exploited by researchers in the literature. 

Because of the heterogeneous nature of networks in smart buildings, these applications 

usually can be developed only by domain experts associated with the specific vendor of 

an individual device or sub-system. The building system should function in a more 

collaborative manner for better energy efficiency [45]. 

Energy efficiency consists of several sub-factors, which we have already discussed at 

the beginning of this section. The factor that should be addressed first depends on the 

real-time context, such as environment parameters, human activities, and energy 

consumption. For example, there may be a need to reduce energy consumption first on a 

particular occasion, whereas improvement of human comfort may take priority on 

another occasion. The building automation system usually makes a compromise 

between these factors. To realize context-based control, users should be empowered to 

program smart buildings by enabling them to write control policies for context-related 

devices [17], [45]. 

1.2.2 Collaborative Control 

In the beginning, building subsystems were built separately using independent 
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technologies, devices, and software. Consequently, subsystems were isolated. The 

integration of data platforms significantly improved information sharing by the 

subsystems over the past decades. Networked sensors and meters can provide consistent 

information for applications in different subsystems. However, subsystems are still 

isolated from the perspective of control. Collaboration control [46] among devices from 

different subsystems is therefore needed. 

For instance, when the air conditioners in a room are on, the ventilating devices 

should be turned down and windows should be closed by the building automation 

system. In this scenario, air conditioning system, ventilating system, and the window 

control system are involved, but they act independently. A framework with which users 

can write a rule to control these systems to enable them to operate in a collaborative 

manner is needed. The rule may be, ―When air conditioners in room A are on, then turn 

off ventilating devices and close the windows in this room.‖ 

When smart buildings, homes, hospitals, and schools are connected to form a smart 

city, more sophisticated smart applications can be developed. For example, the security 

system of your home may be able to tell you when your child‘s class is over; the kitchen 

system may check the refrigerator, compile a shopping list, and send it to the 

supermarket. Then, robots in the supermarket could prepare, pack, and send the ordered 

groceries to a pilotless automobile or an unmanned aerial vehicle. Your smart watch 

could also analyze your health status and suggest a menu for your dinner. If you agreed 

to the suggested menu then the smart kitchen system would prepare your dinner before 

you arrived home. These scenarios need collaborative control over the subsystems of 

different buildings in the smart city. Newly developed protocols such as 6LoWPAN and 

CoAP enable smart devices to expose their data and functionalities through web-based 

RESTful API, resulting in data access and device control becoming ubiquitous. 

However, a lightweight distributed framework that enables users to develop smart 

applications is needed for those scenarios. 

1.2.3 Summary 

Energy efficiency is the main concern of BASs. We have discussed this issue in 
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section 1.2.1. It involves a set of sub-factors such as reducing energy consumption, 

improving human comfort, and improving productivity. To optimize energy efficiency, 

personalized control should be possible [47], as it would enable users to control the 

building according to their preferences [48]. As more sensing devices are connected to 

building networks, detailed information about energy consumption (e.g., consumption 

by appliances, rooms, and building levels), human activities, and environmental 

parameters can be obtained from the building system. Precise and flexible control is 

necessary to perform optimization on energy efficiency based on sensed fine-grained 

information. Achieving such goals ―remains a challenge mainly due to the lack of 

unified frameworks which can support the heterogeneous devices and services‖ of smart 

buildings [48]. 

Data integration has significantly improved information sharing among the 

subsystems of t buildings. However, from the perspective of control subsystems are still 

isolated. Working collaboratively, authentication, positioning, elevator, and HVAC 

systems can optimize the energy efficiency of smart buildings. State-of-the-art protocol 

suites such as 6LoWPAN and CoAP connect constrained devices to the Internet just like 

a computer. With RESTful open APIs, the heterogeneous networks of smart buildings 

have become homogeneous and cooperation by devices from different subsystems has 

become easy. A unified lightweight distributed programming framework for 

personalized, precise, flexible, and collaborative control of smart buildings is needed. 

1.3 Objective 

The ultimate objective of this research is to enable smart building users to program 

with IoT-enabled smart buildings. Thus, personalized, precise and collaborative 

context-based control can be performed by these users and energy efficiency will be 

finally optimized. We realize our goal by abstracting building resources and providing 

simpler programming languages [32], [49], [50] for smart building users to program the 

building easily. 

The overall building can be regarded as a distributed-hardware computer [30], with 

the deployed smart devices as the distributed-hardware components of this computer. 
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Embedded operating systems in various devices constitute the building operating 

system. To realize our objective, we have to abstract distributed hardware resources and 

provide simple programming environment for common users to interact with smart 

devices in smart buildings. Dawson-Haggerty et al. proposed ―a building operating 

system services for large commercial buildings‖ [32] called BOSS in 2013. They 

developed ―a collection of services forming a distributed operating system, which 

solved several key issues that had prevented earlier systems from scaling across the 

building range‖ [32]. However, BOSS does not provide any mechanism for upper-layer 

users to develop automation applications easily and it is still a conceptual system. 

1.4 Challenges 

Two main challenges are dealt with in this research. The first challenge is resource 

representation and the second one is simpler programming languages. We explain them 

in the ensuing sections. 

1.4.1 Resource Abstraction and Management 

In the smart building system, sensors, actuators, appliances and other machines are 

connected into separate networks using different hardware and software protocols, 

which forms a heterogeneous building network structure [33]. Providing unified and 

easy access to these distributed resources is a significant challenge. For example, if an 

ordinary user wants to obtain the temperature value of a room through a smart building 

API, he/she has to know the API‘s name and parameters. In this case, the relevant 

parameters may be the room number or ID specified by facility managers or system 

developers. Both API name and parameter information are difficult for an ordinary user 

to obtain and understand. Thus, a semantic self-describable representation for the 

heterogeneous distributed resource that the upper-layer users can use to easily refer to 

them is needed. The term semantic refers to the relationship representation among 

spaces, objects, etc. Self-describable refers to the means by which a service is 

represented (here, we refer to a RESTful API). Services should be self-describable so 

that they can be modeled and translated into executable code directly by a compiler or 
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an interpreter. 

1.4.2 Simpler Programming Languages 

We stated in section 1.2 that we need to enable users in IoT-enabled smart buildings 

to write rules for a specific context to get fine-grained control for energy efficiency. 

Such fine-grained control enables devices in different subsystems to operate in a 

collaborative manner to adapt to human activities. These controls share a common 

format: when some situation/context appears, then suitable actions should be applied to 

related devices [46]. We call this kind of control context-based control [45]. An 

automation application can be constituted by multiples of such kinds of rules to perform 

a particular goal. Considering that improving energy efficiency involves a trade-off 

among factors such as energy consumption, human comfort, and productivity, 

fine-grained personalized controls has significant potential for improving energy 

efficiency [33] in smart buildings. 

However, the programming languages that are currently widely used, such as C/C++ 

and Java, are mainly for skilled programmers and are complicated for context-based 

controls. Users in building automation control systems may only need to write simple 

controls based on ―IF-THEN‖ logic [50]. Thus, semantic and visual programming 

languages are more suitable for them. Therefore, we must provide concise and simpler 

programming languages for users in IoT-enabled smart buildings. This issue is 

discussed in-depth in section 2.5. 

1.5 Summary 

In this chapter, we presented the history of building automation in brief. A general 

architecture was presented and illustrated in section 1.1.2, and we defined the term 

IoT-enabled smart buildings in section 1.1.3. Two major features of IoT-enabled smart 

buildings are as follows: 

 Inside devices are connected in a manner similar to connections on the Internet; 

that is, resource constrained devices are able to connect to the Internet using 

Internet-like protocols (such as 6LoWPAN and CoAP). 
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 Unified web-based RESTful data access and device control interface. 

The adoption of Internet-like and Web-like protocols in smart buildings significantly 

eases the application development process and connects smart buildings to the Web of 

Things smoothly. We discussed the energy efficiency problem in section 1.2 and stated 

that energy efficiency consists of several sub-factors such as energy consumption, 

human comfort, and productivity. We also stated that the factor(s) that should be 

addressed first depends on the context. In most cases, a trade-off has to be made among 

these factors. We introduced the general and ultimate goal of this research in section 1.3. 

Finally, we discussed the challenges that have to be overcome in order to realize our 

objective. 

1.6 Outline 

This dissertation proceeds as follows: 

Chapter 1 presents background information and defines some of the terms used in this 

dissertation. The general goal and challenges are also discussed. 

Chapter 2 reviews related work. The paradigm shift from smart buildings and web 

technologies used in building systems is first discussed. Then, work related to resource 

representation and programming approaches is surveyed. 

Chapter 3 introduces our proposed system along with general principles and terms. 

Chapter 4 presents the design details of the proposed framework. 

Chapter 5 outlines the implementation of each component. 

Chapter 6 discusses the evaluation conducted of each component. 

Chapter 7 discusses various issues we plan to address in the future. 

Chapter 8 summarizes this dissertation and presents the results of our research. 
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2 RELATED WORK 

2.1 Paradigm Shift in Smart Buildings 

In the beginning, most researchers in the building automation field focused on 

designing facility controllers [7]-[14], [51] for individual devices and subsystems such 

as lighting and HVAC systems. These devices and systems were isolated from each 

other, and sensed and metered data could not be shared among them [4]. These isolated 

information islands constituted a vertical building automation system. Functional 

reduplicated sensing or metering devices were frequently deployed for different 

subsystems. However, this led to issues associated with redundancy and collaboration. 

For example, the temperature value of a place may be retrieved from two different 

devices, but it was not clear which value should be used for decision making. 

Over the past decades, engineers have built BASs using disparate communication 

protocols [52] such as BACnet [19] and KNX [53]. This change improved data sharing 

and reduced information redundancy. As shown in Figure 1-1, sensing and metering 

became a uniform and integrated layer that supplied consistent environmental data. 

Further, collected raw data could be analyzed to provide a meaningful abstraction for 

the application layer. However, applications of the subsystems were developed 

independently. They optimized environmental parameters solely, which caused 

conflicting controls. From the perspective of control, these subsystems were still 
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isolated. A programming framework that regards the whole building as a programmable 

architecture is therefore needed, with applications running in such a framework enabling 

devices in different subsystems to operate in a collaborative manner. This is useful 

because a specific context may require that all related devices work together to adapt to 

human activities or environmental changes. This problem is solved by providing unified 

data access and device control interfaces for the overall system of smart buildings. 

2.2 Unified Interface for Smart Buildings 

Over the past decades, researchers and developers have become focused on the 

integration of sensing and metering networks [4]. This integration provides analyzed 

and semantic data for the application layer. The rise of IoT has resulted in significant 

changes in smart buildings and homes. Web technologies are now being applied to 

acquire information from building systems and many appliance manufacturers are 

starting to adopt HTTP-based controls for their products. For example, DAIKIN [54] 

provides a web-accessible controller (iTouch Controller) [55] by which users can 

control connected air conditioners through the HTTP protocol. Along with a campaign 

of open data, developers have started to issue RESTful Open API [21], which allows 

users to acquire data and control devices. This is the so-called paradigm of Web of 

Things (WoT) [56], which is regarded as the application layer of IoT. It will finally 

change the programming pattern of smart buildings to a new paradigm, as shown in 

Figure 1-2. 

2.2.1 Web-based Sensing 

Many proposals have been regarding integration of sensor networks with existing IT 

systems using web services [23]-[28]. Such integration has been used to acquire 

energy-related context (e.g., energy consumption, environmental parameters, and human 

activities) from the environment. In this section, we discuss proposals made for energy 

sensing in smart buildings. 

Weiss et al. proposed an energy monitoring system using web-enabled power outlets 

[26] in 2010. Their objective was to study user awareness of energy consumption, so 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

Peng Xiaohui - March 2016   15 

their system did not include any control component. They measured device-level energy 

consumption using a smart power outlet called Plogg, which consisted of an electricity 

plug and a consumption logger. Bluetooth [57] and Zigbee [58] interfaces were also 

provided to retrieve logged consumption data. The devices were plugged into Plogg 

sensor nodes, which were connected to a gateway. Their system also included a 

micro-web server that ―monitored the functionalities of the Ploggs as structured URLs, 

in a RESTful manner‖ [26]. Their work illustrated that constrained devices can be 

seamlessly integrated into the existing Internet and resources can be easily accessed via 

the RESTful approach. Agarwal et al. developed ―an extensible and distributed data 

storage system called‖ BuildingDepot [59] for smart building management systems. 

They primarily focused on the design of the API and provided various RESTful APIs 

for access to the stored data. 

2.2.2 Web-based Access and Control Interface 

The technology advancements in the fields of IoT and WoT may significantly boost 

technology advancements in smart buildings and some researchers have already tried to 

integrate web-based data access and device control [29], [30], [60]-[66] in smart 

buildings or homes. Kamilaris et al. proposed the building of energy-aware smart homes 

using web technologies [29]. They developed a conceptual system for home automation 

that was built using web technologies to examine and evaluate their proposed 

framework. Their framework provided a ―Presentation Layer‖ for the building systems, 

which ―dynamically generated a representation of the deployed devices and their 

services to the web‖ [60] for public access. It enabled uniform interaction with deployed 

devices through RESTful interfaces. Their study is one of the initial studies that 

attempted to integrate devices in smart homes and buildings with the Web of Things, 

and expose the functionalities of these devices through RESTful interfaces. 

A state-of-the-art smart building called the Daiwa Ubiquitous Computing Research 

Building (DUCRB) [30] was designed and built in 2014. Adopting newly emerged IoT 

technologies, DUCRB provides web-based information acquisition and device control 

interfaces called Smart Building APIs (In fact, they are a collection of RESTful APIs). 
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To acquire context information and to control devices, users only need to send HTTP 

GET, PUT, and POST requests to the API servers. Response data are returned in JSON 

format if necessary [67]. The inhabitants in DUCRB can use the smart building API to 

get fine-grained context and to control inside connected appliance from any devices that 

connected to the control network. Therefore, real-time context-based (e.g., 

environmental parameters, user activities and electricity consumptions) management of 

the building system is enabled and becomes easy [17], [45]. 

 

Figure 2-1. An IoT-enabled Smart Building-DUCRB [30] 

DUCRB is an experimental environment for students studying in the applied 

computer science field of our department. By providing open web-based APIs, it 

enables rapid prototyping of smart building applications such as energy management, 

security, and safety, indoor navigation for the visually-impaired, etc. All the evaluations 

carried out in this research were performed in this building. 

With the evolution of IoT and its adoption of WoT [56] as its application layer, 

sensors and appliances are able to access the web, which simplifies the development of 

user-side applications. Smart buildings and homes are following this paradigm, which 

shows the potential to enable ordinary users to program physical objects inside 

buildings and homes. However, to achieve this goal, a unified programming framework 

that hides lower-level complex building structures and services is needed so that 
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ordinary users can easily refer to services and control inside devices. 

2.3 Rule-based Expert Systems for Building Management 

2.3.1 Expert Systems 

Expert systems are used extensively in artificial intelligence applications. ―An expert 

system is a system that emulates the decision-making ability of a human expert‖ [68]. It 

usually comprises a database to store rules and facts, a reasoning engine, and user 

interfaces. A rule-based expert system is generally represented using logic rules (i.e., 

IF-THEN rule) rather than code written in procedural programming languages such as C 

and Java. The essential goal of an expert system is that ―stores rules and facts in the 

knowledge base and uses the inference engine to find new facts by applying the rules to 

the known facts‖ [68]. 

2.3.2 Existing Studies 

Many researchers have adopted rule-based frameworks [69]-[75] and intelligent 

algorithms to control smart devices for improving the energy efficiency in smart 

buildings. Tomic et al. designed ―a semantic layer that integrates smart metering, 

building automation, and policy-based reasoning to offer energy optimization capability 

to energy consumers and providers‖ [71]. They stated that users can write system-level 

rules based on RDF triplets. However, they did not show how the rules for their 

framework are written. Kaliappan et al. proposed a ―policy-based framework‖ for smart 

home management and they argued that their framework provided ―intelligent and 

flexible energy management‖ [72] for smart home appliances. They ―formalize the 

behavior of appliances using states and manage the energy consumption using policies‖ 

[72]. However, they also did not show how a policy is actually written and simply 

assumed that policies were written in well-formated English sentences. Kumar et al. 

proposed a technique for ―intelligent semantic policy adaptation‖ [73] in smart 

buildings that ―enables the agents of an application across different settings, context, 

environment, etc. to share and reuse semantic policies‖ among themselves. Kawakami 
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et al. proposed ―a rule-based home energy management system that uses the Rete 

algorithm‖ [74], [76]. It is a widely used reasoning algorithm for IF-THEN expert 

systems. However, these solutions primarily focus on how to handle rules and do not 

describe the details of how suitable rules can be written for their systems. 

2.3.3 Limitations 

Using a rule-based expert system for smart building management enables flexibility 

in building automation systems. Domain experts can define rules and parameters for 

these systems; however, for modern smart buildings, which have programmable 

architecture, many limitations are apparent in existing studies. 

Centralized Architecture 

Conventional rule-based building management systems usually have a centralized 

architecture. In these systems, although a single rule is relatively simple, the interactions 

between a large number of rules may be complicated. Consequently, the system may 

crash when the number of rules increases beyond a certain value. Further, increasingly 

more smart devices are connected to building networks, and functionalities are exposed 

to the public by RESTful APIs. Users can control building systems from any device as 

long as it can access the building network. Therefore, users may require the ability to 

manage their personal workspace on their own devices instead of writing rules in a 

centralized system. A lightweight distributed framework is better than the traditional 

rule-based framework for IoT-enabled smart buildings. 

No User-friendly Interface 

Existing rule-based building management systems predominantly focus on reasoning 

and handling rules. None of them has studied how to define rules for their system. As 

discussed in previous sections, in order to enable collaborative control to optimize 

energy efficiency, it is important that users be able to write fine-grained control rules for 

a specific context. They may need personalized configuration for their own workspace; 

it is not possible for domain experts to predefine all the rules for every context. 
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In addition, smart buildings have heterogeneous networks and complex structures. 

Writing rules to control a building system requires knowledge of the following factors: 

 building structures and semantic relations of inside objects and spaces; 

 the method by which to refer to a service; and 

 the services a space or device can provide. 

This is not possible for users who are not good at programming or who are not familiar 

with the target building. Therefore, it is necessary to provide descriptive languages and 

lightweight distributed frameworks for them to write rules easily. 

2.4 Resource Representation 

From the viewpoint of a building as a distributed hardware computer, much like the 

classic computer, a resource abstraction layer that supports programming by limited 

programmers such as facility managers and residents is needed. Existing work on 

resource management is primarily concerned with resource discovery issues. Many 

researchers have studied resource representation in smart buildings [77]-[89] and have 

applied complicated information modeling methods to represent the relationship among 

objects and the static information of objects. To enable ordinary users to program 

buildings, the question of how to model the interfaces (in this case, RESTful APIs that 

are used to acquire context and control devices) of the devices and design translator or 

interpreter that can transfer an ordinary user‘s description of control logics into pieces 

of executable code that can be executed by machines is a critical issue [17], [45]. 

Therefore, the following requirements should be satisfied when developing a resource 

representation schema: 

 relationship among objects, spaces, and services; 

 property information of objects and spaces; 

 detailed service representation and modeling; and 

 an interpreter that can translate these representations into executable code. 

To support upper-layer user programming of IoT smart buildings, the relationship of 

internal objects, services, and service description are the main concerns of resource 

representation in our research. 
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Ontology-based Resource Representation 

Table 2-1. Studies that using ontologies to model the relationship of building resources 

Objective Feature Authors 

To ease the configuration process of 

heterogeneous BAS [78]. 

Ontologies for ―seminal knowledge 

representation and auto-reasoning‖ on 

heterogeneous building networks. 

Reinisch et 

al. 2008 

To model every aspect of a 

service-oriented BAS [86]. 

Domain-dependent and specialized ontology 

for ambient intelligence. 

Stavropoulos 

et al. 2012 

To support effective management of 

home resources information [90]. 
Resource-aware with resource relation graph. 

Son et al. 

2011 

To optimize energy consumption by 

designing ontology for both consuming 

devices and power resources [91]. 

Integration of two ontologies: devices and 

power generation/consumption description. 

Grassi et al. 

2011 

To provide ―a homogeneous layer for 

advanced smart building control‖ [92]. 

Interconnect disparate protocols used in BASs 

by developing an IPv6 service-oriented 

gateway for subsystems. 

Jung et al. 

2013 

Reinisch et al. proposed using ontologies to represent knowledge as an abstraction of 

the heterogeneous network infrastructure [78]. The system could autonomously reason 

about the stored knowledge. Grassi et al. presented an ontology framework that 

provided necessary information modeling [91] for smart buildings. They focused on 

―two composing ontologies developed for describing devices and power generation and 

consumption for energy consumption optimization‖ [91]. Stavropoulos et al. designed a 

resource ―ontology for ambient intelligence in smart buildings‖ [86]. They stated that 

the ontology includes ―the classes needed to sufficiently model every aspect of the 

service-oriented smart building systems‖ [86]. However, these ontologies only describe 

the relationship among devices or model the devices themselves without presenting 

sufficient information about how to use the services. 

Service-centered Resource Representation 

Service-oriented architectures have also been used for building resources modeling 

[21], [94]. With the advancement of open web technologies such as Semantic Web 

increasing in the past decade, researchers have started to integrate services with building 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

Peng Xiaohui - March 2016   21 

ontologies using semantic web technologies. Han et al. presented a Service-Oriented 

Architecture-based building automation system [95] that models devices by ―device 

profile for web services (DPWS)‖ [96]. They also designed a building resource 

ontology which included the descriptive information of concepts and relations that they 

use as the reference for the semantic schema data of buildings. 

Table 2-2. Studies of service-centered resource representation 

Objective Feature Authors 

To ease the service mash-up for smart 

building users [21]. 

A semantic service mash-up building 

ontology. 

Wan et al. 

2013 

To overcome the diversity of related 

technologies and protocols of BASs 

[94]. 

A ―service-oriented reference architecture‖ 

with semantic descriptions for BAS. 

Vicari et al. 

2015 

Combinatorial solutions were also proposed in the literature. Evchina et al. proposed 

an ontology for smart homes that focused on social services that they utilized for 

information monitoring [93]. Their ontology provides semantic connections for 

available data in smart homes, and information filtering can be performed by analyzing 

each user‘s profile with a query manager component. Asfand-e-yar proposed adopting 

semantic web technology to structure multifarious data for building management 

systems, with the objective of defining a middleware layer that simplifies the creation of 

sophisticated automation applications for the building management systems [84]. 

Industry Effort 

The Open Mobile Alliance (OMA) is presently making an industry effort for resource 

constrained IoT device management. They have defined an application-layer 

communication protocol that ―provides functionalities such as device management over 

sensor and cellular networks and transfer of service data from networks to devices‖ [97]. 

They primary focus is on device management and resource discovery, and they only 

provide a simple object-based resource model and resource operations. No detailed 

service representation schema is presented in their protocol. Consequently, an ordinary 

user cannot use it to make programs. We will discuss programming languages and 

approaches in section 2.5. 
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These studies modeled heterogeneous complex semantics among objects, spaces, 

services, and concepts in buildings. However, a common limitation is that detailed 

service representation is not presented in their proposals. Detailed service representation 

here refers to key information (e.g., service name, parameter, and return value) for 

modeling a service. Therefore, only domain experts can develop automation 

applications using frameworks based on these studies. Thus, a resource representation 

schema is needed such that once the resource is referred to, it can be translated into 

executable code by an interpreter. 

2.5 Programming Languages for Smart Buildings 

To date programming building systems has been an extremely difficult job that can 

only be accomplished by domain experts. The heterogeneity of all system levels 

prevents integration of smart building subsystems. For instance, field buses, 

communication protocols, embedded operating systems, programming languages, and 

software tools are quite different in each building. Even the same subsystem for 

different buildings may vary—from physical link protocols to programming languages. 

Thus, even a slight change may involve a series of dependent changes that may require 

complex tools and programming jobs that can only be achieved by domain experts [98]. 

In the age of IoT, smart building systems are becoming homogeneous structures via 

unified RESTful access and control interfaces. Programmers and users no longer have 

to know the details of subsystems, management of building systems can now be 

achieved through those RESTful APIs on any device that can be connected to building 

networks. However, using RESTful APIs to control smart building systems is still 

difficult for some users. In addition, users need to know the semantic relations of inside 

spaces, objects, and services. For example, when users wish to fetch the temperature of 

room A, they have to know whether there is a service for getting the temperature of 

room A and how to use this service. There should be mechanisms that can provide 

available services to which users can refer. 

In 1988, Hartman published a proposed standard for an Operator's Control Language 

(OCL) [99] that standardizes the manner in which certain types of software is written 
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for DDC systems [3]. It followed the basic principle of control structure: IF, THEN, 

ELSE. However, it is designed for individual devices and subsystems. Although the 

advent of graphical programming languages eased the building system programming 

burden, they were still targeted at a single device or subsystem and lacked the flexibility 

possessed by text-based languages. In addition, protocol organizations and device 

vendors have their own control languages. For example, the BACnet [19] language 

argues that it provides interoperate ability for smart devices from various venders. 

However, they have to persuade all the venders to adopt their protocol and language. 

Devices that ―use one of those languages can never interoperate directly with devices 

using the others‖ [100]. Procedural languages such as C and Java are also used to 

develop control software for a single device or subsystem. Currently, ―all large building 

automation vendors only allow changes to their internal control languages using their 

proprietary software‖ [100]. The Sedona Framework is trying to define a universal 

programming language, which is ―a general purpose component-oriented programming 

language for all kinds of embedded devices‖ [101], to address the interoperability issue 

between devices provided by different vendors. Sedona overcame the challenge of 

interoperating among vendors and protocols. However, it is still for a single device, 

which means that programmers have to install the software on the device first. 

Consequently, changes to the control logic may be costly and time-consuming. 

In the age of IoT, both the device control and data acquisition interfaces can be 

implemented via the RESTful architecture. Therefore, the interfaces are unified and the 

whole building can be regarded as a programmable architecture or a 

distributed-hardware computer. This provides a chance for ordinary users who are not 

familiar with the target building or who have no programming skill to program the 

building system if we develop simpler programming languages for them. In addition, it 

can supply an overall perspective for controlling buildings. Users can write control 

sequences for different devices across various subsystems to make them operate in a 

collaborative manner to improve energy efficiency. Enabling end-users to program their 

surrounding environment has long been studied from the perspective of 

human-computer interaction [50]. This field also followed the ―IF-THEN‖ paradigm. 
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However, no mention is made of the lower-layer support for translating such 

―IF-THEN‖ representations into executable code that can be understood by machines. 

Table 2-3. Studies for enabling end-users to program with the smart environment 

Name Description Authors 

CAMP 
Studied the application scenarios conceptually and identified 

the user desired automation applications in smart home [102]. 

Truong et al. In Proc. 

Ubicomp 2004 

iCAP 
Visual programming interfaces for end-users to quickly create 

context-aware applications [103]. 

Dey et al. In Proc. 

Pervasive 2006 

OSCAR 
Supports ―flexible and generic control of networked devices 

and services‖ [104] in smart home. 

Newman et al. In  CHI 

2006 Workshop 

 
Studies the usability factors of ―end-user composition 

interfaces for smart environments‖ [105]. 
Dahl et al. 2011 

Blase et al. examined the practicality of enabling end-users to ―customize the 

behaviors of smart home devices using a trigger-action programming‖ [50] method 

from the perspective of human-computer interaction. They concluded that ―end-users 

can quickly learn to create automatic management applications containing multiple 

triggers-actions‖ [50]. They carried out user studies with various kinds of participants 

using visual programming interfaces (i.e., Figure 2-2) in the smart home. 

 

a. Simple recipe of ―If it is 6 pm, then turn the lights on.‖ 

 

b. Complex interface with multiple triggers in the recipe 

Figure 2-2. Trigger-action programming interfaces used in [50] 

Most of the participants did not have any programming experience with a few 

considered themselves sophisticated programmers. Overall, their results showed that the 

participants were ―satisfied with the usability of both the simple and complex 

interfaces‖ [50] shown in Figure 2-2. 
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Several similar solutions were also proposed by researchers in the past decades. They 

prove that such a ―drag and drop‖ interface is very efficient for common users to 

program smart environments. However, these studies supply no mechanism to translate 

such rules into executable code. Furthermore, much porting work has to be carried out 

in order to use such applications in different buildings because the structure and internal 

services vary. A resource management framework with standardized resource 

representation schema and operation interfaces is necessary to support programming of 

smart building systems by those users. 

2.6 Contributions 

This research provided a flexible programming framework for IoT-enabled smart 

building users to enable precise, personalized, and collaborative management of 

building systems. 

We designed a lower-level descriptive rule definition language called DCRDL [17] 

for devices. DCRDL hides the building structure and service details so that users can 

focus on control logic description. It also adopts ConditionSet-ActionSet (CSAS), 

which can be used to express complex contexts and controls. Thus, a programmer can 

use DCRDL to write flexible and fine-grained control rules for devices in a particular 

context, which may be necessary for the collaborative control we discussed in previous 

sections. 

It is still difficult for users to write control rules using DCRDL owing to the 

heterogeneous networks and complex structures constituting building systems. 

Moreover, DCRDL is designed using XML, which may be a bit difficult for users who 

are not good at programming. Therefore, we designed a simpler descriptive language 

called EPDL [45] to address these issues. EPDL has a very concise and semantic 

rule-based format that is very easy to understand. 

We also proposed a smart building resource description schema for representing 

complex building resources. The proposed schema provides hint information for users 

when they need to refer to a certain service of a space or an object of the target building. 

It also assists the EPDL compiler to compile EPDL policies into DCRDL rules. 
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2.7 Summary 

In this chapter, we discussed related work from all aspects of programming 

framework design for smart buildings. We explained the programming paradigm shift 

for smart buildings in the era of IoT and conducted surveys from three aspects: 

unification of data access and device control interface by web technologies, resource 

representation/modeling support for upper-layer applications, and programming 

languages for control of BAS. We regard the overall building as a distributed-hardware 

computer. Therefore, to enable ordinary users to program smart buildings, we stated that 

the distributed resources have to be abstracted (resource management and 

representation) and simpler programming languages (e.g., visual-based programming) 

provided, as done with classic computers. 
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3 PROPOSED SYSTEM 

3.1 General Architecture 

Our proposed system consists of four parts [45]: Smart Building Resource 

Management Framework (SBRMF), EPDL, DCRDL, and Policy Agent System (PAS). 

 

Figure 3-1. Architecture of the proposed framework 

The output of SBRMF is a smart building resource descriptor. This descriptor is a 
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well-formed schema that includes the following: 1) Semantic relations between objects 

and spaces; 2) properties and available services information about each object and space; 

and 3) detailed information about each service (e.g., service name, parameters, and 

return value). EPDL consists of a smart building resource descriptor, a language editor, 

and a compiler. The energy policy designer writes policies in the EPDL editor, and the 

EPDL compiler translates source code to DCRDL with the help of the resource 

descriptor. The DCRDL interprets the compiled source to policy agents. Finally, these 

agents run as threads in the system with the support of smart building resource 

management framework. The thread checks rules defined in it at runtime to perform 

context-based controls on appliances in smart buildings. 

3.2 Target Users 

We classify smart building users into two categories: domain experts and non-expert 

users. 

 Domain experts are smart building automation system developers. They are 

usually good at programming, especially in smart building systems. 

 Non-expert users are those users that are not good at programming or who are 

not familiar with building systems. 

We further classify non-expert users into two categories: building practitioners and 

end users. 

 Building practitioners: These users include building administrators, facility 

managers, IT managers, and energy managers. They are limited programmers 

who can be trained to use simple tools to manage smart buildings. 

 End users: These users include residents of the smart buildings. They usually 

have no knowledge of programming and are not familiar with smart buildings. 

3.3 Application Scenarios 

In this section, we discuss the potential application scenarios [106] for our framework. 

The automation applications developed using this framework can be deployed on any 

capable devices only if they are connected to the building network. People can write 
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policies that make the devices in different subsystems operate collaboratively to 

optimize the overall energy efficiency of smart buildings. Figure 3-2 shows the main 

potential applications of this framework. We discuss these applications in the ensuing 

paragraphs. 

 

Figure 3-2. Example application scenarios 

Basic Building Energy Policy 

This kind of application is usually developed by building administrators (e.g., facility 

managers) to control the basic behaviors of internal appliances for energy efficiency. 

For example, the allowed set-point range of air conditioners and the basic movement 

rules of elevators. These policies should have the highest priority and should never be 

violated. The administrators can write and run such policies easily using EPDL instead 

of procedural languages such as C, Java and JavaScript. 

Personalized Policy 

The ultimate goal of energy efficiency is both maintaining comfort level and reducing 

energy consumption, but the detailed requirements may vary according to the different 

users and contexts. For instance, in a large room equipped with many sets of lights and 

several air conditioners, when sensors detect an occupant, the policy should turn on the 

lights and air conditioners related to this user, and set the parameters of the air 
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conditioners according to the preference of this user. Therefore, ordinary users in smart 

buildings can write personalized applications to configure their own workspace 

separately using EPDL. 

Smart Grid Policy 

Future smart buildings must be compliant with smart grids [107], in which demand 

response management is a critical issue and challenge. Smart grid controller can run 

some policies written in EPDL to control non-urgent tasks (e.g., dishwashing) in 

connected buildings during off-peak periods. We can also deploy some applications 

developed based on pricing policy to save on electricity spending. 

3.4 Workflow 

 

Figure 3-3. The workflow of an IF-THEN rule in this framework 
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In this section, we present a running example to explain how a rule defined by the 

end-user is translated into executable code in our framework. 

 End users can drag and drop some icons representing resources, signs, etc. to 

compose rules. As shown in Figure 3-3, an end-user can drag icons that represent 

the temperature of room 3L-5, greater-than-or-equal sign, air conditioner 1 in 

room 3L-5, and value ―24.0‖ to form the following rule:  

IF the temperature of room 3L-5 is greater than or equal to 24.0 
°
C, THEN turn 

on air conditioner 1 in room 3L-5. 

 There can be more than one condition in the IF branch and the combination of 

these conditions constitute a complex context. Multiple actions also can be 

defined in the THEN branch. Actions should be defined to adopt the context for 

related devices. 

 The composed ―application‖ is then translated into EPDL (i.e., second part of 

Figure 3-3). A key function of EPDL is modeling of service reference in a simple 

manner. For example, fetching the temperature of room 3L-5 can be modeled as, 

building.floors["3F"].spaces["3L-5"].sba_get_temperature 

 There is an ucode and a service called ―sba_get_temperature‖ in space ―3L-5‖ of 

the smart building resource descriptor. The service is compiled to a function ID 

defined in DCRDL and ucode, which represents the identifier of space ―3L-5,‖ is 

passed as the parameter of this function: 

<FunctionFunctionId="urn:sakamura-koshizuka-lab:names:dcrdl:1.0:function:get-space-temperature"> 

<Parameter Value="X0001C000000000000020000000D648"  

DataType="urn:sakamura-koshizuka-lab:names:dcrdl:1.0:DataType:ucode" /> 

</Function> 

 Finally, the DCRDL code is interpreted into a policy agent. The key part is a 

smart building API modeling component that connects such description code to a 

real RESTful service. We present the detailed implementation of this component 

in section 5.2.2. 
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3.5 Novelty 

3.5.1 Lightweight and Distributed Architecture 

Building automation is the automatic management of building services such as 

heating, ventilating, air-conditioning, lighting, and elevator systems [108]. Although the 

devices and machines of subsystems are physically distributed, these systems are 

usually integrated with a centralized computer-based management platform. For 

example, the control room of a building may have several control systems installed to 

control subsystems respectively. Existing building automation applications are usually 

installed on powerful computers with high computing capability. With the number of 

installed applications increasing, the system might be overloaded. 

With our framework, users can write and run automation policies on any device. The 

only requirement is that the device be able to run interpreters and connect to the 

network of the target building. It adopts the IF-THEN control logic, which is the basic 

principle for building automation. Many people may view this as similar to a rule-based 

expert system. However, they are quite different. The following table shows the 

differences between them. Our framework focuses on defining and running rules, 

whereas a rule-based expert system focuses on reasoning rules. 

Table 3-1. Comparison of our framework with the rule-based expert system 

 Our Framework Rule-based Expert System 

Architecture Distributed Usually centralized 

Hardware/platform 
From smartphones to powerful 
computers Powerful computers 

Objective 
To achieve personalized, 
precise, and collaborative 
control 

Find new facts from existing 
rules and data 

Rule reasoning Currently, NO YES 

Rule definition Main focus Secondary 

3.5.2 Collaborative Control 

A building automation system comprises a set of subsystems which are run solely to 
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control the environmental parameters with which they concerned. Currently, smart 

building subsystems are still isolated from the perspective of control. As we have 

discussed in section 1.2, a smarter building automation system requires the cooperation 

of devices from different systems. 

For example, when a user walks from the front door of the building to his/her seat, 

subsystems such as authentication, positioning, elevator, and door control system act, 

respectively. The user may have to authenticate several times on the gate control system 

because there may be multiple doors on the route to his/her seat. If these subsystems 

operated collaboratively, human comfort and productivity may be improved and energy 

efficiency optimized. For instance, if the authentication, positioning, elevator, and gate 

control systems shared information about the user, the user would only need to 

authenticate once at the front door. Upon authenticating at the front door, the elevator 

system would arrange to have an available elevator at the ground floor. With the 

cooperation of positioning, authentication, and gate control system, internal doors 

would then open when the user approached those doors. In this scenario, the user‘s time 

would be saved; thus, productivity and user comfort level would be improved. 

Our framework is designed above the level of the smart building APIs. It views the 

whole building as a distributed hardware computer with programmable architecture and 

provides a programming environment for users to write rules and policies. The rules and 

policies can get information from the building system and control individual devices 

from different subsystems working in a collaborative manner. The cooperation of 

devices from different subsystems increases the intelligence of the smart building, 

resulting in optimized building energy efficiency. 

3.5.3 Personalized Control 

Existing building automation systems are typically designed using a centralized 

architecture to minimize occupant interaction. With the rise of IoT, the connectivity of 

internal devices has significantly improved. Users are becoming a constant part of the 

smart environment of the building. They usually require personalized control for their 

workspaces according to their preferences. For example, users may have different 
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definitions of ―hot‖ in a room, which may depend on the context, such as the climate, 

and their clothing. Therefore, they may require different set-points for their workspace 

in a large room where there are multiple air conditioners heating and cooling different 

areas. 

Our framework is a lightweight distributed architecture. Any device that have the 

ability to run the compiler and interpreter of its two descriptive languages (DCRDL and 

EPDL) can be used to control a building system. Consequently, personalized control can 

be achieved by users writing rules and policies for building systems using their 

smartphones, pads, etc. This obviously optimizes the energy efficiency by improving 

user comfort, which is a sub-factor of energy efficiency. 

3.5.4 Precise and Flexible Control 

Personalized control mainly addresses the issue of personalized configuration of 

someone‘s living and working spaces. Precise and flexible control also should be 

enabled to optimize energy efficiency. In general, building automation systems share a 

basic control principle called context-based control (or IF-THEN logic). It acquires 

context information (e.g., environment parameters and human activities) as input for 

automation algorithms and output controls as feedback to the building system to adjust 

its status. Early engineers adopted this principle to design facility controllers for smart 

buildings. For example, the lighting system controller detects the presence/absence of a 

human within a period to turn on/off lights. It is a very simple IF-THEN logic. 

However, practical scenarios may vary according to time, season, user preferences, 

etc. For example, it is not necessary to turn on lights in the daytime even when a human 

presence is detected. More precisely, the lighting control system may need light 

intensity information to decide whether to turn lights on or not when a human presence 

is detected. Therefore, precise and flexible rules should be applied to control related 

devices to act properly according to a specific context. 

In our framework, we designed two descriptive languages for writing flexible and 

precise control policies and rules. The rules in these two languages follow the 

ConditionSet-ActionSet (CSAS) format. ConditionSet represents a combination of 
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multiple conditions that form a specific context. ActionSet represents behaviors related 

devices should perform when the context represented by ConditionSet is detected. 

ConditionSet is designed recursively to model the flexible complex context in smart 

buildings. Therefore, a rule is able to represent flexible complex contexts and precise 

controls based on the context. A set of such rules forming a policy is able to achieve a 

certain energy efficiency optimization goal. 

3.5.5 Building Resource Abstraction 

A critical issue that confronts developers developing universal programming 

interfaces for smart buildings is the mix of heterogeneous networks and complex 

service details involved. Programmers need knowledge about building structures, 

network architectures, available services, etc. to develop proper automation applications 

for managing such buildings. For example, we adopted Ubiquitous ID technology [109] 

to identify objects and spaces in the Daiwa Ubiquitous Computing Research Building. If 

a developer wants to develop an automation application for smartphone users, he has to 

know the IDs for each device and the services (e.g., turn on/off) that a device can 

provide. In order to apply an application to a new building, it must be revised to adapt to 

the structure, internal networks, and services of that building. Thus, a resource 

representation schema that abstracts building resources is needed. 

In addition, for a non-expert user who is not good at programming or who is not 

familiar with the target building, more standard resource representation schema is 

necessary. For example, in EPDL, we designed a building resource description schema 

to organize building resources. System developers or resource discovery protocols can 

issue resources for public reference using this schema. We also developed an EDPL 

editor so that users can use a semantic expression such as, 

building.floors["3F"].spaces["3L-5"].appliances["AirConditioner1"].sba_ctr_ac_off 

to refer to the service of turning the air conditioner off with the index of 

―AirConditioner1‖ in room ―3L-5‖ of floor ―3F.‖ In addition, such an expression can be 

translated to executable code that invokes the real service of turning an air conditioner 
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off. Therefore, non-expert users can write control policies easily using public building 

services. No existing study in building resource abstraction supports such a mechanism. 
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4 FRAMEWORK DESIGN 

4.1 Design Principle 

To enable ordinary users to program smart buildings, we designed our framework 

based on two principles: 

 abstraction of complex building resources and structures; and 

 separation of upper-layer user control logics and running details of the services. 

We first designed an agent-based system to model the running environment of our 

future programming languages. Then, we created a Device Control Rule Definition 

Language (DCRDL) [17] that enables programmers to write control rules for devices 

easily. A more concise and simple Energy Policy Description Languages (EPDL) [45] 

with a set of tools was also designed to support users who are not good at programming 

or who are not familiar with the target building. 

 

Figure 4-1. System overview 
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4.2 Policy Agent System (PAS) 

The objective of PAS is to model the running environment of DCRDL and EPDL. 

Policy agents are interpreted from DCRDL rules. For example, when the building 

administrator wants to control peak energy consumption and shift the peak to an idle 

period, he/she can write rules to control devices or appliances running in a lower 

consuming state or turn them off if the energy consumption has reached a defined peak 

using DCRDL. Then, the DCRDL interpreter translates those rules into a policy agent. 

The agent checks all the inside rules within the given period or triggered by an event. 

The event can be any environmental changes that related to the inside rules. We studied 

the peak demand control problem based on PAS in [67] to evaluate the practicality of 

the PAS system. 

4.2.1 Peak Demand Control 

Smart building systems comprise a variety of subsystems, including a wide range of 

machines, appliances and constrained devices. When they are networked together by 

protocols, and some energy efficiency policies are applied, a significant reduction in 

energy usage and costs can be achieved. Peak electricity demand is the result of 

temporarily correlated energy demand surges caused by uncoordinated operation of 

subsystems such as air conditioning, heating, and ventilating [67]. It can cause serious 

problems such as service unavailable and high cost of energy. Future smart buildings 

must be able to balance their electricity usage and reduce their electricity consumption. 

Energy control policies are usually applied to perform fine-grained controls on 

devices to save energy. They usually include a collection of device control rules that 

define a set of actions for target devices when specified conditions are met. There are 

also other static constraints in the system. For example, there should be a range for the 

set-point of air conditioners, which may differ in summer and winter; the air 

conditioners should never be turned off in an intensive care unit. The building system 

should have the ability to shift demand peak to idle periods. In other words, it should 

find a set of rules to execute to lower the real-time energy demand without breaking any 
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constraint in the building. 

4.2.2 The Constraint Satisfaction Problem 

Constraint satisfaction problem (CSP) is modeling method which has been widely 

used for resolving combinatorial issues in ―operational research such as scheduling and 

timetabling‖ [110]. A CSP requires a value, selected from a given finite domain, to be 

assigned to each variable in the problem, such that all constraints related to the variables 

are satisfied [110]. The domain of a variable holds the information about what value a 

variable can take. The constraints of the problem limit the variable values that can be 

assigned simultaneously. 

We model the peak demand control in the building energy management system as a 

CSP problem. The target devices are lights, air conditioners, and ventilators. The period 

of electricity consumption of light, air conditioner, and ventilator, i, are represented as Eli, 

Eaci, Evi , respectively. V represents variables (lights, air conditioners, and ventilators). D 

represents the variable domains (e.g., on/off status of light and set-point of the air 

conditioner). C represents the constraints. We define the constraints as follows: 

 Feature constraint. The features of the devices. For example, the set-point ranges 

allowed by an air conditioner. 

 Preference constraint. For a given situation, many sets of control actions can 

meet the constraints. That is, when the total consumption of electricity is 

approaching the peak value, more than one device can be turned off. Preference 

constraint indicates which one should be turned off first. For example, turn off 

the air conditioner in the room where the temperature is the lowest. 

 Peak constraint. The total electricity consumption should not exceed the 

predefined peak. This is the main constraint of the peak demand control 

problem. 
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This CSP can be represented as follows: 

 (V, D, C)        (4-1) 

Where: 

 V = {El1, El2, …, Eln, Eac1, Eac2, …, Eacn, Ev1, Ev2, …, Evn}   (4-2) 

D is given by, 

   Dli = {0, 1}, Dvi = {0, 1},  

 Daci = {20, 21, 22, 23, 24, 25, 26}, iN
+ 
    (4-3) 

C is the constraint applied to the peak electricity demand control: 
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4.2.3 Design of the Peak Demand Control Framework 

The framework consists of a set of constraints (i.e., Policy and rules), an interpreter, a 

context monitor, and an executor. All the feature and preference rules are defined in 

policy source file following the XML format. The interpreter translates policy source 

file and generates executors with the translated policies. It may generate more than one 

executor because the user may define peak control rules for the whole building, as well 

as for individual rooms. 

 

Figure 4-2. Architecture of the peak electricity demand control framework 
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Policy Definitions 

The inputs are the operating rules for the smart devices in the building. These rules 

not only describe the features and functions of the devices, but also define the user 

preferences, such as ―turn the air conditioners off in the room where the temperature is 

the lowest‖ and ―never turn off the air conditioner if there is a server.‖ 

Interpreter 

The interpreter translates these policies into constraints, which constitute the inputs 

for executors that apply constraint programming technology. The executors determine a 

set of operations that turn off some devices based on the input constraints from the 

interpreter. 

Context Monitor 

To simplify the search algorithm for the CSP, we designed a combination priority 

mechanism. The framework adjusts the situation of the proper devices (i.e., devices that 

have a higher priority to be adjusted) according to the defined policies. The combination 

priority consists of high priority and low priority. High priority is defined by the user 

and cannot be changed at runtime. Low priority is initialized by the user, but can be 

changed if the environmental situation changes.  

For example, the low priority of air conditioners in two rooms can initially be set at 

the same level. Then, when the temperature in one room is lower than that of the other, 

the low priority of air conditioners in this room will change to a higher level than that of 

the air conditioners in the other room. In other words, when electricity demand reaches 

its peak, the air conditioners in this room will turn off or increase the set-point to reduce 

electricity consumption. 

Executor (Constraint Solver Agent) 

We only implement one agent, called constraint solver agent for the peak demand 

control issue, to run in the PAS. It adopts a Backtracking Search algorithm to find a set 
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of predefined rules that comply with the system constraints in the policy file and then 

run the selected rules to cut the demand peak. During the backtracking search, it also 

refers to the priority values of the devices that are monitored by the Context Monitor. 

4.3 DCRDL: Device Control Rule Definition Language 

4.3.1 Motivation for DCRDL 

In the previous section, we have introduced the modeling of peak demand control 

issue of smart buildings using constraint satisfaction method. The constraint solver 

agent finds a set of devices to be operated to shift the peak electricity demand without 

breaking user-defined constraints. The ensuing research directions can be, 

 Design framework and interfaces for smart building users to define constraints 

(i.e., Write control rules/policies) for the building automation system; and 

 Design efficient rule reasoning algorithms to resolve the rule conflict issue. 

The second direction is related to an old topic: rule-based reasoning which is also the 

key issue of expert systems. Substantial work has been down to deal with this issue. We 

do not discuss the rule conflict problem in this thesis and it will be addressed in future 

publications . We select the first directions as the next step of this research. 

Therefore, we created a rule definition language, called DCRDL, for context-based 

device control in IoT-enabled smart buildings. DCRDL allows users to write complex 

control rules that control device behavior based on the sensed context to achieve the 

goal of energy efficiency in a programming approach. ConditionSet-ActionSet (CSAS) 

or multiple Conditions-Actions rule is applied as the basic design principle of our rule 

definition language. 

The ultimate objective of our work is to achieve context-based device control of 

energy efficiency in smart buildings. Although the effect of improving energy efficiency 

depends on the designed rules, a proper rule exhibits the potential to improve energy 

efficiency in smart buildings. Complex and flexible rules should be expressible and 

adaptable to the various situations in the building. A rule must be capable of modeling 

complex contexts and defining multiple control actions. When executing actions, the 
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rule should be capable of selecting targets using services or combination of services. 

Therefore, the following requirements should be satisfied: 

 Multiple conditions: multiple actions format rules; 

 Logic algebra for complex condition combinations; and 

 Function description. 

A DCRDL rule primarily consists of a ConditionSet and an ActionSet. To realize the 

complex expressivity of the logical relations of conditions, ConditionSet adopts a 

recursive design, as illustrated in Figure 4-6. Another recursive design is the function 

and parameter elements. As shown in Figure 4-9, the parameter element can call another 

function and the return value will be treated as the value of the parameter. The function 

is a key element of DCRDL and is used to obtain situations, select targets, control 

targets, and evaluate the conditions of a rule. The details of these functions are defined 

in the language specification [111]. 

4.3.2 Context-based Device Control 

With the aid of wireless sensor networks, building energy management systems 

(BEMSs) have begun to acquire detailed information about energy consumption at 

different levels [4], such as appliance level, room level, and building level. 

Consequently, sophisticated approaches for energy efficiency are now possible with the 

detailed information supplied. To optimize the overall energy efficiency of smart 

buildings, devices need to behave properly and collaboratively according to certain rules 

related to context (e.g., energy consumption, environmental conditions, and human 

activities). We call this kind of control context-based device control which is regarded 

as the basic control principle of smart buildings. The DCRDL is designed to deal with 

this kind of control. 
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4.3.3 DCRDL Class Diagram 

 

Figure 4-3. DCRDL class diagram 

4.3.4 Elements of DCRDL 

Policy 

The policy is the topmost element of DCRDL. A policy includes several rules defined 

in the policy element to achieve a general control goal or algorithm. Figure 4-4 shows 

example code for a policy in DCRDL. 

 

Figure 4-4. Code example of a Policy in DCRDL 
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The PolicyId attribute in the policy element identifies this policy in the system. This 

attribute is not used in the current version; however, we plan to use it in a future version 

as a functional extension. The DCRDL interpreter executes a policy as a polling thread, 

and the Period attribute indicates the polling cycle of this policy. The event-driven mode 

(see Appendix 4) should be implemented if the data platform of the building provides 

eventing mechanism. 

Rule 

A rule is a key element of DCRDL. It is embedded inside the policy element to define 

specific behaviors for devices. It consists of a ConditionSet section and an ActionSet 

section. When the ConditionSet section of the rule is evaluated to be true, all the actions 

defined in the ActionSet section are executed. 

 

Figure 4-5. Code example of a Rule in DCRDL 

ConditionSet 

ConditionSet is a recursive element that consists of conditions and sub-ConditionSets. 

It is designed to represent the complex logical algebra of conditions. 

 

Figure 4-6. Code example of a ConditionSet in DCRDL 
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The CombineMethod attribute describes the logic relation in this ConditionSet. In 

Figure 4-6, the first layer condition is A and the conditions in the inner ConditionSet are 

B and C. The logic relations of these conditions can be expressed by the following 

logical algebra formula: 

A ∧ ( B ∨ C )                     (4-5) 

ActionSet 

An ActionSet is composed of several actions that control behaviors of context related 

devices. All the defined actions in the ActionSet are executed when the corresponding 

ConditionSet in the rule is evaluated to be true. 

Condition 

A condition compares the building information with the user-defined value. It 

consists of a subject and a comparison function. 

 

Figure 4-7. Code example of a Condition in DCRDL 

The above condition gets the discomfort index of a room using the 

get-space-discomfort-index function with a parameter that stands for the space ID. Then, 

the float-larger-than function is invoked to compare the obtained discomfort index value 

with the specified value of 21.0. The return value of float-larger-than represents the 

evaluation result of the condition. 
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Action 

The action includes a target and an action function. The target element uses a 

TargetID, the ucode [109], to indicate the control target. A target can also invoke 

functions to get the control targets. An action function takes a ucode and parameters as 

input to carry out control of the target indicated by a ucode. 

 

Figure 4-8. Code example of an Action in DCRDL 

Function 

A function is the most important element of DCRDL. It performs building 

information acquisition, comparison, and device control. The parameter element inside 

a function can also invoke other functions to get building information as the value of 

this parameter. Defining new functions can extend the functionality of this language. We 

only need to define the human detection and email sending function if we wish to send a 

notification email to the security department when a stranger is detected in the building. 

In addition, service mash-up is allowed in DCRDL. Users can compose new functions 

by using standard built-in functions defined in [111] to perform complex context 

acquisition, as shown in Figure 4-9. 

 

Figure 4-9. Code example of a Function in DCRDL 
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Functions in DCRDL can be classified into three categories: 

 Comparison Function 

These functions are used in a condition. The comparison function compares the 

obtained environment parameter with the given value to determine whether a 

condition is true or false. For example, the float-larger-than function compares the 

temperature of the target space with the given value to evaluate if the temperature 

has exceeded the given value or not. 

 Information Obtaining Function 

Information obtaining functions can be used in both conditions and actions. These 

functions fetch the information from the environment and also perform statistics such 

as calculating the total electricity consumption of specified rooms or selecting target 

spaces and objects (e.g., selecting the room in which the temperature is lowest in the 

building). 

 Action Function 

Action functions perform device controls in the smart building, such as turning 

on/off lights and changing the set-point of an air conditioner. 

4.4 EPDL: Energy Policy Description Language 

DCRDL is a low-level language created to enable expert users to write fine-grained 

rules for appliances in order to improve energy efficiency. Users have to manually 

describe the raw structure of the rules in a well-formed XML file when using DCRDL. 

In addition, users must be familiar with the details of the target building when using 

DCRDL. In this section, we introduce EPDL, a high-level language that supports human 

readable energy control policy writing without exhaustive knowledge of the building. 

EPDL policies are compiled to DCRDL format, and the execution environment is 

designed and implemented in DCRDL and PAS. 

In this section, we present the design of the following components of EPDL: 

 EPDL: A high-level user-friendly energy control policy description language for 

improving energy efficiency in smart buildings.  

 Smart building resource description schema that eases the energy control policy 
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design.  

 A set of tools that support writing and compiling energy control policies using 

EPDL. 

4.4.1 Motivation for EPDL 

The objective for EPDL is to create a user-friendly energy policy description 

language to ease the policy writing for smart building users. Therefore, we designed a 

simpler rule format based on DCRDL and added more flexible control logics such as 

LOOP and IF. We also designed a smart building resource descriptor, language editor, 

and a compiler to support writing and running energy control policies with EPDL. 

Figure 4-10 shows the detailed architecture of EPDL. 

The smart building collects the raw data relating to occupants on each floor from the 

sensor network and obtains real-time occupant distribution state using big data analytics 

technologies. This analyzed semantic information can be opened to users via RESTful 

APIs. Then, we can apply a rule, for example, to the elevator system that stops idle 

elevators on the floor where the most occupants in the building are. As a result, both the 

waiting time for most people and the movement of elevators are reduced in the long run. 

In other words, the energy efficiency of the smart building is improved.  

However, programming skills and knowledge about smart buildings are required for 

writing such a rule in DCRDL. It is difficult for users to design energy control policies 

easily without providing them with information of available services and the semantic 

structure of the smart building. For instance, writing a rule for the above case, the 

required basic information includes 1) how to get occupant distribution status on each 

floor, 2) how many floors and elevators there are, and 3) how to control the elevators. 

Users need to study how to use the available resources and services before writing an 

energy control policy for smart buildings. Expressing building resources in a simple 

well-formed data schema and providing them to users is a challenge. Therefore, we 

propose a more concise Energy Policy Description Language to address these issues. 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

50  Peng Xiaohui - March 2016 

4.4.2 Architecture 

 

Figure 4-10. The architecture of EPDL 

EPDL consists of a smart building resource descriptor, a language editor, and a 

compiler. The energy policy designer writes policies in the EPDL editor, and the EPDL 

compiler translates source code to DCRDL with the help of the resource descriptor. The 

DCRDL interprets the compiled source to policy agents. Finally, these agents run as 

threads in the system with the support of the smart building resource management 

framework. The thread checks the rules defined in it periodically at runtime to perform 

context-based controls on appliances in smart buildings. 
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4.4.3 Smart Building Resource Description Schema 

Overview 

 

Figure 4-11. An example smart building resource descriptor in the XML format 

To assist users who have little knowledge of smart buildings to write an energy 

control policy, we designed a smart building resource descriptor that contains the 

following types of information organized in the XML/YAML format. 

 Semantic relations between spaces and objects. This kind of information 

describes semantic relations such as a sensor or an appliance and the room to 

which it belongs, and the kinds of rooms a floor consists of. Four main elements 
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are defined in the descriptor: building, floor, space, and appliance. 

 Properties of spaces and objects. Properties are name-value pairs that represent 

the attributes of a space or an object. An identifier and index property are 

required for every object and space. The identifier is the unique identification of 

an object or a space in the system and the index property is used to help users 

refer to an object or a space. The ucode [109] is used to identify property in the 

descriptor. 

 Services for acquiring context information and controlling appliances. All the 

services of an object or a space are represented as attributes of the function 

element in the form of name-value pairs. The function element is a sub-element 

of the building, floor, space, and appliance elements. 

 Description of functions. The description of a function includes return type, 

function ID, and parameters. The attributes of the parameter element consist of 

name, data type, and index. The index indicates the position of the parameter in 

the parameter list. Users are encouraged to add description attribute, which 

describes the details of this element, to the function and parameter elements. 

In brief, the descriptor describes the semantic information of spaces and objects 

inside smart buildings via a well-formed XML/YAML file. It also includes features and 

available services of each space and appliance. We are planning to extend this descriptor 

to a building resource management framework for supporting flexible resource 

management in future works. 

Structure 

In this section, we introduce in detail elements of the smart building resource 

descriptor. The smart building resource description schema is defined in Appendix 1. 

The schema of the descriptor is designed in both XML and YAML format. 

Fundamentally, there are four main elements in this schema: <building>, <floor>, 

<space>, and <appliance>. Properties and function-list are required for each element. 

Properties and function-list are described using key-value pairs. Keys are for 

upper-layer users to understand the resource better. Values are inner properties or 
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service ids for lower-layer systems. Two properties are required for each element: 

 Index: for upper-users to refer to an element. 

 Ucode: the unique identification for objects, locations, concepts, etc. using 

Ubiquitous ID technology [109] 

<building> is the top element of the descriptor. It describes all the information 

directly related and inside the building. The inner <functions> element lists all the 

available services of the building layer. Attributes in the <building> element describe 

the properties of the building layer. 

<floor> is a sub-element of <building> and gives information about the floor layer. 

The inner <functions> element lists all the available services of the floor. Attributes in 

the <floor> element describe the properties of the floor layer. 

<space> element describes information of all the physical space. The inner 

<functions> element lists all the available services of a space. Attributes in the <floor> 

element describe the properties of space layer. 

<appliance> describes information about a device, appliance, etc. The inner 

<functions> element lists all the available services of the appliance. Attributes in the 

<appliance> element describe the properties of an appliance. 

<sbapi> contains a detailed description of smart building APIs. It includes return-type, 

parameter details, and function ID defined in the DCRDL specification [111]. 

4.4.4 Elements of EPDL 

There are four main elements in EPDL: Policy, Rule, IF and Foreach statement. A 

policy contains the Rule, IF, and Foreach statements. 

Policy: the policy element is the wrapper of Rule, IF, and Foreach statements. The 

properties of a policy include id, period, and name. The period string indicates the 

polling cycle of the interpreted policy agent. For instance, when the following policy is 

transferred to a policy agent, the agent checks all the rules in this policy every 900 

seconds as illustrated by ―policy.period‖ in Figure 4-12. The id property can be used to 

control the running and stopping of the agent. 
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Figure 4-12. Example code of a policy in EPDL 

Rule 

Rules are the fundamental elements of EPDL. All the elements defined in the policy 

are compiled into a list of rules. All rules share the same format: 

rule name when{ ConditionSet }then{ ActionSet }   (4-6) 

In the above sample rule statement, the name property is optional. All the conditions 

and their relations are represented in ConditionSet. ActionSet defines the actions that 

should be executed when ConditionSet is evaluated to true. To express complex 

contexts consisting of many conditions, ConditionSet is described recursively and may 

contain other ConditionSets or conditions. 

 

Figure 4-13. Example code of a rule in EPDL 

Figure 4-13 shows an example code of a rule: when the discomfort index is larger 

than 21.0 and the temperature is less than 22.0 in room ―3L-5‖ on the third floor, turn 

off ―AirConditioner1‖ and ―AirConditioner2‖ in this room. The ConditionSet of this 

rule contains two conditions, and the logic ―And‖ indicated by ―&&‖ shows the relation 

between the two conditions. The left part of a condition and the action statement should 

be input with the help of smart building resource descriptor because most users have no 

knowledge of what information can be acquired and what controls can be performed in 

a smart building. In Figure 4-13, the user should input ―building‖ and select the third 

floor, the space 3L-5, finally the ―sba_get_temperature,‖ which is described in the 
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resource descriptor, for referring to the service that obtains the real-time temperature of 

room 3L-5. 

IF Statement 

The IF block decides whether the internal code should be compiled or not. Only the 

static properties are allowed to be referred to in the condition part of an if statement, 

because the condition part of an if statement is checked only at the compiling stage. For 

example, in the condition part of the if statements in Figure 4-14, the service 

―sba_get_temperature,‖ which acquires the real-time temperature value of space ―3L-5,‖ 

is not allowed, but ―type‖ attribute is allowed to be referred here. In addition, it is 

meaningless for the compiler to acquire the real-time temperature at the compiling 

stage. 

 

Figure 4-14. Example code of if statement in EPDL 

Foreach 

When users want to apply the same rule to multiple spaces or appliances, the foreach 

statement can be useful and convenient. The example code in Figure 4-15 shows the 

usage of the foreach statement: turn off all the air conditioners in room ―3L-5‖ when the 

electricity consumption in the last 15 minutes in this room is greater than 0.30 kWh, and 

turn off all the lights when the electricity consumption is greater than 0.50 kWh. Rule 

―r4‖ is applied to all the air conditioners and ―r5‖ is applied to all the lights in the room 

―3L-5‖. 
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Figure 4-15. Example code of a foreach statement in EPDL 

4.4.5 EPDL Compiler 

Compiler 

A compiler [112] is usually a set of programs that translate source code that can be 

easily read by human to another language that can be easily understood by a computer. 

The former is usually a high-level programming language (e.g., C/C++, and Java) for 

programmers, while the latter is usually a lower level language (e.g., assembly 

language) for machines. High-level programming languages provide extra functions and 

simplify the programming procedure. In this context, EPDL is a high-level language and 

DCRDL is a low-level language. The major tasks of a compiler include the following: 

 Lexical analysis; 

 syntactic analysis; and 

 code generation. 

Lexical analysis processes the program source code roughly and divides it into tokens 

such as keywords, literals, and punctuations. Syntactic analysis extracts meaningful 

elements from source code and ensures that no grammar rule is violated. 

JavaCC and JJTree 

―Java Compiler Compiler (JavaCC) is a popular parser generator‖ [113] for LL(k) 

grammars. JJTree is ―a preprocessor for JavaCC, which inserts parse tree building 
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actions‖ [114] into the JavaCC grammar file by translating a JJTree grammar file (*.jjt) 

to a JavaCC grammar file (*.jj). For example, the following two figures show JJTree 

and JavaCC grammar for the condition element of EPDL, respectively. 

 

Figure 4-16. JJTree grammar for condition element of EDPL (EpdlParser.jjt) 

 

Figure 4-17. JavaCC grammar for condition element of EDPL (EpdlParser.jj) 
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Grammar File 

There are many parser generators for creating a source code parser. In this research, 

we adopt JavaCC which generates code parser for EPDL. JJTree allows users to define 

grammars in a manner similar to Extended Backus-Naur Form (EBNF) [115] for 

JavaCC. The entire JJTree grammars for EPDL written in EBNF-like fashion are 

available in [116] and Appendix 2. We present the EBNF notations of the main terms of 

EPDL as follows [106]: 

<Policy> := ' policy ' <Identifier> ' { ' <PolicyAttributeDefine>*|<Rule>* 

     |<RuleForeach>*|<IfStatement>* ' } ' 

<PolicyAttributeDefine> := ' policy. ' <Identifier> ' = ' <Literal> 

<Literal>:= <INTEGER_LITERA>|<FLOATING_POINT_LITERAL> 

     |<CHARACTER_LITERA>|<STRING_LITERAL> 

<Identifier> := <LETTER>|(<LETTER>|<DIGIT>)* 

<Rule> := ' rule ' <Identifier> 'when{'<ConditionSet> '}then {'<ActionSet> ' }' 

<RuleForeach> := ' foreach' <Identifier >' within' <SbaApi> '{' <IfStatement>*|<Rule>* '}' 

<IfStatement> := 'if (' <ConditionSet>'){' <Rule>*|<RuleForeach>* '}' 

<ConditionSet> := <OrCondition> 

<OrCondition> := <AndCondition>('||'<AndCondition>)* 

<AndCondition> := <Condition>('&&'<Condition>)* 

<Condition> := ( '('<OrCondition>')'|<UnaryExpression>) (<RelationSign><Literal>)* 

<UnaryExpression> := <SbaApi>|<Identifier> 

<RelationSign> := '>'|'>='|'<'|'<='|'=='|'!=' 

<SbaApi> := 'building'|<MemberIdentifier> ('. '<MemberIdentifier>)*[<Arguments>] 

<MemberIdentifier> := <Identifier>[ '[' <Literal> ']' ] 

<Arguments> := '(' [ <Literal> (','<Literal>*) ] ')' 

4.5 Summary 

In this chapter, we introduced in detail the design of our framework. We designed a 

PAS in section 4.2. The peak demand control issue was also studied and designed as a 
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policy agent. In section 4.3, we presented DCRDL: a device control rule definition 

language for context-based device control in smart buildings. Policies written in 

DCRDL can be interpreted into policy agents and run in PAS. We explained the design 

details of EDPL and supporting components in section 4.4. A resource representation 

schema called the smart building resource descriptor was also presented in section 4.4.3. 

The descriptor is a key supporting component for supporting non-expert users in writing 

energy control policies with EPDL. 
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5 SYSTEM IMPLEMENTATION 

We will introduce the implementation details of the proposed programming 

framework in this chapter. The framework consists of three main components: PAS, 

DCRDL, and EPDL. These components are primarily developed using the Java 

programming language, and the total Java code is about 13,500 lines. The DCRDL and 

Smart Building Resource Descriptor can be written in the XML or YAML format. We 

implemented parser prototypes for the XML format. 

5.1 Policy Agent System 

5.1.1 Smart Building API 

The Smart Building API is a set of RESTful interfaces deployed in the Daiwa 

Ubiquitous Computing Research Building (hereinafter referred to as ―DUCRB‖) for 

data access and device control. There are API servers that host the services for public 

access in this building. These APIs follow the wildly successful REST model. Data can 

be accessed and devices can be controlled through the Web using HTTP methods such 

as GET, PUT, POST, and DELETE. Any programming language that supports HTTP 

protocols can be used to develop automation applications at the client side for 

IoT-enabled smart buildings. These APIs are introduced as follows: 
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 Sensors: obtain building context information through the Smart Building API 

including temperature, humidity, PM2.5 (i.e., particulate matter with a diameter 

of less than 2.5 micrometers [18]), occupants, human location, etc. 

 Lighting System: control lights (i.e., turn lights on/off), and query the on/off 

status of lights through the Smart Building API. 

 Air conditioner: fetch status information and perform fine-grained controls on 

target air conditioner through the Smart Building API. 

 Elevator: move elevator to target floor through the Smart Building API. 

 Smart Meter: get real-time or historical electricity usage of a measured device or 

unit through the Smart Building API. 

 

Figure 5-1. Smart Building API [30] 

BLE Marker, temperature 

and humidity sensors 
Human detection sensor Camera 

Lighting Air conditioning 

Smart Meter Elevator 
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We use an air conditioner as an example to illustrate how the Smart Building API 

works. Methods used for air conditioner operations are: 

Obtain Status GET 

Control PUT 

The parameters for controlling an air conditioner are shown in the following table: 

Table 5-1. Structure of JSON data of the PUT Request for controlling air conditioners [55] 

Item Value Description 

url /api/v1/air_conditioners/{id}.json 
Path of the Smart Building API for air 

conditioners 

id Integer 
The identifier (ID) of target air 

conditioner in the building system 

setting_bit 
Integer (4 bytes) 

Enable/disable (1:enable, 0:disable) 

Operations: 

Bit 0: On/Off 

Bit 1: Operation mode 

Bit 2: Ventilation mode 

Bit 3: Ventilation amount 

Bit 4: Set-point 

Bit 5: Fan Speed 

Bit 6: Fan Direction 

set_point Float Set-point of air conditioner 

on_off Integer 0:Off, 1:On 

operation_mode Integer 
1:Fan, 2:Heat, 4:Cool, 16:Dependent, 

64:Dry, 128: Auto 

ventilation_mode Integer 
1:Automatic, 2:Heat Exchange, 4: 

Bypass 

ventilation_amount Integer 
1: Normal, 2: Low, 4: High, 8: 

Automatic, 16: Low, 32: High 

fan_speed Integer 0: Low, 1: Middle, 2: High 

fan_direction Integer 0 - 4: Directions, 7: Swing 

filter_sign_reset Integer 1: Reset 

For example, to turn on an air conditioner with an ID of 49 and with a set-point of 

23.0, the following JSON data is sent to http://IP/api/v1/air_conditioners/49.json (where 

IP is the IP address of the API server): 

http://ip/api/v1/air_conditioners/49.json
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If we access ―/api/v1/air_conditioners/49.json‖ using the HTTP GET method, JSON 

response data is returned as described in the following Table 5-2: 

Table 5-2. JSON response data after querying the status of an air conditioner [55] 

Item Value Description 

address Integer 
The identifier (id) of target air 

conditioner in the building system 

status Integer 1: Normal, 0:Error, -1:Unconnected 

malfunction_code Integer  

on_off Integer 1:On, 0:Off 

operation_mode Integer Refer to above table, 0:Unknown 

ventilation_mode Integer Refer to above table, 0:Unknown 

ventilation_amount Integer Refer to above table, 0:Unknown 

enable_disable_temp Integer (4 bytes) 
Bit 0: if 1 Set Temp. enable 

Bit 1: if 1 Room Temp. enable 

room_temp Float Real temperature of the room 

set_temp Float Set-point of air conditioner 

fan_speed Integer Refer to above table, -1: Unknown 

fan_direction Integer Refer to above table, -1: Unknown 

filter_sign Integer 0:On, 1:Off 

name String Name of the air conditioner 

5.1.2 Local Java Library of the Smart Building API 

We implemented a local Java library of RESTful APIs for the evaluation of PAS. The 

SmartBuildingAPI class is a wrapper for SensorController, LightController, SmartMeter, 

and ACController classes. Users invoke the Smart Building API with a given ucode, 

which is a unique identifier for a target object/space. The Smart Building API changes 

ucodes to the IDs used by different vendor sub-systems. HTTPRequestHelper is a static 

{"air_conditioner": 

    {"id":49, "setting_bit":0x11, "on_off":1, "set_point":23.0, "operation_mode":0, 

"ventilation_mode":0, "ventilation_amount":0, "fan_speed":0, "fan_direction":0, "filter_sign_reset":0} 

} 
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class with three static methods for sending HTTP GET, PUT, and POST requests. The 

class dependency of the local Java library is shown in the following figure: 

 

Figure 5-2. Class dependency of the local Java library for the Smart Building API 

We introduce APIs for each type of devices as follows: 

 Smart Meter API: The electricity consumptions at different levels (e.g., building, 

floor, space, device level, etc.) are being recorded by the Smart E-Power Meter 

named ―Data Logger Light,‖ which is a product of Panasonic Company. Some 

query APIs are deployed on the API server. Users can obtain real-time historical 

electricity consumption for each measured device or unit through these APIs. 

 Air Conditioner API: The air conditioner system is controlled by ―Intelligent Touch 

Controller,‖ which is produced by Daikin Industries, Ltd. Some RESTful APIs have 

been deployed on the API server to provide querying and controlling services for 

remote users. Users can get the property and the status of the connected air 

conditioners by sending HTTP GET requests. Users can control the connected air 

conditioners by sending HTTP PUT requests.  

 Light and Sensor API: Status information is collected from sensors and lights and 
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stored in a data server. The API server may query the data server when users try to 

get the status information of a device. 

5.1.3 Architecture of PAS 

We implemented the peak control policy as a policy agent using the local Java library. 

The architecture of this system is shown in the following Figure 5-3: 

 

Figure 5-3. Architecture of the peak demand control framework 

The system was developed using Eclipse 4.4.0 [117], and Figure 5-4 presents the 

source tree of this system. The interpreter parses predefined rules (i.e., the constraints 

defined in a policy file in XML format) and stores the rules in the system. 

The context monitor dynamically changes the priority of devices according to 

real-time context. The context monitor is also responsible for finding a set of suitable 

rules from the system and sending them to the executor. The rules are selected with the 

help of JaCoP [118], which is a constraint solver implemented in Java. We adopted a 

simple backtracking search algorithm for selecting rules. 

The executor is responsible for evaluating rules that are selected by the context 

monitor. The executor will turn off the target devices or let them run at a lower 
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electricity consumption level without breaking the constraints defined in the policy. 

 

Figure 5-4. Source tree of the peak demand control agent 

5.2 DCRDL 

In order to enable the flexible, precise, and collaborative control of the smart building 

system, we extended the peak demand control framework [67] and implemented a 

rule-based energy management framework for smart buildings. A descriptive language 

was also designed to enable users to write control rules for the framework. This 

framework allows rules that are written in DCRDL to be executed to control smart 

devices for optimizing energy efficiency in smart buildings. It hides the lower-layer 

building structure and service semantics so the upper-layer can write simple rules to 

control the smart building system. We focus on enabling users to write rules to describe 

control logic in DCRDL. 

5.2.1 System Overview 

The architecture of DCRDL is shown in Figure 5-5. The DCRDL was implemented 

using the Java programming language with approximately 4,400 lines of code. The 

architecture consists of rule files, an interpreter, and a policy agent system. 
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Figure 5-5. Architecture of DCRDL 

Rules Source File (DCRDL rules) 

Users can define fine-grained rules using the DCRDL for each device in the source 

file, and a set of rules can be embedded in a policy element to achieve a specific energy 

control objective. We will design a high-level policy description language named EPDL 

in the future to ease the policy writing for IoT-enabled smart buildings. 

The Policy Parser 

The policy parser is implemented in a package called interpreter. The policy parser 

reads policy files written in DCRDL and parses policies to elements defined in the 

org.sakamura-lab.dcrdl.model package. The classes in this package include Policy, Rule, 

ConditionSet, ActionSet, Condition, Action, Subject, Target, Function, and Parameter. 

The details of these elements are introduced in section 4.3.4. 

Interpreter 

The interpreter translates policies into policy agents (Java Threads). The period 

attribute in the policy element indicates the polling cycle of this agent. According to the 

design of DCRDL, the agents also can be run in event-driven mode if the data platform 

provides event mechanisms for the programming environment. Currently, the data 
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platform of DUCRB does not support event mechanisms, so we have not implemented 

an event-driven mode for the DCRDL interpreter. 

 

Figure 5-6. Package dependency of DCRDL 

Policy Agent 

The policy agent checks all the rules defined within the policy and performs control 

actions. When the ConditionSet section of a rule is evaluated to be true, the actions 

defined in the ActionSet section will be executed by the parent policy agent. 
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Figure 5-6 presents the classes, packages, and package dependencies of the prototype 

system we implemented using Java for DCRDL. Language-related packages are defined 

in org.sakamura-lab.dcrdl. The interpreter parses the policies and rules defined in a 

source file using the models defined in the model package. These models depend on the 

datatype and function packages. The function package implements the Smart Building 

API component, which is a key part of the DCRDL interpreter. It invokes Smart 

Building APIs that are defined in the package org.sakamura-lab.sba. The 

InfoObtainFunction gets context information from the building system, while the 

ComparisonFunction evaluates conditions by comparing the acquired information with 

user-defined values. The ActionFunction defines the semantics of the controlling APIs. 

The org.sakamura-lab.sba package implements the function semantics of data 

acquisition and device control, which is the local java library we implemented, as 

discussed in section 5.1.2. For example, a DCRDL function  

org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature 

will invoke the method that implements SensorController to obtain the temperature of 

the target space (see Figure 5-6). 

5.2.2 Smart Building API Modeling 

Smart Building API modeling is a key design of DCRDL. It is implemented in the 

org.sakamura-lab.dcrdl.function package. This component translates the user 

description of a function into executable code. In other words, this component is the 

connection between user descriptions and real services provided by the building system. 

Functions in DCRDL are classified into three categories: comparison functions, 

information acquisition functions, and action functions. 

Comparison Functions 

Comparison functions are used to evaluate conditions. For example, in the condition 

shown in Figure 5-7, the float-greater-than-or-equal function represents ―>=‖ logic for 

the float data. The ―subject‖ and parameter value ―24.0‖ are two components of this 

comparison function. The following code represents the condition that evaluates 
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whether the ―subject‖ (i.e., the temperature of the target room: 

―X0001C000000000000020000000D648‖) is greater than or equal to 24
o 
C, or not. If it 

is greater than or equal to 24
o 

C, the condition is evaluated as true by the 

float-greater-than-or-equal function. 

 

Figure 5-7. Sample DCRDL code of a condition 

The following Figure 5-8 shows code from the ComparisonFunction class. The 

constructor of this class takes three parameters: 

 String functionName: function ID that defined in Device Control Rule Definition 

Language Specification [111] and Appendix 4; 

 Object arg1: the left item of the conditional expression; 

 Object arg2: the right item of the conditional expression. 

A method compare is implemented to perform the evaluation of the condition. If the 

compare method returns true, the conditional expression is evaluated as true; otherwise 

it is evaluated as false. 
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Figure 5-8. Part of Java code of the ComparisonFunction class 

Information Acquisition Functions 

Information acquisition functions are modeled as the InfoObtainFunction class. They 

are used to retrieve context information from the building system. The context 

information is usually analyzed and abstracted from raw data obtained from sensors and 

devices. The following Figure 5-9 shows Java code of the InfoObtainFunction class. 

The constructor of this class takes two parameters: 

 String functionName: function ID that defined in Device Control Rule Definition 

Language Specification [111] and Appendix 4; 

 List <Parameter> paraList: contains all the arguments passed from the policy 

parser. 
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Figure 5-9. Part of Java code of the InfoObtainFunction class 

The getinformation method implements the actual semantics of the information 

acquisition function. For instance, if the function name that is passed from the policy 

parser is org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature, the 

method will execute the ―ID_GET_SPACE_TEMPERATURE‖ branch. Parameters 

released from paraList and sba.getSpaceTemperature will be invoked to retrieve 

information from the Smart Building API server. The sba is an instance of the local Java 

library of the Smart Building API. 

Action Functions 

Action functions are responsible for performing control actions on target devices. The 

semantics of action functions are implemented in the ActionFunction class. The 

constructor is similar to that of an information acquisition function. Actual controls are 

performed in the control method. 
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Figure 5-10. Part of Java code of the ActionFunction class 

5.3 EPDL 

To help energy policy designers write energy control policies with EPDL and compile 

them in DCRDL, we implemented a set of supporting tools using Java. The supporting 

tool set consists of a resource descriptor parser, an Eclipse [117] editor plugin as the 

EDPL editor, and a compiler. The implementation details of the policy-processing 

environment are provided in the PAS and DCRDL sections. The total Java code of 

EPDL is approximately 9,000 lines. 

5.3.1 Smart Building Resource Descriptor Parser 

Seven classes are defined in the smart building resource descriptor (hereinafter 

referred to as ―resource descriptor‖) parser: BuildingBase, Building, Floor, Space, 

Appliance, SBApi, and Parameter. The Building, Floor, and Space classes model the 

physical structure of the building and the available services within them. All these 

classes extend the BuildingBase class in which containers of services and properties are 

defined. The Appliance class models all the electrical appliances that are deployed in the 
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building. The SBApi class models the services (i.e., the smart building APIs). The 

parameter class models the input data of a service. The output of this parser is an 

instance of the Building class, which contains the information about the spaces and 

objects in the target building. The parser parses the information that is defined in the 

resource descriptor, and the parsed information is used to support smart building users 

in writing and compiling energy control policies written with the EPDL. The class 

diagram of the resource descriptor parser is presented in Figure 5-11. 

 

Figure 5-11. Class diagram of the smart building resource descriptor parser 

5.3.2 The EPDL Editor Plugin 

To assist users in writing EDPL energy control policies, we implemented an EDPL 

editor using Eclipse Plugin, which provides information and suggestions to users during 

the writing process. The editor plugin parses the resource descriptor with the parser, 

computes suitable code completion proposals, and provides completion proposals to the 

user. When the user inputs a string that represents a space or an appliance, the editor 

provides all the related service names and object names in a selection menu for users 

(see figure 5-12). 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

Peng Xiaohui - March 2016   75 

 

Figure 5-12. Example of a pop-up selection menu. When users type a string (e.g., 

―building.floors[‗3F‘].spaces[‗3L-5‘].‖), the editor displays the available sub-level objects, 

spaces, and services. The yellow tip shows the detailed information about the selected item. 

JFace 

The EPDL editor plugin was implemented using JFace [119]. JFace is a sophisticated 

UI toolkit with SWT-based [120] views for ―handling common Java UI programming 

tasks‖ [119] for Eclipse users. It abstracts and simplifies visual components (e.g., table 

viewer, tree viewer, text viewer), and provides an assistant layer for managing system 

resource efficiently (e.g., image, color, font). SWT is a fundamental part of JFace and 

developers can invoke SWT APIs directly when developing applications with JFace. 

The JFace resource management and text components are used in the EDPL editor 

plugin. The source code tree is shown in Figure 5-13 . 
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Figure 5-13. Source code tree of the EDPL editor plugin 

Code Completion 

Code completion is the key function of the EPDL editor and is the fundamental 

reason for developing this editor. As shown in Figure 5-12, when users input a string 

building.floors[“3F”].spaces[“3L-5”] ending with a dot ―.‖, the editor plugin provides 

a pop-up selection menu of all the referable properties, services, and sub-level spaces or 

appliances. After selecting an item in the menu, a proper completion string will be 

determined by the editor instead of requiring users to type the full name of objects or 

services manually. 

Code Coloring 

In addition to the code completion function, we also implemented code coloring, 

which shows different colors for string, keyword, and comments. Additional features, 

including error recovery, code hyperlinks, and others, will be supported in future 

versions. The keywords of EPDL include policy, rule, when, then, foreach, within, and 

if. 
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5.3.3 EDPL Compiler 

As we introduced in chapter 4, a compiler [112] is a set of programs that translate 

source code which can be easily read by human to another language which can be easily 

understood by a computer. Therefore, the main job of the EPDL compiler is to parse the 

EDPL rule entities and translate them into DCRDL rules. A key step involves translating 

user-readable resource expressions into resource formats defined in DCRDL. For 

example, expression 5-1 will be translated into expression 5-2 as shown in the following, 

which is a function ID defined in DCRDL format.  These expressions illustrate the 

service for obtaining the real-time temperature of a space (here, the space is 

spaces[“3L-5”]). The compiler translates the corresponding EPDL elements into 

DCRDL elements. 

building.floors[“3F”].spaces[“3L-5”].sba_get_temperature                (5-1) 

uri:sakamura-koshizuka-lab:names:dcrdl:1.0:function:get-space-temperature      (5-2) 

The EPDL compiler consists of a source code parser, a semantic analyzer, and a rule 

generator. As shown in Figure 5-14, the code parser is implemented using JavaCC and 

JJTree. We have introduced JJTree and JavaCC in chapter 4, and will not introduce them 

here any more. We developed a grammar file named ―PdlParser.jjt‖ [121] as input for 

JJTree to produce a JavaCC grammar file ―PdlParser.jj‖ [122]. Finally, JavaCC 

generates Java classes for the code parser using ―PdlParser.jj.‖ 

 

Figure 5-14. Implementation of EDPL code parser 

The output of the source code parser is an Abstract Syntax Tree (AST). Figure 5-15b 

shows the classes of node visitors for the AST. The semantic analyzer parses the AST 
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using the node visitors and data models defined in Figure 5-15 to get a list of EPDL 

rules. Finally, the compiler translates all the rules into the DCRDL format. 

 

a. The parser package            b. Node visitors               c. Data model 

Figure 5-15. Source code tree of the compiler 

5.4 Summary 

In this chapter, we introduced the implementation details of three components of our 

proposed framework. Section 5.1 discussed how a peak demand control policy was 

implemented as an agent to model the peak demand issue of smart buildings. It 

presented the fundamental concepts of the Policy Agent System. Section 5.2 described 

the implementation of DCRDL. We developed the DCRDL interpreter that parses 

DCRDL rules into a Policy Agent, which is a Java thread. The thread checks each rule 

that is defined in a policy, within a specified period, and executes the actions defined in 

the rule if the corresponding ConditionSet is evaluated to be true. We implemented a 

modeling component for the Smart Building API in the DCRDL interpreter that 

translates user descriptive expressions into executable code. The implementation of 

EDPL was presented in section 5.3. We also developed a smart building resource 

descriptor parser, an EPDL editor, and an EPDL compiler, as discussed in this section. 
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6 EVALUATION 

This chapter outlines experiments conducted and the results obtained for three 

components of the proposed framework. To enable non-expert users to program smart 

buildings, the following two issues have to be addressed: 

 Separate upper-layer user application control logic from lower-layer building 

structure and service details, and hide lower-layer details. Further, building 

resources representation schema should be designed for both upper-layer and 

lower-layer users. As a result, upper-layer users can focus on describing control 

logics and lower-layers can focus on developing services. 

 Provide simpler programming languages and tools. The services developed by 

lower-layer users should be represented in a human readable format for 

upper-users to read and refer to, and descriptive control logics should be 

translated back to executable codes which is usually wrote using procedural 

programming languages. 

The objective of the evaluation was to verify whether the above issues have been 

addressed or not. 
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6.1 Evaluation of the Policy Agent System 

6.1.1 Objective 

We implemented only one agent for peak demand control to run as the Policy Agent 

System (PAS). It was run as a basic energy policy in the building management system. 

The objective in evaluation of the peak demand control framework was to examine the 

practicability of the PAS and control demand peak with writing a set of rules for the 

building automation system. We observed and compared electricity consumption 

patterns (i.e., The pattern before applying the policy and that after applying the policy) 

to evaluate the efficacy of the peak demand control framework. 

6.1.2 Experimental Setup 

Experimental Environment 

Owing to security issues, we selected two rooms on the third floor in DUCRB to 

simulate the overall building: room 3L-5 and room 3L-6. The rooms consisted of four 

air conditioners and eight sets of lights. An application developed using a local Java 

library of Smart Building API was executed on a MacBook Pro to control them. The 

setup parameters used are given in Table 6-1. 

Table 6-1. Experimental environment of peak demand control framework 

Target Rooms 3L-5, 3L-6 Simulated as the whole building 

PC MacBook Pro Mid 2012  

OS OS X 10.8  

Network DUCRB-UBI WIFI SSID 

Java 1.7.0_60  

Eclipse Luna Release 4.4.0  
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Constraints (Rules definition) 

Table 6-2. Pre-defined constraints of the peak demand control framework 

Items Constraint Remark 

Air Conditioners [20-25] (
°
C) Allowed set-point range 

Lights [0, 1] 0: off,  1: on 

Human Detection 
If a person is present, the lights in this space should not 
be turned off. 

Server Room 
If there is a server, air conditioners in this room should 
not be turned off. 

Electricity Consumption 
Recording Interval 

15 minutes 
The electricity consumption is 
logged in every 15 minutes. 

Peak Value 140 kWh 

Context Monitor 

A combination priority was initialized and monitored by the Context Monitor. This 

priority helped the framework to adjust the state of the appropriate devices according to 

the defined policies. There were both high and low priority levels. As stated above, high 

priority is defined by the user and cannot be changed at runtime. In this experiment, 

high priority was assigned to room priority, which is defined according to the property 

of the room. For example, we assigned a higher priority to the doctoral students‘ room 

than the master students‘ room. Low priority can be changed when the environmental 

situation changes. For example, when a person is not detected in an area for a while, the 

appliances deployed in that area should have a lower low priority. This causes the 

appliances in other areas of the same room to turn off or be adjusted to operate at a 

lower consumption level. 

6.1.3 Experiment 

The experiment was carried out in the second half of August. We recorded the 

electricity consumption pattern without applying the framework in the first week. The 
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electricity consumption pattern of the first week is shown in Figure 6-1 as ―Daily 

Electricity Consumption 1 (kWh)‖—the solid red line. Subsequently, we applied the 

peak demand control framework and recorded the electricity consumption pattern in the 

second week. It is shown as ―Daily Electricity Consumption 2 (kWh)‖—the blue line. 

The dashed red line illustrates the defined peak value (140 kWh) in Table 6-2. It 

signifies the instances where the total electricity consumption of the two rooms exceed 

140 kWh, which results in some appliances being turned off or adjusted to run at a 

lower energy consumption level without breaking rules defined in Table 6-2. The result 

of the experiment is shown in Figure 6-1. 

 

Figure 6-1. Evaluation result of the Peak Demand Control Framework 

Owing to control system delay, the consumption may slightly exceed the defined 

peak. We observed this phenomenon in the above figure on days 3 and 6. 

6.1.4 Result Analysis 

Peak demand control: The experimental results show that this framework is able to 

balance the peak electricity demand in smart buildings. When the electricity demand 

reached a defined peak value, some devices in the target rooms turned off or were set at 

a lower electricity consumption level without breaking the constraints. This framework 
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applied the constraint programming model to find one or more devices and set them in 

an appropriate state according to the defined rules. It successfully verified that this 

framework can efficiently balance the electricity demand and verified that PAS is 

feasible. 

Reduced electricity consumption: We conducted another experiment over a period 

of approximately one week with the objective of measuring how much electricity can be 

saved. Unfortunately, we witnessed no obvious electricity saving. The reasons for this 

result are as follows: 

 Season and weather: Cooler days may result in less electricity consumption. 

 Peak value: The definition of peak value also affects experimental results. A 

lower peak value may bring significant electricity energy saving. However, some 

devices may not normally function under a low peak value. 

 The number of controllable targets. 

6.2 Evaluation of DCRDL 

6.2.1 Objective 

To evaluate the expressivity of DCRDL, we wrote three policies in DCRDL to 

control the electricity consumption of devices for various purposes. The three policies 

were ―Peak Consumption Control Policy,‖ ―Tiered Electricity Pricing Policy,‖ and 

―Discomfort Index Control Policy.‖  We evaluated these policies within the real smart 

building environment—DUCRB in the winter and spring of 2015. We observed 

parameters such as temperature and electricity usage before the experiments and 

designed rules based on the observed values. The number of lines for each policy is 

shown in Table 6-3: 

Table 6-3. Lines of code for each policy in DCRDL 

Peak Consumption Control Policy 155 lines 

Tiered Electricity Pricing Policy 124 lines 

Discomfort Index Control Policy 120 lines 
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Three case studies were conducted based on the above policies. The details of these 

case studies are given in the following sections. The objective of studying these cases is 

to show how device control can be personalized, precise and flexible by using the 

DCRDL. 

6.2.2 Peak Consumption Control Policy 

In this policy, we designed several rules to control the peak electricity consumption in 

a certain interval by lowering and even turning off the equipment in the DUCRB when 

the consumption exceeded a defined peak. We selected rooms 3L-5 and 3L-6, along 

with the central air conditioning system for the third floor as the control targets. The 

rules were defined as follows: 

– Rule 1: WHEN the electricity consumption of the building in the last 15 minutes 

exceeds 0.6 kWh, THEN decrease the set-point of the air conditioners by 2 in the 

room where the temperature is the highest.  

– Rule 2: WHEN the electricity consumption of room 3L-6 in the last 15 minutes 

exceeds 0.2 kWh, THEN turn off the lights in this room.  

– Rule 3-6: For each air conditioner in these two rooms, WHEN the set-point is less 

than 22.0, THEN turn off this air conditioner. 

The parameter values defined in the above rules are based on the observation before 

the experiment. The limit of the peak for the building in the last 15 minutes for our 

policy was 0.6 kWh. This policy was executed as a policy agent (Java Thread). The 

information obtaining function, ―get-acs-by-spaces,‖ uses the return value of the 

function ―get-space-by-highest-temperature‖ as the parameter to ascertain the running 

air conditioners in the room where the temperature is highest. Rules 1-6 are checked 

every 15 minutes. When the ConditionSet section of the rule is evaluated to true, the 

actions in the ActionSet section are executed. Owing to the space limitations of this 

chapter, we are unable to describe the rules written in the DCRDL format in detail. 

Figure 6-2 shows the electricity consumption pattern for every 15 minutes during the 

experiment. 

The red dotted line in Figure 6-2 shows the user-defined peak value, which should 
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not be exceeded. The blue polyline shows the total consumption every 15 minutes after 

application of the Peak Consumption Control Policy, which was written in DCRDL. 

From the system log, we observed that the air conditioners in room 3L-5 were turned off 

by the policy in cycles 1 and 2, and the air conditioners in room 3L-6 were turned off in 

cycle 6. As result of these actions, the polyline is very steep in cycles 1, 2, and 6. To 

prove the efficiency of these rules, we turned on two air conditioners in the seventh 

cycle manually; they were promptly turned off by the policy agent in the eighth cycle. 

Thus, the results of this experiment verify that DCRDL is efficient and expressive. 

 

Figure 6-2. Electricity consumption pattern of the peak consumption control policy 

6.2.3 Tiered Electricity Pricing Policy 

This policy was designed to restrain the growth rate of the real-time electricity price 

of the building. The simulated tiered price for electricity used in this experiment is 

given in Table 6-4. We defined several rules in this policy as follows: 

– Rule 1: WHEN the real-time electricity price is between 500 Yen and 1000 Yen, 

THEN decrease the set-point of the air conditioners by 2 in the room where the 

temperature is the highest. 
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– Rule 2: WHEN the real-time electricity price exceeds 1000 Yen, THEN turn off the 

air conditioners in the room where the temperature is the highest. 

– Rule 3: WHEN the real-time electricity price exceeds 1000 Yen and the humidity of 

room 3L-5 is higher than 30%, THEN turn off the humidifier in this room. 

– Rule 4: WHEN the real-time electricity price exceeds 1500 Yen, THEN turn off the 

lights in room 3L-6. 

 

Figure 6-3. Total electricity consumption at different prices 

Table 6-4. Simulated tiered pricing for electricity 

Electricity Consumption (kWh) 1.1–4.0 4.1–7.0 7.1–10.0 10.1~ 

Electricity Price (Yen/kWh) 300 500 1000 1500 

When the real-time electricity price exceeded 1000 Yen/kWh, rule 2 turns off the air 

conditioner in the room where the temperature is the highest; rule 3 turns off the 

humidifier in room 3L-5 if the humidity of this room is higher than 30%. Rule 4 turns 

off all the lights in room 3L-6 when the real-time electricity price exceeds 1500 

Yen/kWh. We can infer from the above settings that when the real-time price exceeds 
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1000 Yen/kWh, the growth rate of total consumption should decrease substantially. As a 

result of the delay in the control system, we observed this phenomenon only at the end 

of the second cycle when the real-time price was 1000 Yen/kWh. 

6.2.4 Discomfort Index (DI) Control Policy 

Discomfort Index (DI) [123] was proposed by Thom (1959). They designed a simple 

linear equation to calculate DI based on temperature and relative humidity: 

DI = T- 0.55(1 - 0.01 H)(T - 14.5)            (6-1) 

where T is the temperature in 
°
C and H is the relative humidity in %. When DI exceeds 

21.0, people feel uncomfortable. Based on Formula 6-1, we designed a Discomfort 

Index Control Policy to control the comfort level in room 3L-5. We observed the value 

ranges of the environmental parameters and designed the rules for this policy based on 

the observed temperature and humidity values in room 3L-5: 

Table 6-5. Parameter definitions of discomfort index control policy 

 Temperature 
°
C Humidity % DI 

Observed values 21–22 35–40  19.1–22.2 

Values for rules 23–24 42–45 Less than 21.0 

– Rule 1: WHEN the DI of room 3L-5 is greater than 21.0, AND temperature is greater 

than 24 °C, THEN turn off the air conditioners in this room. 

– Rule 2: WHEN the temperature in room 3L-5 is less than 23 °C, THEN turn on the 

air conditioners in this room. 

– Rule 3: WHEN the DI of room 3L-5 is greater than 21.0, AND humidity is greater 

than 45%, THEN turn off the humidifiers in this room. 

– Rule 4: WHEN the humidity in room 3L-5 is less than 42%; THEN turn on the 

humidifiers in this room. 

We adopted this policy in room 3L-5 for several hours. The patterns of discomfort 

index, humidity, and temperature are shown in Figure 6-4: 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

88  Peng Xiaohui - March 2016 

 

Figure 6-4. Temperature, humidity, and DI patterns during the experiment 

Owing to the delay in the actuator system, the values for control targets (humidity, 

temperature, DI) slightly exceeded the boundaries defined in the rules. The values for 

the controlled parameters approximately fall in the ranges defined by the user. In 

general, Figure 6-4 shows that users can write detailed rules using DCRDL to control 

the environmental conditions and can obtain the expected results in smart buildings. 

6.2.5 Conclusion 

We evaluated DCRDL, which addresses the problem of context-based device control 

for energy efficiency. DCRDL enables the writing of fine-grained control rules for 

devices in smart buildings to balance the energy usage and human comfort. Using 

DCRDL, users can define various policies with detailed rules for networked electrical 

devices for different energy saving scenarios. Three policies were written and 

experiments were conducted to demonstrate the functionality and expressivity of 

DCRDL in a real smart environment: the Daiwa Ubiquitous Computing Research 

Building. 
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Some issues such as rule conflicts and duplicate rule detection were not discussed 

here. However, implementing a rule-optimizer using the existing algorithms can solve 

these problems. Access control to collected data and devices is another critical problem 

associated with running the PAS. However, those issues are beyond the scope of this 

research; we may consider those problems in future work. 

6.3 Evaluation of EDPL 

6.3.1 Objective 

We will discuss the readability and writability [124], [125] of EPDL in this section. 

The objective of discussing readability and writability of EPDL is to show the 

user-friendliness of it. The rule format for EPDL and DCRDL are also compared. In 

addition, we compare average code lines for rules in both EPDL and DCRDL. Finally, 

we show how a user can refer to available resources in the smart building easily with the 

EPDL editor plugin in the Eclipse IDE [117]. 

6.3.2 Readability 

Readability simply refers to ―the ease with which programs can be read and 

understood‖ [125]. For the descriptive languages we proposed in this research, 

readability specifically refers to the support for expressing control sequences in natural 

ways. In this section, we compare rules, which are the key elements in both EPDL and 

DCRDL, to show the improvement of readability and expressivity of EPDL. 
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a. The rule in DCRDL 

 

 

b. The rule in EPDL 

Figure 6-5. The same rule in DCRDL and EPDL 

Figure 6-5 describes a rule that states that when the electricity consumption of room 

―3L-5‖ exceeds 0.35 kWh in the last 15 minutes, then the two air conditioners in the 

room should be turned off. The code shown in Figure 6-5a is written in DCRDL, 

whereas that in Figure 6-5b is written in EPDL. It is clear that the more concise EPDL 

rule description is easier to read. Furthermore, the IF and Foreach statements are 

introduced in EPDL, which make this language more flexible. For example, when we 

want to apply a rule to all appliances that are air conditioners in a room, we can 

compose a fragment of code using the IF and Foreach statements to achieve this. In 
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addition, the number of code lines is significantly reduced for a rule with the same goal. 

Figure 6-5 shows that the number of code lines has decreased from 36 in DCRDL to six 

in EPDL for the same rule. We rewrote the two policies used in the evaluation of 

DCRDL in the winter of 2014–2015 with EPDL. These two policies are described in 

English in this section for better understanding. 

 Peak Consumption Control Policy (see section 6.2.2); 

 

Figure 6-6. The EDPL code for the peak consumption control policy 

 Discomfort Index (DI) Control Policy (see section 6.2.4). 

 

Figure 6-7. The EPDL code for the discomfort index control policy 
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Table 6-6. The number of code lines of EPDL and DCRDL Rules 

 

Lines of each policy 

Average lines in a rule 
PCC

a 
(6 rules) DIC

b 
(4 rules) 

DCRDL 155 214 37 

EPDL 37 28 7 

a: peak consumption control;  b: discomfort index control; 

6.3.3 Writability 

The writability simply refers to ―the ease with a language can be used to create 

programs‖ [125]. For this research, we proposed two descriptive languages which are 

used for describing control sequences for smart building systems. Moreover, the 

writability of EPDL also includes the ease of using available services. Referring to a 

service is very difficult for most users because of the heterogeneous networks and 

complex structure of smart buildings. Figure 6-5a shows a DCRDL rule. In order to 

write a DCRDL rule, the user has to study XML and have knowledge of the target smart 

building. For example, the number of rooms on each floor, the appliances in a room, and 

the operations that can be performed on each appliance. Figure 6-5b shows the 

improved rule format in EPDL, fewer lines than the DCRDL rule is required, which 

means that it is easier to write. 

Furthermore, we designed a smart building resource descriptor to assist the user to 

refer to the available resources when writing a policy. Hence, the user does not need to 

study the details of the target building in advance. The descriptor is parsed and the 

information is used to compute the code completion proposals. For instance, when the 

user types ―building‖ in the language editor, a pop-up menu with all the available 

objects and services under the ―building‖ level appears. Figure 6-8 shows code 

completion proposed examples. 
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a. Code completion proposals of the building            b.  Code completion proposal of a floor 

          

c. Code completion proposals of a space              d. Code completion proposals of an appliance 

Figure 6-8. Code completion proposal examples 

6.4 Summary 

In this section, we discussed the readability and writability of EPDL and compared it 

with DCRDL. DCRDL is a kind of programming enabler for the physical objects in 

IoT-enabled smart buildings. However, it is a low-level rule description language. 

Detailed information about the target building and programming skills are required 

when using DCRDL. From the discussion, we can conclude that EPDL is a user-friendly 

energy policy description language for IoT-enabled smart buildings. The proposal of 

smart building resource descriptor enables non-expert users to write an energy control 

policy for smart buildings easily and quickly. 
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7 FUTURE WORK 

7.1 Conflict Resolution 

We have discussed the peak demand issue of smart buildings in previous chapters. A 

policy agent, which consisted of predefined constraints (i.e., rules), and a constraint 

solver were designed to address this problem. Two research problems could be 

subsequently studied: (1) the design of interfaces to ease the writing of control 

rules/policies for the smart building system; and (2) the design of efficient rule 

reasoning algorithms for the policy agent system used in this framework. We chose to 

focus on the first problem for this thesis. 

However, the need for algorithms for conflicting rules resolution is a critical issue for 

this framework. For example, there are two rules in a policy agent shown in Table 7-1: 

Table 7-1. Example of conflict rules 

Rule 1 Set-point of Air conditioners should be in [22-26] 

Rule 2 
If the discomfort index of this room is less than 21.0 and the temperature 
of this room is greater than 24, decrease the set-points of air conditioners 
in this room by 2. 

Context Discomfort index: 20.0; Air conditioners‘ set-point: 22; Season: summer 

Rule 1 and 2 will conflict with each other in the context shown in Table 7-1. Rule 1 

tries to keep the set-point of conditioners between 22 and 26, while Rule 2 tries to set 
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the set-point to 20 in this context. When the number of rules grows, conflicts may occur 

frequently which will cause system crashes. 

In fact, this is a classical problem of rule-based expert systems. Many algorithms (e.g., 

Rete Algorithm [76]) have already been proposed to address this issue. We will study 

conflicting rules resolution algorithms and implement a rule optimizer for this 

framework in future work. 

7.2 Resource Management Framework 

With the adoption of IoT protocols (e.g., 6LoWPAN [35] and Constrained 

Application Protocol (CoAP) [36]), the Internet of Things (IoT) has evolved to 

encompass the Web of Things (WoT) as its application layer. Constraint devices have 

been integrated into IP-based IoT via those protocols, and they are seamlessly integrated 

into the legacy Web. Consequently, existing web technologies can be directly applied to 

the newly evolved WoT. Using web-based APIs, data produced by a device can be easily 

accessed. Meanwhile, manufacturers have begun to produce web controllable devices 

(such as wiring boards, lights, and air conditioners). In particular, in smart buildings 

equipped with such devices, data access and device control have become easy and 

ubiquitous as long as the user has a device connected to the web. 

The data access and device control interface can be unified via RESTful APIs in the 

age of WoT. A critical issue of bringing ordinary people to participate in programming 

with physical objects is the means by which the upper-layer user translates the described 

application logic into executable code that can be understood by machines. That is, 

ordinary people can only use simple tools such as declarative programming and drag 

and drop programming [126]; however, applications developed using descriptive 

languages cannot be easily understood by machines. 

Therefore, resource discovery and management have become key issues that should 

be addressed in the flexible programming framework in IoT-enabled buildings. There 

are already many studies associated with resource discovery. Most of them provide 

excessive ontology modeling of building structures that are not necessary in most cases. 

However, none of them address the resource representation problem, especially service 
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modeling of smart buildings. Providing an efficient service representation can help 

language interpreters to translate referred service into executable code that can be 

executed by machines. Further, standardized resource representation operation 

interfaces must be defined to provide a unified access path to various applications. 

 

Figure 7-1. Architecture of smart building resource management framework 

We are currently designing a smart building resources management framework with 

the following features: 

 Building Resource Description Schema (BRDS) 

 Description of building structure and semantic relations of internal objects. 

 Description of RESTful Smart Building APIs using RAML [127]. 

 Building Resource Operation Interfaces (Create, Retrieve, Update, Delete 

operations) 

 Define standard RESTful APIs for operating building resources. Resource 

discovery protocols or building administrators can store/delete the BRDS data 

in the building resource repository using standardized Create, Update, and 

Delete interfaces; users can obtain resources via the Retrieve interface. For 

example, when users want to refer to the service to turn on air conditioner 1 in 
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room 3L-5 on the third floor, they can simply retrieve all service and object 

information of room 3L-5 using the following RESTful interface: 

GET http://baseurl/DUCRB/3F/3L-5/ 

GET HTTP GET; 

baseurl The IP of the resource repository 

DUCRB ID of the building 

3F floor ID 

3L-5 Space ID 

 Smart Building API adapter: This adapter models RESTful APIs. It contains an 

interpreter that translates user referred services into executable code with the 

help of service description information stored in the resource repository. 

7.3 Visual Programming 

Many researchers have proposed ideas for giving end-users efficient tools to program 

their surrounding environment. They often follow the ―IF-THEN‖ paradigm, which is 

also the basic principle of control languages in smart buildings. The design of DCRDL 

and EPDL also follow this paradigm. The objective of DCRDL is to separate 

upper-layer user control logic description from lower-layer service and structure details 

of smart buildings so that upper-layer users can focus on describing the control 

sequence for their application without being concerned about how to describe sequences 

in building systems. We plan to design a universal visual programming application for 

smart buildings. It should be able to run on any capable device connected to the network 

of a target smart building. It should require no porting work when used in a different 

building. In other words, it should have one universal programming interface for all 

buildings with the promise embodied by the unified resource management and 

representation protocols discussed in section 7.2. 

http://baseurl/DUCRB/3F/3L-5/
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Figure 7-2. Demo of the HomeRules [126] 

Russis et al. developed a prototype of ―a tangible end-user programming interface‖ 

[126] called HomeRules for smart homes. As shown in Figure 7-2, HomeRules also 

follows the ―IF-THEN‖ paradigm. It enables the end-user to write descriptive rules for 

their home appliances via drag and drop resource icons. However, there is no 

explanation of how their application would work with smart building systems. There 

should be an interpreter or translator that translates the descriptive rules into pieces of 

executable code. In addition, there is no demonstration of how they can get available 

resources data. As discussed in section 7.2, standardized resource retrieval and 

management protocols are important in order to adopt these applications to different 

buildings without extra porting work. 
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Figure 7-3. WigWag rules editor for smart home [128] 

In industry, WigWag [128] also designed a demo application that they claim can 

enable end-users to write rules for home appliances by dragging and dropping resource 

icons. However, some of the issues discussed above are apparent in this application. The 

universal visual programming application we plan to develop with the standardized 

resource representation protocol and operation interfaces in the future will overcome 

these shortcomings. 

7.4 Access Control to Data and Services 

Access control to data and services is an extensive research direction in IoT and is 

actually out of the scope of this research. Nevertheless, we give a short discussion here 

because it is a significant and critical issue for this programming framework. The 

Access Control to Data and Services issue we define here should clearly answer the 

question: To whom and when can access be granted or what can be used from where? 

We call it the 4W issue. 
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The rapid advancement of smart devices and improved connectivity among them 

introduce a new programming paradigm for IoT-enabled smart buildings. That data 

access and device control achieved through web-based open APIs eases the 

programming procedure for smart buildings, but also introduces myriad new risks. 

Unauthorized access and control have led to critical privacy and security concerns. We 

are considering adding access control mechanisms (e.g., access control ontology for 

buildings) into our BRDS to address this problem in the future. The ontology may be a 

combination of sub-ontologies that describe various aspects of security and privacy 

factors. 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

Peng Xiaohui - March 2016   101 

8 CONCLUSION 

In this thesis, we introduced a proposed programming framework for building 

automation in IoT-enabled smart buildings. The connectivity of smart devices has 

significantly improved as a result of protocols such as 6LoWPAN. Resource constrained 

devices can be directly connected to the Internet in like manner as a computer. Further, 

the Constrained Application Protocol (CoAP) makes resources available under a URL 

using the wildly successful REST model. It significantly accelerated the seamless 

integration of constrained devices to existing Internet as the application layer. Data 

access and device control interfaces are becoming unified through open RESTful APIs 

deployed in IoT smart buildings. This has substantially simplified application 

development in smart buildings. In addition, collaboration of devices among different 

sub-systems has become possible as a result of unified interfaces. Users can develop 

and execute building automation applications on devices if they are able to connect to 

the building‘s network. We call such an IoT-enabled building a smart building. 

  We also regard the overall IoT-enabled smart building as a distributed hardware 

computer and the users as living in the computer. Thus, it is very important to enable 

those users to program this ―computer.‖ However, the hardware components (i.e., 

devices) are distributed across building scale, and those users are usually not good at 

programming. Therefore, an easier programming environment is needed for them. 
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We outlined the background to this research in chapter 1. A brief introduction of 

building automation history was presented in section 1.1.1. Then, the general structure 

of Building Automation System, which is also referred to as BMS and BEMS was 

presented in section 1.1.2. Finally, we defined the concept of IoT-enable smart buildings. 

The energy efficiency problem was introduced in section 1.2. We also explained the 

objective and challenges of this research in general at the end of chapter 1. 

In chapter 2, related work was reviewed in several aspects. We first introduced the 

programming paradigm changes associated with smart buildings. Then, the web 

technologies used in smart buildings were presented. Finally, we analyzed existing work 

that related to resource representation and programming languages. A general 

description of our proposal was also presented in chapter 3. 

We described the design of each part of our framework in chapter 4. The Policy 

Agent System (PAS) is the basic running environment of the whole framework. Policy 

Agents are translated from DCRDL rules. They can run as the threads of procedural 

languages such as Java, C, JavaScript, and PHP. We also studied the Peak Demand 

Control issue of smart buildings and modeled it as a Constraint Satisfaction Problem. 

DCRDL was proposed to separate the upper-layer control logic description and 

lower-layer service and structural details of buildings. Finally, we presented the design 

of EPDL to support the writing of energy management policies. 

In chapter 5, we presented the implementation details of our proposed framework. It 

was developed using Java. We developed a local Java library as a wrapper for the 

RESTful Smart Building APIs. Policy Agents are executed in the form of Java Threads. 

The interpreter of DCRDL was also developed in Java. Finally, we provided various 

efficient tools to make the writing energy policies easier for non-expert users in EPDL. 

We outlined the experiments conducted in this research in chapter 6. All the 

experiments were carried out in DUCRB—a state-of-the-art IoT-enabled smart building 

constructed in 2014. The Peak Demand Control framework was implemented and run as 

a policy agent. Three policies written in DCRDL were evaluated in the policy agent 

system. We analyzed the experimental data and got the expected results. Finally, we 

discussed the readability and writability of EPDL. The results showed that it is an 
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efficient tool for non-expert users to read and write energy management policies. 

Finally, resource management and representation protocols, visual programming, and 

access control to data and services were introduced in chapter 7 as future work 

associated with this research. 

To summarize, we designed a programming framework work for IoT-enabled smart 

buildings. Two descriptive languages were proposed as the input interfaces for smart 

building users to define rules or policies to manage the building system. A smart 

building resource description schema was designed for system developers to publish 

available resources of smart buildings in a format that both machine and human can 

understand. It is also can be used by resource discovery protocols to build resource 

repository automatically. A set of tools was implemented to assist users in writing 

policies and translated them into executable code. Some important issues (e.g., Rule 

conflict resolution, building resource management protocols) weren‘t addressed in this 

thesis. We will study them in future publications. 

From the perspective of a building as a distributed hardware computer, we can also 

regard the IoT as a huge distributed hardware computer. The embedded operating 

systems inside the constituent devices constitute a huge distributed operating system for 

IoT. People are living inside this ―computer‖; therefore, we have to enable them to 

program their surrounding environment. Thus, as with classic computers, resource 

abstraction and simpler programming languages have to be provided to help those 

ordinary users to interact with surrounding devices. We intend to extend this framework 

the entire IoT in the future. 
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APPENDIX 1: SMART BUILDING RESOURCE DESCRIPTION 

SCHEMA 

Smart Building Resource Description Schema 

(SBRDS) 

Authors Xiaohui Peng 

Laboratory Sakamura-Koshizuka Laboratory, The University of Tokyo 

Version 0.2 

Date February 2016 

1. Introduction 

Owing to the heterogeneous networks of smart buildings, developing automation 

applications for the building system is a very difficult job. To develop an automation 

application, the programmers have to know building physical structures, subsystems, 

device functionalities and the semantic relationship of internal objects. The Internet of 

Things has changed the application-programming paradigm of smart buildings, and 

information acquisition and appliance control become ubiquitous through the web-based 

open APIs. The application development process based on such integrated web-based 

service platform becomes easier than before. Therefore, IoT-enabled smart buildings 

become a homogeneous platform with a programmable architecture. As a result, the 

heterogeneous networks are hidden by web-based remote APIs, and only data access 

and device control interfaces are exposed to automation applications. 

To enable users to program with smart buildings, we design a resource description 

schema called SBRDS for smart buildings which abstracts building resources to provide 

programming supports for upper-layer users. Currently, the SBRDS is mainly designed 

for EDPL [45] which is a user-friendly energy control policy description language for 
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IoT-enabled smart buildings. 

1.1 Objective 

The main target users of SBRDS are system developers who develop web services, 

especially RESTFul APIs for public access and control of smart buildings. The parsed 

information from SBRDS can provide suggestions to users for using available resources 

when they write control policies for the smart building systems. The following 

information should be included in the SBRDS: 

 human readable resource representation;  

 describes details of web services, especially RESTful APIs. User described 

expressions should be able to be translated into executable code that can invoke 

web services which are issued by system developers. 

 describes semantic relations of spaces, objects and services; and 

 models the inside objects and spaces. 

1.2 Terminology 

This specification defines the main terminologies as the following table: 

Space Rooms, corridors, halls, etc. 

Appliance All inside devices. 

Service Web services, access and control interfaces of the building system. 

Attribute String values that represent features of a space or an object. 

Resource Spaces, objects, services, etc. 

REST Representational state transfer [38]. 

2. Design 

2.1 Overview 

Basically, there are four main elements in the SBRDS: <building>, <floor>, <space> 

and <appliance>. Attributes and <functions> are required for each element. They are 

described in Key-Value pairs. Keys are the semantic description of an attribute or 

service of a space or object for upper-layer users to refer. The ―index‖ and ―ucode‖ 
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[109] attributes are required for every space or object. 

index: for upper-users to refer to an element; 

ucode: the unique identifier for an object, location, concept in a building. 

The SBRDS describes resources in the XML or YAML format. We only give 

examples in the XML format in this specification. There are mainly four types of 

information in SBRDS. 

Semantic relations of spaces and objects: it describes relations such as the semantic 

position of a sensor or an appliance, building structures and so forth. 

Attributes of spaces and objects: attributes are Key-Value pairs which represent the 

properties of a space or an object. The ―identifier‖ (we use ucode [109] to identify 

objects and spaces in this specification) is a unique identification for a space or an 

object in the building systems. The ―index‖ attribute is a semantic reference for a space 

or an object. These two attributes are required for each element in the SBRDS. 

Service list: services of a space or object are described as the attributes of the 

<functions> element in the form of Key-Value pairs. The <functions> element is a 

sub-element of the <building>, <floor>, <space>, and <appliance>. 

Detailed description of services: the description of a service includes a return type, 

a function ID and parameters.  The attributes of <parameter> element consist of a 

name, a data-type, and an index property. The ―index‖ property indicates the position of 

the parameter in the parameter list. It is encouraged to add a ―description‖ attribute, 

which describes the explanation of a <function> or <parameter>. 

2.2 Elements 

2.2.1 Building 

<building> is the top element of SBRDS. The attributes of <building> element 

describe properties of it. For example, the ―name‖ attribute of the <building> element in 

the following figure shows that the name of the building is ―Daiwa Ubiquitous 

Computing Research Building‖. The inner element <functions> lists all the available 

service of the building layer. The value of an attribute of <functions> is the function ID 

that we defined in the DCRDL specification [111]. 
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2.2.2 Floor 

<floor> is the sub-element of <building>. It describes all the related information of 

the floor layer. 

 

2.2.3 Space 

<space> is the sub-element of <floor>. It describes all the related information of the 

space layer. 
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2.2.4 Appliance 

<appliance> is a sub-element of <building>, <floor> or <space> elements. It 

describes all the related information of a device. 

 

2.2.5 sbapi 

The <sbapi> element describes details of all the available services that the target 

building can provide. It consists of multiple <function> elements which describe the 

structure of services such as function id, return-type, description, and the <parameter> 

sub-element. 
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APPENDIX 2: EPDLPARSER.JJT 

/** 

 * JJTree template file created by SF JavaCC plugin 1.5.28+ wizard for JavaCC 1.5.0+ 

 */ 

options 

{ 

  STATIC=false; 

  NODE_CLASS="PdlNode"; 

} 

PARSER_BEGIN(PdlParser) 

package org.skl.pdl.parser; 

public class PdlParser 

{ 

  public static void main(String args []) 

  { 

    System.out.println("Reading from standard input..."); 

    System.out.print("Enter an expression like ¥"1+(2+3)*var;¥" :"); 

    PdlParser parser = new PdlParser(System.in); 

    try 

    { 

      SimpleNode n = parser.Start(); 

      n.dump(""); 

      System.out.println("Thank you."); 

    } 

    catch (Exception e) 

    { 

      System.out.println("Oops."); 

      System.out.println(e.getMessage()); 

    } 

  } 

} 

PARSER_END(PdlParser) 

SKIP : 

{ 

  " " 

| "¥t" 

| "¥n" 

| "¥r" 

| < "//" (~[ "¥n", "¥r" ])* 

    ( 

      "¥n" 

    | "¥r" 

    | "¥r¥n" 

    ) > 

| < "/*" (~[ "*" ])* "*" 

    ( 

      ~[ "/" ] (~[ "*" ])* "*" 

    )* 

    "/" > 

} 
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TOKEN : /* Keywords*/ 

{ 

  < POLICY:"policy"> 

  | < RULE:"rule"> 

  | < WHEN:"when"> 

  | < THEN:"then"> 

  | < INT:"int"> 

  | < FLOAT:"float"> 

  | < FOREACH:"foreach"> 

  | < WITHIN:"within"> 

  | < IF:"if"> 

  | < CHAR: "char" > 

  | < BYTE: "byte" > 

  | < EXTENDS: "extends" > 

  | < SUPER: "super" > 

  | < DOUBLE: "double" > 

  | < BOOLEAN: "boolean" > 

  | < BREAK: "break" > 

  | < FALSE: "false" > 

  | < FOR: "for" > 

  | < LONG: "long" > 

  | < NULL: "null" > 

  | < SHORT: "short" > 

  | < THIS: "this" > 

  | < TRUE: "true" > 

  | < BUILDING: "Building"> 

} 

TOKEN : /* LITERALS */ 

{ 

  < INTEGER_LITERAL : 

    < DECIMAL_LITERAL > ([ "l", "L" ])? 

  | < HEX_LITERAL > ([ "l", "L" ])? 

  | < OCTAL_LITERAL > ([ "l", "L" ])?  

    > 

| < #DECIMAL_LITERAL : [ "1"-"9" ] ([ "0"-"9" ])* > 

| < #HEX_LITERAL : "0" [ "x", "X" ] ([ "0"-"9", "a"-"f", "A"-"F" ])+ > 

| < #OCTAL_LITERAL : "0" ([ "0"-"7" ])* > 

| 

  < FLOATING_POINT_LITERAL: 

        (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)? (["f","F","d","D"])? 

      | "." (["0"-"9"])+ (<EXPONENT>)? (["f","F","d","D"])? 

      | (["0"-"9"])+ <EXPONENT> (["f","F","d","D"])? 

      | (["0"-"9"])+ (<EXPONENT>)? ["f","F","d","D"] 

  > 

| 

  < #EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ > 

| 

  < CHARACTER_LITERAL: 

      "'" 

      (   (~["'","¥¥","¥n","¥r"]) 

        | ("¥¥" 

            ( ["n","t","b","r","f","¥¥","'","¥""] 

            | ["0"-"7"] ( ["0"-"7"] )? 

            | ["0"-"3"] ["0"-"7"] ["0"-"7"] 
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            ) 

          ) 

      ) 

      "'" 

  > 

| 

  < STRING_LITERAL: 

      "¥"" 

      (   (~["¥"","¥¥","¥n","¥r"]) 

        | ("¥¥" 

            ( ["n","t","b","r","f","¥¥","'","¥""] 

            | ["0"-"7"] ( ["0"-"7"] )? 

            | ["0"-"3"] ["0"-"7"] ["0"-"7"] 

            ) 

          ) 

      )* 

      "¥"" 

  > 

} 

 

TOKEN : /* sign */ 

{ 

  < COMMA:"," > 

  |< SEMICOLON:";"> 

  |< LPAR:"("> 

  |< RPAR:")"> 

  |< ASSIGN:"="> 

  |< LSBRA:"["> 

  |< RSBRA:"]"> 

  |< LBRA:"{"> 

  |< RBRA:"}"> 

  |< EQU:"=="> 

  |< NEQ:"!="> 

  |< GTR:">"> 

  |< GEQ:">="> 

  |< LSS:"<"> 

  |< LEQ:"<="> 

  |< NOT:"!"> 

  |< AND:"&&"> 

  |< OR:"||">  

} 

TOKEN : /* IDENTIFIERS */ 

{ 

  < IDENTIFIER : 

    < LETTER > 

    ( 

      < LETTER > 

    | < DIGIT > 

    )* > 

| < #LETTER : [ "_", "a"-"z", "A"-"Z" ] > 

| < #DIGIT : [ "0"-"9" ] > 

} 

SimpleNode Start() : 

{} 
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{ 

  < POLICY >< IDENTIFIER >< LBRA > 

  ( 

    PolicyAttributeDefine() 

  | Rule() 

  | RuleForeach() 

  )* 

  < RBRA > 

  < EOF > 

  { 

    return jjtThis; 

  } 

} 

 

void VariableDeclaration() : 

{} 

{ 

  ((< INT > 

 | < FLOAT>)["[]"]) Identifier()(< COMMA >Identifier())* 

} 

void VariableAssignment() : 

{} 

{ 

  < IDENTIFIER >("."< IDENTIFIER >)* < ASSIGN > (< INT >|< FLOAT >|< STRING_LITERAL >) 

} 

 

void PolicyAttributeDefine() : 

{Token t;} 

{ 

  < POLICY >"."t=< IDENTIFIER > {jjtThis.value = String.valueOf(t.image); } 

   < ASSIGN > (t=< INT >{jjtThis.value += "="+Integer.valueOf(t.image); } 

   |t=< FLOAT >{jjtThis.value += "="+Float.valueOf(t.image); } 

   |t=< STRING_LITERAL >{String temp = String.valueOf(t.image);jjtThis.value += "="+temp.substring(1, 

temp.length()-1);}) 

} 

 

void Rule() : 

{} 

{ 

  < RULE > Identifier() < WHEN > < LBRA > ConditionSet() < RBRA > < THEN > < LBRA > ActionSet() < 

RBRA > 

} 

/*  ConditionSet  */ 

void ConditionSet() : 

{} 

{ 

  OrCondition() 

} 

 

String RelationSign() : 

{Token t;} 

{ 

  ( t=< EQU >{jjtThis.value = String.valueOf(t.image); return t.image;} 

  |t=< NEQ >{jjtThis.value = String.valueOf(t.image); return t.image;} 
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  |t=< GTR >{jjtThis.value = String.valueOf(t.image); return t.image;} 

  |t=< GEQ >{jjtThis.value = String.valueOf(t.image); return t.image;} 

  |t=< LSS >{jjtThis.value = String.valueOf(t.image); return t.image;} 

  |t=< LEQ >{jjtThis.value = String.valueOf(t.image); return t.image;} 

  |t=< NOT >{jjtThis.value = String.valueOf(t.image); return t.image;} ) 

} 

 

/*  ActionSet  */ 

void ActionSet() : 

{} 

{ 

  (SbaApi())+ 

| (ActionSetForeach())* 

//  (Expression())+ 

} 

void RuleForeach() : 

{} 

{ 

  < FOREACH > Identifier() < WITHIN > SbaApi() < LBRA > (IfStatement()|Rule())+ < RBRA > 

} 

void IfStatement() : 

{} 

{ 

  < IF >< LPAR >ConditionSet()< RPAR >< LBRA > (Rule()|RuleForeach())+< RBRA > 

} 

void ActionSetForeach() : 

{} 

{ 

  < FOREACH > Identifier() < WITHIN > SbaApi() < LBRA > (SbaApi())+ < RBRA > 

} 

void OrCondition() : 

{Token t;} 

{ 

  AndCondition()(t=< OR >{jjtThis.value = String.valueOf(t.image);} AndCondition())* 

} 

void AndCondition() : 

{Token t;} 

{ 

  Condition()(t=< AND >{jjtThis.value = String.valueOf(t.image);} Condition())* 

} 

void Condition() : 

{} 

{ 

  (< LPAR >OrCondition() < RPAR >|UnaryExpression())(RelationSign() Literal())* 

} 

void UnaryExpression() : 

{} 

{ 

  LOOKAHEAD(SbaApi())SbaApi() 

  |Identifier() 

} 

void SbaApi() : 

{} 

{ 
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  (< BUILDING >|MemberIdentifier())("."MemberIdentifier())* [Arguments()] 

 

} 

void MemberIdentifier() : 

{} 

{ 

  Identifier()[< LSBRA >Literal()< RSBRA >]  

} 

void Literal(): 

{Token t;} 

{ 

  t=< INTEGER_LITERAL > {jjtThis.value = Long.valueOf(t.image);} 

  |t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);} 

  |t=<CHARACTER_LITERAL> {jjtThis.value = String.valueOf(t.image);} 

  |t=<STRING_LITERAL> {String temp = 

String.valueOf(t.image).replaceFirst("¥"","");jjtThis.value=temp.substring(0, temp.length()-1);} 

} 

void Arguments(): 

{} 

{ 

  < LPAR > [ Literal() ( "," Literal() )* ] < RPAR > 

} 

void Identifier() : 

{Token t;} 

{ 

  t=< IDENTIFIER >{jjtThis.value = String.valueOf(t.image);} 

} 

void Number() : 

{Token t;} 

{ 

  t=< INTEGER_LITERAL > {jjtThis.value = Long.valueOf(t.image);} 

  |t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);} 

} 

void Integer() : 

{Token t;} 

{ 

  t=< INTEGER_LITERAL > {jjtThis.value = Double.valueOf(t.image);} 

} 

void Float() : 

{Token t;} 

{ 

  t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);} 

} 
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APPENDIX 3: THREE CONTROL POLICIES WRITTEN IN 

DCRDL 

1. Peak Consumption Control Policy 

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:1" 

     PolicyName="Peak Electricity Consumption Control" 

     Period="900" Priority="98"> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-building-electricity-consumption"> 

      <Parameter Value="00:15:00" 

           DataType="http://www.w3.org/2001/XMLSchema#string" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than"> 

     <Parameter Value="0.60" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" > 

      <Parameter> 

       <Function FunctionId= 

"org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature-with-ac-on" /> 

      </Parameter> 

      <Parameter Value="on" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status"> 

      </Parameter> 

     </Function> 

    </Target> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease"> 

     <Parameter Value="2" 

             DataType="http://www.w3.org/2001/XMLSchema#integer" /> 

    </Function>     

   </Action> 

  </ActionSet> 

 </Rule> 

  <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 
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     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-electricity-consumption"> 

      <Parameter Value="X0001C000000000000020000000D649" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

      <Parameter Value="00:15:00" 

           DataType="http://www.w3.org/2001/XMLSchema#string" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than"> 

     <Parameter Value="0.20" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="00001C000000000000020000000D448A,00001C000000000000020000000D448B, 

00001C000000000000020000000D448C,00001C000000000000020000000D448D"  

            DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-light-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

  <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint"> 

      <Parameter Value="X0001C000000000000020000000D640" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal"> 

     <Parameter Value="22.00" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D640"  

            DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:4" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint"> 

      <Parameter Value="X0001C000000000000020000000D641" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 
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    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal"> 

     <Parameter Value="22.00" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D641"  

            DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:5" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint"> 

      <Parameter Value="X0001C000000000000020000000D642" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal"> 

     <Parameter Value="22.00" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D642"  

            DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:6" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint"> 

      <Parameter Value="X0001C000000000000020000000D643" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal"> 

     <Parameter Value="22.00" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 
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2. Step Tariffs Policy 

    <Target TargetId="X0001C000000000000020000000D643"  

            Datatype="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

</Policy> 

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:2" 

     PolicyName="step tariffs policy" 

     Period="900" Priority="97"> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >  

  <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" /> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="500" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" /> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than"> 

     <Parameter Value="1000" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list"> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" > 

      <Parameter> 

       <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" /> 

      </Parameter> 

      <Parameter Value="on" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status"> 

      </Parameter> 

     </Function> 

    </Target> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease" > 

     <Parameter Value="2"  

          DataType="http://www.w3.org/2001/XMLSchema#float" /> 

    </Function>  
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   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" /> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="1000" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list"> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" > 

      <Parameter> 

       <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" /> 

      </Parameter> 

      <Parameter Value="on" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status"> 

      </Parameter> 

     </Function> 

    </Target> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />  

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >  

  <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" /> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="1000" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity"> 

      <Parameter Value="X0001C000000000000020000000D648" 

          DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode"/> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than"> 

     <Parameter Value="30.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 
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3. Discomfort Index Control Policy 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D540" 

      DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-off" />  

   </Action> 

  </ActionSet> 

 </Rule> 

  <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" /> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="1500" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="00001C000000000000020000000D448A,00001C000000000000020000000D448B, 

00001C000000000000020000000D448C,00001C000000000000020000000D448D"  

            DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-light-off" />     

   </Action> 

  </ActionSet> 

 </Rule> 

</Policy> 

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:3" 

     PolicyName="Discomfort Index Control Policy" 

     Period="300" Priority="99"> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >  

  <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="21.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

   <Condition> 

    <Subject> 
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     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal"> 

     <Parameter Value="24.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D640,X0001C000000000000020000000D641" 

         DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />       

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >  

  <ConditionSet> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal"> 

     <Parameter Value="23.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D640,X0001C000000000000020000000D641" 

         DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on" />      

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >  

  <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than"> 

     <Parameter Value="42.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 
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    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D540" 

         DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on" />    

   </Action> 

  </ActionSet> 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:4" >  

  <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than"> 

     <Parameter Value="21.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

   <Condition> 

    <Subject> 

     <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity"> 

      <Parameter Value="X0001C000000000000020000000D648" 

           DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

     </Function> 

    </Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than"> 

     <Parameter Value="45.0" 

          DataType="http://www.w3.org/2001/XMLSchema#float"/> 

    </Function> 

   </Condition> 

  </ConditionSet> 

  <ActionSet> 

   <Action> 

    <Target TargetId="X0001C000000000000020000000D540" 

         DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-off" />  

   </Action> 

  </ActionSet> 

 </Rule> 

</Policy> 
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1. Introduction 

Ubiquitous computing describes a vision that all kinds of devices are connected in ―a 

loosely-coupled manner‖ [31] to provide a smart environment that can automatically 

adapt to users‘ behaviors. A smart building is a typical implementation of the ubiquitous 

computing. ―The ideal application scenario for smart buildings considers the user as the 

focus of a pervasive environment augmented with sensors and actuators where an 

intelligent system monitors environmental conditions and takes the proper actions to 

satisfy users‘ requirements‖ [33]. Devices are becoming smarter in the age of the 

Internet of Things and fine-grained environment information can be collected and 

shared by the connected devices that deployed in smart buildings. 

The complexity of the management system of smart buildings keeps growing dues to 

the advancements of technology. In order to efficiently manage smart devices to 

optimize energy efficiency, smart devices should be operated diversely according to the 

real-time context. Users should be able to perform the personalized, precise, flexible 

and collaborative controls based on various contexts in the building systems. Therefore, 

we designed a rule definition language called DCRDL for context-based device control 

in smart buildings. Using DCRDL, users can write fine-grained device control rules to 
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control device behaviors to adapt to the context. The energy efficiency will be 

potentially improved by writing personalized, precise control rules using DCRDL to 

control building systems. 

2. Language Model 

The elements of DCRDL are: 

 Policy; 

 Rule; 

 ConditionSet; 

 Condition 

 ActionSet 

 Action 

 Subject 

 Target 

 Function 

 Parameter 

2.1 Basic Rules 

 A rule consists of a ConditionSet and an ActionSet; 

 ConditionSet contains one or more conditions; 

 Condition consists of a subject, comparison function; 

 The action section contains one or more actions, and all the actions should be 

executed when the corresponding ConditionSet is evaluated to be true; 

 An action consists of targets and action functions; 

 Conditions should be wrapped up by the <ConditionSet> tag, and a 

―CombineMethod‖ attribute in ConditionSet indicates the relationship of the 

conditions in this ConditionSet. 



A Programming Framework for Automatic Management of IoT-enabled Smart Buildings 

Peng Xiaohui - March 2016   135 

 Function elements describe the details of functions that defined in the section six of 

this specification. Functions will increase gradually with the increasing available 

public services of smart buildings. We believe that more and more building 

functions will be exposed through web-based APIs in the near future. More 

functions will be defined in future versions of this specification. 

2.2 Elements 

Policy 

Multiple rules constitute a policy which generally used to achieve a certain control 

goal. The policy is interpreted as an agent that running in the policy agent system of the 

proposed programming framework. Several attributes are defined in the <policy> 

element: 

PolicyId MUST The ID of a policy. 

PolicyName OPTIONAL The name of the policy. 

Period OPTIONAL An integer value that indicates the polling cycle of the policy in 

seconds. If Mode is set to “event”, this attribute should be ignored by 

the interpreter. 

Priority MUST An integer value that indicates the priority of the policy agent. 

Mode MUST The running mode of the policy. There are two types of models 

defined in DCRDL: “polling” and “event” and the default model is 

polling. The event mode means that the policy will be triggered by an 

event from the building system. For example, if a rule defined in a 

policy concerns the temperature of a room, the policy should be 

triggered when the temperature of that room changed. 

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:1" 

       PolicyName="Discomfort Index Control Policy" 

       Period="900" 

       Mode="polling"> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" priority="">  

  ... 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" priority="">  

  ... 

 </Rule> 

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" priority="">  

  ... 

 </Rule> 

</Policy> 
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Rule 

A rule is the basic element of DCRDL. It follows the CSAS (i.e., 

ConditionSet-ActionSet) format. In other words, a DCRDL rule consists of a 

ConditionSet and an ActionSet. When the ConditionSet is evaluated to be true, the 

actions defined in ActionSet should be executed. The priority is designed for the rule 

conflicting resolution issue in the future. 

ConditionSet 

The ConditionSet consists of multiple conditions and a ―CombineMethod‖ attribute 

indicates the relation between the inner conditions. The ConditionSet is designed 

recursively to represent the complex context in smart buildings. 

 

CombineMethod ―and‖, ―or‖. The default value is ―or‖. 

 

<ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

<Condition>A</Condition> 

<ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:or"> 

<Condition>B</Condition> 

<Condition>C</Condition> 

</ConditionSet> 

</ConditionSet> 

 

The above code of ConditionSet represents the logical combination: 

A ∧ ( B ∨ C ) 

 

<Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" priority="">  

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and"> 

  <Condition>...</Condition> 

  <ConditionSet>...</ConditionSet> 

 </ConditionSet> 

 <ActionSet> 

  <Action>...</Action> 

  <Action>...</Action> 

 </ActionSet> 

</Rule> 
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Condition 

A condition consists of a <Subject> element and a <Function> element. <Subject> 

contains a <Function> element which gets information from the building system. For 

example, get-space-temperature function in a <Subject> element refers to the service of 

obtaining the temperature of a space. The comparison <Function> in a condition with a 

parameter is responsible for evaluating the condition. 

 

The above code represents the logical expression that the temperature of the room  

identified by the ucode ―00001C000000000000020000000D648‖ is larger than 26 
°
C. 

When the temperature of this room exceeds 26 
°
C, this condition is evaluated to be true. 

ActionSet 

ActionSet in a rule defines the actions of related devices which should be executed 

when the corresponding ConditionSet is evaluated to be true. It contains multiple 

actions. 

Action 

The <Action> element defines an action for one or multiple devices. The inner 

TargetID can be plural. For example, we can define an action that turns off all the air 

conditioners whose set-point is less than 20 
°
C. The following code represents that 

increases the set-point of air conditioner: 00001C000000000000020000000D448A by 

1 
°
C. 

<Condition> 

  <Subject> 

    <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature"> 

      <Parameter Value="00001C000000000000020000000D648" 

DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" /> 

    </Function> 

  </Subject> 

  <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-larger-than"> 

    <Parameter Value="26" DataType="http://www.w3.org/2001/XMLSchema#float"/> 

  </Function> 

</Condition> 
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Function 

The <Function> element describes the details of a service. The function is also 

designed recursively. The following code represents that get-acs-by-spaces service uses 

the return value of get-space-by-highest-temperature service as the parameter to get 

ucodes of air conditioners in the room where the temperature is highest of the building. 

A function contains a FunctionId attribute and several <Parameter> elements. The 

<Parameter> element consists of a ―Value‖ and a ―DataType‖ attribute. Functions are 

the main functional elements of DCRDL. They are classified into three categories: 

 Comparison Function 

These functions are used in the condition section. The specified environment 

parameter (e.g., temperature) and the given value in <Parameter> element are compared 

by comparison functions to evaluate a condition is true or not. For example, the 

―float-larger-than‖ function can compare the temperature of target space with the given 

value. 

 Information Obtaining Function 

Information obtaining functions are used in both conditions and actions. These 

functions fetch the information from the environment. 

 Action Function 

Action functions describe the device control services such as turn on/off lights and 

<Action> 

<Target TargetID="org:sakamura-lab:names:dcrdl:1.0:ucode:00001C000000000000020000000D448A" 

DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode"/> 

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-increase"> 

<Parameter Value="1" DataType="http://www.w3.org/2001/XMLSchema#integer"/> 

</Function> 

</Action> 

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" > 

<Parameter DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list"> 

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" /> 

</Parameter> 

</Function> 
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change the set-point of an air conditioner. 

3. Code Examples 

We have written three policies named ―Peak Consumption Control‖, ―Step tariffs‖ 

and ―Discomfort Index Control‖ using DCRDL and showed them in appendix 3. 

4. Implementation Conventions 

4.1 Running Mode 

We define two running modes for an agent in the Policy Agent System: 

Polling: the policy agent will run periodically, the polling period is specified by 

period attribute of the policy element. Policy agent will check inside rules one by one. If 

context part of the rule is evaluated to be true, corresponding actions should be 

performed. 

Event-driven: When a condition of the ConditionSet of a rule is changed, the rule 

should be re-evaluated by the policy agent. The event-driven mode needs the 

eventing-support from the lower building data platform. 

4.2 Interpreter 

The interpreter translates policies into policy agents (i.e., threads in procedural 

languages). The period attribute in the policy element indicates the polling cycle of this 

agent if the mode attribute is set to ―polling‖. The policy agent checks all the rules 

defined within it in every cycle or upon receiving an event. When the ConditionSet of a 

rule is evaluated to be true, the actions defined in the ActionSet are executed. A key 

component of the interpreter is the Smart Building API Modeling component. It is 

responsible for translating the descriptive expressions into a piece of executable code 

which invokes smart building APIs to get information and control devices in the 

building. 

4.3 Rule Optimization 

A critical issue called rules conflicting resolution is not discussed in this specification. 

Many algorithms have proposed to address it. A rule optimizer should be implemented 
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for detecting conflicts and duplications. We will deal with this problem in future 

versions of this specification. 

5. Data types 

 http://www.w3.org/2001/XMLSchema#string 

 http://www.w3.org/2001/XMLSchema#boolean 

 http://www.w3.org/2001/XMLSchema#integer 

 http://www.w3.org/2001/XMLSchema#float 

 http://www.w3.org/2001/XMLSchema#time 

 http://www.w3.org/2001/XMLSchema#date 

 http://www.w3.org/2001/XMLSchema#dateTime 

 org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

 org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

6. Functions 

All the functions share a prefix: ―org:sakamura-lab:names:dcrdl:1.0:function‖. The 

functions currently defined in DCRDL are listed as follows: 

6.1 Comparison Function 

Comparison functions only have two parameters. It returns a boolean value which 

represents the result of logical comparison of the two parameters. 

 org:sakamura-lab:names:dcrdl:1.0:function:integer-equals 

 org:sakamura-lab:names:dcrdl:1.0:function:integer-greater-than 

 org:sakamura-lab:names:dcrdl:1.0:function:integer-greater-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:integer-less-than 

 org:sakamura-lab:names:dcrdl:1.0:function:integer-less-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:float-equals 
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 org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than 

 org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:float-less-than 

 org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:string-equals 

 org:sakamura-lab:names:dcrdl:1.0:function:string-greater-than 

 org:sakamura-lab:names:dcrdl:1.0:function:string-greater-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:string-less-than 

 org:sakamura-lab:names:dcrdl:1.0:function:string-less-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:time-equals 

 org:sakamura-lab:names:dcrdl:1.0:function:time-greater-than 

 org:sakamura-lab:names:dcrdl:1.0:function:time-greater-than-or-equal 

 org:sakamura-lab:names:dcrdl:1.0:function:time-less-than 

 org:sakamura-lab:names:dcrdl:1.0:function:time-less-than-or-equal 

6.2 Information Obtaining Function 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

  Description: the discomfort index value of the target space. 

  Data type: http://www.w3.org/2001/XMLSchema#float 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 
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-Return 

  Description: the temperature of the target space 

Data type: http://www.w3.org/2001/XMLSchema#float 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-occupancy 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

  Description: Boolean value indicates if there is a person in the target space or not. 

Data type: http://www.w3.org/2001/XMLSchema#boolean 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

  Description: the humidity value of the target space. 

Data type: http://www.w3.org/2001/XMLSchema#float 

 org:sakamura-lab:names:dcrdl:1.0:function:get-electricity-consumption 

-Parameter 1 

Description: list of ucode of the target spaces. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list 

-Parameter 2 

Description: time interval. Ex.―00:30:00‖ means the last 30 minutes. 

Data type: http://www.w3.org/2001/XMLSchema#string 

-Return 

  Description: the electricity consumption of the rooms in a time interval. 

The unit of the return value is ―kWh‖. 

Data type: http://www.w3.org/2001/XMLSchema#float 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-lowest-temperature 

-Parameter 1: 
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Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: ucode of the space where the temperature is lowest. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: ucode of the space where the temperature is highest. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-lowest-humidity 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: ucode of the space where the humidity is lowest. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-humidity 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: ucode of the space where the humidity is highest. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-lowest-humidity 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 
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-Return 

Description: the string of ucodes for the target devices that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-highest-humidity 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: the string of ucodes for the target devices that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-lowest-temperature 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: the string of ucodes for the target devices that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-highest-temperature 

-Parameter 1: 

Description: list of ucodes of spaces. If not given, search the building. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

-Return 

Description: the string of ucodes for the target devices that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-space 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: ucode list of the target devices in the string format that split by commas. 
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Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-space 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: ucode list of the target devices in the string format that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-space 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: ucode list of the target devices in the string format that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-lights-by-space 

-Parameter 1 

Description: ucode of the target space. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: ucode list of the target devices in the string format that split by commas. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price 

-Parameter: None 

-Return 

Description: the real time electricity price of the building. 

Data type: http://www.w3.org/2001/XMLSchema#float. 

6.3 Action Function 

 org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on 
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-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on-with-setpoint 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Parameter 2 

Description: the set-point. 

Data type: http://www.w3.org/2001/XMLSchema#float 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 
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 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-light-on 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-light-off 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Parameter 2 

Description: decrement. 

Data type: http://www.w3.org/2001/XMLSchema#float 

-Return 

Description: error code of the control action. 
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Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-increase 

-Parameter 1 

Description: ucode of the target device. 

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode 

-Parameter 2 

Description: increment. 

Data type: http://www.w3.org/2001/XMLSchema#float 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:find-devices-with-lower-operation-priority 

-Parameter 1: 

Description: list of ucodes of target spaces. If empty string is given, search the building. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list 

-Parameter 2: 

Description: integer value indicates how many devices should be returned. 

Data type: http://www.w3.org/2001/XMLSchema#integer 

-Return 

Description: ucode list of devices whose operation priorities are highest. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list 

 org:sakamura-lab:names:dcrdl:1.0:function:turn-on-off-device 

-Parameter 1: 

Description: ucode of the target device. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode 

-Parameter 2: 

Description: on/off. 

Data type: http://www.w3.org/2001/XMLSchema#string 

-Return 

Description: error code of the control action. 
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Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:turn-down-device 

-Parameter 1: 

Description: ucode of the target device. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode 

-Parameter 2: 

Description: the decrement of control target (i.e., set-point of air conditioner). 

Data type: http://www.w3.org/2001/XMLSchema#integer 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 

 org:sakamura-lab:names:dcrdl:1.0:function:turn-up-device 

-Parameter 1: 

Description: ucode of the target device. 

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode 

-Parameter 2: 

Description: the increment of control target (i.e., set-point of air conditioner). 

Data type: http://www.w3.org/2001/XMLSchema#integer 

-Return 

Description: error code of the control action. 

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed. 


