

博 士 論 文

A Programming Framework for Automatic Management

of IoT-enabled Smart Buildings

（IoT-enabledスマートビルの自動管理のためのプログラミングフレームワーク）

彭 晓 晖

(Peng Xiaohui)

ABSTRACT

In recent times, with the development of advanced technologies, the connectivity of

devices has significantly improved in smart buildings. Remote data access and device

control are enabled through open RESTful interfaces and the application paradigm has

changed as a result of interface unification. Further, the smart building has become a

programmable architecture that can now be regarded as a distributed-hardware computer.

Consequently, residents can now be regarded as users who will become a constant part

of the smart environment in the near future.

Meanwhile, improving energy efficiency is a major issue in building automation.

Energy efficiency involves several sub-factors, such as energy consumption, human

comfort, and productivity. The factor(s) that needs to be addressed first depends on the

specific real-time context. Building automation applications usually have to make

compromises among these factors. Therefore, it is important to design a programming

environment for such a ―computer‖ to perform personalized, precise, and collaborative

control as we did in classic computers for smart buildings. However, these users are

usually ordinary people who are not good at programming or may not be familiar with

the target building. Describing available services and providing an easier programming

environment for these users is a significant challenge.

State-of-the-art protocol suites such as 6LoWPAN and CoAP connect constrained

devices to the Internet. With RESTful open APIs, the heterogeneous networks in smart

buildings have become homogeneous, resulting in such a building becoming a

programmable architecture. Further, devices from different subsystems now cooperate

very easily. However, a unified lightweight distributed programming framework for

personalized, precise, flexible, and collaborative control of smart buildings is needed.

Consequently, we propose a programming framework for automatic management of

smart buildings that addresses these issues. This framework abstracts and hides

lower-layer building structure and service details and provides descriptive automatic

management languages for smart building users such as building administrators, IT

managers, facility managers, and developers. A building resource description schema is

also provided to enable these users to refer to services when writing management

policies using proposed descriptive languages.

We evaluated the proposed framework via field experiments in the Daiwa Ubiquitous

Computing Research Buildings (DUCRB). Several energy management policies were

written using the proposed framework. Prototypes of supporting tools were also

implemented to provide an efficient programming environment for smart buildings. The

results demonstrate that the proposed framework enables the users to develop efficient

automatic management applications in IoT-enabled smart buildings.

The main contributions of this research include two descriptive languages for

automatic management of IoT-enabled smart buildings, a smart building resource

representation schema for describing the available resources in a building, and tools

such as compiler, interpreter, and programming language editor to simplify the

programming process for smart building users.

ACKNOWLEDGMENTS

First and foremost, I would like to express my special appreciation and thanks to my

supervisor, Professor Ken Sakamura, Graduate School of Interdisciplinary Information

Studies, The University of Tokyo, for the valuable guidance, motivation, and consistent

encouragement I received throughout this research. I was constantly motivated by the

joy and enthusiasm he has for his research, even during difficult times in my Ph.D.

study. I will always remember the way he meticulously reviewed my papers. His advice

on both research and my career has been priceless. Having him as my Ph.D. supervisor

has been an honor, and he is the best supervisor I have ever met. It is impossible for me

to achieve this dissertation without his supervision.

I would also like to thank Professor Noboru Koshizuka, Graduate School of

Interdisciplinary Information Studies, The University of Tokyo, for his patience and

careful guidance during my Ph.D. study. He worked as co-supervisor during my Ph.D.

study and provided substantial support to my research. As a person with an amicable

and positive disposition, he has always made himself available to clarify my doubts,

although he has a very busy schedule every day. This thesis would likely not have been

possible without the unconditional support he gave to me.

I also gratefully acknowledge the daily support and collaboration for my research

received from Dr. Masahiro Bessho. We discussed research issues at the weekly

meetings and I received a lot of advice from him at various phases in this research. I

appreciate his enthusiasm, willingness, and patience very much during consultations on

my research papers. Many thanks to present and past members of the

Sakamura-Koshizuka laboratory—especially Dr. Takeshi Yashiro and Dr. Fahim Khan,

who gave me many insightful suggestions and comments during this research.

I am especially grateful for the funding received from The Graduate Program for

Social ICT Global Creative Leaders (GCL) at The University of Tokyo. I also obtained

many novel ideas that proved helpful in my research from seminars and workshops held

by GCL. Many thanks also go out to faculty members of our laboratory and department

for the support I received during my Ph.D. study.

 Finally, I would also like to thank the members of my Ph.D. committee for their

invaluable comments and feedback on the preliminary version of this thesis.

Contents

1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.1.1 Brief History of Building Automation ... 1

1.1.2 Building Automation System ... 4

1.1.3 IoT-enabled Smart Buildings ... 5

1.1.4 Descriptive Programming Languages ... 6

1.2 PROBLEMS ... 7

1.2.1 Energy Efficiency .. 7

1.2.2 Collaborative Control ... 7

1.2.3 Summary.. 8

1.3 OBJECTIVE .. 9

1.4 CHALLENGES .. 10

1.4.1 Resource Abstraction and Management .. 10

1.4.2 Simpler Programming Languages ... 11

1.5 SUMMARY ... 11

1.6 OUTLINE ... 12

2 RELATED WORK .. 13

2.1 PARADIGM SHIFT IN SMART BUILDINGS .. 13

2.2 UNIFIED INTERFACE FOR SMART BUILDINGS ... 14

2.2.1 Web-based Sensing .. 14

2.2.2 Web-based Access and Control Interface .. 15

2.3 RULE-BASED EXPERT SYSTEMS FOR BUILDING MANAGEMENT ... 17

2.3.1 Expert Systems .. 17

2.3.2 Existing Studies ... 17

2.3.3 Limitations .. 18

2.4 RESOURCE REPRESENTATION .. 19

2.5 PROGRAMMING LANGUAGES FOR SMART BUILDINGS ... 22

2.6 CONTRIBUTIONS .. 25

2.7 SUMMARY ... 26

3 PROPOSED SYSTEM .. 27

3.1 GENERAL ARCHITECTURE ... 27

3.2 TARGET USERS .. 28

3.3 APPLICATION SCENARIOS .. 28

3.4 WORKFLOW .. 30

3.5 NOVELTY... 32

3.5.1 Lightweight and Distributed Architecture ... 32

3.5.2 Collaborative Control ... 32

3.5.3 Personalized Control ... 33

3.5.4 Precise and Flexible Control ... 34

3.5.5 Building Resource Abstraction .. 35

4 FRAMEWORK DESIGN ... 37

4.1 DESIGN PRINCIPLE .. 37

4.2 POLICY AGENT SYSTEM (PAS) .. 38

4.2.1 Peak Demand Control ... 38

4.2.2 The Constraint Satisfaction Problem .. 39

4.2.3 Design of the Peak Demand Control Framework ... 40

4.3 DCRDL: DEVICE CONTROL RULE DEFINITION LANGUAGE .. 42

4.3.1 Motivation for DCRDL ... 42

4.3.2 Context-based Device Control .. 43

4.3.3 DCRDL Class Diagram .. 44

4.3.4 Elements of DCRDL .. 44

4.4 EPDL: ENERGY POLICY DESCRIPTION LANGUAGE ... 48

4.4.1 Motivation for EPDL... 49

4.4.2 Architecture ... 50

4.4.3 Smart Building Resource Description Schema .. 51

4.4.4 Elements of EPDL ... 53

4.4.5 EPDL Compiler ... 56

4.5 SUMMARY ... 58

5 SYSTEM IMPLEMENTATION .. 60

5.1 POLICY AGENT SYSTEM .. 60

5.1.1 Smart Building API ... 60

5.1.2 Local Java Library of the Smart Building API .. 63

5.1.3 Architecture of PAS .. 65

5.2 DCRDL .. 66

5.2.1 System Overview ... 66

5.2.2 Smart Building API Modeling ... 69

5.3 EPDL .. 73

5.3.1 Smart Building Resource Descriptor Parser ... 73

5.3.2 The EPDL Editor Plugin ... 74

5.3.3 EDPL Compiler ... 77

5.4 SUMMARY ... 78

6 EVALUATION ... 79

6.1 EVALUATION OF THE POLICY AGENT SYSTEM ... 80

6.1.1 Objective ... 80

6.1.2 Experimental Setup ... 80

6.1.3 Experiment .. 81

6.1.4 Result Analysis .. 82

6.2 EVALUATION OF DCRDL .. 83

6.2.1 Objective ... 83

6.2.2 Peak Consumption Control Policy .. 84

6.2.3 Tiered Electricity Pricing Policy ... 85

6.2.4 Discomfort Index (DI) Control Policy ... 87

6.2.5 Conclusion .. 88

6.3 EVALUATION OF EDPL .. 89

6.3.1 Objective ... 89

6.3.2 Readability .. 89

6.3.3 Writability .. 92

6.4 SUMMARY ... 93

7 FUTURE WORK... 94

7.1 CONFLICT RESOLUTION ... 94

7.2 RESOURCE MANAGEMENT FRAMEWORK .. 95

7.3 VISUAL PROGRAMMING .. 97

7.4 ACCESS CONTROL TO DATA AND SERVICES ... 99

8 CONCLUSION .. 101

9 REFERENCES .. 104

10 APPENDICES .. 113

APPENDIX 1: SMART BUILDING RESOURCE DESCRIPTION SCHEMA 114

APPENDIX 2: EPDLPARSER.JJT .. 119

APPENDIX 3: THREE CONTROL POLICIES WRITTEN IN DCRDL ... 125

APPENDIX 4: DCRDL SPECIFICATION .. 133

LIST OF TABLES

TABLE 2-1. STUDIES THAT USING ONTOLOGIES TO MODEL THE RELATIONSHIP OF BUILDING RESOURCES 20

TABLE 2-2. STUDIES OF SERVICE-CENTERED RESOURCE REPRESENTATION .. 21

TABLE 2-3. STUDIES FOR ENABLING END-USERS TO PROGRAM WITH THE SMART ENVIRONMENT 24

TABLE 3-1. COMPARISON OF OUR FRAMEWORK WITH THE RULE-BASED EXPERT SYSTEM 32

TABLE 5-1. STRUCTURE OF JSON DATA OF THE PUT REQUEST FOR CONTROLLING AIR CONDITIONERS 62

TABLE 5-2. JSON RESPONSE DATA AFTER QUERYING THE STATUS OF AN AIR CONDITIONER 63

TABLE 6-1. EXPERIMENTAL ENVIRONMENT OF PEAK DEMAND CONTROL FRAMEWORK 80

TABLE 6-2. PRE-DEFINED CONSTRAINTS OF THE PEAK DEMAND CONTROL FRAMEWORK 81

TABLE 6-3. LINES OF CODE FOR EACH POLICY IN DCRDL ... 83

TABLE 6-4. SIMULATED TIERED PRICING FOR ELECTRICITY ... 86

TABLE 6-5. PARAMETER DEFINITIONS OF DISCOMFORT INDEX CONTROL POLICY ... 87

TABLE 6-6. THE NUMBER OF CODE LINES OF EPDL AND DCRDL RULES .. 92

TABLE 7-1. EXAMPLE OF CONFLICT RULES .. 94

LIST OF FIGURES

FIGURE 1-1. ISOLATED SUBSYSTEMS; DEVICES IN DIFFERENT SYSTEMS CANNOT WORK IN A COLLABORATIVE

WAY .. 4

FIGURE 1-2. THE NEW PROGRAMMING PARADIGM OF IOT-ENABLED SMART BUILDINGS 6

FIGURE 2-1. AN IOT-ENABLED SMART BUILDING-DUCRB ... 16

FIGURE 2-2. TRIGGER-ACTION PROGRAMMING INTERFACES USED IN [50] ... 24

FIGURE 3-1. ARCHITECTURE OF THE PROPOSED FRAMEWORK ... 27

FIGURE 3-2. EXAMPLE APPLICATION SCENARIOS ... 29

FIGURE 3-3. THE WORKFLOW OF AN IF-THEN RULE IN THIS FRAMEWORK ... 30

FIGURE 4-1. SYSTEM OVERVIEW.. 37

FIGURE 4-2. ARCHITECTURE OF THE PEAK ELECTRICITY DEMAND CONTROL FRAMEWORK 40

FIGURE 4-3. DCRDL CLASS DIAGRAM .. 44

FIGURE 4-4. CODE EXAMPLE OF A POLICY IN DCRDL .. 44

FIGURE 4-5. CODE EXAMPLE OF A RULE IN DCRDL ... 45

FIGURE 4-6. CODE EXAMPLE OF A CONDITIONSET IN DCRDL .. 45

FIGURE 4-7. CODE EXAMPLE OF A CONDITION IN DCRDL .. 46

FIGURE 4-8. CODE EXAMPLE OF AN ACTION IN DCRDL ... 47

FIGURE 4-9. CODE EXAMPLE OF A FUNCTION IN DCRDL .. 47

FIGURE 4-10. THE ARCHITECTURE OF EPDL ... 50

FIGURE 4-11. AN EXAMPLE SMART BUILDING RESOURCE DESCRIPTOR IN THE XML FORMAT 51

FIGURE 4-12. EXAMPLE CODE OF A POLICY IN EPDL .. 54

FIGURE 4-13. EXAMPLE CODE OF A RULE IN EPDL .. 54

FIGURE 4-14. EXAMPLE CODE OF IF STATEMENT IN EPDL ... 55

FIGURE 4-15. EXAMPLE CODE OF A FOREACH STATEMENT IN EPDL .. 56

FIGURE 4-16. JJTREE GRAMMAR FOR CONDITION ELEMENT OF EDPL (EPDLPARSER.JJT) 57

FIGURE 4-17. JAVACC GRAMMAR FOR CONDITION ELEMENT OF EDPL (EPDLPARSER.JJ) 57

FIGURE 5-1. SMART BUILDING API ... 61

FIGURE 5-2. CLASS DEPENDENCY OF THE LOCAL JAVA LIBRARY FOR THE SMART BUILDING API 64

FIGURE 5-3. ARCHITECTURE OF THE PEAK DEMAND CONTROL FRAMEWORK ... 65

FIGURE 5-4. SOURCE TREE OF THE PEAK DEMAND CONTROL AGENT .. 66

FIGURE 5-5. ARCHITECTURE OF DCRDL .. 67

FIGURE 5-6. PACKAGE DEPENDENCY OF DCRDL .. 68

FIGURE 5-7. SAMPLE DCRDL CODE OF A CONDITION ... 70

FIGURE 5-8. PART OF JAVA CODE OF THE COMPARISONFUNCTION CLASS ... 71

FIGURE 5-9. PART OF JAVA CODE OF THE INFOOBTAINFUNCTION CLASS .. 72

FIGURE 5-10. PART OF JAVA CODE OF THE ACTIONFUNCTION CLASS ... 73

FIGURE 5-11. CLASS DIAGRAM OF THE SMART BUILDING RESOURCE DESCRIPTOR PARSER 74

FIGURE 5-12. EXAMPLE OF A POP-UP SELECTION MENU ... 75

FIGURE 5-13. SOURCE CODE TREE OF THE EDPL EDITOR PLUGIN .. 76

FIGURE 5-14. IMPLEMENTATION OF EDPL CODE PARSER ... 77

FIGURE 5-15. SOURCE CODE TREE OF THE COMPILER .. 78

FIGURE 6-1. EVALUATION RESULT OF THE PEAK DEMAND CONTROL FRAMEWORK..................................... 82

FIGURE 6-2. ELECTRICITY CONSUMPTION PATTERN OF THE PEAK CONSUMPTION CONTROL POLICY............. 85

FIGURE 6-3. TOTAL ELECTRICITY CONSUMPTION AT DIFFERENT PRICES ... 86

FIGURE 6-4. TEMPERATURE, HUMIDITY, AND DI PATTERNS DURING THE EXPERIMENT 88

FIGURE 6-5. THE SAME RULE IN DCRDL AND EPDL .. 90

FIGURE 6-6. THE EDPL CODE FOR THE PEAK CONSUMPTION CONTROL POLICY ... 91

FIGURE 6-7. THE EPDL CODE FOR THE DISCOMFORT INDEX CONTROL POLICY .. 91

FIGURE 6-8. CODE COMPLETION PROPOSAL EXAMPLES ... 93

FIGURE 7-1. ARCHITECTURE OF SMART BUILDING RESOURCE MANAGEMENT FRAMEWORK 96

FIGURE 7-2. DEMO OF THE HOMERULES ... 98

FIGURE 7-3. WIGWAG RULES EDITOR FOR SMART HOME ... 99

LIST OF APPENDICES

APPENDIX 1: SMART BUILDING RESOURCE DESCRIPTION SCHEMA ... 114

APPENDIX 2: EPDLPARSER.JJT ... 119

APPENDIX 3: THREE CONTROL POLICIES WRITTEN IN DCRDL .. 125

APPENDIX 4: DCRDL SPECIFICATION ... 133

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 1

1 INTRODUCTION

In this chapter, we look at the history of building automation in brief and then analyze

building management system architecture. Some research issues are discussed in the

second section of this chapter. Finally, we present the objective of our research and

discuss the main challenges to realize that objective.

1.1 Background

1.1.1 Brief History of Building Automation

The advent of Building Automation Systems (BASs) can be traced back to the 1960s

when the centralized computer systems were first used for building control [1]. They

evolved from industrial process control systems with the deployment of

―computer-controlled systems in the late 1960s‖ [1]. The energy crisis in the 1970s

inspired researchers to study intelligent control algorithms for lighting and HVAC

systems to address the energy efficiency issue. Minicomputers and programmable logic

controllers (PLCs) were progressively adopted in BASs at that time [2] for

automatically managing building services. The main focus was reduction of the energy

consumption of buildings.

With the introduction of Direct Digital Control (DDC) [3] into building automation in

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

2 Peng Xiaohui - March 2016

the 1980s, the term ―Intelligent Building‖ was coined. Energy control technologies

subsequently became progressively sophisticated, integrated energy management

systems appeared, and researchers began to study the feedback approach for advanced

energy reservation [4]. The feedback approach informs users in real-time of the energy

consumption in buildings to affect positive behavior changes. Initial studies, primarily

conducted by psychologists, showed that energy could potentially be reserved by

introducing a feedback approach [4]. For example, Pallack et al. studied how

consumption feedback information affected residents‘ behavior in reducing energy

consumption [5] within residential buildings in 1980.

In the 1990s, environmental parameters were introduced to control lighting and

Heating, Ventilating, and Air Conditioning (HVAC) [6] systems. Many control

algorithms (e.g., Proportional-Integral-Derivative Control, Model-Predictive Control,

Fuzzy Control, and Adaptive Control) [7]-[14] were also studied with a view to develop

efficient facility controllers. However, those algorithms depend on environmental inputs,

which are a set of real-time and detailed energy-related information. This was a major

challenge for the researchers at that time. Many energy measurement approaches were

studied; these approaches were divided into two categories: ―single-point monitoring

(NILM) and distributed monitoring (ILM)‖ [4], [15]-[16].

The adoption of Wireless Sensor Networks (WSNs) significantly improved

information harvesting from smart buildings in the 2000s [4]. They enabled exhaustive

inside information to be collected by wireless sensors deployed in the buildings [17].

The information collected primarily included environmental parameters (e.g.,

temperature, humidity, and PM2.5 (i.e., particulate matter with a diameter of less than 2.5

micrometers)[18]), various energy consumption levels (e.g., building level, appliance

level, and user level), and human-related information (e.g., activities and preferences).

Thus, flexible and detailed control could be performed based on the harvested

exhaustive context information. Stand-alone facility controllers and subsystems became

sophisticated as a result of increased computer power and monitoring tools and

technologies. Feedback systems were further studied to motivate users to save energy.

Data communication protocols such as BACnet [19] and LonTalk [20] were

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 3

progressively developed, and significantly improved data sharing among subsystems.

However, the subsystems were still isolated information islands and devices in different

systems could not operate in a collaborative way to adapt to human activities. As a

result, they could not optimize the overall energy efficiency of the building.

Technological advancements in the era of the Internet of Things (IoT) (e.g., device

connectivity, big data analytics, and open API [21]-[23]) facilitate the collection and

analysis of detailed information related to energy consumption in a building [4]. Further,

improved connectivity enables web-based access to collected data [24]-[28] and control

of appliances [29], [30] through open APIs. Hence, data acquisition services (e.g.,

energy consumption, environmental conditions, and human activities) and appliance

control services are integrated into building management systems, and developing

energy control applications across different subsystems to make devices operate in a

collaborative manner is becoming possible.

Thus, the application programming paradigm has changed (see Figure 1-2), and smart

buildings have become ―Highly Functionally Distributed Systems‖ [31] as energy

sensing and control have become ubiquitous through unified web-based services.

Consequently, the overall building as a whole can be regarded as a programmable

architecture when designing building automation applications, instead of focusing on

designing the facility controller for an individual device or a sub-system. All

energy-efficiency related factors (e.g., energy consumption, environmental conditions,

and human activities) should be considered and energy control policies instituted.

In other words, the overall building is considered a distributed-hardware computer

and embedded real-time operating systems inside the smart devices constitute a huge

distributed operating system [32] for smart buildings. Users are living in this operating

system and they need to interact with distributed components (smart devices). We will

study how different kinds of users can be enabled to program with IoT-enabled smart

buildings by providing simpler descriptive programming languages and resource

representation schema to support the proposed programming architecture.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

4 Peng Xiaohui - March 2016

Figure 1-1. Isolated subsystems; devices in different systems cannot work in a collaborative way

1.1.2 Building Automation System

In this section, we introduce basic concepts associated with BAS, which is also

sometimes referred to as Building Management System (BMS) or Building Energy

Management System (BEMS). A BAS usually consists of many subsystems such as

HVAC, lighting system, sensor network, metering system, appliances, and security

system. A classic BAS conceptually follows a three-layer approach [4], [24]:

Field Layer (sensors and actuators)

This layer mainly consists of sensors, meters, appliances, etc. It is the physical layer

that interacts with the environment and human beings inside buildings. These devices

collect information called context from the building; these context serve as inputs for

upper-layer algorithms and applications. For example,

 environmental conditions (e.g., temperature, humidity, and lighting);

 energy consumption at various levels; and

 human-related information (e.g., user preference and activities).

Such exhaustive detailed contexts provide a chance for fine-grained control in smart

buildings. Actuation devices such as air conditioners, lights, and ventilators have

autonomous controls [4], [33] based on contexts acquired from the environment. They

accept commands and decision sent from upper-layer applications.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 5

Integration Layer

This layer collects and stores raw data from the real world, and then performs

analysis based on the gathered data to provide more abstract and meaningful data or

interface for the upper layer. For example, by analyzing raw data from human sensors,

we can ascertain the user distribution status along floors, and stop available elevators at

the floors where there are more users in the building. Applying such rules to an elevator

system will inevitably improve human comfort and productivity because it saves time

for most users. We can regard this layer as the integration and abstraction layer for

devices deployed in the building.

Application Layer

The application layer is the central part of the BAS [4], [33]. It acquires information

from the environment and makes decisions based on the obtained information to adjust

environmental parameters and device status; thereby, reducing energy consumption,

improving human comfort and productivity, and enhancing the security of buildings. As

shown in Figure 1-1, the functionality of a BAS is realized in this layer.

1.1.3 IoT-enabled Smart Buildings

The primary devices that comprised the Internet about 10 years ago were desktops

and laptops. Things changed rapidly as other computing devices (e.g., consumer devices

and industrial machines) were gradually connected to the Internet. In particular, after

2012, the number of connected machines and other devices increased exponentially and

networks became homogeneous [34]. Facilitated by protocols such as 6LoWPAN [35]

and CoAP [36] that were designed to enable resource constraint devices connected as

the Internet does, data access and device control have become easy through open

RESTful [37], [38] APIs. The area of smart buildings is a leading area adapting such

evolution. This new paradigm is called IoT-enabled smart buildings (see Figure 1-2).

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

6 Peng Xiaohui - March 2016

Figure 1-2. The new programming paradigm of IoT-enabled smart buildings

1.1.4 Descriptive Programming Languages

We define descriptive programming languages as the converse of procedural

programming languages such as C, Java, and PHP. In this research, descriptive

programming languages are usually high-level languages for non-expert users to

describe control logics for the smart building systems. For example, we designed a

device control rule definition language based on XML format to enable users to describe

fine-grained rules for smart devices. Visual programming languages are also classified

as descriptive programming languages in our research. Such languages enable users to

create programs by ―operating graphical program elements rather than by typing text‖

[39].

Owing to heterogeneous networks and the structures of smart buildings, it is quite

difficult for non-expert users to program them with procedural programming languages.

For example, a rule that turns off the air conditioners in room A when the temperature in

this room exceeds 26
°
C requires the programmer knowing the following:

 the number of air conditioners in room A;

 how to turn off each air conditioner; and

 how to ascertain the temperature of room A.

A domain expert can read professional documents of related techniques to get the above

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 7

necessary information to create automation applications. However, as various users will

be a constant part of smart environments in the near future, a simpler descriptive

programming language is needed for non-expert users to program smart buildings.

1.2 Problems

1.2.1 Energy Efficiency

Building automation issues include ―reducing energy consumption, improving human

comfort, productivity, safety, and security‖ [40]. Our definition of energy efficiency in

this article includes all these issues except safety and security. Improving the energy

efficiency of smart buildings is always complicated because of the complexity of smart

buildings and the energy efficiency issue itself.

Many building automation applications in which intelligent algorithms [33], [41]-[44]

are used to control actuator systems have been exploited by researchers in the literature.

Because of the heterogeneous nature of networks in smart buildings, these applications

usually can be developed only by domain experts associated with the specific vendor of

an individual device or sub-system. The building system should function in a more

collaborative manner for better energy efficiency [45].

Energy efficiency consists of several sub-factors, which we have already discussed at

the beginning of this section. The factor that should be addressed first depends on the

real-time context, such as environment parameters, human activities, and energy

consumption. For example, there may be a need to reduce energy consumption first on a

particular occasion, whereas improvement of human comfort may take priority on

another occasion. The building automation system usually makes a compromise

between these factors. To realize context-based control, users should be empowered to

program smart buildings by enabling them to write control policies for context-related

devices [17], [45].

1.2.2 Collaborative Control

In the beginning, building subsystems were built separately using independent

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

8 Peng Xiaohui - March 2016

technologies, devices, and software. Consequently, subsystems were isolated. The

integration of data platforms significantly improved information sharing by the

subsystems over the past decades. Networked sensors and meters can provide consistent

information for applications in different subsystems. However, subsystems are still

isolated from the perspective of control. Collaboration control [46] among devices from

different subsystems is therefore needed.

For instance, when the air conditioners in a room are on, the ventilating devices

should be turned down and windows should be closed by the building automation

system. In this scenario, air conditioning system, ventilating system, and the window

control system are involved, but they act independently. A framework with which users

can write a rule to control these systems to enable them to operate in a collaborative

manner is needed. The rule may be, ―When air conditioners in room A are on, then turn

off ventilating devices and close the windows in this room.‖

When smart buildings, homes, hospitals, and schools are connected to form a smart

city, more sophisticated smart applications can be developed. For example, the security

system of your home may be able to tell you when your child‘s class is over; the kitchen

system may check the refrigerator, compile a shopping list, and send it to the

supermarket. Then, robots in the supermarket could prepare, pack, and send the ordered

groceries to a pilotless automobile or an unmanned aerial vehicle. Your smart watch

could also analyze your health status and suggest a menu for your dinner. If you agreed

to the suggested menu then the smart kitchen system would prepare your dinner before

you arrived home. These scenarios need collaborative control over the subsystems of

different buildings in the smart city. Newly developed protocols such as 6LoWPAN and

CoAP enable smart devices to expose their data and functionalities through web-based

RESTful API, resulting in data access and device control becoming ubiquitous.

However, a lightweight distributed framework that enables users to develop smart

applications is needed for those scenarios.

1.2.3 Summary

Energy efficiency is the main concern of BASs. We have discussed this issue in

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 9

section 1.2.1. It involves a set of sub-factors such as reducing energy consumption,

improving human comfort, and improving productivity. To optimize energy efficiency,

personalized control should be possible [47], as it would enable users to control the

building according to their preferences [48]. As more sensing devices are connected to

building networks, detailed information about energy consumption (e.g., consumption

by appliances, rooms, and building levels), human activities, and environmental

parameters can be obtained from the building system. Precise and flexible control is

necessary to perform optimization on energy efficiency based on sensed fine-grained

information. Achieving such goals ―remains a challenge mainly due to the lack of

unified frameworks which can support the heterogeneous devices and services‖ of smart

buildings [48].

Data integration has significantly improved information sharing among the

subsystems of t buildings. However, from the perspective of control subsystems are still

isolated. Working collaboratively, authentication, positioning, elevator, and HVAC

systems can optimize the energy efficiency of smart buildings. State-of-the-art protocol

suites such as 6LoWPAN and CoAP connect constrained devices to the Internet just like

a computer. With RESTful open APIs, the heterogeneous networks of smart buildings

have become homogeneous and cooperation by devices from different subsystems has

become easy. A unified lightweight distributed programming framework for

personalized, precise, flexible, and collaborative control of smart buildings is needed.

1.3 Objective

The ultimate objective of this research is to enable smart building users to program

with IoT-enabled smart buildings. Thus, personalized, precise and collaborative

context-based control can be performed by these users and energy efficiency will be

finally optimized. We realize our goal by abstracting building resources and providing

simpler programming languages [32], [49], [50] for smart building users to program the

building easily.

The overall building can be regarded as a distributed-hardware computer [30], with

the deployed smart devices as the distributed-hardware components of this computer.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

10 Peng Xiaohui - March 2016

Embedded operating systems in various devices constitute the building operating

system. To realize our objective, we have to abstract distributed hardware resources and

provide simple programming environment for common users to interact with smart

devices in smart buildings. Dawson-Haggerty et al. proposed ―a building operating

system services for large commercial buildings‖ [32] called BOSS in 2013. They

developed ―a collection of services forming a distributed operating system, which

solved several key issues that had prevented earlier systems from scaling across the

building range‖ [32]. However, BOSS does not provide any mechanism for upper-layer

users to develop automation applications easily and it is still a conceptual system.

1.4 Challenges

Two main challenges are dealt with in this research. The first challenge is resource

representation and the second one is simpler programming languages. We explain them

in the ensuing sections.

1.4.1 Resource Abstraction and Management

In the smart building system, sensors, actuators, appliances and other machines are

connected into separate networks using different hardware and software protocols,

which forms a heterogeneous building network structure [33]. Providing unified and

easy access to these distributed resources is a significant challenge. For example, if an

ordinary user wants to obtain the temperature value of a room through a smart building

API, he/she has to know the API‘s name and parameters. In this case, the relevant

parameters may be the room number or ID specified by facility managers or system

developers. Both API name and parameter information are difficult for an ordinary user

to obtain and understand. Thus, a semantic self-describable representation for the

heterogeneous distributed resource that the upper-layer users can use to easily refer to

them is needed. The term semantic refers to the relationship representation among

spaces, objects, etc. Self-describable refers to the means by which a service is

represented (here, we refer to a RESTful API). Services should be self-describable so

that they can be modeled and translated into executable code directly by a compiler or

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 11

an interpreter.

1.4.2 Simpler Programming Languages

We stated in section 1.2 that we need to enable users in IoT-enabled smart buildings

to write rules for a specific context to get fine-grained control for energy efficiency.

Such fine-grained control enables devices in different subsystems to operate in a

collaborative manner to adapt to human activities. These controls share a common

format: when some situation/context appears, then suitable actions should be applied to

related devices [46]. We call this kind of control context-based control [45]. An

automation application can be constituted by multiples of such kinds of rules to perform

a particular goal. Considering that improving energy efficiency involves a trade-off

among factors such as energy consumption, human comfort, and productivity,

fine-grained personalized controls has significant potential for improving energy

efficiency [33] in smart buildings.

However, the programming languages that are currently widely used, such as C/C++

and Java, are mainly for skilled programmers and are complicated for context-based

controls. Users in building automation control systems may only need to write simple

controls based on ―IF-THEN‖ logic [50]. Thus, semantic and visual programming

languages are more suitable for them. Therefore, we must provide concise and simpler

programming languages for users in IoT-enabled smart buildings. This issue is

discussed in-depth in section 2.5.

1.5 Summary

In this chapter, we presented the history of building automation in brief. A general

architecture was presented and illustrated in section 1.1.2, and we defined the term

IoT-enabled smart buildings in section 1.1.3. Two major features of IoT-enabled smart

buildings are as follows:

 Inside devices are connected in a manner similar to connections on the Internet;

that is, resource constrained devices are able to connect to the Internet using

Internet-like protocols (such as 6LoWPAN and CoAP).

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

12 Peng Xiaohui - March 2016

 Unified web-based RESTful data access and device control interface.

The adoption of Internet-like and Web-like protocols in smart buildings significantly

eases the application development process and connects smart buildings to the Web of

Things smoothly. We discussed the energy efficiency problem in section 1.2 and stated

that energy efficiency consists of several sub-factors such as energy consumption,

human comfort, and productivity. We also stated that the factor(s) that should be

addressed first depends on the context. In most cases, a trade-off has to be made among

these factors. We introduced the general and ultimate goal of this research in section 1.3.

Finally, we discussed the challenges that have to be overcome in order to realize our

objective.

1.6 Outline

This dissertation proceeds as follows:

Chapter 1 presents background information and defines some of the terms used in this

dissertation. The general goal and challenges are also discussed.

Chapter 2 reviews related work. The paradigm shift from smart buildings and web

technologies used in building systems is first discussed. Then, work related to resource

representation and programming approaches is surveyed.

Chapter 3 introduces our proposed system along with general principles and terms.

Chapter 4 presents the design details of the proposed framework.

Chapter 5 outlines the implementation of each component.

Chapter 6 discusses the evaluation conducted of each component.

Chapter 7 discusses various issues we plan to address in the future.

Chapter 8 summarizes this dissertation and presents the results of our research.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 13

2 RELATED WORK

2.1 Paradigm Shift in Smart Buildings

In the beginning, most researchers in the building automation field focused on

designing facility controllers [7]-[14], [51] for individual devices and subsystems such

as lighting and HVAC systems. These devices and systems were isolated from each

other, and sensed and metered data could not be shared among them [4]. These isolated

information islands constituted a vertical building automation system. Functional

reduplicated sensing or metering devices were frequently deployed for different

subsystems. However, this led to issues associated with redundancy and collaboration.

For example, the temperature value of a place may be retrieved from two different

devices, but it was not clear which value should be used for decision making.

Over the past decades, engineers have built BASs using disparate communication

protocols [52] such as BACnet [19] and KNX [53]. This change improved data sharing

and reduced information redundancy. As shown in Figure 1-1, sensing and metering

became a uniform and integrated layer that supplied consistent environmental data.

Further, collected raw data could be analyzed to provide a meaningful abstraction for

the application layer. However, applications of the subsystems were developed

independently. They optimized environmental parameters solely, which caused

conflicting controls. From the perspective of control, these subsystems were still

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

14 Peng Xiaohui - March 2016

isolated. A programming framework that regards the whole building as a programmable

architecture is therefore needed, with applications running in such a framework enabling

devices in different subsystems to operate in a collaborative manner. This is useful

because a specific context may require that all related devices work together to adapt to

human activities or environmental changes. This problem is solved by providing unified

data access and device control interfaces for the overall system of smart buildings.

2.2 Unified Interface for Smart Buildings

Over the past decades, researchers and developers have become focused on the

integration of sensing and metering networks [4]. This integration provides analyzed

and semantic data for the application layer. The rise of IoT has resulted in significant

changes in smart buildings and homes. Web technologies are now being applied to

acquire information from building systems and many appliance manufacturers are

starting to adopt HTTP-based controls for their products. For example, DAIKIN [54]

provides a web-accessible controller (iTouch Controller) [55] by which users can

control connected air conditioners through the HTTP protocol. Along with a campaign

of open data, developers have started to issue RESTful Open API [21], which allows

users to acquire data and control devices. This is the so-called paradigm of Web of

Things (WoT) [56], which is regarded as the application layer of IoT. It will finally

change the programming pattern of smart buildings to a new paradigm, as shown in

Figure 1-2.

2.2.1 Web-based Sensing

Many proposals have been regarding integration of sensor networks with existing IT

systems using web services [23]-[28]. Such integration has been used to acquire

energy-related context (e.g., energy consumption, environmental parameters, and human

activities) from the environment. In this section, we discuss proposals made for energy

sensing in smart buildings.

Weiss et al. proposed an energy monitoring system using web-enabled power outlets

[26] in 2010. Their objective was to study user awareness of energy consumption, so

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 15

their system did not include any control component. They measured device-level energy

consumption using a smart power outlet called Plogg, which consisted of an electricity

plug and a consumption logger. Bluetooth [57] and Zigbee [58] interfaces were also

provided to retrieve logged consumption data. The devices were plugged into Plogg

sensor nodes, which were connected to a gateway. Their system also included a

micro-web server that ―monitored the functionalities of the Ploggs as structured URLs,

in a RESTful manner‖ [26]. Their work illustrated that constrained devices can be

seamlessly integrated into the existing Internet and resources can be easily accessed via

the RESTful approach. Agarwal et al. developed ―an extensible and distributed data

storage system called‖ BuildingDepot [59] for smart building management systems.

They primarily focused on the design of the API and provided various RESTful APIs

for access to the stored data.

2.2.2 Web-based Access and Control Interface

The technology advancements in the fields of IoT and WoT may significantly boost

technology advancements in smart buildings and some researchers have already tried to

integrate web-based data access and device control [29], [30], [60]-[66] in smart

buildings or homes. Kamilaris et al. proposed the building of energy-aware smart homes

using web technologies [29]. They developed a conceptual system for home automation

that was built using web technologies to examine and evaluate their proposed

framework. Their framework provided a ―Presentation Layer‖ for the building systems,

which ―dynamically generated a representation of the deployed devices and their

services to the web‖ [60] for public access. It enabled uniform interaction with deployed

devices through RESTful interfaces. Their study is one of the initial studies that

attempted to integrate devices in smart homes and buildings with the Web of Things,

and expose the functionalities of these devices through RESTful interfaces.

A state-of-the-art smart building called the Daiwa Ubiquitous Computing Research

Building (DUCRB) [30] was designed and built in 2014. Adopting newly emerged IoT

technologies, DUCRB provides web-based information acquisition and device control

interfaces called Smart Building APIs (In fact, they are a collection of RESTful APIs).

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

16 Peng Xiaohui - March 2016

To acquire context information and to control devices, users only need to send HTTP

GET, PUT, and POST requests to the API servers. Response data are returned in JSON

format if necessary [67]. The inhabitants in DUCRB can use the smart building API to

get fine-grained context and to control inside connected appliance from any devices that

connected to the control network. Therefore, real-time context-based (e.g.,

environmental parameters, user activities and electricity consumptions) management of

the building system is enabled and becomes easy [17], [45].

Figure 2-1. An IoT-enabled Smart Building-DUCRB [30]

DUCRB is an experimental environment for students studying in the applied

computer science field of our department. By providing open web-based APIs, it

enables rapid prototyping of smart building applications such as energy management,

security, and safety, indoor navigation for the visually-impaired, etc. All the evaluations

carried out in this research were performed in this building.

With the evolution of IoT and its adoption of WoT [56] as its application layer,

sensors and appliances are able to access the web, which simplifies the development of

user-side applications. Smart buildings and homes are following this paradigm, which

shows the potential to enable ordinary users to program physical objects inside

buildings and homes. However, to achieve this goal, a unified programming framework

that hides lower-level complex building structures and services is needed so that

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 17

ordinary users can easily refer to services and control inside devices.

2.3 Rule-based Expert Systems for Building Management

2.3.1 Expert Systems

Expert systems are used extensively in artificial intelligence applications. ―An expert

system is a system that emulates the decision-making ability of a human expert‖ [68]. It

usually comprises a database to store rules and facts, a reasoning engine, and user

interfaces. A rule-based expert system is generally represented using logic rules (i.e.,

IF-THEN rule) rather than code written in procedural programming languages such as C

and Java. The essential goal of an expert system is that ―stores rules and facts in the

knowledge base and uses the inference engine to find new facts by applying the rules to

the known facts‖ [68].

2.3.2 Existing Studies

Many researchers have adopted rule-based frameworks [69]-[75] and intelligent

algorithms to control smart devices for improving the energy efficiency in smart

buildings. Tomic et al. designed ―a semantic layer that integrates smart metering,

building automation, and policy-based reasoning to offer energy optimization capability

to energy consumers and providers‖ [71]. They stated that users can write system-level

rules based on RDF triplets. However, they did not show how the rules for their

framework are written. Kaliappan et al. proposed a ―policy-based framework‖ for smart

home management and they argued that their framework provided ―intelligent and

flexible energy management‖ [72] for smart home appliances. They ―formalize the

behavior of appliances using states and manage the energy consumption using policies‖

[72]. However, they also did not show how a policy is actually written and simply

assumed that policies were written in well-formated English sentences. Kumar et al.

proposed a technique for ―intelligent semantic policy adaptation‖ [73] in smart

buildings that ―enables the agents of an application across different settings, context,

environment, etc. to share and reuse semantic policies‖ among themselves. Kawakami

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

18 Peng Xiaohui - March 2016

et al. proposed ―a rule-based home energy management system that uses the Rete

algorithm‖ [74], [76]. It is a widely used reasoning algorithm for IF-THEN expert

systems. However, these solutions primarily focus on how to handle rules and do not

describe the details of how suitable rules can be written for their systems.

2.3.3 Limitations

Using a rule-based expert system for smart building management enables flexibility

in building automation systems. Domain experts can define rules and parameters for

these systems; however, for modern smart buildings, which have programmable

architecture, many limitations are apparent in existing studies.

Centralized Architecture

Conventional rule-based building management systems usually have a centralized

architecture. In these systems, although a single rule is relatively simple, the interactions

between a large number of rules may be complicated. Consequently, the system may

crash when the number of rules increases beyond a certain value. Further, increasingly

more smart devices are connected to building networks, and functionalities are exposed

to the public by RESTful APIs. Users can control building systems from any device as

long as it can access the building network. Therefore, users may require the ability to

manage their personal workspace on their own devices instead of writing rules in a

centralized system. A lightweight distributed framework is better than the traditional

rule-based framework for IoT-enabled smart buildings.

No User-friendly Interface

Existing rule-based building management systems predominantly focus on reasoning

and handling rules. None of them has studied how to define rules for their system. As

discussed in previous sections, in order to enable collaborative control to optimize

energy efficiency, it is important that users be able to write fine-grained control rules for

a specific context. They may need personalized configuration for their own workspace;

it is not possible for domain experts to predefine all the rules for every context.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 19

In addition, smart buildings have heterogeneous networks and complex structures.

Writing rules to control a building system requires knowledge of the following factors:

 building structures and semantic relations of inside objects and spaces;

 the method by which to refer to a service; and

 the services a space or device can provide.

This is not possible for users who are not good at programming or who are not familiar

with the target building. Therefore, it is necessary to provide descriptive languages and

lightweight distributed frameworks for them to write rules easily.

2.4 Resource Representation

From the viewpoint of a building as a distributed hardware computer, much like the

classic computer, a resource abstraction layer that supports programming by limited

programmers such as facility managers and residents is needed. Existing work on

resource management is primarily concerned with resource discovery issues. Many

researchers have studied resource representation in smart buildings [77]-[89] and have

applied complicated information modeling methods to represent the relationship among

objects and the static information of objects. To enable ordinary users to program

buildings, the question of how to model the interfaces (in this case, RESTful APIs that

are used to acquire context and control devices) of the devices and design translator or

interpreter that can transfer an ordinary user‘s description of control logics into pieces

of executable code that can be executed by machines is a critical issue [17], [45].

Therefore, the following requirements should be satisfied when developing a resource

representation schema:

 relationship among objects, spaces, and services;

 property information of objects and spaces;

 detailed service representation and modeling; and

 an interpreter that can translate these representations into executable code.

To support upper-layer user programming of IoT smart buildings, the relationship of

internal objects, services, and service description are the main concerns of resource

representation in our research.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

20 Peng Xiaohui - March 2016

Ontology-based Resource Representation

Table 2-1. Studies that using ontologies to model the relationship of building resources

Objective Feature Authors

To ease the configuration process of

heterogeneous BAS [78].

Ontologies for ―seminal knowledge

representation and auto-reasoning‖ on

heterogeneous building networks.

Reinisch et

al. 2008

To model every aspect of a

service-oriented BAS [86].

Domain-dependent and specialized ontology

for ambient intelligence.

Stavropoulos

et al. 2012

To support effective management of

home resources information [90].
Resource-aware with resource relation graph.

Son et al.

2011

To optimize energy consumption by

designing ontology for both consuming

devices and power resources [91].

Integration of two ontologies: devices and

power generation/consumption description.

Grassi et al.

2011

To provide ―a homogeneous layer for

advanced smart building control‖ [92].

Interconnect disparate protocols used in BASs

by developing an IPv6 service-oriented

gateway for subsystems.

Jung et al.

2013

Reinisch et al. proposed using ontologies to represent knowledge as an abstraction of

the heterogeneous network infrastructure [78]. The system could autonomously reason

about the stored knowledge. Grassi et al. presented an ontology framework that

provided necessary information modeling [91] for smart buildings. They focused on

―two composing ontologies developed for describing devices and power generation and

consumption for energy consumption optimization‖ [91]. Stavropoulos et al. designed a

resource ―ontology for ambient intelligence in smart buildings‖ [86]. They stated that

the ontology includes ―the classes needed to sufficiently model every aspect of the

service-oriented smart building systems‖ [86]. However, these ontologies only describe

the relationship among devices or model the devices themselves without presenting

sufficient information about how to use the services.

Service-centered Resource Representation

Service-oriented architectures have also been used for building resources modeling

[21], [94]. With the advancement of open web technologies such as Semantic Web

increasing in the past decade, researchers have started to integrate services with building

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 21

ontologies using semantic web technologies. Han et al. presented a Service-Oriented

Architecture-based building automation system [95] that models devices by ―device

profile for web services (DPWS)‖ [96]. They also designed a building resource

ontology which included the descriptive information of concepts and relations that they

use as the reference for the semantic schema data of buildings.

Table 2-2. Studies of service-centered resource representation

Objective Feature Authors

To ease the service mash-up for smart

building users [21].

A semantic service mash-up building

ontology.

Wan et al.

2013

To overcome the diversity of related

technologies and protocols of BASs

[94].

A ―service-oriented reference architecture‖

with semantic descriptions for BAS.

Vicari et al.

2015

Combinatorial solutions were also proposed in the literature. Evchina et al. proposed

an ontology for smart homes that focused on social services that they utilized for

information monitoring [93]. Their ontology provides semantic connections for

available data in smart homes, and information filtering can be performed by analyzing

each user‘s profile with a query manager component. Asfand-e-yar proposed adopting

semantic web technology to structure multifarious data for building management

systems, with the objective of defining a middleware layer that simplifies the creation of

sophisticated automation applications for the building management systems [84].

Industry Effort

The Open Mobile Alliance (OMA) is presently making an industry effort for resource

constrained IoT device management. They have defined an application-layer

communication protocol that ―provides functionalities such as device management over

sensor and cellular networks and transfer of service data from networks to devices‖ [97].

They primary focus is on device management and resource discovery, and they only

provide a simple object-based resource model and resource operations. No detailed

service representation schema is presented in their protocol. Consequently, an ordinary

user cannot use it to make programs. We will discuss programming languages and

approaches in section 2.5.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

22 Peng Xiaohui - March 2016

These studies modeled heterogeneous complex semantics among objects, spaces,

services, and concepts in buildings. However, a common limitation is that detailed

service representation is not presented in their proposals. Detailed service representation

here refers to key information (e.g., service name, parameter, and return value) for

modeling a service. Therefore, only domain experts can develop automation

applications using frameworks based on these studies. Thus, a resource representation

schema is needed such that once the resource is referred to, it can be translated into

executable code by an interpreter.

2.5 Programming Languages for Smart Buildings

To date programming building systems has been an extremely difficult job that can

only be accomplished by domain experts. The heterogeneity of all system levels

prevents integration of smart building subsystems. For instance, field buses,

communication protocols, embedded operating systems, programming languages, and

software tools are quite different in each building. Even the same subsystem for

different buildings may vary—from physical link protocols to programming languages.

Thus, even a slight change may involve a series of dependent changes that may require

complex tools and programming jobs that can only be achieved by domain experts [98].

In the age of IoT, smart building systems are becoming homogeneous structures via

unified RESTful access and control interfaces. Programmers and users no longer have

to know the details of subsystems, management of building systems can now be

achieved through those RESTful APIs on any device that can be connected to building

networks. However, using RESTful APIs to control smart building systems is still

difficult for some users. In addition, users need to know the semantic relations of inside

spaces, objects, and services. For example, when users wish to fetch the temperature of

room A, they have to know whether there is a service for getting the temperature of

room A and how to use this service. There should be mechanisms that can provide

available services to which users can refer.

In 1988, Hartman published a proposed standard for an Operator's Control Language

(OCL) [99] that standardizes the manner in which certain types of software is written

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 23

for DDC systems [3]. It followed the basic principle of control structure: IF, THEN,

ELSE. However, it is designed for individual devices and subsystems. Although the

advent of graphical programming languages eased the building system programming

burden, they were still targeted at a single device or subsystem and lacked the flexibility

possessed by text-based languages. In addition, protocol organizations and device

vendors have their own control languages. For example, the BACnet [19] language

argues that it provides interoperate ability for smart devices from various venders.

However, they have to persuade all the venders to adopt their protocol and language.

Devices that ―use one of those languages can never interoperate directly with devices

using the others‖ [100]. Procedural languages such as C and Java are also used to

develop control software for a single device or subsystem. Currently, ―all large building

automation vendors only allow changes to their internal control languages using their

proprietary software‖ [100]. The Sedona Framework is trying to define a universal

programming language, which is ―a general purpose component-oriented programming

language for all kinds of embedded devices‖ [101], to address the interoperability issue

between devices provided by different vendors. Sedona overcame the challenge of

interoperating among vendors and protocols. However, it is still for a single device,

which means that programmers have to install the software on the device first.

Consequently, changes to the control logic may be costly and time-consuming.

In the age of IoT, both the device control and data acquisition interfaces can be

implemented via the RESTful architecture. Therefore, the interfaces are unified and the

whole building can be regarded as a programmable architecture or a

distributed-hardware computer. This provides a chance for ordinary users who are not

familiar with the target building or who have no programming skill to program the

building system if we develop simpler programming languages for them. In addition, it

can supply an overall perspective for controlling buildings. Users can write control

sequences for different devices across various subsystems to make them operate in a

collaborative manner to improve energy efficiency. Enabling end-users to program their

surrounding environment has long been studied from the perspective of

human-computer interaction [50]. This field also followed the ―IF-THEN‖ paradigm.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

24 Peng Xiaohui - March 2016

However, no mention is made of the lower-layer support for translating such

―IF-THEN‖ representations into executable code that can be understood by machines.

Table 2-3. Studies for enabling end-users to program with the smart environment

Name Description Authors

CAMP
Studied the application scenarios conceptually and identified

the user desired automation applications in smart home [102].

Truong et al. In Proc.

Ubicomp 2004

iCAP
Visual programming interfaces for end-users to quickly create

context-aware applications [103].

Dey et al. In Proc.

Pervasive 2006

OSCAR
Supports ―flexible and generic control of networked devices

and services‖ [104] in smart home.

Newman et al. In CHI

2006 Workshop

Studies the usability factors of ―end-user composition

interfaces for smart environments‖ [105].
Dahl et al. 2011

Blase et al. examined the practicality of enabling end-users to ―customize the

behaviors of smart home devices using a trigger-action programming‖ [50] method

from the perspective of human-computer interaction. They concluded that ―end-users

can quickly learn to create automatic management applications containing multiple

triggers-actions‖ [50]. They carried out user studies with various kinds of participants

using visual programming interfaces (i.e., Figure 2-2) in the smart home.

a. Simple recipe of ―If it is 6 pm, then turn the lights on.‖

b. Complex interface with multiple triggers in the recipe

Figure 2-2. Trigger-action programming interfaces used in [50]

Most of the participants did not have any programming experience with a few

considered themselves sophisticated programmers. Overall, their results showed that the

participants were ―satisfied with the usability of both the simple and complex

interfaces‖ [50] shown in Figure 2-2.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 25

Several similar solutions were also proposed by researchers in the past decades. They

prove that such a ―drag and drop‖ interface is very efficient for common users to

program smart environments. However, these studies supply no mechanism to translate

such rules into executable code. Furthermore, much porting work has to be carried out

in order to use such applications in different buildings because the structure and internal

services vary. A resource management framework with standardized resource

representation schema and operation interfaces is necessary to support programming of

smart building systems by those users.

2.6 Contributions

This research provided a flexible programming framework for IoT-enabled smart

building users to enable precise, personalized, and collaborative management of

building systems.

We designed a lower-level descriptive rule definition language called DCRDL [17]

for devices. DCRDL hides the building structure and service details so that users can

focus on control logic description. It also adopts ConditionSet-ActionSet (CSAS),

which can be used to express complex contexts and controls. Thus, a programmer can

use DCRDL to write flexible and fine-grained control rules for devices in a particular

context, which may be necessary for the collaborative control we discussed in previous

sections.

It is still difficult for users to write control rules using DCRDL owing to the

heterogeneous networks and complex structures constituting building systems.

Moreover, DCRDL is designed using XML, which may be a bit difficult for users who

are not good at programming. Therefore, we designed a simpler descriptive language

called EPDL [45] to address these issues. EPDL has a very concise and semantic

rule-based format that is very easy to understand.

We also proposed a smart building resource description schema for representing

complex building resources. The proposed schema provides hint information for users

when they need to refer to a certain service of a space or an object of the target building.

It also assists the EPDL compiler to compile EPDL policies into DCRDL rules.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

26 Peng Xiaohui - March 2016

2.7 Summary

In this chapter, we discussed related work from all aspects of programming

framework design for smart buildings. We explained the programming paradigm shift

for smart buildings in the era of IoT and conducted surveys from three aspects:

unification of data access and device control interface by web technologies, resource

representation/modeling support for upper-layer applications, and programming

languages for control of BAS. We regard the overall building as a distributed-hardware

computer. Therefore, to enable ordinary users to program smart buildings, we stated that

the distributed resources have to be abstracted (resource management and

representation) and simpler programming languages (e.g., visual-based programming)

provided, as done with classic computers.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 27

3 PROPOSED SYSTEM

3.1 General Architecture

Our proposed system consists of four parts [45]: Smart Building Resource

Management Framework (SBRMF), EPDL, DCRDL, and Policy Agent System (PAS).

Figure 3-1. Architecture of the proposed framework

The output of SBRMF is a smart building resource descriptor. This descriptor is a

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

28 Peng Xiaohui - March 2016

well-formed schema that includes the following: 1) Semantic relations between objects

and spaces; 2) properties and available services information about each object and space;

and 3) detailed information about each service (e.g., service name, parameters, and

return value). EPDL consists of a smart building resource descriptor, a language editor,

and a compiler. The energy policy designer writes policies in the EPDL editor, and the

EPDL compiler translates source code to DCRDL with the help of the resource

descriptor. The DCRDL interprets the compiled source to policy agents. Finally, these

agents run as threads in the system with the support of smart building resource

management framework. The thread checks rules defined in it at runtime to perform

context-based controls on appliances in smart buildings.

3.2 Target Users

We classify smart building users into two categories: domain experts and non-expert

users.

 Domain experts are smart building automation system developers. They are

usually good at programming, especially in smart building systems.

 Non-expert users are those users that are not good at programming or who are

not familiar with building systems.

We further classify non-expert users into two categories: building practitioners and

end users.

 Building practitioners: These users include building administrators, facility

managers, IT managers, and energy managers. They are limited programmers

who can be trained to use simple tools to manage smart buildings.

 End users: These users include residents of the smart buildings. They usually

have no knowledge of programming and are not familiar with smart buildings.

3.3 Application Scenarios

In this section, we discuss the potential application scenarios [106] for our framework.

The automation applications developed using this framework can be deployed on any

capable devices only if they are connected to the building network. People can write

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 29

policies that make the devices in different subsystems operate collaboratively to

optimize the overall energy efficiency of smart buildings. Figure 3-2 shows the main

potential applications of this framework. We discuss these applications in the ensuing

paragraphs.

Figure 3-2. Example application scenarios

Basic Building Energy Policy

This kind of application is usually developed by building administrators (e.g., facility

managers) to control the basic behaviors of internal appliances for energy efficiency.

For example, the allowed set-point range of air conditioners and the basic movement

rules of elevators. These policies should have the highest priority and should never be

violated. The administrators can write and run such policies easily using EPDL instead

of procedural languages such as C, Java and JavaScript.

Personalized Policy

The ultimate goal of energy efficiency is both maintaining comfort level and reducing

energy consumption, but the detailed requirements may vary according to the different

users and contexts. For instance, in a large room equipped with many sets of lights and

several air conditioners, when sensors detect an occupant, the policy should turn on the

lights and air conditioners related to this user, and set the parameters of the air

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

30 Peng Xiaohui - March 2016

conditioners according to the preference of this user. Therefore, ordinary users in smart

buildings can write personalized applications to configure their own workspace

separately using EPDL.

Smart Grid Policy

Future smart buildings must be compliant with smart grids [107], in which demand

response management is a critical issue and challenge. Smart grid controller can run

some policies written in EPDL to control non-urgent tasks (e.g., dishwashing) in

connected buildings during off-peak periods. We can also deploy some applications

developed based on pricing policy to save on electricity spending.

3.4 Workflow

Figure 3-3. The workflow of an IF-THEN rule in this framework

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 31

In this section, we present a running example to explain how a rule defined by the

end-user is translated into executable code in our framework.

 End users can drag and drop some icons representing resources, signs, etc. to

compose rules. As shown in Figure 3-3, an end-user can drag icons that represent

the temperature of room 3L-5, greater-than-or-equal sign, air conditioner 1 in

room 3L-5, and value ―24.0‖ to form the following rule:

IF the temperature of room 3L-5 is greater than or equal to 24.0
°
C, THEN turn

on air conditioner 1 in room 3L-5.

 There can be more than one condition in the IF branch and the combination of

these conditions constitute a complex context. Multiple actions also can be

defined in the THEN branch. Actions should be defined to adopt the context for

related devices.

 The composed ―application‖ is then translated into EPDL (i.e., second part of

Figure 3-3). A key function of EPDL is modeling of service reference in a simple

manner. For example, fetching the temperature of room 3L-5 can be modeled as,

building.floors["3F"].spaces["3L-5"].sba_get_temperature

 There is an ucode and a service called ―sba_get_temperature‖ in space ―3L-5‖ of

the smart building resource descriptor. The service is compiled to a function ID

defined in DCRDL and ucode, which represents the identifier of space ―3L-5,‖ is

passed as the parameter of this function:

<FunctionFunctionId="urn:sakamura-koshizuka-lab:names:dcrdl:1.0:function:get-space-temperature">

<Parameter Value="X0001C000000000000020000000D648"

DataType="urn:sakamura-koshizuka-lab:names:dcrdl:1.0:DataType:ucode" />

</Function>

 Finally, the DCRDL code is interpreted into a policy agent. The key part is a

smart building API modeling component that connects such description code to a

real RESTful service. We present the detailed implementation of this component

in section 5.2.2.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

32 Peng Xiaohui - March 2016

3.5 Novelty

3.5.1 Lightweight and Distributed Architecture

Building automation is the automatic management of building services such as

heating, ventilating, air-conditioning, lighting, and elevator systems [108]. Although the

devices and machines of subsystems are physically distributed, these systems are

usually integrated with a centralized computer-based management platform. For

example, the control room of a building may have several control systems installed to

control subsystems respectively. Existing building automation applications are usually

installed on powerful computers with high computing capability. With the number of

installed applications increasing, the system might be overloaded.

With our framework, users can write and run automation policies on any device. The

only requirement is that the device be able to run interpreters and connect to the

network of the target building. It adopts the IF-THEN control logic, which is the basic

principle for building automation. Many people may view this as similar to a rule-based

expert system. However, they are quite different. The following table shows the

differences between them. Our framework focuses on defining and running rules,

whereas a rule-based expert system focuses on reasoning rules.

Table 3-1. Comparison of our framework with the rule-based expert system

 Our Framework Rule-based Expert System

Architecture Distributed Usually centralized

Hardware/platform
From smartphones to powerful
computers Powerful computers

Objective
To achieve personalized,
precise, and collaborative
control

Find new facts from existing
rules and data

Rule reasoning Currently, NO YES

Rule definition Main focus Secondary

3.5.2 Collaborative Control

A building automation system comprises a set of subsystems which are run solely to

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 33

control the environmental parameters with which they concerned. Currently, smart

building subsystems are still isolated from the perspective of control. As we have

discussed in section 1.2, a smarter building automation system requires the cooperation

of devices from different systems.

For example, when a user walks from the front door of the building to his/her seat,

subsystems such as authentication, positioning, elevator, and door control system act,

respectively. The user may have to authenticate several times on the gate control system

because there may be multiple doors on the route to his/her seat. If these subsystems

operated collaboratively, human comfort and productivity may be improved and energy

efficiency optimized. For instance, if the authentication, positioning, elevator, and gate

control systems shared information about the user, the user would only need to

authenticate once at the front door. Upon authenticating at the front door, the elevator

system would arrange to have an available elevator at the ground floor. With the

cooperation of positioning, authentication, and gate control system, internal doors

would then open when the user approached those doors. In this scenario, the user‘s time

would be saved; thus, productivity and user comfort level would be improved.

Our framework is designed above the level of the smart building APIs. It views the

whole building as a distributed hardware computer with programmable architecture and

provides a programming environment for users to write rules and policies. The rules and

policies can get information from the building system and control individual devices

from different subsystems working in a collaborative manner. The cooperation of

devices from different subsystems increases the intelligence of the smart building,

resulting in optimized building energy efficiency.

3.5.3 Personalized Control

Existing building automation systems are typically designed using a centralized

architecture to minimize occupant interaction. With the rise of IoT, the connectivity of

internal devices has significantly improved. Users are becoming a constant part of the

smart environment of the building. They usually require personalized control for their

workspaces according to their preferences. For example, users may have different

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

34 Peng Xiaohui - March 2016

definitions of ―hot‖ in a room, which may depend on the context, such as the climate,

and their clothing. Therefore, they may require different set-points for their workspace

in a large room where there are multiple air conditioners heating and cooling different

areas.

Our framework is a lightweight distributed architecture. Any device that have the

ability to run the compiler and interpreter of its two descriptive languages (DCRDL and

EPDL) can be used to control a building system. Consequently, personalized control can

be achieved by users writing rules and policies for building systems using their

smartphones, pads, etc. This obviously optimizes the energy efficiency by improving

user comfort, which is a sub-factor of energy efficiency.

3.5.4 Precise and Flexible Control

Personalized control mainly addresses the issue of personalized configuration of

someone‘s living and working spaces. Precise and flexible control also should be

enabled to optimize energy efficiency. In general, building automation systems share a

basic control principle called context-based control (or IF-THEN logic). It acquires

context information (e.g., environment parameters and human activities) as input for

automation algorithms and output controls as feedback to the building system to adjust

its status. Early engineers adopted this principle to design facility controllers for smart

buildings. For example, the lighting system controller detects the presence/absence of a

human within a period to turn on/off lights. It is a very simple IF-THEN logic.

However, practical scenarios may vary according to time, season, user preferences,

etc. For example, it is not necessary to turn on lights in the daytime even when a human

presence is detected. More precisely, the lighting control system may need light

intensity information to decide whether to turn lights on or not when a human presence

is detected. Therefore, precise and flexible rules should be applied to control related

devices to act properly according to a specific context.

In our framework, we designed two descriptive languages for writing flexible and

precise control policies and rules. The rules in these two languages follow the

ConditionSet-ActionSet (CSAS) format. ConditionSet represents a combination of

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 35

multiple conditions that form a specific context. ActionSet represents behaviors related

devices should perform when the context represented by ConditionSet is detected.

ConditionSet is designed recursively to model the flexible complex context in smart

buildings. Therefore, a rule is able to represent flexible complex contexts and precise

controls based on the context. A set of such rules forming a policy is able to achieve a

certain energy efficiency optimization goal.

3.5.5 Building Resource Abstraction

A critical issue that confronts developers developing universal programming

interfaces for smart buildings is the mix of heterogeneous networks and complex

service details involved. Programmers need knowledge about building structures,

network architectures, available services, etc. to develop proper automation applications

for managing such buildings. For example, we adopted Ubiquitous ID technology [109]

to identify objects and spaces in the Daiwa Ubiquitous Computing Research Building. If

a developer wants to develop an automation application for smartphone users, he has to

know the IDs for each device and the services (e.g., turn on/off) that a device can

provide. In order to apply an application to a new building, it must be revised to adapt to

the structure, internal networks, and services of that building. Thus, a resource

representation schema that abstracts building resources is needed.

In addition, for a non-expert user who is not good at programming or who is not

familiar with the target building, more standard resource representation schema is

necessary. For example, in EPDL, we designed a building resource description schema

to organize building resources. System developers or resource discovery protocols can

issue resources for public reference using this schema. We also developed an EDPL

editor so that users can use a semantic expression such as,

building.floors["3F"].spaces["3L-5"].appliances["AirConditioner1"].sba_ctr_ac_off

to refer to the service of turning the air conditioner off with the index of

―AirConditioner1‖ in room ―3L-5‖ of floor ―3F.‖ In addition, such an expression can be

translated to executable code that invokes the real service of turning an air conditioner

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

36 Peng Xiaohui - March 2016

off. Therefore, non-expert users can write control policies easily using public building

services. No existing study in building resource abstraction supports such a mechanism.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 37

4 FRAMEWORK DESIGN

4.1 Design Principle

To enable ordinary users to program smart buildings, we designed our framework

based on two principles:

 abstraction of complex building resources and structures; and

 separation of upper-layer user control logics and running details of the services.

We first designed an agent-based system to model the running environment of our

future programming languages. Then, we created a Device Control Rule Definition

Language (DCRDL) [17] that enables programmers to write control rules for devices

easily. A more concise and simple Energy Policy Description Languages (EPDL) [45]

with a set of tools was also designed to support users who are not good at programming

or who are not familiar with the target building.

Figure 4-1. System overview

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

38 Peng Xiaohui - March 2016

4.2 Policy Agent System (PAS)

The objective of PAS is to model the running environment of DCRDL and EPDL.

Policy agents are interpreted from DCRDL rules. For example, when the building

administrator wants to control peak energy consumption and shift the peak to an idle

period, he/she can write rules to control devices or appliances running in a lower

consuming state or turn them off if the energy consumption has reached a defined peak

using DCRDL. Then, the DCRDL interpreter translates those rules into a policy agent.

The agent checks all the inside rules within the given period or triggered by an event.

The event can be any environmental changes that related to the inside rules. We studied

the peak demand control problem based on PAS in [67] to evaluate the practicality of

the PAS system.

4.2.1 Peak Demand Control

Smart building systems comprise a variety of subsystems, including a wide range of

machines, appliances and constrained devices. When they are networked together by

protocols, and some energy efficiency policies are applied, a significant reduction in

energy usage and costs can be achieved. Peak electricity demand is the result of

temporarily correlated energy demand surges caused by uncoordinated operation of

subsystems such as air conditioning, heating, and ventilating [67]. It can cause serious

problems such as service unavailable and high cost of energy. Future smart buildings

must be able to balance their electricity usage and reduce their electricity consumption.

Energy control policies are usually applied to perform fine-grained controls on

devices to save energy. They usually include a collection of device control rules that

define a set of actions for target devices when specified conditions are met. There are

also other static constraints in the system. For example, there should be a range for the

set-point of air conditioners, which may differ in summer and winter; the air

conditioners should never be turned off in an intensive care unit. The building system

should have the ability to shift demand peak to idle periods. In other words, it should

find a set of rules to execute to lower the real-time energy demand without breaking any

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 39

constraint in the building.

4.2.2 The Constraint Satisfaction Problem

Constraint satisfaction problem (CSP) is modeling method which has been widely

used for resolving combinatorial issues in ―operational research such as scheduling and

timetabling‖ [110]. A CSP requires a value, selected from a given finite domain, to be

assigned to each variable in the problem, such that all constraints related to the variables

are satisfied [110]. The domain of a variable holds the information about what value a

variable can take. The constraints of the problem limit the variable values that can be

assigned simultaneously.

We model the peak demand control in the building energy management system as a

CSP problem. The target devices are lights, air conditioners, and ventilators. The period

of electricity consumption of light, air conditioner, and ventilator, i, are represented as Eli,

Eaci, Evi , respectively. V represents variables (lights, air conditioners, and ventilators). D

represents the variable domains (e.g., on/off status of light and set-point of the air

conditioner). C represents the constraints. We define the constraints as follows:

 Feature constraint. The features of the devices. For example, the set-point ranges

allowed by an air conditioner.

 Preference constraint. For a given situation, many sets of control actions can

meet the constraints. That is, when the total consumption of electricity is

approaching the peak value, more than one device can be turned off. Preference

constraint indicates which one should be turned off first. For example, turn off

the air conditioner in the room where the temperature is the lowest.

 Peak constraint. The total electricity consumption should not exceed the

predefined peak. This is the main constraint of the peak demand control

problem.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

40 Peng Xiaohui - March 2016

This CSP can be represented as follows:

 (V, D, C) (4-1)

Where:

 V = {El1, El2, …, Eln, Eac1, Eac2, …, Eacn, Ev1, Ev2, …, Evn} (4-2)

D is given by,

 Dli = {0, 1}, Dvi = {0, 1},

 Daci = {20, 21, 22, 23, 24, 25, 26}, iN
+
 (4-3)

C is the constraint applied to the peak electricity demand control:




n

i 1

l E + 


n

i 1

ac E +


n

i 1

v E ≤ Epeak (4-4)

4.2.3 Design of the Peak Demand Control Framework

The framework consists of a set of constraints (i.e., Policy and rules), an interpreter, a

context monitor, and an executor. All the feature and preference rules are defined in

policy source file following the XML format. The interpreter translates policy source

file and generates executors with the translated policies. It may generate more than one

executor because the user may define peak control rules for the whole building, as well

as for individual rooms.

Figure 4-2. Architecture of the peak electricity demand control framework

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 41

Policy Definitions

The inputs are the operating rules for the smart devices in the building. These rules

not only describe the features and functions of the devices, but also define the user

preferences, such as ―turn the air conditioners off in the room where the temperature is

the lowest‖ and ―never turn off the air conditioner if there is a server.‖

Interpreter

The interpreter translates these policies into constraints, which constitute the inputs

for executors that apply constraint programming technology. The executors determine a

set of operations that turn off some devices based on the input constraints from the

interpreter.

Context Monitor

To simplify the search algorithm for the CSP, we designed a combination priority

mechanism. The framework adjusts the situation of the proper devices (i.e., devices that

have a higher priority to be adjusted) according to the defined policies. The combination

priority consists of high priority and low priority. High priority is defined by the user

and cannot be changed at runtime. Low priority is initialized by the user, but can be

changed if the environmental situation changes.

For example, the low priority of air conditioners in two rooms can initially be set at

the same level. Then, when the temperature in one room is lower than that of the other,

the low priority of air conditioners in this room will change to a higher level than that of

the air conditioners in the other room. In other words, when electricity demand reaches

its peak, the air conditioners in this room will turn off or increase the set-point to reduce

electricity consumption.

Executor (Constraint Solver Agent)

We only implement one agent, called constraint solver agent for the peak demand

control issue, to run in the PAS. It adopts a Backtracking Search algorithm to find a set

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

42 Peng Xiaohui - March 2016

of predefined rules that comply with the system constraints in the policy file and then

run the selected rules to cut the demand peak. During the backtracking search, it also

refers to the priority values of the devices that are monitored by the Context Monitor.

4.3 DCRDL: Device Control Rule Definition Language

4.3.1 Motivation for DCRDL

In the previous section, we have introduced the modeling of peak demand control

issue of smart buildings using constraint satisfaction method. The constraint solver

agent finds a set of devices to be operated to shift the peak electricity demand without

breaking user-defined constraints. The ensuing research directions can be,

 Design framework and interfaces for smart building users to define constraints

(i.e., Write control rules/policies) for the building automation system; and

 Design efficient rule reasoning algorithms to resolve the rule conflict issue.

The second direction is related to an old topic: rule-based reasoning which is also the

key issue of expert systems. Substantial work has been down to deal with this issue. We

do not discuss the rule conflict problem in this thesis and it will be addressed in future

publications . We select the first directions as the next step of this research.

Therefore, we created a rule definition language, called DCRDL, for context-based

device control in IoT-enabled smart buildings. DCRDL allows users to write complex

control rules that control device behavior based on the sensed context to achieve the

goal of energy efficiency in a programming approach. ConditionSet-ActionSet (CSAS)

or multiple Conditions-Actions rule is applied as the basic design principle of our rule

definition language.

The ultimate objective of our work is to achieve context-based device control of

energy efficiency in smart buildings. Although the effect of improving energy efficiency

depends on the designed rules, a proper rule exhibits the potential to improve energy

efficiency in smart buildings. Complex and flexible rules should be expressible and

adaptable to the various situations in the building. A rule must be capable of modeling

complex contexts and defining multiple control actions. When executing actions, the

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 43

rule should be capable of selecting targets using services or combination of services.

Therefore, the following requirements should be satisfied:

 Multiple conditions: multiple actions format rules;

 Logic algebra for complex condition combinations; and

 Function description.

A DCRDL rule primarily consists of a ConditionSet and an ActionSet. To realize the

complex expressivity of the logical relations of conditions, ConditionSet adopts a

recursive design, as illustrated in Figure 4-6. Another recursive design is the function

and parameter elements. As shown in Figure 4-9, the parameter element can call another

function and the return value will be treated as the value of the parameter. The function

is a key element of DCRDL and is used to obtain situations, select targets, control

targets, and evaluate the conditions of a rule. The details of these functions are defined

in the language specification [111].

4.3.2 Context-based Device Control

With the aid of wireless sensor networks, building energy management systems

(BEMSs) have begun to acquire detailed information about energy consumption at

different levels [4], such as appliance level, room level, and building level.

Consequently, sophisticated approaches for energy efficiency are now possible with the

detailed information supplied. To optimize the overall energy efficiency of smart

buildings, devices need to behave properly and collaboratively according to certain rules

related to context (e.g., energy consumption, environmental conditions, and human

activities). We call this kind of control context-based device control which is regarded

as the basic control principle of smart buildings. The DCRDL is designed to deal with

this kind of control.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

44 Peng Xiaohui - March 2016

4.3.3 DCRDL Class Diagram

Figure 4-3. DCRDL class diagram

4.3.4 Elements of DCRDL

Policy

The policy is the topmost element of DCRDL. A policy includes several rules defined

in the policy element to achieve a general control goal or algorithm. Figure 4-4 shows

example code for a policy in DCRDL.

Figure 4-4. Code example of a Policy in DCRDL

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 45

The PolicyId attribute in the policy element identifies this policy in the system. This

attribute is not used in the current version; however, we plan to use it in a future version

as a functional extension. The DCRDL interpreter executes a policy as a polling thread,

and the Period attribute indicates the polling cycle of this policy. The event-driven mode

(see Appendix 4) should be implemented if the data platform of the building provides

eventing mechanism.

Rule

A rule is a key element of DCRDL. It is embedded inside the policy element to define

specific behaviors for devices. It consists of a ConditionSet section and an ActionSet

section. When the ConditionSet section of the rule is evaluated to be true, all the actions

defined in the ActionSet section are executed.

Figure 4-5. Code example of a Rule in DCRDL

ConditionSet

ConditionSet is a recursive element that consists of conditions and sub-ConditionSets.

It is designed to represent the complex logical algebra of conditions.

Figure 4-6. Code example of a ConditionSet in DCRDL

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

46 Peng Xiaohui - March 2016

The CombineMethod attribute describes the logic relation in this ConditionSet. In

Figure 4-6, the first layer condition is A and the conditions in the inner ConditionSet are

B and C. The logic relations of these conditions can be expressed by the following

logical algebra formula:

A ∧ (B ∨ C) (4-5)

ActionSet

An ActionSet is composed of several actions that control behaviors of context related

devices. All the defined actions in the ActionSet are executed when the corresponding

ConditionSet in the rule is evaluated to be true.

Condition

A condition compares the building information with the user-defined value. It

consists of a subject and a comparison function.

Figure 4-7. Code example of a Condition in DCRDL

The above condition gets the discomfort index of a room using the

get-space-discomfort-index function with a parameter that stands for the space ID. Then,

the float-larger-than function is invoked to compare the obtained discomfort index value

with the specified value of 21.0. The return value of float-larger-than represents the

evaluation result of the condition.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 47

Action

The action includes a target and an action function. The target element uses a

TargetID, the ucode [109], to indicate the control target. A target can also invoke

functions to get the control targets. An action function takes a ucode and parameters as

input to carry out control of the target indicated by a ucode.

Figure 4-8. Code example of an Action in DCRDL

Function

A function is the most important element of DCRDL. It performs building

information acquisition, comparison, and device control. The parameter element inside

a function can also invoke other functions to get building information as the value of

this parameter. Defining new functions can extend the functionality of this language. We

only need to define the human detection and email sending function if we wish to send a

notification email to the security department when a stranger is detected in the building.

In addition, service mash-up is allowed in DCRDL. Users can compose new functions

by using standard built-in functions defined in [111] to perform complex context

acquisition, as shown in Figure 4-9.

Figure 4-9. Code example of a Function in DCRDL

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

48 Peng Xiaohui - March 2016

Functions in DCRDL can be classified into three categories:

 Comparison Function

These functions are used in a condition. The comparison function compares the

obtained environment parameter with the given value to determine whether a

condition is true or false. For example, the float-larger-than function compares the

temperature of the target space with the given value to evaluate if the temperature

has exceeded the given value or not.

 Information Obtaining Function

Information obtaining functions can be used in both conditions and actions. These

functions fetch the information from the environment and also perform statistics such

as calculating the total electricity consumption of specified rooms or selecting target

spaces and objects (e.g., selecting the room in which the temperature is lowest in the

building).

 Action Function

Action functions perform device controls in the smart building, such as turning

on/off lights and changing the set-point of an air conditioner.

4.4 EPDL: Energy Policy Description Language

DCRDL is a low-level language created to enable expert users to write fine-grained

rules for appliances in order to improve energy efficiency. Users have to manually

describe the raw structure of the rules in a well-formed XML file when using DCRDL.

In addition, users must be familiar with the details of the target building when using

DCRDL. In this section, we introduce EPDL, a high-level language that supports human

readable energy control policy writing without exhaustive knowledge of the building.

EPDL policies are compiled to DCRDL format, and the execution environment is

designed and implemented in DCRDL and PAS.

In this section, we present the design of the following components of EPDL:

 EPDL: A high-level user-friendly energy control policy description language for

improving energy efficiency in smart buildings.

 Smart building resource description schema that eases the energy control policy

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 49

design.

 A set of tools that support writing and compiling energy control policies using

EPDL.

4.4.1 Motivation for EPDL

The objective for EPDL is to create a user-friendly energy policy description

language to ease the policy writing for smart building users. Therefore, we designed a

simpler rule format based on DCRDL and added more flexible control logics such as

LOOP and IF. We also designed a smart building resource descriptor, language editor,

and a compiler to support writing and running energy control policies with EPDL.

Figure 4-10 shows the detailed architecture of EPDL.

The smart building collects the raw data relating to occupants on each floor from the

sensor network and obtains real-time occupant distribution state using big data analytics

technologies. This analyzed semantic information can be opened to users via RESTful

APIs. Then, we can apply a rule, for example, to the elevator system that stops idle

elevators on the floor where the most occupants in the building are. As a result, both the

waiting time for most people and the movement of elevators are reduced in the long run.

In other words, the energy efficiency of the smart building is improved.

However, programming skills and knowledge about smart buildings are required for

writing such a rule in DCRDL. It is difficult for users to design energy control policies

easily without providing them with information of available services and the semantic

structure of the smart building. For instance, writing a rule for the above case, the

required basic information includes 1) how to get occupant distribution status on each

floor, 2) how many floors and elevators there are, and 3) how to control the elevators.

Users need to study how to use the available resources and services before writing an

energy control policy for smart buildings. Expressing building resources in a simple

well-formed data schema and providing them to users is a challenge. Therefore, we

propose a more concise Energy Policy Description Language to address these issues.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

50 Peng Xiaohui - March 2016

4.4.2 Architecture

Figure 4-10. The architecture of EPDL

EPDL consists of a smart building resource descriptor, a language editor, and a

compiler. The energy policy designer writes policies in the EPDL editor, and the EPDL

compiler translates source code to DCRDL with the help of the resource descriptor. The

DCRDL interprets the compiled source to policy agents. Finally, these agents run as

threads in the system with the support of the smart building resource management

framework. The thread checks the rules defined in it periodically at runtime to perform

context-based controls on appliances in smart buildings.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 51

4.4.3 Smart Building Resource Description Schema

Overview

Figure 4-11. An example smart building resource descriptor in the XML format

To assist users who have little knowledge of smart buildings to write an energy

control policy, we designed a smart building resource descriptor that contains the

following types of information organized in the XML/YAML format.

 Semantic relations between spaces and objects. This kind of information

describes semantic relations such as a sensor or an appliance and the room to

which it belongs, and the kinds of rooms a floor consists of. Four main elements

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

52 Peng Xiaohui - March 2016

are defined in the descriptor: building, floor, space, and appliance.

 Properties of spaces and objects. Properties are name-value pairs that represent

the attributes of a space or an object. An identifier and index property are

required for every object and space. The identifier is the unique identification of

an object or a space in the system and the index property is used to help users

refer to an object or a space. The ucode [109] is used to identify property in the

descriptor.

 Services for acquiring context information and controlling appliances. All the

services of an object or a space are represented as attributes of the function

element in the form of name-value pairs. The function element is a sub-element

of the building, floor, space, and appliance elements.

 Description of functions. The description of a function includes return type,

function ID, and parameters. The attributes of the parameter element consist of

name, data type, and index. The index indicates the position of the parameter in

the parameter list. Users are encouraged to add description attribute, which

describes the details of this element, to the function and parameter elements.

In brief, the descriptor describes the semantic information of spaces and objects

inside smart buildings via a well-formed XML/YAML file. It also includes features and

available services of each space and appliance. We are planning to extend this descriptor

to a building resource management framework for supporting flexible resource

management in future works.

Structure

In this section, we introduce in detail elements of the smart building resource

descriptor. The smart building resource description schema is defined in Appendix 1.

The schema of the descriptor is designed in both XML and YAML format.

Fundamentally, there are four main elements in this schema: <building>, <floor>,

<space>, and <appliance>. Properties and function-list are required for each element.

Properties and function-list are described using key-value pairs. Keys are for

upper-layer users to understand the resource better. Values are inner properties or

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 53

service ids for lower-layer systems. Two properties are required for each element:

 Index: for upper-users to refer to an element.

 Ucode: the unique identification for objects, locations, concepts, etc. using

Ubiquitous ID technology [109]

<building> is the top element of the descriptor. It describes all the information

directly related and inside the building. The inner <functions> element lists all the

available services of the building layer. Attributes in the <building> element describe

the properties of the building layer.

<floor> is a sub-element of <building> and gives information about the floor layer.

The inner <functions> element lists all the available services of the floor. Attributes in

the <floor> element describe the properties of the floor layer.

<space> element describes information of all the physical space. The inner

<functions> element lists all the available services of a space. Attributes in the <floor>

element describe the properties of space layer.

<appliance> describes information about a device, appliance, etc. The inner

<functions> element lists all the available services of the appliance. Attributes in the

<appliance> element describe the properties of an appliance.

<sbapi> contains a detailed description of smart building APIs. It includes return-type,

parameter details, and function ID defined in the DCRDL specification [111].

4.4.4 Elements of EPDL

There are four main elements in EPDL: Policy, Rule, IF and Foreach statement. A

policy contains the Rule, IF, and Foreach statements.

Policy: the policy element is the wrapper of Rule, IF, and Foreach statements. The

properties of a policy include id, period, and name. The period string indicates the

polling cycle of the interpreted policy agent. For instance, when the following policy is

transferred to a policy agent, the agent checks all the rules in this policy every 900

seconds as illustrated by ―policy.period‖ in Figure 4-12. The id property can be used to

control the running and stopping of the agent.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

54 Peng Xiaohui - March 2016

Figure 4-12. Example code of a policy in EPDL

Rule

Rules are the fundamental elements of EPDL. All the elements defined in the policy

are compiled into a list of rules. All rules share the same format:

rule name when{ ConditionSet }then{ ActionSet } (4-6)

In the above sample rule statement, the name property is optional. All the conditions

and their relations are represented in ConditionSet. ActionSet defines the actions that

should be executed when ConditionSet is evaluated to true. To express complex

contexts consisting of many conditions, ConditionSet is described recursively and may

contain other ConditionSets or conditions.

Figure 4-13. Example code of a rule in EPDL

Figure 4-13 shows an example code of a rule: when the discomfort index is larger

than 21.0 and the temperature is less than 22.0 in room ―3L-5‖ on the third floor, turn

off ―AirConditioner1‖ and ―AirConditioner2‖ in this room. The ConditionSet of this

rule contains two conditions, and the logic ―And‖ indicated by ―&&‖ shows the relation

between the two conditions. The left part of a condition and the action statement should

be input with the help of smart building resource descriptor because most users have no

knowledge of what information can be acquired and what controls can be performed in

a smart building. In Figure 4-13, the user should input ―building‖ and select the third

floor, the space 3L-5, finally the ―sba_get_temperature,‖ which is described in the

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 55

resource descriptor, for referring to the service that obtains the real-time temperature of

room 3L-5.

IF Statement

The IF block decides whether the internal code should be compiled or not. Only the

static properties are allowed to be referred to in the condition part of an if statement,

because the condition part of an if statement is checked only at the compiling stage. For

example, in the condition part of the if statements in Figure 4-14, the service

―sba_get_temperature,‖ which acquires the real-time temperature value of space ―3L-5,‖

is not allowed, but ―type‖ attribute is allowed to be referred here. In addition, it is

meaningless for the compiler to acquire the real-time temperature at the compiling

stage.

Figure 4-14. Example code of if statement in EPDL

Foreach

When users want to apply the same rule to multiple spaces or appliances, the foreach

statement can be useful and convenient. The example code in Figure 4-15 shows the

usage of the foreach statement: turn off all the air conditioners in room ―3L-5‖ when the

electricity consumption in the last 15 minutes in this room is greater than 0.30 kWh, and

turn off all the lights when the electricity consumption is greater than 0.50 kWh. Rule

―r4‖ is applied to all the air conditioners and ―r5‖ is applied to all the lights in the room

―3L-5‖.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

56 Peng Xiaohui - March 2016

Figure 4-15. Example code of a foreach statement in EPDL

4.4.5 EPDL Compiler

Compiler

A compiler [112] is usually a set of programs that translate source code that can be

easily read by human to another language that can be easily understood by a computer.

The former is usually a high-level programming language (e.g., C/C++, and Java) for

programmers, while the latter is usually a lower level language (e.g., assembly

language) for machines. High-level programming languages provide extra functions and

simplify the programming procedure. In this context, EPDL is a high-level language and

DCRDL is a low-level language. The major tasks of a compiler include the following:

 Lexical analysis;

 syntactic analysis; and

 code generation.

Lexical analysis processes the program source code roughly and divides it into tokens

such as keywords, literals, and punctuations. Syntactic analysis extracts meaningful

elements from source code and ensures that no grammar rule is violated.

JavaCC and JJTree

―Java Compiler Compiler (JavaCC) is a popular parser generator‖ [113] for LL(k)

grammars. JJTree is ―a preprocessor for JavaCC, which inserts parse tree building

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 57

actions‖ [114] into the JavaCC grammar file by translating a JJTree grammar file (*.jjt)

to a JavaCC grammar file (*.jj). For example, the following two figures show JJTree

and JavaCC grammar for the condition element of EPDL, respectively.

Figure 4-16. JJTree grammar for condition element of EDPL (EpdlParser.jjt)

Figure 4-17. JavaCC grammar for condition element of EDPL (EpdlParser.jj)

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

58 Peng Xiaohui - March 2016

Grammar File

There are many parser generators for creating a source code parser. In this research,

we adopt JavaCC which generates code parser for EPDL. JJTree allows users to define

grammars in a manner similar to Extended Backus-Naur Form (EBNF) [115] for

JavaCC. The entire JJTree grammars for EPDL written in EBNF-like fashion are

available in [116] and Appendix 2. We present the EBNF notations of the main terms of

EPDL as follows [106]:

<Policy> := ' policy ' <Identifier> ' { ' <PolicyAttributeDefine>*|<Rule>*

 |<RuleForeach>*|<IfStatement>* ' } '

<PolicyAttributeDefine> := ' policy. ' <Identifier> ' = ' <Literal>

<Literal>:= <INTEGER_LITERA>|<FLOATING_POINT_LITERAL>

 |<CHARACTER_LITERA>|<STRING_LITERAL>

<Identifier> := <LETTER>|(<LETTER>|<DIGIT>)*

<Rule> := ' rule ' <Identifier> 'when{'<ConditionSet> '}then {'<ActionSet> ' }'

<RuleForeach> := ' foreach' <Identifier >' within' <SbaApi> '{' <IfStatement>*|<Rule>* '}'

<IfStatement> := 'if (' <ConditionSet>'){' <Rule>*|<RuleForeach>* '}'

<ConditionSet> := <OrCondition>

<OrCondition> := <AndCondition>('||'<AndCondition>)*

<AndCondition> := <Condition>('&&'<Condition>)*

<Condition> := ('('<OrCondition>')'|<UnaryExpression>) (<RelationSign><Literal>)*

<UnaryExpression> := <SbaApi>|<Identifier>

<RelationSign> := '>'|'>='|'<'|'<='|'=='|'!='

<SbaApi> := 'building'|<MemberIdentifier> ('. '<MemberIdentifier>)*[<Arguments>]

<MemberIdentifier> := <Identifier>['[' <Literal> ']']

<Arguments> := '(' [<Literal> (','<Literal>*)] ')'

4.5 Summary

In this chapter, we introduced in detail the design of our framework. We designed a

PAS in section 4.2. The peak demand control issue was also studied and designed as a

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 59

policy agent. In section 4.3, we presented DCRDL: a device control rule definition

language for context-based device control in smart buildings. Policies written in

DCRDL can be interpreted into policy agents and run in PAS. We explained the design

details of EDPL and supporting components in section 4.4. A resource representation

schema called the smart building resource descriptor was also presented in section 4.4.3.

The descriptor is a key supporting component for supporting non-expert users in writing

energy control policies with EPDL.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

60 Peng Xiaohui - March 2016

5 SYSTEM IMPLEMENTATION

We will introduce the implementation details of the proposed programming

framework in this chapter. The framework consists of three main components: PAS,

DCRDL, and EPDL. These components are primarily developed using the Java

programming language, and the total Java code is about 13,500 lines. The DCRDL and

Smart Building Resource Descriptor can be written in the XML or YAML format. We

implemented parser prototypes for the XML format.

5.1 Policy Agent System

5.1.1 Smart Building API

The Smart Building API is a set of RESTful interfaces deployed in the Daiwa

Ubiquitous Computing Research Building (hereinafter referred to as ―DUCRB‖) for

data access and device control. There are API servers that host the services for public

access in this building. These APIs follow the wildly successful REST model. Data can

be accessed and devices can be controlled through the Web using HTTP methods such

as GET, PUT, POST, and DELETE. Any programming language that supports HTTP

protocols can be used to develop automation applications at the client side for

IoT-enabled smart buildings. These APIs are introduced as follows:

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 61

 Sensors: obtain building context information through the Smart Building API

including temperature, humidity, PM2.5 (i.e., particulate matter with a diameter

of less than 2.5 micrometers [18]), occupants, human location, etc.

 Lighting System: control lights (i.e., turn lights on/off), and query the on/off

status of lights through the Smart Building API.

 Air conditioner: fetch status information and perform fine-grained controls on

target air conditioner through the Smart Building API.

 Elevator: move elevator to target floor through the Smart Building API.

 Smart Meter: get real-time or historical electricity usage of a measured device or

unit through the Smart Building API.

Figure 5-1. Smart Building API [30]

BLE Marker, temperature

and humidity sensors
Human detection sensor Camera

Lighting Air conditioning

Smart Meter Elevator

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

62 Peng Xiaohui - March 2016

We use an air conditioner as an example to illustrate how the Smart Building API

works. Methods used for air conditioner operations are:

Obtain Status GET

Control PUT

The parameters for controlling an air conditioner are shown in the following table:

Table 5-1. Structure of JSON data of the PUT Request for controlling air conditioners [55]

Item Value Description

url /api/v1/air_conditioners/{id}.json
Path of the Smart Building API for air

conditioners

id Integer
The identifier (ID) of target air

conditioner in the building system

setting_bit
Integer (4 bytes)

Enable/disable (1:enable, 0:disable)

Operations:

Bit 0: On/Off

Bit 1: Operation mode

Bit 2: Ventilation mode

Bit 3: Ventilation amount

Bit 4: Set-point

Bit 5: Fan Speed

Bit 6: Fan Direction

set_point Float Set-point of air conditioner

on_off Integer 0:Off, 1:On

operation_mode Integer
1:Fan, 2:Heat, 4:Cool, 16:Dependent,

64:Dry, 128: Auto

ventilation_mode Integer
1:Automatic, 2:Heat Exchange, 4:

Bypass

ventilation_amount Integer
1: Normal, 2: Low, 4: High, 8:

Automatic, 16: Low, 32: High

fan_speed Integer 0: Low, 1: Middle, 2: High

fan_direction Integer 0 - 4: Directions, 7: Swing

filter_sign_reset Integer 1: Reset

For example, to turn on an air conditioner with an ID of 49 and with a set-point of

23.0, the following JSON data is sent to http://IP/api/v1/air_conditioners/49.json (where

IP is the IP address of the API server):

http://ip/api/v1/air_conditioners/49.json

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 63

If we access ―/api/v1/air_conditioners/49.json‖ using the HTTP GET method, JSON

response data is returned as described in the following Table 5-2:

Table 5-2. JSON response data after querying the status of an air conditioner [55]

Item Value Description

address Integer
The identifier (id) of target air

conditioner in the building system

status Integer 1: Normal, 0:Error, -1:Unconnected

malfunction_code Integer

on_off Integer 1:On, 0:Off

operation_mode Integer Refer to above table, 0:Unknown

ventilation_mode Integer Refer to above table, 0:Unknown

ventilation_amount Integer Refer to above table, 0:Unknown

enable_disable_temp Integer (4 bytes)
Bit 0: if 1 Set Temp. enable

Bit 1: if 1 Room Temp. enable

room_temp Float Real temperature of the room

set_temp Float Set-point of air conditioner

fan_speed Integer Refer to above table, -1: Unknown

fan_direction Integer Refer to above table, -1: Unknown

filter_sign Integer 0:On, 1:Off

name String Name of the air conditioner

5.1.2 Local Java Library of the Smart Building API

We implemented a local Java library of RESTful APIs for the evaluation of PAS. The

SmartBuildingAPI class is a wrapper for SensorController, LightController, SmartMeter,

and ACController classes. Users invoke the Smart Building API with a given ucode,

which is a unique identifier for a target object/space. The Smart Building API changes

ucodes to the IDs used by different vendor sub-systems. HTTPRequestHelper is a static

{"air_conditioner":

 {"id":49, "setting_bit":0x11, "on_off":1, "set_point":23.0, "operation_mode":0,

"ventilation_mode":0, "ventilation_amount":0, "fan_speed":0, "fan_direction":0, "filter_sign_reset":0}

}

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

64 Peng Xiaohui - March 2016

class with three static methods for sending HTTP GET, PUT, and POST requests. The

class dependency of the local Java library is shown in the following figure:

Figure 5-2. Class dependency of the local Java library for the Smart Building API

We introduce APIs for each type of devices as follows:

 Smart Meter API: The electricity consumptions at different levels (e.g., building,

floor, space, device level, etc.) are being recorded by the Smart E-Power Meter

named ―Data Logger Light,‖ which is a product of Panasonic Company. Some

query APIs are deployed on the API server. Users can obtain real-time historical

electricity consumption for each measured device or unit through these APIs.

 Air Conditioner API: The air conditioner system is controlled by ―Intelligent Touch

Controller,‖ which is produced by Daikin Industries, Ltd. Some RESTful APIs have

been deployed on the API server to provide querying and controlling services for

remote users. Users can get the property and the status of the connected air

conditioners by sending HTTP GET requests. Users can control the connected air

conditioners by sending HTTP PUT requests.

 Light and Sensor API: Status information is collected from sensors and lights and

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 65

stored in a data server. The API server may query the data server when users try to

get the status information of a device.

5.1.3 Architecture of PAS

We implemented the peak control policy as a policy agent using the local Java library.

The architecture of this system is shown in the following Figure 5-3:

Figure 5-3. Architecture of the peak demand control framework

The system was developed using Eclipse 4.4.0 [117], and Figure 5-4 presents the

source tree of this system. The interpreter parses predefined rules (i.e., the constraints

defined in a policy file in XML format) and stores the rules in the system.

The context monitor dynamically changes the priority of devices according to

real-time context. The context monitor is also responsible for finding a set of suitable

rules from the system and sending them to the executor. The rules are selected with the

help of JaCoP [118], which is a constraint solver implemented in Java. We adopted a

simple backtracking search algorithm for selecting rules.

The executor is responsible for evaluating rules that are selected by the context

monitor. The executor will turn off the target devices or let them run at a lower

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

66 Peng Xiaohui - March 2016

electricity consumption level without breaking the constraints defined in the policy.

Figure 5-4. Source tree of the peak demand control agent

5.2 DCRDL

In order to enable the flexible, precise, and collaborative control of the smart building

system, we extended the peak demand control framework [67] and implemented a

rule-based energy management framework for smart buildings. A descriptive language

was also designed to enable users to write control rules for the framework. This

framework allows rules that are written in DCRDL to be executed to control smart

devices for optimizing energy efficiency in smart buildings. It hides the lower-layer

building structure and service semantics so the upper-layer can write simple rules to

control the smart building system. We focus on enabling users to write rules to describe

control logic in DCRDL.

5.2.1 System Overview

The architecture of DCRDL is shown in Figure 5-5. The DCRDL was implemented

using the Java programming language with approximately 4,400 lines of code. The

architecture consists of rule files, an interpreter, and a policy agent system.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 67

Figure 5-5. Architecture of DCRDL

Rules Source File (DCRDL rules)

Users can define fine-grained rules using the DCRDL for each device in the source

file, and a set of rules can be embedded in a policy element to achieve a specific energy

control objective. We will design a high-level policy description language named EPDL

in the future to ease the policy writing for IoT-enabled smart buildings.

The Policy Parser

The policy parser is implemented in a package called interpreter. The policy parser

reads policy files written in DCRDL and parses policies to elements defined in the

org.sakamura-lab.dcrdl.model package. The classes in this package include Policy, Rule,

ConditionSet, ActionSet, Condition, Action, Subject, Target, Function, and Parameter.

The details of these elements are introduced in section 4.3.4.

Interpreter

The interpreter translates policies into policy agents (Java Threads). The period

attribute in the policy element indicates the polling cycle of this agent. According to the

design of DCRDL, the agents also can be run in event-driven mode if the data platform

provides event mechanisms for the programming environment. Currently, the data

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

68 Peng Xiaohui - March 2016

platform of DUCRB does not support event mechanisms, so we have not implemented

an event-driven mode for the DCRDL interpreter.

Figure 5-6. Package dependency of DCRDL

Policy Agent

The policy agent checks all the rules defined within the policy and performs control

actions. When the ConditionSet section of a rule is evaluated to be true, the actions

defined in the ActionSet section will be executed by the parent policy agent.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 69

Figure 5-6 presents the classes, packages, and package dependencies of the prototype

system we implemented using Java for DCRDL. Language-related packages are defined

in org.sakamura-lab.dcrdl. The interpreter parses the policies and rules defined in a

source file using the models defined in the model package. These models depend on the

datatype and function packages. The function package implements the Smart Building

API component, which is a key part of the DCRDL interpreter. It invokes Smart

Building APIs that are defined in the package org.sakamura-lab.sba. The

InfoObtainFunction gets context information from the building system, while the

ComparisonFunction evaluates conditions by comparing the acquired information with

user-defined values. The ActionFunction defines the semantics of the controlling APIs.

The org.sakamura-lab.sba package implements the function semantics of data

acquisition and device control, which is the local java library we implemented, as

discussed in section 5.1.2. For example, a DCRDL function

org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature

will invoke the method that implements SensorController to obtain the temperature of

the target space (see Figure 5-6).

5.2.2 Smart Building API Modeling

Smart Building API modeling is a key design of DCRDL. It is implemented in the

org.sakamura-lab.dcrdl.function package. This component translates the user

description of a function into executable code. In other words, this component is the

connection between user descriptions and real services provided by the building system.

Functions in DCRDL are classified into three categories: comparison functions,

information acquisition functions, and action functions.

Comparison Functions

Comparison functions are used to evaluate conditions. For example, in the condition

shown in Figure 5-7, the float-greater-than-or-equal function represents ―>=‖ logic for

the float data. The ―subject‖ and parameter value ―24.0‖ are two components of this

comparison function. The following code represents the condition that evaluates

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

70 Peng Xiaohui - March 2016

whether the ―subject‖ (i.e., the temperature of the target room:

―X0001C000000000000020000000D648‖) is greater than or equal to 24
o
C, or not. If it

is greater than or equal to 24
o

C, the condition is evaluated as true by the

float-greater-than-or-equal function.

Figure 5-7. Sample DCRDL code of a condition

The following Figure 5-8 shows code from the ComparisonFunction class. The

constructor of this class takes three parameters:

 String functionName: function ID that defined in Device Control Rule Definition

Language Specification [111] and Appendix 4;

 Object arg1: the left item of the conditional expression;

 Object arg2: the right item of the conditional expression.

A method compare is implemented to perform the evaluation of the condition. If the

compare method returns true, the conditional expression is evaluated as true; otherwise

it is evaluated as false.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 71

Figure 5-8. Part of Java code of the ComparisonFunction class

Information Acquisition Functions

Information acquisition functions are modeled as the InfoObtainFunction class. They

are used to retrieve context information from the building system. The context

information is usually analyzed and abstracted from raw data obtained from sensors and

devices. The following Figure 5-9 shows Java code of the InfoObtainFunction class.

The constructor of this class takes two parameters:

 String functionName: function ID that defined in Device Control Rule Definition

Language Specification [111] and Appendix 4;

 List <Parameter> paraList: contains all the arguments passed from the policy

parser.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

72 Peng Xiaohui - March 2016

Figure 5-9. Part of Java code of the InfoObtainFunction class

The getinformation method implements the actual semantics of the information

acquisition function. For instance, if the function name that is passed from the policy

parser is org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature, the

method will execute the ―ID_GET_SPACE_TEMPERATURE‖ branch. Parameters

released from paraList and sba.getSpaceTemperature will be invoked to retrieve

information from the Smart Building API server. The sba is an instance of the local Java

library of the Smart Building API.

Action Functions

Action functions are responsible for performing control actions on target devices. The

semantics of action functions are implemented in the ActionFunction class. The

constructor is similar to that of an information acquisition function. Actual controls are

performed in the control method.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 73

Figure 5-10. Part of Java code of the ActionFunction class

5.3 EPDL

To help energy policy designers write energy control policies with EPDL and compile

them in DCRDL, we implemented a set of supporting tools using Java. The supporting

tool set consists of a resource descriptor parser, an Eclipse [117] editor plugin as the

EDPL editor, and a compiler. The implementation details of the policy-processing

environment are provided in the PAS and DCRDL sections. The total Java code of

EPDL is approximately 9,000 lines.

5.3.1 Smart Building Resource Descriptor Parser

Seven classes are defined in the smart building resource descriptor (hereinafter

referred to as ―resource descriptor‖) parser: BuildingBase, Building, Floor, Space,

Appliance, SBApi, and Parameter. The Building, Floor, and Space classes model the

physical structure of the building and the available services within them. All these

classes extend the BuildingBase class in which containers of services and properties are

defined. The Appliance class models all the electrical appliances that are deployed in the

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

74 Peng Xiaohui - March 2016

building. The SBApi class models the services (i.e., the smart building APIs). The

parameter class models the input data of a service. The output of this parser is an

instance of the Building class, which contains the information about the spaces and

objects in the target building. The parser parses the information that is defined in the

resource descriptor, and the parsed information is used to support smart building users

in writing and compiling energy control policies written with the EPDL. The class

diagram of the resource descriptor parser is presented in Figure 5-11.

Figure 5-11. Class diagram of the smart building resource descriptor parser

5.3.2 The EPDL Editor Plugin

To assist users in writing EDPL energy control policies, we implemented an EDPL

editor using Eclipse Plugin, which provides information and suggestions to users during

the writing process. The editor plugin parses the resource descriptor with the parser,

computes suitable code completion proposals, and provides completion proposals to the

user. When the user inputs a string that represents a space or an appliance, the editor

provides all the related service names and object names in a selection menu for users

(see figure 5-12).

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 75

Figure 5-12. Example of a pop-up selection menu. When users type a string (e.g.,

―building.floors[‗3F‘].spaces[‗3L-5‘].‖), the editor displays the available sub-level objects,

spaces, and services. The yellow tip shows the detailed information about the selected item.

JFace

The EPDL editor plugin was implemented using JFace [119]. JFace is a sophisticated

UI toolkit with SWT-based [120] views for ―handling common Java UI programming

tasks‖ [119] for Eclipse users. It abstracts and simplifies visual components (e.g., table

viewer, tree viewer, text viewer), and provides an assistant layer for managing system

resource efficiently (e.g., image, color, font). SWT is a fundamental part of JFace and

developers can invoke SWT APIs directly when developing applications with JFace.

The JFace resource management and text components are used in the EDPL editor

plugin. The source code tree is shown in Figure 5-13 .

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

76 Peng Xiaohui - March 2016

Figure 5-13. Source code tree of the EDPL editor plugin

Code Completion

Code completion is the key function of the EPDL editor and is the fundamental

reason for developing this editor. As shown in Figure 5-12, when users input a string

building.floors[“3F”].spaces[“3L-5”] ending with a dot ―.‖, the editor plugin provides

a pop-up selection menu of all the referable properties, services, and sub-level spaces or

appliances. After selecting an item in the menu, a proper completion string will be

determined by the editor instead of requiring users to type the full name of objects or

services manually.

Code Coloring

In addition to the code completion function, we also implemented code coloring,

which shows different colors for string, keyword, and comments. Additional features,

including error recovery, code hyperlinks, and others, will be supported in future

versions. The keywords of EPDL include policy, rule, when, then, foreach, within, and

if.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 77

5.3.3 EDPL Compiler

As we introduced in chapter 4, a compiler [112] is a set of programs that translate

source code which can be easily read by human to another language which can be easily

understood by a computer. Therefore, the main job of the EPDL compiler is to parse the

EDPL rule entities and translate them into DCRDL rules. A key step involves translating

user-readable resource expressions into resource formats defined in DCRDL. For

example, expression 5-1 will be translated into expression 5-2 as shown in the following,

which is a function ID defined in DCRDL format. These expressions illustrate the

service for obtaining the real-time temperature of a space (here, the space is

spaces[“3L-5”]). The compiler translates the corresponding EPDL elements into

DCRDL elements.

building.floors[“3F”].spaces[“3L-5”].sba_get_temperature (5-1)

uri:sakamura-koshizuka-lab:names:dcrdl:1.0:function:get-space-temperature (5-2)

The EPDL compiler consists of a source code parser, a semantic analyzer, and a rule

generator. As shown in Figure 5-14, the code parser is implemented using JavaCC and

JJTree. We have introduced JJTree and JavaCC in chapter 4, and will not introduce them

here any more. We developed a grammar file named ―PdlParser.jjt‖ [121] as input for

JJTree to produce a JavaCC grammar file ―PdlParser.jj‖ [122]. Finally, JavaCC

generates Java classes for the code parser using ―PdlParser.jj.‖

Figure 5-14. Implementation of EDPL code parser

The output of the source code parser is an Abstract Syntax Tree (AST). Figure 5-15b

shows the classes of node visitors for the AST. The semantic analyzer parses the AST

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

78 Peng Xiaohui - March 2016

using the node visitors and data models defined in Figure 5-15 to get a list of EPDL

rules. Finally, the compiler translates all the rules into the DCRDL format.

a. The parser package b. Node visitors c. Data model

Figure 5-15. Source code tree of the compiler

5.4 Summary

In this chapter, we introduced the implementation details of three components of our

proposed framework. Section 5.1 discussed how a peak demand control policy was

implemented as an agent to model the peak demand issue of smart buildings. It

presented the fundamental concepts of the Policy Agent System. Section 5.2 described

the implementation of DCRDL. We developed the DCRDL interpreter that parses

DCRDL rules into a Policy Agent, which is a Java thread. The thread checks each rule

that is defined in a policy, within a specified period, and executes the actions defined in

the rule if the corresponding ConditionSet is evaluated to be true. We implemented a

modeling component for the Smart Building API in the DCRDL interpreter that

translates user descriptive expressions into executable code. The implementation of

EDPL was presented in section 5.3. We also developed a smart building resource

descriptor parser, an EPDL editor, and an EPDL compiler, as discussed in this section.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 79

6 EVALUATION

This chapter outlines experiments conducted and the results obtained for three

components of the proposed framework. To enable non-expert users to program smart

buildings, the following two issues have to be addressed:

 Separate upper-layer user application control logic from lower-layer building

structure and service details, and hide lower-layer details. Further, building

resources representation schema should be designed for both upper-layer and

lower-layer users. As a result, upper-layer users can focus on describing control

logics and lower-layers can focus on developing services.

 Provide simpler programming languages and tools. The services developed by

lower-layer users should be represented in a human readable format for

upper-users to read and refer to, and descriptive control logics should be

translated back to executable codes which is usually wrote using procedural

programming languages.

The objective of the evaluation was to verify whether the above issues have been

addressed or not.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

80 Peng Xiaohui - March 2016

6.1 Evaluation of the Policy Agent System

6.1.1 Objective

We implemented only one agent for peak demand control to run as the Policy Agent

System (PAS). It was run as a basic energy policy in the building management system.

The objective in evaluation of the peak demand control framework was to examine the

practicability of the PAS and control demand peak with writing a set of rules for the

building automation system. We observed and compared electricity consumption

patterns (i.e., The pattern before applying the policy and that after applying the policy)

to evaluate the efficacy of the peak demand control framework.

6.1.2 Experimental Setup

Experimental Environment

Owing to security issues, we selected two rooms on the third floor in DUCRB to

simulate the overall building: room 3L-5 and room 3L-6. The rooms consisted of four

air conditioners and eight sets of lights. An application developed using a local Java

library of Smart Building API was executed on a MacBook Pro to control them. The

setup parameters used are given in Table 6-1.

Table 6-1. Experimental environment of peak demand control framework

Target Rooms 3L-5, 3L-6 Simulated as the whole building

PC MacBook Pro Mid 2012

OS OS X 10.8

Network DUCRB-UBI WIFI SSID

Java 1.7.0_60

Eclipse Luna Release 4.4.0

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 81

Constraints (Rules definition)

Table 6-2. Pre-defined constraints of the peak demand control framework

Items Constraint Remark

Air Conditioners [20-25] (
°
C) Allowed set-point range

Lights [0, 1] 0: off, 1: on

Human Detection
If a person is present, the lights in this space should not
be turned off.

Server Room
If there is a server, air conditioners in this room should
not be turned off.

Electricity Consumption
Recording Interval

15 minutes
The electricity consumption is
logged in every 15 minutes.

Peak Value 140 kWh

Context Monitor

A combination priority was initialized and monitored by the Context Monitor. This

priority helped the framework to adjust the state of the appropriate devices according to

the defined policies. There were both high and low priority levels. As stated above, high

priority is defined by the user and cannot be changed at runtime. In this experiment,

high priority was assigned to room priority, which is defined according to the property

of the room. For example, we assigned a higher priority to the doctoral students‘ room

than the master students‘ room. Low priority can be changed when the environmental

situation changes. For example, when a person is not detected in an area for a while, the

appliances deployed in that area should have a lower low priority. This causes the

appliances in other areas of the same room to turn off or be adjusted to operate at a

lower consumption level.

6.1.3 Experiment

The experiment was carried out in the second half of August. We recorded the

electricity consumption pattern without applying the framework in the first week. The

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

82 Peng Xiaohui - March 2016

electricity consumption pattern of the first week is shown in Figure 6-1 as ―Daily

Electricity Consumption 1 (kWh)‖—the solid red line. Subsequently, we applied the

peak demand control framework and recorded the electricity consumption pattern in the

second week. It is shown as ―Daily Electricity Consumption 2 (kWh)‖—the blue line.

The dashed red line illustrates the defined peak value (140 kWh) in Table 6-2. It

signifies the instances where the total electricity consumption of the two rooms exceed

140 kWh, which results in some appliances being turned off or adjusted to run at a

lower energy consumption level without breaking rules defined in Table 6-2. The result

of the experiment is shown in Figure 6-1.

Figure 6-1. Evaluation result of the Peak Demand Control Framework

Owing to control system delay, the consumption may slightly exceed the defined

peak. We observed this phenomenon in the above figure on days 3 and 6.

6.1.4 Result Analysis

Peak demand control: The experimental results show that this framework is able to

balance the peak electricity demand in smart buildings. When the electricity demand

reached a defined peak value, some devices in the target rooms turned off or were set at

a lower electricity consumption level without breaking the constraints. This framework

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 83

applied the constraint programming model to find one or more devices and set them in

an appropriate state according to the defined rules. It successfully verified that this

framework can efficiently balance the electricity demand and verified that PAS is

feasible.

Reduced electricity consumption: We conducted another experiment over a period

of approximately one week with the objective of measuring how much electricity can be

saved. Unfortunately, we witnessed no obvious electricity saving. The reasons for this

result are as follows:

 Season and weather: Cooler days may result in less electricity consumption.

 Peak value: The definition of peak value also affects experimental results. A

lower peak value may bring significant electricity energy saving. However, some

devices may not normally function under a low peak value.

 The number of controllable targets.

6.2 Evaluation of DCRDL

6.2.1 Objective

To evaluate the expressivity of DCRDL, we wrote three policies in DCRDL to

control the electricity consumption of devices for various purposes. The three policies

were ―Peak Consumption Control Policy,‖ ―Tiered Electricity Pricing Policy,‖ and

―Discomfort Index Control Policy.‖ We evaluated these policies within the real smart

building environment—DUCRB in the winter and spring of 2015. We observed

parameters such as temperature and electricity usage before the experiments and

designed rules based on the observed values. The number of lines for each policy is

shown in Table 6-3:

Table 6-3. Lines of code for each policy in DCRDL

Peak Consumption Control Policy 155 lines

Tiered Electricity Pricing Policy 124 lines

Discomfort Index Control Policy 120 lines

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

84 Peng Xiaohui - March 2016

Three case studies were conducted based on the above policies. The details of these

case studies are given in the following sections. The objective of studying these cases is

to show how device control can be personalized, precise and flexible by using the

DCRDL.

6.2.2 Peak Consumption Control Policy

In this policy, we designed several rules to control the peak electricity consumption in

a certain interval by lowering and even turning off the equipment in the DUCRB when

the consumption exceeded a defined peak. We selected rooms 3L-5 and 3L-6, along

with the central air conditioning system for the third floor as the control targets. The

rules were defined as follows:

– Rule 1: WHEN the electricity consumption of the building in the last 15 minutes

exceeds 0.6 kWh, THEN decrease the set-point of the air conditioners by 2 in the

room where the temperature is the highest.

– Rule 2: WHEN the electricity consumption of room 3L-6 in the last 15 minutes

exceeds 0.2 kWh, THEN turn off the lights in this room.

– Rule 3-6: For each air conditioner in these two rooms, WHEN the set-point is less

than 22.0, THEN turn off this air conditioner.

The parameter values defined in the above rules are based on the observation before

the experiment. The limit of the peak for the building in the last 15 minutes for our

policy was 0.6 kWh. This policy was executed as a policy agent (Java Thread). The

information obtaining function, ―get-acs-by-spaces,‖ uses the return value of the

function ―get-space-by-highest-temperature‖ as the parameter to ascertain the running

air conditioners in the room where the temperature is highest. Rules 1-6 are checked

every 15 minutes. When the ConditionSet section of the rule is evaluated to true, the

actions in the ActionSet section are executed. Owing to the space limitations of this

chapter, we are unable to describe the rules written in the DCRDL format in detail.

Figure 6-2 shows the electricity consumption pattern for every 15 minutes during the

experiment.

The red dotted line in Figure 6-2 shows the user-defined peak value, which should

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 85

not be exceeded. The blue polyline shows the total consumption every 15 minutes after

application of the Peak Consumption Control Policy, which was written in DCRDL.

From the system log, we observed that the air conditioners in room 3L-5 were turned off

by the policy in cycles 1 and 2, and the air conditioners in room 3L-6 were turned off in

cycle 6. As result of these actions, the polyline is very steep in cycles 1, 2, and 6. To

prove the efficiency of these rules, we turned on two air conditioners in the seventh

cycle manually; they were promptly turned off by the policy agent in the eighth cycle.

Thus, the results of this experiment verify that DCRDL is efficient and expressive.

Figure 6-2. Electricity consumption pattern of the peak consumption control policy

6.2.3 Tiered Electricity Pricing Policy

This policy was designed to restrain the growth rate of the real-time electricity price

of the building. The simulated tiered price for electricity used in this experiment is

given in Table 6-4. We defined several rules in this policy as follows:

– Rule 1: WHEN the real-time electricity price is between 500 Yen and 1000 Yen,

THEN decrease the set-point of the air conditioners by 2 in the room where the

temperature is the highest.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

86 Peng Xiaohui - March 2016

– Rule 2: WHEN the real-time electricity price exceeds 1000 Yen, THEN turn off the

air conditioners in the room where the temperature is the highest.

– Rule 3: WHEN the real-time electricity price exceeds 1000 Yen and the humidity of

room 3L-5 is higher than 30%, THEN turn off the humidifier in this room.

– Rule 4: WHEN the real-time electricity price exceeds 1500 Yen, THEN turn off the

lights in room 3L-6.

Figure 6-3. Total electricity consumption at different prices

Table 6-4. Simulated tiered pricing for electricity

Electricity Consumption (kWh) 1.1–4.0 4.1–7.0 7.1–10.0 10.1~

Electricity Price (Yen/kWh) 300 500 1000 1500

When the real-time electricity price exceeded 1000 Yen/kWh, rule 2 turns off the air

conditioner in the room where the temperature is the highest; rule 3 turns off the

humidifier in room 3L-5 if the humidity of this room is higher than 30%. Rule 4 turns

off all the lights in room 3L-6 when the real-time electricity price exceeds 1500

Yen/kWh. We can infer from the above settings that when the real-time price exceeds

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 87

1000 Yen/kWh, the growth rate of total consumption should decrease substantially. As a

result of the delay in the control system, we observed this phenomenon only at the end

of the second cycle when the real-time price was 1000 Yen/kWh.

6.2.4 Discomfort Index (DI) Control Policy

Discomfort Index (DI) [123] was proposed by Thom (1959). They designed a simple

linear equation to calculate DI based on temperature and relative humidity:

DI = T- 0.55(1 - 0.01 H)(T - 14.5) (6-1)

where T is the temperature in
°
C and H is the relative humidity in %. When DI exceeds

21.0, people feel uncomfortable. Based on Formula 6-1, we designed a Discomfort

Index Control Policy to control the comfort level in room 3L-5. We observed the value

ranges of the environmental parameters and designed the rules for this policy based on

the observed temperature and humidity values in room 3L-5:

Table 6-5. Parameter definitions of discomfort index control policy

 Temperature
°
C Humidity % DI

Observed values 21–22 35–40 19.1–22.2

Values for rules 23–24 42–45 Less than 21.0

– Rule 1: WHEN the DI of room 3L-5 is greater than 21.0, AND temperature is greater

than 24 °C, THEN turn off the air conditioners in this room.

– Rule 2: WHEN the temperature in room 3L-5 is less than 23 °C, THEN turn on the

air conditioners in this room.

– Rule 3: WHEN the DI of room 3L-5 is greater than 21.0, AND humidity is greater

than 45%, THEN turn off the humidifiers in this room.

– Rule 4: WHEN the humidity in room 3L-5 is less than 42%; THEN turn on the

humidifiers in this room.

We adopted this policy in room 3L-5 for several hours. The patterns of discomfort

index, humidity, and temperature are shown in Figure 6-4:

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

88 Peng Xiaohui - March 2016

Figure 6-4. Temperature, humidity, and DI patterns during the experiment

Owing to the delay in the actuator system, the values for control targets (humidity,

temperature, DI) slightly exceeded the boundaries defined in the rules. The values for

the controlled parameters approximately fall in the ranges defined by the user. In

general, Figure 6-4 shows that users can write detailed rules using DCRDL to control

the environmental conditions and can obtain the expected results in smart buildings.

6.2.5 Conclusion

We evaluated DCRDL, which addresses the problem of context-based device control

for energy efficiency. DCRDL enables the writing of fine-grained control rules for

devices in smart buildings to balance the energy usage and human comfort. Using

DCRDL, users can define various policies with detailed rules for networked electrical

devices for different energy saving scenarios. Three policies were written and

experiments were conducted to demonstrate the functionality and expressivity of

DCRDL in a real smart environment: the Daiwa Ubiquitous Computing Research

Building.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 89

Some issues such as rule conflicts and duplicate rule detection were not discussed

here. However, implementing a rule-optimizer using the existing algorithms can solve

these problems. Access control to collected data and devices is another critical problem

associated with running the PAS. However, those issues are beyond the scope of this

research; we may consider those problems in future work.

6.3 Evaluation of EDPL

6.3.1 Objective

We will discuss the readability and writability [124], [125] of EPDL in this section.

The objective of discussing readability and writability of EPDL is to show the

user-friendliness of it. The rule format for EPDL and DCRDL are also compared. In

addition, we compare average code lines for rules in both EPDL and DCRDL. Finally,

we show how a user can refer to available resources in the smart building easily with the

EPDL editor plugin in the Eclipse IDE [117].

6.3.2 Readability

Readability simply refers to ―the ease with which programs can be read and

understood‖ [125]. For the descriptive languages we proposed in this research,

readability specifically refers to the support for expressing control sequences in natural

ways. In this section, we compare rules, which are the key elements in both EPDL and

DCRDL, to show the improvement of readability and expressivity of EPDL.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

90 Peng Xiaohui - March 2016

a. The rule in DCRDL

b. The rule in EPDL

Figure 6-5. The same rule in DCRDL and EPDL

Figure 6-5 describes a rule that states that when the electricity consumption of room

―3L-5‖ exceeds 0.35 kWh in the last 15 minutes, then the two air conditioners in the

room should be turned off. The code shown in Figure 6-5a is written in DCRDL,

whereas that in Figure 6-5b is written in EPDL. It is clear that the more concise EPDL

rule description is easier to read. Furthermore, the IF and Foreach statements are

introduced in EPDL, which make this language more flexible. For example, when we

want to apply a rule to all appliances that are air conditioners in a room, we can

compose a fragment of code using the IF and Foreach statements to achieve this. In

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 91

addition, the number of code lines is significantly reduced for a rule with the same goal.

Figure 6-5 shows that the number of code lines has decreased from 36 in DCRDL to six

in EPDL for the same rule. We rewrote the two policies used in the evaluation of

DCRDL in the winter of 2014–2015 with EPDL. These two policies are described in

English in this section for better understanding.

 Peak Consumption Control Policy (see section 6.2.2);

Figure 6-6. The EDPL code for the peak consumption control policy

 Discomfort Index (DI) Control Policy (see section 6.2.4).

Figure 6-7. The EPDL code for the discomfort index control policy

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

92 Peng Xiaohui - March 2016

Table 6-6. The number of code lines of EPDL and DCRDL Rules

Lines of each policy

Average lines in a rule
PCC

a
(6 rules) DIC

b
(4 rules)

DCRDL 155 214 37

EPDL 37 28 7

a: peak consumption control; b: discomfort index control;

6.3.3 Writability

The writability simply refers to ―the ease with a language can be used to create

programs‖ [125]. For this research, we proposed two descriptive languages which are

used for describing control sequences for smart building systems. Moreover, the

writability of EPDL also includes the ease of using available services. Referring to a

service is very difficult for most users because of the heterogeneous networks and

complex structure of smart buildings. Figure 6-5a shows a DCRDL rule. In order to

write a DCRDL rule, the user has to study XML and have knowledge of the target smart

building. For example, the number of rooms on each floor, the appliances in a room, and

the operations that can be performed on each appliance. Figure 6-5b shows the

improved rule format in EPDL, fewer lines than the DCRDL rule is required, which

means that it is easier to write.

Furthermore, we designed a smart building resource descriptor to assist the user to

refer to the available resources when writing a policy. Hence, the user does not need to

study the details of the target building in advance. The descriptor is parsed and the

information is used to compute the code completion proposals. For instance, when the

user types ―building‖ in the language editor, a pop-up menu with all the available

objects and services under the ―building‖ level appears. Figure 6-8 shows code

completion proposed examples.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 93

a. Code completion proposals of the building b. Code completion proposal of a floor

c. Code completion proposals of a space d. Code completion proposals of an appliance

Figure 6-8. Code completion proposal examples

6.4 Summary

In this section, we discussed the readability and writability of EPDL and compared it

with DCRDL. DCRDL is a kind of programming enabler for the physical objects in

IoT-enabled smart buildings. However, it is a low-level rule description language.

Detailed information about the target building and programming skills are required

when using DCRDL. From the discussion, we can conclude that EPDL is a user-friendly

energy policy description language for IoT-enabled smart buildings. The proposal of

smart building resource descriptor enables non-expert users to write an energy control

policy for smart buildings easily and quickly.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

94 Peng Xiaohui - March 2016

7 FUTURE WORK

7.1 Conflict Resolution

We have discussed the peak demand issue of smart buildings in previous chapters. A

policy agent, which consisted of predefined constraints (i.e., rules), and a constraint

solver were designed to address this problem. Two research problems could be

subsequently studied: (1) the design of interfaces to ease the writing of control

rules/policies for the smart building system; and (2) the design of efficient rule

reasoning algorithms for the policy agent system used in this framework. We chose to

focus on the first problem for this thesis.

However, the need for algorithms for conflicting rules resolution is a critical issue for

this framework. For example, there are two rules in a policy agent shown in Table 7-1:

Table 7-1. Example of conflict rules

Rule 1 Set-point of Air conditioners should be in [22-26]

Rule 2
If the discomfort index of this room is less than 21.0 and the temperature
of this room is greater than 24, decrease the set-points of air conditioners
in this room by 2.

Context Discomfort index: 20.0; Air conditioners‘ set-point: 22; Season: summer

Rule 1 and 2 will conflict with each other in the context shown in Table 7-1. Rule 1

tries to keep the set-point of conditioners between 22 and 26, while Rule 2 tries to set

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 95

the set-point to 20 in this context. When the number of rules grows, conflicts may occur

frequently which will cause system crashes.

In fact, this is a classical problem of rule-based expert systems. Many algorithms (e.g.,

Rete Algorithm [76]) have already been proposed to address this issue. We will study

conflicting rules resolution algorithms and implement a rule optimizer for this

framework in future work.

7.2 Resource Management Framework

With the adoption of IoT protocols (e.g., 6LoWPAN [35] and Constrained

Application Protocol (CoAP) [36]), the Internet of Things (IoT) has evolved to

encompass the Web of Things (WoT) as its application layer. Constraint devices have

been integrated into IP-based IoT via those protocols, and they are seamlessly integrated

into the legacy Web. Consequently, existing web technologies can be directly applied to

the newly evolved WoT. Using web-based APIs, data produced by a device can be easily

accessed. Meanwhile, manufacturers have begun to produce web controllable devices

(such as wiring boards, lights, and air conditioners). In particular, in smart buildings

equipped with such devices, data access and device control have become easy and

ubiquitous as long as the user has a device connected to the web.

The data access and device control interface can be unified via RESTful APIs in the

age of WoT. A critical issue of bringing ordinary people to participate in programming

with physical objects is the means by which the upper-layer user translates the described

application logic into executable code that can be understood by machines. That is,

ordinary people can only use simple tools such as declarative programming and drag

and drop programming [126]; however, applications developed using descriptive

languages cannot be easily understood by machines.

Therefore, resource discovery and management have become key issues that should

be addressed in the flexible programming framework in IoT-enabled buildings. There

are already many studies associated with resource discovery. Most of them provide

excessive ontology modeling of building structures that are not necessary in most cases.

However, none of them address the resource representation problem, especially service

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

96 Peng Xiaohui - March 2016

modeling of smart buildings. Providing an efficient service representation can help

language interpreters to translate referred service into executable code that can be

executed by machines. Further, standardized resource representation operation

interfaces must be defined to provide a unified access path to various applications.

Figure 7-1. Architecture of smart building resource management framework

We are currently designing a smart building resources management framework with

the following features:

 Building Resource Description Schema (BRDS)

 Description of building structure and semantic relations of internal objects.

 Description of RESTful Smart Building APIs using RAML [127].

 Building Resource Operation Interfaces (Create, Retrieve, Update, Delete

operations)

 Define standard RESTful APIs for operating building resources. Resource

discovery protocols or building administrators can store/delete the BRDS data

in the building resource repository using standardized Create, Update, and

Delete interfaces; users can obtain resources via the Retrieve interface. For

example, when users want to refer to the service to turn on air conditioner 1 in

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 97

room 3L-5 on the third floor, they can simply retrieve all service and object

information of room 3L-5 using the following RESTful interface:

GET http://baseurl/DUCRB/3F/3L-5/

GET HTTP GET;

baseurl The IP of the resource repository

DUCRB ID of the building

3F floor ID

3L-5 Space ID

 Smart Building API adapter: This adapter models RESTful APIs. It contains an

interpreter that translates user referred services into executable code with the

help of service description information stored in the resource repository.

7.3 Visual Programming

Many researchers have proposed ideas for giving end-users efficient tools to program

their surrounding environment. They often follow the ―IF-THEN‖ paradigm, which is

also the basic principle of control languages in smart buildings. The design of DCRDL

and EPDL also follow this paradigm. The objective of DCRDL is to separate

upper-layer user control logic description from lower-layer service and structure details

of smart buildings so that upper-layer users can focus on describing the control

sequence for their application without being concerned about how to describe sequences

in building systems. We plan to design a universal visual programming application for

smart buildings. It should be able to run on any capable device connected to the network

of a target smart building. It should require no porting work when used in a different

building. In other words, it should have one universal programming interface for all

buildings with the promise embodied by the unified resource management and

representation protocols discussed in section 7.2.

http://baseurl/DUCRB/3F/3L-5/

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

98 Peng Xiaohui - March 2016

Figure 7-2. Demo of the HomeRules [126]

Russis et al. developed a prototype of ―a tangible end-user programming interface‖

[126] called HomeRules for smart homes. As shown in Figure 7-2, HomeRules also

follows the ―IF-THEN‖ paradigm. It enables the end-user to write descriptive rules for

their home appliances via drag and drop resource icons. However, there is no

explanation of how their application would work with smart building systems. There

should be an interpreter or translator that translates the descriptive rules into pieces of

executable code. In addition, there is no demonstration of how they can get available

resources data. As discussed in section 7.2, standardized resource retrieval and

management protocols are important in order to adopt these applications to different

buildings without extra porting work.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 99

Figure 7-3. WigWag rules editor for smart home [128]

In industry, WigWag [128] also designed a demo application that they claim can

enable end-users to write rules for home appliances by dragging and dropping resource

icons. However, some of the issues discussed above are apparent in this application. The

universal visual programming application we plan to develop with the standardized

resource representation protocol and operation interfaces in the future will overcome

these shortcomings.

7.4 Access Control to Data and Services

Access control to data and services is an extensive research direction in IoT and is

actually out of the scope of this research. Nevertheless, we give a short discussion here

because it is a significant and critical issue for this programming framework. The

Access Control to Data and Services issue we define here should clearly answer the

question: To whom and when can access be granted or what can be used from where?

We call it the 4W issue.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

100 Peng Xiaohui - March 2016

The rapid advancement of smart devices and improved connectivity among them

introduce a new programming paradigm for IoT-enabled smart buildings. That data

access and device control achieved through web-based open APIs eases the

programming procedure for smart buildings, but also introduces myriad new risks.

Unauthorized access and control have led to critical privacy and security concerns. We

are considering adding access control mechanisms (e.g., access control ontology for

buildings) into our BRDS to address this problem in the future. The ontology may be a

combination of sub-ontologies that describe various aspects of security and privacy

factors.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 101

8 CONCLUSION

In this thesis, we introduced a proposed programming framework for building

automation in IoT-enabled smart buildings. The connectivity of smart devices has

significantly improved as a result of protocols such as 6LoWPAN. Resource constrained

devices can be directly connected to the Internet in like manner as a computer. Further,

the Constrained Application Protocol (CoAP) makes resources available under a URL

using the wildly successful REST model. It significantly accelerated the seamless

integration of constrained devices to existing Internet as the application layer. Data

access and device control interfaces are becoming unified through open RESTful APIs

deployed in IoT smart buildings. This has substantially simplified application

development in smart buildings. In addition, collaboration of devices among different

sub-systems has become possible as a result of unified interfaces. Users can develop

and execute building automation applications on devices if they are able to connect to

the building‘s network. We call such an IoT-enabled building a smart building.

 We also regard the overall IoT-enabled smart building as a distributed hardware

computer and the users as living in the computer. Thus, it is very important to enable

those users to program this ―computer.‖ However, the hardware components (i.e.,

devices) are distributed across building scale, and those users are usually not good at

programming. Therefore, an easier programming environment is needed for them.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

102 Peng Xiaohui - March 2016

We outlined the background to this research in chapter 1. A brief introduction of

building automation history was presented in section 1.1.1. Then, the general structure

of Building Automation System, which is also referred to as BMS and BEMS was

presented in section 1.1.2. Finally, we defined the concept of IoT-enable smart buildings.

The energy efficiency problem was introduced in section 1.2. We also explained the

objective and challenges of this research in general at the end of chapter 1.

In chapter 2, related work was reviewed in several aspects. We first introduced the

programming paradigm changes associated with smart buildings. Then, the web

technologies used in smart buildings were presented. Finally, we analyzed existing work

that related to resource representation and programming languages. A general

description of our proposal was also presented in chapter 3.

We described the design of each part of our framework in chapter 4. The Policy

Agent System (PAS) is the basic running environment of the whole framework. Policy

Agents are translated from DCRDL rules. They can run as the threads of procedural

languages such as Java, C, JavaScript, and PHP. We also studied the Peak Demand

Control issue of smart buildings and modeled it as a Constraint Satisfaction Problem.

DCRDL was proposed to separate the upper-layer control logic description and

lower-layer service and structural details of buildings. Finally, we presented the design

of EPDL to support the writing of energy management policies.

In chapter 5, we presented the implementation details of our proposed framework. It

was developed using Java. We developed a local Java library as a wrapper for the

RESTful Smart Building APIs. Policy Agents are executed in the form of Java Threads.

The interpreter of DCRDL was also developed in Java. Finally, we provided various

efficient tools to make the writing energy policies easier for non-expert users in EPDL.

We outlined the experiments conducted in this research in chapter 6. All the

experiments were carried out in DUCRB—a state-of-the-art IoT-enabled smart building

constructed in 2014. The Peak Demand Control framework was implemented and run as

a policy agent. Three policies written in DCRDL were evaluated in the policy agent

system. We analyzed the experimental data and got the expected results. Finally, we

discussed the readability and writability of EPDL. The results showed that it is an

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 103

efficient tool for non-expert users to read and write energy management policies.

Finally, resource management and representation protocols, visual programming, and

access control to data and services were introduced in chapter 7 as future work

associated with this research.

To summarize, we designed a programming framework work for IoT-enabled smart

buildings. Two descriptive languages were proposed as the input interfaces for smart

building users to define rules or policies to manage the building system. A smart

building resource description schema was designed for system developers to publish

available resources of smart buildings in a format that both machine and human can

understand. It is also can be used by resource discovery protocols to build resource

repository automatically. A set of tools was implemented to assist users in writing

policies and translated them into executable code. Some important issues (e.g., Rule

conflict resolution, building resource management protocols) weren‘t addressed in this

thesis. We will study them in future publications.

From the perspective of a building as a distributed hardware computer, we can also

regard the IoT as a huge distributed hardware computer. The embedded operating

systems inside the constituent devices constitute a huge distributed operating system for

IoT. People are living inside this ―computer‖; therefore, we have to enable them to

program their surrounding environment. Thus, as with classic computers, resource

abstraction and simpler programming languages have to be provided to help those

ordinary users to interact with surrounding devices. We intend to extend this framework

the entire IoT in the future.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

104 Peng Xiaohui - March 2016

9 REFERENCES

[1] M.R. Brambley, D. Hansen, P. Haves, D.R. Holmberg, S.C. McDonald, K.W. Roth, and P.

Torcellini, ―Advanced Sensors and Controls for Building Applications: Market Assessment and

Potential R&D Pathways,‖ Pacific Northwest National Lab., Richland, Washington, Rep.

PNNL-15149, Apr. 2005.

[2] T. Samad and Albert T.P. So, ―Building control and automation systems,‖ In Perspectives in Control

Engineering Technologies, Applications, and New Directions, 1st ed. Wiley-IEEE Press, 2001, ch.

16, pp. 393-416.

[3] ―Direct Digital Control.‖ Internet: https://en.wikipedia.org/wiki/Direct_digital_control, Jan. 7, 2016

[Feb. 4, 2016].

[4] A. H. Kazmi, M. J. O‘Grady, D. T. Delaney, A. G. Ruzzelli, and G. M. P. O‘Hare, ―A review of

wireless-sensor-network-enabled building energy management systems,‖ In ACM Trans. Sensor

Netw., vol. 10, no. 4, Article 66, 43 pages, Jun. 2014.

[5] M. Pallack, D. Cook, and J. Sullivan, ―Commitment and energy conservation,‖ In Appl. Social

Psychol. vol. 1, no. 1, pp. 235-253, 1980.

[6] ―HVAC.‖ Internet: https://en.wikipedia.org/wiki/HVAC, Jan. 30, 2016 [Feb. 4, 2016].

[7] Karl Johan Åström, ―PID Control,‖ In Control System Design, 2002, ch. 6, pp. 216-251.

[8] Arthur Richards and Jonathan How, ―Robust Stable Model Predictive Control with Constraint

Tightening,‖ In Proc. 2006 American Control Conference, Minneapolis, USA, Jun. 14-16, 2006.

[9] Peng Wang and Daniel P. Kwok, ―Analysis and synthesis of an intelligent control system based on

fuzzy logic and the PID principle,‖ In Intelligent Systems Engineering, vol. 1, no. 2, pp. 157-171,

Winter 1992.

[10] Luigi Martirano, Matteo Manganelli, Luigi Parise, and Danilo A. Sbordone, ―Design of a

fuzzy-based control system for energy saving and users comfort,‖ In Proc. Environment and

Electrical Engineering, Krakow, 2014, pp. 142-147.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 105

[11] A. Cziker, M. Chindris, and Anca Miron, ―Fuzzy controller for a shaded daylighting system,‖ In

Proc. 11th Int. Conf. on Optimization of Elect. and Electron. Equipment, Brasov, May 22-24 2008,

pp. 203-208.

[12] J. Haase, G. Zucker, F. AlJuheshi, M. k. Allah, and M. Alahmad, ―A Survey of Adaptive Systems

Supporting Green Energy in the Built Environment,‖ In Proc. IECON 2015, Yokohama, Nov. 9-12,

2015.

[13] J. M. Sousa, R. Babuska, P. Bruijn, and H. B. Verbruggen. ―Comparison of conventional and fuzzy

predictive control,‖ In Proc. 5th IEEE International Conference on Fuzzy Systems, Vol. 3, pp.

1782-1787, 1996.

[14] A. M. Vainio, M. Valtonen, and J. Vanhala, ―Proactive fuzzy control and adaptation methods for

smart homes,‖ In IEEE Intell. Syst., vol. 23, pp. 42-49, 2008.

[15] G. W. Hart, ―Nonintrusive appliance load monitoring,‖ In Proc. IEEE, vol. 80, no. 12, pp.

1870-1891, 1992.

[16] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava, ―Viridiscope: Design and

implementation of a fine grained power monitoring system for homes,‖ In Proc. 11th International

Conference on Ubiquitous Computing (Ubicomp’09), ACM Press, New York, 2009, pp. 245-254.

[17] X. H. Peng, M. Bessho, N. Koshizuka, and K. Sakamura, ―DCRDL: An Energy Management Rule

Definition Language for Context-based Device Control in Smart Buildings,‖ In Proc. 41st Annu.

Conf. of the IEEE Ind. Electronics. Soc. (IECON 2015), Nov. 2015, pp. 279-285.

[18] ―Particulates.‖ Internet: https://en.wikipedia.org/wiki/Particulates, Mar. 12, 2016 [Mar. 19, 2016].

[19] BACnet standard, ANSI/ASHRAE Standard 135-2008.

[20] Enron Corporation, ―LonTalk Protocol Specification,‖ Enerlon, 1994.

[21] W. Jung, S. I. Kim, and H. S. Kim, ―Ontology Modeling for REST Open APIs and Web Service

Mash-up Method,‖ In Proc. 2013 Int. Conf. Inform. Netw., Jan. 2013, pp. 523-528.

[22] R. P. V. Chander, S. Elias, S. Shivashankar, and Manoj P, ―A REST based design for Web of Things

in smart environments,‖ In Proc. 2nd IEEE International Conference on Parallel, Distributed and

Grid Computing, 2012, pp. 337-342.

[23] I. Claros, R. Cobos, E. Guerra, J. de Lara, A. Pescador, and J. Sánchez-Cuadrado, ―Integrating Open

Services for Building Educational Environments,‖ In Proc. 2013 IEEE Global Engineering

Education Conference (EDUCON), Berlin, March 13-15, 2013, pp. 1147-1156.

[24] W. Kastner, M. Kofler, M. Jung, G. Gridling, and J. Weidinger, ―Building Automation Systems

Integration into the Internet of Things The IoT6 approach, its realization and validation,‖ In Proc.

2014 Emerging Technology and Factory Automation (ETFA), Barcelona, Sept. 16-19, 2014.

[25] D. Yazar and A. Dunkels, ―Efficient application integration in ip-based sensor networks,‖ In Proc. of

1st ACM Workshop on Embedded Sensing Syst. for Energy-Efficiency in Buildings, California, 2009,

pp. 43-48.

[26] M. Weiss and D. Guinard, ―Increasing energy awareness through web-enabled power outlets,‖ In

Proc. 9th MUM, Limassol, Dec. 2010.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

106 Peng Xiaohui - March 2016

[27] A. D. Paola, S. Gaglio, G. L. Re, and M. Ortolani, ―Sensor9k: A testbed for designing and

experimenting with WSN-based ambient intelligence applications,‖ In Pervasive and Mobile

Computing, vol. 8, no. 3, pp. 448-466, Jun. 2012.

[28] G. Ghidini and S. K. Das, ―Improving home energy efficiency with E2Home: A Web-based

application for integrated electricity consumption and contextual information visualization,‖ In Proc.

IEEE SmartGridComm2012, Nov. 2012, pp. 471-475.

[29] A. Kamilaris, A. Pitsillides, and M. Yiallouros, ―Building energy-aware smart homes using web

technologies,‖ In J. Ambient Intell. Smart Environ., vol. 5, no. 3, pp. 161-186, Mar. 2013.

[30] K. Sakamura, ―Programable Architecture: A smart control system in Daiwa Ubiquitous Computing

Research Building,‖ In TRONWARE, vol. 148, Aug. 2014.

[31] K. Sakamura, ―The objectives of the TRON project,‖ TRON Project 1987 Open-Architecture

Computer Systems: Proceedings of the Third TRON Project Symposium, Tokyo: Springer-Verlag,

1987, pp. 3-16.

[32] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N. Kitaev, and D. Culler,

―BOSS: Building Operating System Services,‖ In Proc. 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’13), Apr. 2-5, 2013, pp. 443-458.

[33] A. D. Paola, M. Ortolani, G. L. Re, G. Anastasi, and S. K. Das, ―Intelligent management systems for

energy efficiency in buildings: A survey,‖ In ACM Comput. Surv., vol. 47, no. 1, Article 13, 38

pages, May 2014.

[34] Mirko Presser (Jan. 12, 2016), ―The Rise of IoT – Why Today?‖ Newsletter of IEEE Internet of

Things, Available: http://iot.ieee.org/newsletter/january-2016/the-rise-of-iot-why-today.html

[35] Transmission of IPv6 Packets over IEEE 802.15.4 Networks (6LoWPAN), IETF rfc4944.

[36] The Constrained Application Protocol (CoAP), IETF rfc7252.

[37] Roy T. Fielding and Richard N. Taylor, ―Principled Design of the Modern Web Architecture,‖ In

Proc. ICSE 2000, Limerick, Ireland, 2000, pp. 407-416.

[38] Roy T. Fielding, ―Architectural Styles and the Design of Network-based Software Architectures,‖

Ph.D. dissertation, Univ. OF CALIFORNIA, IRVINE, California, U.S, 2000.

[39] ―Visual programming language.‖ Internet:

https://en.wikipedia.org/wiki/Visual_programming_language, Mar. 18, 2016 [Mar. 19, 2016].

[40] Ronald Greaves, Scott McCauley, Max McLeod, and Tom Rule, ―Total Building Solutions for

Hospitals – The next generation of intelligence,‖ Siemens Industry, Inc, 2014.

[41] Felix Iglesias Vazquez and Wolfgang Kastner, ―Clustering methods for occupancy prediction in

smart home control,‖ In Proc. 2011 IEEE International Symposium on Industrial Electronics (ISIE),

2011, pp. 1321-1328.

[42] M. C. Mozer, ―The neural network house: An environment hat adapts to its inhabitants,‖ In Proc.

AAAI Spring Symp. Intelligent Environments, 1998, pp. 110-114.

[43] R. H. Dodier, G. P. Henze, D. K. Tiller, and X. Guo, ―Building occupancy detection through sensor

belief networks,‖ In Energy and Buildings, vol. 38, no. 9, pp. 1033-1043, 2006.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 107

[44] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. Whitehouse,

―The smart thermostat: Using occupancy sensors to save energy in homes,‖ In Proc. 8th ACM Conf.

on Embedded Networked Sensor Syst. (SenSys’10), 2010, pp. 211-224.

[45] X. H. Peng, M. Bessho, N. Koshizuka, and K. Sakamura, ―EPDL: Supporting Context-based Energy

Control Policy Design in IoT-enabled Smart Buildings,‖ In Proc. 2015 IEEE International

Conference on Data Science and Data Intensive Systems (DSDIS), Sydney, Dec. 11-13, 2015, pp.

297-303.

[46] Naohiko Kohtake, Kenta Matsumiya, Kazunori Takashio, and Hideyuki Tokuda, ―Smart Device

Collaboration for Ubiquitous Computing Environment,‖ In Proc. the Workshop on Multi-Device

Interface for Ubiquitous Peripheral Interaction at the 5th International Conference on Ubiquitous

Computing, 2003.

[47] Huafen Hu, Yonghong Huang, Milan Milenkovic, Chad Miller, and Ulf Hanebutte, ―Personalized

sensing towards building energy efficiency and thermal comfort,‖ In Proc. 2014 International Joint

Conference on Neural Networks (IJCNN), Beijing, Jul. 2014, pp. 1963-1969.

[48] Orestis Evangelatos, Kasun Samarasinghe, and Jose Rolim, ―Syndesi: A Framework for Creating

Personalized Smart Environments Using Wireless Sensor Networks,‖ In Proc. 2013 IEEE

International Conference on Distributed Computing in Sensor Systems (DCOSS), Cambridge, May

2013, pp. 325-330.

[49] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler, ―Building Application Stack

(BAS),‖ In Proc. Buildsys’12, Toronto, Canada, Nov. 6, 2012. pp. 72-79.

[50] Blase Ury, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman, ―Practical

Trigger-Action Programming in the Smart Home,‖ In Proc. CHI 2014, Toronto, ON, Canada.

[51] J. Sousa, R. Babuska, P. Bruijn, and H. Verbruggen, ―Comparison of conventional and fuzzy

predictive control,‖ In Proc. 5th IEEE Int. Conf. on Fuzzy Syst., vol. 3, Sept. 1996, pp. 1782-1787.

[52] F. Praus, W. Granzer, and W. Kastner, ―Enhanced Control Application Development in Building

Automation,‖ In Proc. 7th IEEE Int. Conf. on Industrial Informatics, Jun. 2009, pp. 390-395.

[53] KNX standard, ISO/IEC 14543-3, 2006.

[54] DAIKIN [Online]. http://www.daikin.com

[55] DAIKIN Industries, Ltd., ―intelligent Touch Controller HTTP INTERFACE OPTION (For Home

Automation) COMMISSIONING MANUAL,‖ Electrical Device Engineering Division, Air

Conditioner Manufacturing Department, Mar. 06, 2009.

[56] ―Web of Things.‖ Internet: https://en.wikipedia.org/wiki/Web_of_Things, Jan. 24, 2016 [Feb. 6,

2016].

[57] Bluetooth SIG. https://www.bluetooth.com, 2016.

[58] ZigBee Alliance. http://www.zigbee.org, 2016.

[59] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng, ―Occupancy-driven energy

management for smart building automation,‖ In Proc. the 2nd ACM Work. on Embedded Sensing

Syst. for Energy-Efficiency in Building, Zurich, Nov. 2010, pp. 1-6.

[60] A. Kamilaris, V. Trifa, and A. Pitsillides, ―HomeWeb: An application framework for Web-based

smart homes,‖ In Proc. ICT’11, May 2011.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

108 Peng Xiaohui - March 2016

[61] Yunfei Qu, Hongjie Wang, Shau-Ming Lun, Hsiao-Dong Chiang, and Tao Wang, ―Design and

implementation of a Web-based Energy Management Application for smart buildings,‖ In Proc.

2013 IEEE Electrical Power & Energy Conference (EPEC), Halifax, NS, Aug. 2013.

[62] C. M. Angelopoulos, G. Filios, S. Nikoletseas, D. Patroumpa, T. P. Raptis, and K. Veroutis, ―A

Holistic IPv6 Test-Bed for Smart, Green Buildings,‖ In Proc. 2013 IEEE International Conference

on Communications (ICC), Budapest, Jun. 2013.

[63] Matthias Kovatsch, Markus Weiss, and Dominique Guinard, ―Embedding internet technology for

home automation,‖ In Proc. 2010 IEEE Conference on Emerging Technologies and Factory

Automation (ETFA), Bilbao, Sept. 2010.

[64] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao, ―Tiny web services: design

and implementation of interoperable and evolvable sensor networks,‖ In Proc. SenSys’08, Raleigh,

Nov. 5-7, 2008.

[65] Daniel Schachinger and Wolfgang Kastner, ―Model-driven integration of building automation

systems into Web service gateways,‖ In Proc. 2015 IEEE World Conference on Factory

Communication Systems (WFCS), Palma de Mallorca, May 2015.

[66] M. Jung, J. Weidinger, C. Crettaz, A. Olivieri, and Y. Bocchi, ―A Transparent IPv6 Multi-protocol

Gateway to Integrate Building Automation Systems in the Internet of Things,‖ In Proc. 2012 IEEE

International Conference on Green Computing and Communications (GreenCom), Besancon, Nov.

2012.

[67] Xiaohui Peng, Masahiro Bessho, Noboru Koshizuka, and Ken Sakamura, ―A Framework for Peak

Electricity Demand Control Utilizing Constraint Programing Method in Smart Building,‖ In Proc.

IEEE 3rd Global Conf. on Consumer Electronics, Tokyo Japan, Oct. 2014, pp. 744-748.

[68] Peter Jackson, ―What Are Expert Systems,‖ in Introduction to Expert Systems, 3rd ed. Boston,

Addison Wesley, 1998, ch. 1.

[69] T. Gu, H. K. Pung, and D. Q. Zhang, ―Toward an OSGi-based infrastructure for context-aware

applications,‖ In IEEE Pervasive Computing, vol. 3, pp. 66-74, 2004.

[70] H. Doukas, K. D. Patlitzianas, K. Iatropoulos, and J. Psarras, ―Intelligent building energy

management system using rule sets,‖ In Building Environ., vol. 42, no. 10, pp. 3562-3569, Oct.

2007.

[71] S. Tomic, A. Fensel, and T. Pellegrini, ―SESAME Demonstrator: Ontologies, Services and Policies

for Energy Efficiency,‖ In Proc. 6th Int. Conf. on Semantic Systems, Graz, Austria, Sept. 2010,

Article No. 24.

[72] A. T. Kaliappan, S. Sathiakumar, and N. Parameswaran, ―Flexible Power Consumption

Management in Smart Homes,‖ In Proc. Int. Conf. on Advances in Computing, Commun. and

Informatics, Aug. 2012, Chennai India, pp. 161-167.

[73] V. Kumar, A. Fensel, and P. Fröhlich, ―Context Based Adaptation of Semantic Rules in Smart

Buildings,‖ In Proc. iiWAS2013, Vienna Austria, Dec. 2013.

[74] T. Kawakami, N. Fujita, T. Yoshihisa, and M. Tsukamoto, ―An Evaluation and Implementation of

Rule-Based Home Energy Management System Using the Rete Algorithm,‖ In The Scientific World

Journal, Vol. 2014, Article ID 591478, 8 pages.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 109

[75] H. Takatsuka, S. Saiki, S. Matsumoto, and M. Nakamura, ―Design and Implementation of

Rule-Based Framework for Context-Aware Services with Web Services,‖ In Proc. iiWAS2014,

Hanoi, Vietnam, Dec. 2014, pp. 233-242.

[76] ―Rete algorithm.‖ Available: https://en.wikipedia.org/wiki/Rete_algorithm.

[77] Pablo A. Valiente-Rocha and Adolfo Lozano-Tello, ―Ontology-based expert system for home

automation controlling,‖ In Proc. IEA/AIE'10, Springer-Verlag Berlin, 2010, pp. 661-670.

[78] Christian Reinisch, Wolfgang Granzer, Fritz Praus, and Wolfgang Kastner, ―Integration of

heterogeneous building automation systems using ontologies,‖ In Proc. 34th Annual Conference of

IEEE Industrial Electronics(IECON 2008), Orlando, FL, Nov. 2008. pp. 2736-2741.

[79] A. Daouadji, K.-K. Nguyen, M. Lemay, and M. Cheriet, ―Ontology-Based Resource Description and

Discovery Framework for Low Carbon Grid Networks,‖ In Proc. 2010 First IEEE International

Conference on Smart Grid Communications (SmartGridComm), Gaithersburg, MD, Oct. 2010. pp.

477-482.

[80] Simon Mayer and Dominique Guinard, ―An extensible discovery service for smart things,‖ In Proc.

Second International Workshop on Web of Things (WoT '11), Article No. 7, 2011.

[81] Wolfgang Granzer and Wolfgang Kastner, ―Information modeling in heterogeneous Building

Automation Systems,‖ In Proc. 9th IEEE International Workshop on Factory Communication

Systems (WFCS), Lemgo, May 2012, pp. 291-300.

[82] Seppo Torma, ―Semantic Linking of Building Information Models,‖ In Proc. IEEE Seventh

International Conference on Semantic Computing (ICSC), Irvine, Sept. 2013, pp. 412-419.

[83] D. Guinard, V. Trifa and E. Wilde, ―A Resource Oriented Architecture for the Web of Things,‖ In

Proc. Internet of Things (IOT), Nov. 29-Dec. 1 2010.

[84] M. Asfand-e-yar, A. Kucera, and T. Pitner, ―Smart Buildings: Semantic Web Technology for

Building Information Model and Building Management System,‖ In Proc. ICODSE, Bandung, Nov.

2014.

[85] Shen Bin, Zhang Guiqing, Wang Shaolin, and Wei Dong, ―The Development of Management

System for Building Equipment Internet of Things,‖ In Proc. IEEE ICCSN, May, 2011.

[86] T. G. Stavropoulos, D. Vrakas, D. Vlachava, and N. Bassiliades, ―BOnSAI: a Smart Building

Ontology for Ambient Intelligence,‖ In Proc. WIMS’12, Jun. 2012, Craiova, Romania.

[87] F. Paganelli, S. Turchi, and D. Giuli, ―A Web of Things Framework for RESTful Applications and

Its Experimentation in a Smart City,‖ In IEEE Syst. J., Issue: 99, Sept. 2014.

[88] Jasvinder Singh, Navid Hassanzadeh, Susan Rea, and Dirk Pesch, ―Semantics-empowered

middleware implementation for home ecosystem gateway,‖ In Proc. PERCOM Workshops, Irvine,

Mar. 2014, pp. 449-454.

[89] Gerome Bovet and Jean Hennebert, ―Distributed Semantic Discovery for Web-of-Things Enabled

Smart Buildings,‖ In Proc. 6th International Conference on New Technologies, Mobility and

Security (NTMS), Dubai, 2014.

[90] Ji-Yeon Son, Jun-Hee Park, Kyeong-Deok Moon, and Young-Hee Lee, ―Resource-aware smart

home management system by constructing resource relation graph,‖ In IEEE Transactions on

Consumer Electronics, vol. 57, no. 3, pp. 1112-1119, Aug. 2011.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

110 Peng Xiaohui - March 2016

[91] Marco Grassi, Michele Nucci, and Francesco Piazza, ―Towards an ontology framework for

intelligent smart home management and energy saving,‖ In Proc. 2011 IEEE International

Symposium on Industrial Electronics (ISIE), Gdansk, pp. 1753-1758, Jun. 2011.

[92] MMarkus Jung, Jurgen Weidinger, Wolfgang Kastner, and Alex Olivieri, ―Building Automation and

Smart Cities: An Integration Approach Based on a Service-Oriented Architecture,‖ In Proc. 27th

International Conference on Advanced Information Networking and Applications Workshops

(WAINA), Barcelona, pp. 1361-1367, Mar. 2013.

[93] Yulia Evchina, Aleksandra Dvoryanchikova, and José L. Martinez Lastra, ―Semantic information

management for user and context aware smart home with social services,‖ In Proc. 2013 IEEE

International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and

Decision Support (CogSIMA), San Diego, pp. 262-268, Feb. 2013.

[94] N. Vicari, E. Wuchner, A. Bröring, and C. Niedermeier, ―Engineering and operation made easy - a

semantics and service oriented approach to building automation,‖ In Proc. IEEE 20th Conference on

Emerging Technologies & Factory Automation (ETFA), Luxembourg, Sept. 2015.

[95] Son N. Han, Gyu Myoung Lee, and Noel Crespi, ―Semantic Context-Aware Service Composition

for Building Automation System,‖ In IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp.

752-761, Mar. 2013.

[96] OASIS. (2009, Jul. 1). Devices Profile for Web Services (Ver. 1.1) [Online].

http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01.

[97] LightWeight Machine to Machine Technical Specification, Candidate Version 1.0, Open Mobile

Alliance, Dec. 2015.

[98] Sebastian Zug, Michael Schulze, Andre Dietrich, and Jorg Kaiser, ―Programming abstractions and

middleware for building control systems as networks of smart sensors and actuators,‖ in Proc. 2010

IEEE Conference on Emerging Technologies and Factory Automation (ETFA), Bilbao, Sept. 13-16

2010.

[99] THE HARTMAN COMPANY, OPERATORS‘ CONTROL LANGUAGE. Rev. 2.2. THE

HARTMAN COMPANY. Sept. 1998.

[100] Ken Sinclair (Aug. 2011), The Past and Future of Control Languages [Online]. Available:

http://www.automatedbuildings.com/news/aug11/articles/ksin/110720111001ksin.html

[101] Sedona Framework. [Online]. Available: www.sedonadev.org.

[102] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd, ―CAMP: A magnetic poetry

interface for end-user programming of capture applications for the home,‖ In Proc. Ubicomp (2004).

[103] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama, ―iCAP:Interactive prototyping

of context-aware applications,‖ In Proc. Pervasive (2006).

[104] M. W. Newman, ―Now we‘re cooking: Recipes for end-user service composition in the digital

home,‖ Position Paper– CHI 2006 Workshop IT@Home, 2006.

[105] Y. Dahl and R.-M. Svendsen, ―End-user composition interfaces for smart environments: A

preliminary study of usability factors,‖ In Design, User Experience, and Usability. Theory, Methods,

Tools and Practice, 2011, 118-127.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 111

[106] X. H. Peng, M. Bessho, N. Koshizuka, and K. Sakamura, ―The Design and Implementation of a

Context-based Energy Management Policy Description Language,‖ In TRON Symposium 2015,

Tokyo, 9-12 Dec. 2015.

[107] Ishaan Khanna, ―Smart Grid Application: Peak Demand Management Trial - The Western

Australian Experience,‖ In Proc. Innovative Smart Grid Technologies Asia (ISGT), IEEE PES, Nov.

2011, Perth, Australia.

[108] ―Building Automation.‖ Internet: https://en.wikipedia.org/wiki/Building_automation, Feb. 14,

2016 [Feb. 22, 2016].

[109] Sakamura, K. Ubiquitous ID Technologeis. (2011).

http://www.t-engine.org/ja/wp-content/themes/wp.vicuna/pdf/en_US/UID910-W001-110324.pdf

[110] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith, ―Constraint satisfaction problems:

Algorithms and applications,‖ In European Journal of Operational Research 119, pp. 557-581,

1999.

[111] Xiaohui Peng (Feb. 2015). Device control rule description language specification (1st ed.)

[Online]. Available: http://www.sakamura-lab.org/~peng/dcrdl-spec-v1.pdf

[112] ―Compiler.‖ Internet: https://en.wikipedia.org/wiki/Compiler, Jan. 26, 2016 [Feb. 6, 2016].

[113] ―JavaCC: The Java Parser Generator.‖ [Online]. Available: https://javacc.java.net [Jul. 28,

2015].

[114] ―JJTree Reference Documentation.‖ [Online]. Available:

https://javacc.java.net/doc/JJTree.html [Jul. 2015].

[115] ―Extended Backus–Naur Form‖ [Online]. Available: https://en.wikipedia.org/wiki/Yacc [Sept.

2015].

[116] Xiaohui Peng (Aug. 2015). PdlParser.jjt (1st ed.) [Online]. Available:

http://www.sakamura-lab.org/~peng/PdlParser.jjt

[117] ―Eclipse.‖ [Online]. Available: eclipse.org [Jun. 2015].

[118] Krzysztof Kuchcinski and Radosław Szymanek, JaCoP Library User‘s Guide, Ver. 4.4, Jan. 5,

2016.

[119] ―JFace.‖ [Online]. Available: https://wiki.eclipse.org/JFace [Feb. 2016].

[120] ―SWT.‖ [Online]. Available: https://wiki.eclipse.org/SWT [Feb. 2016].

[121] Xiaohui Peng. (Aug. 2015). PdlParser.jjt (1st ed.) [Online]. Available:

http://www.sakamura-lab.org/~peng/PdlParser.jjt

[122] Xiaohui Peng. (Aug. 2015). PdlParser.jj (1st ed.) [Online]. Available:

http://www.sakamura-lab.org/~peng/PdlParser.jj

[123] E.C. Thom, ―The discomfort index, ‖ in Weatherwise, vol. 12, no. 2, pp. 57–60, 1959.

[124] D. Orchard, ―The Four Rs of Programming Language Design,‖ In Proc. of Onward! 2011,

Portland, Oregon, USA, Oct. 2011.

http://www.t-engine.org/ja/wp-content/themes/wp.vicuna/pdf/en_US/UID910-W001-110324.pdf

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

112 Peng Xiaohui - March 2016

[125] Amirhossein Chinaei. Class Lecture, Topic: ―Programming Languages - Language Evaluation

Criteria.‖ Dept. of Electrical & Computer Engineering, University of Puerto Rico, Mayagüez, Puerto

Rico, 2010.

[126] Luigi De Russis and Fulvio Corno, ―HomeRules: A Tangible End-User Programming Interface

for Smart Homes,‖ In CHI'15 Extended Abstracts, Seoul, Korea, Apr. 18-23, 2015.

[127] raml.org, ―RAML 1.0 (RC),‖ [Online]. Available: http://docs.raml.org/specs/1.0/. [Feb. 8,

2016].

[128] wigwag.com, ―wigwag RULES,‖ [Online]. Available:

http://www.wigwag.com/wigwag_relay.html. [Feb. 8, 2016].

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 113

10 APPENDICES

APPENDIX 1: SMART BUILDING RESOURCE DESCRIPTION SCHEMA ... 114

APPENDIX 2: EPDLPARSER.JJT ... 119

APPENDIX 3: THREE CONTROL POLICIES WRITTEN IN DCRDL .. 125

APPENDIX 4: DCRDL SPECIFICATION ... 133

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

114 Peng Xiaohui - March 2016

APPENDIX 1: SMART BUILDING RESOURCE DESCRIPTION

SCHEMA

Smart Building Resource Description Schema

(SBRDS)

Authors Xiaohui Peng

Laboratory Sakamura-Koshizuka Laboratory, The University of Tokyo

Version 0.2

Date February 2016

1. Introduction

Owing to the heterogeneous networks of smart buildings, developing automation

applications for the building system is a very difficult job. To develop an automation

application, the programmers have to know building physical structures, subsystems,

device functionalities and the semantic relationship of internal objects. The Internet of

Things has changed the application-programming paradigm of smart buildings, and

information acquisition and appliance control become ubiquitous through the web-based

open APIs. The application development process based on such integrated web-based

service platform becomes easier than before. Therefore, IoT-enabled smart buildings

become a homogeneous platform with a programmable architecture. As a result, the

heterogeneous networks are hidden by web-based remote APIs, and only data access

and device control interfaces are exposed to automation applications.

To enable users to program with smart buildings, we design a resource description

schema called SBRDS for smart buildings which abstracts building resources to provide

programming supports for upper-layer users. Currently, the SBRDS is mainly designed

for EDPL [45] which is a user-friendly energy control policy description language for

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 115

IoT-enabled smart buildings.

1.1 Objective

The main target users of SBRDS are system developers who develop web services,

especially RESTFul APIs for public access and control of smart buildings. The parsed

information from SBRDS can provide suggestions to users for using available resources

when they write control policies for the smart building systems. The following

information should be included in the SBRDS:

 human readable resource representation;

 describes details of web services, especially RESTful APIs. User described

expressions should be able to be translated into executable code that can invoke

web services which are issued by system developers.

 describes semantic relations of spaces, objects and services; and

 models the inside objects and spaces.

1.2 Terminology

This specification defines the main terminologies as the following table:

Space Rooms, corridors, halls, etc.

Appliance All inside devices.

Service Web services, access and control interfaces of the building system.

Attribute String values that represent features of a space or an object.

Resource Spaces, objects, services, etc.

REST Representational state transfer [38].

2. Design

2.1 Overview

Basically, there are four main elements in the SBRDS: <building>, <floor>, <space>

and <appliance>. Attributes and <functions> are required for each element. They are

described in Key-Value pairs. Keys are the semantic description of an attribute or

service of a space or object for upper-layer users to refer. The ―index‖ and ―ucode‖

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

116 Peng Xiaohui - March 2016

[109] attributes are required for every space or object.

index: for upper-users to refer to an element;

ucode: the unique identifier for an object, location, concept in a building.

The SBRDS describes resources in the XML or YAML format. We only give

examples in the XML format in this specification. There are mainly four types of

information in SBRDS.

Semantic relations of spaces and objects: it describes relations such as the semantic

position of a sensor or an appliance, building structures and so forth.

Attributes of spaces and objects: attributes are Key-Value pairs which represent the

properties of a space or an object. The ―identifier‖ (we use ucode [109] to identify

objects and spaces in this specification) is a unique identification for a space or an

object in the building systems. The ―index‖ attribute is a semantic reference for a space

or an object. These two attributes are required for each element in the SBRDS.

Service list: services of a space or object are described as the attributes of the

<functions> element in the form of Key-Value pairs. The <functions> element is a

sub-element of the <building>, <floor>, <space>, and <appliance>.

Detailed description of services: the description of a service includes a return type,

a function ID and parameters. The attributes of <parameter> element consist of a

name, a data-type, and an index property. The ―index‖ property indicates the position of

the parameter in the parameter list. It is encouraged to add a ―description‖ attribute,

which describes the explanation of a <function> or <parameter>.

2.2 Elements

2.2.1 Building

<building> is the top element of SBRDS. The attributes of <building> element

describe properties of it. For example, the ―name‖ attribute of the <building> element in

the following figure shows that the name of the building is ―Daiwa Ubiquitous

Computing Research Building‖. The inner element <functions> lists all the available

service of the building layer. The value of an attribute of <functions> is the function ID

that we defined in the DCRDL specification [111].

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 117

2.2.2 Floor

<floor> is the sub-element of <building>. It describes all the related information of

the floor layer.

2.2.3 Space

<space> is the sub-element of <floor>. It describes all the related information of the

space layer.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

118 Peng Xiaohui - March 2016

2.2.4 Appliance

<appliance> is a sub-element of <building>, <floor> or <space> elements. It

describes all the related information of a device.

2.2.5 sbapi

The <sbapi> element describes details of all the available services that the target

building can provide. It consists of multiple <function> elements which describe the

structure of services such as function id, return-type, description, and the <parameter>

sub-element.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 119

APPENDIX 2: EPDLPARSER.JJT

/**

 * JJTree template file created by SF JavaCC plugin 1.5.28+ wizard for JavaCC 1.5.0+

 */

options

{

 STATIC=false;

 NODE_CLASS="PdlNode";

}

PARSER_BEGIN(PdlParser)

package org.skl.pdl.parser;

public class PdlParser

{

 public static void main(String args [])

 {

 System.out.println("Reading from standard input...");

 System.out.print("Enter an expression like ¥"1+(2+3)*var;¥" :");

 PdlParser parser = new PdlParser(System.in);

 try

 {

 SimpleNode n = parser.Start();

 n.dump("");

 System.out.println("Thank you.");

 }

 catch (Exception e)

 {

 System.out.println("Oops.");

 System.out.println(e.getMessage());

 }

 }

}

PARSER_END(PdlParser)

SKIP :

{

 " "

| "¥t"

| "¥n"

| "¥r"

| < "//" (~["¥n", "¥r"])*

 (

 "¥n"

 | "¥r"

 | "¥r¥n"

) >

| < "/*" (~["*"])* "*"

 (

 ~["/"] (~["*"])* "*"

)*

 "/" >

}

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

120 Peng Xiaohui - March 2016

TOKEN : /* Keywords*/

{

 < POLICY:"policy">

 | < RULE:"rule">

 | < WHEN:"when">

 | < THEN:"then">

 | < INT:"int">

 | < FLOAT:"float">

 | < FOREACH:"foreach">

 | < WITHIN:"within">

 | < IF:"if">

 | < CHAR: "char" >

 | < BYTE: "byte" >

 | < EXTENDS: "extends" >

 | < SUPER: "super" >

 | < DOUBLE: "double" >

 | < BOOLEAN: "boolean" >

 | < BREAK: "break" >

 | < FALSE: "false" >

 | < FOR: "for" >

 | < LONG: "long" >

 | < NULL: "null" >

 | < SHORT: "short" >

 | < THIS: "this" >

 | < TRUE: "true" >

 | < BUILDING: "Building">

}

TOKEN : /* LITERALS */

{

 < INTEGER_LITERAL :

 < DECIMAL_LITERAL > (["l", "L"])?

 | < HEX_LITERAL > (["l", "L"])?

 | < OCTAL_LITERAL > (["l", "L"])?

 >

| < #DECIMAL_LITERAL : ["1"-"9"] (["0"-"9"])* >

| < #HEX_LITERAL : "0" ["x", "X"] (["0"-"9", "a"-"f", "A"-"F"])+ >

| < #OCTAL_LITERAL : "0" (["0"-"7"])* >

|

 < FLOATING_POINT_LITERAL:

 (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)? (["f","F","d","D"])?

 | "." (["0"-"9"])+ (<EXPONENT>)? (["f","F","d","D"])?

 | (["0"-"9"])+ <EXPONENT> (["f","F","d","D"])?

 | (["0"-"9"])+ (<EXPONENT>)? ["f","F","d","D"]

 >

|

 < #EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

|

 < CHARACTER_LITERAL:

 "'"

 ((~["'","¥¥","¥n","¥r"])

 | ("¥¥"

 (["n","t","b","r","f","¥¥","'","¥""]

 | ["0"-"7"] (["0"-"7"])?

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 121

)

)

)

 "'"

 >

|

 < STRING_LITERAL:

 "¥""

 ((~["¥"","¥¥","¥n","¥r"])

 | ("¥¥"

 (["n","t","b","r","f","¥¥","'","¥""]

 | ["0"-"7"] (["0"-"7"])?

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

)*

 "¥""

 >

}

TOKEN : /* sign */

{

 < COMMA:"," >

 |< SEMICOLON:";">

 |< LPAR:"(">

 |< RPAR:")">

 |< ASSIGN:"=">

 |< LSBRA:"[">

 |< RSBRA:"]">

 |< LBRA:"{">

 |< RBRA:"}">

 |< EQU:"==">

 |< NEQ:"!=">

 |< GTR:">">

 |< GEQ:">=">

 |< LSS:"<">

 |< LEQ:"<=">

 |< NOT:"!">

 |< AND:"&&">

 |< OR:"||">

}

TOKEN : /* IDENTIFIERS */

{

 < IDENTIFIER :

 < LETTER >

 (

 < LETTER >

 | < DIGIT >

)* >

| < #LETTER : ["_", "a"-"z", "A"-"Z"] >

| < #DIGIT : ["0"-"9"] >

}

SimpleNode Start() :

{}

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

122 Peng Xiaohui - March 2016

{

 < POLICY >< IDENTIFIER >< LBRA >

 (

 PolicyAttributeDefine()

 | Rule()

 | RuleForeach()

)*

 < RBRA >

 < EOF >

 {

 return jjtThis;

 }

}

void VariableDeclaration() :

{}

{

 ((< INT >

 | < FLOAT>)["[]"]) Identifier()(< COMMA >Identifier())*

}

void VariableAssignment() :

{}

{

 < IDENTIFIER >("."< IDENTIFIER >)* < ASSIGN > (< INT >|< FLOAT >|< STRING_LITERAL >)

}

void PolicyAttributeDefine() :

{Token t;}

{

 < POLICY >"."t=< IDENTIFIER > {jjtThis.value = String.valueOf(t.image); }

 < ASSIGN > (t=< INT >{jjtThis.value += "="+Integer.valueOf(t.image); }

 |t=< FLOAT >{jjtThis.value += "="+Float.valueOf(t.image); }

 |t=< STRING_LITERAL >{String temp = String.valueOf(t.image);jjtThis.value += "="+temp.substring(1,

temp.length()-1);})

}

void Rule() :

{}

{

 < RULE > Identifier() < WHEN > < LBRA > ConditionSet() < RBRA > < THEN > < LBRA > ActionSet() <

RBRA >

}

/* ConditionSet */

void ConditionSet() :

{}

{

 OrCondition()

}

String RelationSign() :

{Token t;}

{

 (t=< EQU >{jjtThis.value = String.valueOf(t.image); return t.image;}

 |t=< NEQ >{jjtThis.value = String.valueOf(t.image); return t.image;}

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 123

 |t=< GTR >{jjtThis.value = String.valueOf(t.image); return t.image;}

 |t=< GEQ >{jjtThis.value = String.valueOf(t.image); return t.image;}

 |t=< LSS >{jjtThis.value = String.valueOf(t.image); return t.image;}

 |t=< LEQ >{jjtThis.value = String.valueOf(t.image); return t.image;}

 |t=< NOT >{jjtThis.value = String.valueOf(t.image); return t.image;})

}

/* ActionSet */

void ActionSet() :

{}

{

 (SbaApi())+

| (ActionSetForeach())*

// (Expression())+

}

void RuleForeach() :

{}

{

 < FOREACH > Identifier() < WITHIN > SbaApi() < LBRA > (IfStatement()|Rule())+ < RBRA >

}

void IfStatement() :

{}

{

 < IF >< LPAR >ConditionSet()< RPAR >< LBRA > (Rule()|RuleForeach())+< RBRA >

}

void ActionSetForeach() :

{}

{

 < FOREACH > Identifier() < WITHIN > SbaApi() < LBRA > (SbaApi())+ < RBRA >

}

void OrCondition() :

{Token t;}

{

 AndCondition()(t=< OR >{jjtThis.value = String.valueOf(t.image);} AndCondition())*

}

void AndCondition() :

{Token t;}

{

 Condition()(t=< AND >{jjtThis.value = String.valueOf(t.image);} Condition())*

}

void Condition() :

{}

{

 (< LPAR >OrCondition() < RPAR >|UnaryExpression())(RelationSign() Literal())*

}

void UnaryExpression() :

{}

{

 LOOKAHEAD(SbaApi())SbaApi()

 |Identifier()

}

void SbaApi() :

{}

{

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

124 Peng Xiaohui - March 2016

 (< BUILDING >|MemberIdentifier())("."MemberIdentifier())* [Arguments()]

}

void MemberIdentifier() :

{}

{

 Identifier()[< LSBRA >Literal()< RSBRA >]

}

void Literal():

{Token t;}

{

 t=< INTEGER_LITERAL > {jjtThis.value = Long.valueOf(t.image);}

 |t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);}

 |t=<CHARACTER_LITERAL> {jjtThis.value = String.valueOf(t.image);}

 |t=<STRING_LITERAL> {String temp =

String.valueOf(t.image).replaceFirst("¥"","");jjtThis.value=temp.substring(0, temp.length()-1);}

}

void Arguments():

{}

{

 < LPAR > [Literal() ("," Literal())*] < RPAR >

}

void Identifier() :

{Token t;}

{

 t=< IDENTIFIER >{jjtThis.value = String.valueOf(t.image);}

}

void Number() :

{Token t;}

{

 t=< INTEGER_LITERAL > {jjtThis.value = Long.valueOf(t.image);}

 |t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);}

}

void Integer() :

{Token t;}

{

 t=< INTEGER_LITERAL > {jjtThis.value = Double.valueOf(t.image);}

}

void Float() :

{Token t;}

{

 t=< FLOATING_POINT_LITERAL > {jjtThis.value = Double.valueOf(t.image);}

}

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 125

APPENDIX 3: THREE CONTROL POLICIES WRITTEN IN

DCRDL

1. Peak Consumption Control Policy

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:1"

 PolicyName="Peak Electricity Consumption Control"

 Period="900" Priority="98">

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-building-electricity-consumption">

 <Parameter Value="00:15:00"

 DataType="http://www.w3.org/2001/XMLSchema#string" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than">

 <Parameter Value="0.60"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" >

 <Parameter>

 <Function FunctionId=

"org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature-with-ac-on" />

 </Parameter>

 <Parameter Value="on"

 DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status">

 </Parameter>

 </Function>

 </Target>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease">

 <Parameter Value="2"

 DataType="http://www.w3.org/2001/XMLSchema#integer" />

 </Function>

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >

 <ConditionSet>

 <Condition>

 <Subject>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

126 Peng Xiaohui - March 2016

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-electricity-consumption">

 <Parameter Value="X0001C000000000000020000000D649"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Parameter Value="00:15:00"

 DataType="http://www.w3.org/2001/XMLSchema#string" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than">

 <Parameter Value="0.20"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="00001C000000000000020000000D448A,00001C000000000000020000000D448B,

00001C000000000000020000000D448C,00001C000000000000020000000D448D"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-light-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint">

 <Parameter Value="X0001C000000000000020000000D640"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal">

 <Parameter Value="22.00"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D640"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:4" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint">

 <Parameter Value="X0001C000000000000020000000D641"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 127

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal">

 <Parameter Value="22.00"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D641"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:5" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint">

 <Parameter Value="X0001C000000000000020000000D642"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal">

 <Parameter Value="22.00"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D642"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:6" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-ac-setpoint">

 <Parameter Value="X0001C000000000000020000000D643"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal">

 <Parameter Value="22.00"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

128 Peng Xiaohui - March 2016

2. Step Tariffs Policy

 <Target TargetId="X0001C000000000000020000000D643"

 Datatype="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

</Policy>

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:2"

 PolicyName="step tariffs policy"

 Period="900" Priority="97">

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" />

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="500"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" />

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than">

 <Parameter Value="1000"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list">

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" >

 <Parameter>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" />

 </Parameter>

 <Parameter Value="on"

 DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status">

 </Parameter>

 </Function>

 </Target>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease" >

 <Parameter Value="2"

 DataType="http://www.w3.org/2001/XMLSchema#float" />

 </Function>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 129

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" />

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="1000"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list">

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" >

 <Parameter>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" />

 </Parameter>

 <Parameter Value="on"

 DataType="org:sakamura-lab:names:dcrdl:1.0:constant:status">

 </Parameter>

 </Function>

 </Target>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" />

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="1000"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode"/>

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than">

 <Parameter Value="30.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

130 Peng Xiaohui - March 2016

3. Discomfort Index Control Policy

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D540"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price" />

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="1500"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="00001C000000000000020000000D448A,00001C000000000000020000000D448B,

00001C000000000000020000000D448C,00001C000000000000020000000D448D"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-light-off" />

 </Action>

 </ActionSet>

 </Rule>

</Policy>

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:3"

 PolicyName="Discomfort Index Control Policy"

 Period="300" Priority="99">

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" >

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="21.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 <Condition>

 <Subject>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 131

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal">

 <Parameter Value="24.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D640,X0001C000000000000020000000D641"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" >

 <ConditionSet>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal">

 <Parameter Value="23.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D640,X0001C000000000000020000000D641"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" >

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-less-than">

 <Parameter Value="42.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

132 Peng Xiaohui - March 2016

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D540"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on" />

 </Action>

 </ActionSet>

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:4" >

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than">

 <Parameter Value="21.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 <Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity">

 <Parameter Value="X0001C000000000000020000000D648"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than">

 <Parameter Value="45.0"

 DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

 </Condition>

 </ConditionSet>

 <ActionSet>

 <Action>

 <Target TargetId="X0001C000000000000020000000D540"

 DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-off" />

 </Action>

 </ActionSet>

 </Rule>

</Policy>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 133

APPENDIX 4: DCRDL SPECIFICATION

Device Control Rule Definition Language

Specification

Authors Xiaohui Peng

Laboratory Sakamura-Koshizuka Laboratory, The University of Tokyo

Version v1.1

Date February 2016

1. Introduction

Ubiquitous computing describes a vision that all kinds of devices are connected in ―a

loosely-coupled manner‖ [31] to provide a smart environment that can automatically

adapt to users‘ behaviors. A smart building is a typical implementation of the ubiquitous

computing. ―The ideal application scenario for smart buildings considers the user as the

focus of a pervasive environment augmented with sensors and actuators where an

intelligent system monitors environmental conditions and takes the proper actions to

satisfy users‘ requirements‖ [33]. Devices are becoming smarter in the age of the

Internet of Things and fine-grained environment information can be collected and

shared by the connected devices that deployed in smart buildings.

The complexity of the management system of smart buildings keeps growing dues to

the advancements of technology. In order to efficiently manage smart devices to

optimize energy efficiency, smart devices should be operated diversely according to the

real-time context. Users should be able to perform the personalized, precise, flexible

and collaborative controls based on various contexts in the building systems. Therefore,

we designed a rule definition language called DCRDL for context-based device control

in smart buildings. Using DCRDL, users can write fine-grained device control rules to

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

134 Peng Xiaohui - March 2016

control device behaviors to adapt to the context. The energy efficiency will be

potentially improved by writing personalized, precise control rules using DCRDL to

control building systems.

2. Language Model

The elements of DCRDL are:

 Policy;

 Rule;

 ConditionSet;

 Condition

 ActionSet

 Action

 Subject

 Target

 Function

 Parameter

2.1 Basic Rules

 A rule consists of a ConditionSet and an ActionSet;

 ConditionSet contains one or more conditions;

 Condition consists of a subject, comparison function;

 The action section contains one or more actions, and all the actions should be

executed when the corresponding ConditionSet is evaluated to be true;

 An action consists of targets and action functions;

 Conditions should be wrapped up by the <ConditionSet> tag, and a

―CombineMethod‖ attribute in ConditionSet indicates the relationship of the

conditions in this ConditionSet.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 135

 Function elements describe the details of functions that defined in the section six of

this specification. Functions will increase gradually with the increasing available

public services of smart buildings. We believe that more and more building

functions will be exposed through web-based APIs in the near future. More

functions will be defined in future versions of this specification.

2.2 Elements

Policy

Multiple rules constitute a policy which generally used to achieve a certain control

goal. The policy is interpreted as an agent that running in the policy agent system of the

proposed programming framework. Several attributes are defined in the <policy>

element:

PolicyId MUST The ID of a policy.

PolicyName OPTIONAL The name of the policy.

Period OPTIONAL An integer value that indicates the polling cycle of the policy in

seconds. If Mode is set to “event”, this attribute should be ignored by

the interpreter.

Priority MUST An integer value that indicates the priority of the policy agent.

Mode MUST The running mode of the policy. There are two types of models

defined in DCRDL: “polling” and “event” and the default model is

polling. The event mode means that the policy will be triggered by an

event from the building system. For example, if a rule defined in a

policy concerns the temperature of a room, the policy should be

triggered when the temperature of that room changed.

<Policy PolicyId="org:sakamura-lab:names:dcrdl:1.0:policyid:1"

 PolicyName="Discomfort Index Control Policy"

 Period="900"

 Mode="polling">

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" priority="">

 ...

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:2" priority="">

 ...

 </Rule>

 <Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:3" priority="">

 ...

 </Rule>

</Policy>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

136 Peng Xiaohui - March 2016

Rule

A rule is the basic element of DCRDL. It follows the CSAS (i.e.,

ConditionSet-ActionSet) format. In other words, a DCRDL rule consists of a

ConditionSet and an ActionSet. When the ConditionSet is evaluated to be true, the

actions defined in ActionSet should be executed. The priority is designed for the rule

conflicting resolution issue in the future.

ConditionSet

The ConditionSet consists of multiple conditions and a ―CombineMethod‖ attribute

indicates the relation between the inner conditions. The ConditionSet is designed

recursively to represent the complex context in smart buildings.

CombineMethod ―and‖, ―or‖. The default value is ―or‖.

<ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

<Condition>A</Condition>

<ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:or">

<Condition>B</Condition>

<Condition>C</Condition>

</ConditionSet>

</ConditionSet>

The above code of ConditionSet represents the logical combination:

A ∧ (B ∨ C)

<Rule RuleId="org:sakamura-lab:names:dcrdl:1.0:ruleid:1" priority="">

 <ConditionSet CombineMethod="org:sakamura-lab:names:dcrdl:1.0:CombineMethod:and">

 <Condition>...</Condition>

 <ConditionSet>...</ConditionSet>

 </ConditionSet>

 <ActionSet>

 <Action>...</Action>

 <Action>...</Action>

 </ActionSet>

</Rule>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 137

Condition

A condition consists of a <Subject> element and a <Function> element. <Subject>

contains a <Function> element which gets information from the building system. For

example, get-space-temperature function in a <Subject> element refers to the service of

obtaining the temperature of a space. The comparison <Function> in a condition with a

parameter is responsible for evaluating the condition.

The above code represents the logical expression that the temperature of the room

identified by the ucode ―00001C000000000000020000000D648‖ is larger than 26
°
C.

When the temperature of this room exceeds 26
°
C, this condition is evaluated to be true.

ActionSet

ActionSet in a rule defines the actions of related devices which should be executed

when the corresponding ConditionSet is evaluated to be true. It contains multiple

actions.

Action

The <Action> element defines an action for one or multiple devices. The inner

TargetID can be plural. For example, we can define an action that turns off all the air

conditioners whose set-point is less than 20
°
C. The following code represents that

increases the set-point of air conditioner: 00001C000000000000020000000D448A by

1
°
C.

<Condition>

 <Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature">

 <Parameter Value="00001C000000000000020000000D648"

DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode" />

 </Function>

 </Subject>

 <Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:float-larger-than">

 <Parameter Value="26" DataType="http://www.w3.org/2001/XMLSchema#float"/>

 </Function>

</Condition>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

138 Peng Xiaohui - March 2016

Function

The <Function> element describes the details of a service. The function is also

designed recursively. The following code represents that get-acs-by-spaces service uses

the return value of get-space-by-highest-temperature service as the parameter to get

ucodes of air conditioners in the room where the temperature is highest of the building.

A function contains a FunctionId attribute and several <Parameter> elements. The

<Parameter> element consists of a ―Value‖ and a ―DataType‖ attribute. Functions are

the main functional elements of DCRDL. They are classified into three categories:

 Comparison Function

These functions are used in the condition section. The specified environment

parameter (e.g., temperature) and the given value in <Parameter> element are compared

by comparison functions to evaluate a condition is true or not. For example, the

―float-larger-than‖ function can compare the temperature of target space with the given

value.

 Information Obtaining Function

Information obtaining functions are used in both conditions and actions. These

functions fetch the information from the environment.

 Action Function

Action functions describe the device control services such as turn on/off lights and

<Action>

<Target TargetID="org:sakamura-lab:names:dcrdl:1.0:ucode:00001C000000000000020000000D448A"

DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode"/>

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-increase">

<Parameter Value="1" DataType="http://www.w3.org/2001/XMLSchema#integer"/>

</Function>

</Action>

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-spaces" >

<Parameter DataType="org:sakamura-lab:names:dcrdl:1.0:DataType:ucode-list">

<Function FunctionId="org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature" />

</Parameter>

</Function>

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 139

change the set-point of an air conditioner.

3. Code Examples

We have written three policies named ―Peak Consumption Control‖, ―Step tariffs‖

and ―Discomfort Index Control‖ using DCRDL and showed them in appendix 3.

4. Implementation Conventions

4.1 Running Mode

We define two running modes for an agent in the Policy Agent System:

Polling: the policy agent will run periodically, the polling period is specified by

period attribute of the policy element. Policy agent will check inside rules one by one. If

context part of the rule is evaluated to be true, corresponding actions should be

performed.

Event-driven: When a condition of the ConditionSet of a rule is changed, the rule

should be re-evaluated by the policy agent. The event-driven mode needs the

eventing-support from the lower building data platform.

4.2 Interpreter

The interpreter translates policies into policy agents (i.e., threads in procedural

languages). The period attribute in the policy element indicates the polling cycle of this

agent if the mode attribute is set to ―polling‖. The policy agent checks all the rules

defined within it in every cycle or upon receiving an event. When the ConditionSet of a

rule is evaluated to be true, the actions defined in the ActionSet are executed. A key

component of the interpreter is the Smart Building API Modeling component. It is

responsible for translating the descriptive expressions into a piece of executable code

which invokes smart building APIs to get information and control devices in the

building.

4.3 Rule Optimization

A critical issue called rules conflicting resolution is not discussed in this specification.

Many algorithms have proposed to address it. A rule optimizer should be implemented

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

140 Peng Xiaohui - March 2016

for detecting conflicts and duplications. We will deal with this problem in future

versions of this specification.

5. Data types

 http://www.w3.org/2001/XMLSchema#string

 http://www.w3.org/2001/XMLSchema#boolean

 http://www.w3.org/2001/XMLSchema#integer

 http://www.w3.org/2001/XMLSchema#float

 http://www.w3.org/2001/XMLSchema#time

 http://www.w3.org/2001/XMLSchema#date

 http://www.w3.org/2001/XMLSchema#dateTime

 org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

 org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

6. Functions

All the functions share a prefix: ―org:sakamura-lab:names:dcrdl:1.0:function‖. The

functions currently defined in DCRDL are listed as follows:

6.1 Comparison Function

Comparison functions only have two parameters. It returns a boolean value which

represents the result of logical comparison of the two parameters.

 org:sakamura-lab:names:dcrdl:1.0:function:integer-equals

 org:sakamura-lab:names:dcrdl:1.0:function:integer-greater-than

 org:sakamura-lab:names:dcrdl:1.0:function:integer-greater-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:integer-less-than

 org:sakamura-lab:names:dcrdl:1.0:function:integer-less-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:float-equals

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 141

 org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than

 org:sakamura-lab:names:dcrdl:1.0:function:float-greater-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:float-less-than

 org:sakamura-lab:names:dcrdl:1.0:function:float-less-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:string-equals

 org:sakamura-lab:names:dcrdl:1.0:function:string-greater-than

 org:sakamura-lab:names:dcrdl:1.0:function:string-greater-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:string-less-than

 org:sakamura-lab:names:dcrdl:1.0:function:string-less-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:time-equals

 org:sakamura-lab:names:dcrdl:1.0:function:time-greater-than

 org:sakamura-lab:names:dcrdl:1.0:function:time-greater-than-or-equal

 org:sakamura-lab:names:dcrdl:1.0:function:time-less-than

 org:sakamura-lab:names:dcrdl:1.0:function:time-less-than-or-equal

6.2 Information Obtaining Function

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-discomfort-index

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

 Description: the discomfort index value of the target space.

 Data type: http://www.w3.org/2001/XMLSchema#float

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-temperature

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

142 Peng Xiaohui - March 2016

-Return

 Description: the temperature of the target space

Data type: http://www.w3.org/2001/XMLSchema#float

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-occupancy

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

 Description: Boolean value indicates if there is a person in the target space or not.

Data type: http://www.w3.org/2001/XMLSchema#boolean

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-humidity

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

 Description: the humidity value of the target space.

Data type: http://www.w3.org/2001/XMLSchema#float

 org:sakamura-lab:names:dcrdl:1.0:function:get-electricity-consumption

-Parameter 1

Description: list of ucode of the target spaces.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list

-Parameter 2

Description: time interval. Ex.―00:30:00‖ means the last 30 minutes.

Data type: http://www.w3.org/2001/XMLSchema#string

-Return

 Description: the electricity consumption of the rooms in a time interval.

The unit of the return value is ―kWh‖.

Data type: http://www.w3.org/2001/XMLSchema#float

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-lowest-temperature

-Parameter 1:

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 143

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list

-Return

Description: ucode of the space where the temperature is lowest.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-temperature

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: ucode of the space where the temperature is highest.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-lowest-humidity

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: ucode of the space where the humidity is lowest.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

 org:sakamura-lab:names:dcrdl:1.0:function:get-space-by-highest-humidity

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: ucode of the space where the humidity is highest.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-lowest-humidity

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

144 Peng Xiaohui - March 2016

-Return

Description: the string of ucodes for the target devices that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-highest-humidity

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: the string of ucodes for the target devices that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-lowest-temperature

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: the string of ucodes for the target devices that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-highest-temperature

-Parameter 1:

Description: list of ucodes of spaces. If not given, search the building.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

-Return

Description: the string of ucodes for the target devices that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-space

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: ucode list of the target devices in the string format that split by commas.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 145

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-acs-by-space

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: ucode list of the target devices in the string format that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-humidifiers-by-space

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: ucode list of the target devices in the string format that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-lights-by-space

-Parameter 1

Description: ucode of the target space.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: ucode list of the target devices in the string format that split by commas.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:get-realtime-electricity-price

-Parameter: None

-Return

Description: the real time electricity price of the building.

Data type: http://www.w3.org/2001/XMLSchema#float.

6.3 Action Function

 org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

146 Peng Xiaohui - March 2016

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-humidifier-on

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-on-with-setpoint

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Parameter 2

Description: the set-point.

Data type: http://www.w3.org/2001/XMLSchema#float

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 147

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-off

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-light-on

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-light-off

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-decrease

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Parameter 2

Description: decrement.

Data type: http://www.w3.org/2001/XMLSchema#float

-Return

Description: error code of the control action.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

148 Peng Xiaohui - March 2016

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:control-ac-setpoint-increase

-Parameter 1

Description: ucode of the target device.

Data type: org:sakamura-lab:names:dcrdl:1.0:data-type:ucode

-Parameter 2

Description: increment.

Data type: http://www.w3.org/2001/XMLSchema#float

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:find-devices-with-lower-operation-priority

-Parameter 1:

Description: list of ucodes of target spaces. If empty string is given, search the building.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list

-Parameter 2:

Description: integer value indicates how many devices should be returned.

Data type: http://www.w3.org/2001/XMLSchema#integer

-Return

Description: ucode list of devices whose operation priorities are highest.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode-list

 org:sakamura-lab:names:dcrdl:1.0:function:turn-on-off-device

-Parameter 1:

Description: ucode of the target device.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode

-Parameter 2:

Description: on/off.

Data type: http://www.w3.org/2001/XMLSchema#string

-Return

Description: error code of the control action.

A Programming Framework for Automatic Management of IoT-enabled Smart Buildings

Peng Xiaohui - March 2016 149

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:turn-down-device

-Parameter 1:

Description: ucode of the target device.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode

-Parameter 2:

Description: the decrement of control target (i.e., set-point of air conditioner).

Data type: http://www.w3.org/2001/XMLSchema#integer

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

 org:sakamura-lab:names:dcrdl:1.0:function:turn-up-device

-Parameter 1:

Description: ucode of the target device.

Data type: org:sakamura-lab::names:dcrdl:1.0:data-type:ucode

-Parameter 2:

Description: the increment of control target (i.e., set-point of air conditioner).

Data type: http://www.w3.org/2001/XMLSchema#integer

-Return

Description: error code of the control action.

Data type: http://www.w3.org/2001/XMLSchema#integer 0: success, else failed.

