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Abstract

According to a change of social demand from industrial robots to service robots,

intelligent robots and systems among the service robots have become a familiar pres-

ence in our daily life. Along with this, there is a need of abilities to observe humans

nearly, understand human actions, grasp the intentions and support the predicted

actions properly. In this process, a motion classification system which categorizes

human motion precisely is important because this failure can give a danger or an

inconvenience to humans. For the purpose of achieving a livelihood support, we have

developed the motion recognition system which represents observed human motion as

multiple sentences. In the previous system, the motion model converts a continuous

motion pattern to a discrete motion symbol and can classify observed human motion.

In this paper, we extend our previous motion model based on the following findings

to improve the classification accuracy. These findings are summarized as (A)“utilization

of multi-modal combination”, (B)“construction of hybrid model specialized for clas-

sification”, (C)“utilization of motion derivatives”, (D)“focus on discriminative parts

of human body related to target motion” and (E)“multi-class classification for vari-

ous human motions in daily life” respectively. In response to these findings: (A)we

propose a multi-modal gesture classification system which integrate motion and au-

dio models, (B)we propose a gesture classification system using a hybrid generative-

discriminative model, (C)we propose a gesture classification system using motion

derivatives, which is a relative position, velocity and acceleration of marker joint,

as skeleton feature on the hybrid generative-discriminative model. (D)we propose a

motion classification system focusing on discriminative parts of human body related

to target motion. (E)we apply our approach to a multi-class daily motion recognition

system which represents observed human motion as multiple sentences respectively.

The conclusions obtained in this paper are summarized as follows: (A)The result

shows that the multi-modal integration of motion and audio models is superior to
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our previous motion model (uni-modal model). This means that the complementary

relationship between these models leads to the improvement of classification accuracy.

(B)The result shows that the hybrid generative-discriminative model is superior to our

previous motion model, and that the generative kernel approach overcomes the gen-

erative embedding approach. These results mean that the representation of motion

feature by FV-HMM and the utilization of SVM classifier performance are effective

to improve the classification accuracy. (C)The result shows that the model of uti-

lizing motion derivatives is superior to that of utilizing only marker position. This

means that a relative velocity and acceleration are effective to improve the classifica-

tion accuracy because several motions with similar postures but different directions

and velocities can be classified by including a relative velocity and acceleration re-

spectively. (D)The result shows that our approach is superior to above the hybrid

generative-discriminative model in which a motion feature from whole body is used

and thus a focus on discriminative parts is not considered. This means that the

method of weighting and integrating motion feature according to target motion is ef-

fective to improve the classification accuracy. (E)The result shows that our approach

is a higher classification rate in non cross-subject test setting. This means that our

approach is available to a multi-class daily motion classification.

We have multi-directionally approached to our previous motion model based on

several findings to improve the classification accuracy. As previously discussed, these

findings have effects on the improvement significantly. This means that intelligent

robots and systems become more understandable of human motion. For example, they

become able to respond to gesture commands and understand daily human motions

for livelihood support. In other words, proposed systems in this paper become a

foundation technology of these applications. Additionally, proposed system can apply

to a prediction system of human motion using motion history.
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Chapter1

Introduction

1.1 Service Robots in Human Living Areas

A robot is defined as an intelligent mechanical system composed of three elements:

perceptual sensors capturing data from a real world, a brain system performing an

intelligent processing using the capturing data and a driving or actuating system mak-

ing an action or response to a real world. There are two types in robots: “industrial

robot” and “service robot”. Industrial robots have been used as production materials

in the manufacturing factory since early times. On the other hand, service robots

also have been advanced to the society in recent years and are expected to be applied

in multiple areas of everyday life such as medical services, welfare services, liveli-

hood supports and entertainments, etc. The service robots are roughly divided into

five types: “communication”, “mobile”, “wearable”, “boarding” and “multipurpose”.

For example, the communication and mobile types have many contacts with humans.

These robots are already applied in practical use such as PARO and Papero devel-

oped by AIST and NEC respectively. In recent years, Pepper, which is an advanced

interactive robot capable of expressing its own emotions, is developed by Softbank.

The wearable types have also been turned into actual applications in the filed of care

and welfare from the effect of an aging society. HAL, which is a robot suit assisting

a human motion physically, is developed by CYBERDYNE. One of the most famous

example of the boarding type is Segway. If humans ride on Segway, they can move

comfortably without walking. Although the multipurpose types in humanoid robots

reach only the halfway in the process of practical realization, the DARPA Robotics

Challenge, which is a robot competition for disaster relief, has given a strong momen-

tum in the field. The multipurpose types especially in intelligent robots and systems

1
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enter the room put on a jacket put into a baggage put a watch leave the room

put on a pants close the buttons wear a rucksack pick up a phone put on shoes

What is the

next motion ?

Motion segmentation Motion prediction

Motion recognition

Figure 1.1: Motion sequence when leaving the home.

used in human living areas can be required to have the abilities to observe humans

nearly, understand human actions, grasp the intentions and support the predicted

actions properly. Additionally, there are four phases in their responses according to

the intelligent level: “communicate with humans iteratively”, “support humans in

a unilateral way but without their help”, “work together with humans taking their

help” and “collaborate with other autonomous robots”. If a robot or system become

more intelligent, humans can live more comfortably in daily life. Therefore, the tech-

nology of action prediction plays an important role to support human actions with

high intelligence.

1.2 Essential Technologies in Process of Motion

Prediction

A livelihood support is achieved through action prediction. Here, we especially

discuss a prediction system of human motion using motion history. Figure 1.1 shows

the process of motion prediction with motion history including the order of motions
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with respect to time. As shown in this figure, the process requires four tasks to achieve

the motion prediction: “measurement and accumulation of motion data”, “motion

segmentation”, “motion recognition” and “motion prediction”. In this section, we

introduce each content in detail. Note that we use the terms “motion” for data

derived from a single data source, and the terms “action” for data derived from

multiple data sources as will be described later.

1.2.1 Measurement and Accumulation of Motion Data

Constructing a large-scale motion dataset is important because almost all prospec-

tive frameworks are designed on the assumption that massive data exists. For ex-

ample, one of the reasons that image recognition scores high classification rate is

because a large-scale image dataset collected and annotated through ImageNet is

available from the web easily. This massive dataset is constructed using Amazon

Mechanical Turk, which is one of the crowd sourcing services giving tasks and jobs to

workers on their demand, and the images are annotated by many workers. Similarly,

human motion data can also be measured and accumulated because many reasonable

and high performance motion sensors have become available in recent years. This

means that a sharable motion dataset among many researchers and developers can

be constructed in cooperation with each other.

Motion capture devices are divided into four types according to the measuring

method of marker positions: “optical”, “mechanical”, “magnetic” and “marker-less”

types. In the optical type, human motion can be captured by reflective markers

attached to human body in a studio where multiple infrared cameras set up. In the

mechanical type, a subject wears small devices equipped with gyro (angular velocity),

acceleration and geomagnetic sensors. A human motion can be captured by sensor

fusion technology. In the magnetic type, magnetic coils are attached to human body

as markers. A human motion can be captured by the distortion of the magnetic coils

in a magnetic field. In the marker-less type such as Kinect sensor, a subject does

not need to wear a cumbersome suit. The devices are mainly used for video game to

capture whole body motion of game player.

In this paper, we use four datasets as will be described later: ChaLearn MMGRC
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2013 dataset, ChaLearn LAPC 2014 dataset, MSR-Action3D dataset and YNL Mo-

Cap dataset. These datasets include marker positions of the skeleton model obtained

from Kinect sensor and optical motion capture device. Additionally, two ChaLearn

datasets are relatively enormous and YNL MoCap dataset constructed in our lab

contains many categories of daily human motion.

1.2.2 Motion Segmentation

A human motion is represented as a spatio-temporal data. It is important to

determine how to divide a motion sequence into part motions. For example, when

considering a motion sequence of “catch and throw a ball”, there is a problem that

we can not determine the segmentation point of the motion sequence clearly whether

when crouching down to catch a ball, when catching a ball or when having finished

throwing a ball. There are two segmentation methods to find whether the motion

cluster estimated to be the same group or the difference between motions estimated

to be the dividing point. In other words, the segmentation is a method whether to

detect the changing points in a motion sequence or to group a motion sequence in

several chunks based on the similarity. There is also a research of the segmentation

to divide motion sequence at the same point as human sense[57]. In order to apply

motion prediction to intelligent robots or systems, it is necessary to perform the whole

recognition process including the segmentation simultaneously in parallel.

In this paper, we use the segmentation by the way of detecting the changing points

in Subsection 3.4.2. However, we basically use the validation data given start and

end points of motion preliminarily and the research field is not a topic of this paper.

1.2.3 Motion Recognition

Motion recognition is performed to the segmented motions. In relation with word

definitions noticed previously, there are two phases in the recognition target according

to the semantic level: “motion” and “action”. Figure 1.2 shows the difference between

these words. Note that we use the terms “gesture” as a kind of “motion” using only

upper body. As shown in this figure, motion recognition handles only motion data.

The recognition units are represented as “walk”, “drink” or “open”. Additionally, ac-
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Figure 1.2: Difference between “motion” and “action”.
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Figure 1.3: Motion prediction using motion history and a livelihood support.

tion recognition deals with multi-modal data obtained from surrounding environment

and target objects, etc. as well as motion. The recognition units are represented by

a form of adding detailed description of motion pattern to motion recognition units

such as “walk in the park”, “drink a tea” or “open the door”.

In this paper, we discuss the recognition system in the scope of motion including

gesture. Note that we do not consider the event phase and use only the words of

motion and action to avoid the confusion.
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1.2.4 Motion Prediction

In order to achieve motion prediction, the next motion has to be predicted from

observed motion sequence. Figure 1.1 shows a motion sequence from changing clothes

in the room to leaving home. In the process of motion prediction, it is required

to predict the next motion using motion history from a large-scale motion dataset.

Figure 1.3 shows an example of motion prediction and how to apply in a livelihood

support. As shown in this figure, if motion patterns are “leave the room”, “put on

shoes” in the history, the next motion can be predict as “lock the door”. Additionally,

a livelihood support with respect to human motion can be achieved using the predicted

motion. For example, an assistive robot can think “try to give warning not to forget

to lock the door”.

In this way, motion recognition is an essential technology for a livelihood support.

1.3 Positioning of This Paper

As previously discussed, there is a need to predict human action so that intelligent

robots and systems used in human living areas can achieve a livelihood support. In

the process of action prediction, a motion recognition which classifies human motion

precisely is important because this failure can give a danger or an inconvenience to

humans. In order to improve the classification accuracy, we focus on the following

findings: “utilization of multi-modal combination”, “construction of hybrid model

specialized for classification”, “utilization of motion derivatives”, “focus on discrimi-

native parts of human body related to target motion” and “multi-class classification

for various human motions in daily life”. In this section, we introduce each content

in detail.

1.3.1 Utilization of Multi-modal Combination

It is important to improve the classification accuracy using other modal data be-

cause only motion data can not differentiate between similar motion patterns. More

precisely, even if different motions are classified as the same incorrectly, they are

classified precisely by the combination of multi-modal data because the classification
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sitting sitting

reading working

Figure 1.4: Importance of multi-modal combination.

system can use the correlation between them. Figure 1.4 shows the importance of uti-

lizing multi-modal combination. As shown in this figure, there are two motions which

are different motions but recognized as “sitting” by mistake. The left side means that

the classification result is changed to “reading” by the combination of other modal

data such as “book” and “library”. The right side means that the classification result

is changed to “working” by the combination of other modal data such as “PC” and

“office”. We discuss this in Chapter 3.

1.3.2 Construction of Hybrid Generative-discriminative Model

Specialized for Classification

It is important to improve the classification accuracy of motion model without

depending on other modal data because only the motion model captures the motion

feature itself. Additionally, the classification accuracy is relatively low in our previous

motion model. We discuss this in Chapter 4.



Chapter 1: Introduction 8

Drink Clap Run

Figure 1.5: Importance of focus on discriminative parts of human body related to
target motion.

1.3.3 Utilization of Motion Derivatives

The relative position between marker joints in skeleton model is generally used as

skeleton feature. It is important to improve the classification accuracy by adding rel-

ative velocity and acceleration in the skeleton feature to differentiate between motion

patterns including similar postures. The velocity is described as direction and speed

of marker joints and can classify motions with similar postures but different direc-

tions. The acceleration also captures the temporal change of velocity and can classify

motions with similar postures but different velocities. We discuss this in Chapter 5.

1.3.4 Focus on Discriminative Parts of Human Body Related

to Target Motion

It is important to improve the classification accuracy based on the assumption

that discriminative parts of human body are different according to target motion and

focusing on these discriminative parts is useful for classification. Figure 1.5 shows

that the importance of focusing on discriminative parts of human body related to

target motion. As shown in this figure, “drink” motion mainly uses one arm, “clap”

motion uses both arms and “run” motion uses both legs. We discuss this in Chapter
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6.

1.3.5 Multi-class Classification for Various Human Motions

in Daily Life

It is important to classify multi-class human motions in daily life because we per-

form a wide variety of motions in real life. We discuss this in Chapter 7.

1.4 Composition of Chapters

This paper consists of eight chapters.

In chapter 2, we introduce our previous motion recognition system which repre-

sents observed human motion as multiple sentences. In this system, a motion model

converts a continuous motion pattern to a discrete motion symbol and can classify

observed human motion. We extend the motion model based on several findings to

improve the classification accuracy in the following chapters.

In chapter 3, we explain a multi-modal gesture classification system which inte-

grates motion and audio models. In this system, classification scores output from

these models are integrated by proposed method to obtain the classification result.

We demonstrate that the complementary relationship between these models leads to

the improvement of classification accuracy.

In chapter 4, we explain a gesture classification system using a hybrid generative-

discriminative model. The hybrid generative-discriminative model merges both abili-

ties of a generative approach (motion model) and a discriminative approach by Fisher

vector scenario. We demonstrate that the hybrid generative-discriminative model spe-

cialized for classification task leads to the improvement of classification accuracy.

In chapter 5, we explain a gesture classification system using motion derivatives as

skeleton feature on the hybrid generative-discriminative model. Motion derivatives

consist of relative position, velocity and acceleration between marker joints obtained

using inverse kinematics calculations. We demonstrate that adding relative velocity

and acceleration in the skeleton feature leads to the improvement of classification

accuracy.
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In chapter 6, we explain a motion classification system focusing on discriminative

parts of human body related to target motion. In this system, a motion feature of

each local part is represented as a Fisher vector parameterized by the motion model

(related to the hybrid generative-discriminative model). Motion features obtained

from all local parts are weighted and integrated by multiple kernel learning. We

demonstrate that the method of weighting and integrating motion features according

to target motion leads to the improvement of classification accuracy.

In chapter 7, we explain a multi-class daily motion recognition system which rep-

resents observed human motion as multiple sentences.

In chapter 8, we summarize all chapters and conclude discussions of this paper.



Chapter2

Theory of Motion Recognition

Representing Human Motion as

Multiple Sentences

2.1 Introduction

As shown in Fig.2.1, perception consists of a large amount of continuous data such

as visual image, audio and action. Because the continuous data requires complicated

and enormous processings, it should be encoded into discrete representation and the

individual is defined as symbol (Symbolization). Thus, the observed data can be

classified as one symbol closest to the observation. However, the symbol is difficult

for humans to understand the real world. Because of this difficulty, the symbol is

translated to natural language (Lingualization). The translation has benefits to use

multi-modal data from the real world as words, which means that any of modalities

can be represented in the same layer. This leads to a prediction or association task

by using the word meanings through Natural Language Processing (NLP). Addition-

ally, the sentence, which has taken into account the relationship of words, is much

more representation form for humans to understand more precisely (Sentence struc-

turing). In this way, humans are different from other animals, and these processes

underlies human intelligence. Especially, perception of human motion through the

symbolization, lingualization and sentence structuring is required for humans and

humanoid robots to understand human behaviors, estimate behavioral intentions and

communicate with natural language.

11
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Figure 2.1: Humans understand the real world through their multimodal perception.
Perception consists of a large amount of continuous data such as images, audio, and
actions, but it is encoded into symbols. The symbols make it possible to understand
the real world, predict, and associate by lingualization because they use word mean-
ings by NLP. Also, sentences recover data lost by compression during symbolization
by grammar.

2.2 Related Work

2.2.1 Symbolization

Several researches which convert body movements into symbols are conducted in

the field of robotics. These approaches to symbolization have continued to be closely

related to the paradigms of semiotics and linguistics that are prevalent in cogni-

tive psychology and neuroscience. On the basis of mimesis theory[15] and mirror

neurons[54], Inamura et al. [30] proposed a mimesis model. The mimesis model sym-

bolizes continuous motions as discrete symbols by using imitation learning, and links

motion recognition and generation. In the mimesis model, full body motion pat-
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terns are composed of temporal data of multiple joint angles and symbolized into

parameters called primitive symbol by using Hidden Markov Model (HMM).

2.2.2 Lingualization

Motions have been encoded into symbols in dynamical systems or statistical models.

In the case of dynamical systems, Sugita and Tani[63] proposed a bi-directional

conversion method by introducing parameters between robot behaviors and linguistic

structures. The method generates the corresponding behaviors from linguistic rep-

resentations by combining together Recurrent Neural Network with Parametric Bias

(RNNPB) for behavioral module and linguistic module. Ogata et al. [47] extended

this framework and developed the method that a humanoid robot can generate a mo-

tion sequence corresponding to given linguistic structures even if the motions are not

included in the training data. Since these frameworks of this neural network add the

new condition that motions and language are combined by using parameters shared

by two neural networks, training using a large number of motions and language is

difficult.

As examples of the statistical model, Takano et al. [65][69] proposed a translation

method between motion symbols and verbs by using the IBM translation model. The

statistical model represents the association relationship between the time series of

motion symbols and that of verbs. Hamano et al. [28] also proposed an association

method which constructs vector fields of motion symbols and verbs, modifies the

fields such that the correlation between two fields can be maximized by using a

Canonical Correlation Analysis (CCA), and derives mappings between two fields.

However, although the words are closely related to information from the real world

in these frameworks, the point where words can be put together into a sentence

structure has not been reached. A framework is needed that joins together information

processing for converting the real world information of motion data into symbols and

natural language processing for representing motions with various words and sentence

structures.
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2.2.3 Sentence Structuring

In natural language processing that requires handling large language corpora in

particular, statistical approaches are useful and a morphological analysis model for

the Japanese language has been developed by using a Conditional Random Field

(CRF) model[34] and a HMM[70]. Takano et al. [66] also proposed a system of robot

language processing that makes it possible to interpret a human motion in multiple

sentences. The framework consists of a motion language model which associates

words with motion symbols representing motion patterns and a natural language

model which represents the sentence structure by arranging words. Given a motion

pattern to the motion language model, corresponding words are associated from the

model. The words are aligned by using a word 2-gram model to generate sentences.

Additionally, this framework generates whole body motions from sentence commands

for a humanoid robot. However, this framework cannot generate natural sentences

when being applied in the large-sized training data, because the framework does not

consider the arrangement of words on a wide range. Goutsu et al. [26] extended the

word 2-gram model to word N-gram model by using a large N-gram dataset. The

framework can also reduce the computational cost of searching words for natural

sentences corresponding to motion pattern and the word error rate by aligning words

not to a conventional graph structure but to a Confusion Network (CN)[39] which is

applied in the field of speech recognition.

2.3 Motion Recognition System Generating Mul-

tiple Sentences[68]

Figure 2.2 shows the overview of motion recognition system. As shown in this fig-

ure, our previous framework is composed of three models: “motion model”, “motion

language model” and “natural language model”. An HMM is used as the motion

model. The motion model converts a continuous motion pattern to a discrete motion

symbol and can classify it into motion categories. The motion language model sta-

tistically represents the association relationship between motion symbols and words.

The natural language model represents the arrangement of words. By evaluating the
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Figure 2.2: Overview of interpreting a motion as sentences. The motion language
model represents a relationship between motion symbols and words via latent states
as a graph structure. The natural language model represents the dynamics of language
which means the order of words in sentences. The integration inference model searches
for the largest likelihood that sentences are generated from a motion symbol using
these model scores.

score of these models, the corresponding sentences which are most likely to represent

a motion pattern are generated. In this section, we introduce motion language model,

natural language model and how to generate the sentences in detail.

2.3.1 Motion Language Model

A motion pattern is symbolized by an HMM, which we refer to as a motion sym-

bol. The motion symbols are associated with words by the motion language model.

Figure 2.3 shows a schematic diagram of this statistical model. The motion lan-

guage model consists of three layers: motion symbols, latent states and words. The

nodes of these layers are related to each other by two kinds of parameters. One

is probability P (s|λ) that a latent state s is associated with a motion symbol λ.

Another is probability P (w|s) that a latent state s generates a word w. Here, the

sets of motion symbols, latent states and words are described by {λi|i = 1, ..., Nλ},
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Figure 2.3: The motion language model represents the stochastic association of mor-
pheme words with motion symbols via latent states. The motion language is defined
by two kinds of parameters: probability that a morpheme word is generated by a
latent state and probability that a latent state is generated by a motion symbol.

{si|i = 1, ..., Ns} and {wi|i = 1, ..., Nw} respectively. If the k-th training pair is de-

fined as {λk;wk
1 , w

k
2 , ..., w

k
nk
|k = 1, 2, ..., N}, this means that the k-th observed motion

is recognized as the motion symbol λk and that the same motion is manually expressed

by the sentence wk = {wk
1 , ..., w

k
nk
}, where N and nk are the total number of training

pairs and the length of the k-th sentence. We adopt the following evaluation function

Φ which is based on the set of these pairs of motion symbols and sentences

Φ =
N∑
k=1

logP (wk
1 , ..., w

k
nk
|λk) (2.1)

This function represents the summation of the log likelihood that a motion symbol

λk generates a sentence wk, which is the recognition result of the observed motion.

The conditional probability on the right side of Eqn.(2.1) can be approximated as

follows by assuming that the probability of a word being generated from a motion

symbol depends on that motion symbol only.

P (wk
1 , ..., w

k
nk
|λk) ≈

nk∏
i=1

P (wk
i |λk) (2.2)

In addition, the conditional probability on the right side of Eqn.(2.2) can be expressed
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by using the P (s|λ) and P (w|s) parameters of the motion language model as follows

P (wk
i |λk) =

Ns∑
j=1

P (wk
i |sj)P (sj|λk) (2.3)

These parameters of the motion language model are optimized by Expectation-Maximization

(EM) algorithm to maximize the evaluation function in the right side of Eqn.(2.2).

Here, the evaluation function represents the summation of the log likelihood that a

motion symbol λk generates a sentence wk, which is the recognition result of the

observed motion. The EM algorithm alternately processes two steps: Expectation

step (E-step) and Maximization step (M-step). E-steps calculate the distribution of

latent states based on the model parameters estimated in the previous M-step. The

distributions of latent states are provided as follows

P (s|λk, wk
i ) =

P (wk
i |s, λ, θ)P (s|λk, θ)

Ns∑
j=1

P (wk
i |sj, λk, θ)P (sj|λk, θ)

(2.4)

Here, θ is the set of model parameters estimated by the previous M-step. M-step

estimates the model parameters so as to maximize the summation of expectation of

log-likelihood that the symbol of motion pattern λk generates the sentence wk =

{wk
1 , ..., w

k
nk
}.

P (s|λ) =

N∑
k=1

nk∑
i=1

δ(λ, λk)P (s|λk, wk
i )

Ns∑
j=1

N∑
k=1

nk∑
i=1

δ(λ, λk)P (sj|λk, wk
i )

(2.5)

P (w|s) =

N∑
k=1

nk∑
i=1

δ(w,wk
i )P (s|λk, wk

i )

Nw∑
j=1

N∑
k=1

nk∑
i=1

δ(wj, w
k
i )P (sj|λk, wk

i )

(2.6)

Here, δ represents Kronecker delta. The numerators in Eqn.(2.5) and Eqn.(2.6) are the

frequency that latent state s is generated from motion symbol λ and the frequency

that latent state s is generated from word w respectively. The denominators in

Eqn.(2.5) and Eqn.(2.6) are the frequency of motion symbol λ in the training pairs
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Figure 2.4: Natural language model.

and the frequency of latent state s in the training pairs. In this way, we conduct the

optimization of model parameters by alternately calculating E-step and M-step.

2.3.2 Natural Language Model

Many kinds of natural language model which represents sentence structures have

been proposed in the community of natural language processing. Especially, a stochas-

tic model is advantageous because the natural language model is required to deal with

large data. In this chapter, we use a word N -gram model because the model shows

the high performance easily despite its simple concept representing the sentence struc-

ture. The word N -gram model is generally represented as an (N − 1)-order Markov

process. In this process, an occurrence probability of i-th word wi in a word sequence

(w = {w1, w2, ..., wn}) depends on previous (N − 1) words. Thus, the word N -gram

probability is defined as follows.

P (wi|w1w2...wi−1) ≃ P (wi|wi−N+1, ..., wi−1) (2.7)

In the case of using text data, the right side of Eqn.(2.7) is estimated by relative

frequency of words.

P (wi|wi−N+1, ..., wi−1) =
C(wi−N+1...wi)

C(wi−N+1...wi−1)
(2.8)

where C(wi−N+1...wi) is the frequency of the set of words {wi−N+1...wi}. The prob-

ability of the word sequence w being generated is continuously calculated by the
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Algorithm 1 finding the maximal word N-gram probability and accumulating backoff

weights
1: initialization

2: repeat

3: logP ← find log probability of context from trie node

4: if logP is valid then

5: record logP as the most specific one found so far

6: reset backoffweight

7: end if

8: if i ≥ maximal context length or context[i] is none vocab then

9: break

10: end if

11: next ← find context[i]

12: if next is valid then

13: accumulate backoffweight

14: set next as next trie node

15: increment i

16: else

17: break

18: end if

19: until break command is occurred

20: return logP + backoffweight

summation of the transition probabilities derived from Eqn.(2.8) along the sequence

from a start word to an end word. In the case that word N-gram probability cannot

be calculated, the back-off weight is added to the word (N − 1)-gram probability.

The algorithm of calculating the maximal probability including back-off smoothing

is shown by Algorithm 1.

In the case of word 2-gram model, sentence structure is represented by the inter-

word transition probability P (wj|wi) from word wi to word wj and the initial state

probability πwi
of a word wi appearing at the start of a sentence. Figure 2.4 shows

an example of the word 2-gram model. Each node represents a word and an edge

represents a transition between words. As shown in this figure, we add a virtual word
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“<s>” (START) to precede each training sentence and a virtual word “</s>” (END)

to follow. This results in the following initial state probability

πwi
=

{
1 wi = “ < s > ”(START)

0 wi ̸= “ < s > ”(START)
(2.9)

2.3.3 Linguistic Interpretation of Motion

The process of motion recognition can be described as searching for the largest

likelihood that a sentence (sequence of words) is generated from a motion symbol by

motion language model and natural language model. The likelihood that a sentence

w is generated from a motion symbol λ is derived as

w̃ = arg max
∀w

P (w|λ) (2.10)

= arg max
∀w

n∏
i=1

P (wi|λ) ·
n∏

i=1

P (wi|wi−N+1, ..., wi−1) (2.11)

Here, P (wi|λ) represents the probability of generating a word wi from a motion symbol

and P (wi|wi−N+1, ..., wi−1) represents the probability of generating a word wi from a

sequence {wi−N+1, ..., wi−1}. Each probability can be calculated by motion language

model and natural language model as described in the previous subsection. Since the

search space of Eqn.(2.11) grows exponentially as the number of words and sentence

length increase, an efficient search algorithm is essential. In this chapter, Dijkstra’s

algorithm, which is a type of A* search, is used as an efficient search method for

Eqn.(2.11). Eqn.(2.11) is transformed by using the log likelihood as follows

w̃ = arg max
∀w

[
log

n∏
i=1

P (wi|λ) + log
n∏

i=1

P (wi|wi−N+1, ..., wi−1)

]
(2.12)

≈ arg max
∀w

[ n∑
i=1

logP (wi|λ) + log πw1 +
n∑

i=2

logP (wi|wi−N+1, ..., wi−1)

]
(2.13)

When the sequence of words up to the k-th word {w1, w2, ..., wk} is decided but the

sequence from the (k+1)-th word {wk+1, wk+1, ..., wn} is not decided, the likelihood of

the right side of Eqn.(2.12) can be evaluated as shown in the right sides of Eqn.(2.14)

and Eqn.(2.15) by using the condition that each of the probabilities is less than or
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equal to 1. Using this evaluation value narrows down the search space and guarantees

that the optimal solution can be found.

log
n∏

i=1

P (wi|λ) ≤
k∑

i=1

logP (wi|λ) (2.14)

log
n∏

i=1

P (wi|wi−N+1, ..., wi−1) ≤ log πw1 +
k∑

i=2

logP (wi|wi−N+1, ..., wi−1)(2.15)

Dijkstra’s algorithm incrementally searches for words following a sequence of k

words with the largest probability, which is expressed by the sum of two probabilities

on the right side of Eqn.(2.14) and Eqn.(2.15). When the sequence reaches the virtual

word “END”, the search is terminated. In other words, the k-th word of “END”

terminates the search. Generation of the sentence from the motion symbol can be

computed at a speed that is suitable for practical use by using Dijkstra’s algorithm

to find the sentence that maximizes this evaluation value.



Chapter3

Multi-modal Gesture Classification

System Integrating Motion and

Audio Model

3.1 Introduction

Gesture recognition is a popular research field in computer vision and pattern recog-

nition, and is an essential technology for social robots in various environments, where

robots are expected to understand various kinds of human activities. Actually, it has

many practical applications in real life, such as surveillance in office buildings, med-

ical rehabilitation in hospitals, human-robot interaction in public or private places,

and analysis of sign language.

A Hidden Markov Model (HMM)[52] is one of the most frequently used approaches

for gesture recognition. Yamato, et al[79], are the first to apply an HMM to this field,

in which a discrete-time HMM was used to classify 6 categories of tennis strokes.

Our previous system developed by Goutsu, et al[26], was based on three processes.

First, the system converts a spatio-temporal motion pattern to a discrete symbol.

Second, associates between the symbols and our daily words. Third, searches for a

sequence of the words that is most likely to represent the motion pattern. The system

allows humanoid robots to represent a human motion as multiple sentences, but the

sentences are associated with only motion patterns. More generally, this approach

used only a single modality and had problems that it was difficult to classify similar

motion patterns and recognize complicate motion patterns including the information

of surrounding environments due to the single modality.

22
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On the other hand, the recent technology developed by Shotton, et al[59], provided

a new recognition method with motion sensor. The sensor enables the extraction of

human skeleton model from depth map, and multiple data sources become available:

RGB, depth and skeleton. This leads to the rise of multi-modal gesture recognition. In

order to solve the lack of information from other modalities, an integration strategy

of multi-modal data such as audio and video is more important. Additionally, a

multi-modal system can be integrated in several different levels[56].

In this section, we propose a novel approach of gesture classification which inte-

grates motion and audio models to improve the classification accuracy. Late fusion

methods (including integration at the match score and the decision levels[56]) are

used because they have been widely applied in a variety of fields, and are expected to

provide better results[61][84]. We test our proposed approach on dataset provided by

the ChaLearn competition of Multi-Modal Gesture Recognition Challenge (MMGRC)

2013, which is focused on recognizing “multiple instances, user independent learning”

of 20 gesture categories of Italian cultural/anthropological signs. The dataset used in

this competition is captured by Kinect, including RGB, depth and silhouette video,

skeleton information and audio data. In this competition, 54 teams participated on

the challenge and only 17 submitted the prediction results for the final evaluation

process. For more information, refer to the MMGRC website or the final competition

results[19].

3.2 Related Work

There have been various approaches to gesture recognition and they can be roughly

grouped into two categories based on the capturing methods: “skeleton-based ap-

proach” and “vision-based approach”.

3.2.1 Skeleton-based Approach

The first is a category of skeleton-based classification systems, which often use

wearable devices such as body suits, marker-based optical tracking and instrumented

gloves to estimate body and hand movement[78][29]. Although the skeleton-based
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systems provide an accurate position data by capturing the 3D markers with multiple

infrared cameras in the motion capture studio or the hand joint angles and position

by using the instrumented gloves, subjects have to wear cumbersome devices while

performing gestures. Therefore, the system is not desirable in many applications. In

addition, the system is often not suitable for real-time processing and have to deal

with the change of shapes and sizes depending on individuals[32][40].

3.2.2 Vision-based Approach

On the other hand, vision-based classification systems constitute the second cate-

gory, in which subjects do not need to wear any device while performing[24][49][77].

In this category, many computer vision techniques that can handle properties such

as texture and color are proposed for analyzing body and hand movements. The

vision-based systems can be useful in achieving the ease and naturalness, but the

system will at best recognize a general type of body and hand movements, while the

skeleton-based system can detect subtle movements. Moreover, the systems have to

deal with the specific problems of image processing such as occlusions[32][40].

3.2.3 Multi-modal Approach

Kinect, a marker-less motion sensor developed by Microsoft, is now widely used

in gaming, human-computer interaction and visual sensor on robot because of its

portability and low cost. Skeleton model derived from Kinect sensor is less accurate

than that of the skeleton-based system which uses body markers, but the sensor

can provide multi-modal data such as audio and video. The development of this

technology enables new techniques in hand gesture recognition[35][53][82].

As an example of multi-modal gesture recognition but without Kinect, Dan et

al. [13] proposed a framework in which facial expression features and hand motion

features extracted from video are integrated for human gesture recognition. The

gestures from American Sign Languages (ASL) are classified into 12 categories. The

experimental results show that the integration of different kinds of data can improve

the accuracy of gesture recognition and the decision-level fusion method outperforms

the feature-level fusion method. Akrouf et al. [2] introduced an approach to combine
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different modalities such as speech and face in a biometric identification system. They

also used the decision-level fusion method and show that the multi-modal system

provides better performance than the individual biometrics.

In our previous approaches using multi-modal data, Kanazawa et al. [64] presented

an interaction system, which utilizes features of motion, audio and image for language

inference. The motion model outputs words associated with a symbol representing

temporal joint angle by an HMM. The audio model outputs an utterance text ob-

tained by speech recognition system. The visual model outputs characters obtained

by character recognition system using SIFT. Each model conducts only language in-

ference using the outputs respectively, and they do not construct the integrated model

of features or models.

Compared to these researches, we conduct gesture classification with multi-modal

data obtained by Kinect sensor. From this point of view, our system is more practi-

cal.

3.3 Multi-modal Gesture Classification System

We propose a multi-modal gesture classification system. Figure 3.1 shows the

overview of the system. As shown in this figure, we construct two classifiers based

on motion and audio features respectively. Motion and audio features extracted

by Inverse Kinematics (IK) and Cepstrum Analysis (CA) are symbolized as HMMs

and gesture categories are associated with the symbols. Motion and audio classifiers

output probabilities for each category according to a symbol that has the strongest

relationship with the category. Therefore, each classifier outputs an individual clas-

sification result categorizing an input gesture. We integrate these results to obtain

a final result using the proposed framework. In the following section, we introduce

feature extraction and categorization methods of each model conducted by IK or CA

and HMM respectively. We also present our approach to construct an integrated

model and classify an input gesture in detail.
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Motion
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Figure 3.1: Overview of multi-modal gesture classification system. We use motion
and audio data captured by Kinect sensor. Motion and audio features extracted by
IK and CA are symbolized as HMMs and gesture categories are associated with the
symbols. Motion and audio classifiers output probabilities for each category according
to a symbol that has the strongest relationship with the category. These classification
results are integrated by proposed method to classify an input gesture.

3.3.1 Motion Feature Extracted by Inverse Kinematics

We use the spatio-temporal data of marker positions captured by Kinect for motion

features. The position data is less accurate than that of markers attached to a hu-

man body with multiple infrared cameras because there are fewer markers and frame

rates. However, high portability and availability of installing on robots due to its

compact size are appropriate for gesture recognition in variety of practical situations.

We calculate the joint angle, velocity and acceleration of markers from the marker

positions by using IK[78] and set four motion features representing: (1) joint angle of

whole body, (2) velocity of whole body markers, (3) velocity and acceleration of up-

per body markers, (4) position of upper body markers in the body coordinate system

respectively. Finally, the motion feature is used for training HMM parameters. The

HMM is referred to as “a motion symbol”.
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3.3.2 Audio Feature Extracted by Cepstrum Analysis

We use the temporal data of audio signal captured by Kinect multi-array micro-

phone for audio features. The audio signal data generated simultaneously with ges-

tures is divided into windows composed of multi-frames. We choose Mel-Frequency

Cepstrum Coefficient (MFCC)[14] feature which is generally used in the field of speech

recognition because the feature represents amplitude transfer properties of articula-

tory organs and it is robust to noise in volume and tone. The MFCC feature is

provided by CA, in which the audio signal is converted to spectrum by Fourier trans-

form to filter the frequency bands available for matching human auditory properties,

and then the filtered spectrum is also returned by the inverse Fourier transform. We

set three audio features quantized to 9, 13 and 26 dimensions respectively. The 9-

or 13-dimension feature consists of 8 or 12 cepstrum coefficients sorted in ascending

dimensions and average volume. The 26-dimension feature also consists of the 13-

dimension feature and its derivative. Finally, we symbolize the audio feature as HMM

in the same way as motion feature.

3.3.3 Decision-level Integration Method of Motion and Au-

dio Models

As described in the previous section, we have introduced the extraction and sym-

bolization of motion and audio features. The classifiers constructed from each modal

feature depend on an assumption that motion and audio features are proper data.

However, this assumption does not hold for all situations. First, the segmentation

may detect false intervals of motion and audio due to noisy background. Second,

the performer may speak out-of-vocabulary words by mistake. For these reason, one

of the classifiers may cause a false classification. In order to solve this difficulty, we

propose a framework combining the results from classifiers to compensate the false

classifications of each other.

An input gesture captured by Kinect is converted into a motion feature vector x

and an audio feature vector y respectively. The gesture can be classified by searching
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for the category G that maximizes the following equation.

G = arg max
Gn

P (x,y|Gn) (3.1)

Here, x and y are represented as posture and audio respectively. The audio y has no

relationship to the posture x because audio data has no effect on visual data in the

dataset. Therefore, it can be assumed that x and y are independent each other. By

using the independence, Eqn.(3.1) is rewritten as follows.

G = arg max
Gn

P (x|Gn)P (y|Gn)

= arg max
Gn

{∑
i

P (x|λn,i)P (λn,i|Gn)
∑
j

P (y|vn,j)P (vn,j|Gn)

}
(3.2)

where λn,i and vn,j are motion symbols and audio symbols classified as category

Gn respectively. In each model, we select only the symbol that has the strongest

relationship with the category. Then, Eqn.(3.2) becomes:

G = arg max
Gn

{P (x|λn,im)P (λn,im|Gn)P (y|vn,jm)P (vn,jm |Gn)} (3.3)

where λn,im and vn,jm are the motion symbol and the audio symbol that are most

likely to generate the observations in the category Gn. By using the log likelihood,

Eqn.(3.3) is transformed as follows.

G = arg max
Gn

{logP (x|λn,im) + logP (λn,im |Gn)

+ logP (y|vn,jm) + logP (vn,jm |Gn)} (3.4)

where the terms of the above equation are defined as follows.

P (x|λn,im) = max
λn,i∈Λn

P (x|λn,i) (3.5)

P (y|vn,jm) = max
vn,j∈Vn

P (y|vn,j) (3.6)

P (λn,im|Gn) =
1

nλn

(3.7)

P (vn,jm|Gn) =
1

nvn

(3.8)

If Λn and Vn are defined as motion and audio symbols classified as category Gn,

P (x|λn,im) and P (y|vn,jm) are the highest output probabilities when a motion symbol
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λn,i generates a motion feature vector x and an audio symbol vn,j generates an audio

feature vector y respectively. Also, P (λn,im |Gn) and P (vn,jm |Gn) mean the conditional

probabilities that λn,im is selected among motion symbols and vn,jm is selected among

audio symbols respectively. Note that λn,im and vn,jm are classified as category Gn.

If the number of motion and audio symbols are represented as nλn and nvn , the

conditional probabilities are calculated by inverting these variables. Therefore, the

classification result of the integrated model is determined by maximizing the right

side of Eqn.(3.4).

3.4 Experimental Setup

In order to evaluate the proposed system, we used ChaLearn MMGRC 2013 dataset

in the following experiments and compared the classification accuracy in each uni-

modal model of motion and audio when varying the motion feature type, and among

multi-modal models and uni-modal models. Additionally, motion and audio segmen-

tations were conducted in the process of classification. In this section, we introduce

each content in detail.

3.4.1 ChaLearn MMGRC 2013 Dataset

The MMGRC provides 3 datasets: “training data”, “validation data”(with la-

bel/without label) and “test data”. Each dataset consists of hundreds of zip files,

and each file contains approximately one-minute multi-modal gesture data captured

by Kinect, including skeleton data (marker position), audio data (Italian) and video

data (RGB, depth and silhouette videos). In the gesture data, there are 20 gesture

categories as shown by Fig.3.2 and Tab.3.1. Each gesture is corresponding to a specific

word in Italian. While performing a gesture, he or she also speaks out the correspond-

ing Italian word. Figure 3.3 shows sample images of dataset and each point shows a

marker position in (c). We used 7,754 gesture samples for training and 3,362 gesture

samples for validation. Note that we conducted the following experiments under the

cross-subject test setting.
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(1) Vattene                    (2)Viene  qui                 (3)Perfetto                     (4)E un furbo                (5)Che due palle

(6) Che vuoi                  (7)Vanno d'accordo       (8)Sei pazzo                  (9)Cos hai combinato   (10)Nonme me frega niente

(11) Ok                         (12)Cosa ti farei            (13)Basta                       (14)Le vuoi prendere    (15)Non ce ne piu

(16) Ho fame                (17)Tanto tempo fa        (18)Buonissimo    (19)Si sono messi d'accordo  (20)Sono stufo

Figure 3.2: 20 gesture categories on ChaLearn dataset. [1]

3.4.2 Motion and Audio Segmentations

We conducted a segmentation to extract individual gesture or audio parts and

remove unnecessary non-gesture or non-audio intervals from the sequence of gesture

or audio data. This is a necessary process because the gesture or audio sequence

do not have clear start and end points in a practical case. Note that the provided

training and validation data contain the segmentation points, but the start and end

points are not very precise. Therefore, we used new segmentation points detected by

the following method for training and validation.

In the case of motion segmentation, we detected new segmentation points, at which
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Table 3.1: 20 label names of gesture categories [1]

No. Label Name : Italian (English)

1 Vattene (Go away.)
2 Viene qui (Come here.)
3 Perfetto (Perfect!)
4 E un furbo (Crafty)
5 Che due palle (No fun!)
6 Che vuoi (What do you want?)
7 Vanno d’accordo (They get together.)
8 Sei pazzo (Are you crazy?)
9 Cos hai combinato (What have you done?)
10 Nonme me frega niente (There is no interest to me.)
11 Ok (OK.)
12 Cosa ti farei (What would you do?)
13 Basta (Enough already!)
14 Le vuoi prendere (You want to take.)
15 Non ce ne piu (No good any more.)
16 Ho fame (I’m hungry.)
17 Tanto tempo fa (That was a long time ago.)
18 Buonissimo (It’s very delicious!)
19 Si sono messi d’accordo (They have agreed.)
20 Sono stufo (I’m sick and tired of it.)

the change rate of joint position exceeds a threshold. When a performer starts or stops

a gesture motion, the joint velocity fluctuates with the change. In the case of audio

segmentation, we also detected new segmentation points, at which an amplitude of

audio signal exceeds a threshold. When a performer starts or stops speaking an Italian

word, the audio amplitude fluctuates with the change. Figure 3.4(a) and (b) show

the motion and audio segmentation results respectively. As shown in these figures,

there are a joint velocity or an audio amplitude, segmentation points and thresholds.

3.4.3 Variation of Motion Feature Type

By using the motion features introduced by section 3.3.1, we set four types of

motion feature vectors: 51-dimension feature vector ϕ1 composed of joint angle of

whole body (refer to Fig.3.5), 60-dimension feature vector ϕ2 composed of relative

velocities of whole body markers from the local coordinate system of parent marker
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(a)  RGB (b)  Depth (c)  User Mask

Figure 3.3: From left to right are the images selected from RGB, depth and silhouette
videos captured by Kinect respectively. [1]

Table 3.2: 20 marker joints of human whole body

No. Marker Type No. Marker Type

1 HipCenter 11 WristRight
2 Spine 12 HandRight
3 ShoulderCenter 13 HipLeft
4 Head 14 KneeLeft
5 ShoulderLeft 15 AnkleLeft
6 ElbowLeft 16 FootLeft
7 WristLeft 17 HipRight
8 HandLeft 18 KneeRight
9 ShoulderRight 19 AnkleRight
10 ElbowRight 20 FootRight

(refer to Fig.3.6(a)), 60-dimension feature vector ϕ3 composed of relative velocities

and accelerations of upper body markers from the local coordinate system of parent

marker (refer to Fig.3.6(b)) and 33-dimension feature vector ϕ4 composed of rela-

tive positions of upper body markers from the central coordinate system (refer to

Fig.3.6(c)) respectively. The joint angles, velocities and accelerations are calculated

by IK with 20 markers as shown by Tab.3.2. In addition, we set two types of learning

model by using HMM: the symbolization Modelm1 and Modelm2, in which modeling

is conducted by using individual gesture data and clustered gesture data with each

human subject respectively. Therefore, Modelm1 and Modelm2 result in 400 and 22

motion symbols for each gesture category respectively. Note that there are 13 male

and 9 female subjects in the training data.
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Figure 3.4: Two figures show the segmentation results of motion and audio sequences.
Joint velocity and audio amplitude are segmented when each value exceeds the thresh-
old which is shown as horizontal dotted line in the figures.

3.4.4 Variation of Audio Feature Type

By using the audio features introduced in section 3.3.2, we set three types of audio

feature vectors: 9-dimension feature vector ψ1, 13-dimension feature vector ψ2 and

26-dimension feature vector ψ3 respectively. In addition, we set two types of learning

model by using HMM in the same way as motion features: the symbolizationModela1

and Modela2, in which modeling is conducted by using individual gesture data and

clustered gesture data with each human subject respectively. Additionally, there are

2 types of training method. One method trains words, the other trains phonemes. In

this experiment, we use the former method because the number of utterance word is

limited by 20 categories.

3.5 Experimental Result

In this section, we present the experimental results of gesture classification on

ChaLearn MMGRC 2013 dataset and validate the integration method of motion and

audio models.
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1. Body: (3+4)d

2. UpperBody: 4d

3. Head: 4d

4. LeftArm1: 4d

5. LeftArm2: 1d

6. LeftHand: 4d

7. RightArm1: 4d

8. RightArm2: 1d

9. RightHand: 4d

10. LeftLeg1: 4d

11. LeftLeg2: 1d

12. LeftFoot: 4d

13. RightLeg1: 4d

14. RightLeg2: 1d

15. RightFoot: 4d
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Figure 3.5: Joint point of whole body and its dimensions.

Table 3.3: The results of motion classifiers obtained by changing motion feature vector
and trained model

Motion ϕ1 ϕ2 ϕ3 ϕ4

Modelm1 17.7 38.0 28.4 36.8
Modelm2 9.1 24.3 26.6 26.8

3.5.1 Comparison of Classification Accuracy in Each Uni-

modal Model

We compared the classification accuracy among the combinations of a motion fea-

ture vector ϕ1, ϕ2, ϕ3 or ϕ4 and a learning model Modelm1 or Modelm2 to evaluate

the motion model, and the combinations of an audio feature vector ψ1, ψ2 or ψ3 and

a learning model Modela1 or Modela2 to evaluate the audio model. Note that we

calculated the classification rates by comparing predicted labels with actuarial given

labels in the experiments. Table 3.3 and Table 3.4 show the classification results. As

shown in these tables, a combination of ϕ2 and Modelm1 achieved the highest clas-

sification rate in motion models, and a combination of ψ3 and Modela1 achieved the

highest classification rate in audio models. In the experiment of next section, these

combinations were used when we constructed an integrated model. We can also see

that the performance of audio model is better than that of motion model.
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Figure 3.6: Three types of motion features using for learning HMM parameters.
Each marker joint of skeleton model has a relative position, velocity and acceleration
obtained by IK calculations. (a), (b), and (c) show that the feature vector consist
of relative velocities of whole body markers, relative velocities and accelerations of
upper body markers in the local coordinate system of parent marker, and relative
positions of upper body markers in the body coordinate system respectively.

3.5.2 Comparison of Classification Accuracy Between Uni-

modal and Multi-modal Models

We integrated motion and audio models using the proposed method and compared

the classification rates of each category and the average classification rate in the

motion model M, the audio model A and the integrated model M+A respectively.

Table 3.5 shows the comparison results among uni-modal and multi-modal models.

As shown in this table, M+A has the highest classification rate in almost all categories.

This means that the proposed method which integrates motion and audio models is

effective to gesture classification.

Figure 3.7 shows total classification rates obtained by simply summing the classi-

fication rates of motion and audio models for each gesture category (also refer to M

and A columns in Tab.3.5). As shown in this figure, while audio model compensates
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Table 3.4: The results of audio classifiers obtained by changing audio feature vector
and trained model

Audio ψ1 ψ2 ψ3

Modela1 50.5 48.0 53.9
Modela2 45.5 43.2 53.0

for motion model difficulty in the categories of 11, 14 and 18, motion model also

makes up for audio model difficulty in the categories of 1, 16 and 17. This means

that the complementary relationship between motion and audio models improves the

classification accuracy in gesture classification.

3.5.3 Comparison of Classification Time Between Uni-modal

and Multi-modal Models

We compared the average classification time of all categories in M, A and M+A

respectively. Table 3.6 shows the average classification time required to classify an

observed gesture from an input of motion or audio feature vector. We can see that

multi-modal models take a longer classification time than uni-modal models because

they have more complex calculations. Additionally, the classification time of multi-

modal model is longer than total classification time of these uni-modal models. For

example, the total classification time in M and A is (7.7+7.3)s, which equals to 15s,

while the classification time in M+A is 15.8s. Therefore, we have to deal with the

problem by conducting parallel processing, etc. to classify gestures in real time for

future work.

3.6 Conclusion

In this chapter, we proposed a multi-modal gesture classification system which

integrates motion and audio models. The classification scores derived from these

models are integrated by a proposed method to obtain the classification result. We

evaluated the classification accuracy of our proposed system on ChaLearn MMGRC

2013 dataset. The conclusion of this chapter can be summarized as follows.
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Table 3.5: Comparison result of classification rate between uni-modal and multi-
modal models.

M A M+A

1 68.2 27.3 72.7
2 18.2 45.5 50.0
3 27.3 45.5 45.5
4 18.2 45.5 54.5
5 68.2 54.5 77.3
6 22.7 50.0 72.7
7 54.5 50.0 77.3
8 31.8 63.6 77.3
9 50.0 40.9 68.2
10 27.3 31.8 50.0
11 4.5 81.8 68.2
12 27.3 63.6 86.4
13 100 68.2 100
14 13.6 81.8 86.4
15 22.7 50.0 54.5
16 86.4 40.9 90.9
17 54.5 27.3 77.3
18 18.2 72.7 86.4
19 45.5 77.3 86.4
20 0.0 59.1 50.0
Avg 38.0 53.9 71.6

1. Motion and audio models are represented as M and A respectively. We com-

pared the classification accuracy among multi-modal models and uni-modal

models. The multi-modal model M+A increases the average classification rate

up to 72% and are superior to our previous uni-modal model M. This means

that the complementary relationship between motion and audio models leads to

the improvement of classification accuracy. Additionally, the result shows that

the effect of A is the most dominant in M+A.

2. In M, relative position, velocity and acceleration of markers in the local coordi-

nate system are used as motion feature. A motion feature composed of relative

velocity or acceleration does not affect so much the classification accuracy in

the proposed system. Additionally, a motion feature composed of joint angle

shows the lowest classification rate. This is because a sufficient number of body
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Figure 3.7: Histogram that represents the complementary relationship between mo-
tion and audio models.

markers are not available to calculate joint angles by using Inverse Kinematics

when using Kinect sensor. In A, an audio feature composed of MFCC and av-

erage volume shows the highest classification rate when adding their derivatives

with respect to time to them.

3. Although the proposed multi-modal models improved the classification accu-

racy, they took a longer classification time than the uni-modal model because

of more complex calculations. Actually, the classification time of multi-modal

model M+A is longer than the total classification time of these uni-modal mod-

els.

The application technology of proposed framework can be available in the situa-

tion that a robot needs to understand human actions of daily life more precisely by

observing human motion, surrounding environments and utterance related to the mo-
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Table 3.6: Comparison result of average classification time between uni-modal and
multi-modal models

M A M+A

Proc Time [s] 7.7 7.3 15.8

tion. However, motion or audio segmentation is finished after a subject performs each

gesture and gesture classification have to start after the segmentation in the proposed

system. Alternative approaches such as frame-based segmentation can be considered.

Additionally, the problem of lacking real-time performance has to be solved to achieve

the application technology. One of the solutions is to shortening of classification time

by using parallelized implementation or speed-up technique classifying even in the

middle of gesture[23].



Chapter4

Theory of Hybrid

Generative-discriminative Model

by Fisher Vector Scenario for

Gesture Classification

4.1 Introduction

A turning point in the history of relationship between humans and machines has

gradually arisen in recent years, which has resulted in the significant change from

“human adaptation to machine” to “machine adaptation to human”. Dramatic im-

provement of CPU performance, availability of a large amount of data and appearance

of devices with NUI (Natural User Interface) have served as a trigger for the change

(refer to Fig. 4.1). Prior to the change, users needed to learn the usage of machines,

such as mouse and keyboard. In the later period, users easily operate intelligent ma-

chines such as smart phone, tablet PC with touch panel and Kinect sensor by voice

or gesture. In this change, gesture recognition can play an important role because

many reasonable and high performance motion capture devices have become avail-

able. In fact, it is applied to human-robot interaction, medical rehabilitation and sign

language recognition, etc.

In the previous chapter, we proposed a multi-modal gesture classification system

which integrates motion and audio models[25]. The multi-modal model can improve

the classification accuracy, but the effect of audio model is the most dominant in the

system. Therefore, our previous motion model cannot be used mainly to improve the

40
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Voice Gesture

KeyboardMouse

Human adaptation
to machine

Machine adaptation
to human

Big data Devices with NUI ...

Improvement of CPU performance

Figure 4.1: The change of relationship between human and machine. A turning point
from “human consideration to machine” to “machine consideration to human” has
gradually arisen in recent years because of improvement of CPU performance, big
data and some devices with NUI.

classification accuracy. This is a crucial problem in motion or gesture classification

systems because only motion model can capture the movement itself and capturing

the movement leads to a precise understanding of human motion. It is important

to improve the classification accuracy of motion model without depending on other

modal model. In our multi-modal system, a spatio-temporal data of motion pattern

is trained by using a Hidden Markov Model (HMM), which is a generative model in

general.

Many motion or gesture classification systems can be divided into two groups on

whether the model is constructed by a generative or discriminative approach. In

the former case, a human motion model is constructed by learning spatio-temporal

relationships between skeleton features and classifies a human motion based on like-

lihood calculated by the model. In the latter case, motion representation by vector

coding from skeleton features reflects the spatio-temporal relationships and a classifier

trained by these high-dimensional vectors categorizes a human motion. Here, a ges-

ture is composed of a spatio-temporal data and is a complex movement using several

joints. Therefore, it is important to classify a human motion by considering spatio-

temporal relationships of skeleton feature and mapping in the high-dimensional space
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capable of representing a human motion richly. In other words, gesture classification

system requires the strategy to merge the both abilities of the generative approach

specialized for the representation of spatio-temporal data and the discriminative ap-

proach specialized for the classification task using high-dimensional vectors.

In this chapter, we apply a strategy to merge both abilities of generative and dis-

criminative approaches by Fisher Vector (FV) scenario to improve the classification

accuracy of motion model. We evaluate the hybrid generative-discriminative approach

on dataset provided by ChaLearn Looking At People Challenge 2014 (ChaLearn

LAPC 2014). The competition is organized into three parallel tracks on human

pose recovery, action/interaction recognition and gesture recognition. The 3rd track

is focused on classifying 20 gesture categories of Italian cultural/anthropological signs

and we use this track dataset. The dataset contains RGB, depth, silhouette video

capturing a performer and the skeleton data. For more information, refer to the

LAPC 2014 website[1].

4.2 Related Work

4.2.1 Generative Approach and Discriminative Approach

Many classification systems can be divided roughly into two groups: “generative

approach” and “discriminative approach”. Given a feature vector x and a class

label y, a generative approach learns a model of the joint probability P (x, y) and

calculate the posterior probability P (y|x) by using Bayes’ theorem, and then the

classification is conducted by picking the most likely label y. On the other hand,

a discriminative approach models the posterior probability P (y|x) directly, which

means to learn a direct map from x to y and predict the class label. Generally

speaking, discriminative approaches overcome generative approaches for classification.

For example, the discriminative approach of logistic regression asymptotically achieves

lower classification error than the generative approach of naive Bayes classifier for an

infinite number of training data[45]. In this chapter, we apply a hybrid generative-

discriminative approach to merging both abilities of the generative and discriminative

approach.
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Figure 4.2: Overview of a hybrid generative-discriminative approach. The strategy
is to merge both abilities of generative approach and discriminative approach by
Fisher Vector (FV) scenario. Hidden Markov model specialized for the representa-
tion of spatio-temporal data is used as the generative model. Support vector machine
specialized for the classification task using high-dimensional vectors is used as the dis-
criminative model. Motion symbols obtained by modeling gesture data with HMM
are clustered in a hierarchy. A FV parameterized by HMM is constructed by concate-
nating the score from clustered motion symbols for SVM training. The most probable
category to an input gesture is output by the SVM.[1]

4.2.2 Hybrid Generative-discriminative Approach

The hybrid generative-discriminative approaches have been proposed in pattern

recognition community and they can be divided roughly into two groups: “generative

embeddings”[5][6][7] and “generative kernels”[31][22][43][33][36][12][4]. In the former

case, a generative model is used to embed objects to a vectorial feature space where

feature-based or discriminative classifiers can be trained. M. Bicego et al. [7] pro-

posed a method to train discriminative classifiers in an HMM-induced vector space

for each class. This method is an extension of similarity-based vector space where

these similarities are induced by HMMs[5] and group-induced vector space to com-

bine clustering procedure with classification[6]. In [7], the classification accuracy of

HMM-induced vector spaces is compared with that of original Fisher-based spaces.

In the latter case, a generative model is used to project objects to a suitable feature

space where a kernel function such as a Fisher Kernel (FK) is designed to measure

the distance between objects and used to train the discriminative classifiers such
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as Support Vector Machine (SVM). There are several methodologies to construct a

FK. Jaakkola et al. [31] early proposed the standard methodology of FK. In this

methodology, only single model was learned using the whole training dataset. Layton

et al. [36] proposed an extension of the standard FK approach in order to enhance

the scheme. Higher order derivatives are considered when building the Fisher-based

spaces. Fine et al. [22] proposed one class-model method, in which a single model

was learned using data from a single class (positive class). In this methodology, only

typical binary problems were addressed. In order to consider the multi-class case,

Chen et al. [12] proposed the method to learn multi-class generative models used

to construct a FK. The idea was to concatenate several scores obtained from each

model. Bicego et al. [4] adopted the same strategy but the models were not built on

each class but on each constructed cluster. In this chapter, the concatenated vector

is called as a FV-HMM. In all methodologies, the Fisher-based space was normalized

before the training of discriminative classifiers. This is essential because the classifi-

cation accuracy is significantly decreased without normalization[60]. In this chapter,

we focus on the generative kernel approach. As shown in this section, one of the most

famous and widely used generative kernel is a FK, which is firstly proposed in the

protein sequence analysis. We also define the FK and the FV-HMM in reference to

[4]. However, we describe the derivation process more precisely and our paper is the

first research applying the method in gesture classification system.

4.3 Gesture Classification System (FV-HMM/SVM)

We apply a hybrid generative-discriminative approach to improve the classification

accuracy of motion model. Figure 4.2 shows the overview of the system. As shown

in this figure, a gesture is encoded as a motion symbol by HMM in the process of

generative approach and is classified by SVM in the process of discriminative ap-

proach. A FV-HMM representing a motion feature merges both approaches together

as a pipeline. In this section, we introduce an HMM, a clustering method of mo-

tion symbols, a FV-HMM and a calculation method of each element composing of

FV-HMM in detail.
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4.3.1 Parameter Description of Hidden Markov Models[52]

as Motion Symbol

Human motion such as gesture is represented as spatio-temporal data. An HMM,

which has a robust nature to noise or error of spatio-temporal patterns, is appropriate

for modeling the human motion data. An HMM can be roughly divided into two

types: a “continuous-time HMM” where spatio-temporal patterns are represented as

continuous vectors, and a “discrete-time HMM” represented as discrete symbols. We

use the former HMM type because human motion can be represented as continuous

spatio-temporal patterns. More formally, an HMM is defined as the following four

parameters:

• A set of hidden states Q = {q1, q2, ..., qN}. Here, N is the number of states.

• A state transition matrix A = {aij, 1 ≤ i, j ≤ N}. Here, aij represents the

transition probability from state qi to state qj.

aij = P (qj|qi) (4.1)

with aij ≥ 0,
∑N

j=1 aij = 1.

• A set of emission probability distribution B = {bi(o), 1 ≤ i ≤ N}. Here, bi(o)
represents the probability generating pattern o from state qi.

bi(o) = P (o|qi) (4.2)

• A set of initial state probability Π = {πi, 1 ≤ i ≤ N}. Here, πi represents the

probability of state qi at initial time.

For convenience, we represent HMM parameters by a set of λ as

λ = {Q,A,B,Π} (4.3)

Given a motion sequence O = {o1,o2, ...,oT}, learning the HMM parameters is

usually conducted by the Baum-Welch algorithm(a type of EM algorithm), which

can determine the parameters by maximizing the likelihood P (O|λ). This likelihood
can be calculated by the forward-backward algorithm. Here, the HMM parameters

representing human motion is referred to as “a motion symbol”.
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4.3.2 Forward-backward Algorithm[52] for Effective Calcula-

tion of Likelihood

The most straightforward calculation of the likelihood P (O|λ), which is the prob-

ability of the motion sequence O when given the model λ, is obtained by summing

the probabilities over all possible state sequences q = {q(1), q(2), ..., q(T )} of length
T , defined as following equation.

P (O|λ) =
∑
q
πq(1)bq(1)(o1)

T−1∏
t=1

aq(t)q(t+1)bq(t+1)(ot+1) (4.4)

The calculation is computationally expensive, because Eqn.(4.4) involves O(TNT )

calculations. In order to solve this problem, more efficient algorithm called as the

forward-backward algorithm exists.

When considering the forward variable αi(t), which is a partial probability of gen-

erating motion sequence {o1, ...,ot} and staying at state qi at time t when given the

model λ

αi(t) = P (o1,o2, ...,ot, q(t) = qi|λ) (4.5)

and the backward variable βi(t), which is a partial probability of generating motion

sequence {ot+1, ...,oT} when given state qi at time t and the model λ

βi(t) = P (ot+1,ot+2, ...,oT |q(t) = qi,λ) (4.6)

These variables can be calculated inductively as follows

1. Initialization:

αi(1) = πibi(o1) (4.7)

βi(T ) = 1 (4.8)

2. Induction:

αi(t+ 1) =

[ N∑
j=1

αj(t)aji

]
bi(ot+1) (4.9)

βi(t) =
N∑
j=1

aijbj(ot+1)βj(t+ 1) (4.10)
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3. Termination:

P (O|λ) =
N∑
i=1

αi(T ) (4.11)

=
N∑
i=1

πibi(o1)βi(1) (4.12)

=
N∑
i=1

N∑
j=1

αi(t)aijbj(ot+1)βj(t+ 1)

(4.13)

We see that the computation is reduced to O(TN2) calculations.

4.3.3 Hierarchically-structured Clustering of Motion Sym-

bols

As explained in previous section, a motion symbol representing human motion

is constructed by learning HMM parameters. Next, motion symbols constructed

from various human motions are grouped by hierarchically-structured clustering. A

tree-structured model is constructed in the process of the clustering. The distance

between motion symbols is calculated by Kullback-Leibler (KL) information[67] and

the hierarchical structure of them is constructed by Ward method using the KL

distance.

More precisely, hierarchical clustering of motion symbols is summarized as follows.

1. Construct a motion symbol λi (1 ≤ i ≤ NT ) from each motion sequence Oi

(1 ≤ i ≤ NT ) with HMM. Here, NT is the number of training data.

2. Define the probability of generating motion sequenceOj when given each motion

symbol λi as a measure matrix Lij.

Lij = P (Oj|λi) (4.14)

3. Calculate the distance between λi and λj using the following KL information

representing the dissimilarities between motion symbols.

KL(λi,λj) = Liilog
Lii

Lji

+ Ljjlog
Ljj

Lij

(4.15)
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4. Construct the hierarchical structure of motion symbols using the following Ward

method

Ward(Ci, Cj) = E(Ci ∪ Cj)− E(Ci)− E(Cj) (4.16)

Here, Ward(Ci, Cj) is the distance matrix between Ci and Cj. The Ci and Cj

mean a cluster of motion symbols. The right side of Eqn.(4.16) represents that

clusters are grouped to becomeWard(Ci, Cj) larger, that is, intra-class variance

E(Ci ∪ Cj) larger and within-class variances E(Ci) and E(Cj) smaller, defined

as following equation.

E(Ck) =
∑
λi∈Ck

KL(λi,λk) (4.17)

Here, λk is a principal motion symbol representing abstract motion of grouped

motions in the cluster.

Finally, NK principal motion symbols λk(1 ≤ k ≤ NK) are constructed by grouping

motion symbols from whole training dataset in the process of the clustering.

4.3.4 Fisher Vector Parameterized by Hidden Markov Model

A motion symbol is constructed from a motion sequence with HMM. Motion sym-

bols constructed from whole training dataset are grouped by hierarchically-structured

clustering and then NK clusters of motion symbols are obtained. The clustered mo-

tion symbols are also modeled by HMM to construct principal motion symbols. The

principal motion symbols are defined as {λk} (1 ≤ k ≤ NK). Given a motion se-

quence Oi and the set of λk, a FV-HMM, which is constructed by concatenating

FS(Oi,λk) calculated from each principal motion symbol λk in a single vector, is

defined as following equation.

FVHMM(Oi, {λk}) = F
−1/2
λ [FS(Oi,λ1)

T , ..., FS(Oi,λNK
)T ]T (4.18)

Here, F λ is called as Fisher Information Matrix (FIM) and normalizes Fisher score

described in the next subsection. Note that the FIM is considered as a diagonal

matrix and defined as following equation.

F λ = EX [FS(Oi, {λk})FS(Oi, {λk})T ] (4.19)
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Here, EX means an expectation value. The FIM represents the distance metrics using

KL information on the Reimann space. The details about this are explained in the

Appendix. The FV-HMM is input to SVM for training and classification task. In the

classification task, the SVM predicts the gesture category. Additionally, the process

of training and classification task needs to project in a high-dimensions space for rich

representation of feature vector. This leads to several problems of calculation cost and

memory consumption because of using the high-dimensional feature vectors. Kernel

method, which implicitly projects objects to high-dimensional space by using a kernel

function K(xi,xj)(=< ϕ(xi), ϕ(xj) >, etc.), is proposed to solve the problem, where

xi and xj are observations represented as Bag of Features (BoF) or Bag of Visual

Words (BoVW) in general and ϕ is a projection function. If we select a linear kernel

as the kernel function of SVM, the Fisher Kernel (FK) is calculated by the inner

product of FV-HMMs.

FK(Oi,Oj) =< FVHMM(Oi, {λk}), FVHMM(Oj, {λk}) > (4.20)

Note that < ·, · > means the inner product. A kernel function is defined by suitable

object comparisons in the high-dimensional space. The FK is proposed as a general

way to merge both abilities of generative and discriminative approaches for classi-

fication and measures the relationship between objects by comparing them in the

high-dimension space induced by the learned generative model. An object is consid-

ered as a point in the Riemannian manifold. This space has a property to measure

geodesic distances between points along the manifold.

4.3.5 Formula Derivation Process of Fisher Score

Note that FS(O,θ) is called as Fisher Score (FS), which is defined by derivatives

of log likelihood of the generative model θ with respect to all parameters

FS(O,θ) = ∇θlogP (O|θ) (4.21)

The FS has a richer representation of feature vector because of including up to primary

and secondary statistics and can reduce a quantization error compared with BoF or

BoVW.
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In the HMM case, θ is replaced with λ and the log likelihood is represented by

using Eqn.(4.11)-Eqn.(4.13) as follows

L(O|λ) = logP (O|λ) (4.22)

= log
N∑
i=1

αi(T ) (4.23)

= log
N∑
i=1

πibi(o1)βi(1) (4.24)

As previously explained in section 4.3.1, motion symbol λ is composed by the initial

state probabilities πi, the state transition probabilities aij and the emission probabil-

ities (the mean vector µi and the variance vector σi in the case of Gaussian model).

The derivatives of these parameters are defended as follows

FS(O,λ) = ∇λL(O|λ)

=
[∂L(O|λ)

∂πi
· · · , ∂L(O|λ)

∂aij
· · · , ∂L(O|λ)

∂µi

· · · , ∂L(O|λ)
∂σi

· · ·
]T
(4.25)

Here, i, j = 1, ..., N and the dimension numbers of µi, σi and ot are the same as that

of skeleton feature d. Therefore, the dimension number of FS is generally represented

as (N + N2 + Nd + Nd) = N(N + 2d + 1). Each derivative with respect to these

parameters is calculated by using Eqn.(4.23), Eqn.(4.24) as follows

∂L(O|λ)
∂πi

=
∂

∂πi

(
log

N∑
i=1

πibi(o1)βi(1)

)

=
bi(o1)βi(1)∑N

i=1 πibi(o1)βi(1)

=
bi(o1)βi(1)

P (O|λ)
(4.26)

∂L(O|λ)
∂aij

=
∂(logP (O|λ))
∂P (O|λ)

∂P (O|λ)
∂aij

=
1

P (O|λ)

N∑
k=1

∂αk(T )

∂aij

=
1

P (O|λ)

N∑
k=1

(
∂

∂aij

N∑
l=1

αl(T − 1)alkbk(oT )

)
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=
1

P (O|λ)

(
N∑
k=1

N∑
l=1

(
∂αl(T − 1)

∂aij
alkbk(oT ) + αl(T − 1)

∂alk
∂aij

bk(oT )

))

=
1

P (O|λ)

(
N∑
k=1

N∑
l=1

∂αl(T − 1)

∂aij
alkbk(oT ) + αi(T − 1)bj(oT )

)
(4.27)

∂L(O|λ)
∂µi

=
∂(logP (O|λ))
∂P (O|λ)

∂P (O|λ)
∂µi

=
1

P (O|λ)

N∑
j=1

∂αj(T )

∂µi

=
1

P (O|λ)

N∑
j=1

(
∂

∂µi

N∑
k=1

αk(T − 1)akjbj(oT )

)

=
1

P (O|λ)

(
N∑
j=1

N∑
k=1

(
∂αk(T − 1)

∂µi

akjbj(oT ) + αk(T − 1)akj
∂bj(oT )

∂µi

))

=
1

P (O|λ)

(
N∑
j=1

N∑
k=1

∂αk(T − 1)
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=
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akjbj(oT ) +
N∑
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∂bi(oT )

∂σi

)
(4.29)

In Eqn.(4.27), (4.28) and (4.29), each partial differentiation of αi(t) with respect to aij,

µi and σi at time T can be calculated recursively by using the partial differentiation

at previous time. Here, bi(ot) is the normal distribution function, defined as

bi(ot) =
1√

(2π)d|σi|2
exp

(
−|ot − µi|2

2|σi|2

)
(4.30)
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In Eqn.(4.28) and Eqn.(4.29),

∂bi(oT )

∂µi

=
|oT − µi|
|σi|2

bi(oT ) (4.31)

∂bi(oT )

∂σi

=

(
|oT − µi|2

|σi|3
− 1

|σi|

)
bi(oT ) (4.32)

4.4 Experimental Setup

In order to evaluate the proposed system, we used ChaLearn LAPC 2014 dataset

in the following experiments and compared the classification accuracy when varying

HMM chain models and gesture classification systems. In this section, we introduce

each content in detail.

4.4.1 ChaLearn LAPC 2014 Dataset

The competition organizer of ChaLearn LAPC 2014 provided three datasets: “train-

ing data”, “validation data” (with labels of gesture category) and “test data” (without

labels of gesture category). Each dataset consists of hundreds of files, and each file

contains approximately one-minute gesture data captured by Kinect sensor, includ-

ing skeleton data (marker position of skeleton model) and video data (RGB, depth

and silhouette). As shown by Tab.4.1, there are 20 gesture categories in the dataset.

Each gesture category is corresponding to a specific word in Italian. Figure 3.3 shows

sample images of RGB, depth and silhouette. In the Fig.3.3(c), each point represents

a position of marker joint. We used 6,830 gesture samples for training and 3,200

gesture samples for validation.

4.4.2 Skeleton Feature Obtained using Inverse Kinematics

Calculations

We used marker position obtained using IK calculations as skeleton feature and

constructed a human motion model from the spatio-temporal skeleton features. Fig-

ure 4.3 shows maker joints of skeleton model where marker positions are derived. As

shown in this figure, we used the marker joints attached to upper body. The skeleton
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Table 4.1: 20 label names of gesture categories [1]

No. Label Name : Italian (English)

1 Vattene (Go away.)
2 Viene qui (Come here.)
3 Perfetto (Perfect!)
4 E un furbo (Crafty)
5 Che due palle (No fun!)
6 Che vuoi (What do you want?)
7 Vanno d’accordo (They get together.)
8 Sei pazzo (Are you crazy?)
9 Cos hai combinato (What have you done?)
10 Nonme me frega niente (There is no interest to me.)
11 Ok (OK.)
12 Cosa ti farei (What would you do?)
13 Basta (Enough already!)
14 Le vuoi prendere (You want to take.)
15 Non ce ne piu (No good any more.)
16 Ho fame (I’m hungry.)
17 Tanto tempo fa (That was a long time ago.)
18 Buonissimo (It’s very delicious!)
19 Si sono messi d’accordo (They have agreed.)
20 Sono stufo (I’m sick and tired of it.)

feature is a 33-dimensional vector composed of relative marker positions in the body

coordinate system.

4.4.3 Variation of HMM Chain Model

An HMM chain model is roughly grouped into three types: “Left-to-right”, “Er-

godic” and “Periodic” according to the connection of HMM nodes. We set up three

HMM types to compare the classification accuracies of our proposed system. Figure

4.4 shows the types of HMM chain model with three nodes. The left-to-right type can

transit from the initial state to the final state in one direction and it cannot go back

to the previous state. The ergodic type can transit to any state including the same

state and thus it can go back to the previous state. The periodic type can transit a

series of states cyclically by adding the transition from the final state to the initial

state to the left-to-right type.
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Figure 4.3: Graphic illustration of motion features using for learning motion symbols.
Left side in this figure shows 20 marker types of human whole body and right side
shows corresponding maker positions. A motion feature vector consist of relative
positions of markers attached to the upper body in the trunk coordinate system.

4.4.4 Variation of Gesture Classification System

We set up four classification systems to compare the classification accuracies of

our proposed system. Figure 4.5 shows the overviews of each classification system

when given an input motion symbol. As shown in this figure, the classification sys-

tems are HMM/1-Nearest Neighbor (1-NN), HMM/350-Nearest Neighbor (350-NN),

Similarity-based-HMM/1-NN (Generative embeddings) and FV-HMM/SVM (Gener-

ative kernels) respectively. Each classification system is described as follows

HMM/1-NN

This system classifies an input motion symbol into the category of the closest

motion symbol. This is the same algorithm as 1-Nearest Neighbor (1-NN) classifier.
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Figure 4.4: Three types of HMM chain model. This figure shows the case of three
HMM nodes. The left-to-right type (left) can transit from the initial state to the final
state in one direction. The ergodic type (center) can transit to any state including the
same state. The periodic type (right) can transit a series of states cyclically compared
to the left-to-right type.

HMM/350-NN

In this system, motion symbols are clustered in a hierarchy and a voting of gesture

categories is conducted within the closest cluster to the input. Each cluster contains

about 350 motion symbols, which is nearly equal to the number obtained by dividing

training data in the number of gesture classes. The gesture category is determined

by selecting the label getting largest number of votes in the cluster.

Similarity-based-HMM/1-NN

This hybrid generative-discriminative method is one of the generative embedding

approaches. In this system, motion symbols are clustered in a hierarchy and a vector

is constructed by concatenating log likelihoods provided by principal motion symbols

of the clusters. Given a similarity-based vector, the classification task is solved by

1-NN classifier.

FV-HMM/SVM

This hybrid generative-discriminative method is one of the generative kernel ap-

proaches and is our proposed system in this chapter.
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Figure 4.5: Four classification systems for comparing. This figure shows the overviews
of each system when given an input motion symbol.

4.4.5 Other Settings

We used a relative position of marker joint in the body coordinate system as a

skeleton feature. We constructed motion symbols representing observed human mo-

tion by HMM learning. Here, the number of hidden states was 10 decided empir-

ically. The motion symbols constructed from whole training dataset were grouped

by hierarchically-structured clustering and then Nk sets of motion symbols were ob-

tained. Here, Nk was 22 to close to the number of gesture classes. We used SVM as a

classifier and selected the linear kernel from among chi-squared, gaussian and linear

kernel because the kernel function showed the best performance in gesture classifica-
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tion. Note that we conducted the following experiments under the cross-subject test

setting.

4.5 Experimental Result

In this section, we show the experimental results of gesture classification on ChaLearn

LAPC 2014 dataset and validate the hybrid generative-discriminative approach in our

proposed system.

4.5.1 Visualization of Hierarchically-structured Clustering

We visualized the result of hierarchically-structured clustering of motion symbols

learned by HMM from whole dataset. Figure 4.6 shows the result of hierarchically-

structured clustering. The top line of this figure shows the resultant hierarchical

structure when varying the type of HMM chain models. Left, center and right are the

result of ergodic, periodic and left-to-right type respectively. We represent scalable

tree structures as circular shape. The mid-row shows details of remarkable area in

the left-to-right type. As shown in the part surrounded by the dotted ellipse, several

gestures are clustered appropriately. The bottom shows the gesture images. The

number under each image corresponds to the number of each ellipse in the mid line.

As shown in the bottom, two categories of 7 and 9 in the area of (A) are similar

type of motion because both gestures are associated with “joined hands in front of

the chest” and thus they are clustered. Similarly, three categories of 5, 13 and 16

in the area of (B) are similar type of motion, all of which are associated with “side

arms”. Two categories of 12 and 18 in the area of (C) and two categories of 15 and

19 in the area of (D) are also similar type because of labeling them “hand to face”

and “moving wrist” respectively. The results show that some of the gesture patterns

are not clustered clearly because there are great differences between individuals when

performing the motion.
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Table 4.2: Comparison result of classification rate to all gesture categories when
varying the type of HMM chain model

FV-HMM/SVM
Ergodic Periodic LtoR

1 38.1 53.1 61.9
2 31.3 44.4 48.1
3 35.6 54.4 50.0
4 30.0 46.3 42.5
5 75.6 81.3 88.1
6 53.1 65.6 81.9
7 41.9 71.3 81.9
8 33.8 49.4 53.8
9 62.5 73.1 82.5
10 25.6 37.5 38.1
11 34.4 49.4 48.1
12 26.9 39.4 37.5
13 67.5 76.3 81.9
14 35.0 51.3 60.6
15 20.6 38.8 33.1
16 71.3 81.9 88.1
17 50.0 56.3 69.4
18 21.9 45.0 38.8
19 38.1 51.3 51.9
20 26.9 41.3 42.5
Avg 41.0 55.3 59.0

4.5.2 Comparison of Classification Accuracy When Varying

HMM Chain Model

We evaluated our approach by comparison when varying the type of HMM chain

model in the system. The types for comparing are ergodic, periodic and left-to-right

respectively. Table 4.2 shows the comparison results of classification accuracy for all

gesture categories and the average. The value in this table means the classification

rate of predicted label selected in 20 gesture categories. We underline the highest

value in each category. As shown in this table, the left-to-right type shows the highest

classification rate in almost all categories and the average. In general, the periodic

type is effective for gesture patterns with periodic motion. However, the results

show that it does not work well because some of the test subjects do not perform
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Table 4.3: Comparison result of classification rates to all gesture categories when vary-
ing the classification system: HMM/1-NN, HMM/350-NN, Similarity-based-HMM/1-
NN and FV-HMM/SVM (refer to Fig. 4.5).

HMM/1-NN HMM/350-NN Similarity-based-HMM/1-NN FV-HMM/SVM

LtoR LtoR LtoR LtoR

1 68.1 15.2 49.4 61.9
2 18.2 18.8 36.3 48.1
3 27.3 0.0 27.5 50.0
4 18.2 30.5 29.4 42.5
5 68.2 0.0 92.5 88.1
6 22.7 40.1 58.1 81.9
7 54.5 0.0 66.9 81.9
8 31.8 28.2 40.6 53.8
9 50.0 55.4 76.9 82.5
10 27.3 0.0 32.5 38.1
11 4.5 5.0 35.0 48.1
12 27.3 0.0 34.4 37.5
13 100 67.2 72.5 81.9
14 13.6 0.0 36.9 60.6
15 22.7 26.9 36.3 33.1
16 86.4 81.6 90.0 88.1
17 54.5 58.5 60.0 69.4
18 18.2 0.0 33.1 38.8
19 45.5 0.0 36.3 51.9
20 0.0 0.0 40.6 42.5
Avg 38.0 21.9 49.3 59.0

with periodic motion occasionally or the periodic motion is quite small and not long

enough to apply effectively.

4.5.3 Comparison of Classification Accuracy When Varying

Classification System

We evaluated our approach by comparison when varying the classification system.

The methods for comparing were (A):HMM/1-NN, (B):HMM/350-NN, (C):similarity-

based-HMM/1-NN (a generative embedding approach) and (D):FV-HMM/SVM (a

generative kernel approach) respectively. In the same way as above section, Table 4.3

shows the comparison results of classification rate. We underlined the highest value
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in each category. Note that we selected left-to-right HMMs in all methods. As shown

in this table, the FV-HMM/SVM shows the highest classification rate in almost all

categories and the average. In the case of comparing (A) and (D), the results show

that the hybrid generative-discriminative approach overcomes the standard HMM

approach. In the case of comparing (C) and (D), the results show that the generative

kernel approach overcomes the generative embedding approach. In (A), the results

show that the classification accuracy with respect to gesture patterns which can be

grouped clearly by the clustering become a high classification rate. For these results,

our approach is effective to improve the performance of motion model.

4.6 Conclusion

In this chapter, we applied a hybrid generative-discriminative approach for gesture

classification. This approach merges both abilities of Hidden Markov Model (HMM)

and Support Vector Machine (SVM) by Fisher Vector (FV) scenario to extend our

previous system (the standard HMM approach). We evaluated the classification ac-

curacy of our proposed system on ChaLearn LAPC 2014 dataset. The conclusion of

this chapter can be summarized as follows.

1. In the process of a hierarchically-structured clustering of motion symbols, we

calculated the distance between motion symbols by Kullbakc-Leibler (KL) infor-

mation and constructed the hierarchical structure by Ward method. The result

shows that similar gesture patterns are clustered closely in several categories.

This means KL information are effective for distance measurement of motion

symbols. However, several gesture patterns labeled as the same category are

not grouped in the same cluster. This is because the gestures are performed

in different forms among individuals. We also need to consider the clustering

method that decides the number of principal motion symbols because motion

symbols are simply grouped in a hierarchy into about 20 clusters to match with

the number of gesture classes. This decision is related to the dimension number

of FV-HMM which represents a motion feature. There needs to be a framework

to determine the optimal number of clusters automatically.
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2. We compared the classification accuracy when varying the type of HMM chain

model: ergodic, periodic and left-to-right. The left-to-right type, which transits

a finite number of hidden states in one direction, shows the highest classification

rate in almost all categories and the average. This is because a start and end

points can be clearly known and a time length is almost same among gestures.

The periodic type does not work well because the periodic motion included in

the dataset is quite little and not long enough to apply effectively. The ergodic

type is likely to give local optimized solutions depending on initial states because

the model has a high degree of freedom for state transitions.

3. We compared the classification accuracy when varying the classification system:

HMM/1-NN, HMM/350-NN, Similarity-based-HMM/1-NN, FV-HMM/SVM.

Our approach based on left-to-right HMMs increases the average classification

rate up to 59.0% and shows the highest classification rate in almost all categories

and the average. Additionally, the results show that the hybrid generative-

discriminative approach overcomes the standard HMM approach and the gen-

erative kernel approach outperforms the generative embedding approach. This

means that the representation of motion feature by FV-HMM and the perfor-

mance of SVM classifier are effective to improve the classification accuracy.
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Figure 4.6: Result of hierarchically-structured clustering. The top line of this figure
shows overall views of the clustering when varying the type of HMM chain models.
Left, center and right are the result of ergodic, periodic and left-to-right type re-
spectively. We represent scalable tree structures as circular shape. The mid shows
magnified views of remarkable area in the left-to-right type. The bottom shows the
gesture images. The number under each image corresponds to the number pointed
out each ellipse in the mid line.[1]



Chapter5

Effectiveness of Motion Derivatives

Obtained using Inverse Kinematics

Calculation for Gesture

Classification

5.1 Introduction

Recent advances on human pose estimation from depth map enabled to extract

skeleton joint structure of human whole body, so that several information sources,

i.e., skeleton model, color and depth image, become available in many research areas

using Kinect sensor. Along with this change, there have been many works related to

skeleton-based gesture recognition. Note that we use the terms “gesture” as a kind

of “motion” using only upper body. In their works, a skeleton feature is generally

used as marker positions derived from skeleton model. The skeleton model has an

advantage in computational cost because human motion can be represented as only

several points compared to human silhouette from depth image including massive

point cloud. When considering the feature extraction from skeleton model, motion

derivatives composed of relative position, velocity and acceleration between marker

joints are effective to classify between human motions including similar postures.

The following equation represents the second-order Taylor approximation of human

motion around t0.

X(t) ≈ X(t0) + δX(t0)(t− t0) +
1

2
δ2X(t0)(t− t0)2 (5.1)

63
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If we define X as position, its first and second order derivatives δX and δ2X mean

velocity and acceleration respectively. As shown in the above equation, this includes

motion derivatives and describes human motion more precisely by including them.

However, motion derivatives derived from Kinect sensor become unstable because of

environmental noise from the sensor. It is important to smoothen the spatio-temporal

data of motion derivatives to describe human motion continuously.

In this chapter, we propose a skeleton-based gesture classification system that uses

motion derivatives as skeleton feature on the hybrid generative-discriminative model

described in the previous chapter to improve the classification accuracy. More pre-

cisely, motion derivatives consist of relative position, velocity and acceleration of

marker joint in the body coordinate system obtained using inverse kinematics cal-

culation. A skeleton feature is extracted from skeleton model and a human motion

model is constructed by HMM learning using the spatio-temporal skeleton features.

Additionally, the hybrid generative-discriminative approach to merging both abilities

of HMM and SVM is applied by Fisher Vector (FV) scenario in the system. We eval-

uate the hybrid generative-discriminative approach on dataset provided by ChaLearn

Looking At People Challenge 2014 (ChaLearn LAPC 2014).

5.2 Related Work

5.2.1 Skeleton-based Approach

A human motion is drawn in 3D world, and thus capturing such articulated 3D

motion using a monocular video camera is very difficult. This difficulty limited the

performance of video-based approaches in the past decade. However, the recent ad-

vance on human pose estimation from depth map made it easier to obtain 3D joint

positions of human skeleton from the monocular video cameras. Additionally, the

skeleton-based approaches have an advantage of using Inverse Kinematics (IK) calcu-

lations, which can calculate motion derivatives such as relative position, velocity and

acceleration in the body coordinate system. There is a previous research using motion

derivatives as skeleton feature. Zanfir et al.[83] obtained a relative position, velocity

and acceleration between marker joints by calculating an inter-frame difference of
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marker positions derived from Kinect sensor. On the other hands, we obtain motion

derivatives using IK calculations from skeleton model in this chapter. Therefore, the

skeleton-based approaches have an advantage of using IK calculations to obtain them

compared to video-based approaches.

5.3 Gesture Classification System (FV-HMM/SVM

with Motion Derivatives)

We used motion derivatives as skeleton feature for the hybrid generative-discriminative

model explained in the previous chapter. In this section, we introduce motion deriva-

tives in detail.

5.3.1 Motion Derivatives as Skeleton Feature

We use motion derivatives as skeleton feature. A relative position, velocity and

acceleration of marker joint n from the body center of skeleton model are defined as

following equations.

bpn = oRT
b
opn

= oRT
b (

opn−1 +
oRn

npn−1,n) (5.2)

bvn = oRT
b
ovn

= oRT
b {ovn−1 + ωn × (oRn

npn−1,n)} (5.3)

ban = oRT
b
oan

= oRT
b

(
oan−1 + βn × (oRn

npn−1,n)

+ωn × {ωn × (oRn
npn−1,n)}

)
(5.4)

Here, the upper-left subscripts o, b, n mean the world, body and n-th coordinate

system respectively. Additionally, oRn and oRb mean rotation matrices of marker

joint n and the body center in the world coordinate system respectively. ωn and βn

mean angular velocity and angular acceleration of marker joint n respectively. These

variables are calculated by IK using marker positions derived from Kinect sensor.

Additionally, npn−1,n is the position vector from n−1 to n of marker joint in the n-th
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coordinate system. A pair of marker joint n−1 and n has a parent-child relationship.

Therefore, motion derivatives are obtained by recursive calculations following skeletal

link structure from the body center continuously as shown in the above equations.

By using the motion derivatives, a skeleton feature of marker joint n at time t is

represented as the following equation.

on(t) = [bpn, α
bvn, β

ban]
T (5.5)

Here, α and β mean the weight of relative velocity and acceleration respectively. Ad-

ditionally, when considering all marker joints except for a marker joint corresponding

to the body center (n ̸= b), whole skeleton features at time t are represented as

following equation.

ot = [o1(t),o2(t), ...,on(t), ...,oN−1(t)]
T (5.6)

Here, N means the total number of marker joints in skeleton model. In this chapter,

N = 12 because we use the marker joints attached to upper body. Finally, spatio-

temporal skeleton features over T -frame motion are represented as following equation.

O = {o1,o2, ...,oT} (5.7)

5.3.2 Fisher Vector Parameterized by Human Motion Model

This is the same content in Section 4.3.

5.4 Experimental Setup

In order to evaluate the proposed system, we used ChaLearn LAPC 2014 dataset

in the following experiments and compared the classification accuracy when varying

skeleton feature types and feature extraction methods. In this section, we introduce

each content in detail.

5.4.1 ChaLearn LAPC 2014 Dataset

This is the same content in Subsection 4.4.1.
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Figure 5.1: Three types of skeleton feature. Left, middle and right in the figure show
that the feature vector composed of relative position, relative position and velocity
and relative position, velocity and acceleration of upper body markers in the trunk
coordinate system respectively.

5.4.2 Variation of Skeleton Feature Type

We used motion derivatives as a skeleton feature and constructed a human motion

model from the spatio-temporal skeleton features. In order to evaluate the effect of

motion derivatives, there are three types of skeleton feature in the following exper-

iments: “relative position”, “relative position and velocity” and “relative position,

velocity and acceleration”. Figure 5.1 shows maker joints of skeleton model where

motion derivatives are derived for all types of skeleton feature. As shown in this figure,

we used the marker joints attached to upper body. If a skeleton feature is composed

of only relative position, the number of dimensions in the feature vector is 33. There-

fore, motion derivatives composed of relative position, velocity and acceleration in

the body coordinate system is represented as a 99-dimensional vector.
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5.4.3 Variation of Feature Extraction Method

We obtained motion derivatives using IK calculations. In order to evaluate the effect

of using IK calculations, there are two methods of feature extraction for comparing in

the following experiments: “IK calculations” and “inter-frame difference”. The fea-

ture extraction method using IK calculations is already described in the above section.

In the case of inter-frame difference method, relative velocity δp and acceleration δ2p,

which are represented as the first and second order derivatives of relative position p

over time, are calculated using a temporal window of five frames centered at the

current one processed: δp(t0) ≈ p(t1)− p(t−1) and δ
2p(t0) ≈ p(t2) + p(t−2)− 2p(t0).

5.4.4 Other Settings

We used relative position, velocity and acceleration of marker joint in the body

coordinate system as skeleton feature. Here, the weight of relative position and accel-

eration α and β were 0.75 and 0.5 respectively in reference to previous research. We

constructed motion symbols representing observed human motion by HMM learning.

Here, the number of hidden states was 10 decided empirically. The motion symbols

constructed from whole training dataset were grouped by hierarchically-structured

clustering and then Nk sets of motion symbols were obtained. Here, Nk was 20 to

match with the number of gesture classes. We used SVM as a classifier and selected

the linear kernel from among chi-squared, gaussian and linear kernel because the

kernel function showed the best performance in gesture classification. Note that we

conducted the following experiments under the cross-subject test setting.

5.5 Experimental Result

In this section, we show the experimental results of gesture classification on ChaLearn

LAPC 2014 dataset and validate the motion derivatives obtained using IK calcula-

tions in our proposed system.
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Table 5.1: Comparison result of classification rate (%) among using a relative position,
a relative position and velocity and a relative position, velocity and acceleration as a
skeleton feature in the FV-HMM/SVM.

FV-HMM/SVM
Pos Pos+Vel Pos+Vel+Acc

1 59.1 47.0 54.9
2 44.2 44.2 46.7
3 46.7 61.1 59.9
4 46.6 47.1 46.6
5 81.6 92.2 92.2
6 75.7 76.3 81.4
7 79.5 84.2 86.5
8 52.9 55.2 55.2
9 76.3 81.2 78.0
10 38.9 47.3 52.1
11 49.7 57.0 63.7
12 41.2 43.0 52.1
13 81.1 88.3 90.0
14 53.6 54.8 57.8
15 37.4 38.0 44.4
16 91.6 93.9 89.9
17 67.6 72.2 73.9
18 51.2 42.3 45.2
19 56.0 57.7 64.3
20 59.1 60.4 67.1
Avg 59.5 62.2 65.1

5.5.1 Benefit of Using Motion Derivatives

We evaluated the effect of motion derivatives by comparing the classification ac-

curacies of our proposed system among three types of skeleton feature. Table 5.1

shows the comparison result of classification accuracy in the case of adding relative

velocity and acceleration in the skeleton feature. As shown in this table, the av-

erage classification rate increases from 59.5% to 62.2% by adding the velocity and

finally reaches to 65.1% when using skeleton feature composed of relative position,

velocity and acceleration. Because of the velocity and acceleration, the classification

rate increases in almost all gesture categories. This means that motion derivatives

are effective to improve the classification accuracy. More precisely about the effect
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Figure 5.2: Comparison of confusion matrices between when using a relative position
and a relative position, velocity and acceleration as a skeleton feature in the FV-
HMM/SVM.

of motion derivatives, the velocity and acceleration contributed to a relatively large

improvement of the classification accuracy in gesture category 10 and 11. Unfortu-

nately, the velocity and acceleration had the opposite effect in gesture category 1, 4,

16 and 18. Figure 5.2 shows the confusion matrices of FV-HMM/SVM(Pos) and FV-

HMM/SVM(Pos+Vel+Acc) for comparison. As shown in this figure, gesture category

1 and 2, 14 and 15 are mutually confused because of similar motions. The incorrect

classifications are improved wholly due to the velocity and acceleration. Additionally,

the classification rates in gesture category 4, 15 and 18 were so low as to fall below

50% because these gestures included a twisting motion of arm in common. This means

that it was difficult to classify these gestures even if we used motion derivatives as

skeleton feature. For example, hand shape recognition on RGB image is required to

solve this problem.

5.5.2 Comparison of Classification Accuracy Between Inverse

Kinematics Calculations and Inter-frame Differences

We evaluated the effect of using IK calculations by comparing the classification

accuracies of our proposed system between two methods of feature extraction. Table
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Table 5.2: Comparison of classification rates (%) between IK calculations and inter-
frame differences to each skeleton feature in the FV-HMM/SVM.

Method
Accuracy

IK Calculations Inter-frame Differences

FV-HMM/SVM(Pos) [27] 59.5 58.3
FV-HMM/SVM(Vel) 57.5 50.3
FV-HMM/SVM(Acc) 44.8 42.1

5.2 shows the comparison result of classification accuracy between IK calculations and

inter-frame differences. As shown in this table, the average classification rate of the

former method is higher in any case. More precisely, the utilization of IK calculations

increased the average classification rate by 1.2%, 7.2% and 2.7% in the case of only

relative position, velocity and acceleration respectively compared to the inter-frame

differences. This means that IK calculations is effective to improve the classification

accuracy. Additionally, the skeleton feature composed of the higher order derivatives

tends to be less accurate.

We assumed that one of the reason to improve the classification accuracy is because

marker positions derived from Kinect sensor include environmental noises and IK

calculations could cancel the effect. In other words, IK calculation is effective to

obtain a smooth movement. Figure 5.3 ∼ 5.7 show the trajectory graphs with respect

to the spatio-temporal data of relative position in left-hand, left-elbow, right-hand

and right-elbow marker joints for all gesture categories. In each gesture category,

there is a pair of graphs for each marker joint. Up and down in the paired graphs

show the trajectories on IK calculations and inter-frame differences respectively. In

each graph, the spatio-temporal data of relative position in x, y and z directions

are drawn by the blue, green and red line respectively. Note that we selected these

samples from training data randomly for each gesture category. As shown in these

figures, a right-hand marker joint of IK calculations, which is the most dynamic and

significant part of gesture movement, becomes relatively smooth in almost all gesture

categories.
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Figure 5.3: Trajectory graphs with respect to the spatio-temporal data of relative
position in left-hand, left-elbow, right-hand and right-elbow marker joints in gesture
category 1, 2, 3 and 4.
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Figure 5.4: Trajectory graphs with respect to the spatio-temporal data of relative
position in left-hand, left-elbow, right-hand and right-elbow marker joints in gesture
category 5, 6, 7 and 8.
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Figure 5.5: Trajectory graphs with respect to the spatio-temporal data of relative
position in left-hand, left-elbow, right-hand and right-elbow marker joints in gesture
category 9, 10, 11 and 12.
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Figure 5.6: Trajectory graphs with respect to the spatio-temporal data of relative
position in left-hand, left-elbow, right-hand and right-elbow marker joints in gesture
category 13, 14, 15 and 16.
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Figure 5.7: Trajectory graphs with respect to the spatio-temporal data of relative
position in left-hand, left-elbow, right-hand and right-elbow marker joints in gesture
category 17, 18, 19 and 20.
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5.6 Conclusion

In this chapter, we used motion derivatives as skeleton feature to extend our hy-

brid generative-discriminative system. Motion derivatives consist of relative position,

velocity and acceleration between marker joints obtained using Inverse Kinematics

(IK) calculations. We evaluated the classification accuracy of our proposed system

on ChaLearn LAPC 2014 dataset. The conclusion of this chapter can be summarized

as follows.

1. We added relative velocity and acceleration to relative position in the skeleton

feature. These higher order derivatives increased the average classification rate

up to 62.2% and 65.1% respectively. This is because velocity describes direction

and speed of marker joints and can differentiate between motions with similar

postures but different directions. Acceleration also captures the change of ve-

locity over time and can differentiate between motions with similar postures

but different velocities. Unfortunately, it was difficult to classify these gestures

including a twisting motion of arm even if we used motion derivatives as skele-

ton feature. Capturing twisting motions or extracting hand shapes is required

to classify these gestures.

2. We compared the classification accuracy using between IK calculations and

inter-frame differences. The utilization of IK calculations increased the average

classification rate by 1.2%, 7.2% and 2.7% in the case of only relative position,

velocity and acceleration respectively compared to the inter-frame differences.

This is because less-noisy and smoother motion trajectories are obtained by

applying motion derivatives calculated using IK calculations.



Chapter6

Motion Classification System

Focusing on Discriminative Parts

of Human Body using Hybrid

Generative-discriminative Models

6.1 Introduction

Many service robots which observe near humans have been more available in recent

years. Along with this change, intelligent robots which can understand human mo-

tions are required. In order to realize the understanding of human motions, motion

classifications which classify human motions into specific categories play an important

role. This is because this failure could give dangers or inconveniences to humans. A

common method to represent human motions is intuitively to use sequences of skele-

ton configuration. Optical motion capture systems provide accurate motion data by

capturing 3D skeleton markers with multiple infrared cameras. These systems are

therefore limited to use in only motion capture studios and subjects have to wear

cumbersome devices while performing motions. However, the release of low-cost and

marker-less motion sensors, such as the Kinect developed by Microsoft, has recently

made skeleton extractions much easier and more practical for skeleton-based motion

classifications [59]. So far, there have been many works related to skeleton-based

motion classifications [51]. In this context, we undertake this task based on following

two findings. First, local motion features derived from discriminative parts of human

body are more useful than a global motion feature derived from whole body. This

78
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. . .

MKL-SVM

Motion category

LSF LSFLSF

. . .

. . .

Inverse kinematics

FV-HMM

Figure 6.1: Overview of our proposed system for motion classification based on skele-
tal model. This system focuses on local parts of human body closely related to target
motion.
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is because the discriminative parts are different depending on target motions. For

example, “drink” motion mainly uses one arm, “clap” motion mainly uses both arms

or “run” motion mainly uses both legs, etc. The local motion features are also robust

to variations because the influence of partially ambiguous joints can be relatively

avoided by dividing into body parts compared with the global motion feature [72].

Second, motion derivatives of marker joints are effective to differentiate among human

motions containing similar postures. More precisely, velocity is described by direction

and speed of marker joints and can classify human motions with similar postures but

different speeds. Acceleration also captures the temporal change of velocity and can

classify human motions with similar postures but different velocities.

In this chapter, we propose a skeleton-based motion classification system focusing

on discriminative parts of human body related to target motion. As shown in Fig.6.1,

a skeleton feature is composed of relative position, velocity and acceleration between

marker joints obtained using IK calculations. Several marker joints selected from a

skeleton model are connected to compose a local skeleton feature. A human motion

model is constructed by Hidden Markov Model (HMM) using the spatio-temporal

data of local skeleton feature. A motion feature is represented as Fisher Vector (FV)

parameterized by the human motion model[27]. Motion features from all local parts

are weighted and integrated by simultaneously learning parameters of Multiple Kernel

Learning (MKL) and Support Vector Machine (SVM). Finally, an observed motion

is classified into the most probable category by the system.

6.2 Related Work

There have been various works of motion classification in pattern recognition com-

munities. In particular, recent advances on human pose estimation from depth image

enabled to extract skeleton configuration of human whole body, so that three in-

formation sources, i.e., skeleton, color and depth image, become available in many

approaches by using Kinect sensor. Along with this change, various modalities such

as skeleton [74][83][20], color, depth [48][81], silhouette [37][9] and space-time occu-

pancy [71][73] were used as spatio-temporal features for motion classifications. When

considering these previous approaches, it can be said that methods which use skeleton
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features tend to achieve higher classification rates. Note that we also adopt the same

approach.

In the skeleton-based motion classifications, some approaches focused on mining the

most discriminative joints of human body. In the work proposed by Ofli et al. [46],

joint angles between two connected limbs were described as skeleton features. The

most discriminative joints were detected by exploiting the relative informativeness of

all the joint angles based on their entropy. The sequence of the most informative

joints (SMIJ) implicitly encoded the temporal dynamics of motion sequence and was

used as motion features. Wei et al. [75] represented skeleton features by difference

vectors between 3D skeleton joints. A symlet wavelet transform was applied to derive

the trajectories of the deference vectors, and only the first V wavelet coefficients

were retained as motion features to reduce the noise of skeleton data. By using

the motion features, a multiple kernel learning (MKL) method was then used to

mine the discriminative joints of human body for each motion category. In the work

proposed by Eweiwi et al. [21], skeleton features were described by joint positions

and velocities in the spherical coordinate system, and by the correlations between

positions and velocities represented as the orthogonal vector to the joint positions

and velocities. A temporal pyramid method was then used to construct the temporal

structure of motion sequence. Motion features were represented by sets of histograms,

each computed over the motion sequence on a specific feature and body joint. Partial

least squares (PLS) [3] was used to weight the importance of joints by using the

motion features, and kernel PLS SVM [55] was employed for classification tasks.

There have been also various approaches to focus on mining the most discriminative

subsets of joints or consider dividing human body into several body parts. In the

work proposed by Wang et al. [74], 3D joint positions of skeleton configuration and

depth data were used to extract skeleton features composed of relative positions of

pairwise joints and local occupancy pattern (LOP) features, that are depth statistics

around joints. A Fourier temporal pyramid (FTP) method was used to construct the

temporal structure of motion sequence in the skeleton joints. The conjunctive joint

structure of FTP features was defined as actionlet. A data mining method was used

to discover the most discriminative actionlet for each motion category. During the

mining process, the joints were taken into the actionlet by evaluating confidence and
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ambiguity scores. A multiple kernel learning (MKL) approach was used to weight

the actionlets. Wang et al. [72] grouped skeleton joints derived by a pose estimation

algorithm into five body parts. Skeleton features were described by positions of 2D

and 3D skeleton joints. Contrast mining algorithms [16] in the spatial and temporal

domain were employed to detect sets of distinctive co-occurring spatial configurations

(poses) and temporal sequences of body parts. Such co-occurring body parts formed a

dictionary. By applying a bag-of-words approach, motion features were represented by

histograms of the detected spatial-part-sets and temporal-part-sets, and intersection

kernel SVM was employed for classification tasks. In the work proposed by Evangelidis

et al. [20], skeleton joints were considered as joint quadruples. Skeleton features

were composed of relative positions in the joint quadruples referred to as “skeletal

quads”. For each class, a Gaussian mixture model was trained by using expectation

maximization. The parameters of the model were then used to extract Fisher scores

[31]. The concatenated scores were used to obtain Fisher vectors (FVs). A multi-

level splitting method was then used to construct the temporal structure of motion

sequence. Motion features were represented by the concatenation of FVs obtained

from all segments and multi-class linear SVM was employed for classification tasks.

Our approach to motion classification using FV and SVM is same as [58]. In [58], a

feature vector was defined as a concatenation of FSs from HMM which represented a

spatio-temporal data of human motion. A SVM classifier was also used to classify the

human motion into a specific category. In contrast to [58], a large-scale motion dataset

is used in our classification system. Additionally, our approach is different from [58]

in weighting and integrating FV-HMMs by MKL to focus on discriminative parts of

human body related to target motion. It may be a small difference but, in [58], the

motion feature become a high-dimensional vector as the number of motion categories

is increased because an HMM is constructed for each motion category. This leads to

an increase of calculation cost in SVM classifier. However, our approach groups the

motion data in a hierarchical method and constructs an HMM for each group. The

number of groups can be manually set to less than the number of motion categories

and the size of motion feature represented as FV-HMM can be fixed to the constant

even if the motion categories are increased. More generally, our approach is highly

scalable to large motion dataset. Zanfir et al. [83] performed motion classifications
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Figure 6.2: Two types of Local Skeleton Feature (LSF). Left side : the LSF is a
36-dimensional vector of four skeleton features. Each skeleton feature is a relative
position, velocity and acceleration between marker joint n and the center of skeleton
model. Right side : the LSF is a 54-dimensional vector of six skeleton features. Six
is identical with the number of elements in upper triangular distance matrix. Each
skeleton feature is a relative position, velocity and acceleration between pairwise
marker joints.

based on the assumption that human motions consisting temporal sequences of 3D

skeleton joints can be described precisely by using joint positions and differential

properties such as velocities and accelerations of skeleton joints. Additionally, [83]

compared discriminative abilities of position, velocity and acceleration for motion

classifications. The experimental results showed that the combination of these three

features recorded the highest classification rate.

6.3 Motion Classification System (FV-HMM/MKL-

SVM)

As shown in Fig.6.1, we propose a skeleton-based motion classification system em-

ploying MKL of FVs parameterized by human motion model constructed from LSFs.

In this section, we introduce a LSF, a FV parameterized by human motion model

and MKL of FVs in detail.
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Figure 6.3: Marker placement when using Kinect sensor. 20 virtual markers are
attached to a human body.

6.3.1 Local Skeleton Feature

As previously discussed, the motion classification using skeleton features tends to

achieve a high classification accuracy. In the motion classification system, several local

features in body parts associated with human motion are more effective than a global

feature covering the whole body for understanding a human motion. For example,

a whole-body skeleton is divided into several body parts in recent researches[74][20].

Additionally, the derivatives of marker position with respect to time are available

because they can capture a distinctive feature between different motions with simi-

lar postures[83]. Velocity has ability to discriminate between motions which involve

similar posture but different direction (e.g., standing up and sitting down) and ac-

celeration also describes the direction and speed of joints to differentiate between

motions which contain different direction and speed (e.g., drawing a circle and draw-

ing a line). Therefore, a skeleton-based motion classification system has an advantage

of using IK calculations to obtain motion derivatives.

If bpn,
bvn and ban denote a relative position, velocity and acceleration between
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marker n and the center of skeleton model, they are defined as Eqn.(5.2), (5.3) and

(5.4) respectively. By using the motion derivatives, a skeleton feature of marker joint

n at time t is represented as the following equation.

bon(t) = [bpn,
bvn,

ban]
T (6.1)

In this chapter, we use a spatio-temporal data of four marker joints referred to as

a local skeleton feature. Note that the number of maker joints in the local skeleton

feature is determined by reference to [74]. In [74], four marker joints discovered by

the data mining method are defined as a discriminative actionlet.

We intuitively choose 23 and 58 local skeleton features from the upper-body marker

joints for gesture classification and the whole-body marker joints for motion classi-

fication respectively. Note that these local skeleton features are not cross-validated

by using dataset, but [20] shows that there is not so much difference in classification

performance by considering the body symmetry among them. Figure 6.2 shows two

types of local skeleton feature. As shown in this figure, first type is a 36-dimensional

vector of four skeleton features (Left side in the Fig.6.2). Each skeleton feature is a

relative position, velocity and acceleration between marker joint n and the center of

skeleton model represented as Eqn.(6.2). Second type is a 54-dimensional vector of

six skeleton features. Six is identical with the number of elements in upper triangular

distance matrix (Right side in the Fig.6.2). Each skeleton feature is a relative posi-

tion, velocity and acceleration between marker joint n and marker jointm represented

as Eqn.(6.3).

onb(t) = {bon(t)|n = 1, 2, 3, 4} (6.2)

onm(t) = {bon(t)− bom(t)|n,m = 1, 2, 3, 4;n ̸= m} (6.3)

6.3.2 Fisher Vector Parameterized by Human Motion Model

Human motion data is represented as temporal data of joint positions. An HMM,

which has a robust feature for noise or error of spatio-temporal signals, is appropriate

for modeling the human motion data. More formally, an HMM is defined by the
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Table 6.1: 23 local skeleton features composed of 4 marker joints

No. J1 J2 J3 J4 No. J1 J2 J3 J4
1 3 4 5 6 13 4 9 10 11
2 3 4 6 7 14 4 9 11 12
3 3 4 7 8 15 4 10 11 12
4 3 4 9 10 16 5 6 7 8
5 3 4 10 11 17 5 6 9 10
6 3 4 11 12 18 5 7 9 11
7 3 5 6 7 19 5 8 9 12
8 3 5 7 8 20 6 7 10 11
9 3 9 10 11 21 6 8 10 12
10 4 5 6 7 22 7 8 11 12
11 4 5 7 8 23 9 10 11 12
12 4 6 7 8

following four parameters: a set of hidden states Q, a state transition matrix A, a

set of emission probability distribution B, a set of initial state probability Π. For

convenience, we represent HMM parameters by putting them together, defined as

λ = {Q,A,B,Π} (6.4)

Here, we define P (O|λ) as the probability of generating the motion sequences O =

{o(1),o(2), ...,o(T )}, when given the parameters λ. The optimized calculation is

usually conducted based on Baum-Welch algorithm (a type of EM algorithm), which

can determine the parameters by maximizing the likelihood P (O|λ). This likeli-

hood can be calculated by using a forward-backward algorithm. Note that the HMM

parameters representing human motion is referred to as “a motion symbol”.

In this way, several motion symbols are obtained by training each local skeleton

feature. Next, the motion symbols are clustered in a hierarchy based on dissimilarities

of them. The distance of two motion symbols is calculated by using Kullback-Leibler

(KL) information and Ward method constructs the hierarchical structure of them

by using the distance. Nk sets of motion symbols referred to as “central motion

symbols” are obtained by clustering. The derivative of log-likelihood with respect to

HMM parameters λ is calculated to become adapted to the central motion symbols
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Table 6.2: 58 local skeleton features of 4 marker joints

No. J1 J2 J3 J4 No. J1 J2 J3 J4
1 3 4 5 6 30 7 8 11 12
2 3 4 6 7 31 7 8 14 15
3 3 4 7 8 32 7 8 15 16
4 3 4 9 10 33 7 8 18 19
5 3 4 10 11 34 7 8 19 20
6 3 4 11 12 35 7 14 15 16
7 3 5 6 7 36 7 18 19 20
8 3 5 7 8 37 8 14 15 16
9 3 9 10 11 38 8 18 19 20
10 4 5 6 7 39 9 10 11 12
11 4 5 7 8 40 9 14 15 16
12 4 6 7 8 41 9 18 19 20
13 4 9 10 11 42 10 11 14 15
14 4 9 11 12 43 10 11 15 16
15 4 10 11 12 44 10 11 18 19
16 5 6 7 8 45 10 11 19 20
17 5 6 9 10 46 10 14 15 16
18 5 7 9 11 47 10 18 19 20
19 5 8 9 12 48 11 12 14 15
20 5 14 15 16 49 11 12 15 16
21 5 18 19 20 50 11 12 18 19
22 6 7 10 11 51 11 12 19 20
23 6 7 14 15 52 11 14 15 16
24 6 7 15 16 53 11 18 19 20
25 6 7 18 19 54 12 14 15 16
26 6 7 19 20 55 12 18 19 20
27 6 8 10 12 56 14 15 18 19
28 6 14 15 16 57 14 16 18 20
29 6 18 19 20 58 15 16 19 20
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to each motion symbol, defined as

FS(O,λ) = ∇λlogP (O|λ) (6.5)

= ∇λL(O|λ) (6.6)

Note that FS(O,λ) is called Fisher Score (FS). As previously explained, motion

symbol λ is composed of the initial state probabilities πi, the state transition proba-

bilities aij and the emission probabilities (the mean vector µi and the variance vector

σi in the case of Gaussian model). The derivatives of the log likelihood L(O|λ) with
respective to these parameters are defined as

∇λL(O|λ) =
[∂L(O|λ)

∂πi
· · · , ∂L(O|λ)

∂aij
· · · , ∂L(O|λ)

∂µi

· · · , ∂L(O|λ)
∂σi

· · ·
]T

(6.7)

Here, i, j = 1, ..., N . For more information about the calculation process, refer to

[27]. FV-HMMs are composed of the values representing this direction to modify

their parameters. Given a sequence Oi and the set of λ, a FV-HMM, which is

constructed by concatenating FS(Oi,λk) obtained from each central motion symbol

in a single vector, defined as

FVHMM(Oi, {λk}) = F
−1/2
λ [FS(Oi,λ1)

T , ..., FS(Oi,λNK
)T ]T (6.8)

Note that Fλ is called Fisher Information Matrix (FIM) normalizing the derivatives

of log-likelihood. The FV-HMM is input to SVM for training and classification task.

If we select a linear kernel as the kernel function of SVM, a Fisher Kernel(FK) is

calculated as the inner product of FV-HMMs.

FK(Oi,Oj) =< FVHMM(Oi, {λk}), FVHMM(Oj, {λk}) > (6.9)

6.3.3 Multiple Kernel Learning of Fisher Vectors

As discussed in the previous section, a local skeleton feature described in section

6.3.1 is represented as a motion feature by the FV-HMM. This section introduces

the strategy to improve the classification accuracy by weighting and integrating the

motion features according to target motion. The discriminative weights are learnt

by the MKL. This method constructs a combined kernel by integrating several sub-

kernels of motion feature linearly and then the combined kernel is applied to SVM
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strategy. If βk denotes the optimized weight in each sub-kernel, the combined kernel

is defined as follows.

FKcombined(Oi,Oj) =
K∑
k=1

βkFKk(Oi,Oj) (6.10)

Here, βk ≤ 0,
∑K

k=1 βk = 1. Note that K means the number of kernel, i.e., the

number of motion features or local skeleton features. The MKL method makes sub-

kernels corresponding to motion features. A predicted motion label is determined by

weighting and integrating the motion features. [62] proposed the strategy to learn

kernel weights βk and SVM parameters in the same time by iterative SVM learning

of single kernel. In this chapter, we apply the same approach.

The combined kernel defined above is represented as the summation of weighted

sub-kernels FKk(xik,xjk), where xik or xjk is a motion feature of k-th local part. If

a global motion feature Xi is defined by concatenating local motion features xik as

follows

Xi = [xT
i1,x

T
i2, ...,x

T
iK ]

T (6.11)

the combined kernel FKcombined(Xi,Xj) is formulated as the following quadratic form.

FKcombined(Xi,Xj) = [xT
i1,x

T
i2, ...,x

T
iK ]


β1 O

. . .

O βK




xj1

...

xjK



= [xT
i1,x

T
i2, ...,x

T
iK ]


√
β1 O

. . .

O
√
βK



√
β1 O

. . .

O
√
βK




xj1

...

xjK


= XT

i B
TBXj

= (BXi)
TBXj (6.12)

This means that the combined kernel is calculated by the inner product of global mo-

tion feature BX. Here, (BX)T is calculated by using the derivatives of log likelihood

with respect to the model parameter θ̂, which is subject to ∂θ/∂θ̂ = B, as follows.

(BX)T =
∂logP (O|θ)

∂θ̂
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=
∂logP (O|θ)

∂θ

∂θ

∂θ̂

= XT ∂θ

∂θ̂
(6.13)

This means that the calculating formula of FV-HMM is changed from XT to (BX)T .

Therefore, the combined kernel is designed by using the similarity between the global

motion feature BXi and BXj derived as FK in the model θ̂.

6.4 Experimental Setup

In order to evaluate the proposed system, we used ChaLearn LAPC 2014 dataset

for gesture classification and MSR-Action3D dataset for motion classification in the

following experiments and compared the classification accuracy.

6.4.1 ChaLearn LAPC 2014 Dataset

We used gesture dataset provided by the competition organizer of ChaLearn LAP

Challenge. It is composed of three datasets: “training data”, “validation data” (man-

ually annotated gesture labels) and “test data” (without gesture labels). Each dataset

consists of hundreds of files, and each file contains approximately one-minute gesture

data captured by Kinect sensor, including video data (RGB, depth and silhouette)

and position data of marker joints extracted from the depth sensor. Target gestures

are 20 Italian cultural or anthropological signs performed by many subjects: vat-

tene (1), vieniqui (2), perfetto (3), furbo (4), cheduepalle (5), chevuoi (6), daccordo

(7), seipazzo (8), combinato (9), freganiente (10), ok (11), cosatifarei (12), basta (13),

prendere (14), noncenepiu (15), fame (16), tantotempo (17), buonissimo (18), mes-

sidaccordo (19), sonostufo (20). While performing a gesture, he or she also speaks

out the corresponding Italian word. In this experiment, we used 6,830 and 3,200

gesture samples for training and validation respectively. For more information about

the dataset, refer to [18].
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Table 6.3: 20 label names of motion categories

No. Label Name No. Label Name

1 high arm wave (HiW) 11 two hand wave (HW)
2 horizontal arm wave (HoW) 12 side boxing (SB)
3 hammer (H) 13 bend (B)
4 hand catch (HC) 14 forward kick (FK)
5 forward punch (FP) 15 side kick (SK)
6 high throw (HT) 16 jogging (J)
7 draw x (DX) 17 tennis swing (TSw)
8 draw tick (DT) 18 tennis serve (TSr)
9 draw circle (DC) 19 golf swing (GS)
10 hand clap (HC) 20 pick up & throw (PT)

Table 6.4: Three action subsets

AS1 AS2 AS3

horizontal arm wave (HoW) high arm wave (HiW) high throw (HT)
hammer (H) hand catch (HC) forward kick (FK)

forward punch (FP) draw x (DX) side kick (SK)
high throw (HT) draw tick (DT) jogging (J)
hand clap (HC) draw circle (DC) tennis swing (TSw)

bend (B) two hand wave (HW) tennis serve (TSr)
tennis serve (TSr) forward kick (FK) golf swing (GS)

pick up & throw (PT) side boxing (SB) pick up & throw (PT)

6.4.2 MSR-Action3D Dataset

We used MSR-Action3D dataset captured by a monocular video sensor. The

dataset consists of temporally segmented motion samples and includes 567 motion

samples in total, but 10 motion samples are not used because of missing data or er-

roneous joint positions. The frame rate is 15 fps and the resolution 640 × 480(width

× height). As shown by Tab.6.3, there are 20 motion categories in the dataset. Ten

subjects perform each motion two or three times. As shown by Tab.6.4, we divided

the dataset into three subsets (AS1, AS2 and AS3), which have 8 motion categories

respectively, to prepare the same condition for fair comparisons. Note that the AS1

and AS2 are grouped together by similarity and the AS3 are grouped together by

complexity. We also followed the cross-subject (CrSub) test setting of [37], where the
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Table 6.5: The comparison of classification rates (%) between FV-HMM/SVM and
FV-HMM/MKL-SVM on the ChaLearn LAPC 2014 dataset.

Method Accuracy

FV-HMM/SVM [27] 59.5
FV-HMM/MKL-SVM(36D) 69.8
FV-HMM/MKL-SVM(54D) 71.1
FV-HMM/MKL-SVM(12D) 73.1
FV-HMM/MKL-SVM(18D) 74.2

sequences for half of the subjects are used for training, and the remaining sequences

of the other half of the subjects for testing. For more information about the dataset,

refer to [37].

6.4.3 Other Settings

We evaluated our approach on two datasets for gesture and motion classifications.

Note that 12 marker joints of upper body are used for the former task and 20 marker

joints of whole body are used for the latter task. As explained before, we used two

types of local skeleton feature and represented them as 12D and 18D when using

only relative position or 36D and 54D when using relative position, velocity and

acceleration in the following sections. We decided empirically that Nk is about 10 and

the number of hidden states N is 10 in all experiments. A linear kernel and gaussian

kernel are selected as the kernel function of SVM among chi-squared, gaussian and

linear kernel because of the best performance for gesture and motion classifications

respectively. Note that we conducted the following experiments under the cross-

subject test setting.

6.5 Experimental Result

6.5.1 Evaluation in Gesture Classification

We first evaluated the effect of MKL. Table 6.5 shows the comparison between

FV-HMM/SVM and FV-HMM/MKL-SVM. The experimental result shows that our

approach achieved the accuracy of 74.2% at the highest classification rate, and sig-
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Table 6.6: The classification rates (%) of each category on the ChaLearn LAPC 2014
dataset.

Accuracy Accuracy Accuracy

1 76.7 8 67.0 15 53.6
2 64.6 9 88.5 16 92.7
3 68.1 10 47.6 17 81.5
4 65.4 11 69.8 18 59.0
5 89.5 12 60.7 19 75.9
6 83.5 13 94.2 20 88.2
7 90.6 14 67.4 Avg 74.2

Table 6.7: The comparison to the state-of-the-art approach on the ChaLearn LAPC
2014 dataset.

Team Modality Score

Neverova et al. [44] Skeleton, Depth, RGB 0.850
Monnier et al. [41] Depth, RGB 0.834

Chang [10] Skeleton, RGB 0.827
Evangelidis et al. [20] Skeleton, RGB 0.816

Pigou et al. [50] Depth, RGB 0.792
Wu and Shao [76] Skeleton, Depth 0.787
Camgoz et al. [8] Skeleton 0.746
Chen et al. [11] Skeleton, Depth, RGB 0.649

Liang and Zheng [38] Skeleton, Depth 0.597

Our approach Skeleton 74.2

nificantly outperforms the method, in which motion features corresponding to local

parts of human body are not weighted and integrated. This means that separating

into body parts related to target motion is effective to improve the classification accu-

racy. Here, Table 6.6 shows the classification rates of each category on the ChaLearn

LAPC 2014 dataset. The classification rates of 10, 15 and 18 are relatively low.

This means that it is difficult to classify these gestures including a twisting motion

even if we use motion derivatives as skeleton feature. Capturing twisting motions or

extracting hand shapes is required to classify these gestures.

We also compared our approach to the state-of-the-art methods in Tab.6.7. Note

that score means Jaccard Index used for evaluation in the ChaLearn LAPC 2014

competition. These scores reflect that gesture boundaries are not known as in more
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AS1CrSub AS2CrSub AS3CrSub

Figure 6.4: Three confusion matrices of FV-HMM/MKL-SVM(54D) in different mo-
tion sets of cross-subject test on the MSR-Action 3D dataset: AS1(Left), AS2(Center)
and AS3 (Right). The average classification rates in AS1CrSub, AS2CrSub and
AS3CrSub are 76.5%, 63.7% and 85.0% respectively.

Table 6.8: The comparison of classification rates (%) between FV-HMM/SVM and
FV-HMM/MKL-SVM on the MSR-Action3D dataset.

Method
Accuracy

AS1CrSub AS2CrSub AS3CrSub Overall

FV-HMM/SVM [27] 54.3 39.4 67.1 53.6
FV-HMM/MKL-SVM(12D) 72.3 56.8 82.1 70.4
FV-HMM/MKL-SVM(18D) 73.4 58.5 84.3 72.1
FV-HMM/MKL-SVM(54D) 76.5 63.7 85.0 75.1

practical case. Our approach shows the average classification rate under the known

boundary situation in Tab.6.7. Note that we used only skeleton features. Apparently,

the combination of multi-modal features would tend to be a higher score.

Finally, we visualized the discriminative weighted graph of each gesture category

learnt by MKL and the most weighted parts of human body related to target gesture

in Fig.6.5. Note that the most remarkable part of each gesture is shown in red, which

corresponds to the motion feature with the highest weight. For example, 1, 2, 8, 10,

11, 12 and 14 are right arm gestures and the most remarkable part of each gesture

is shown in right arm region. 5, 6 and 9 are also both arms gestures and the most

remarkable part of each gesture is shown in both arms region.
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Table 6.9: The comparison of classification rate (%) to the state-of-the-art approach
on the MSR-Action3D dataset.

Method Accuracy

Latent-Dynamic CRF [42] 64.8
Canonical Poses [17] 65.7

FV-HMM/MKL-SVM(18D) 72.1
Action Graph on Bag of 3D Points [37] 74.7

FV-HMM/MKL-SVM(54D) 75.1
EigenJoints [80] 82.3

Skeletal Quads [20] 89.9

6.5.2 Evaluation in Motion Classification

We first evaluated the effect of MKL. Table 6.8 shows the comparison between

FV-HMM/SVM and FV-HMM/MKL-SVM. As shown in this table, the average clas-

sification rates of our approach (54D) on AS1, AS2 and AS3 under the CrSub test are

76.5%, 63.7% and 85.0% respectively and the overall accuracy is 75.1%. The classifi-

cation rate in AS2CrSub is relatively low. This is because similar motions are more

sensitive to the larger intra-class variations generated in CrSub tests. The experi-

mental result also shows that our approach significantly outperforms the method, in

which motion features corresponding to local parts of human body are not weighted

and integrated. This means that separating into body parts related to target mo-

tion is effective to improve the classification accuracy. Here, Figure 6.4 shows the

confusion matrices of our approach on AS1CrSub, AS2CrSub and AS3CrSub. Note

that each row corresponds to actual class and each column denotes predicted class.

In AS1CrSub, several motions are confused by TSr and PT, for example H, FP and

HT. In AS2CrSub, DX, DT and DC are mutually confused because of partially sim-

ilar motions. In AS3CrSub, motions are significantly different and the classification

results are high wholly, except for HT and TSw.

We also compared our approach to the state-of-the-art methods in Tab.6.9. As

shown in this table, our approach is relatively low in average classification rates com-

pared to [80], in which the average classification rates in AS1CrSub, AS2CrSub and

AS3CrSub are 74.5%, 76.1% and 96.4% respectively. However, the average classifica-

tion rate in AS1CrSub is higher than that of [80] by 2.0%. In AS1CrSub of [80], the
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classification rate of 13 (bend motion) is especially low. This is because the dataset

rarely includes the motion of upper body in lower position and it is suspected that

the information of relative position between hand and foot is reduced by Principal

Component Analysis (PCA). However, the relationship between hand and foot can

be considered by local skeleton feature in our approach. Therefore, our approach is

superior to [80] in AS1CrSub. The method of [80] also has a disadvantage that the

calculation cost is increased as the dataset becomes large-scale dataset because of us-

ing a nearest neighbor as the classifier. Additionally, the method of [20] also considers

several local parts of human body defined as joint quadruples but our approach is

different from [20] in weighting and integrating motion features of local part by MKL

according to target motion. The method focusing on discriminative parts of human

body can be extended to other applications. Our approach also has an advantage

with [20] in a calculation cost. The dimension number of feature vector in [20] is

represented as 12Md, where M is the number of mixtures of Gaussians and d is the

dimension number of skeleton feature. On the other hand, the dimension number of

FV-HMM is represented as (3+2d)NNk. The calculation cost is proportional to these

dimension numbers. Therefore, the calculation cost in our approach is about seven

times lower than that of [20] in this experiment where M=128, N=10 and Nk=10 re-

spectively. If the method of [20] applies to the extension of considering discriminative

parts in the same way as our approach, it requires further K times calculation cost

represented as 12KMd because the parameters of the mixture Gaussian distributions

become variables of K, where K is the number of motion features or local skeleton

features. Therefore, when considering the skeleton model more complex, in other

words the number of selected local joints is changed from four to five, the calculation

cost of [20] is increased by the rise of K. However, our approach has an advantage

that the calculation cost does not effect only a little.

Finally, we visualized the discriminative weighted graph of each motion category

learnt by MKL and the most weighted parts of human body related to target motion

in Fig.6.6. Note that the remarkable parts of each motion are shown in red, which

correspond to the local skeleton features with the 1st and 2nd highest weight. For

example, J is a jogging motion and the remarkable parts are shown in both legs region.

HC and HW are also a hand-clapping and a two-hand-waving motions respectively
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Figure 6.5: The discriminative weighted graph of each gesture category and the most
weighted parts of human body related to target gesture.

and the remarkable parts of each motion are shown in both arms region. FK and SK

are also a forward-kicking and a side-kicking motions respectively and the remarkable

parts of each motion are shown in one leg region.

6.6 Conclusion

We have proposed a skeleton-based motion classification system focusing on dis-

criminative parts of human body related to target motion. Motion features are repre-

sented as Fisher vectors parameterized by human motion model from Local Skeleton

Features, and weighted and integrated by using Multiple Kernel Learning. The com-

parisons of classification rate on two datasets show better performance of gesture and

motion classifications in the experiments. This means that the design of motion fea-

tures is effective for these tasks. Although the proposed method does not record the
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Figure 6.6: The discriminative weighted graph of each motion category and the most
weighted parts of human body related to target action.

highest performance, our approach can know the remarkable parts of human body

related to target motion and provide a clue to recognize the human motion more

precisely.



Chapter7

Multi-class Daily Motion

Recognition System Generating

Multiple Sentences

7.1 Introduction

According to a change of social demand from industrial usages to service usages,

robots and systems have become more intelligent and a familiar presence in our daily

lives. Along with this change, the intelligent robots and systems used in human living

areas would be expected to have the abilities to observe humans nearly, understand

human behaviors, grasp the intentions and give livelihood supports properly. In or-

der to support humans in the coexisting space, motion classification which classify

daily human motions into specific categories play an important role. From this view-

point, we focus on a multi-class daily motion classification for the purpose of behavior

support by assistive robots.

However, only classifying human motions can not lead to behavior supports directly.

The connection to other information is also required for highly intelligent processing

referred to as “motion recognition”. Here, humans are different from other animals in

that they can understand the real world using natural language and perform complex

communications with others. In order to understand the real world in the same way,

it is important for intelligent robots and systems to link the real world with the

natural language. Therefore, we also utilize the property of natural language which

has benefits of the scalability due to the usage of large-scale language corpora and

the interpretability to humans. By connecting human motions to daily words, motion

99
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classifications expand to a variety of applications related to behavior supports.

In this chapter, we apply the motion model described in the previous chapter to

a multi-class daily motion classification. We evaluate the motion model on dataset

obtained by an optical motion capture system. Additionally, we combine the mo-

tion model to our previous motion recognition system which generates multiple sen-

tences associated with human motions. This system is composed of three models: “a

motion model”, “a motion language model” and “a natural language model”. The

FV-HMM/MKL-SVM is used as the motion model. The motion language model sta-

tistically represents the association relationship between motion symbols and words.

The natural language model constructs network structures which represent the ar-

rangement of words for sentence generations. Sentence structures have the benefit

to arranging several words into an easy-to-understand form used for the linguistic

interface of human-robot interactions. We evaluate the motion recognition system on

motion and language dataset.

There are three main contributions in this chapter. First, there is a novelty in

the design of motion model. More precisely, we propose the weighting integration

method of motion features by combining Fisher vector representations parameterized

by hidden Markov model with multiple kernel learning. By using this combination, the

motion model shows the discriminative parts of human body related to target motion.

Second, we challenge to a multi-class daily motion classification and the motion model

shows high classification accuracies. This is a significant task because humans live

their daily lives by taking various motions. To the best of our knowledge, this model

is also the first approach to try to classify over 100 motion categories in skeleton-

based approaches. We collect a motion dataset of our daily lives for evaluation. Our

dataset contains the sequences of 3D skeleton markers captured by multiple infrared

cameras in the motion capture studio. It includes 125 motion categories. Third, our

system has various possibilities to connect with the applications which use intelligent

processing methods of natural language such as word association, context inference

and hierarchical ontology because we construct the relationship between motion and

language in the system.
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7.2 Multi-class Daily Motion Classification Sys-

tem (FV-HMM/MKL-SVM)

We used the same approach in Chapter 6. In this system, a skeleton feature is

composed of relative position between marker joints obtained using IK calculations.

Several marker joints selected from a skeleton model are connected to compose a local

skeleton feature. A human motion model is constructed by hidden Markov model us-

ing the spatio-temporal data of local skeleton feature. A motion feature is represented

as Fisher vector parameterized by the human motion model. Motion features from

all local parts are weighted and integrated by simultaneously learning parameters of

multiple kernel learning and support vector machine. Finally, an observed motion is

classified into the most probable category by the system.

7.3 Experimental Setup

7.3.1 YNL MoCap Dataset

We used daily motion dataset constructed by observing three subjects in a motion

capture studio for motion classification. Note that there are 125 motions in the

dataset. Table 7.1 shows the list of these motions and Figure 7.2 shows 18 examples

selected from them. An optical motion capture system in the studio can measure the

positions of 34 virtual markers attached to the subject. Figure 7.1 shows the locations

of the attached markers which follow the Helen Hayes marker placement. A relative

position between markers can be obtained using Inverse Kinematics (IK) calculations.

Three subjects perform each motion two or three times. In the experiment, we used

748 and 375 motion instances for training and validation respectively not applying

the cross-subject test setting.

7.3.2 Motion and Language Dataset

We used this dataset to construct the motion language model and natural language

model explained in Chapter 2 for sentence generation. The spatio-temporal data of
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Figure 7.1: Marker placement when using a optical motion capture system. 34 mark-
ers are attached to a human body according to the Helen Hayes marker placement.

each captured motion is encoded as a motion symbol by the FV-HMM/MKL-SVM.

In the experiment, 748 motion symbols were collected (Nλ = 748). Several sentences

describing the captured motion were attached to these motion symbols. There were

624 sentences with 218 words used among all the sentences (N=624 and Nw=218).

Figure 7.3 shows six examples of training data. As shown in this figure, English

sentences are manually attached to a motion symbol. Here, “<s>” and “</s>”

mean a sentence beginning and end respectively.

7.3.3 Other Settings

In motion classification phase, we used a relative position between marker joints

as a skeleton feature and 58 local skeleton features of right type in Fig. 6.2 in the

experiment. We selected the linear kernel as a kernel function of SVM. Others are

the same conditions as in Chapter 6.

In sentence generation phase, the number of hidden states in the motion language

model was taken to be 10,000 (Ns=10,000) and the iterative computation by the EM

algorithm in the training was performed 10 times. Note that we used 4-grams as the
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[1] avoid_big           [4] bow             [17] cross_legs        [21] drink         [25] exit_sliding  [29] fasten_shoelaces

[33] gargle              [35] hold       [38] jump_forward     [41] knock           [44] look_for    [45] mobile_phone

[48] open_sliding  [56] pour_sitting      [67] read_          [72] scrach_head     [93] take_off      [110] wash_face
newspaper_door

_door

_clothes

Figure 7.2: Examples of captured motion in YNL MoCap dataset.

natural language model.

7.4 Exerimental Result

In this section, we show the experimental results of multi-class daily motion classi-

fication on YNL MoCap dataset and sentence generation representing human motion

on motion and language dataset.

7.4.1 Multi-class Daily Motion Classification

We evaluated our approach explained in the previous chapter by applying to multi-

class motion classification. The classification systems to be compared are HMM/1-
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<s>  a housewife cooks foods  </s>

<s>  a housewife cuts with a kitchen knife   </s>

<s>  a student makes a phone call  </s>

<s>  a student uses a cellphone  </s>

<s>  a person speaks on the phone  </s>

<s>  a student runs  </s>

<s>  a student makes a dash  </s>

<s>  a player runs  </s>

<s>  a housewife sweeps with a broom  </s>

<s>  a housewife cleans up the room  </s>

<s>  a person picks something up  </s>

<s>  a person reaches his hand  </s>

[19] [45]

[69] [89]

[97]

<s>  a student plays tennis  </s>

<s>  a student swings his tennis racket  </s>

<s>  a player plays tennis  </s>

[92]

Motion Attached sentences Motion Attached sentences

Figure 7.3: Examples of training data in motion and language dataset. These sen-
tences are manually given to each motion.

NN(Pos), FV-HMM/SVM(Pos), FV-HMM/MKL-SVM(Pos) and FV-HMM/MKL-

SVM(Pos+Vel+Acc). Table 7.2 shows the comparison result of classification accuracy

for all classification systems. The values in the table are the average classification

rates of all categories. The experiment was conducted on both cross-subject and non

cross-subject test settings. As shown in this table, the average classification rate of

FV-HMM/MKL-SVM was the highest among all types on both settings. Note that

the average classification rate of FV-HMM/MKL-SVM(Pos) reached 81.1% on non

cross-subject test setting. Figure 7.4 shows the confusion matrix of FV-HMM/MKL-

SVM(Pos). As shown in this figure, the classification rates are high in almost all

categories. Additionally, the average classification rates on cross-subject test setting

were relatively low. This is because the subjects performed the same motion in various

movements and such motion classification was difficult.

The FV-HMM/MKL-SVM(Pos+Vel+Acc) on cross-subject test setting showed the

highest classification rate, but the motion derivative were not so effective on non

cross-subject test setting. Actually, the classification rates of motion category such

as fan (28), jump down (37), run fast (69) and up stair (105), which were difficult

to be classified using only marker position, were increased by the effect of motion

derivatives. However, there were also cases that the motion could not be classified

by using motion derivatives in the same time. The result means that the number of

latter case was more numerous.
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Figure 7.4: Confusion matrix of the FV-HMM/MKL-SVM(Pos).
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a person avoids

a player avoids

a player runs

a student bows

a student apologizes

a student bows deeply

a housewife cooks foods

a housewife cooks in a fry pan

a student runs

a student carries baggage

a student walks

a student carries a backpack 

a housewife cooks foods

a housewife cuts with a kitchen knife

a housewife cut with a kitchen knife

a player drinks

a student drinks

a player runs

a student ties the shoe lases

a student gargles

a student jumps

a person gargles

a student gargles

a student bows

[1] [5] [6] [7]

[19] [21] [29] [33]

Figure 7.5: Sentences corresponding to each motion are generated by the motion
language model and natural language model. Three sentences corresponding to the
motion are shown in order to the likelihood that the sentence is generated from the
motion.

The average classification rate of FV-HMM/SVM(Pos) was lower than that of

HMM/1-NN(Pos). This is because the YNL MoCap dataset used in this experi-

ments was very small and the small number of samples per motion class caused the

false classification in the SVM classifier. Table 7.3 shows the change of classifica-

tion accuracy of FV-HMM/SVM(Pos) when contracting the training dataset on the

ChaLearn LAPC 2014 dataset. As shown in this table, the average classification rate

becomes low as the training dataset is small.

7.4.2 Linguistic Interpretation of Daily Motion

We evaluated the motion recognition system that associates multiple sentences

with motion patterns. The motion models to be compared are HMM/1-NN(Pos),

FV-HMM/SVM(Pos), FV-HMM/MKL-SVM(Pos) and FV-HMM/MKL-SVM(Pos +

Vel + Acc). We used BiLingual Evaluation Understudy (BLEU) score as the eval-

uation of sentence generation. The BLEU score represents the similarity between

sentences by calculating the matching rate of N-grams. In this experiments, we cal-

culated the similarity between sentences generated by the motion recognition system
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and sentences attached to motion patterns in the dataset for evaluation. Here, the

numbers of generated sentences and attached sentences were 10 and 2 or 3 respec-

tively. Table 7.4 shows the comparison result of similarity score between sentences

for all motion model. The values in the table are the average BLEU scores over all

the pairs of the generated sentences and the attached sentences. As shown in this

table, the average BLEU score of FV-HMM/MKL-SVM(Pos) was the highest among

all types.

Figure 7.5 shows the result of sentences associated with motion patterns in FV-

HMM/MKL-SVM(Pos). In this figure, the generated sentences with the three highest

likelihoods are shown as the candidate for the associated sentences. For example, the

sentences associated with the “drink” motion that have the highest likelihoods are “a

player drinks”, “a student drinks” and “a player runs”. Comparing these sentences

with the training data shown in Fig.7.3 indicates that the motions are interpreted as

language in accordance with the probabilities that the motion language model gener-

ates the sets of words corresponding to “a player drinks” and the probabilities that

the natural language model generates these sentences. As shown in this figure, the

sentences associated with the motions are semantically and syntactically appropriate

to the motion.

7.5 Conclusion

As described in the previous chapter, we proposed the classification system focusing

on discriminative parts of human body related to target motion. In this chapter, we

applied our approach to a multi-class daily motion classification. Additionally, we

combined the motion model to our previous motion recognition system that associates

multiple sentences with human motion. We evaluated the classification accuracy of

motion model on YNL MoCap dataset and the sentence generation on motion and

language dataset. The conclusion of this chapter can be summarized as follows.

1. We compared the classification accuracy of multi-class daily motions when vary-

ing the classification systems: HMM/1-NN(Pos), FV-HMM/SVM(Pos), FV-

HMM/MKL-SVM(Pos) and FV-HMM/MKL-SVM(Pos+Vel+Acc). The result
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showed that the average classification rate of FV-HMM/MKL-SVM(Pos) was

the highest among above classification systems and reached 81.1% on non cross-

subject test setting. This means that our approach is useful to apply activity

support provided by the multi-class motion classification for one specific person

in human living areas, etc. However, it is still difficult to classify human motions

targeted at many and unspecified persons because of individual differences of

the motions.

2. We compared the performance of motion recognition system which generates

multiple sentences when varying the motion models: HMM/1-NN(Pos), FV-

HMM/SVM(Pos), FV-HMM/MKL-SVM(Pos) and FV-HMM/MKL-SVM(Pos

+ Vel + Acc). The result showed that the sentence generated by FV-HMM/MKL-

SVM(Pos) is the most appropriate for the representation of target motions

among above motion models. This contributes to the improvement of motion

recognition that generates multiple sentences associated with the motion.

We confirmed that the performance of sentence description was correlated to the

classification accuracy of motion model. Additionally, our approach can extend to

an advanced framework which can perform a re-learning of the parameters of motion

model by a feed-back system using associated sentences. This extension would lead

to the higher accuracy of motion recognition system.
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Table 7.1: 125 label names of motion categories

No. Label Name No. Label Name No. Label Name

1 avoid big 43 lift from ground 85 stir
2 avoid small 44 look for 86 stomp
3 beckon 45 mobile phone 87 stumble ground
4 bow 46 mow 88 stumble stair
5 bow deep 47 open hinged door 89 sweep broom
6 broil 48 open sliding door 90 swing badminton
7 carry bag on back 49 pat head 91 swing table tennis
8 carry big 50 pick up 92 swing tennis
9 carry small 51 play bugle 93 take off clothes
10 clap 52 play flute 94 take off shirt
11 climb 53 play guitar 95 take off shoes
12 close hinged door 54 play koto 96 take picture
13 close sliding door 55 play violin 97 take sitting
14 close umbrella 56 pour sitting 98 take standing
15 comb 57 pour standing 99 telephone
16 cough 58 pray 100 throw away
17 cross legs 59 pull drawer 101 toss volleyball
18 crouch 60 pull rope 102 turn around left
19 cut 61 pull up 103 turn around right
20 down stair 62 push into 104 turn face
21 drink 63 put on shoes 105 up stair
22 drive car 64 raise left hand 106 walk fast
23 drop head 65 raise right hand 107 walk normal
24 exit hinged door 66 read book 108 walk slow
25 exit sliding door 67 read newspaper 109 wash dishes
26 fall down left 68 row boat 110 wash face
27 fall down right 69 run fast 111 wash hair sit
28 fan 70 run normal 112 watch binoclars
29 fasten shoelaces 71 run slow 113 watch telescope
30 fire gun 72 scratch head 114 wave hands
31 fire pistol 73 senobi 115 wave left hand
32 fold clothes 74 shake hands 116 wave left hand small
33 gargle 75 sit chair 117 wave right hand
34 grope 76 sit chair to stand 118 wave right hand small
35 hold 77 sit ground 119 wear clothes
36 hold up arms 78 sit to stand 120 wear shirt
37 jump down 79 skip 121 wear trousers
38 jump forward 80 slap 122 wipe desk
39 jump normal 81 smoke 123 wipe window
40 jump up 82 sneeze 124 write
41 knock 83 stand reading 125 write blackboard
42 lift from desk 84 step normal
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Table 7.2: Comparison result of the average classification rate.

Method
Accuracy

cross-subject test non cross-subject test

HMM/1-NN(Pos) 10.4 71.5
FV-HMM/SVM(Pos) 7.6 37.1

FV-HMM/MKL-SVM(Pos) 13.1 81.1
FV-HMM/MKL-SVM(Pos+Vel+Acc) 19.7 72.3

Table 7.3: Change of classification accuracy of FV-HMM/SVM(Pos) when contracting
the training dataset on the ChaLearn LAPC 2014 dataset.

Number of Training Dataset FV-HMM/SVM(Pos)

6830 59.5
3415 35.3
2276 27.0
1366 23.4

Table 7.4: Comparison result of the average BLEU score.

Method BLEU

HMM/1-NN(Pos) 0.802
FV-HMM/SVM(Pos) 0.758

FV-HMM/MKL-SVM(Pos) 0.814
FV-HMM/MKL-SVM(Pos+Vel+Acc) 0.806
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Conclusion

According to a change of social demand from industrial robots to service robots,

intelligent robots and systems among the service robots have become a familiar pres-

ence in our daily life. Along with this, there is a need of abilities to observe humans

nearly, understand human actions, grasp the intentions and support the predicted

actions properly. In this process, a motion classification system which categorizes

human motion precisely is important because this failure can give a danger or an

inconvenience to humans. Note that we use the terms “motion” for data derived

from a single data source, the terms “gesture” as a kind of motion using only upper

body and the terms “action” for data derived from multiple data sources such as mo-

tion, surrounding environment and target objects, etc. For the purpose of achieving

a livelihood support, we have developed the motion recognition system which rep-

resents observed human motion as multiple sentences. In the previous system, the

motion model converts a continuous motion pattern to a discrete motion symbol and

can classify observed human motion. In this paper, we extended our previous motion

model based on the following findings to improve the classification accuracy. These

findings are summarized as “utilization of multi-modal combination”, “construction

of hybrid model specialized for classification”, “utilization of motion derivatives”, “fo-

cus on discriminative parts of human body related to target motion” and “multi-class

classification for various human motions in daily life” respectively.

1. It is important to improve the classification accuracy using multi-modal data

obtained from surrounding environment and target objects, etc. as well as

motion because only motion data can not differentiate between similar motion

patterns. In response to this, we proposed a multi-modal gesture classification

system which integrates motion and audio models. Motion(skeleton) and audio

111
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features are extracted by inverse kinematics and cepstrum analysis respectively.

By using these spatio-temporal features as training data, the motion and audio

models are constructed by hidden Markov model. Classification scores output

from these models are integrated by proposed method to obtain the classification

result. We evaluated the system in gesture classification.

2. It is important to improve the classification accuracy of motion model with-

out depending on other modal data because only the motion model captures

the motion feature itself. Additionally, the classification accuracy of our previ-

ous motion model is relatively low. In response to this, we applied a strategy

to merge both abilities of generative approach and discriminative approach by

Fisher vector scenario to extend our previous motion model. HMM special-

ized for the representation of spatio-temporal data was used as the generative

model. SVM specialized for the classification task using high-dimensional vec-

tors was used as the discriminative model. We evaluated the system in gesture

classification.

3. The relative position between marker joints in skeleton model is generally used

as skeleton feature. It is important to improve the classification accuracy by

adding relative velocity and acceleration in the skeleton feature to differenti-

ate between motion patterns including similar postures. In response to this,

we used motion derivatives as skeleton feature to above the hybrid generative-

discriminative approach. Motion derivatives consist of relative position, velocity

and acceleration between marker joints obtained using inverse kinematics cal-

culation. We evaluated the system in gesture classification.

4. It is important to improve the classification accuracy based on the assumption

that discriminative parts of human body are different according to target mo-

tion and focusing on these discriminative parts is useful for classification. In

response to this, we proposed a motion classification system focusing on dis-

criminative parts of human body related to target motion. A human motion

model corresponding to a local part is constructed by learning HMM using

the spatio-temporal skeleton features of local part. A motion feature is rep-
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resented as Fisher vector parameterized by a human motion model. Motion

features obtained from all local parts are weighted and integrated by multiple

kernel learning. We evaluated the system in gesture and motion classifications

of upper-body and whole-body motions respectively.

5. It is important to classify multi-class human motions in daily life because we

perform a wide variety of motions in real life. In response to this, we applied our

approach to a multi-class daily motion classification. We evaluated the system

on the dataset constructed by us containing many categories of daily human

motion. We also conducted an experiment to associate sentences with human

motion.

The results and the conclusions obtained in this paper are summarized as follows

1. We proposed a multi-modal gesture classification system that integrates motion

and audio models. The result showed that the multi-modal model of these

models was superior to the uni-modal model. The increased ratio of average

classification rate compared to the motion model was 88%. This implies that the

complementary relationship between these models leads to the improvement of

classification accuracy, especially the effect of audio model is the most dominant.

However, the multi-modal model required more computational cost than the

uni-modal model. Actually, the classification time of multi-modal model was

longer than total classification time of these uni-modal models.

2. We applied a hybrid generative-discriminative model that merges both abili-

ties of HMM and SVM by FV scenario to extend our previous motion model

(the standard HMM approach). The result showed that the hybrid generative-

discriminative model was superior to the standard HMM approach. The in-

creased ratio of average classification rate compared to the motion model was

55%. Additionally, the result showed that the generative kernel approach over-

came the generative embedding approach. These results mean that the repre-

sentation of motion feature by FV-HMM and the utilization of SVM classifier

performance are effective to improve the classification accuracy.
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3. We used motion derivatives as skeleton feature for the hybrid generative dis-

criminative model. Motion derivatives consist of relative position, velocity and

acceleration between marker joints obtained using inverse kinematics calcula-

tion. The result showed that the model of utilizing motion derivatives was

superior to that of utilizing only marker position. The increased ratio of aver-

age classification rate was 9.4%. This is because several motions with similar

postures but different directions and velocities can be classified effectively by in-

cluding relative velocity and acceleration. Additionally, less-noisy and smoother

motion trajectories are obtained by using IK calculations compared to an inter-

frame difference of marker positions derived from Kinect sensor. Actually, the

increased ratio of average classification rate compared to the inter-frame differ-

ence was 7.6%. However, it was difficult to classify gestures including a twisting

motion even if we used motion derivatives as skeleton feature. Capturing twist-

ing motions or extracting hand shapes is required to classify these gestures.

4. We proposed a motion classification system focusing on discriminative parts of

human body related to target motion. The result showed that this model was

superior to above the hybrid generative-discriminative model in which a motion

feature from whole body is used and thus a focus on discriminative parts is

not considered. The increased ratios of average classification rate compared to

the hybrid generative-discriminative model were 25% and 35% in gesture and

motion classifications respectively. This means that the method of weighting

and integrating motion feature according to target motion is effective to improve

the classification accuracy. Additionally, we visualized the most weighted parts

of human body related to target motion. The result showed that the weights

extracted by MKL were almost the same as subjectively manual weights. This

similarity provides a clue to know human motion in detail.

5. we applied our approach to a multi-class daily motion classification. The result

showed that the average classification rate reaches 81.1% in non cross-subject

test setting. Additionally, the result of sentence generation showed that the

sentences associated with the motions are semantically and syntactically appro-

priate to the motion.
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We have multi-directionally approached to our previous motion model based on

several findings to improve the classification accuracy. As previously discussed, these

findings have effects on the improvement significantly. This means that intelligent

robots and systems become more understandable of human motion. For example, they

become able to respond to gesture commands and understand daily human motions

for livelihood support. In other words, proposed systems in this paper become a

foundation technology of these applications. Additionally, proposed system can apply

to a prediction system of human motion using motion history.
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AppendixA

Derivation of Fisher Information

Matrix using Kullback-Leibler

Information

When calculating the distance between two parameters using Kullback-Leibler (KL)

information, the quadratic form of Riemannian metrics including the Fisher Informa-

tion Matrix (FIM) can be developed.

Define P (O|θ) as a probability (density distribution) of observed pattern O when

given parameter θ, the KL information between parameter θ1 and θ2 is defined as

the following equation.

DKL(θ1|θ2) =
∑

P (O|θ1) log
P (O|θ1)

P (O|θ2)
(A.1)

Since Eqn.(A.1) is an asymmetric measurement with respect to θ1 and θ2, the fol-

lowing D(θ1,θ2) is considered to satisfy symmetric property.

D(θ1,θ2) = DKL(θ1|θ2) +DKL(θ2|θ1) (A.2)

Assuming that parameter θ1 and θ2 are close each other, the following equation is

established.

dθ = θ2 − θ1 (A.3)

Using Eqn.(A.3) expands Eqn.(A.2) as follows.

D(θ1,θ1 + dθ) = DKL(θ1|θ1 + dθ) +DKL(θ1 + dθ|θ1)

=
∑

P (O|θ1) (logP (O|θ1)− logP (O|θ1 + dθ))
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+
∑

P (O|θ1 + dθ) (logP (O|θ1 + dθ)− logP (O|θ1))

=
∑

P (O|θ1)

(
logP (O|θ1)− logP (O|θ1)−

1

P (O|θ1)

∂P (O|θ1)

∂θ
dθ

)
+
∑(

P (O|θ1) +
∂P (O|θ1)

∂θ
dθ

)
×
(
logP (O|θ1) +

1

P (O|θ1)

∂P (O|θ1)

∂θ
dθ − logP (O|θ1)

)
=

∑(
−∂P (O|θ1)

∂θ
dθ +

∂P (O|θ1)

∂θ
dθ

+
∂P (O|θ1)

∂θ
dθ

1

P (O|θ1)

∂P (O|θ1)

∂θ
dθ

)
= dθT

∑ 1

P (O|θ1)

(
∂P (O|θ1)

∂θ

)T
∂P (O|θ1)

∂θ
dθ

= dθT
∑

P (O|θ1)

(
∂ logP (O|θ1)

∂θ

)T
∂ logP (O|θ1)

∂θ
dθ

= dθT
∑

P (O|θ1)FS(O,θ1)
TFS(O,θ1)dθ

= dθTEX [FS(O,θ1)FS(O,θ1)
T ]dθ

= dθTF θ1dθ (A.4)

Here, F θ1 represents the FIM described as an expectation value of symmetric matrix

constructed by Fisher score. Therefore, the distance between parameter θ and θ+dθ

is defined as the following quadratic form.

ds2 = dθTF θdθ (A.5)

Eqn.(A.5) means that the parameter space and the FIM become the Riemann space

and the metric matrix respectively. Additionally, Riemannian metrics with respect

to the FIM is called as Fisher metrics. The distance between parameters can be

measured geometrically by considering the Fisher metrics.



AppendixB

Multiple Kernel Learning

Multiple Kernel Learning (MKL) is a discriminative classifier which extends Sup-

port Vector Machine (SVM) for classification. In this process, a discriminant hy-

perplane is represented by weighting and integrating induced features obtained by

applying input data to multiple mapping functions. In other words, the discriminant

hyperplane is formulated as follows.

f(x) =
K∑

m=1

< w′
m,Φm(x) > +b (B.1)

where Φm is defined by a mapping function extracting feature vector from input data.

K is the number of mapping functions. Generally, x is projected to high-dimensional

space by Φm. Note that the discriminant hyperplane is determined by maximizing

margin in the same way as SVM. The discriminative classifier therefore can be trained

by solving the following quadratic optimization problem.

min
1

2

(
K∑

m=1

||wk||2
)2

+ C
N∑
i=1

ξi (B.2)

subject to

ξi ≥ 0,

yi

(
K∑

m=1

< wm,Φm(xm) > +b

)
≥ 1− ξi, ∀i = 1, ..., N (B.3)

where C is a predefined positive trade-off parameter between model simplicity and

classification error, ξi is the vector of slack variables and b is the bias term of the

discriminant hyperplane. Note that the solution can be written as wm = ηmw
′
m with
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ηm ≥ 0 and
∑K

m=1 ηm = 1. In the case of K = 1, the above optimization problem is

equivalent to the linear SVM. Instead of solving this optimization problem directly,

the Lagrangian dual function enables us to obtain the following dual formulation:

min γ ≥ 1

2

N∑
i=1

N∑
j=1

αiαjyiyjkm(xi,xj)−
N∑
i=1

αi

= sm(x), ∀m = 1, ..., K (B.4)

subject to

0 ≤ αi ≤ C,

N∑
i=1

αiyi = 0 (B.5)

Additionally, a combined kernel is represented by integrating several sub-kernels lin-

early as follows.

k(xi,xj) =
K∑

m=1

ηmkm(xi,xj)

=
K∑

m=1

ηm < Φm(xi),Φm(xj) > (B.6)

Note that there are several kernel functions such as a linear kernel, polynomial kernel

and Gaussian kernel. The above equation uses the linear kernel which calculates an

inner product of mapping functions.

By deforming Eq. (B.1), the discriminant function can be rewritten by

f(x) =
K∑

m=1

ηm

N∑
i=1

αiyikm(xi,x) + b (B.7)

Sub-kernel weights ηm and SVM parameters α, b are optimized in the same time.

More precisely, the optimized parameters are determined by iterative learnings of ηm

and α, b fixing either parameter alternately to maximize the following evaluation

function.

K∑
m=1

ηmsm(x) (B.8)


