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ABSTRACT

Recently, fault tolerant quantum computation such as surface coding and topological

quantum computation has been paid attention to due to high threshold against compu-

tational errors compared with that of conventional gate-model quantum computation.

These schemes use a two or three-dimensional cluster state as universal resources for

quantum computation. We can generate a cluster state by performing controlled-phase

gates on an initial state prepared in |+⟩ state, where the control-phase gates are realized
by nearest neighbor Ising type interactions. There are many proposal to realize Ising

type interaction such as ultracold atoms in an optical lattice, superconducting charge

qubits, superconducting spin qubits, resonator wave guides, nitrogen-vacancy centers,

and quantum dots. Among many candidates, we especially discuss superconducting flux

qubits. Superconducting flux qubits have a strong anharmonicity, so that we can perform

high-speed single-qubit rotation with excellent fidelity.

Usually, implementation of high-fidelity two-qubit gates is the hardest part for the

realization of quantum computation. Two qubit gates require in-situ turn on/off the

interaction between qubits by the external control apparatus. Since imperfection of the

interaction control tends to induce spatially correlated errors between qubits, sophis-

ticated technology is required to suppress such error rate below the threshold of fault

tolerant quantum computation. Up to now, the generation of a large cluster state using

solid-state qubit has not been demonstrated in a scalable manner yet. One of the main

obstacles is the requirement for independent control of two-qubit gates that are neces-

sary for the scalable quantum information processing. For a superconducting flux qubit,

existing method uses applied magnetic field to control the interaction. It is known that

the application of magnetic field to local area is difficult. Thus, it is hard to implement

local control of the interaction without cross-talk problem where unwanted errors occurs

between qubits.

Firstly, we propose a novel way to control a number of two-qubit gates independently

without using the on/off switching of locally applied magnetic field. Specifically, we

assume the superconducting flux qubits that are inductively coupled with each other

via always-on Ising interaction. Unlike the previous method to change the interaction

strength with unitary operations, we fully make use of non-unitary properties of pro-

jective measurements so that we can effectively turn on/off the interaction via quantum

feedforward. Also, we show how to generate a two or three-dimensional cluster state

that are universal resource for fault tolerant quantum computation with constant step-

size operations. The on/off switching of locally applied magnetic field is not necessary to



perform projective measurements and quantum feedforward. Thus, it is expected that

our scheme may contribute to achieve a scalability of flux qubits system.

Secondly, we propose the interaction generating method using capacitively-coupled

flux qubits to overcome the cross-talk problem. In this scheme, we generate Ising type

interaction by applying bias voltage to qubits which are connected via capacitor. Our

scheme has a property that we can control the interaction strength by applying bias

voltage, which does not require on/off switching of applied magnetic field. Furthermore,

for an arbitrary size of the system, we propose the constant step-size procedure for

generating a scalable two-dimensional cluster state. In this scheme, we can sufficiently

suppress non-nearest neighbor interactions. Also, we estimate the parameter range to

implement fault torelant quantum computation in this architecture.

Our proposals pave the way for scalable quantum information processing with super-

conducting flux qubits.



論文要旨

近年，従来の誤り訂正符号を用いたゲートモデルやMBQCモデルの量子計算よりも高
いエラー耐性を持つ Surface codingやトポロジカル量子計算と呼ばれるフォールトトレラ
ント量子計算が注目を集めている．同量子計算では，２次元や３次元のクラスタ状態を万
能量子資源として用いる．クラスタ状態を生成する手法の一つとして，|+⟩状態の量子ビッ
トを複数個用意し，量子ビット間にイジング型相互作用を働かせた系の時間発展によって
構成した制御位相ゲートを用いる方法が知られている．イジング型相互作用の生成は，冷
却原子や NV中心，量子ドット，超伝導系などさまざまな系で実現している．本研究では
これらの系の中で，特に超伝導磁束量子ビットに関する議論を行う．超伝導磁束量子ビッ
トはエネルギー準位に強い非調和性を示すため，高速かつ高精度な１量子ビット操作が可
能な特性を持つ系である．
一般的に，高フィデリティな２量子ビットゲートの実装は量子計算の実現に向けた最も

困難な技術であると考えられている．２量子ビットゲートは，適切なタイミングで on/off
制御される量子ビット間の相互作用により構成される．不完全な相互作用制御は量子ビッ
ト間に相関したエラーを引き起こすため，フォールトトレラント量子計算の持つエラー閾
値を下回る高度な制御技術が必要となる．現在までのところ，固体素子量子ビットによる
実用的な大規模クラスタ状態の生成には至っていない．その要因の一つとして，スケーラ
ブルな量子情報処理に必須となる，複数の２量子ビットゲートの独立制御の難しさが挙げ
られる．超伝導磁束量子ビットの場合，従来手法では外部磁場を用いた相互作用の生成・
制御が行われてきたが，外部磁場の局所印加は難しいことが知られている．そのため，印
加外部磁場が引き起こすクロストークを抑制し，他の量子ビットの状態へ影響を与えない
ような相互作用の局所的な on/off制御は困難という問題がある．
そこで本研究では，局所的な印加磁場の on/off制御を必要とせず，複数の２量子ビット

ゲート独立制御が可能になる新たな手法を提案する．　具体的には，隣接超伝導磁束量子
ビット間に常時磁気結合によるイジング型相互作用が存在する系を想定する．ユニタリ操
作による相互作用強度の変更を行う従来手法とは異なり，本手法では非ユニタリ操作であ
る射影測定と量子フィードバックを用いることで，１量子ビット操作の高いタイミング精度
に基づく実効的な相互作用の on/off制御を行う．さらに，同手法を用いた２次元および３
次元のクラスタ状態を系のサイズに依らず，定数ステップで生成する手順を提案する．射
影測定と量子フィードバックは局所的な印加磁場の on/offを必ずしも必要としないため，
これらの手法はスケーラビリティ獲得に貢献すると考えられる．
また，外部磁場制御の問題を根本的に解決するため，電荷結合を用いた新たな超伝導磁

束量子ビット間相互作用の生成手法を提案する．本手法では，キャパシタを介して結合さ
れた複数の超伝導磁束量子ビットに対して，電圧を印加することでイジング型相互作用を
生成する．同手法の特徴として，印加電圧の変更によって相互作用の強度調整・局所生成
が可能であることや，クロストークの要因である相互作用生成のための外部磁場の印加の
on/off制御を必要としないこと，さらに，多数の超伝導磁束量子ビットから構成される系
を想定し，非隣接間相互作用を十分に抑制した上で，２次元クラスタ状態を定数ステップ
で生成する手順の整備と必要となる各種パラメータの推計を行なった．
これらの手法は超伝導磁束量子ビットの持つ外部磁場制御の困難さに起因する複数の２

量子ビットゲートの独立操作に対する問題を解決し，より大規模な量子情報処理の実現に
向けたアプローチとなる．
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Chapter 1

Introduction

1.1 Backgrounds

Quantum computation is a new paradigm of information processing. Known

algorithms give superior performance for tasks such as factoring [93, 88], searching

an unsorted database [43, 44], quantum simulation [1, 116], other algorithms [29,

47, 96, 22, 24, 13] and more. All these algorithms require a large-scale quantum

computer. A quantum computer is composed of a sequence of single-qubit gates

and two-qubit gates [32, 27, 65, 16]. The single-qubit gate denotes a rotation of

the qubit around an arbitrary axis and degree. A control-phase gate is one of the

typical examples of two-qubit gates. This gate flips the phase of the target qubit

if and only if the state of the control qubit is |1⟩. The role of control and target

qubits are reversible for a control-phase gate. This gate can be realized by Ising

type interaction between control and target qubit. Individual qubits should be

efficiently addressed, and the interaction between two qubits should be controlled

by some external apparatus.

The challenge is how to design and build a quantum computer with realistic

technology. This requires quantum architecture. There have been a number of

quantum architectures for relevant physical systems, such as the nitrogen-vacancy

centre [113, 73], ion traps [71], superconducting systems [40]. To realize fault-

tolerant quantum computation, it is crucial to investigate a scheme to generate

a cluster state in a scalable way. The cluster state is a universal resource for

quantum computation, and this state can be used for a fault-tolerant scheme such
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as surface code [87, 84] and topological code [83]. The cluster state is generated by

performing controlled-phase gates on nearest-neighbor qubits which are prepared

in |+⟩ state and set on a square lattice. One can generate a cluster state if

we can turn on/off an Ising type interaction between qubits with high accuracy.

Moreover, controlled-phase gate should be performed within a time scale much

shorter than the decoherence time for fault-tolerant quantum computation.

Superconducting circuit is one of the promising systems to realize such a

cluster-state quantum computation using solid-state system. Josephson junctions

in the superconducting circuit can induce a non-linearity, and so one can construct

a two-level system. There are several types of Josephson junction qubit: charge

qubit [19], superconducting spin qubit [79], superconducting flux qubit [15, 25, 77,

17], superconducting phase qubit [4, 51, 99], superconducting transmon qubit [31,

60, 6, 8], fluxonium qubit [69, 120], and several hybrid systems [115, 100].

The transmon qubit [31, 60, 6], which is a cooper-pair box and relatively in-

sensitive to low-frequency charge noise, is considered one of the powerful method

of the qubit implementation by using superconducting circuit. Scheme of the tun-

able qubit-qubit capacitive coupling is proposed and demonstrated [40, 21, 39].

The high fidelity qubit readout using a microwave amplifier is demonstrated [92,

52, 55]. Furthermore, high fidelity (99.4%) two-qubit gate using five qubits sys-

tem is achieved. This result is the first step toward surface code scheme [8]. These

results show a good scalability towards the realization of generating a large scale

cluster state.

The flux qubit consist of a superconducting loop containing several Josephson

junctions. This system has a large anharmonicity and can be well approximated

to a two-level system. Single qubit gate operations can be realized with high

speed and reasonable fidelity [114]. Meanwhile, the best observed coherence

time is an order of 10 µs [18, 101]. Quantum non-demolition measurement of

flux qubits during the coherence time is realized by using Josephson bifurcation

amplifier [94, 95, 57, 58]. Furthermore, the tunable coupling schemes for two qubit

gate operations are proposed and demonstrated [80, 41, 50, 108, 76, 46, 5, 112, 42].

There are two typical tunable qubit-qubit coupling schemes, inductive cou-
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pling and capacitive coupling. In flux-qubit systems, existing schemes rely on

inductive coupling with the external magnetic field. Several schemes of the tun-

able qubit-qubit inductive coupling are proposed and demonstrated [80, 41, 50,

108, 76, 46, 5, 112, 42]. However, it is hard to apply magnetic field to a localized

region. Due to this property, the control of individual qubits with magnetic field

tends to produce decoherence and cross talk. Therefore, suppressing the cross

talk for qubit-qubit coupling is important to achieve further scalability for flux

qubit system.

1.2 Contributions

As mentioned above, a flux qubit has a large anharmonicity which makes it

possible to construct a two-level system, and therefore flux qubits provide us

with almost ideal two-level systems unlike transmon qubit. This property might

be important for large scale quantum computation. If the system is not a two-

level system, there might exist an error that induce a transition from the target

two-level system to another unknown state, so that quantum state cannot be

confined in the target two-level system. The standard quantum error correction

(QEC) schemes [87, 84, 83] assume ideal two-level systems. The QEC scheme

for non ideal two-level system is still developing. Even if a new QEC for such

imperfect two-level systems was invented, the threshold for the gate operations

might be worse than those for the standard QEC. Therefore, flux qubits could

be suitable for large-scale quantum computation.

In this dissertation, we show improving methods for cross talk problem that

focus on enhancing the scalablity of controlled-phase gate on superconducting

flux qubits.

Our first contribution is to suggest a new way to control the Ising type inter-

action between flux qubits where each qubit is inductively coupled with another

qubit. As mentioned above, many schemes of inductively coupling for flux qubits

are suggested and demonstrated. Meanwhile, these methods require high-speed

and high-accuracy on/off switching of applied local magnetic field. For this rea-

son, it is hard to control the interaction with suppressed cross talk in these
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schemes. We propose the way to control the interaction between inductively cou-

pled flux qubits based on a novel technique using always-on Ising interaction,

quantum measurement, and feedforward [110, 89, 70, 58]. It is worth mention-

ing that we do not need to change the amount of magnetic fields at all during

computation. Once we calibrate the proper value of the magnetic fields on each

flux qubit before starting computation, we can control the interaction just using

quantum measurement and feedforward. In quantum mechanics, there are two

type of operations, unitary operations such as applying microwave pulses and

non-unitary operations such as readout of the qubit. While most of the authors

in previous papers use unitary operation to control the interaction [12, 11, 118],

we exploit the non-unitary properties that the projective measurement have. We

will assume an always-on Ising interaction between nearest neighbor qubits, and

will insert an ancillary qubit between the qubits that process quantum informa-

tion. We show that it is possible to effectively turn on/off the interaction via

quantum measurement and feedforward on the ancillary qubits. Furthermore, we

explain how scalability is achieved in this scheme, and suggest a way to construct

a large two or three-dimensional cluster state which enables us to perform fault

tolerant quantum computation with high error threshold [83]. Since quantum

feedforward is matured technology in superconducting circuit, our proposal pro-

vides a feasible and reliable way to control the interaction between the flux qubits.

Moreover, it is possible to implement quantum measurements and feedforward

without switching on/off applied magnetic fields on the flux qubits, which may

make it easy to achieve individual addressability. Therefore, our scheme would

be a crucial step for the realization of flux-qubit based quantum computation.

Our second contribution is the generating and controlling method of Ising

type interaction between four-junction flux qubits using capacitive coupling. By

using an applied voltage, we control the interaction between flux qubits that are

connected by capacitance. Unlike the standard schemes, our scheme does not re-

quire to change the applied magnetic field on the flux qubit for the control of the

interaction. This may have advantage to suppress a cross talk between the flux

qubits because applying local voltages is typically much easier than applying local
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magnetic flux. We take into account of realistic noise, the fluctuation width of

the applied voltage and the timing jitter, on this type of flux qubits, and estimate

a qubit-parameter range where one can perform fault-tolerant quantum compu-

tation [87, 84]. Furthermore, we show constant step-size methods for generating

a one or two dimensional cluster states in a scalable way. In these methods,

we show the optimum parameter set, coupling capacitance, applied voltage, and

step-size, with fixed noise parameters. Furthermore, we show echo pulses are

effective to reduce the number of operation steps.

1.3 Organization of this Dissertation

In Chapter 2, we present the fundamentals of quantum computation and a review

of existing research. In Chapter 3, we explain about our scalable architecture for

generating a two or three dimensional cluster state using superconducting circuit

with always-on Ising interaction. In Chapter 4, we show our result of generation

Ising type interaction between flux qubits using capacitive coupling. Chapter 5

is the concluding remarks of this Dissertation.
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Chapter 2

Preliminaries

2.1 Quantum computation

In this section, we first review key ingredients of quantum computation, and some

definitions and theorems that are used in this thesis.

2.1.1 Qubit

The fundamental unit of classical information is described as a binary digit (bit),

which has a state either “0” or “1”. In the case of quantum information, the

fundamental unit is a quantum bit (qubit) which has two possible orthonormal

quantum states |0⟩ and |1⟩. A qubit is expressed as a superposition of two states

|0⟩ and |1⟩ with amplitudes α and β as follows:

|ψ⟩ = α|0⟩+ β|1⟩,

where α and β denotes complex number satisfying |α|2 + |β|2 = 1.

More formally, the state of a qubit is also described by a unit vector in a

two-dimensional complex vector space C2. Furthermore, the state |0⟩ and |1⟩ are

known as computational basis states as the following column vectors:

|0⟩ =

1

0

 , |1⟩ =

0

1

 .

Definition 1. A qubit is described by a unit vector in a two-dimensional Hilbert
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space C2 and can be represented as linear combination of two orthonormal quan-

tum states |0⟩ and |1⟩ with amplitudes α and β as follows:

|ψ⟩ = α|0⟩+ β|1⟩ =

α
β

 ,

where α and β ∈ C2 and |α|2 + |β|2 = 1.

A general quantum state of n qubits can be written as: |ψ⟩ =
∑

x∈{0,1}n αx|x⟩,

where αx are complex numbers such that
∑

x∈{0,1}n |αx|2 = 1.

2.1.2 Transform operation

The transformation of quantum systems are given by unitary quantum operators.

Then, single qubit gate operations can be described by 2× 2 matrices. We show

several substantial gates for single qubit transformations, and Pauli, phase shift

and Hadamard operators are described as

σX : = X̂ = |1⟩⟨0|+ |0⟩⟨1| =

0 1

1 0

 , (2.1)

σY : = Ŷ = −i|1⟩⟨0|+ i|0⟩⟨1| =

0 −i

i 0

 , (2.2)

σZ : = Ẑ = |0⟩⟨0| − |1⟩⟨1| =

1 0

0 −1

 , (2.3)

S : = |0⟩⟨0|+ i|1⟩⟨1| =

1 0

0 i

 , (2.4)

H : =
1√
2
(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|) = 1√

2

1 1

1 −1

 . (2.5)
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We denote the Hadamard basis by{|+⟩, |−⟩} as follows:

|+⟩ = H|0⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

1

1

 ,

|−⟩ = H|1⟩ = 1√
2
(|0⟩ − |1⟩) = 1√

2

 1

−1

 .

For arbitrary multi-qubit quantum operations, it is necessary to implement at

least one two-qubit gate operation. We use the Controlled-phase (Controlled-Z)

gate, which is described by the following two qubits transformation:

Û
(a,b)
CZ = |0⟩a|0⟩b⟨0|a⟨0|b + |0⟩a|1⟩b⟨0|a⟨1|b

+|1⟩a|0⟩b⟨1|a⟨0|b − |1⟩a|1⟩b⟨1|a⟨1|b

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.6)

where a and b denote the name of qubits.

2.1.3 Measurement

If we measure a qubit in |0⟩, |1⟩ basis, then we obtain only one bit information ei-

ther |0⟩ (with probability |α|2) or |1⟩ (with probability |β|2). After measurement,

that qubit is not entangled with other quantum system.

2.2 Graph states as a resource for quantum computation

Let us review the concept of a graph state introduced in [107, 49, 48, 35]. A

graph G(V,E) is composed of vertices V and edges E where an edge connects

two vertices. By regarding the vertex as a qubit and edge as an entanglement

between the qubits, we can associate the graph with a graph state |Φ⟩G(V,E)
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defined as the following equation

|Φ⟩G(V,E) =
∏

(a,b)∈E

Û
(a,b)
CZ |+⟩⊗N

where (a, b) ∈ E denotes an edge between the vertices a and b. Also, Û
(a,b)
CZ

denotes a controlled-phase (π) operation between them.

The controlled-phase gate can be realized by Ising type interaction [86, 85].

When a graph G(V,E) is given, the necessary Hamiltonian to create a cluster

state corresponding G is as follows

ĤG(V,E) =
∑

(l,l′)∈E

g(l,l′)
1 + Ẑl

2

1 + Ẑl′

2

where g(l,l′) denotes the interaction strength between qubit l and l′. By letting

a separable state ⊗l∈V |+⟩l evolve for g(l,l′)t = π according to this Hamiltonian,

the following unitary operator will be applied to the initial state

SG(V,E) = exp

−iπ
∑

(l,l′)∈E

1 + Ẑl

2

1 + Ẑl′

2


=

∏
(l,l′)∈E

Û
(l,l′)
CZ .

and hence we can create the target graph state.

Although there are many proposal to realize Ising type interaction such as

ultracold atoms in an optical lattice [68, 67, 34, 104, 56, 97, 20, 54], ion traps [81,

28, 38, 117, 36, 23], superconducting charge qubit [19], superconducting spin

qubit [79], superconducting flux qubit [15], resonator waveguide [63], nitrogen-

vacancy center [102, 74, 14, 113, 91, 33, 3], quantum dot [103, 111, 45, 64] and

electronic spins coupled to the motion of magnetized mechanical resonators [82],

the major challenge for experimental realization is to switch on/ off the interaction

with a high fidelity. Only a few experiments have demonstrated a high fidelity

controllable two-qubit gate with a fidelity above the threshold of fault tolerant

quantum computation [90, 10, 7]. One of the possible ways to overcome the
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experimental difficulties for demonstrating the high-fidelity two-qubit gates is

to use an always-on interaction scheme [119, 53, 61, 12, 11, 118]. Since there

are no need for the additional controlling operations to switch the interaction,

these scheme may scale well for a large number of qubits. Here, we propose a

new approach to implement fault tolerant quantum computation with always-

on interaction by using the non-unitary properties of projective operations and

quantum feedforward.

2.2.1 Fault tolerant quantum computation using cluster states

A specific type of a graph state such as a two or three-dimensional cluster state,

which are generated in d-dimensional lattices, can be a universal resource for

measurement-based quantum computation (MBQC) [86, 85, 75, 106] and topo-

logical quantum computation [87, 84, 83]. Topological quantum computation,

which is based on Kitaev’s surface codes for quantum error correction using

qubits which are attached to each edge of the square lattice on the torus or

other surface [59], is known for the high error tolerance.

When we use a two-dimensional cluster state for surface codes, there are

three types of main qubits. One of them is called a logical qubit that contains

quantum information. The other qubits are called syndrome qubits. Half of

syndrome qubits are to detect the dephasing errors on the logical qubits while

the other ancillary qubits are to detect bit-flip noises. Main qubits are set on a

grid point of square lattice as shown in Fig. 2.1.

Topological quantum computation using a three-dimensional cluster state is

known to have a high threshold for quantum error correction especially when

there is a finite probability to lose a qubit [9, 98]. The overview of this scheme is

shown in Fig. 2.2 where three-dimensional cluster state is used as a resource for

the computation. In the 3D cluster state, qubits connected in a z-axis direction

are used for the logical qubit that contains the information for the computation

(Fig.2). The other qubits located between the logical qubits are used for detecting

error syndrome. In order to process the computation with error corrections, we

measure qubits by layer. Syndrome qubits are measured in X̂-basis, and the
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Figure 2.1: Schematic of a two-dimensional cluster state. Hollow circles denote
logical qubits and colored circles denote two types of syndrome qubits for surface
coding scheme. Logical qubits hold arithmetical quantum information. Blue
qubits deny X̂ errors, and red qubits deny Ẑ errors. We refer to these qubits as
main qubits.

outcomes are used for detecting the location and type of the error, so that we

can correct the error after analyzing the syndromes by classical computation.

2.3 Superconducting flux qubit

The superconducting flux qubit consist of a superconducting loop containing

several Josephson junctions. The two quantum states correspond to persistent

current flowing in clockwise and anti-clockwise directions, as first proposed by

Mooij et al. [72, 78] in 1999. In 2000, Van der Wal et al. [109] and Jonathan

et al. [37] demonstrated the superposition of persistent currents using flux qubit.

For example, we show the circuit of three-Josephson junctions flux qubit proposed

by Mooij et al. [72] in Fig. 2.3. In particular, the superconducting loop include

three or four Josephson junctions to suppress effectively the height of energy

barrier between double well. We explain the detail of components of flux qubits

as follows.

Even if the superconducting loop does not include Josephson junctions, the
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x
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z

Universal resources

Logical qubit

Syndrome qubit

Figure 2.2: Elementary cell of a 3D cluster state consist of 18 qubits. Universal
resources for 3D MBQC is recursively-generated by many elementary cells. The
circles having an edge along the z-axis direction correspond to main qubits. The
other circles correspond to syndrome qubits to detect errors. The size of each
layer on xy-plane is determined by the number of logical qubits and the depth
of the error correction codes. The height along the z-axis is determined by the
number of quantum gates to be implemented.

phase change in the one cycle along the direction of the loop is 2πf when the

external magnetic flux f = Φ
Φ0

imposed through the loop. Here, Φ0 =
h
2e denotes

the flux quantum, and h denotes Planck’s constant. When the wave function

make a round of the loop, the phase return to the initial values. Due to this fact,

the amount of magnetic flux through the loop is quantized to integer multiples

of the flux quantum. This phenomenon is called “flux quantization”.

A (SIS type) Josephson junction consists of two superconductors which are

coupled via a insulator. The persistent current IS in the Josephson junction is

described as follows:

IS = IC sin(ϕ) (2.7)

where IC denotes the critical current of the Josephson junction, and the phase

of the Josephson junction ϕ corresponds to the phase difference between the two

superconductors. We point out two important parameters defining the properties
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Figure 2.3: The circuit of a three-Josephson junction (JJ) flux qubit. Ej(n) and
Cj(n) denote the Josephson energy and capacitance of n-th Josephson junction
JJn. The loop is threaded by an external magnetic flux f , and we can control
the energy bias of the qubit via the magnetic flux. Node 1 and 2 represents the
superconducting island. The voltage bias VA(VB) is applied to the flux qubit via
gate capacitance CgA(CgB).

of Josephson junction as follows:

• The Josephson coupling energy: Ej = ℏ IC
2e

• The Coulomb energy (for single charge): Ec =
e2

2Cj

where Cj denotes the capacitance of Josephson junction. The Josephson coupling

energy is the coupling strength between two cooper-pairs in the two supercon-

ductors via barrier, and decides IC . The relation between these energies will

determine the nature of Josephson junction and thus, the properties of supercon-

ducting qubit. In case of flux qubits (persistent-current qubits), the relation is

Ej >> Ec.
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2.3.1 Qubit-qubit coupling scheme

Practical scheme to perform the two-qubit operation, such as controlled-phase

gate, needs coupling between a pair of physical qubit. Traditionally, interaction

between the flux qubits is realized by inductive coupling. We introduce such

examples as follows.

Plourde et al. proposed a scheme for tunable coupling using a superconducting

quantum interference device (SQUID), which is composed of a superconducting

loop interrupted by two Josephson junctions, in 2004 [80]. In this scheme, a

SQUID is coupled to both of two flux qubits through an identical mutual induc-

tance. The coupling strength is determined by the mutual inductance and the

current bias applied to the SQUID. We show the circuit model for this scheme in

Fig. 2.4. The same SQUID can be used to measure the qubit state. The above

Figure 2.4: Schematic of the coupler circuit proposed by Plourde et al. [80]. The
interaction strength between two flux qubits depends strongly on the bias current
IB.

proposal is expanded to three-qubit, two-coupler system by Groszkowski et al.

in 2011 [42]. They showed the optimal parameter sets to suppress the unwanted

interactions such as the cross talk. Hime et al. demonstrated the system for

Plourde’s scheme in 2006 [50]. They use two independent bias fluxes to de-

termine the applied SQUID flux ΦS . The dynamic inductance of SQUID and

coupling strength depend on ΦS . They showed that after the applied fluxes are

adjusted, they can turn the coupling on and off by simply switching the bias

current through the SQUID. using only the switching of the bias current through

the SQUID.

Grajcar et al. proposed a tunable coupling scheme with a coupler loop con-
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taining three Josephson junctions in 2006 [41]. The coupler loop assembled be-

tween two flux qubits on the same circuit. In this scheme, the coupling strength

between flux qubits is controlled by the transition frequency of the flux through

the coupler loop and a combination frequency of two flux qubits. We show the

circuit model for this scheme in Fig. 2.5. Van der Ploeg et al. demonstrated a

Figure 2.5: Schematic of the three junction coupler and two flux qubits circuit.
Josephson junction a, b, and c compose a tunable coupler. Each flux qubit share
a Josephson junction with coupler.

controllable coupling scheme between two flux qubits using inserting the addi-

tional coupler loop containing three Josephson junctions in 2007 [108]. Same as

the Grajcar’s scheme, the interaction strength between two qubits a and b can be

tuned by changing the coupler’s flux bias fc. They controlled the fluxes through

the qubits and the coupler by bias currents Ib1, Ib2, and Ib3 and dc-current IbT in

the coil around the qubits circuit. This scheme is the first demonstration of the

sign-tunable coupling using Josephson coupler between two three-junctions flux

qubits.

Niskanen et al. demonstrated a controllable coupling scheme using three four-

junctions flux qubit. We show the circuit model for this scheme in Fig. 2.6. The

middle qubit (qubit 3) has larger qubit energy than other qubits 1 and 2 at the

coherence optimal bias point. They showed that when qubit 3 is prepared in

its ground state, one can perform single qubit operations on the qubit 1 and 2,

because the coupling between qubits 1 and 2 is weak. Furthermore, they coupled

qubits 1 and 2 via excited qubit 3 which is biased far from optimal point whereas
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Figure 2.6: Schematic diagram of three four-junctions flux qubits coupler cir-
cuit. In each qubit, one of the Josephson junction has Josephson energy and
capacitance that are 0.5 times smaller than those of other junctions.

qubits 1 and 2 are at the optimal point. This feature is expected to provide the

long coherence time of tunable coupled qubits, and it is important to achieve

scalability.

2.3.2 Measurement

The SQUID is a device to measure the state of the superconducting flux qubits.

The SQUID is used for magnetic field detection with high sensitivity. A particular

state of the qubit makes the SQUID to switch from zero-voltage to finite-voltage.

However, the readout of a flux qubit using a SQUID destroys the system to sup-

port a two-level system, so that we cannot perform the measurement sequentially.

The measurement by Josephson bifurcation amplifier (JBA) overcome this

problem. The JBA use the non-linearity of a resonant circuit which is connected

to a capacitor across the Josephson junction. This resonant circuit has a bistabil-

ity, a high- and a low-amplitude state, caused by a driving field with the suitable

frequency. The ability of the JBA to detect the magnetic field is sensitive enough

to measure the flux qubit state. Furthermore, the connected Josephson junction

is maintained at zero-voltage in this measurement process, so that the system to

support qubit is not destroyed by JBA measurement.
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Chapter 3

Scalable architecture of quantum

computation with always-on Ising interaction

using superconducting circuit

3.1 Introduction

In this chapter, we propose a way to control the interaction between qubits with

always-on Ising interaction. Unlike the standard method to change the interaction

strength with unitary operations, we fully make use of non-unitary properties of

projective measurements, so that we can effectively turn the interaction on or

off via feedforward. We then show how to generate a two- or three-dimensional

cluster state that are universal resource for fault-tolerant quantum computation

with this scheme. Our scheme provides an alternative way to realize a scalable

quantum processor.

The remainder of this chapter is organized as follows. Section 3.3 presents

the detail of our scheme to show how always-on interaction is effectively turned

on/off via projective measurement to ancillary qubits and quantum feedforward.

In Sec. 3.4 and Sec. 3.5, we propose the way to generate two and three-dimensional

cluster states using qubits arranged on a plane. In Section 3.7, we discuss about

experimental parameters for our scheme. Section 3.8 concludes our discussion.
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3.2 Experimental setup

All experiments are carried out in Mathematica 8 on a Linux server with Intel

Core i7-4770K at 3.50 GHz (4 physical cores) and 32GB of main memory.

3.3 Effective interaction control via projective measurements and

quantum feedforward

3.3.1 Physical setup

Now, we consider the physical setup of the qubit in this chapter. We use the cross-

shape type superconducting flux qubit as shown in Fig. 3.1. When we apply the

Figure 3.1: A setup of physical qubits on one-dimensional array. The flux qubit
consists of superconducting loop and four-Josephson junctions. We increase the
area of the loop around the edge of the cross-shape, so that we can increase
the coupling strength between nearest neighbor qubits. Each pair of nearest
neighbor qubits can be coupled via magnetic field generated by their persistent
current. Due to the cross-shape structure, the distance between non-nearest
neighbor qubits becomes large, so that the non-nearest neighbor coupling should
be negligible in our setup.

suitable magnetic field to the n qubits on one-dimensional array for coupling the

nearest neighbor qubits, the system Hamiltonian become as follows:

Ĥ =

n∑
l=1

εẐ +

n∑
l,l′|(|l−l′|=1)

g(l,l′)

4
ẐlẐl′ (3.1)

3.3.2 Hamiltonian

We introduce a Hamiltonian to realize our scheme to turn the interaction on

or off effectively via projective measurements and quantum feedforward. Since

we consider superconducting flux qubits that are known to have excellent con-
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trollability, we can assume that every qubit can be individually controlled by

a microwave pulse and there are always-on interaction between nearest neigh-

bor qubits. Throughout of this chapter, we assume the following Hamiltonian

corresponding to G(V,E)

Ĥ = Ĥsystem
G(V,E) + Ĥ interaction

G(V,E) (3.2)

Ĥsystem
G(V,E) =

∑
l∈V

(ωl

2
Ẑl + λl(t) cos

(
ω′
lt+ θ

)
X̂l

)
(3.3)

Ĥ interaction
G(V,E) =

∑
(l,l′)∈E

g(l,l′)

4
ẐlẐl′ (3.4)

where ω, λ(t), ω′, θ, and g denote the qubit energy, Rabi frequency, microwave

frequency, a phase of the microwave, and interaction strength, respectively. In

the superconducting flux qubit systems, it is possible to control the value of λ(t)

by changing the power of the microwave with much higher accuracy than in the

case of two-qubit gates. We move to a rotating frame defined by

Û = e−i
∑N

l

ω′
l
2
Ẑlt (3.5)

where ω′
l denotes the angular frequency of the rotating frame at site l, and we

use a rotating wave approximation as follows. From the Schrödinger equation

Ĥ(t)|ψ(t)⟩ = i
d

dt
|ψ(t)⟩ (3.6)

and

|ψ′(t)⟩ = Û |ψ(t)⟩ ⇐⇒ |ψ(t)⟩ = Û †|ψ′(t)⟩, (3.7)

we could obtain the rotated Hamiltonian

Ĥ ′(t) = ÛĤ(t)|ψ(t)⟩Û † − iÛ
dÛ †

dt
. (3.8)
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Therefore, the local Hamiltonian could be approximated to

Ĥsystem
G(V,E) =

∑
l∈V

1

2

 ωl − ω′
l λl(e

i(θ+2ωt) + e−iθ)

λl(e
iθ + e−i(θ+2ωt)) −(ωl − ω′

l)

 (3.9)

≃
∑
l∈V

(
ωl − ω′

l

2
Ẑl +

λl
2
X̂l

)
. (3.10)

Here, we used

cos
(
ω′
lt+ θ

)
=

1

2

(
e−i(ωt+θ) + ei(ωt+θ)

)
(3.11)

and ignored high-frequency components λei2ωt and λe−i2ωt. Hence, we obtain the

following Hamiltonian

Ĥ ≃
∑
l∈V

(
ωl − ω′

l

2
Ẑl +

λl
2
Âθ

l

)
+

∑
(l,l′)∈E

g(l,l′)

4
ẐlẐl′ (3.12)

where

Âθ =

 0 e−iθ

eiθ 0

 . (3.13)

Unless required to perform single qubit gates, we turn off the microwave and

set all λ = 0, and therefore the Hamiltonian introduced here is effectively the

same as an Ising model with always-on interaction. On the other hand, for

the implementation of accurate single-qubit rotations, we assume a large Rabi

frequency, λ≫ g, so that the coupling strength from the nearest neighbor qubit

can be negligible. We will later discuss an error accumulation due to imperfect

single qubit rotation in detail.

The Hamiltonian described above has the interesting property that an inter-

action from other qubits can be turned off by preparing the state of a qubit in

a ground state. To explain this, we consider a specific qubit A and other qubits
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interacting with the qubit A, and the Hamiltonian of those is described as

Ĥ ′
A =

 ∑
(A,j)∈E

ωj − ω′
j

2
Ẑj +

g(A,j)

4
ẐAẐj

+
ωA − ω′

A

2
ẐA (3.14)

=
∑

(A,j)∈E

(
g(A,j)

1+ ẐA

2

1+ Ẑj

2
+
ωj − ω′

j −
g(A,j)

2

2
Ẑj

)
(3.15)

with

ωA − ω′
A =

∑
(A,j)∈E

1

2
g(A,j), λA = 0 (3.16)

Interestingly, if qubit A is prepared in a ground state, the interaction from qubit

A cancels out because of

g(A,j)
1+ ẐA

2

1+ Ẑj

2
|↓⟩A = 0. (3.17)

This means that preparing a specific qubit in a ground state effectively turns off

the interaction between this qubit and the nearest-neighbor qubit. Therefore, if

all nearest-neighbor qubits are in the ground state, the qubit is not effected by

any interactions, which is the striking feature of our scheme. Also, if qubit A is

prepared in a excited state, the interaction causes an extra phase shift in qubit

B.

It is worth mentioning that we need precise control of the frequency of the

microwave in our scheme. We investigate the effect of a small detuning from the

target frequency of the microwave. Supposing that there is a detuning of δωj

from the target frequency, we have

ω′
j = ωj −

g(A,B)

2
+ δω′

j . (3.18)

In this case, we can rewrite the Hamiltonian (3.15) as follows.

Ĥ ′′
AB =

∑
(A,j)∈E

(
g(A,j)

1+ ẐA

2

1+ Ẑj

2
+
δω′

j

2
Ẑj

)
. (3.19)
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Quantum feedforward
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+⊗= φψ

BAC

(A,B)

CZ

(B,C)

CZ

UUψ +⊗= φ

ˆˆ

B

AC

(A,C)

CZ

Uψ ↓⊗= φ

ˆ

Entangled state

A B C

Separable state

+

t

g

Y measurement 

↓

t

g

Entangled state

Y

ˆ

±

B

AC

(A,C)

CZ

Uψ ↓⊗= φ

ˆ

±

A

S

ˆ

±

C

S

ˆ

2

ˆ

π

m

B

U

↓

Figure 3.2: Schematic of our scheme to implement two-qubit gates via projective
measurements and quantum feedforward udner the effect of always-on Ising in-
teraction. We let evolve the state |ϕ⟩AC ⊗ |+⟩B according to the Hamiltonian,
perform a projective measurement onto the middle qubit, and rotate the middle
qubit back into a ground state, so that a C-Phase can be implemented between
the qubit A and C. Due to the engineered Hamiltonian form that we make, this
guarantees that the qubit A and C does not evolve anymore even under the effect
of the always-on Ising type Hamiltonian.

Hence, frequency errors cause a phase shift error on each qubit. Fortunately,

due to recent developments in microwave technology, accurate control of the

microwave frequency is possible. Therefore, in this paper, we assume that we can

choose the exact microwave frequency to avoid this kind of error.

3.3.3 Interaction switching with quantum feedforward

Although we will later discuss the case of two or three-dimensional cluster state

that is a universal resource for quantum computation [83] , we start by explaining

how to generate a one-dimensional three-qubit cluster state (Fig. 3.2) to illustrate

our concept about how to control the effective interaction via projective measure-

ments and quantum feedforward. Suppose that we have three qubits, A, B, and

C, in a row and that all coupling strengths between the nearest neighbor qubits
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are equally g. Then, the system Hamiltonian becomes as follows.

Ĥ =
∑

j=A,B,C

(ωj

2
Ẑj + λj(t) cos

(
ω′
jt+ θ

)
X̂j

)
+
g(A,B)

4
ẐAẐB +

g(B,C)

4
ẐBẐC (3.20)

≃ g(A,B)
1+ ẐA

2

1+ ẐB

2
+ g(B,C)

1+ ẐB

2

1+ ẐC

2
(3.21)

with

ω′
A = ωA − 1

2
g, ω′

B = ωB − g, ω′
C = ωC − 1

2
g, λA = λB = λC = 0. (3.22)

As written in Eq. (3.20), the state of the qubit B changes the energies of qubits

A and C. When we set the qubit B to ground state, all eigen states of qubits

A and C degenerate therefore Ĥ does not change the system in time. We show

these energy diagrams in Fig. 3.3.

Qubit B

(State)

Qubit A,C

(Energy)

B

↑

ACAC

ACAC

↑↑↓↑

↑↓↓↓

,

,,

AC

↓↓

AC

↑↑

ACAC

↑↓↓↑ ,

g

g

2

1

B

↓

Figure 3.3: The energy diagrams of qubit A and C. The energies depend on the
state of the qubit B. The energies of qubit A and C are degenerate when the
qubit B is in a ground state. However, once the qubit B is excited, degeneracy is
removed so that the energy difference occurs between the states of qubit A and
C.

The ancillary qubit induces a conditioned dynamics. The excited state of the

ancillary qubit causes the phase rotation on the other qubits, while the ground

state of the ancillary qubit does not induce any phase shift on them. Therefore, if

we have a superposition of the ancillary qubit, the other two qubits are entangled

via such a conditioned dynamics. In order to see this effect more clearly, we
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describe how such conditioned dynamics occur in Subsection 3.3.7.

Here, we show the procedure of our scheme for controlled-phase gate. Firstly,

we prepare a separable |+⟩ state for the qubit B, and prepare an arbitrary pure

state for the qubit A and C. An initial state is described by

ρ = |ϕ⟩⟨ϕ|AC ⊗ |+⟩⟨+|B. (3.23)

Secondly, we let the system evolves by the Hamiltonian for a time

t =
π

g
. (3.24)

The total unitary evolution Û
(A,B)
CZ Û

(B,C)
CZ can be described by

Û = exp
(
− ig(A,B)t

1+ ẐA

2

1+ ẐB

2
− ig(B,C)t

1+ ẐB

2

1+ ẐC

2

)
, (3.25)

up to local equivalent.

Thirdly, we perform Ŷ basis

|±1Ŷ ⟩ =
1√
2
(|↑⟩ ± i|↓⟩) (3.26)

measurement on the middle qubit B.

The state after the measurement is written as

ρ′± = P̂±
B e

−iĤtρeiĤtP̂±
B (3.27)

where ± denotes the measurement result. Here,

P̂± =
1

2

(
1± Ŷ

)
(3.28)

denotes a projection operator on the qubit B.
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Y measurement

We can perform arbitrary basis measurement using single qubit rotations and a

certain basis measurement in combination. For example, we can perform a Ŷ

basis measurement by a combination of phase shift gates, Hadamard gates, and

Ẑ basis measurement

P̂±
Ẑ

=
1

2

(
1± Ẑ

)
. (3.29)

This works because the Y basis measurement can be implemented as follows:

P̂± = S−1HP̂±
Ẑ
HS, (3.30)

where S−1 denotes

S−1 = |↑⟩⟨↑| − i|↓⟩⟨↓| =

1 0

0 −i

 . (3.31)

Finally, we perform a quantum feedforward operation, that is an implemen-

tation of different local operations depending on the measurement results, onto

the qubit B, so that the qubit B can be prepared in a ground state. We define a

feedforward operator as

F̂±
ABC = Ŝ±

A Û
∓π
2

,X̂

B Ŝ±
C (3.32)

where Ŝ± denotes a shift gate defined as1 0

0 ±i

 (3.33)

and Û θ,X̂ denotes a single-qubit rotating around x-axis rotation with an angle of
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θ. The state after the quantum feedforward is described as

ρfinal = F̂+
ABC P̂

+
B ρP̂

+
B F̂

+†
ABC + F̂−

ABC P̂
−
B ρP̂

−
B F̂

−†
ABC (3.34)

= Û
(A,C)
CZ |ϕ⟩⟨ϕ|ACÛ

(A,C)
CZ ⊗ |↓⟩⟨↓|B. (3.35)

Therefore, after these operations, controlled-phase operations are performed be-

tween the qubit A and C, and the state does not evolve anymore because the

qubit B is prepared in a ground state. As shown in Fig. 3.3, the states of qubits

A and C degenerate and hence interactions are effectively turned off.

Meanwhile, if we set the qubit B in an excited state using a quantum feedfor-

ward operation, the final state become as follows.

ρ′final = e−iĤt′
(
Û

(A,C)
CZ ρACÛ

(A,C)
CZ ⊗ |↑⟩⟨↑|B

)
eiĤt′ (3.36)

= e−iĤ′t′Û
(A,C)
CZ ρACÛ

(A,C)
CZ eiĤ

′t′ ⊗ |↑⟩⟨↑|B (3.37)

where Ĥ ′ denotes the following Hamiltonian

Ĥ ′ = g(A,B)
1+ ẐA

2
+ g(B,C)

1+ ẐC

2
. (3.38)

The energy eigenstates are not degenerate as shown in Fig. 3.3 and hence in-

teractions cause the extra phase shift to qubits A and C. In principle, we can

correct these extra phases by performing single qubit rotation. However, unless

single qubit rotation can be perfectly performed, such operations induce another

error, which makes it difficult to perform fault-tolerant quantum computation.

In addition, it is usually difficult to keep the state in an exited state due to the

existence of the energy relaxation. For these reasons, we set the qubit B in a

ground state after the projective measurement.

Since the interaction is Ising type, the eigenvectors are represented by the

computational basis (|↑⟩, |↓⟩ basis). This means that the ancillary qubit induces

a conditional dynamics such that the target qubits evolve differently depending

on the state of the ancillary qubit. If we have a superposition of the ground

state and excited state of the ancillary qubit, it becomes possible to realize the
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superposition of such two dynamics. This is the key to entangle the ancillary

qubit with the target qubits.

3.3.4 Unavoidable error of feedforward operation

It is worth mentioning that we could not avoid a detuning error to perform a single

qubit rotation in our always-on interaction system. In the superconducting flux

qubit system, it is possible to perform a high-fidelity single qubit rotation by

applying a on-resonant microwave pulse whose frequency is the same as the qubit

energy. However, in our case, the target qubit has an unknown energy shift due to

the interaction when a state of nearest neighbor qubits contains a superposition.

As an example, we again consider a case of three-qubit one-dimensional chain,

and estimate the fidelity to perform a π
2 pulse on the middle qubit prepared in a

ground state, and the Hamiltonian of this system is described as follows.

ĤABC ≃
∑

l∈A,B,C

ωl − ω′
l

2
Ẑl +

λB(t)

2
Âθ

B +
∑

(l,l′)∈(A,B),(B,C)

g(l,l′)

4
ẐlẐl′ . (3.39)

Here, we set mixing angle

θ =
π

2
(3.40)

and microwave frequency

ω′
B = ωB − g (3.41)

to obtain the following Hamiltonian.

Ĥ ′
ABC =

∑
l∈A,C

1

2

(
ωl − ω′

l −
g

2

)
Ẑl +

λB
2
ŶB+

∑
(l,l′)∈(A,B),(B,C)

g
1 + Ẑl

2

1 + Ẑl′

2
.(3.42)

We show the effective Hamiltonian of the qubit B of this case in Table 3.1. Since

the resonant frequency of the qubit B depends on the state of the qubit A and C,

it becomes impossible to apply on-resonant pulse on the qubit B if one of these

states have a superposition. To implement our scheme to control the interaction,
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Table 3.1: The effective Hamiltonian of qubit B depends on the states of qubit A
and C in Fig. 3.2. When the states of the qubit A and C contains superposition,
the resonant frequency of the qubit B is not uniquely determined. Since the
microwave frequency is fixed, ẐB component induce the detuning error ϵπ

2
when

we rotate qubit B. As the table shows, the detuning error ϵπ
2
becomes maximum

for the case of |↑↑⟩AC .

Qubit A and C (state) Qubit B (effective Hamiltonian)

|↑↑⟩AC HB = gẐB + λB
2 ŶB

|↑↓⟩AC , |↓↑⟩AC HB = g
2 ẐB + λB

2 ŶB
|↓↓⟩AC HB = λB

2 ŶB

we have already chosen the frequency of (ωB − g) for the microwave π
2 pulse

and the worst fidelity (when the actual effective Hamiltonian of the qubit B is

HB = gẐB + λB
2 ŶB) can be calculated as follows.

ϵπ
2

= 1−
∣∣∣⟨↓ |e−iĤBt|+⟩

∣∣∣2 (3.43)

= 1−

∣∣∣∣∣∣∣
cos(12 t

√
4g2 + λ2B) + sin(12 t

√
4g2 + λ2B)

2gi+λB√
4g2+λ2

B√
2

∣∣∣∣∣∣∣
2

. (3.44)

where t
(
= π

2λ

)
denotes the duration of the microwave π

2 pulse. This means that,

by increasing the Rabi frequency λB, we can suppress this detuning error. We

plot this error ϵπ
2
against the coupling strength g and the Rabi frequency λB in

Fig. 3.4.

Throughout of this chapter, when we calculate a fidelity, we always consider

the worst case for detuning error as discussed above. The effective Hamiltonian

of the target qubit to be rotated by the microwave is described by

Htarget =
λ

2
X̂target (3.45)

when all nearest neighbor qubits are in a ground state while the worst case of the

Hamiltonian is

Htarget =
g

2
nẐtarget +

λ

2
X̂target (3.46)

28



Figure 3.4: The worst rotating error (ϵπ
2
) and the interaction strength (gT2) be-

tween each pair of nearest neighbor qubits in switching scheme (Fig. 3.2) against
various Rabi frequency (λBT2). Here, T2 denotes the coherence time of the qubit.

when all nearest neighbor qubit is in an excited state, and we fix the frequency

of (ωtarget − g
2n) for the microwave π

2 pulse. Here, ωtarget is the original resonant

frequency of the target qubit and n denotes the number of qubits interacting with

the target qubit. This will enable us to evaluate the performance of our scheme

for the fault tolerant quantum computation.

3.3.5 Optimal interaction strength

Here, we discuss the optimal interaction strength between the qubits to perform

a high fidelity controlled-phase gate. Since the coherenece of the quantum states

degrades due to decoherence, we need to perform a controlled-phase operation

much faster time scale than the coherence time of the qubit. For this purpose,

we need to increase the coupling strength to realize a fast controlled-phase gate.

However, the strong coupling strength makes it difficult to perform an accu-
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rate quantum feedforward operations because the always-on coupling between

qubits induces unknown energy detuning of the qubit frequency as described be-

fore. Then, there should exist an optimal interaction strength to minimize the

controlled-phase gate error that comes from the decoherence of the qubits and

imperfect quantum feedforward operations. Decoherence error that we consider

is general Markovian noise. We assume that the error rate increases exponentially

against time as

ϵd =
1

2
(1− e

−TCZ
T2 ). (3.47)

Here, T2 denotes the coherence time of the qubit and TCZ(=
π
g ) denotes the gate

operation time. Since we consider a parameter regime for TCZ ≪ T2, we can

simplify the decoherence error as

ϵd =
TCZ

T2
. (3.48)

We assume that the single-qubit operations can be implemented much faster

than the coherence time, and hence the decoherence effect during the single

qubit operations is negligible compared with other effect such as decoherence

during the controlled-phase gate. The setup we consider for the estimation of the

optimal coupling strength is as follows. As described in Fig. 3.2, to perform a

controlled-phase gate, we use two main qubits A and C and one ancillary qubit

B that is inserted between the main qubits. Initially, an ancillary is prepared

in a ground state and main qubit are prepared in arbitrary states. Also, for

simplicity, we assume that all nearest-neighbor coupling strength between qubits

are equal between these three qubits. We evaluate the achievable fidelity during

the implementation of a controlled-phase gate in our scheme (Fig. 3.2). Firstly,

by performing π
2 pulse, we rotate the ancillary qubit B from ground state into

|+⟩ state. At this time, the qubit B have unknown energy shift due to the cou-

pling from qubit A and C during the rotation, so that a detuning error occurs.

Secondly, let evolve the system according to the Hamiltonian. During this time

evolution, every qubit is affected by environmental noise, and so decoherence er-
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ror accumulates. Finally, we measure Ŷ and perform quantum feedforward on the

qubit B. Again, due to the coupling from nearest neighbor qubits, qubit A and

C suffers the detuning error for the feedforward rotations while the qubit B can

be accurately rotated by a resonant microwave pulse. Therefore, the achievable

fidelity is calculated as

F = 1− (2ϵπ
2
+ 3ϵd), (3.49)

where we assume that the error makes the state orthogonal to the ideal one to

consider the worst case. We plot the achievable fidelity F and interaction strength

g corresponding to the range of the Rabi frequency λ in Fig. 3.5(a). Also, we plot

the relationship between an achievable fidelity, the optimal interaction strength

and Rabi frequency in Fig. 3.5(b). This shows that an achievable fidelity (F )

monotonically increase with the increasing Rabi frequency (λ) and interaction

strength g has the optimal point against λ.

In this chapter, we do not discuss about the details of the errors in projective

measurements and quantum feedforward operations. But we can treat these

errors as a type of additional dephasing error. For example, in our switching

scheme of 3.3.3, we assume that we fail to perform measurement or feedforward

operation with a probability of ϵm. The ancillary qubit B become

ρB = (1− ϵm)|↓⟩⟨↓|B + ϵm|↑⟩⟨↑|B. (3.50)

At this time, the state of the total system is written as

ρABC = (1− ϵm)Û
(A,C)
CZ |ϕ⟩⟨ϕ|ACÛ

(A,C)
CZ ⊗ |↓⟩⟨↓|B

+ϵme
−iĤtÛ

(A,C)
CZ |ϕ⟩⟨ϕ|ACÛ

(A,C)
CZ ⊗ |↑⟩⟨↑|BeiĤt. (3.51)

Where

Ĥ =
∑

(l,l′)∈(A,B),(B,C)

g
1 + Ẑl

2

1 + Ẑl′

2
(3.52)
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Figure 3.5: (a) An achievable fidelity (F ) and the optimal coupling strength
(gT2) of a controlled-phase gate in our scheme (Fig. 3.2) against various Rabi
frequency (λT2) . The solid line denotes F and the dashed line denotes gT2. (b)
An achievable fidelity (F ) against interaction strength (gT2) and Rabi frequency
(λT2).
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CZ is performed on the initial state at

a specific timing due to the implementation of a π pulse where Û
(j,k)
CZ denotes a

controlled-phase operation between qubit j and k.

denotes Ising type interactions between qubit A, B and B, C. By trace out of

the ancillary qubit B, we can treat the effects of the interactions Ĥ as dephasing

errors at most ϵmσZ on the qubit A and C. Such error can be corrected by the

quantum error correction as long as the error is less than the threshold.

3.3.6 Asymmetric coupling strength case

Interestingly, our scheme to perform controllable controlled-phase gates under the

effect of always-on interaction works even when the coupling strength between

qubits is different. We adopt a spin echo technique [26, 105, 62] to balance the

interaction. In the spin echo technique, implementation of a π pulse can refocus

the dynamics of the spin, so that the effect of the interaction should be canceled.

Suppose that we have three qubits in a raw, and the coupling strengths between

the nearest neighbor qubits are g(A,B) and g
′
(B,C) as shown in Fig. 3.6 where we

assume g(A,B) > g′(B,C) without loss of generality. Then, the system Hamiltonian
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becomes as follows.

Ĥ =
∑

j=A,B,C

(ωj

2
Ẑj + λj(t) cos

(
ω′
jt+ θ

)
X̂j

)
+
g(A,B)

4
ẐAẐB +

g′(B,C)

4
ẐBẐC (3.53)

≃ g(A,B)
1+ẐA

2

1+ẐB

2
+ g′(B,C)

1+ẐB

2

1+ẐC

2
(3.54)

with

ω′
A = ωA − 1

2
g(A,B), ω

′
B = ωB −

g(A,B) + g′(B,C)

2
,

ω′
C = ωC − 1

2
g′(B,C), λA = λB = λC = 0. (3.55)

Here, we introduce

t1 =
π(g(A,B) + g′(B,C))

2g(A,B)g
′
(B,C)

(3.56)

and

t2 =
π(g(A,B) − g′(B,C))

2g(A,B)g
′
(B,C)

(3.57)

to satisfy

g(A,B)(t1 − t2) = g′(B,C)(t1 + t2) = π. (3.58)

We let the state evolve for a time t1, perform π pulse to qubit A, and let the

state evolve for a time t2. The total unitary evolution can be described by

Û = exp

(
−ig(A,B)(t1−t2)

1+ẐA

2

1+ẐB

2
− ig′(B,C)(t1+t2)

1+ẐB

2

1+ẐC

2

)
,(3.59)

up to local equivalent, and so,

Û |ϕ⟩ABC = Û
(B,C)
CZ Û

(A,B)
CZ |ϕ⟩ABC , (3.60)
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so that we can perform controlled-phase gates even if the coupling strength is

asymmetric. The details are explained in Subsection 3.3.7.

After this evolution, we use projective measurements and quantum feedfor-

ward to effectively turn off the interaction as long as qubit B is prepared in a

ground state. Therefore, we succeed in performing controlled-phase operation

between qubit A and C.

3.3.7 The details of implementation of controlled-phase gate

Here, we show the details of our scheme to perform controlled-phase gate. We

set the initial state of the system as following.

|Ψ1⟩ = |+ ↓ +⟩ABC . (3.61)

From the Hamiltonian Ĥ ′ in Eq. (3.38), we define the following local Hamiltoni-

ans.

Ĥ ′
A = g(A,B)

1+ ẐA

2
, Ĥ ′

C = g′(B,C)

1+ ẐC

2
. (3.62)

Firstly, we perform π
2 pulse to the qubit B, so that we can obtain the following

state

|Ψ2⟩ = |+++⟩ABC . (3.63)

Secondly, we let the state evolve for a time t1 in Eq. (3.56). The state becomes

as follows.

|Ψ3⟩ =
1√
2
(|↓⟩B + ei(Ĥ

′
A+Ĥ′

C)t1 |↑⟩B)⊗ |++⟩AC (3.64)

Thirdly, we perform π pulse to the qubit A to balance the effects of interaction

strengths.

|Ψ4⟩ =
1√
2
(|↓⟩B|++⟩AC + X̂Ae

i(Ĥ′
A+Ĥ′

C)t1 |↑⟩B|++⟩AC) (3.65)
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Fourthly, we let the state evolve for a time t2 in Eq. (3.57). Controlled-phase

gates are performed between two pairs of qubits as follows.

|Ψ5⟩ =
1√
2
(|↓⟩B|++⟩AC + ei(Ĥ

′
A+Ĥ′

C)t2X̂Ae
i(Ĥ′

A+Ĥ′
C)t1 |↑⟩B|++⟩AC) (3.66)

=
1√
2
(|↓⟩B|++⟩AC + X̂Ae

iĤ′
A(t1−t2)eiĤ

′
C(t1+t2)|↑⟩B|++⟩AC) (3.67)

=
1√
2
(|↓⟩B|++⟩AC − |↑⟩B|−−⟩AC). (3.68)

Finally, we measure the qubit B on Y-basis. According to the measurement

result, the states becomes as follows.

|Ψ±
6 ⟩ =

1

2
((|↑⟩B ± i|↓⟩B)|++⟩AC ∓ i(|↑⟩B ± i|↓⟩B)|−−⟩AC) (3.69)

=
1√
2
|±1Ŷ ⟩B ⊗ (|++⟩AC ∓ i|−−⟩AC). (3.70)

The operation of quantum feedforward is determined according to the mea-

surement result. These operations are equivalent to perform a controlled-phase

gate between qubits A and C as follows.

|Ψ±
7 ⟩ = F̂±

ABC |Ψ
±
6 ⟩ (3.71)

=
1√
2
Û

∓π
2

,X̂

B |±1Ŷ ⟩B ⊗ Ŝ±
A Ŝ

±
C (|++⟩AC ∓ i|−−⟩AC) (3.72)

=
1√
2
(|↑ −⟩AC − |↓ +⟩AC)⊗ |↓⟩B (3.73)

= Û
(A,C)
CZ |Ψ1⟩. (3.74)

3.3.8 One dimensional cluster state

We only explain about three-qubit case here. However, it is straightforward to

generalize this idea to an arbitrary size of one-dimensional cluster state, because

we can ignore the coupling from the other qubits as long as we insert an ancillary

qubit prepared in an ground state as we discussed before. It is worth mentioning

that the necesary number of the π pulses increases linearly against the number of

the qubits, due to the use of such ancillary qubits to stop the interaction from the

other qubits. Additionally, our scheme can be applied to two or three-dimensional
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cluster state. In these cases, we repeatedly implement the similar procedure as

we use in the case of a one-dimensional cluster state, so that we can balance

the interactions just by adding a few operations. We discuss the details of those

interaction-balancing schemes in Section 3.6. Hence, throughout of this chapter,

we assume that all interactions are equal.

3.4 Generation of a two dimensional cluster state under the ef-

fect of always-on interaction for surface coding scheme

In this section, we show how to apply our scheme to generate a two-dimensional

cluster state, which is a universal resource [87, 84] for quantum computation. We

(a) 2D cluster state

(b) Unit cell of processor

Ancillary qubit

Main qubitSyndrome qubit

(c) The procedure for cluster state generation

Figure 3.7: (a)Schematic to generate a two-dimensional cluster state with always-
on interaction using our scheme. Hollow circles denote logical qubits and colored
circles denote syndrome qubits for surface coding scheme. (b) A unit cell to
generate a two-dimensional cluster state. The large circles denote main qubits
while the small circles denote ancillary qubits for switching interactions. The
edge between the qubits denote the Ising type interaction between those qubits.
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now give the overview of our setting in Fig. 3.7(a) and the physical implementa-

tion in Fig. 3.7(b). Ancillary qubits for effectively turning on/off interactions are

set on the midpoint of these main qubits. There are Ising type interactions be-

tween each pair of nearest neighbor main qubit and ancillary qubit. To generate

a whole two-dimensional cluster state, we need to perform controlled-phase oper-

ations between every pair of the nearest logical and syndrome qubits as described

in the following procedure. Firstly, we prepare all ancillary qubits between main

and syndrome qubit to |+⟩ state. Secondly, we let the states evolve for a time

t = π
g . Finally, we perform projective measurements and quantum feedforward

operations to all ancillary qubits for generating two-dimensional cluster state. In

these operations, each ancillary qubit has no effect on the state of other ancillary

qubits, so that we can handle the effect of each operation as individual three-

qubits system and we can proceed all controlled-phase operations simultaneously.

Furthermore, similar to the case of a one-dimensional cluster state, the energies of

ancillary qubits have unknown energy shifts as described in Table 3.1, so that the

upper bound fidelities and optimal interaction strengths of each controlled-phase

operations coincide with three-qubit case shown in Fig. 3.5(a). Since scalable

surface coding scheme require the error rate around below 1 %, this result shows

that the Rabi frequency should be tens of thousands times larger than the decay

rate ( 1
T2
) and the coupling strength should be thousands times larger than that.

3.5 Generation of a three dimensional cluster state under the

effect of always-on interaction for topological quantum com-

putation

Although we discussed how to generate a two-dimensional cluster state above,

we can apply our scheme to generate a three-dimensional cluster state, which is

a universal resource for the topological quantum computation [83].

We can use either a cubic cluster state or bilayer cluster state for the topolog-

ical quantum computation, and we choose the latter one to avoid an unnecessary

decoherence effect, as previous authors did [73]. In this case, it is necessary to

generate the bilayer cluster state again and again, after the implementation of
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the measurements on one of the layers. We discuss how to generate a bilayer

3D cluster state under the effect of always-on Ising interaction by using projec-

tive measurements and quantum feedforward. We again assume that the Ising

type Hamiltonian described in Eq. 3.12 dominates this system, and there is an

interaction between every nearest neighbor qubit pairs. In our approach, unit

cell to generate a bilayer three-dimensional cluster state is composed of 28 qubits

(6 main qubits and 22 ancillary qubits), and we repeatedly put these cells on

the same plane as shown in the Fig. 3.8. Interestingly, although these qubits

are located in a two-dimensional plane, it becomes possible to implement a 3D

topological quantum computation.

Let us consider qubits located on the cross-shape structure, which is a part of

the unit cell (See the illustration (c) in the Fig. 3.8 ). The 5 ancillary qubits are

used to implement a controlled-phase gate between an arbitrary pair of two main

qubits in this cross shape structure without changing the states of the other main

qubits. Interestingly, by preparing two of the ancillary qubits in ground states

and preparing the other ancillary qubits in the |+⟩ state as described in Fig. 3.8,

only two main qubits will be involved in the implementation of the controlled-

phase gate while the other main qubits do not affect the operation due to the

existence of the ancillary qubits prepared in a ground state, which has the same

analogy with the case of a one-dimensional cluster state.

3.5.1 Optimal interaction strength

Next, we estimate the optimal interaction strength of the above system for gen-

erating a three-dimensional cluster state. We consider the same noise as in 3.3.5.

For this estimation, we introduce the following setup. As described in Fig. 3.8, we

use three ancillary qubits inserted between the target main qubits for performing

controlled-phase gate. We name these qubits as qubit A, B, C, D, and E where

A and E denote the main qubits and B, C, and D denote ancillary qubits (See

Fig. 3.9).

Initially, all ancillary qubits are prepared in a ground state and main qubit

are prepared in arbitrary states. We evaluate the error accumulation during the
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(a) Quasi 3D (Bilayer) cluster state (b) Unit cell of processor

Case 1.  Vertical

Case 2.  Horizontal Case 3.  Aslant

(c) Connection pattern

Ancillary qubit

Syndrome qubit

Main qubit

Logical qubit

Figure 3.8: (a)Schematic to perform 3D topological quantum computation in
our scheme by using qubits embedded in a two-dimensional plane. (b) Unit cell
to generate a bilayer 3D cluster state. We repeatedly put this cell in the two-
dimensional plane. The large circles denote main qubits while small circles denote
ancillary qubits. The edge between the qubits denotes the interaction between
them. (c) Cross-shape structure composed of 4 main qubits and 5 ancillary qubits.
We can implement a controlled-phase gate operation between an arbitrary pair
of main qubits in this structure.

implementation of a controlled-phase gate in our scheme using three ancillary

qubits (Fig. 3.9). Firstly, by performing π
2 pulse, we rotate the ancillary qubit

C into |+⟩ state, and subsequently rotate the other ancillary qubit B and D into

|+⟩ state. In this case, since all nearest neighbor qubits for the qubit C are

prepared in a ground state, the qubit C is not affected by the coupling strength

from any other qubits and can be accurately rotated by a microwave resonant

pulse. However, the qubit B (D) have unknown energy shift due to the coupling

from qubit A (E) and C during the rotation, so that a detuning error occurs.
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Figure 3.9: Error accumulation during the implementation of a controlled-phase
gate between the main qubits. There are two main qubits A and E initially
prepared in arbitrary state. Between these qubits, we insert three ancillary qubits
B, C, and D initially prepared in a ground state. As long as the state of the
nearest neighbor qubit contains a superposition, we cannot determine a resonant
frequency of the qubit due to the always-on interaction, which induces a detuning
error ϵπ

2
to rotate the qubit. Also, we assume a decoherence error ϵd that occurs

during the time evolution to entangle nearest neighbor qubits by the interaction.

Secondly, we wait the appropriate time evolution of system with the Hamiltonian.

During this time evolution, decoherence error of every qubit accumulates. Finally,

we measure Ŷ and perform quantum feedforward on the qubit B and D, and

subsequently implement the same operation on the qubit C. Again, due to the

coupling from nearest neighbor qubits, qubit B and D suffers the detuning error

for the feedforward rotations while the qubit C can be accurately rotated by a

resonant microwave pulse. To generate a whole three-dimensional cluster state,

we should perform this type of controlled-phase gates, vertically, horizontally,

and aslantly, as shown in Fig. 3.8. During this 3 steps, additional decoherence

error accumulate. Therefore, we calculate and plot an achievable fidelity

F = 1− (4ϵπ
2
+ 15ϵd) (3.75)

in Fig. 3.10. Also, we plot the optimal interaction strength and an achievable

fidelity against each λ in Fig. 3.5(b). Since scalable topological quantum compu-

tation require the error rate around below 1 %, this result shows that the Rabi

frequency should be tens of thousands times larger than the decay rate and the

coupling strength should be thousands times larger than that.
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Figure 3.10: The optimal coupling strength (gT2) and an achievable fidelity of a
controlled-phase operation in our scheme using three ancillary qubits against the
Rabi frequency (λT2). The solid line denotes F and the dashed line denotes gT2.
as with Fig. 3.5(a).

Figure 3.11: An achievable fidelity (F ) of a controlled-phase operation in our
scheme using three ancillary qubits against interaction strength (gT2) and Rabi
frequency (λT2).
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3.6 Generating cluster state with asymmetric interaction strength

In this section, we discuss how to generate a cluster state with asymmetric cou-

pling strength. Suppose that only three qubits are involved in, and the other

qubits are set not to interact with these three qubits by controlling the state of

the ancillary qubits. As we described before, by using unitary evolution, imple-

mentation of a spin echo, quantum measurements and quantum feedforward, we

can perform a controlled-phase gate between two main qubits where a single an-

cillary qubit is inserted between two main qubits for this case. This is a two-step

elementary operation to implement controlled-phase gate between main qubits

under the effect of always-on interaction. We will use this operation recursively

to make a large cluster state.

3.6.1 Generating one-dimensional cluster state

First, we aim for generating a one-dimensional cluster state using qubits that are

arranged in a raw. In order to avoid an exponentially large number of implemen-

tations of π pulses, we use the two-step procedure for generating one-dimensional

cluster state with m main qubits and m−1 ancillary qubits as shown in Fig. 3.12.

In this setting, interaction strengths differ from each other. Firstly, we perform

1

'g

1

g

2

'g

2

g

3

'g

3

g

4

'g

4

g

Figure 3.12: Due to the ancillary qubits prepared in a ground state, the number
of qubits interacting with the main qubit is equal to or less than one, so that we
can use the scheme described in Fig. 3.6. We create m

2 bell pairs in the first step,
and create a one-dimensional cluster state in the second step. This makes the
necessary number of π pulses the same as the number of ancillary qubits.
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controlled-phase operation between 2n−1th main qubit and 2nth(n = 1, 2, .., m2 )

main qubit, so that m
2 bell pairs are created. Since the 2kth(k = 1, 2, .., m2 ) ancil-

lary qubits are prepared in a ground state, we only need to consider the dynamics

of three-qubit during the time evolution, and so we can apply the scheme to turn

on/off effective interaction for three-qubit case as described in Fig. 3.2. Secondly,

we perform controlled-phase operations between 2nth main qubit and 2n + 1th

main qubit, so that a one-dimensional cluster state can be created. Here, the

2k−1th ancillary qubits are in a ground state, and 2kth ancillary qubits interact

with two main qubits. Again, only three qubits interact with each other, and so

we can apply the scheme described in Fig. 3.2.

3.6.2 Generating a two-dimensional cluster state

Next, we aim for generating a two-dimensional cluster state usingm2 main qubits

and 2m(m−1) ancillary qubits that are arranged on two-dimensional lattice with

asymmetric coupling strength. For this purpose, we suggest a four-step procedure

as shown in Fig. 3.13. Firstly, we generate m
2 Bell-pairs between each nearest pairs

Figure 3.13: The procedure for generating a two-dimensional cluster state over
logical qubits and syndrome qubits. At each step, every main qubits effectively
interacts with at most one nearest-neighbor ancillary qubit, because the other
nearest-neighbor ancillary qubit is prepared in a ground state, so that the in-
teraction of these are effectively turned off. In this figure, large circles denote
main qubits while small circles denote ancillary qubits. Main qubits are classified
for three-types of qubits. White big circles denote logical qubits, blue (red) big
circles denote syndrome qubits for bit-flip detection (dephasing detection).

of logical and syndrome qubits at each column. At every step, ancillary qubits,

which are not used for controlled-phase operations, prepared in ground state.

Secondly, we perform controlled-phase operations between each Bell-pairs in the

44



same column to generate one-dimensional cluster states. Thirdly, we perform

controlled-phase operations in horizontal direction. At each controlled-phase op-

eration, the syndrome qubit is arranged at the left side and the logical qubit is

arranged at the right side. Finally, we perform controlled-phase operation be-

tween all the remaining nearest-neighbor pair of logical and syndrome qubits, so

that we can obtain a two-dimensional cluster state.

3.6.3 Generating a three-dimensional cluster state

In this subsection, we suggest a procedure to make a three-dimensional cluster

state as shown in Fig. 3.14. For this procedure, we use 3
2m

2 main qubits and 11
2 m

2

Figure 3.14: Only main qubits are presented in this figure. Firstly, we generate
one-dimensional cluster states using logical and syndrome qubits on the same col-
umn. Secondly, we generate two separable two-dimensional graph states. Finally,
we generate a three-dimensional cluster state.

ancillary qubits that are arranged on a two-dimensional plane with asymmetric

coupling strength. Here, we show how to perform controlled-phase operation

between two-main qubits A and E via three-ancillary qubits B, C, and D with

asymmetric interactions as in Fig. 3.15. Firstly, we perform controlled-phase op-

eration between qubit A and C using our technique in Fig. 3.6. Secondly, we

perform controlled-phase operation between qubit C and E using the same tech-

nique. Finally, we perform Ŷ basis measurement quantum feedforward operations

on qubit C, so that controlled-phase operation can be implemented between qubit

A and E. We use this three-step controlled-phase operation recursively to make

a large three-dimensional cluster state in following procedure.
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The details of procedure for generating a three-dimensional cluster state

are described as follows. Firstly, we generate m-qubit one-dimensional cluster

states composed of m
2 logical qubits and m

2 syndrome qubits in vertical direc-

tion. For these operations, we use the same process as described in Subsec-

tion 3.6.1. Secondly, we generate two separable two-dimensional graph states

as shown in Fig. 3.15. One of the two-dimensional cluster state is composed of

logical qubits and bit-flip-detection syndrome qubits. The other one is composed

of logical qubits and dephasing-detection syndrome qubits. Interactions between

these two-dimensional cluster states are effectively turned off by ancillary qubits

prepared in a ground state. Finally, we perform controlled-phase operations on a

slant direction as shown in Fig. 3.8(c) between pairs of logical qubits to connect

these two-dimensional cluster states, so that we can generate a three-dimensional

cluster state.
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Figure 3.15: Controlled-phase operations via three-ancillary qubits using our
technique with asymmetric coupling strength. Qubit A and E are main qubits,
and qubit C, D, and E are ancillary qubits. Firstly, we prepare ancillary qubitsD
to ground state. Secondly, we perform controlled-phase operation between qubit
A and C by applying our technique described in Fig. 3.6. Thirdly, we perform
controlled-phase operation between qubit C and E in the same way. Finally, we
perform Ŷ basis measurements to qubit C and feedforward operations.
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3.7 Experimental parameters

We show the optimal interaction strength gT2 and Rabi frequency λT2 for our

scheme in Subsection 3.5.1. The best observed coherence time of the flux qubit is

10 or 20 µs [18, 101]. In these demonstration, flux qubits are located in the middle

of the three-dimensional microwave cavity. Furthermore, the Rabi frequency with

1.7 GHz [114] and the interaction strength with 0.5 GHz [66] are demonstrated.

In the former case, the flux qubit is strongly inductively-coupled with a microwave

line and has a large anharmonicity. Hence, the Rabi frequency can be up to an

order of few GHz without significant additional decoherence. In the latter case,

two flux qubits are located on the same circuit with fixed coupling. Assuming

that we can achieve these results on the same system, gT2 and λT2 can be up to

10000 and 34000 (with T2 = 20µs). As shown in Fig. 3.5(b) and Fig. 3.11, these

values satisfy conditions of the fidelity F ≥ 0.99 which exceed the threshold for

fault-tolerant quantum computation.

3.8 Conclusion

In this chapter, we show a scalable way to generate two and three-dimensional

cluster state with always-on Ising interaction. Here, we use projective measure-

ments and quantum feedforward to effectively turn on/off the interaction in this

system. Our schemes provide a novel way to construct a surface code quantum

computation and topological quantum computation.
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Chapter 4

Toward the realization of generating Ising

interaction using capacitive coupling for

superconducting flux qubits

4.1 Introduction

In this Chapter, we propose a scheme to generate a controllable Ising interac-

tion between superconducting flux qubits. Existing schemes rely on inductive

couplings to realize Ising interactions between flux qubits, and the interaction

strength is controlled by an applied magnetic field. We have found an alternative

way to generate an interaction between the flux qubits via capacitive couplings.

This has an advantage in individual addressability, because we can control the

interaction strength by changing an applied voltage that can be easily localized.

This is a crucial step toward realizing superconducting flux qubit quantum com-

putation.

The rest of this chapter is organized as follows: In Section 4.2, we describe

the experimental setup for simulations. In Section 4.3, we present the design

details of our flux qubit and the effects on a flux qubit from changes to the

parameters. In Section 4.4, we propose our scheme for generating Ising type

interaction between capacitively coupled superconducting flux qubits. Moreover,

we show the relationship between coupling strength and two types of errors caused

by operation accuracy, the fluctuation of applied voltage and timing jitter. In
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Section 4.5, we present the analysis of our scheme for use in a multi-qubit system.

Additionally, we discuss how to suppress the non-nearest neighbor interactions

by changing parameters and performing π pulses. Finally, we show our procedure

for generating a one and two-dimensional cluster state using qubits on a square

lattice in constant steps.

4.2 Experimental setup

Experiments for Hamiltonian analysis are carried out in Matlab R2013a on a

Linux server with Intel Xeon X5675 processors at 3.07 GHz (6 physical cores)

and 288GB of main memory. In each simulation, wave functions are represented

to as 13x13 matrices in the momentum space.

4.3 Voltage controlled α-tunable flux qubit

Let us first show the circuit of a flux qubit that we propose in Fig. 4.1. Here,

e

V

g

C

J(4)

C

,

J(4)

E

f

R

L

J(3)

C,

J(3)

E

J(2)

C,

J(2)

E

J(1)

C

,

J(1)

E

1

Figure 4.1: The circuit of a flux qubit in our design. This flux qubit has four
Josephson junctions (JJ). EJ(n) and CJ(n) denote the Josephson energy and ca-
pacitance of the n th Josephson junction JJn. The loop is threaded by an external
magnetic flux f , and we can control the energy bias of the qubit via the magnetic
flux. Node 1 represents the superconducting island. The electric potential of
node 1 is VI .
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X-shaped crosses denote Josephson junctions (JJ). The first Josephson junction

(JJ1) and the fourth Josephson junction (JJ4) both have the same Josephson

coupling energies EJ and capacitances CJ . The second Josephson junction (JJ2)

and the third Josephson junction (JJ3) both have the same Josephson energies

and capacitances, α times larger than those of JJ1 and JJ4.

4.3.1 Hamiltonian

The Josephson phases φn, which are given by the gauge-invariant phase of each

JJn, are subject to the following equation:

φ1 + φ2 + φ3 + φ4 = −2πf (4.1)

due to fluxoid quantization around the loop containing phases of Josephson junc-

tions. f denotes the external magnetic flux through the loop of the qubit in units

of the magnetic flux quantum

Φ0 =
h

2e
. (4.2)

The Josephson enegy of each JJn is

Un = EJ(n)(1− cosφn). (4.3)

Then, the total Josephson energy U can be described as follows:

U =

4∑
k=1

EJ(k) (1− cosφk) . (4.4)

The capacitance energy of each JJn is

Tn =
1

2
CJ(n)

(
Φ0

2π

)2

φ̇2
i (4.5)
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where φ̇ denotes the time derivative of φ. Then, including the energy of voltage

application, the total electric energy T can be described as follows:

T =
1

2

4∑
k=1

CJ(k)

(
Φ0

2π
φ̇k

)2

+
1

2
Cg (Ve − VI)

2 (4.6)

where Cg, Ve and VI denote the capacitance of the gate capacitor, applied external

voltage and the electric potential of node 1, respectively. Here, node 1 represents

the superconducting island.

From the phase constraints in (4.1), each phase φk and the time derivative of

phase φ̇k can be described using φ′ and φ̇′ as follows:

φ =


φ1

φ2

φ3

φ4

 , φk =
∑
j

Bkjφ
′
j + Fk, φ

′ =


φ′

1

φ′
2

φ′
3

 , (4.7)

φ̇ =


φ̇1

φ̇2

φ̇3

φ̇4

 , φ̇k =
∑
j

Bkjφ̇
′
j , φ̇

′ =


φ̇′

1

φ̇′
2

φ̇′
3

 , (4.8)

Here, we introduce the following terms B and F

B =


1 0 0

0 1 0

0 0 1

−1 −1 −1

 , F =


0

0

0

−2πf

 . (4.9)

Then, we can rewrite the total Josephson energy U as follows:

U = EJ

∑
k

Ak(1− cosφk) (4.10)

= EJ

∑
k

Ak(1− cos(
∑
j

Bkjφ
′
j + Fk)) (4.11)
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Here, we introduce the area ratio An of each JJn as follows:

A1 = A4 = 1, A2 = A3 = α. (4.12)

Then, the capacitance and the critical current of each Josephson junction are

proportional to Aj .

We define Vj as the voltage difference between JJj and JJj+1. The voltage

of the ground is set to virtual zero. Then the electric potential of node 1 (VI)

becomes

VI = V2 =
Φ0

2π
(φ̇1 + φ̇2). (4.13)

Furthermore, each Vj can be described using matrix D as follows:

V =


V1

V2

V3

 , Vj =
∑
i

Dji

(
Φ0

2π

)
φ̇i, D =


1 0 0 0

1 1 0 0

1 1 1 0

 . (4.14)

From the formula (4.6), the total electric energy T becomes as follows:

T =
∑
k

Ake
2

4EC

(
Φ0

2π
φ̇k

)2

+
∑
i

1

2
Cgi (VEi − VI)

2 (4.15)

=
∑
k

e2

4EC

(
Φ0

2π

)2

Ak

(∑
i

Bkiφ̇
′
i

)2

+
1

2
Cg

VEi −
∑
jk

Di,jBj,kφ̇
′
j

Φ0

2π

2

(4.16)

where Cgi denotes the capacitance of the gate capacitor which is connected to

the island between JJi and JJi+1. VEi denotes the external voltage to the same

island. In this case, Cg2 and VEi are Cg and Ve in Fig. 4.1. Here, we introduce

the ratio of capacitance Cgi as follows:

Γ1 = Γ3 = 0, Γ2 = γ. (4.17)
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Γi satisfies the following conditions

Cgi = CJ(1)Γi =
e2

2EC
Γi. (4.18)

Then, the second term of formula (4.16) becomes

e2

4EC

(
Φ0

2π

)2∑
i

Γi

VEi
2π

Φ0
−
∑
jk

Di,jBj,kφ̇
′
k

2

=
e2

4EC

(
Φ0

2π

)2∑
ijk

Γi

((
Di,jBj,kφ̇

′
k

)2 − 2VEiDi,jBj,kφ̇
′
k

2π

Φ0

)
+ const.(4.19)

Here, we can ignore
∑

i Γi

(
VEi

2π
Φ0

)2
because it is constant.

Furthermore,

∑
ijkl

AiδijBjkφ̇
′
kBilφ̇

′
l =

∑
ijkl

φ̇′
lB

T
li (Aiδij)ijBjkφ̇

′
k, (4.20)

and we introduce the following matrices Amat and Γmat:

Amat =


1 0 0 0

0 α 0 0

0 0 α 0

0 0 0 1

 ,Γmat =


0 0 0

0 γ 0

0 0 0

 . (4.21)

Using above equations, we can rewrite T as follows:

T =
e2

4EC

(
Φ0

2π

)2

φ̇
′TBTAmatBφ̇

′

+
e2

4EC

(
Φ0

2π

)2(
φ̇

′TBTDTΓmatDBφ̇
′ − 2VEΓmatDφ̇

Φ0

2π

)
(4.22)

=
e2

4EC

(
Φ0

2π

)2

φ̇
′TBT

(
Amat +DTΓmatD

)
Bφ̇′

− e2

2EC

Φ0

2π
VEΓmatDBφ̇

′ (4.23)
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where VE denotes

VE =
(
0 Ve 0

)
. (4.24)

Here, we introduce Lagrangian L = T − U and generalized momentum Pi

Pi =
∂L
∂φ̇′

i

=
∂T

∂φ̇′
i

(4.25)

and define the effective mass M as follows:

M =
e2

2EC

(
Φ0

2π

)2 (
BTAmatB +BTDTΓmatDB

)
. (4.26)

Then T becomes as follows:

T =
∑
kl

1

2
φ̇′
kMklφ̇

′
l −

e2

2EC

Φ0

2π

∑
i

(VEΓmatDB)i φ̇
′
i, (4.27)

and P becomes as follows:

Pi =
1

2

(
δikMklφ̇

′
l + δilMklφ̇

′
k

)
− e2

2EC

Φ0

2π
(VEΓmatDB)i (4.28)

P = Mφ̇′ − e2

2EC

Φ0

2π
VEΓmatDB (4.29)

For quantization, we replace the generalized momentum Pi with

Pi = −iℏ ∂

∂φ′
i

. (4.30)

Then the circuit Hamiltonian becomes as follows:

H =
1

2

(
PT +

e2

EC

Φ0

2π
BTDTΓmatV

T
E

)
M−1

(
P +

e2

EC

Φ0

2π
VEΓmatDB

)
+ U.(4.31)

Here we use

MT =M. (4.32)
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4.3.2 Simulation

Next, we show how to simulate the Hamiltonian in Eq. (4.31). For this purpose,

we rewrite that Hamiltonian using the following functions.

Hsim = EJU(N,B, F,Amat) + ECT (N,M,K) (4.33)

where N denotes the size of matrices. We use 2N +1 x 2N +1 momentum based

matrix to denote each φ. It is because φ(θ) can be rewrite as follows:

φ(θ) =
N∑

k=−N

pke
ikθ, (4.34)

where p denotes momentum term. Larger N give higher accuracy and long sim-

ulation time. We set N = 6 in every simulation.

Table 4.1: Functions used in simulations. These functions

are the standard in Matlab and Octave.

Functions Descriptions Examples

zeros(n)

A square matrix of dimension

n where every component is

zero.

zeros(3) =


0 0 0

0 0 0

0 0 0


eye(n)

An identity square matrix of

dimension (n).
eye(2) =

1 0

0 1


ones(n,m)

Returns the n by m matrix

where every component is one.
ones(2, 3) =

1 1 1

1 1 1


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diag(P, q)

p:The elements

number of P.

Returns a square matrix of di-

mension p + q with elements

of P on qth diagonal. When

q > 0 (q < 0), qth diagonal is

located in the upper (lowner)

part of the matrix. 0th diago-

nal means the main diagonal.

P =
(
1 2

)

diag(P, 1) =


0 1 0

0 0 2

0 0 0



diag(P,−2) =


0 0 0 0

0 0 0 0

1 0 0 0

0 2 0 0



Here, we define LV is the number of components in the vector (or line of matrix)

V . We show details of function U(N,B,F,Amat) as follows:
function U( int N , matrix B, vector F , matrix Amat)

Input: The size of matrices N , phase constraints B and F in Eq. (4.9), and

the area ratio of Junctions Amat in Eq. (4.21).

Output: 2N + 1 x 2N + 1 matrix of potential energy U .

U = zeros((2N + 1)LB ) .

for k = 1 : LU do

for l = 1 : LB do

s(l) = diag(ones(1, 2N + 1− |B(k, l)|),+B(k, l))

t(l) = diag(ones(1, 2N + 1− |B(k, l)|),−B(k, l))

end for

S = s(1)⊗ s(2)⊗ ..⊗ s(LB).

T = t(1)⊗ t(2)⊗ ..⊗ t(LB).

COS(N,B(k, :), F (k)) = (SeF (k)i + Te−F (k)i)/2

U = U +Amat(k, k)(eye((2N + 1)LB )− COS(N,B(k, :), F (k)))

end for

return U

end function
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Next, we define K is

K = −V ΓmatDB. (4.35)

We show details of the function T (N,M,K) as follows:
function T (int N , matrix M , vector K)

Input: The size of matrices N , the effective mass M in Eq. (4.26), and effects

of external voltage K in Eq. (4.35).

Output: 2N + 1 x 2N + 1 matrix of momentum energy T .

T = 0

Minv =M−1 ⊗ eye((2N + 1)LM )

for l = 1 : LK do

for k = 1 : LK do

t(k) = eye(2N + 1)

end for

t(l) = diag((−N : N) +K(l), 0)

Pmat = t(1)⊗ t(2)⊗ ..⊗ t(Lk).

end for

T = 4P T
matMinvPmat

return T

end function

By diagonalization of Hsim, we can determine eigenvectors and eigenvalues of

this circuit.

Although the system Hamiltonian H has many energy levels, the system can

be described as a two-level system (qubit) due to a strong unharmonicity by

choosing suitable α. We show the α dependence of the energy of this system

Fig. 4.2, where E01 (E12) denotes the energy splitting between the ground (first

excited) and the first excited (second excited) state. This clearly shows that

system has an unharmonicity so that we can control only the ground state and

first excited state by using frequency selectivity.
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Figure 4.2: The α dependence of E01 and E12 where E01 denotes energy difference
between the ground state and the first excited state, E12 denotes energy difference
between the first excited state and the second excited state. Here, we set EJ(1) =
EJ(4) = 200 GHz, EJ(2) = EJ(3) = 40 GHz, and EJ(k)/EC(k) = 80(k = 1, 2, .., 4).

|g⟩ and |e⟩ are the ground and the first excited state of the system Hamiltonian

H for f = 0.5. In this regime, the ground state and the first excited state of

this system contains a superposition of clockwise and anticlockwise persistent

currents. Here, |L⟩ = 1√
2
(|g⟩ + |e⟩) corresponds anticlockwise persistent current

and |R⟩ = 1√
2
(|e⟩ − |g⟩) corresponds clockwise one.

While f is around 0.5, due to the unharmonicity, we can consider only the

ground state and first excited state in the Hamiltonian H, and so we can simplify

the H into Ĥge spanned by |g⟩ and |e⟩ as follows:

Ĥge =
1

2
(∆σZ + εσY ) (4.36)

where σZ = |e⟩⟨e| − |g⟩⟨g| and σY = −i|e⟩⟨g| + i|g⟩⟨e| are Pauli matrices, ∆

denotes the tunneling energy between |L⟩ and |R⟩, ε denotes the energy bias
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between |L⟩ and |R⟩. The energy of the qubit is described as E01 =
√
ε2 +∆2.

In this chapter, unless indicated otherwise, we fix parameters as α = 0.2 and

EJ(1) = 200 GHz and EJ(k)/EC(k) ratio is 80. Here, EC(k) = e2/2CJ(k) is charge

energy of each Josephson junction. In this parameter regime, E01 is about three

times larger than E12 as shown in Fig. 4.2 so that we could consider this system

as an effective two-level system. When f is set to be near 0.5, the derivative of the

qubit energy against the magnetic flux |dE01
df | takes the minimum value, so that

the qubit should be well decoupled from flux noise, and we achieve the maximum

coherent times. We call this regime “optimal point”. On the other hand, we

can control the value of ε by changing the value of f . When the energy bias

ε is much larger than the tunneling energy ∆, the persistent current states are

the eigenvectors of the Hamiltonian so that we can read out the qubit state with

SQUID[25] in {|L⟩, |R⟩} base. Here we show the dependence of ε and ∆ against

magnetic field with no bias voltage applied in Fig. 4.3. It is worth mentioning
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Figure 4.3: The tunneling energy ∆ and the energy bias ε against the magnetic
flux f . ε decreases monotonically as we increase f , while ∆ is almost independent
of f .
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that we can control the energy of the qubit by tuning the applied voltage Ve while

operating at the optimal point. We show the relationship between ∆ and f with

several values of Ve in Fig. 4.4. In addition, we show the relationship between ∆
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Figure 4.4: The relationship between the external magnetic flux f and the energy
of the qubit E01(= ∆+ ε) with different voltage levels. Here, we set the α = 0.2
and the gate capacitance Cg = 0.077 fF.

and f with several values of α in Fig. 4.5.

4.4 Ising type interaction using capacitive coupling

4.4.1 Generating interaction between two-qubit system

In this section, we show how to generate an Ising type interaction using charge

coupling for superconducting flux qubits. As a novel feature of our scheme, we

use only external voltages to switch on and off the interaction between two flux

qubits. Unlike previous schemes, an external magnetic field is not required to

control the interaction in our scheme. Since the voltage can be applied locally

compared with the case of applying magnetic field, we may have an advantage in
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Figure 4.5: The relationship between f and E01(= ∆ + ε) with different α.

this scheme for scalability due to possibly smaller cross-talk problems when we

try to control individual qubits.

Here, we show the circuit for our scheme using two superconducting flux qubits

in Fig. 4.6. The structure of each qubit is the same as that shown in Fig. 4.1.

When we apply an external voltage V
(l)
e on each qubit, the qubit interact with

each other across the capacitor C
(1,2)
c . We describe the details of this circuit in

the following subsections.

4.4.2 Hamiltonian

Josephson phases φ
(k)
n are subject to the following equation:

φ
(k)
1 + φ

(k)
2 + φ

(k)
3 + φ

(k)
4 = −2πf (k) (4.37)

where φ
(k)
n and f (k) denote the phase of each Josephson junction JJn and external

magnetic flux of qubit k.
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Figure 4.6: Two flux qubits 1, 2 are coupled via capacitance Cc(1,2). Each flux
qubit is threaded by an external magnetic flux f (l), and we can control the energy
bias of the qubit via the magnetic flux. Node 1 and node 2 represent the super-
conducting islands. JJ2 and JJ3 at each qubit have the same Josephson energies
and capacitances that are α times larger than those of all remaining Josephson

junctions. The electric potential of the island include node 1 (2) is V
(1)
i (V

(2)
i ).

Cc(1,2), C
(l)
J(n), and Cg

(l) denote coupling capacitance between two qubits, capaci-
tance of the n th Josephson junction JJn of qubit l, and gate capacitance between
external voltage and node, respectively.

We now consider the total potential energy U and the total electric energy T

of the circuit in Fig. 4.6 as follows:

U =
2∑

l=1

4∑
k=1

E
(l)
J(k)

(
1− cosφ

(l)
k

)
, (4.38)

T =
1

2

2∑
l=1

4∑
k=1

C
(l)
J(k)

(
Φ0

2π
φ̇
(l)
k

)2

+
1

2

2∑
l=1

C(l)
g

(
V (l)
e − V

(l)
I

)2
+
1

2
C(1,2)
c

(
V

(1)
I − V

(2)
I

)2
(4.39)

where E
(l)
J(n) and C

(l)
J(n) denote the Josephson energy and capacitance of the n th

Josephson junction JJn and C
(l)
g , V

(l)
e , and V

(l)
I denote gate capacitance, applied

external voltage, and the electric potential of the island including node l for the

l th qubit respectively. Here, node l represents the superconducting islands. The
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last term of Eq. (4.39) denotes the energy of capacitive coupling between two

qubits.

From the phase constraints in Eq. (4.37), each phase φk and the time deriva-

tive of phase φ̇k can be described using φ′ and φ̇′ as follows:

φ =



φ
(1)
1

φ
(1)
2

φ
(1)
3

φ
(1)
4

φ
(2)
1

φ
(2)
2

φ
(2)
3

φ
(2)
4



, φk =
∑
j

Bkjφ
′
j + Fk, φ

′ =



φ′
1

φ′
2

φ′
3

φ′
4

φ′
5

φ′
6


, (4.40)

φ̇ =



φ̇
(1)
1

φ̇
(1)
2

φ̇
(1)
3

φ̇
(1)
4

φ̇
(2)
1

φ̇
(2)
2

φ̇
(2)
3

φ̇
(2)
4



, φ̇k =
∑
j

Bkjφ̇
′
j , φ̇

′ =



φ̇′
1

φ̇′
2

φ̇′
3

φ̇′
4

φ̇′
5

φ̇′
6


, (4.41)
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Here, we introduce following B and F

B =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 −1 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −1 −1 −1



, F =



0

0

0

−2πf (1)

0

0

0

−2πf (2)



. (4.42)

Then, we can rewrite the total Josephson energy U as follows:

U = EJ

∑
k

Ak(1− cosφk) (4.43)

= EJ

∑
k

Ak(1− cos(
∑
j

Bkjφ
′
j + Fk)). (4.44)

Here, we introduce the area ratio A
(l)
n of each JJn of qubit l as follows:

A
(l)
1 = A

(l)
4 = 1, A

(l)
2 = A

(l)
3 = α, where l ∈ {1, 2}. (4.45)

Then, the capacitance and the critical current of each Josephson junction are

proportional to A
(l)
j .

We define Vj , j ∈ {1, 2, 3} as the voltage difference between the ground voltage

and the voltage between two Josephson junctions JJj and JJj+1 of qubit 1. We

also define Vj , j ∈ {4, 5, 6} as the voltage difference between the ground voltage

and the voltage between JJj−3 and JJj−2 of qubit 2. Then, the electric potential

V
(k)
I becomes

V
(1)
I = V2 =

Φ0

2π
(φ̇1 + φ̇2), (4.46)

V
(2)
I = V5 =

Φ0

2π
(φ̇4 + φ̇5), (4.47)
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Furthermore, each Vj can be described using matrix D as follows:

V =



V1

V2

V3

V4

V5

V6


, Vj =

∑
i

Dji

(
Φ0

2π

)
φ̇i, D =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 0


.(4.48)

From the formula (4.39), the total electric energy T becomes as follows:

T =
∑
k

Ake
2

4EC

(
Φ0

2π
φ̇k

)2

+
∑
i

1

2
Cgi (VEi − Vi)

2 +
∑
ij

1

2
Ccij (Vi − Vj)

2 (4.49)

=
∑
k

e2

4EC

(
Φ0

2π

)2

Ak

(∑
i

Bkiφ̇
′
i

)2

+
1

2
Cg

VEi −
∑
jk

Di,jBj,kφ̇
′
j

Φ0

2π

2

+
1

2

∑
ij

(
V 2
i + V 2

j − 2ViVj
)
Ccij (4.50)

where Cgi denotes the capacitance of the gate capacitor which is connected to

the island between two junctions. When i = 1, 2, 3, two junctions denote JJi

and JJi+1 of qubit 1. When i = 4, 5, 6, two junctions denote JJj−3 and JJj−2

of qubit 2. VEi denotes the external voltage to the island which is determined

from above rules. Ccij denotes the capacitance between two island which are also

determined from above rules. In this case, Cg2, Cg5, VE2, VE5, and Cc25 are C
(1)
g ,

C
(2)
g , V

(1)
e , V

(2)
e and C

(1,2)
c in Fig. 4.6. Here, we introduce the ratio of capacitance

Cgi as follows:

Γ1 = Γ3 = Γ4 = Γ6 = 0, Γ2 = Γ5 = γ. (4.51)

Γi satisfies the following conditions:

Cgi = CJ(1)Γi =
e2

2EC
Γi. (4.52)
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Then, as in the case of one qubit system, the second term of formula (4.50)

becomes

e2

4EC

(
Φ0

2π

)2∑
i

Γi

VEi
2π

Φ0
−
∑
jk

Di,jBj,kφ̇
′
k

2

=
e2

4EC

(
Φ0

2π

)2∑
ijk

Γi

((
Di,jBj,kφ̇

′
k

)2 − 2VEiDi,jBj,kφ̇
′
k

2π

Φ0

)
+ const.(4.53)

Here, we can ignore
∑

i Γi

(
VEi

2π
Φ0

)2
because it is constant term.

Furthermore, the last term of formula (4.50) becomes

∑
k

V 2
k

∑
l

Cc(k,l) −
∑
ij

ViCc(i,j)Vj =
e2

2EC
V TC

′
cV (4.54)

=
e2

2EC

(
Φ0

2π

)2

φ̇
′TBTDTC

′
cDBφ̇

′(4.55)

where

e2

2EC
C

′

c(i,j) ≡ −Cc(i,j) + δi,j
∑
k

Cc(i,k). (4.56)

Next, we introduce following matrices A2q
mat and Γ2q

mat:

A2q
mat =



1 0 0 0 0 0 0 0

0 α 0 0 0 0 0 0

0 0 α 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 0 0 α 0

0 0 0 0 0 0 0 1



,Γ2q
mat =



0 0 0 0 0 0

0 γ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 γ 0

0 0 0 0 0 0


. (4.57)
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Using above equations, we can rewrite T as follows:

T =
e2

4EC

(
Φ0

2π

)2

φ̇
′TBTA2q

matBφ̇
′

+
e2

4EC

(
Φ0

2π

)2(
φ̇

′TBTDTΓ2q
matDBφ̇

′ − 2VEΓ
2q
matDφ̇

Φ0

2π

)
+

(
Φ0

2π

)2

φ̇
′TBTDTC

′
cDBφ̇

′ (4.58)

=
e2

4EC

(
Φ0

2π

)2

φ̇
′TBT

(
A2q

mat +DTΓ2q
matD + 2DTC

′
cD
)
Bφ̇′

− e2

2EC

Φ0

2π
VEΓ

2q
matDBφ̇

′ (4.59)

where VE denotes

VE =
(
0 V

(1)
e 0 0 V

(2)
e 0

)
. (4.60)

Here, we introduce Lagrangian L = T − U and generalized momentum Pi

Pi =
∂L
∂φ̇′

i

=
∂T

∂φ̇′
i

(4.61)

and define the effective mass M as follows:

M =
e2

2EC

(
Φ0

2π

)2 (
BTA2q

matB +BTDT
(
Γ2q
mat + 2C

′
c

)
DB

)
. (4.62)

Then, T and P become as follows:

T =
∑
kl

1

2
φ̇′
kMklφ̇

′
l −

e2

2EC

Φ0

2π

∑
i

(
VEΓ

2q
matDB

)
i
φ̇

′
i, (4.63)

P = Mφ̇′ − e2

2EC

Φ0

2π
VEΓ

2q
matDB (4.64)

For quantization, we replace the generalized momentum Pi with

Pi = −iℏ ∂

∂φ′
i

. (4.65)
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Then, the circuit Hamiltonian becomes as follows:

H =
1

2

(
PT +

e2

EC

Φ0

2π
BTDTΓ2q

matV
T
E

)
M−1

(
P +

e2

EC

Φ0

2π
VEΓ

2q
matDB

)
+ U.(4.66)

4.4.3 Simulation

The size of Hamiltonian in Eq. (4.66) is too large to diagonalize with high ac-

curacy. We can derive the effective four-level (|gg⟩12, |ge⟩12, |eg⟩12, and |ee⟩12 )

Hamiltonian Ĥge of the eigenspace spanned by |g(k)⟩ and |e(k)⟩ using the follow-

ing steps. Here, |g(k)⟩ and |e(k)⟩ denote the ground state and first excited state

of the kth qubit without interactions for f (1) = f (2) = 0.5.

Step 1 We construct the local Hamiltonian of each qubit H
(k)
local without consid-

ering capacitive coupling. H
(k)
local and the one qubit Hamiltonian in Eq. 4.31

are the same except for the parameters F and VE .

Step 2 We set f (k) = 0.5 to calculate the ground state |g(k)⟩ and the first

excited state |e(k)⟩ from H
(k)
local using the scheme in 4.3.2.

Step3 We set C
(1,2)
c and calculate the inverse of the effective mass M−1 in

Eq. (4.62).

Step4 We simulate the following functions to obtain Ĥge:

Ĥge =
∑

v
(1)
L ,v

(1)
R ,v

(2)
L ,v

(2)
R

|v(1)L v
(2)
L ⟩⟨v(1)L v

(2)
L |H|v(1)R v

(2)
R ⟩⟨v(1)R v

(2)
R | (4.67)

⟨v(1)L v
(2)
L |H|v(1)R v

(2)
R ⟩ = EJU(v

(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , U (1), U (2))

+ECT (v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , N,M−1,K) (4.68)

whereN denotes the size of matrices, v
(k)
L and v

(k)
R satisfy the following conditions,

v
(1)
L , v

(1)
R ∈ {g(1), e(1)}, v

(2)
L , v

(2)
R ∈ {g(2), e(2)}. (4.69)
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U (1), U (2) denote

U (1) = EJ

4∑
k=1

Ak(1− cos(
∑
j

Bkjφ
′
j + Fk)) (4.70)

U (2) = EJ

8∑
k=5

Ak(1− cos(
∑
j

Bkjφ
′
j + Fk)), (4.71)

and K denotes

K =
e2

EC

Φ0

2π
VEΓmatDB. (4.72)

Here, the function U(v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , U (1), U (2)) denotes

U(v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , U (1), U (2))

= ⟨v(1)L |U (1)|v(1)R ⟩⟨v(2)L |v(2)R ⟩+ ⟨v(1)L |v(1)R ⟩⟨v(2)L |U (2)|v(2)R ⟩. (4.73)

Next, we show details of the function T (v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , N,M

−1,K) as follows:

function T (vector v
(1)
L , vector v

(1)
R ,vector v

(2)
L , vector v

(2)
R , int N , matrixM−1,

vector K)

Input: Set vectors v
(i)
L and v

(i)
R in Eq. (4.68), the size of matrices N , the inverse

of the effective mass M−1 in Eq. (4.62), and effects of external voltage K in

Eq. (4.72).

Output: 2N + 1 x 2N + 1 matrix of momentum energy T .

q = 2 : number of qubits

w = length(K); : number of wave functions

for k = 0 : w − 1 do

PMatrix(k) = diag((−N : N) +K(k), 0)

end for

for k = 0 : w
q − 1 do

IMatrix(k) = identity(2 ∗N + 1) : matrix for initialization

end for

for a = 0 : w − 1 do
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for b = 0 : w − 1 do

P0 = P1 = {IMatrix} : initialize

Phi(0) = Phi(1) = identity((2 ∗N + 1)3) : initialize

P0(a%3) = PMatrix(a)

P1(b%3) = PMatrix(b)

Φ(a/3)∗ = P0(0) ⊗ P0(1) ⊗ P0(2)

Φ(b/3)∗ = P1(0) ⊗ P1(1) ⊗ P1(2)

T = T +M−1
(a,b)⟨v

(1)
L |Φ(0)|v

(1)
R ⟩⟨v(2)L |Φ(1)|v

(2)
R ⟩

end for

end for

return T

end function

For an arbitrary f (l), the effective Hamiltonian Ĥge becomes as follows:

Ĥge =
2∑

l=1

1

2

(
∆(l)σ

(l)
Z + ε(l)σ

(l)
Y

)
+ gσ

(1)
Z σ

(2)
Z

+g′σ
(1)
Y σ

(2)
Z + g′′σ

(1)
Z σ

(2)
Y + g′′′σ

(1)
Y σ

(2)
Y (4.74)

where g denotes the Ising type interaction strength between qubit 1 and 2. g′,

g′′, and g′′′ are suppressed to zero as long as f (1) = f (2) = 0.5. In this chapter,

we use this regime. We show the change of the qubit energy E01 in Fig. 4.7 and

the interaction strength g as a function of applied voltages in Fig. 4.8.

Large interaction strength and small derivative of qubit energy against voltage

can be achieved by the large coupling capacitance Cc between each qubits. This

seems to show that one can suppress errors by increasing Cc. We discuss about

the errors during controlled-phase gate operation in following section.

4.4.4 Effects on interaction from change in electric field

To evaluate the performance of our scheme, we focus on two types of errors due

to the fluctuation of applied voltage and time jittering.
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Figure 4.7: The voltage dependence of the qubit energy ∆ of the circuit in Fig. 4.6.
Here, both of the gate capacitance C l

g = 0.077 fF.

The fluctuation of applied voltage

Firstly, we analyze the dephasing errors due to the fluctuations of applied voltage.

We define this type of error ϵd and dephasing time T2 as follows:

ϵd =
tcp
T2
, tcp =

π

g
, T2 =

1

|dE01
dv |δv

(4.75)

where we assume tcp << T2. Here, tcp denotes the necessary time to perform a

controlled-phase gate with Ising type interaction, v denotes the external voltage

of each qubit, and δv denotes the fluctuation width of v. It is worth mentioning

that ϵd has a linear relationship with δv. To make ϵd smaller, We should obtain

a parameter set where the absolute value of the gradient of the qubit energy E01

is small and the interaction strength g is large.
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Figure 4.8: Interaction strength g between two qubits of the circuit in Fig. 4.6.
Here, both of the gate capacitance C l

g = 0.077 fF.

Time jittering

Secondly, we investigate the jitter error of a two-qubit gate operation. The Ising

type interaction can implement the controlled-phase gate

U
(1,2)
CZ (t) = exp

(
−i4gt

1 + σ
(1)
Z

2

1 + σ
(2)
Z

2

)
, (4.76)

where g denotes the interaction strength in Eq. (4.74), t = π
4g denotes the time to

apply voltages, and U
(1,2)
CZ denotes a controlled-phase gate between qubit 1 and

2. By performing the controlled-phase gate on two qubits which are initialized to

|++⟩12 state, we can obtain the two-qubit cluster state. But, the applied voltages

may not create the desired state due to error in the timing t′ = t+ δt, where δt

is timing jitter. We introduce the controlled-phase gate U
(1,2)
CZ (t) including the
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timing error to calculate a gate fidelity FCZ = |⟨ϕ|ϕ′⟩|2 with

|ϕ⟩ = U
(1,2)
CZ (t)|++⟩, |ϕ′⟩ = U

(1,2)
CZ (t′)|++⟩. (4.77)

Here, we define the timing error ϵtim = 1 − FCZ , and the local error ϵloc(=

ϵd + ϵtim).

We discuss how much fluctuations of the voltage (δv) can be expected in the

actual experiment. Usually, as we increase the applied voltage, the fluctuation

of the voltage also increases so that we should have δv ∝ V where V denotes

the applied voltage. Throughout of this paper, we set δv
V = 0.01%− 0.1%, which

could be realized due to recent development of fabrication technologies. Hence,

we decided to use a fluctuation of the voltage of 0.2 µV.

Also, we discuss the time jittering error. Throughout of this paper, we con-

sider a coupling strength that is an order of tens of MHz or hundreds of MHz. (,

which means that the pulse length for the two-qubit gate is an order of several

tens to several hundreds of MHz.) We may have a time jittering that could be

around 0.1% or 0.01% compared with the coupling length. So we decided to use

a time jittering of δt = 50 ps.

We show the ϵloc against the applied voltage Ve with the particular values of Cc

in Fig. 4.9. The threshold of local errors for fault tolerant quantum computation

is known to be around 1%. Also, it is known that, if the error rate is close to

the threshold, the necessary number of qubits for the computation drastically

increases [84, 30]. Therefore, we set the threshold to ϵloc = 0.1%. As shown in

Fig. 4.8, we can increase the coupling strength g by increasing Cc. Meanwhile,

the strong coupling strength cause the large timing error. Therefore, as shown in

Fig. 4.9, the optimal voltage exists for each of the Cc which minimize the total

local error. In addition, by increasing Cc, the total error tends to be smaller.

This result show that the large Cc has an advantage for quantum error correction

against local errors. However, for multi-qubit systems, increasing Cc causes a

different problem. Unwanted interaction strength between non-nearest neighbor

qubits increases due to the large Cc. For this reason, the Cc should be set to be

around 0.075 fF. The detail of this will be discussed in Subsection 4.5.4.
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Figure 4.9: The total local error ϵloc(= ϵd + ϵtim) as a function of voltage with
different coupling capacitance Cc. Here, we set the fluctuation width of voltage
δv = 0.21 µV and the timing jitter δt = 50 psec. Dashed line denotes an error of
0.1%.

4.5 Multi-qubit system

In this section, we generalize our scheme to multi-qubit system. Firstly, we discuss

how to control the capacitive interactions between superconducting flux qubits

via applied voltage. Secondly, we show how to apply our scheme to generate

a two dimensional cluster state using superconducting flux qubits arranged on

square lattice.

4.5.1 Generating interaction between multi-qubits system

Here, we discuss the interactions between capacitively coupled N flux qubits that

are arranged in one dimensional line as shown in Fig. 4.10. For simplicity, we

assume homogeneous flux qubits.
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Figure 4.10: A flux qubit at the site j(1 < j < N) couples with the nearest

neighbor qubits via capacitance C
(j,j±1)
c . For simplicity, we assume homogeneous

flux qubits. Each node j represents the superconducting islands. Each qubit
has four Josephson junctions. Two Josephson junctions directly connected to the
node have the Josephson energies and capacitances that are α times larger than
the other two Josephson junctions.

4.5.2 Hamiltonian

Josephson phases φ
(k)
n are subject to the following equation:

φ
(k)
1 + φ

(k)
2 + φ

(k)
3 + φ

(k)
4 = −2πf (k) (4.78)

where φ
(k)
n and f (l) denote the phase of each Josephson junction and external

magnetic flux of qubit k.

We now consider the total potential energy U and the total electric energy T

of the circuit in Fig. 4.10 as follows:

U =

n∑
l=1

4∑
k=1

E
(l)
j(k)

(
1− cosφ

(l)
k

)
, (4.79)

T =
1

2

2∑
l=n

4∑
k=1

C
(l)
j(k)

(
Φ0

2π
φ̇
(l)
k

)2

+
1

2

n∑
l=1

C(l)
g

(
V (l)
e − V

(l)
I

)2
+

n−1∑
l=1

1

2
C(l,l+1)
c

(
V

(l)
I − V

(l+1)
I

)2
(4.80)

where C
(l)
g , V

(l)
e , and V

(l)
I denote gate capacitance, applied external voltage, and

the electric potential of the island including node l for the l th qubit respectively.
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C
(l,l+1)
c denotes the coupling capacitance between node l and l + 1.

From the phase constraints in (4.78), each phase φk and the time derivative

of phase φ̇k can be described using φ′ and φ̇′ as follows:

φ(k) =


φ
(k)
1

φ
(k)
2

φ
(k)
3

φ
(k)
4

 , φ =


φ(1)

φ(2)

...

φ(n)

 , φk =
∑
j

Bkjφ
′
j + Fk, φ

′ =


φ′

1

φ′
2
...

φ′
3n

 ,(4.81)

φ̇(k) =


φ̇
(k)
1

φ̇
(k)
2

φ̇
(k)
3

φ̇
(k)
4

 , φ̇ =


φ̇(1)

φ̇(2)

...

φ̇(n)

 , φ̇k =
∑
j

Bkjφ̇
′
j , φ̇

′ =


φ̇′

1

φ̇′
2
...

φ̇′
3n

 , (4.82)

Here, we introduce following B and F

B(k) =


1 0 0

0 1 0

0 0 1

−1 −1 −1

 , B =


B(1) 0

B(2)

. . .

0 B(n)

 , (4.83)

F (k) =


0

0

0

−2πf (k)

 , F =


F (1)

F (2)

...

F (n)

 . (4.84)

We also introduce the area ratio A
(l)
n of each JJn of qubit l as follows:

A
(l)
1 = A

(l)
4 = 1, A

(l)
2 = A

(l)
3 = α, where l ∈ {1, 2, .., n}. (4.85)

As with the two qubit system in 4.4.2, we can rewrite the total Josephson energy
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U using B, F , and A
(l)
n .

U = EJ

∑
k,l

A
(l)
k (1− cos(

∑
j

Bkjφ
′
j + Fk)). (4.86)

Next, we define the effective mass M as follows:

M =
e2

2EC

(
Φ0

2π

)2 (
BTAmul

matB +BTDT
(
Γmul
mat + 2C

′
c

)
DB

)
. (4.87)

where, Amul
mat and Γmul

mat denote following matrices:

A
(k)
mat =


1 0 0 0

0 α 0 0

0 0 α 0

0 0 0 1

 , Amul
mat =


A

(1)
mat 0

A
(2)
mat

. . .

0 A
(n)
mat

 , (4.88)

Γ
(k)
mat =


0 0 0

0 γ 0

0 0 0

 , Γmul
mat =


Γ
(1)
mat 0

Γ(2)

. . .

0 Γ(n)

 . (4.89)

Here, each γ correspond to the gate capacitor C
(k)
g which is connected to the

middle island of each qubit as shown in Fig. 4.10. In this case, the capacitance

of C
(k)
g satisfy the following conditions:

C(k)
g = CJ(1)γ =

e2

2EC
γ. (4.90)

C ′
c denotes the coupling capacitance between each qubit and satisfy the following

conditions:

e2

2EC
C

′

c(i,j) ≡ −Cc(i,j) + δi,j
∑
k

Cc(i,k). (4.91)
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To describe the circuit Hamiltonian, we also introduce VE and Pi:

V
(k)
E =

(
0 V

(k)
e 0

)
, VE =

(
V

(1)
E V

(2)
E · · · V

(n)
E

)
, Pi = −iℏ ∂

∂φ′
i

. (4.92)

Then, the circuit Hamiltonian becomes as follows:

H=
1

2

(
PT +

e2

EC

Φ0

2π
BTDTΓmul

matV
T
E

)
M−1

(
P +

e2

EC

Φ0

2π
VEΓ

mul
matDB

)
+U. (4.93)

4.5.3 Simulation

In this simulation, we we can derive the effective 2n-level (|gg..g⟩12..n, |gg..e⟩12..n,

.. , and |ee..e⟩12..n ) Hamiltonian Ĥge of the eigenspace spanned by ground states

and first excited states of each qubits without interactions for all f (k) = 0.5.

Step 1 We construct the local Hamiltonian of each qubit H
(k)
local without consid-

ering capacitive coupling. H
(k)
local and the one qubit Hamiltonian in Eq. 4.31

are the same except for the parameters F and VE .

Step 2 We set f (k) = 0.5 and arbitrary V
(k)
e . After that we calculate the ground

state |g(k)⟩ and the first excited state |e(k)⟩ from H
(k)
local using the scheme

in 4.3.2.

Step3 We set C
(1,2)
c and calculate the inverse of the effective math M−1 in

Eq. (4.87).

Step4 We simulate the following functions to obtain Ĥge:

Ĥge =
∑

v
(1)
L ,v

(1)
R ,v

(2)
L ,v

(2)
R ,..,v

(n)
L ,v

(n)
R

|v(1)L v
(2)
L ..v

(n)
L ⟩⟨v(1)L v

(2)
L ..v

(n)
L |H|v(1)R v

(2)
R ..v

(n)
R ⟩⟨v(1)R v

(2)
R ..v

(n)
R |(4.94)

⟨v(1)L v
(2)
L ..v

(n)
L |H|v(1)R v

(2)
R ..v

(n)
R ⟩=EJU(v

(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , .., v

(n)
L , v

(n)
R , U (1), U (2), .., U (n))

+ECT (v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , .., v

(n)
L , v

(n)
R , N,M

−1,K) (4.95)
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whereN denotes the size of matrices, v
(k)
L and v

(k)
R satisfy the following conditions,

v
(1)
L , v

(1)
R ∈ {g(1), e(1)}, v(2)L , v

(2)
R ∈ {g(2), e(2)}, .. v(n)L , v

(n)
R ∈ {g(n), e(n)}. (4.96)

The potential energy of nth qubit U (n) becomes

U (1) = EJ

4n∑
k=4n−3

Ak(1− cos(
∑
j

Bkjφ
′
j + Fk)), (4.97)

Effects of external voltage K becomes

K =
e2

EC

Φ0

2π
VEΓmatDB, (4.98)

f (j) denotes the external magnetic flux through the loop of the j th qubit.

Here, the function U(v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , .., v

(n)
L , v

(n)
R , U (1), U (2), .., U (n)) denotes

U(v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , .., v

(n)
L , v

(n)
R , U (1), U (2), .., U (n))

= ⟨v(1)L |U (1)|v(1)R ⟩⟨v(2)L v
(3)
L ..v

(n)
L |v(2)R v

(3)
R ..v

(n)
R ⟩

+⟨v(1)L |v(1)R ⟩⟨v(2)L |U (2)|v(2)R ⟩⟨v(3)L v
(4)
L ..v

(n)
L |v(3)R v

(4)
R ..v

(n)
R ⟩

+..+ ⟨v(1)L v
(2)
L ..v

(n−1)
L |v(1)R v

(2)
R ..v

(n−1)
R ⟩⟨v(n)L |U (n)|v(n)R ⟩. (4.99)

Next, we show details of the function T (v
(1)
L , v

(1)
R , v

(2)
L , v

(2)
R , .., v

(n)
L , v

(n)
R , N,M−1,K)

as follows:

function T (vector v
(1)
L , vector v

(1)
R , vector v

(2)
L , vector v

(2)
R , .. , vector v

(n)
L ,

vector v
(n)
R , int N , matrix M−1, vector K), Input: Set vectors v

(i)
L and v

(i)
R in

Eq. (4.95), the size of matrices N , the inverse of the effective mass M−1 in

Eq. (4.87), and effects of external voltage K in Eq. (4.98).

Output: 2N + 1 x 2N + 1 matrix of momentum energy T .

Output: 2N + 1 x 2N + 1 matrix of momentum energy T .

q = n : number of qubits

w = length(K); : number of wave functions

for k = 0 : w − 1 do

PMatrix(k) = diag((−N : N) +K(k), 0)
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end for

for k = 0 : w
q − 1 do

IMatrix(k) = identity(2 ∗N + 1) : matrix for initialization

end for

for a = 0 : w − 1 do

for b = 0 : w − 1 do

P0 = P1 = .. = P(n−1) = {IMatrix} : initialize

Phi(0) = Phi(1) = .. = Phi(n−1) = identity((2 ∗ N + 1)3) : ini-

tialize

P0(a%3) = PMatrix(a)

P1(b%3) = PMatrix(b)

Φ(a/3)∗ = P0(0) ⊗ P0(1) ⊗ P0(2)

Φ(b/3)∗ = P1(0) ⊗ P1(1) ⊗ P1(2)

T = T +M−1
(a,b)⟨v

(1)
L |Phi(0)|v

(1)
R ⟩⟨v(2)L |Φ(1)|v

(2)
R ⟩..⟨v(n)L |Φ(n−1)|v

(n)
R ⟩

end for

end for

return T

end function

When all flux f (j) are 0.5, the system Hamiltonian is described as follows.

Ĥ =

N∑
l=1

1

2
∆(l)σ

(l)
Z +

N∑
l,l′=1

g(|l−l′|)σ
(l)
Z σ

(l′)
Z (4.100)

where ∆(l) denotes the energy of the l th qubit, g(|l−l′|) denotes the interaction

strength between each pair of qubits at a site (l, l′), and |l − l′| denotes the site

distance between these qubits (e.g. when qubit l and l′ are nearest neighbor pair,

|l − l′| = 1.).

4.5.4 Generation of a one dimensional cluster state

Non-nearest neighbor interactions cause spatially-correlated errors that are diffi-

cult to correct by quantum error correction. In this subsection, we show the way
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to evaluate this error. We define the ratio between nearest neighbor interaction

g(= g(1)) and next-nearest neighbor interaction g(2) as R
(
=

g(2)
g(1)

)
where all qubits

are applied voltage Ve. We show that the interaction strength g(|l− l′|) decreases

exponentially as the site distance |l−l′| increases, and the Ratio R depends on the

coupling capacitance Cc between each qubit. We show the interaction strengths

of 6 qubits system as a function of Cc in Fig. 4.11.
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Figure 4.11: The Cc dependence of the interaction strengths and the coupling

ratio R
(
=

g(2)
g(1)

)
where g(|l− l′|) denotes the interaction strength between a pair

of qubits at a site (l − l′).

If we apply voltage on all qubits, interaction occurs between such qubits. The

total error ϵ
(j)
non caused by non-nearest neighbor interactions on j th qubit during

controlled-phase operation is calculated as follows:

ϵ(j)non =

N/2∑
n=2

g(n)tcpm(n) =

N/2∑
n=2

π

4
R(n−1)m(n) (4.101)

where n denotes the site distance between the j th qubit and the coupled non-
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nearest neighbor qubits, m
(j)
(n) denotes the number of such non-nearest qubits.

Such existence of the spatially-correlated error will increase the threshold for

quantum error correction [2]. Large capacitance tends to decrease local errors as

shown in Fig. 4.9, while large capacitance induces more spatially-correlated errors

as shown in Fig. 4.11. However, when we consider the spatially-correlated error,

the error threshold value of the surface code is not well studied. Thus, we set the

upper bound of the spatially-correlated error on each qubit ϵnon ≤ 1
10000 which is

an order of magnitude smaller than the threshold of local error for surface coding

scheme. If this condition is satisfied, we assume that spatially-correlated error is

small enough to perform a fault-tolerant quantum computation. When we apply

voltage on all qubits to perform controlled-phase gates to all pairs of nearest

neighbor qubit, we cannot make both local errors and spatially-correlated error

smaller than these threshold for any value of Cc. Therefore, we do not apply

voltage on all qubits but apply voltage on some of them. We choose pairs of

nearest neighbor qubits that we will apply the voltage, and we set a site distance

p between the pairs. Then, if R is small enough, ϵnon of each qubit is the following

equation:

ϵ(j)non =

N/2∑
n=p

π

4
R(n−1) ≤ 1

10000
(4.102)

where p is the site distance between qubits applied by voltage.

Since there are many parameters on the interaction Hamiltonian, it is difficult

to find an optimum set of parameters that minimize both of local and spatially-

correlated errors. Therefore, we fix the following parameters: α = 0.2, δv = 0.21

µV, δt = 50 psec. To determine a minimum site distance p while suppressing the

correlated errors to be under 0.01 %, we show the Cc and V dependences of the

errors with p = 4, 5 in Fig. 4.12 and Fig. 4.13. As shown in Fig. 4.12, when p = 4,

the ϵnon exceeds 0.01 % around Cc = 0.04 fF. We cannot sufficiently suppress

local errors using coupling capacitance smaller than 0.04 as shown in Fig. 4.9.

Thus, the site distance p should be larger than 5. Meanwhile, when p = 5, the

ϵnon exceeds 0.01 % around Cc = 0.09 fF. Then the total error of the controlled-
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Figure 4.12: The V dependence of the spatially-correlated error. Dashed line
corresponds to an error of 0.1 %.

phase operation can be sufficiently suppressed to be less than 0.1 % using the

coupling capacitance Cc around 0.077 fF as shown in Fig. 4.13. Therefore, it is

preferable that the site distance p = 5 be selected. In order to adopt sufficiently

large coupling capacitance such that the ϵloc below 0.1 %, we need to choose

sufficiently large p such that the ϵnon below 0.01 %. We discuss about the way

which can further reduce p in the following.

The p determines the maximum number of controlled-phase gates that are

performed simultaneously on the same system. For example, we can perform

⌊N−2
p+1 ⌋+1 controlled-phase gates in parallel using N -qubits one dimensional sys-

tem. If we can use the smaller p without adding extra errors, we can perform

more controlled-phase gates in parallel, so that we can generate a cluster state

within a shorter operating time. For this purpose, we introduce the spin echo

technique where implementation of a π pulse (single qubit σX rotation) to the

target qubit could refocus the dynamics of the spin so that effects of interactions
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Figure 4.13: The V dependence of the total errors. Dashed line corresponds to
an error of 0.1 %.

on the target qubit should be cancelled out. We apply two π pulses to pairs of

qubits to suppress spatially-correlated errors. For example, we set three qubits in

a raw and apply voltage V
(n)
e to the n th qubits (n = 1, 2, 3) as shown in Fig. 4.14,

where V
(1)
e and V

(2)
e are equal, V

(3)
e is an arbitrary voltage, and the strength of

interaction between qubit 1 and 2 is g. We set each qubit to be prepared in |+⟩

state, let the state evolve for a time tcp/2, perform two π pulses to qubit 1 and

2, and let the state evolve for a time tcp/2. The final state become as follows:

Û |+++⟩123 =
1√
2
(|+0⟩12 + |−1⟩12)⊗ |+⟩3. (4.103)

Here, the interactions g(1)σ
(2)
Z σ

(3)
Z and g(2)σ

(1)
Z σ

(3)
Z are cancelled out due to the π

pulses and we obtain a cluster state between qubit 1 and 2.

This method can be applied with the case of arbitrary number of qubits. The

general rules are follows: let us consider a pair of qubits. If we perform π pulses
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Figure 4.14: When we perform a π pulse on qubit 1 and 2 at t = tcp/2, the
nearest neighbor interaction between qubit 2 and 3 and the non-nearest neighbor
interaction between qubit 1 and 3 are cancelled out. In such way, we can perform
controlled-phase gate without changing the state of other qubits.

on both of qubits, the interaction between them is not affected by these pulses.

On the other hand, if we perform π pulse on one of them, the interaction between

them is cancelled out. These properties would be crucial for generating a cluster

state as we will describe.

For generating a large one dimensional cluster state using N qubits of the

circuit in Fig. 4.10, we show the procedure as follows:

Step 1 We apply voltage to (3n − 2) th and (3n − 1) th qubit for performing

controlled-phase gates between (3n − 2) th and (3n − 1) th qubit where

n = 1, 2, ··, ⌊N+1
3 ⌋.

Step 2 We apply voltage to (3n−1) th and 3n th qubit for performing controlled-

phase gates between (3n− 1) th and 3n th qubit where n = 1, 2, ··, ⌊N+1
3 ⌋.

Step 3 We apply voltage to 3n th and (3n+ 1) th qubit for performing controlled-

phase gates between (3n− 1) th and 3n th qubit where n = 1, 2, ··, ⌊N+1
3 ⌋.

At each step of the above procedure, ⌊N−1
3 ⌋ controlled-phase gate are per-
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Figure 4.15: The 3-step procedure for generating a one dimensional cluster state.
Step 1. We initialize 3n−2 th and 3n−1 th qubits in |+⟩. Here, n = 1, 2, ··, ⌊N+1

3 ⌋
where ⌊x⌋ is the integer part of x. After that we apply voltage on 3n− 2 th and
3n−1 th qubits. Let the state evolve for a time tcp/2, perform π pulses to 6n−2
th and 6n − 1 th qubits, and let the state evolve for a time tcp/2. After these
operations, controlled-phase gates have been performed between qubit 3n−2 and
3n− 1. Step 2. We initialize 3n th qubits in |+⟩. After that, similar to the Step
1, we perform controlled-phase gates between qubit 3n − 1 and 3n. Step 3. We
initialize 3n + 1 th qubits in |+⟩. After that, similar to the Step 1 and 2, we
perform controlled-phase gates between qubit 3n and 3n+ 1.

formed in parallel. At each step, we will perform the following procedure to

perform the controlled-phase gate. Firstly, prepare the qubit state in |+⟩. Sec-

ondly, let the state evolve for a time t = tcp/2 according to the Hamiltonian

described in Eq. 4.100. Thirdly, perform the π pulses to suppress the non-local

interaction. Finally, let the state evolve for a time t = tcp. We show the de-

tails of these operations in Fig. 4.15 and explain how the non-local interaction is

suppressed in Fig. 4.16. When all coupling capacitance are Cc ≤ 0.077 fF, the

spatially-correlated error on each qubits become as follows:

ϵ(j)non =

N/2∑
n=5

π

4
R(n−1)m(n) ≃

π

4
(R4 + 2R5) ≤ 1

10000
(4.104)

The k th qubit is affected by mainly three non-local interactions as shown in
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Figure 4.16: The influence of non-local interactions. During the controlled-phase
gate, each target qubit are affected by non-local interactions. We show the
strength of mainly three non-local interactions with k th qubit. These inter-
actions are not cancelled out by π pulses.

Fig. 4.16. The strength of the largest interaction is g(1)R
4, and the strength of

the other two interactions are g(1)R
5. The remaining non-local interactions are

negligibly small.

4.5.5 Generation of a two dimensional cluster state

Next, we show how to generate a two dimensional cluster state using N2 flux

qubits arranged on N × N square lattice. We show a part of the circuit in

Fig. 4.17. f (j,k) denotes the external magnetic flux through the loop of the qubit

at site (j, k). Here, (j, k) corresponds to the lattice point. When all flux f (j,k)

are 0.5, the system Hamiltonian is described as follows:

Ĥ =
∑
(l,m)

∆(l,m)

2
σ
(l,m)
Z +

∑
((l,m),(l′,m′))

g(|l−l′|+|m−m′|)σ
(l,m)
Z σ

(l′,m′)
Z (4.105)

where ∆(l,m) denotes the energy of the qubit at site (l,m), g(|l−l′|+|m−m′|) denotes

the interaction strength between each pair of qubits at site (l,m) and (l′,m′), and

|l − l′|+ |m−m′| denotes the site distance between these qubits.

Here, we show the 12-step procedure as follows for generating a two dimen-

sional cluster state.

Step 1-3 We perform (N−1)⌊N4 ⌋ controlled-phase gate to generate ⌊
N
4 ⌋ one di-

mensional cluster states using qubits located in the 4m−3(m = 1, 2, ··, ⌊N+3
4 ⌋)
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Figure 4.17: Physical circuit for generating a two dimensional cluster state. These
four qubits correspond to the qubits surrounded by dot line in Fig. 4.18. Two
Josephson junctions directly connected to a node (the superconducting islands)
have the Josephson energies and capacitances that are α times larger than the
other two Josephson junctions. Every flux qubit at site (j,k) couples with the
four nearest neighbor qubits via capacitance Cc((j,k)(j±1,k±1)).

row in the same way as shown in Fig. 4.15. Then the spatially-correlated

error of each qubit in the 4m − 3 row is smaller than 1
10000 . We show the

outline of these steps in Fig. 4.18(a).

Step 4-6 We perform (N − 1)⌊N−2
4 ⌋ controlled-phase gate to generate ⌊N−2

4 ⌋

one dimensional cluster states using qubits located in the 4p − 1(p =

1, 2, ··, ⌊N+1
4 ⌋) row in the same way as above. We show the outline of these

steps in Fig. 4.18(b).

Step 7-9 We perform (N − 1)⌊N4 ⌋ controlled-phase gate to generate a two di-

mensional graph state as shown in Fig. 4.18(c) using qubits located in the
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4m − 3 column across ⌊N2 ⌋ one dimensional cluster states. We show the

outline of these steps in Fig. 4.18(c).

Step 10-12 We perform (N −1)⌊N−2
4 ⌋ controlled-phase gate to generate a two

dimensional cluster states using qubits located in the 4p − 1 column. We

show the outline of these steps in Fig. 4.18(d).

Figure 4.18: Schematic of our procedure for generating a two dimensional cluster
state by graph state representation. Circles correspond to qubits, dashed lines
correspond to electrically connection via a capacitance, solid-lines correspond to
entanglement between qubits, and numbers show the order in which controlld-
phase gates are performed by our procedure. White circles denote separable
qubit, and gray circles denote qubits constituent of cluster state(s).

We show the details of each step of above procedure for generating a two
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dimensional cluster state in Fig. 4.19. During each step, a part of the non-local

Figure 4.19: Operations and the influence of non-local interactions in generating
a two dimensional cluster state. In this step, we apply voltage to qubit at site
(3n−2, 4m−3) and (3n−1, 4m−3). Let the state evolve for a time tcp/2, perform
π pulses to qubit at site (6n′−5, 8m′−7), (6n′−4, 8m′−7), (6n′−2, 8m′−3), and
(6n′−1, 8m′−3), and let the state evolve for a time tcp/2. So that controlled-phase
gates can be implemented between the pair of qubits at site (3n− 2, 4m− 3) and
(3n−1, 4m−3). Here, m = 1, 2, ··, ⌊N+3

4 ⌋, m′ = 1, 2, ··, ⌊N+3
8 ⌋, n = 1, 2, ··, ⌊N+1

3 ⌋,
and n′ = 1, 2, ··, ⌊N+1

6 ⌋. Each target qubit is affected by non-local interactions
from qubits on the same row and other rows. We show mainly five non-local
interactions with the qubit at site (j,k). These interactions are not cancelled out
by π pulse.

interactions are not cancelled out by π pulses. When all coupling capacitance are

Cc ≤ 0.077 fF, the spatially-correlated error on each qubits become as follows:

ϵ(j,k)non =

N/2∑
n=5

π

4
R(n−1)m(n) ≃

π

4
(R4 + 4R5) ≤ 1

10000
. (4.106)

The qubit at site (j, k) is affected by mainly five non-local interactions as shown

in Fig. 4.19. The strength of the largest interaction is g(1)R
4, and the strength of

the other four interactions are g(1)R
5. The remaining non-local interactions are

negligibly small.
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4.6 Discussion

In this chapter, we did not describe the details of the physical flux qubit system,

in particular measurement system and electrical wiring. In general experimen-

tal system, flux qubits are few square micrometers and set on a substrate which

is about 3.5 mm by 3.5 mm. This system has several terminals of electrical

wiring. That is not enough to satisfy our requirements, several dozens and more.

Current non-destructive measurement system as the Josephson bifurcation am-

plifier is also larger than flux qubits. There are several problems to solve for

demonstration of above schemes. Even though it might be difficult to put into

practice immediately, we propose our scheme as one of the possibility to acquire

the scalability for quantum computation.

4.7 Conclusion

In conclusion, we suggest a new way to generate Ising interaction between capacitively-

coupled superconducting flux qubits by using an applied voltage, and we also

show an architecture about how to make a two-dimensional cluster state in this

coupling scheme. Unlike the standard schemes, our scheme does not require to

change the applied magnetic field on the flux qubit for the control of the inter-

action. Since applying local voltages is typically much easier than applying local

magnetic flux, the scheme described in this chapter may have advantage to sup-

press a cross talk between the flux qubits. Our result paves the way for scalable

quantum computation with superconducting flux qubits.
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Chapter 5

Conclusion

In this dissertation, we have investigated obstacles for achieving the individual

control of several controlled-phase gates using superconducting flux qubit system,

and proposed two new approaches for scalable quantum information processing

with flux qubits.

Firstly, we proposed the interaction control scheme for inductively coupled

flux qubits where we utilize projective measurement and quantum feedforward.

In this scheme, we assume that the always-on Ising type interactions between

nearest neighbor flux qubits. Unitary operations such as applying magnetic field

have been used to control the interaction in most of previous work. On the

other hand, we use the non-unitary operation such as projective measurements.

We showed the way to effectively turn on/off the interactions via measurement

and quantum feedforward on the ancillary qubits which are inserted between

the qubits for quantum computation. One advantage of our scheme is that the

turning on/off of applied magnetic field is not required unlike previos schemes.

This feature is important in order to suppress the cross-talk. Hence, it is expected

to improve the individual addressability for parallel operations of controlled-phase

gate. Furthermore, we proposed the constant step-size procedure for generating

a large two or three-dimensional cluster state, which is useful for fault tolerant

quantum computation.

Secondly, we proposed the tunable coupling method for four-junction flux

qubits via a capacitance. We can control the Ising type interaction by bias
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voltage to each qubit. It is typically known that the applying local voltage

is much easier than applying local magnetic field. Therefore, we expect that

our scheme has an advantage over the previous inductive coupling scheme in

terms of cross-talk suppressing. To evaluate the performance of our scheme, we

estimated a qubit-parameter range where one can perform fault-tolerant quantum

computation with realistic noises. Moreover, we showed the constant step-size

procedure for generating a one or two dimensional cluster states on the many

qubit system. We expect that these results would be also a crucial step for the

realization of flux-qubit based quantum computation.

In the short term, these suggestions show possible experiments as following.

By using the first resluts, the interaction between three inductively coupled flux

qubits can be controlled via quantum feedforward, which would be suitable for a

proof of principle experiments. By using the second resluts, if we can fabricate

a flux qubit having four Josephson junctions with apporopriate parameters, the

tunnel energy of a flux qubit can be controlled by applied voltage, which no one

has ever demonstrated. If two capacitively coupled flux qubits can be fabricated,

we can demonstrate entanglement generation between them by controlling the

applied voltage. These suggestions might be worth considering as a possibility to

demonstrate in the near future.

In the long term, our results show that the flux-qubits system could be the

key device for large-scale quantum computing. Furthermore, we show the con-

crete parameter sets which are requrired to implement fault-torelant quantum

computation.

The ultimate aim of these proposal is to conduct the experiments. To realize

our schemes, further research will be necessary in the future. We need to inves-

tigate the details of the physical setup including measurement device and pulse

sequence to implement quantum feedforward and single gate operations. We also

should consider the quantitative evaluation about further decoherence sources.

Even though it is difficult to solve all those problems, we hope that these inves-

tigation based on the direction of this dissertation will improve the scalability of

the flux qubit system.

93



References

[1] Daniel S. Abrams and Seth Lloyd. Simulation of many-body fermi systems

on a universal quantum computer. Phys. Rev. Lett., Vol. 79, pp. 2586–2589,

Sep 1997.

[2] Dorit Aharonov, Alexei Kitaev, and John Preskill. Fault-tolerant quantum

computation with long-range correlated noise. Phys. Rev. Lett., Vol. 96, p.

050504, Feb 2006.

[3] A Albrecht, G Koplovitz, A Retzker, F Jelezko, S Yochelis, D Porath,

Y Nevo, O Shoseyov, Y Paltiel, and M. B. Plenio. Self-assembling hybrid

diamond-biological quantum devices. New Journal of Physics, Vol. 16,

No. 9, p. 093002, 2014.

[4] Markus Ansmann, H Wang, Radoslaw C Bialczak, Max Hofheinz, Erik

Lucero, M Neeley, AD O’Connell, D Sank, M Weides, J Wenner, et al.

Violation of bell’s inequality in josephson phase qubits. Nature, Vol. 461,

No. 7263, pp. 504–506, 2009.

[5] Sahel Ashhab, AO Niskanen, Khalil Harrabi, Yasunobu Nakamura, Thomas

Picot, PC De Groot, CJPM Harmans, JE Mooij, and Franco Nori. In-

terqubit coupling mediated by a high-excitation-energy quantum object.

Physical Review B, Vol. 77, No. 1, p. 014510, 2008.

[6] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,

B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C.

White, A. N. Cleland, and John M. Martinis. Coherent josephson qubit

94



suitable for scalable quantum integrated circuits. Phys. Rev. Lett., Vol. 111,

p. 080502, Aug 2013.

[7] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.

White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,

A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wen-

ner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting

quantum circuits at the surface code threshold for fault tolerance. Nature,

Vol. 508, , April 2014.

[8] R Barends, J Kelly, A Megrant, A Veitia, D Sank, E Jeffrey, TC White,

J Mutus, AG Fowler, B Campbell, et al. Superconducting quantum circuits

at the surface code threshold for fault tolerance. Nature, Vol. 508, No. 7497,

pp. 500–503, 2014.

[9] Sean D. Barrett and Thomas M. Stace. Fault tolerant quantum computa-

tion with very high threshold for loss errors. Phys. Rev. Lett., Vol. 105, p.

200502, Nov 2010.

[10] Jan Benhelm, Gerhard Kirchmair, Christian F. Roos, and Rainer Blatt.

Towards fault-tolerant quantum computing with trapped ions. Nature

Physics, Vol. 4, pp. 463–466, June 2008.

[11] S. C. Benjamin and S. Bose. Quantum computing in arrays coupled by

”always-on” interactions. Phys. Rev. A, Vol. 70, p. 032314, Sep 2004.

[12] Simon C. Benjamin and Sougato Bose. Quantum computing with an

always-on heisenberg interaction. Phys. Rev. Lett., Vol. 90, p. 247901, Jun

2003.

[13] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-

rani. Strengths and weaknesses of quantum computing. SIAM journal on

Computing, Vol. 26, No. 5, pp. 1510–1523, 1997.

95



[14] A Bermudez, F Jelezko, M. B. Plenio, and A Retzker. Electron-mediated

nuclear-spin interactions between distant nitrogen-vacancy centers. Physi-

cal review letters, Vol. 107, No. 15, p. 150503, 2011.

[15] Pierre-Marie Billangeon, et al. private communication.

[16] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and

Farrokh Vatan. On universal and fault-tolerant quantum computing. In

Proceedings of 40th FOCS, pp. 486–494. Society Press, 1999.

[17] Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil

Harrabi, George Fitch, David G Cory, Yasunobu Nakamura, Jaw-Shen

Tsai, and William D Oliver. Noise spectroscopy through dynamical de-

coupling with a superconducting flux qubit. Nature Physics, Vol. 7, No. 7,

pp. 565–570, 2011.

[18] Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil

Harrabi, George Fitch, David G Cory, Yasunobu Nakamura, Jaw-Shen

Tsai, and William D Oliver. Noise spectroscopy through dynamical de-

coupling with a superconducting flux qubit. Nature Physics, Vol. 7, No. 7,

pp. 565–570, 2011.

[19] Gang Chen, Zidong Chen, Lixian Yu, and Jiuqing Liang. One-step gen-

eration of cluster states in superconducting charge qubits coupled with a

nanomechanical resonator. Phys. Rev. A, Vol. 76, p. 024301, Aug 2007.

[20] Yu-Ao Chen, Sylvain Nascimbène, Monika Aidelsburger, Marcos Atala, Ste-

fan Trotzky, and Immanuel Bloch. Controlling correlated tunneling and

superexchange interactions with ac-driven optical lattices. Physical review

letters, Vol. 107, No. 21, p. 210405, 2011.

[21] Yu Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly,

B Campbell, Z Chen, B Chiaro, et al. Qubit architecture with high coher-

ence and fast tunable coupling. arXiv preprint arXiv:1402.7367, 2014.

96



[22] Kevin K. H. Cheung and Michele Mosca. Decomposing finite abelian

groups. Quantum Info. Comput., Vol. 1, No. 3, pp. 26–32, October 2001.

[23] J. Chiaverini and W. E. Lybarger. Laserless trapped-ion quantum simula-

tions without spontaneous scattering using microtrap arrays. Phys. Rev.

A, Vol. 77, p. 022324, Feb 2008.

[24] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gut-

mann, and Daniel A Spielman. Exponential algorithmic speedup by a quan-

tum walk. In Proceedings of the thirty-fifth annual ACM symposium on

Theory of computing, pp. 59–68. ACM, 2003.

[25] I Chiorescu, Y Nakamura, CJP Ma Harmans, and JE Mooij. Coherent

quantum dynamics of a superconducting flux qubit. Science, Vol. 299, No.

5614, pp. 1869–1871, 2003.

[26] C Counsell, M.H Levitt, and R.R Ernst. Analytical theory of composite

pulses. Journal of Magnetic Resonance (1969), Vol. 63, No. 1, pp. 133 –

141, 1985.

[27] Adriano Barenco David Deutsch and Artur Ekert. Universality in quantum

computation. In Proceedings of Mathematical and Physical Sciences, Vol.

449, pp. 669–677, 1995.

[28] X-L Deng, D Porras, and J. I. Cirac. Effective spin quantum phases in

systems of trapped ions. Physical Review A, Vol. 72, No. 6, p. 063407,

2005.

[29] David Deutsch and Richard Jozsa. Rapid solution of problems by quan-

tum computation. Proceedings of the Royal Society of London. Series A:

Mathematical and Physical Sciences, Vol. 439, No. 1907, pp. 553–558, 1992.

[30] Simon J Devitt, Ashley M Stephens, William J Munro, and Kae Nemoto.

Requirements for fault-tolerant factoring on an atom-optics quantum com-

puter. Nature communications, Vol. 4, , 2013.

97



[31] L DiCarlo, JM Chow, JM Gambetta, Lev S Bishop, BR Johnson, DI Schus-

ter, J Majer, A Blais, L Frunzio, SM Girvin, et al. Demonstration of two-

qubit algorithms with a superconducting quantum processor. Nature, Vol.

460, No. 7252, pp. 240–244, 2009.

[32] David P. DiVincenzo. Two-bit gates are universal for quantum computa-

tion. Phys. Rev. A, Vol. 51, pp. 1015–1022, Feb 1995.

[33] F Dolde, I Jakobi, B Naydenov, N Zhao, S Pezzagna, C Trautmann, J Mei-

jer, P Neumann, F Jelezko, and J Wrachtrup. Room-temperature entan-

glement between single defect spins in diamond. Nature Physics, Vol. 9,

No. 3, pp. 139–143, 2013.

[34] L-M Duan, E Demler, and M. D. Lukin. Controlling spin exchange interac-

tions of ultracold atoms in optical lattices. Physical review letters, Vol. 91,

No. 9, p. 090402, 2003.

[35] Matthew B. Elliott, Bryan Eastin, and Carlton M. Caves. Graphical de-

scription of the action of clifford operators on stabilizer states. Phys. Rev.

A, Vol. 77, p. 042307, Apr 2008.

[36] Axel Friedenauer, Hector Schmitz, Jan Tibor Glueckert, Diego Porras, and

Tobias Schätz. Simulating a quantum magnet with trapped ions. Nature

Physics, Vol. 4, No. 10, pp. 757–761, 2008.

[37] Jonathan R Friedman, Vijay Patel, Wei Chen, SK Tolpygo, and James E

Lukens. Quantum superposition of distinct macroscopic states. nature, Vol.

406, No. 6791, pp. 43–46, 2000.
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Hänsch, and Immanuel Bloch. Coherent transport of neutral atoms in spin-

dependent optical lattice potentials. Phys. Rev. Lett., Vol. 91, p. 010407,

Jul 2003.

[69] Vladimir E Manucharyan, Jens Koch, Leonid I Glazman, and Michel H De-

voret. Fluxonium: Single cooper-pair circuit free of charge offsets. Science,

Vol. 326, No. 5949, pp. 113–116, 2009.

[70] Piero Martin, J Adamek, P Agostinetti, M Agostini, A Alfier, C Angioni,

V Antoni, L Apolloni, F Auriemma, O Barana, et al. Overview of the rfx

fusion science program. Nuclear Fusion, Vol. 51, No. 9, p. 094023, 2011.

[71] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M.

Duan, and J. Kim. Large-scale modular quantum-computer architecture

with atomic memory and photonic interconnects. Phys. Rev. A, Vol. 89, p.

022317, Feb 2014.

[72] JE Mooij, TP Orlando, L Levitov, Lin Tian, Caspar H Van der Wal, and

Seth Lloyd. Josephson persistent-current qubit. Science, Vol. 285, No. 5430,

pp. 1036–1039, 1999.

[73] Kae Nemoto, Michael Trupke, Simon J. Devitt, Ashley M. Stephens,

Burkhard Scharfenberger, Kathrin Buczak, Tobias Nöbauer, Mark S.

Everitt, Jörg Schmiedmayer, and William J. Munro. Photonic architec-

ture for scalable quantum information processing in diamond. Phys. Rev.

X, Vol. 4, p. 031022, Aug 2014.

[74] P Neumann, R Kolesov, B Naydenov, J Beck, F Rempp, M Steiner,

V Jacques, G Balasubramanian, ML Markham, DJ Twitchen, et al. Quan-

102



tum register based on coupled electron spins in a room-temperature solid.

Nature Physics, Vol. 6, No. 4, pp. 249–253, 2010.

[75] Michael A Nielsen. Cluster-state quantum computation. Reports on Math-

ematical Physics, Vol. 57, No. 1, pp. 147–161, 2006.

[76] AO Niskanen, K Harrabi, F Yoshihara, Y Nakamura, S Lloyd, and JS Tsai.

Quantum coherent tunable coupling of superconducting qubits. Science,

Vol. 316, No. 5825, pp. 723–726, 2007.

[77] AO Niskanen, K Harrabi, F Yoshihara, Y Nakamura, and JS Tsai. Spec-

troscopy of three strongly coupled flux qubits. Physical Review B, Vol. 74,

No. 22, p. 220503, 2006.

[78] TP Orlando, JE Mooij, Lin Tian, Caspar H van der Wal, LS Levitov, Seth

Lloyd, and JJ Mazo. Superconducting persistent-current qubit. Physical

Review B, Vol. 60, No. 22, p. 15398, 1999.

[79] C. Padurariu and Yu. V. Nazarov. Theoretical proposal for superconducting

spin qubits. Phys. Rev. B, Vol. 81, p. 144519, Apr 2010.

[80] B. L. T. Plourde, J. Zhang, K. B. Whaley, F. K. Wilhelm, T. L. Robertson,

T. Hime, S. Linzen, P. A. Reichardt, C.-E. Wu, and John Clarke. Entan-

gling flux qubits with a bipolar dynamic inductance. Phys. Rev. B, Vol. 70,

p. 140501, Oct 2004.

[81] D Porras and J. I. Cirac. Effective quantum spin systems with trapped

ions. Physical review letters, Vol. 92, No. 20, p. 207901, 2004.

[82] P Rabl, SJ Kolkowitz, FHL Koppens, JGE Harris, P Zoller, and Mikhail D

Lukin. A quantum spin transducer based on nanoelectromechanical res-

onator arrays. Nature Physics, Vol. 6, No. 8, pp. 602–608, 2010.

[83] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way

quantum computer. Annals of Physics, Vol. 321, No. 9, pp. 2242 – 2270,

2006.

103



[84] R Raussendorf, J Harrington, and K Goyal. Topological fault-tolerance in

cluster state quantum computation. New Journal of Physics, Vol. 9, No. 6,

p. 199, 2007.

[85] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer.

Phys. Rev. Lett., Vol. 86, pp. 5188–5191, May 2001.

[86] Robert Raussendorf, Daniel E. Browne, and H. J. Briegel. Measurement-

based quantum computation on cluster states. Phys. Rev. A, Vol. 68, p.

022312, Aug 2003.

[87] Robert Raussendorf and Jim Harrington. Fault-tolerant quantum compu-

tation with high threshold in two dimensions. Phys. Rev. Lett., Vol. 98, p.

190504, May 2007.

[88] P. Ribenboim. The New Book of Prime Number Records. 3rd edition, 1995.
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