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Abstract 

Chapter 1 

      The object of this thesis and the background of the theory and field are 

introduced. First physical phenomena treated in the theory are described introducing 

previous experimental research. Second theoretical methods for simulation are 

described and compared. 

Chapter 2 

      Theoretical formulation using floating Gaussians for quantum dynamics of 

molecule is derived. Quantum mechanical equations of motion are derived and 

necessary terms with floating Gaussians are analytically derived. 

Chapter 3 

      General derivation in Chapter 2 is applied for H2 molecule. Analytical 

formulations of electron-nuclear total wave functions, integrals, and differentials by 

parameters in wave function of H2 molecule are obtained. 

Chapter 4 

      Calculation results of simulation for a ground state of electron-nuclear wave 

function of H2 molecule are shown. Energies, periods of vibrations of squared 

inter-particle distances of electrons and nuclei, comparison of electronic excitation 

energies with the conventional HF methods, and non-adiabatic effects depending of 

the mass of nucleus are discussed. 

Chapter 5 

      Time-dependent quantal dynamics of H2 molecule in intense laser fields are 

simulated. Molecular dynamics depending on laser parameters are discussed. 

Chapter 6 

      This thesis is summarized and perspectives are described.  
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1. Introduction 

1.1. Object of study 

      Unique molecular dynamics are observed in intense laser fields1), 2) such as 

tunnel ionization, electron recollision, proton migration3), 4), Coulomb explosion of 

multiply charged ions, and molecular dynamics depending on carrier-envelop phase 

(CEP) of laser pulse5). In order to describe such dynamics theoretically, it becomes 

necessary to treat the electronic motion associated with ionization induced by the 

interaction with the strong electric field and longtime dynamics during and after the 

duration of excitation laser pulse. It requires a large calculation cost to simulate these 

phenomena quantum mechanically and a method to deal quantum mechanically with 

the motion of nuclei is needed to be developed. Especially iterative simulation and the 

large calculation cost are required to investigate the dynamics under different 

conditions of laser pulses such as CEPs. Due to heavy calculation cost in the simulation 

of molecular dynamics in intense laser field, classical approach modified with some 

terms of quantum effect is still effective in this field because of these difficulties6), 7). In 

this chapter, I will describe molecular dynamics in intense laser field first. Furthermore, 

previous approaches for these dynamics will be introduced and problems on previous 

works and the approach in present research will be described. 

 

1.2. Dynamics in intense laser field 

      In intense laser field, the ionization of molecule occurs even if the photon 

energy is smaller than the ionization energy. This can be described with the 

mechanisms of multiphoton ionization and tunnel ionization. Figure 1-1 shows the 

pictorial sketch of mechanism of multiphoton ionization. The electron absorbes several 

photons simultanuously and is excited. If the energy level is higher than the potential 

barieer of nuclear, the electron can be ejected even if the energy of one photon is 

lower than the barieer. But the excitation probability is exponentially in proportion to 

the number of photon to absorb, so the probability of ionization is not high if the laser 

intensity is not strong. In further stronger laser field where laser field intensity is in the 
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range of 1013~1015 W/cm2, the laser field will behave as electric field and tunnel 

ionization mechanism can be observed. Figure 1-2 shows the sketch of mechanism of 

tunnel ionization. If the laser field is strong enough, the potential curve of nuclear wil 

be distorted by the electric field of laser pulse. At that time, the potential barrier 

against the bound state of electron will come lower and the probability of tunnel 

phenomenon will increase. Once the electron tunnels the barrier, then the electron 

can escape from the nuclear along the distorted potential. For those contribution, the 

ion yield will increase in strong laser field. 

 

Figure 1-1 Sketch of multiphoton ionization 

 

 
Figure 1-2 Sketch of tunnel ionization 
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      However, if we measure the ion yield for double ionization for atoms or 

molecules which have several electrons such as He atom and H2 molecule against the 

laser peak intensity, we will observe knee structure8) shown in Figure 1-3. This knee 

structure is described by two kinds of double-ionization mechanisms of sequential 

double ionization (SDI) and non-sequential ionization (NSDI). 

 

 

Figure 1-3 Sketch of relationship between laser intensity and ion field. Red solid line 

shows the ionization probability of doubly charged ion against the peak intensity 

variation. 

 

If the laser field is strong enough to detach two electrons from nuclear, electrons can 

be ionized independently without interaction between electrons. Then electrons are 

ejected sequentially from the atom or molecule and this ionization mechanism is called 

SDI. However, in a weaker laser field where the laser strength is not enough for SDI, 

there is another contribution of double ionization. This ionization mechanism is NSDI 

and it can be described by recollision of electron. Figure 1-4 shows the pictorial 

explanation about mechanism of recollision of electron. In the strong laser field, the 

laser field can be regarded as electric field and this electric field distorts the potential 
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of nuclear. At that time, one electron will tunnel the potential and the other electron 

will remain at the bound state in the core if the laser pulse is not strong for SDI. And 

first the electron which tunneled the potential will go away from the core. But in laser 

pulse, the electric field will alternate along the frequency of the pulse and the shape of 

potential will be reversed after some time pass. Then this electron is forced to be back 

to the core and it will collide with the core and the other electron. Then two electrons 

can be ejected together and this ionization mechanism with interaction between two 

electrons is called NSDI. NSDI will have the major contribution for the double 

ionization when the laser pulse is not strong enough for SDI. 

 

Figure 1-4 Sketch of non-sequential ionization 

 

      This NSDI mechanism suggests that we should treat the dynamics of electrons 

fully through the laser pulse duration and in the region of space which is distant from 

the atomic or molecular core to simulate quantum mechanically. It contributes to 

further heavier calculation cost than that of calculation for static state of ground-state. 

      Furthermore, those dynamics will depend on laser pulse condition. In strong 

laser field, carrier-envelope phase (CEP) at few-cycle pulse plays an important role for 

the ionization mechanism. Figure 1-5 shows the laser pulses which have different CEP 

against the same duration, cycle, intensity and frequency. In the previous experiment5), 

the molecular dynamics of C2D2 was reported. The location of ionization and direction 

of dissociation of D+ from molecular core will depend on the CEP difference and 
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eventually the direction of bond-breaking will change by CEP difference. This result 

suggests that the CEP will affect the chemical reaction and such a parameter in laser 

pulses has important role in dynamics. Not only the CEP, but also other parameters 

such as peak intensity, cycle, and wavelength contribute to dynamics in strong laser 

fields. From the aspect of quantum calculation, we need to calculate trajectories 

independently against the different laser conditions. In such a situation, the calculation 

cost is more and more important issue to investigate molecular dynamics in intense 

laser field. 

 

 

Figure 1-5 Laser pulses which have different carrier envelope phase. Red lines 

represent envelope of laser pulses. Yellow and blue lines represent carrier of laser 

pulses. 

 

      In intense laser field, the nuclei are not necessarily at standstill while laser 

pulse applied. In previous reports9), 10), the ultrafast proton migration in methanol was 

observed as shown Figure 1-6. In the Born-Oppenheimer picture, it was considered 

that nuclei are much heavier than electrons and they can be treated as fixed Coulomb 
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points. But these experimental results show that protons are not fixed in the molecule 

in the reaction with laser pulses. This fact suggests that protons should not be treated 

as fixed Coulomb points in the theory to investigate molecular dynamics and 

constriction of quantum mechanical theory for nuclei and electrons may give us new 

interesting results and point of view. 

 

 
Figure 1-6 Proton migration in CH3OH2+. Blue and red circles represent H atom. 

 

      At above description about molecular dynamics in intense laser field, I 

described necessity to follow the electronic dynamics through the laser pulse and 

calculate trajectory on each laser condition. At that time, the calculation cost and time 

are the critical issue. Furthermore, we need to develop the theory to treat not only 

electrons but also protons quantum mechanically. From next section, I will explain 

about previous approaches for molecular dynamics calculation. 

 

1.3. Classical approach 

      The one of approaches is a way to describe the ionization mechanism with 

classical dynamics. It is difficult to construct stable chemical bonds with pure classical 

dynamics. Then soft-core interaction potential11), 12) is used instead of Coulomb 

potential. Soft-core interaction potential is represented as 

(ݔ)ܸ  = ଶݔ√1 + ܽଶ . (1-1)

Here x is the coordinate and a the parameter. When charge points are far away 

enough this potential behaves as usual Coulomb potential and when they are close the 

potential is suppressed to finite. Hence the calculation of motion will be stabilized 

avoiding singularity. For example, in the simulation of ionization of H2 molecule in a 
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strong laser field with this method, the motions of 4 particles are chaotic and nonlinear, 

and the bond is unstable totally though there are periodic trajectories12). Furthermore, 

there is a way to modify the classical approach with some additional terms of quantum 

effect to satisfy Heisenberg principle6), 7), 13-21). In this method, the additional potential 

which satisfy the uncertainty principle 

|݌|  × |ݎ| ≥ ℏߦ . (1-2)

Here ߦ  is a parameter for the calculation. Through calculations with classical 

equations of motion, we can simulate many phenomena such as collisions of particles, 

ionizations and can obtain statics for the information of kinetic energy release (KER) 

and anisotropy of ionization and so on. On the other hand, we need parameters which 

are not ab initio and we should construct additional potential for each number of 

particles of the problem. 

 

1.4. Grid method 

      One conventional way of quantum mechanical calculation is grid approach. In 

ordinary grid approach, the grid space is used to represent the wave function. Figure 

1-7 shows the pictorial example of grid representation. The strong point of grid 

method is flexibility to express the wave function. Any shape of function can be 

projected numerically into the grid space. But there are several weak points. In the grid 

method, the calculation cost is extremely heavy. Even if we assume the calculation for 

static state, we need huge memory to store the grid points. For example, in the case of 

H2 molecule as 2 electron problem on cylindrical coordinate, the memory size required 

is ߰(ߩଵ, ,ଶߩ ,ଵݖ ,ଶݖ ߶): (50,50,200,200,20) ≡ 16 Gbytes  , (1-3)

only for two electrons. If we want to treat electron-nuclear wave function for H2 

molecule, several billion times of this memory size will be required. In the present 

resource, it is actually difficult to use peta or exa bytes of memory. Not only the 

memory size, but also calculation time will be incredibly long. 
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Figure 1-7 Example of grid representation of wave function. Wave function ψ is 

defined discretely on x and y. 

 

      Furthermore, it is necessary to prepare larger grid domain to simulate dynamics 

in strong laser fields compared to static state calculation because the recollision 

mechanism of electrons should be treated appropriately. As described in Figure 1-4, 

even once electron gets distant from the core, there is a possibility that the electron 

comes back and plays important role. Hence we should prepare lager grid domain to 

follow the motion of electron which is not near the core. 

      There are previous works for dynamics of H2 molecule in strong laser fields with 

grid methods. One is Belfast method22). In this method, a mixed basis set was used for 

the wave function and finite-difference method was used for the time propagation. In 

this method, some dimensions are expressed with basis function and the application of 
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grid is restricted to some dimensions. In another previous report23), the center-of-mass 

motion of the electrons was approximately reduced. Naturally, the motions of nuclei 

are fixed in the both simulations. 

 

1.5. Coupled coherent state (CCS) method 

      Coupled coherent state (CCS) method is a way to deal with a time-variation 

wave function effectively with floating Gaussian bases24-34). Coherent state is a state 

which returns complex number against operation of annihilation operator ොܽ and 

creation operator ොܽற such as 

 ොܽ|ۧݖ = ۧݖ|ݖ , (1-4)

|ݖۦ  ොܽற = ∗ݖ|ݖۦ . (1-5)

And for example, a Gaussian like ۧݖ|ݔۦ = ቀߨߛቁଵସ ݌ݔ݁ ൬− 2ߛ ݔ) − ଶ((ݐ)ݍ + ℏ݅ ݔ)(ݐ)݌ − ((ݐ)ݍ + 2ℏ(ݐ)ݍ(ݐ)݌݅ ൰ (1-6)

is one of coherent states. Figure 1-8 shows the image of this function. 

      A wide spatial range of grid is required to follow the motion of electron at 

ionization, but in CCS method the motion of electrons can be expressed by variations 

of center positions and phases of floating Gaussian bases and it is not necessary to 

increase the number of basis against the spatial range of electronic motion at 

ionization. In CCS method, for calculation of wave function, the time complexity is ܱ(ܯସ), where M is total number of CCS bases. 4th order comes from the heaviest 

calculation part of 2 particle Coulomb integral. On the other hand, in grid method, the 

time complexity is ܱ ൬ቀ ௅∆௟ቁଷே൰ in 3-dimensional space, where L is range of grid per 1D, 

∆l is step width of each grid, and N is total number of particles. In grid method, 

necessity of large grid domain means increase of ܮ. However, in CCS method, the 

floating Gaussian can follow the motion of electron which is distant from the core, 

then M is independent from the motion of electrons. 

      Furthermore, the calculation cost of grid method will exponentially increase 

against the number of particles. On the other hand, it is also necessary to increase the 
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number of bases in CCS method, but the order of dependence is polynomial. Hence it 

is practically impossible to use grid method but it is possible to apply CCS method for 

larger system for simulation. 

      In the previous study of CCS, electron dynamics in strong laser fields was 

investigated with CCS method in the system of He atom28) with the nucleus fixed. As 

seen in proton migration, nuclei move very fast in the intense laser field. As well as the 

deal with the electron dynamics, theoretical formulation of quantal dynamics of nuclei 

is a point of the present research. The dynamics of H2 molecule in the strong laser field 

will be investigated in this paper as an example in the treatment of the 

electron-nuclear wave function. 

 

Figure 1-8 One-dimensional coherent state with center position q and momentum p. 

 

      There are previous works of the electron-nuclear wave function of H2 

molecule35-40) as nuclear orbital-molecular orbital (NOMO) method, but those are for 

time-independent static states. Previous works for CCS method to treat the dynamics 

of nuclei are also still limited in the framework of Ehrenfest approximation. 

      In this thesis, formulation of time-dependent quantum mechanics by the 

electron-nuclear wave function with CCS bases will be indicated. And the application 

for H2 molecule and its results will be shown and discussed.  
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2. Quantum dynamics with floating Gaussians and general formulations 

2.1. General equations of motion (EOMs) 

The EOMs are derived from the variational principle. In the non-relativistic 
quantum mechanics, the Lagrangian ܮ is determined as 
ܮ  = ർߖฬ݅ℏ ݐ߲߲ − ඀ߖ෡ฬܪ , (2-1)

where ܪ෡ is the total Hamiltonian of the system, ߖ is the wave function of the 
system, and t is the time. The action ܵ of the system is expressed as follows, 
 ܵ = න ௧మ௧భݐ݀ܮ , (2-2)

and the EOMs are obtained from the condition of the principle of least action, 
ܵߜ  = 0  is derived from Equation (2-2) as ܵߜ(2-3) .
ܵߜ  = න ݐ݀ ൬ർߖ + ฬ݅ℏߖߜ ݐ߲߲ − ߖ෡ฬܪ + ඀ߖߜ − ർߖฬ݅ℏ ݐ߲߲ − ඀൰௧మ௧భߖ෡ฬܪ  (2-4)

 = න ݐ݀ ൬ർߖߜฬ݅ℏ ݐ߲߲ − ඀ߖ෡ฬܪ + ർߖฬ݅ℏ ݐ߲߲ − ඀൰௧మ௧భߖߜ෡ฬܪ . (2-5)

From integration by parts for t, 
 න ݐ݀ ർߖฬ݅ℏ ݐ߲߲ ฬߖߜ඀௧మ௧భ = ම ݍ݀ න ௧మ௧భݐ݀ ℏ݅∗ߖ ݐ߲߲ (2-6) ߖߜ

 = ම ݍ݀ ቆ݅ℏሾߖߜ∗ߖሿ௧భ௧మ − න ௧మ௧భݐ݀ ℏ݅ߖߜ ݐ߲߲ ቇ∗ߖ (ଵݐ)Ψߜ(2-7) . = (ଶݐ)Ψߜ = 0 as the boundary condition, then Equation (2-7) is formulated as 
 න ݐ݀ ർߖฬ݅ℏ ݐ߲߲ ฬߖߜ඀௧మ௧భ = − ම ݍ݀ න ௧మ௧భݐ݀ ℏ݅ߖߜ ݐ߲߲ ∗ߖ

= න ݐ݀ ൽߖอ−݅ℏ ര߲߲ݐ อඁߖߜ௧మ௧భ , (2-8)

where ര߲ ⁄ݐ߲  denotes differentiation of the bra vector with respect to time. Therefore 
Equation (2-5) is derived from Equation (2-8) as 
ܵߜ  = න ݐ݀ ൽߖߜอ݅ℏ റ߲߲ݐ − ඁߖ෡อܪ + ൽߖอ−݅ℏ ര߲߲ݐ − ඁߖߜ෡อܪ = 0  , (2-9)

where റ߲ ⁄ݐ߲  denotes differentiation of the ket vector with respect to time. Hence, 
 ൻߖߜหܪ෡หߖൿ + ൻߖหܪ෡หߖߜൿ = =ൿߖ෡หܪหߖൻߜ ݅ℏ൫ൻߖߜหߖሶ ൿ − ൻߖሶ หߖߜൿ൯ 

(2-10)
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is satisfied. Equation (2-10) is rewritten as 
௜ߦ∂ܪ∂  = ݅ℏ ቆൽ ∗௜ߦ∂ߖ∂ ฬߖሶ ඁ − ർߖሶ ฬ ௜඀ቇߦ∂ߖ∂ = ෍ ܿ௜௝௝ ሶ௝ߦ , (2-11)

where ൛ߦ௝ൟ are the parameters describing the dynamics of the Gaussian wave packets 
such as their positions and orbital momenta, ܪ = ൻߖหܪ෡หߖൿ, 
 ܿ௜௝ = ߲ ௝ܼ߲ߦ௜ − ߲ܼ௜߲ߦ௝ , (2-12)

and furthermore, 
 ௝ܼ = ݅ℏ2 ቆൽߖቤ ௝ඁߦ∂ߖ∂ − ൽ ∗௝ߦ∂ߖ∂ ቤඁߖቇ . (2-13)

As a notation, 
 ൽ ∗௝ߦ∂ߖ∂ ቤඁߖ = ම ݍ݀ ௝ߦ∂∗ߖ∂ ߖ , (2-14)

and Equation (2-11) is not necessarily the same as the equation in the references 1-3) 
on the complex conjugate of ߦ௜  in the bra. This is because we are assuming that the 
time-dependent variables are complex numbers. Here, ߲ ௝ܼ߲ߦ௜ = ݅ℏ2 ቆൽ ∗௜ߦ߲ߖ߲ ቤ ௝ඁߦ߲ߖ߲ + ൽߖቤ ௜ߦ߲߲ ௝ඁߦ߲ߖ߲ − ൽ ∗௝ߦ߲ߖ߲ ቤ ௜ඁߦ߲ߖ߲ − ൽ ∗௜ߦ߲߲ ∗௝ߦ߲ߖ߲ ቤඁߖቇ  , (2-15)

߲ܼ௜߲ߦ௝ = ݅ℏ2 ቆൽ ∗௝ߦ߲ߖ߲ ቤ ௜ඁߦ߲ߖ߲ + ൽߖቤ ௝ߦ߲߲ ௜ඁߦ߲ߖ߲ − ൽ ∗௜ߦ߲ߖ߲ ቤ ௝ඁߦ߲ߖ߲ − ൽ ∗௝ߦ߲߲ ∗௜ߦ߲ߖ߲ ቤඁߖቇ  , (2-16)

and ߖ is at least class ܥଶ, then 
௜ߦ∂∂  ௝ߦ∂ߖ∂ = ௝ߦ∂∂ ௜ߦ∂ߖ∂ , (2-17)

therefore the relationship of Equation (2-12) is satisfied. 
      Hence, the time variation of parameters in the wave function can be obtained 
solving Equation (2-11) as 
ሶ௝ߦ   = ෍(ܿିଵ)௝௜௜

௜ߦ∂ܪ∂ . (2-18)

 

2.1.1. In the case of unnormalized wave function 

      When the wave function is not normalized, if this wave function is put ߰ as 
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ۧߖ|  = |߰ۧඥ߰ۦ|߰ۧ , (2-19)

then, Equation (2-13) is written as 
 ௝ܼ = ݅ℏ2 ቆ ۧ߰|߰ۦ1 ൽ߰ቤ ௝ඁߦ∂߰∂ + ۧ߰|߰ۦඥۧ߰|߰ۦ ௝ߦ∂∂ ቆ 1ඥ߰ۦ|߰ۧቇ − ۧ߰|߰ۦ1 ൽ ∗௝ߦ∂߰∂ ቤ߰ඁ

− ௝ߦ∂∂ ቆ 1ඥ߰ۦ|߰ۧቇ  ቇۧ߰|߰ۦඥۧ߰|߰ۦ

(2-20)

 = ݅ℏ2߰ۦ|߰ۧ ቆൽ߰ቤ ௝ඁߦ∂߰∂ − ൽ ∗௝ߦ∂߰∂ ቤ߰ඁቇ . (2-21)

 

2.2. Derivation of Integrals for Gaussians 

In this section, integrals for Gaussians are derived. In CCS method, wave 
function is expanded with linear combination of floating Gaussians and integrals 
needed in the EOMs can be derived in analytical form. Against the Gaussians 

ൻݔหݖ(௞)ൿ = ቀߨߛቁଵସ exp ቆ− 2ߛ ൫ݔ − ൯ଶ(௞)ݍ + ℏ݅ ݔ൫(௞)݌ − ൯(௞)ݍ + 2ℏ(௞)ݍ(௞)݌݅ ቇ  , (2-22)

the integrals for |ۧݖ is derived. Here a M-diminsional Gaussian |Zۧ is derived as 
 |Zۧ = ෑหݖ(௞)ൿெ

௞ୀଵ , (2-23)

as a product of 1-dimensional Gaussians หݖ(௞)ൿ. In present research, the dynamics on 
real 3D space will be considered and M = 3. 
 

2.2.1. Overlap integral 

First, overlap integral ۧݖ|’ݖۦ is derived. In the case of 1 dimension, 

ۧݖ|’ݖۦ = න ݔ݀ ቆߛᇱߨ ቇଵସ exp ቆ− ᇱ2ߛ ݔ) − ᇱ)ଶݍ + ℏ݅ ݔ)ᇱ݌ − ᇱ)ஶݍ
ିஶ

+ ᇱ2ℏݍᇱ݌݅ ቇ∗ ቀߨߛቁଵସ exp ൬− 2ߛ ݔ) − ଶ(ݍ + ℏ݅ ݔ)݌ − (ݍ + 2ℏݍ݌݅ ൰  . (2-24)

Here, 
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 exp ቆ− ᇱ2ߛ ݔ) − ᇱ)ଶݍ − ℏ݅ ݔ)ᇱ݌ − (ᇱݍ − ᇱ2ℏݍᇱ݌݅ ቇ exp ൬− 2ߛ ݔ) − ଶ(ݍ
+ ℏ݅ ݔ)݌ − (ݍ + 2ℏݍ݌݅ ൰ 

(2-25)

 = exp ቆ− ᇱߛ + 2ߛ ଶݔ + ݍߛ) + ݔ(ᇱݍᇱߛ − ቆ2ߛ ଶݍ + ᇱ2ߛ ᇱଶቇݍ + ℏ݅ ݌) − ݔ(ᇱ݌
+ ᇱℏݍᇱ݌݅ − ℏݍ݌݅ − ᇱ2ℏݍᇱ݌݅ + 2ℏݍ݌݅ ቇ 

(2-26)

 = exp ൭− ᇱߛ + 2ߛ ଶݔ + ൤(ݍߛ + (ᇱݍᇱߛ + ℏ݅ ݌) − ᇱ)൨݌ ݔ − ቆ2ߛ ଶݍ + ᇱ2ߛ ᇱଶቇݍ
− 2݅ℏ ݍ݌) −  ᇱ)൱ݍᇱ݌

(2-27)

 = exp ቌ− ᇱߛ + 2ߛ ൬ݔ − ᇱߛ1 + ߛ ൤(ݍߛ + (ᇱݍᇱߛ + ℏ݅ ݌) − ᇱ)൨൰ଶ݌

+ ᇱߛ)12 + (ߛ ൤(ݍߛ + (ᇱݍᇱߛ + ℏ݅ ݌) − ᇱ)൨ଶ݌ − 12 ଶݍߛൣ + ᇱଶ൧ݍᇱߛ
− 2݅ℏ ݍ݌) − ᇱ)ቍݍᇱ݌ . 

(2-28)

If we use a label of complex number 
ݖ  = ݍଵଶߛ + ݅ℏିଵିߛଵଶ2√݌ , (2-29)

we can derive as 
ݍ  = ݖ)ଵଶି(ߛ2) + (30-2) (∗ݖ

݌  = −݅ℏ ቀ2ߛቁଵଶ ݖ) − (31-2) (∗ݖ

ݍ݌  = −݅ℏ2 ൫ݖଶ − ଶ൯ (2-32)∗ݖ

ݍ′݌  = ℏ2݅ ඨߛᇱߛ ݖ) + ′ݖ)(∗ݖ − (33-2) (∗′ݖ
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ᇱݍ݌  = ℏ2݅ ඨ ᇱߛߛ ᇱݖ) + ݖ)(∗ᇱݖ − (∗ݖ , (2-34)

and 
ݍߛ)  + (ᇱݍᇱߛ + ℏ݅ ݌) −  (ᇱ݌

= ቀ2ߛቁଵଶ ሾ(ݖ + (∗ݖ + ݖ) − ሿ(∗ݖ + ቆߛᇱ2 ቇଵଶ ሾ(ݖᇱ + (∗ᇱݖ − ᇱݖ) −  ᇱ∗)ሿݖ

(2-35)

 = ඥ2ݖߛ + ඥ2ߛᇱݖᇱ∗ (2-36)
 ∴ ᇱߛ)12 + (ߛ ൤(ݍߛ + (ᇱݍᇱߛ + ℏ݅ ݌) − ᇱ)൨ଶ݌ = ᇱߛ)1 + (ߛ ൫ඥݖߛ + ඥߛᇱݖᇱ∗൯ଶ

= ᇱߛ)1 + (ߛ ቀݖߛଶ + ᇱ∗ଶݖᇱߛ + 2ඥߛߛᇱݖݖᇱ∗ቁ (2-37)

ଶݍߛ  + ᇱଶݍᇱߛ = 12 ሾ(ݖ + ଶ(∗ݖ + ᇱݖ) + ᇱ∗)ଶሿ (2-38)ݖ

 ℏ݅ ݍ݌) − (ᇱݍᇱ݌ = 12 ቂݖଶ − ଶ∗ݖ − ᇱଶݖ + ᇱ∗ଶቃ (2-39)ݖ

 ∴ ଶݍߛ + ᇱଶݍᇱߛ + ℏ݅ ݍ݌) −  (ᇱݍᇱ݌

= 12 ቂݖଶ + ଶ∗ݖ + ଶ’ݖ + ଶ∗’ݖ + ∗ݖݖ2 + ∗’ݖ’ݖ2 + ଶݖ − ଶ∗ݖ − ᇱଶݖ + ᇱ∗ଶቃ (2-40)ݖ

 = 12 ଶݖ2ൣ + ଶ∗’ݖ2 + ∗ݖݖ2 + ൧ (2-41)∗’ݖ’ݖ2

ᇱߛ)12  + (ߛ ൤(ݍߛ + (ᇱݍᇱߛ + ℏ݅ ݌) − ᇱ)൨ଶ݌ − 12 ଶݍߛൣ + ᇱଶ൧ݍᇱߛ − 2݅ℏ ݍ݌) −  (ᇱݍᇱ݌

= ᇱߛ)1 + (ߛ ቀݖߛଶ + ᇱ∗ଶݖᇱߛ + 2ඥߛߛᇱݖݖᇱ∗ቁ − 12 ଶݖൣ + ଶ∗’ݖ + ∗ݖݖ +  ൧∗’ݖ’ݖ

 
 
(2-42)

 = ߛ − ᇱߛ)ᇱ2ߛ + (ߛ ቀݖଶ − ᇱ∗ଶቁݖ + 2ඥߛߛᇱ(ߛᇱ + (ߛ ∗ᇱݖݖ − 12 ሾݖݖ∗ + ሿ∗’ݖ’ݖ . (2-43)

When we consider about generalized form of 
 න ݔ)ܥ)ݔ݀ − ଶ(ݍ + ݔ)ܦ − (ݍ + ݔ)ܣ−)݌ݔ݁(ܧ − ଶ(ݍ + ஶ(ܤ

ିஶ  

= (ܤ)݌ݔ݁ܥ න ݔ)ݔ݀ − ݔ)ܣ−)݌ݔଶ݁(ݍ − ଶ)ஶ(ݍ
ିஶ  

 
 
 
(2-44)
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(ܤ)݌ݔ݁ܦ+ න ݔ)ݔ݀ − ݔ)ܣ−)݌ݔ݁(ݍ − ଶ)ஶ(ݍ
ିஶ  

(ܤ)݌ݔ݁ܧ+ න ݔ)ܣ−)݌ݔ݁ݔ݀ − ଶ)ஶ(ݍ
ିஶ  

If we put ݕ = ݔ)ܣ√ − ݕ݀ then ,(ݍ =  and ݔ݀ܣ√
 න ஶݔ݀

ିஶ ݔ)ܣ−)݌ݔ݁ − (ଶ(ݍ = ଵଶିܣ න ஶݕ݀(ଶݕ−)݌ݔ݁
ିஶ = ቀܣߨቁଵଶ

 (2-45)

 න ݔ) − ஶݔ݀(ݍ
ିஶ ݔ)ܣ−)݌ݔ݁ − (ଶ(ݍ = 0 (2-46)

 ∴ න ݔ)ܥ)ݔ݀ − ଶ(ݍ + ݔ)ܦ − (ݍ + ݔ)ܣ−)݌ݔ݁(ܧ − ଶ(ݍ + ஶ(ܤ
ିஶ  

= (ܤ)݌ݔ݁ ൤ܥ 12 ߨ√ଷଶିܣ + ൨ߨ√ଵଶିܣܧ . (2-47)

By comparing Equation (2-28) with Equations (2-43) and (2-47), 
ܣ  = ′ߛ + 2ߛ  (2-48)

ܤ  = ߛ − ′ߛ)′2ߛ + (ߛ ൫ݖଶ − ଶ൯∗′ݖ + 2ඥߛ)′ߛߛ′ + (ߛ ∗′ݖݖ − 12 ሾݖݖ∗ + ሿ  . (2-49)∗’ݖ’ݖ

Hence 1 dimensional ۧݖ|’ݖۦ is 

ۧݖ|’ݖۦ = ቆߨ′ߛቇଵସ ቀߨߛቁଵସ ቆߛ′ + 2ߛ ቇିଵଶ ݌ݔ݁ߨ√ ൭ ߛ − ′ߛ)′2ߛ + (ߛ ൫ݖଶ − ଶ൯∗’ݖ + 2ඥߛ)′ߛߛ′ + (ߛ ∗’ݖݖ
− 12 ሾݖݖ∗ +  ሿ൱∗’ݖ’ݖ

(2-50)

= ଵସߛଵସ′ߛ ቆߛ′ + 2ߛ ቇିଵଶ ݌ݔ݁ ൭ ߛ − ′ߛ)′2ߛ + (ߛ ൫ݖଶ − ଶ൯∗′ݖ + 2ඥߛ)′ߛߛ′ + (ߛ ∗′ݖݖ
− 12 ሾݖݖ∗ + ሿ൱∗’ݖ’ݖ . (2-51)

For the case of M dimension, it can be obtained as a product of 1D cases, then 3 
dimensional ۧݖ|’ݖۦ is derived as 
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ۧݖ|’ݖۦ  = ଷସߛଷସ′ߛ ቆߛ′ + 2ߛ ቇିଷଶ ݌ݔ݁ ൭ ߛ − ′ߛ)′2ߛ + (ߛ ൫ݖଶ − ଶ൯∗′ݖ + 2ඥߛ)′ߛ′ + (ߛ ∗′ݖݖ
− 12 ሾݖݖ∗ + ሿ൱∗’ݖ’ݖ . (2-52)

 

2.2.2. Kinetic integral 

Next, the integral for the operation of Laplacian is derived. In the same way as 
the overlap integral, if we consider the 1D case, 

ۧݖ|∆|′ݖۦ = න ݔ݀ ቆߨ′ߛቇଵସ ݌ݔ݁ ቆ− ′2ߛ ݔ) − ଶ(′ݍ + ℏ݅ ݔ)′݌ − ஶ(′ݍ
ିஶ

+ 2ℏ′ݍ′݌݅ ቇ∗ ଶߘ ቀߨߛቁଵସ ݌ݔ݁ ൬− 2ߛ ݔ) − ଶ(ݍ + ℏ݅ ݔ)݌ − (ݍ + 2ℏݍ݌݅ ൰  . 
 
(2-53)

Here 

ቆߨ′ߛቇଵସ ݌ݔ݁ ቆ− ′2ߛ ݔ) − ଶ(′ݍ + ℏ݅ ݔ)′݌ − (′ݍ
+ 2ℏ′ݍ′݌݅ ቇ∗ ଶߘ ቀߨߛቁଵସ ݌ݔ݁ ൬− 2ߛ ݔ) − ଶ(ݍ + ℏ݅ ݔ)݌ − (ݍ + 2ℏݍ݌݅ ൰ 

= ቆߨ′ߛቇଵସ ቀߨߛቁଵସ න ݌ݔ݁ݔ݀ ቆ− ′2ߛ ݔ) − ଶ(′ݍ + ℏ݅ ݔ)′݌ − ஶ(′ݍ
ିஶ+ 2ℏ′ݍ′݌݅ ቇ∗ ቊ൤−ݔ)ߛ − (ݍ + ℏ݅ ൨ଶ݌ − ቋߛ ݌ݔ݁ ൬− 2ߛ ݔ) − ଶ(ݍ

+ ℏ݅ ݔ)݌ − (ݍ + 2ℏݍ݌݅ ൰ . 
(2-54)

 

If we put 
 ෤݊ = ′ߛ1 + ߛ ൤(ݍߛ + (′ݍ′ߛ + ℏ݅ ݌) − ൨(′݌ , (2-55)

then, = ′ߛ)1 + 2√(ߛ ቂ൬ඥݖ)ߛ + (∗ݖ + ඥݖ)′ߛ′ + ൰(∗′ݖ + ൬ඥݖ)ߛ − (∗ݖ − ඥݖ)′ߛ′ − ൰ቃ (2-56)(∗′ݖ
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= ′ߛ)2√ + (ߛ ቀݖඥߛ + ቁ (2-57)′ߛඥ∗′ݖ

and Equation (2-54) is 
 ቊߛଶ(ݔ − ଶ(ݍ − 2ℏ݅ ݔ)ߛ݌ − (ݍ − ଶℏଶ݌ −  ቋߛ

= ݔ)ଶߛ − ෤݊)ଶ − ଶߛ2 ൤(ݍ − ෤݊) + ℏߛ݅ ൨݌ ݔ) − ෤݊) + ൜ݍ)ߛ − ෤݊) + ℏ݅ ൠଶ݌ − (2-58) ,  ߛ

then, each coefficient in Equation (2-47) is 
ܣ  = ′ߛ + 2ߛ , (2-59)

ܤ  = ߛ − ′ߛ)′2ߛ + (ߛ ൫ݖଶ − ଶ൯∗′ݖ + 2ඥߛ)′ߛߛ′ + (ߛ ∗′ݖݖ − 12 ሾݖݖ∗ + ሿ  , (2-60)∗’ݖ’ݖ

ܥ  = ଶߛ , (2-61)
ܧ  = ൜ݍ)ߛ − ෤݊) + ℏ݅ ൠଶ݌ − (2-62) ߛ

 = ቐߛ ቌ(2ߛ)ିଵଶ(ݖ + (∗ݖ − ′ߛ)2√ + (ߛ ቀݖඥߛ + ቁቍ′ߛඥ∗′ݖ + ቀ2ߛቁଵଶ ݖ) − ቑଶ(∗ݖ − (2-63) ߛ

 = 2ߛ ቐ2ݖ − ߛ√2 ቀߛ√ݖ + ′ߛ)ቁ′ߛඥ∗′ݖ + (ߛ ቑଶ − ߛ = 2ߛ ൝ ′ߛ)′ߛ2 + (ߛ ݖ − 2ඥߛ)′ߛߛ′ + (ߛ ൡଶ∗′ݖ − (2-64) ,ߛ

therefore, 
ۧݖ|∆|′ݖۦ  = ۧݖ|’ݖۦߛ ቎12 ൝ ′ߛ)′ߛ2 + (ߛ ݖ − 2ඥߛ)′ߛߛ′ + (ߛ ൡଶ∗′ݖ − ′ߛ)′ߛ + ቏  . (2-65)(ߛ

In the case of 3D, in the same way as the overlap integral, 
ۧݖ|∆|′ݖۦ  = ۧݖ|’ݖۦߛ ቎12 ൝ ′ߛ)′ߛ2 + (ߛ ݖ − 2ඥߛ)′ߛߛ′ + (ߛ ൡଶ∗′ݖ − ′ߛ)′ߛ3 + ቏  . (2-66)(ߛ

 

2.2.3. Coulomb integral 

      In this section, a Coulomb integral between 2 particles as Equation (2-67) is 
derived. 
|′ଵݖۦ|′ଶݖۦ  ଵݎ|1 − |ଶݎ ଶۧ (2-67)ݖ|ଵۧݖ|
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This formula of Gaussian integral can be integrated with Fourier transformation4). In 
this case, if we put 
 ෤݊௜ = ′௜ߛ)2√ + (௜ߛ ቀݖ௜′∗ඥߛ௜′ + ௜ቁߛ௜ඥݖ , (2-68)

 ෤݊ = ෤݊ଵ − ෤݊ଶ , (2-69)
ߩ  = √ ෤݊ ∙ ෤݊ = ඥ ෤݊ଶ . (2-70)
Then, 
|′ଵݖۦ|′ଶݖۦ  ଵݎ|1 − |ଶݎ ଶۧݖ|ଵۧݖ|

= ଶۧݖ|′ଶݖۦଵۧݖ|′ଵݖۦ ߩ1 ݂ݎ݁ ۈۉ
ଵ′2ߛඪ൬ߩۇ + ଵ2ߛ ൰ ൬ߛଶ′2 + ଶ2ߛ ൰൬ߛଵ′2 + ଵ2ߛ + ଶ′2ߛ + ଶ2ߛ ൰ۋی

(71-2) .  ۊ

      These results were validated by comparison with numerical integrations using 
expressions of Equations (2-24), (2-53) and (2-67). Calculation of hundreds of 
thousands of times with Monte Carlo integral resulted in agreement with upper 3 
digits of calculation against the analytical forms. 
 

2.3. Optimization methods 

      Through above discussions, we can obtain the quantum dynamics along the 
EOMs. In this section, we will consider about how to get the ground state and 
approaches for optimization. 
 

2.3.1. Gradient descent method (GDM) 

      The usual way for optimization is gradient descent. We can know the analytical 

form of the integral of Hamiltonian புப௫ , then the integral of Hamiltonian can be 

optimized to a local minimum through the gradient descent. 
      In usual gradient descent, ܪ is defined on ℝ௡ ⟶ ℝ and with a small ܪ ,ߙ 
can be optimized through iterations as 
௜ାଵݔ  = ௜ݔ − ߙ ௜ݔ߲ܪ߲ . (2-72)

However, in the present research (ݔ)ܪ  is defined on ℂ௡ ⟶ ℂ  and the usual 
gradient descent cannot be adopted and needs to be improved. 

For a small d, 
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ݔ)ܪ  + ݀) = (ݔ)ܪ + ݔ߲ܪ߲ ⋅ ݀ . (2-73)

Here if d is put with ߚ > 0, ߚ ∈ ℝ as 
 ݀ = ߚ− ൬߲ݔ߲ܪ ൰∗ , (2-74)

then, 
ݔ)ܪ  + ݀) = (ݔ)ܪ − ߚ ݔ߲ܪ߲ ⋅ ൬߲ݔ߲ܪ ൰∗ = (ݔ)ܪ − ߚ ฬ߲ݔ߲ܪ ฬଶ  , (2-75)

so if ݔ is set properly to satisfy ݔ)ܪ + ݀) and (ݔ)ܪ to be real,  
ߚ  ฬ߲ݔ߲ܪ ฬଶ ∈ ℝ ∧ ߚ ฬ߲ݔ߲ܪ ฬଶ ≥ 0 (2-76)

 ∴ ݔ)ܪ + ݀) ≤ (ݔ)ܪ . (2-77)
Hence, through iterations of 
௜ାଵݔ  = ௜ݔ − ߚ ൬߲ݔ߲ܪ௜൰∗ , (2-78)

the optimization of H can be achieved. 
 

2.3.2. Imaginary time propagation (ITP) method 

      GDM is the simple method for the optimization but the convergence speed is 
not necessarily fast. In present research, the formulations are for time propagation 
and we can use the imaginary time propagation method for the optimization. It was 
suggested that the imaginary time propagation may avoid the problem of a 
convergence to a local minimum not to a global minimum5). 
      The imaginary time ߬ is defined as 

 ߬ = ݐ݅ . (2-79)

When we assume a vibrational component of ݁ି௜ఠ௧  in the wave function, this 
component is expressed as 

 ݁ି௜ఠ௧ = ݁ିఠఛ (2-80)

replacing the real time t by the imaginary time ߬. In that case, equation (2-80) will be 
dumped exponentially as ݁ିఠఛ → 0 in ߬ → ∞ . 
      The EOMs for the imaginary time is expressed from equation (2-18) as 

 dߦ௝d߬ = dߦ௝d݅ݐ = −݅ ෍(ܿିଵ)௝௜௜
௜ߦ∂ܪ∂ . (2-81)

By imaginary time propagating this EOMs, the wave function can be converged to the 
ground state.  
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3. Theory for application to H2 molecule 

      In this chapter, we will consider the application of general theory in Chapter 1 

to H2 molecule. We will treat the electron-nuclear wave function and the problem is 

4-particle system. 

 

3.1. Total wave function 

3.1.1. Expression of wave function with 4 orbital functions 

      In the present research, nuclei are treated in the same way as electrons, and 

the wave function of the system is represented as 

 |Ψۧ = (3-1) ۧ߀|ۧ޿|

in a product form of |ۧ޿,  is the Slater determinant of nuclei. Here they are treated in singlet configurations ۧ߀| is the Slater determinant of electrons and ۧ޿| where ۧ߀|

and their spatial parts are written by the spatial orbital of each particle as 

 ሾSpatial part of |Αۧሿ = ଶۧݖ|ଵۧݖ| + ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)ଵۧඥ2ݖ|ଶۧݖ| + ଵۧ)  , (3-2)ݖ|ଶݖۦଶۧݖ|ଵݖۦ

 ሾSpatial part of |Βۧሿ= ଶۧݓ|ଵۧݓ| + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)ଵۧඥ2ݓ|ଶۧݓ| + ଵۧ)  , (3-3)ݓ|ଶݓۦଶۧݓ|ଵݓۦ

where |ݖଵۧ, ଶۧݖ|  are spatial orbitals of electron 1, 2, and |ݓଵۧ, ଶۧݓ|  are spatial 

orbitals of nuclear 1, 2. 

      The total Hamiltonian is integrated with this Ψ as follows. 

 ൻΨหܪ෡หΨൿ= ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)14 + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)(ଵۧݖ|ଶݖۦଶۧݖ|ଵݖۦ + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ) (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ + ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ + ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ + ଶۧݓ|ଵۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ+ ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ + ଶۧݓ|ଵۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ +  ଶۧݓ|ଵۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ

(3-4)
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ଵۧݓ|ଶۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ+ + ଵۧݓ|ଶۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଵۧݓ|ଶۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ +  ଶ, that isݖ ,ଵݖ ෡ is symmetric against the exchange ofܪ (ଵۧݓ|ଶۧݓ|ଵۧݖ|ଶۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ

ଶۧݖ|ଵൿݖ෡หܪଵหݖଶ|ൻݖۦ  = ଵۧݖ|ଶൿݖ෡หܪଶหݖଵ|ൻݖۦ , (3-5)

ଶۧݖ|ଵൿݖ෡หܪଶหݖଵ|ൻݖۦ  = ଵۧݖ|ଶൿݖ෡หܪଵหݖଶ|ൻݖۦ , (3-6)

using this relationship to Equation (3-4), 

 ൻΨหܪ෡หΨൿ= ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)12 + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)(ଵۧݖ|ଶݖۦଶۧݖ|ଵݖۦ + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ) (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ + ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ + +ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ  (ଵۧݓ|ଶۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ

(3-7)

and also ܪ෡ is symmetric against the exchange of ݓଵ, ݓଶ, 

ଶۧݓ|ଵൿݓ෡หܪଵหݓଶ|ൻݓۦ  = ଵۧݓ|ଶൿݓ෡หܪଶหݓଵ|ൻݓۦ , (3-8)

ଶۧݓ|ଵൿݓ෡หܪଶหݓଵ|ൻݓۦ  = ଵۧݓ|ଶൿݓ෡หܪଵหݓଶ|ൻݓۦ , (3-9)

then using this relationship to Equation (3-7), 

 ൻΨหܪ෡หΨൿ= ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)1 + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)(ଵۧݖ|ଶݖۦଶۧݖ|ଵݖۦ + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ) (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ + +ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ  (ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ

(3-10)

 

3.1.2. Expression of each orbital with Gaussians 

      Next, each orbital is expressed by linear combination of total number ܯ of 

Gaussian bases |ܩ௠ۧ as follows, 

ଵۧݖ|  = ෍ ௠ۧ௠ܩ|௠௭భߤ , (3-11)
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ଶۧݖ|  = ෍ ௠ۧ௠ܩ|௠௭మߤ , (3-12)

ଵۧݓ|  = ෍ ௠ۧ௠ܩ|௠௪భߤ , (3-13)

ଶۧݓ|  = ෍ ௠ۧ௠ܩ|௠௪మߤ , (3-14)

where ߤ௜ is the column vector of ܯ × 1 and this is the orbital coefficient of the each 

particle i expressing the weight of Gaussian bases in the orbital. |ܩ௠ۧ is expressed in 

the form of CCS as ܩ|࢘ۦ௠ۧ = ቀߛ௠ߨ ቁଷସ ݌ݔ݁ ൬− ௠2ߛ (࢘ − ଶ((ݐ)௠ࢗ + ℏ݅ ࢘)(ݐ)௠࢖ − ((ݐ)௠ࢗ
+ 2ℏ(ݐ)௠ࢗ(ݐ)௠࢖݅ ൰ . (3-15)

in the 3-dimensional space. 

 

3.1.3. Expression of total Hamiltonian 

      In the case of H2 molecule, total Hamiltonian is expressed as ܪ෡ = − 12 ቆ∆௘భ + ∆௘మ + ∆௣భ݉௣ + ∆௣మ݉௣ ቇ − 1ห࢘௘భ − ࢘௣భห − 1ห࢘௘మ − ࢘௣భห− 1ห࢘௘భ − ࢘௣మห − 1ห࢘௘మ − ࢘௣మห + 1ห࢘௘భ − ࢘௘మห + 1ห࢘௣భ − ࢘௣మห + ൫࢘௘భ + ࢘௘మ − ࢘௣భ − ࢘௣మ൯ ∙  (ݐ)ࡱ

(3-16)

in atomic unit. ݁ଵ and ݁ଶ are symbols which represent electrons, and ݌ଵ and ݌ଶ 

are for nuclei. In the present research, the nuclei are also treated quantum 

mechanically, so the total Hamiltonian includes all terms for four particles in H2 

molecule. The effect of laser field is involved as a time-dependent electric field (ݐ)ࡱ 

in length gauge. 

 

3.2. Expression of each integral 

      The integral of total Hamiltonian ܪ can be obtained in the analytical form and 

it is needed to derive analytical forms of integrals in ܪ. 
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3.2.1. Overlap integral 

      The overlap integral is written as follows, 

ଵۧݖ|ଵݖۦ  = ෍ ௡௭భߤ ൭෍ ௠|௠ܩۦ∗௠௭భߤ ൱ ௡ۧ௡ܩ| = ෍ ௡ۧ௠,௡ܩ|௠ܩۦ௡௭భߤ∗௠௭భߤ  (3-17)

ଵۧݖ|ଶݖۦ = ෍ ௡௭భߤ ൭෍ ௠|௠ܩۦ∗௠௭మߤ ൱ ௡ۧ௡ܩ| = ෍ ௠௭మߤ ௡ۧ௠,௡ܩ|௠ܩۦ௡௭భߤ∗  (3-18)

and if we use identifier i, j for each particle ݅ۦ|݆ۧ = ෍ ௡௝ߤ ൭෍ ௠௜ߤ ௠|௠ܩۦ∗ ൱ ௡ۧ௡ܩ| = ෍ ௠௜ߤ ௡௝ߤ∗ ௡ۧ௠,௡ܩ|௠ܩۦ   . (3-19)

If the matrix ܵ of ܯ × is determined as (ܵ)௠௡ ܯ = ௡ۧ (3-20)ܩ|௠ܩۦ

= ௡ଷସߛ௠ଷସߛ ൬ߛ௠ + ௡2ߛ ൰ିଷଶ
݌ݔ݁  ቆ ௡ߛ − ௠ߛ)௠2ߛ + (௡ߛ ൫ݖ௡ଶ − ௠∗ଶ൯ݖ + 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ∗௠ݖ௡ݖ − 12 ሾݖ௡ݖ௡∗ +  ௠∗ሿቇݖ௠ݖ

(3-21)

Equation (3-18) can be expressed as ݅ۦ|݆ۧ = ௝ߤܵ∗௜ߤ . (3-22)

 

3.2.2. Kinetic integral 

      Next, the kinetic integral will be discussed. For example, 

ଶۧݖ|ଵۧݖ|ଵ|∆࢞భݖۦ|ଶݖۦ = ଶۧݖ|ଶݖۦ ෍ ௡௭భߤ ൭෍ ௠|௠ܩۦ∗௠௭భߤ ൱ ௡ۧ௡ܩ|∆  (3-23)

= ଶۧݖ|ଶݖۦ ෍ ௡ߛ௡ۧܩ|௠ܩۦ௡௭భߤ∗௠௭భߤ ൥12 ቊ ௠ߛ)௠ߛ2 + (௡ߛ ௡ݖ − 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ௠ቋଶ∗ݖ
௠,௡

− ௠ߛ)௠ߛ3 +  ௡)൩ߛ

(3-24)

If we put the matrix ܴ of ܯ ×  as ܯ
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(ܴ)௠௡ = ௡ߛ ൥12 ቊ ௠ߛ)௠ߛ2 + (௡ߛ ௡ݖ − 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ௠ቋଶ∗ݖ − ௠ߛ)௠ߛ3 + ௡)൩ (3-25)ߛ

and the matrix ܭ of ܯ × ܭ as ܯ = ܵ ∘ ܴ (3-26)

where operator ∘ means multiplication of matrices against each element like as (ܣ ∘ ௠௡(ܤ = ܽ௠௡ × ܾ௠௡ , (3-27)

which is called Hadamard product. Then, the kinetic integral can be expressed as ݅ۦ|∆|݆ۧ = ௝ߤܭ∗௜ߤ . (3-28)

 

3.2.3. Coulomb integral 

      Integral for Coulomb interaction is generally expressed as 

|ଵݖۦ|ଶݖۦ  ଵݎ|1 − |ଶݎ ۧ′ଶݖ|ۧ′ଵݖ| . (3-29)

By putting as 

 ෤݊௠௡ = ௠ߛ)2√ + (௡ߛ ൫݃௡ඥߛ௡ + ݃௠∗ඥߛ௠൯ , (3-30)

 ෤݊௠௡௜௝ = ෤݊௠௡ − ෤݊௜௝ , (3-31)

௠௡௜௝ߩ  = ට ෤݊௠௡௜௝ ∙ ෤݊௠௡௜௝ = ට ෤݊௠௡௜௝ଶ , (3-32)

where the number of bases is M and ݉, ݊, ݅, ݆ ≤   Then .ܯ

Eq.(3-29) 

= ෍ ௝ൿܩ௜หܩ௡ۧൻܩ|௠ܩۦ௝௭మᇱߤ∗௜௭మߤ௡௭భᇱߤ∗௠௭భߤ ௠௡௜௝ߩ1 ݂ݎ݁ ൮ߩ௠௡௜௝ඩቀߛ௠2 + ௡2ߛ ቁ ቀߛ௜2 + ௝2ߛ ቁቀߛ௠2 + ௡2ߛ + ௜2ߛ + ௝2ߛ ቁ൲௠,௡,௜,௝  
(3-33)

Here ܯ × ܯ × ܯ ×  tensor Ρ is put as ܯ

௠௡௜௝(ߏ)  = ௠௡௜௝ߩ1 ݂ݎ݁ ൮ߩ௠௡௜௝ඩቀߛ௠2 + ௡2ߛ ቁ ቀߛ௜2 + ௝2ߛ ቁቀߛ௠2 + ௡2ߛ + ௜2ߛ + ௝2ߛ ቁ൲  , (3-34)

and 

ଵଵᇱߤ  = ߤ) ௭భᇱߤ ௭భ ∗)௧ , (3-35)
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ଶଶᇱߤ  = ߤ) ௭మᇱߤ ௭మ ∗)௧ , (3-36)

and ܯ × ܯ × ܯ ×  tensor C is put as ܯ

ܥ  = ܵ ∘௠௡ ൫ܵ ∘௜௝ ∷ܲ௜௝൯௠௡∷ (3-37)

where ∷ܲ௜௝ means ܯ ×  dimension matrix D such as ܯ

௠௡(ܦ)  = (ܲ)௠௡௜௝ , (3-38)

and a operator ∘௜௝  means the exectution of ∘ against all i,j. For example, the 

procedure of tensor ܧ = ܵ ∘௜௝ ∷ܲ௜௝ is expressed with a pseudo code like as, 

for i=1 to M 

    for j=1 to M 

        E(:,:,i,j)=S∘P(:,:,i,j); 

    end 

end ∘௠௡ is determined in the same way. Then Equation (3-29) is expressed as 

|ଵݖۦ|ଶݖۦ  ଵݎ|1 − |ଶݎ ＝ۧ′ଶݖ|ۧ′ଵݖ| ෍ ቀߤଶଶᇱ ∘௠௡ ൫ߤଵଵᇱ ∘௜௝ ௜௝൯௠௡∷ቁ௠௡௜௝௠,௡,௜,௝∷ܥ   . (3-39)

 

3.2.4. Integral for laser field 

      Integral for electric field is expressed as 

ଵݎ|ଵݖۦ|ଶݖۦ  ∙ ＝ۧ′ଶݖ|ۧ′ଵݖ|ܧ = ۧ′ଶݖ|ଶݖۦ ෍ ௡ۧܩ|௠ܩۦ௡௭భᇱߤ∗௠௭భߤ ෤݊௠௡ ∙ ௠,௡ܧ   . (3-40)

Then if we put ܯ ×  matrix ෩ܰ as ܯ

 ൫ ෩ܰ൯௠௡ = ෤݊௠௡ ∙ ܧ , (3-41)

and 

ܮ  = ܵ ∘ ܰ , (3-42)

then integral for electric field is expressed with 

ଵݎ|ଵݖۦ  ∙ ۧ′ଵݖ|ܧ = ߤ ௭భ ߤܮ∗ ௭భᇱ . (3-43)

 

3.3. Differential of integral of Hamiltonian with each parameter 

      To obtain ∂ܪ ⁄௜ߦ∂ , it is needed to derive  
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௜ߦ∂ܪ∂  = ௜ߦ∂∂ ൻΨหܪ෡หΨൿ . (3-44)

From Equation (3-10), Equation (3-44) is formulated as 

௜ߦ∂∂  ൻΨหܪ෡หΨൿ
= ൬ ௜ߦ∂∂ ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)1 + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)(ଵۧݖ|ଶݖۦଶۧݖ|ଵݖۦ + × ଵۧ)൰ݓ|ଶݓۦଶۧݓ|ଵݓۦ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ) + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ + + (ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)1 + ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)(ଵۧݖ|ଶݖۦଶۧݖ|ଵݖۦ +  (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ

× ௜ߦ∂∂ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ) + ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଶݓۦ|ଵݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଶݓۦ|ଵݓۦ +  .  (ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ|෡ܪ|ଶݖۦ|ଵݖۦ|ଵݓۦ|ଶݓۦ

(3-45)

To express Equation (3-45), it is easier way to obtain the next element generally as 

௜ߦ߲߲   ۧ′ଶݓ|ۧ′ଵݓ|ۧ′ଶݖ|ۧ′ଵݖ|෡ܪ|ଵݖۦ|ଶݖۦ|ଵݓۦ|ଶݓۦ

= − 12 ൬ ௜ߦ߲߲ ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ଶ′ۧ൰ݓ|ଶݓۦ +ۧ′ଵݖ|∆|ଵݖۦۧ′ଶݖ|ଶݖۦ) − (ۧ′ଶݖ|∆|ଶݖۦۧ′ଵݖ|ଵݖۦ 12݉௣ ൬ ௜ߦ߲߲ ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ + ۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲ ଶ′ۧ൰ݖ|ଶݖۦ +ۧ′ଵݓ|∆|ଵݓۦۧ′ଶݓ|ଶݓۦ) − (ۧ′ଶݓ|∆|ଶݓۦۧ′ଵݓ|ଵݓۦ ൬ ௜ߦ߲߲ ۧ′ଶݖ|ଶݖۦۧ′ଶݓ|ଶݓۦ + ۧ′ଶݓ|ଶݓۦ ௜ߦ߲߲ ଶ′ۧ൰ݖ|ଶݖۦ |ଵݖۦ|ଵݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଵݓ|ۧ′ଵݖ|

− ൬ ௜ߦ߲߲ ۧ′ଵݖ|ଵݖۦۧ′ଶݓ|ଶݓۦ + ۧ′ଶݓ|ଶݓۦ ௜ߦ߲߲ ଵ′ۧ൰ݖ|ଵݖۦ |ଶݖۦ|ଵݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଵݓ|ۧ′ଶݖ|

− ൬ ௜ߦ߲߲ ۧ′ଶݖ|ଶݖۦۧ′ଵݓ|ଵݓۦ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ଶ′ۧ൰ݖ|ଶݖۦ |ଵݖۦ|ଶݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଶݓ|ۧ′ଵݖ|

− ൬ ௜ߦ߲߲ ۧ′ଵݖ|ଵݖۦۧ′ଵݓ|ଵݓۦ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ଵ′ۧ൰ݖ|ଵݖۦ |ଶݖۦ|ଶݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଶݓ|ۧ′ଶݖ|

(3-46)
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+ ൬ ௜ߦ߲߲ ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ
+ ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ଶ′ۧ൰ݓ|ଶݓۦ |ଵݖۦ|ଶݖۦ ଵݎ|1 − |ଶݎ  ۧ′ଶݖ|ۧ′ଵݖ|

+ ൬ ௜ߦ߲߲ ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ + ۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲ ଶ′ۧ൰ݖ|ଶݖۦ |ଵݓۦ|ଶݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଶݓ|ۧ′ଵݓ|

+ ൬ ௜ߦ߲߲ ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ଶ′ۧ൰ݓ|ଶݓۦ ݎ|ଵݖۦۧ′ଶݖ|ଶݖۦ) ∙ +ۧ′ଵݖ|ܧ ݎ|ଶݖۦۧ′ଵݖ|ଵݖۦ ∙ − (ۧ′ଶݖ|ܧ ൬ ௜ߦ߲߲ ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ + ۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲ ଶ′ۧ൰ݖ|ଶݖۦ ݎ|ଵݓۦۧ′ଶݓ|ଶݓۦ) ∙ +ۧ′ଵݓ|ܧ ݎ|ଶݓۦۧ′ଵݓ|ଵݓۦ ∙ − (ۧ′ଶݓ|ܧ 12 ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ ൬ ௜ߦ߲߲ ۧ′ଵݖ|∆|ଵݖۦۧ′ଶݖ|ଶݖۦ + ۧ′ଶݖ|ଶݖۦ ௜ߦ߲߲ ۧ′ଵݖ|∆|ଵݖۦ
+ ௜ߦ߲߲ ۧ′ଶݖ|∆|ଶݖۦۧ′ଵݖ|ଵݖۦ + ۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲  ଶ′ۧ൰ݖ|∆|ଶݖۦ

− 12݉௣ ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ ൬ ௜ߦ߲߲ ۧ′ଵݓ|∆|ଵݓۦۧ′ଶݓ|ଶݓۦ + ۧ′ଶݓ|ଶݓۦ ௜ߦ߲߲ ۧ′ଵݓ|∆|ଵݓۦ
+ ௜ߦ߲߲ ۧ′ଶݓ|∆|ଶݓۦۧ′ଵݓ|ଵݓۦ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲  ଶ′ۧ൰ݓ|∆|ଶݓۦ

ۧ′ଶݖ|ଶݖۦۧ′ଶݓ|ଶݓۦ− ௜ߦ߲߲ |ଵݖۦ|ଵݓۦ ଵݎ|1 − |ଶݎ ۧ′ଵݓ|ۧ′ଵݖ|
− ۧ′ଵݖ|ଵݖۦۧ′ଶݓ|ଶݓۦ ௜ߦ߲߲ |ଶݖۦ|ଵݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଵݓ|ۧ′ଶݖ|

ۧ′ଶݖ|ଶݖۦۧ′ଵݓ|ଵݓۦ− ௜ߦ߲߲ |ଵݖۦ|ଶݓۦ ଵݎ|1 − |ଶݎ ۧ′ଶݓ|ۧ′ଵݖ|
− ۧ′ଵݖ|ଵݖۦۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ |ଶݖۦ|ଶݓۦ ଵݎ|1 − |ଶݎ  ۧ′ଶݓ|ۧ′ଶݖ|

ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ+ ௜ߦ߲߲ |ଵݖۦ|ଶݖۦ ଵݎ|1 − |ଶݎ ۧ′ଶݖ|ۧ′ଵݖ|
+ ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲ |ଵݓۦ|ଶݓۦ ଵݎ|1 − |ଶݎ  .  ۧ′ଶݓ|ۧ′ଵݓ|

ۧ′ଶݓ|ଶݓۦۧ′ଵݓ|ଵݓۦ+ ൬ ௜ߦ߲߲ ݎ|ଵݖۦۧ′ଶݖ|ଶݖۦ ∙ ۧ′ଵݖ|ܧ + ۧ′ଶݖ|ଶݖۦ ௜ߦ߲߲ ݎ|ଵݖۦ ∙ ۧ′ଵݖ|ܧ
+ ௜ߦ߲߲ ݎ|ଶݖۦۧ′ଵݖ|ଵݖۦ ∙ ۧ′ଶݖ|ܧ + ۧ′ଵݖ|ଵݖۦ ௜ߦ߲߲ ݎ|ଶݖۦ ∙  ଶ′ۧ൰ݖ|ܧ
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ۧ′ଶݖ|ଶݖۦۧ′ଵݖ|ଵݖۦ− ൬ ௜ߦ߲߲ ݎ|ଵݓۦۧ′ଶݓ|ଶݓۦ ∙ ۧ′ଵݓ|ܧ + ۧ′ଶݓ|ଶݓۦ ௜ߦ߲߲ ݎ|ଵݓۦ ∙ ۧ′ଵݓ|ܧ
+ ௜ߦ߲߲ ݎ|ଶݓۦۧ′ଵݓ|ଵݓۦ ∙ ۧ′ଶݓ|ܧ + ۧ′ଵݓ|ଵݓۦ ௜ߦ߲߲ ݎ|ଶݓۦ ∙  ଶ′ۧ൰ݓ|ܧ

Then we need to obtain further details of differential by ߦ௜  and it is shown in the next 

section. 

 

3.3.1. Differential by Gaussian label ࢞࢏ࢍ  

3.3.1.1. Overlap integral 

      From differential of Equation (3-23), 

 ߲߲݃௫௜ ݆ۧ|݅ۦ = ∗௜ߤ ߲߲ܵ݃௫௜ ௝ߤ , (3-47)

and term ߲ܵ ߲݃௫௜⁄  is obtained putting ܯ ×  matrix A, B as ܯ

 ߲߲ܵ݃௫௜ = ܣ + ܤ , (3-48)

where, 

௠௡(ܣ)  = ቐܩۦ௠|ܩ௡ۧ ቆ ௡ߛ − ௠ߛ)௠ߛ + (௡ߛ ݃௫௡ + 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ݃௫௠∗ − 12 ݃௫௡∗ቇ (when ݊ = ݅)0 (when ݊ ≠ ݅)   , (3-49)

௠௡(ܤ)  = ൝ܩۦ௠|ܩ௡ۧ ൬− 12 ݃௫௠∗൰ (when ݉ = ݅)0 (when ݉ ≠ ݅) . (3-50)

In a similar way, ߲ܵ ߲݃௫௜ ∗⁄  is obtained with ܯ ×  matrix C, D as ܯ

 ߲߲ܵ݃௫௜ ∗ = ܥ + (51-3) ܦ

where, 

௠௡(ܥ) = ൝ܩۦ௠|ܩ௡ۧ ൬− 12 ݃௫௡൰ (when ݊ = ݅)0 (when ݊ ≠ ݅) , (3-52)

௠௡(ܦ) = ቐܩۦ௠|ܩ௡ۧ ቆ ௠ߛ − ௠ߛ)௡ߛ + (௡ߛ ݃௫௠∗ + 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ݃௫௡ − 12 ݃௫௠ቇ (when ݉ = ݅)0 (when ݉ ≠ ݅)   . (3-53)
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3.3.1.2. Kinetic integral 

      Differential of ܭ is formulated with Hadamard product operator ∘  from the 

product rule as 

௫௜߲݃ܭ߲  = ߲߲ܵ݃௫௜ ∘ ܴ + ܵ ∘ ߲ܴ߲݃௫௜  (3-54)

where, 

ቆ ߲ܴ߲݃௫௜ ቇ௠௡ = ቐ ௠ߛ)௡ߛ௠ߛ2 + (௡ߛ ቊ ௠ߛ)௠ߛ2 + (௡ߛ ݃௫௡ − 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ݃௫௠∗ቋ (when ݊ = ݅)0 (when ݊ ≠ ݅)   , (3-55)

ቆ ߲ܴ߲݃௫௜ ∗ቇ௠௡ = ቐ− ௠ߛ)௠ߛ௡ߛ௡ඥߛ2 + (௡ߛ ቊ ௠ߛ)௠ߛ2 + (௡ߛ ݃௫௡ − 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ݃௫௠∗ቋ (when ݉ = ݅)0 (when ݉ ≠ ݅)   . (3-56)

 

3.3.1.3. Electric field integral 

      Differential of L is expressed in similar way with K as 

௫௜߲݃ܮ߲  = ߲߲ܵ݃௫௜ ∘ ෩ܰ + ܵ ∘ ߲ ෩߲ܰ݃௫௜  (3-57)

where, 

 ቆ ߲ ෩߲ܰ݃௫௜ ቇ௠௡ = ቐ ඥ2ߛ௡(ߛ௠ + (௡ߛ ௫ܧ (when ݊ = ݅)0 (when ݊ ≠ ݅) , (3-58)

 

3.3.1.4. Coulomb integral 

      Differential of C is derived from Equation (3-38) as 

௫௧߲݃ܥ߲  = ߲߲ܵ݃௫௧ ∘௠௡ ൫ܵ ∘௜௝ ∷ܲ௜௝൯௠௡∷ + ܵ ∘௠௡ ൬ ߲߲ܵ݃௫௧ ∘௜௝ ∷ܲ௜௝൰௠௡∷ 

+ܵ ∘௠௡ ൭ܵ ∘௜௝ ൬ ௫௧߲݃ߏ߲ ൰∷௜௝൱௠௡∷ . (3-59)

First we obtain ߲ܲ ߲݃௫௧⁄ . Putting ߛ௔௟௟ as 

௔௟௟ߛ  = ቀߛ௠2 + ௡2ߛ ቁ ቀߛ௜2 + ௝2ߛ ቁቀߛ௠2 + ௡2ߛ + ௜2ߛ + ௝2ߛ ቁ , (3-60)
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߲ܲ ߲݃௫௜⁄  is expressed from Equation (3-34) as 

 ߲߲݃௫௧ ൭ ௠௡௜௝ߩ1  ௠௡௜௝൯൱ߩ௔௟௟ߛ൫ඥ݂ݎ݁

= ௠௡௜௝ߩ1 ߲߲݃௫௧ ௠௡௜௝൯ߩ௔௟௟ߛ൫ඥ݂ݎ݁ + ௠௡௜௝൯ߩ௔௟௟ߛ൫ඥ݂ݎ݁ ߲߲݃௫௧ ௠௡௜௝  , (3-61)ߩ1

and ߲߲݃௫௧ ௠௡௜௝൯ߩ௔௟௟ߛ൫ඥ݂ݎ݁ = ߨ√2 ௠௡௜௝ଶ൯ߩ௔௟௟ߛ−൫݌ݔ݁ ߲߲݃௫௧ ඥߛ௔௟௟ߩ௠௡௜௝  , (3-62)߲߲݃௫௧ ௠௡௜௝ߩ = ߲߲݃௫௜ ට ෤݊௠௡௜௝ଶ = 12 1ට ෤݊௠௡௜௝ଶ ߲ ෤݊௠௡௜௝ଶ߲݃௫௧ , (3-63)

߲ ෤݊௠௡௜௝ଶ߲݃௫௧ = 2 ෤݊௫௠௡௜௝ ߲ ෤݊௫௠௡௜௝߲݃௫௧ , (3-64)

∴ ߲߲݃௫௧ ௠௡௜௝ߩ = ෤݊௫௠௡௜௝ߩ௠௡௜௝ ߲ ෤݊௫௠௡௜௝߲݃௫௧ , (3-65)

∴ ߲߲݃௫௧ ௠௡௜௝൯ߩ௔௟௟ߛ൫ඥ݂ݎ݁ = ߨ√2 ඥߛ௔௟௟ߩ௠௡௜௝ଶ ௠௡௜௝ଶ൯ߩ௔௟௟ߛ−൫݌ݔ݁ ෤݊௫௠௡௜௝ ߲ ෤݊௫௠௡௜௝߲݃௫௧   . (3-66)

By the way 

 ߲߲݃௫௧ ௠௡௜௝ߩ1 = − ௠௡௜௝ଶߩ1 ߲߲݃௫௧ ௠௡௜௝ߩ = − ෤݊௫௠௡௜௝ߩ௠௡௜௝ଷ ߲ ෤݊௫௠௡௜௝߲݃௫௧   , (3-67)

and if we put (ܨ)௠௡௜௝ = ߨ√2 ඥߛ௔௟௟ߩ௠௡௜௝ଶ ௠௡௜௝ଶ൯ߩ௔௟௟ߛ−൫݌ݔ݁ − ௠௡௜௝ଷߩ1 ௠௡௜௝൯  , (3-68)ߩ௔௟௟ߛ൫ඥ݂ݎ݁

(ܰ)௠௡௜௝ = ෤݊௫௠௡௜௝ ߲ ෤݊௫௠௡௜௝߲݃௫௧ , (3-69)

then from Equations (3-61), (3-68) and (3-69), 

௫௧߲݃ߏ߲  = ܨ ∘ ܰ , (3-70)

where, 
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(ܰ)௠௡௜௝ =
ەۖۖۖ
۔ۖ
ۓۖۖ ෤݊௫௠௡௜௝ඥ2ߛ௡(ߛ௠ + (௡ߛ (when ݊ = −(ݐ ෤݊௫௠௡௜௝ඥ2ߛ௝൫ߛ௜ + ௝൯ߛ  (when ݆ = (ݐ

෤݊௫௠௡௜௝ ቈ ඥ2ߛ௧(ߛ௠ + (௧ߛ − ඥ2ߛ௧(ߛ௜ + ௧)቉ߛ (when ݊ = ݆ = 0(ݐ (the others)
 (3-71)

Differential by ݃௫௜ ∗ is obtained in similar way putting (ܰ)௠௡௜௝ as 

 (ܰ)௠௡௜௝ = ෤݊௫௠௡௜௝ ߲ ෤݊௫௠௡௜௝߲݃௫௧ ∗ , (3-72)

where,  

 

(ܰ)௠௡௜௝ =
ەۖۖۖ
۔ۖ
ۓۖۖ ෤݊௫௠௡௜௝ඥ2ߛ௠(ߛ௠ + (௡ߛ (when ݉ = −(ݐ ෤݊௫௠௡௜௝ඥ2ߛ௜൫ߛ௜ + ௝൯ߛ  (when ݅ = (ݐ

෤݊௫௠௡௜௝ ቈ ඥ2ߛ௧(ߛ௠ + (௧ߛ − ඥ2ߛ௧(ߛ௜ + ௧)቉ߛ (when ݉ = ݅ = 0(ݐ (the others)
  . (3-73)

 

3.3.2. Differential by orbital coefficients 

      Next, differential by orbital coefficient ߤ௟௜ is obtained. For different particle 

identifier ݖ௙ and ݖௗ, each differential by l-th elements of ߤ ௭೏  and ߤ ௭೑∗ is derived 

as ߲߲ߤ௟௭೏ ൻݖ௙หݖௗൿ = ߤ ௭೑∗ܵ ߤ߲ ௭೏߲ߤ௟௭೏ , (3-74)

∗௟௭೑ߤ߲߲ ൻݖ௙หݖௗൿ = ߤ߲ ௭೑∗߲ߤ௟௭೑∗ ߤܵ ௭೏ , (3-75)

௟௭೏ߤ߲߲ ൻݖ௙ห∆|ݖௗۧ = ߤ ௭೑∗ܭ ߤ߲ ௭೏߲ߤ௟௭೏ , (3-76)

∗௟௭೑ߤ߲߲ ൻݖ௙ห∆|ݖௗۧ = ߤ߲ ௭೑∗߲ߤ௟௭೑∗ ߤܭ ௭೏ , (3-77)
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௟௭೏ߤ߲߲ ൻݖ௙หݎ ∙ ௗۧݖ|ܧ = ߤ ௭೑∗ܮ ߤ߲ ௭೏߲ߤ௟௭೏ , (3-78)

∗௟௭೑ߤ߲߲ ൻݖ௙หݎ ∙ ௗۧݖ|ܧ = ߤ߲ ௭೑∗߲ߤ௟௭೑∗ ߤܮ ௭೏ , (3-79)

௟௭೏ᇱߤ߲߲ ௬หݖ௫|ൻݖۦ ଵݎ|1 − |ଶݎ ＝ۧ′௭ݖ|ۧ′ௗݖ| ෍ ൭ߤ௫௭ᇱ ∘௠௡ ቆ߲ߤ௬ௗᇱ߲ߤ௟௭೏ᇱ ∘௜௝ ௜௝ቇ௠௡∷൱௠௡௜௝௠,௡,௜,௝∷ܥ   , (3-80)

where, 

௟௭೏ᇱߤ߲߲  ௬ௗᇱߤ = ቆ ௟௭೏ᇱߤ߲߲ ߤ ௭೏ᇱߤ ௭೤∗ቇ௧ , (3-81)

In similar ways, ߲߲ߤ௟௭೏ᇱ ௬หݖ௫|ൻݖۦ ଵݎ|1 − |ଶݎ ＝ۧ′ௗݖ|ۧ′௭ݖ| ෍ ቆ߲ߤ௫ௗᇱ߲ߤ௟௭೏ᇱ ∘௠௡ ൫ߤ௬௭ᇱ ∘௜௝ ௜௝൯௠௡∷ቇ௠௡௜௝௠,௡,௜,௝∷ܥ   , (3-82)

௟௭೤ߤ߲߲ ∗ ௬หݖ௫|ൻݖۦ ଵݎ|1 − |ଶݎ ＝ۧ′௭ݖ|ۧ′ௗݖ| ෍ ቌߤ௫௭ᇱ ∘௠௡ ൭߲ߤ௬ௗᇱ߲ߤ௟௭೤ ∗ ∘௜௝ ௜௝൱௠௡∷ቍ௠௡௜௝௠,௡,௜,௝∷ܥ   , (3-83)

௟௭ೣߤ߲߲ ∗ ௬หݖ௫|ൻݖۦ ଵݎ|1 − |ଶݎ ＝ۧ′ௗݖ|ۧ′௭ݖ| ෍ ൭߲ߤ௫ௗᇱ߲ߤ௟௭ೣ ∗ ∘௠௡ ൫ߤ௬௭ᇱ ∘௜௝ ௜௝൯௠௡∷൱௠௡௜௝௠,௡,௜,௝∷ܥ   . (3-84)

 

3.4. Derivation of ࢐࢏ࢉ 
      To solve equations of motion Equation (2-11), one needs to derive ܿ௜௝ and ∂ܪ ⁄௜ߦ∂ . When |߰ۧ in Equation (2-19) is put as 

 |߰ۧ = ۧܤ|ۧܣ| , (3-85)

ۧܣ|  = ଶۧݖ|ଵۧݖ| + ଵۧݖ|ଶۧݖ| , (3-86)

ۧܤ|  = ଶۧݓ|ଵۧݓ| + ଵۧݓ|ଶۧݓ| , (3-87)

then, for a variable ߦ௜  in the wave function |߰ۧ, 

 ർ߰ฬ ௜඀ߦ∂߰∂ = ௜ߦ∂ۧ(௜ߦ)߰|(′௜ߦ)߰ۦ∂ ቤక೔ᇱୀక೔  (3-88)
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 = { ௜ߦ∂∂ +ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ||′ଵݖۦ|′ଶݖۦ|′ଵݓۦ|′ଶݓۦ)4 +ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ||′ଶݖۦ|′ଵݖۦ|′ଵݓۦ|′ଶݓۦ+ ଶۧݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ||′ଵݖۦ|′ଶݖۦ|′ଶݓۦ|′ଵݓۦ   ଶۧ)}|క೔ᇱୀక೔ݓ|ଵۧݓ|ଶۧݖ|ଵۧݖ||′ଶݖۦ|′ଵݖۦ|′ଶݓۦ|′ଵݓۦ
(3-89)

 = 4 ௜ߦ∂∂ ଶۧݖ|′ଶݖۦଵۧݖ|′ଵݖۦ)} + ଶۧݓ|′ଶݓۦଵۧݓ|′ଵݓۦ)(ଶۧݖ|′ଵݖۦଵۧݖ|′ଶݖۦ
+ ଶۧ)}ฬక೔ᇱୀక೔ݓ|′ଵݓۦଵۧݓ|′ଶݓۦ , (3-90)

where, 

ۧ(′௜ߦ)߰|  = ۧ′ܤ|ۧ′ܣ| , (3-91)

ۧ′ܣ|  = ۧ′ଶݖ|ۧ′ଵݖ| + ۧ′ଵݖ|ۧ′ଶݖ| , (3-92)

ۧ′ܤ|  = ۧ′ଶݓ|ۧ′ଵݓ| + ۧ′ଵݓ|ۧ′ଶݓ| , (3-93)

and ߰(ߦ௜′) means the wave function ߰ where ߦ௜  is replaced by ߦ௜′such as 

(௜ߦ)߰  = ,ଵߦ)߰ ,ଶߦ … , ,௜ߦ … , (௡ߦ , (′௜ߦ)߰ = ,ଵߦ)߰ ,ଶߦ … , ,௜ᇱߦ … , ௡)  . (3-94)ߦ

By distinguishing ߦ௜  and ߦ௜’, it is able to express Equation (3-88) in simple form. In 

similar ways, |ݖଵ′ۧ, |ݖଶ′ۧ, |ݓଵ′ۧ, and |ݓଶ′ۧ  mean ߦ௜  in them is replaced by ߦ௜′ 
respectively. 

 If the label of the Gaussian basis 

௧௫ݖ  = ௫ݍ௧ଵଶߛ + ݅ℏିଵߛ௧ିଵଶ݌௫√2  (3-95)

is selected as one of time-dependent variables in the wave function, using  

 ቆ ߲ ശ߲ܵݖ௧௫ቇ௠௡อ௭೟ೣᇱୀ௭೟ೣ
= ቐܩۦ௠|ܩ௡ۧ ቆ ௡ߛ − ௠ߛ)௠ߛ + (௡ߛ ௡௫ݖ + 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ௠∗௫ݖ − 12 ௡∗௫ቇݖ (when ݊ = 0(ݐ (when ݊ ≠ (ݐ  

(3-96)

 ቆ ߲ Ԧ߲ܵݖ௧௫ቇ௠௡อ௭೟ೣᇱୀ௭೟ೣ = ൝ܩۦ௠|ܩ௡ۧ ൬− 12 ௠∗௫൰ݖ (when ݉ = 0(ݐ (when ݉ ≠ (ݐ  (3-97)
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 ሙܵ = ቆ ߲ ശ߲ܵݖ௧௫ቇ௠௡อ௭೟ೣᇱୀ௭೟ೣ − ቆ ߲ Ԧ߲ܵݖ௧௫ቇ௠௡อ௭೟ೣᇱୀ௭೟ೣ (3-98)

it can be derived as 

 ൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁ =  ௧௫ܩ

= 4{൫ߤ ௭భ ∗ ሙܵߤ ௭భݖۦଶ|ݖଶۧ + ߤଵۧݖ|ଵݖۦ ௭మ∗ ሙܵߤ ௭మ + ߤ ௭మ ∗ ሙܵߤ ௭భݖۦଵ|ݖଶۧ+ ߤଵۧݖ|ଶݖۦ ௭భ ∗ ሙܵߤ ௭మ൯(ݓۦଵ|ݓଵۧݓۦଶ|ݓଶۧ + ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)+ (ଶۧݓ|ଵݓۦଵۧݓ|ଶݓۦ + ௪భߤଶۧ)൫ݖ|ଵݖۦଵۧݖ|ଶݖۦ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ + ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ+ ௪మߤ ∗ ሙܵߤ௪భݓۦଵ|ݓଶۧ + ௪భߤଵۧݓ|ଶݓۦ ∗ ሙܵߤ௪మ൯} 

(3-99)

      If the coefficient of the orbitals ߤ௟௭భ is chosen as the variable, then 

 ൽ߰ቤ ௟௭భඁߤ∂߰∂ − ൽ ௟௭భߤ∂߰∂ ቤ߰ඁ = ൽ߰ቤ ௟௭భඁߤ∂߰∂ = ௧ܷ௭భ (3-100)

 = 4 ቆߤ ௭భ∗ܵ ߤ߲ ௭భ߲ߤ௟௭భ ଶۧݖ|ଶݖۦ + ߤଶۧݖ|ଵݖۦ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ௟௭భቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଶۧݓ|ଵݓۦଵۧݓ|ଶݓۦ
(3-101)

In the same way, for the other particles, 

 ൽ߰ቤ ௟௭భඁߤ∂߰∂ = 4 ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ߲ߤ௟௭భ ଶۧݖ|ଶݖۦ + ߤଶۧݖ|ଵݖۦ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ௟௭భ ቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଶۧݓ|ଵݓۦଵۧݓ|ଶݓۦ

(3-102)

 ൽ߰ቤ ௟௭మඁߤ∂߰∂ = 4 ቆݖۦଵ|ݖଵۧߤ ௭మ ∗ܵ ߤ߲ ௭మ߲ߤ௟௭మ + ߤ ௭భ ∗ܵ ߤ߲ ௭మ߲ߤ௟௭మ ଵۧቇݖ|ଶݖۦ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଶۧݓ|ଵݓۦଵۧݓ|ଶݓۦ

(3-103)

 ൽ߰ቤ ௟௪భඁߤ∂߰∂ = ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)4 + (ଶۧݖ|ଵݖۦଵۧݖ|ଶݖۦ ቆߤ௪భ ∗ܵ ௟௪భߤ௪భ߲ߤ߲ ଶۧݓ|ଶݓۦ
+ ௪మߤଶۧݓ|ଵݓۦ ∗ܵ ௟௪భߤ௪భ߲ߤ߲ ቇ 

(3-104)

 ൽ߰ቤ ௟௪భඁߤ∂߰∂ = ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)4 + (ଶۧݖ|ଵݖۦଵۧݖ|ଶݖۦ ቆݓۦଵ|ݓଵۧߤ௪మ ∗ܵ ௟௪మߤ௪మ߲ߤ߲
+ ௪భߤ ∗ܵ ௟௪మߤ௪మ߲ߤ߲  ଵۧቇݓ|ଶݓۦ

(3-105)
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A differential of ௝ܼ by a conjugate variable is invariable from (2-21) like as 

 ቊ ݅ℏ2߰ۦ|߰ۧ ቆൽ߰ቤ ௝ඁߦ∂߰∂ − ൽ ∗௝ߦ∂߰∂ ቤ߰ඁቇቋ∗ = −݅ℏ2߰ۦ|߰ۧ ቆൽ∂߰∂ߦ௝ ቤ߰ඁ − ൽ߰ቤ  ௝∗ඁቇ (3-106)ߦ∂߰∂

 = ݅ℏ2߰ۦ|߰ۧ ቆൽ߰ቤ ඁ∗௝ߦ∂߰∂ − ൽ∂߰∂ߦ௝ ቤ߰ඁቇ . (3-107) 

      ௝ܼ for the variables of the label of the Gaussian basis or the coefficient of the 

orbitals can be derived analytically from ܩ௧௫ or ௧ܷ௜. 
 

3.4.1. Differential of ࢚࢞ࡳ  

      Here we put 

 ሙܵ൫ݖ௧௫൯ = ܵ ∘ ௧௫൯ݖෘ൫ܩ = ܵ ∘ ቀܩശ൫ݖ௧௫൯ − ௧௫൯ቁ (3-108)ݖԦ൫ܩ

௧௫൯ݖശ൫ܩ  = ቐቆ ௡ߛ − ௠ߛ)௠ߛ + (௡ߛ ௡௫ݖ + 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ ௠∗௫ݖ − 12 ௡∗௫ቇݖ (when ݊ = 0(ݐ (when ݊ ≠ (ݐ  (3-109)

௧௫൯ݖԦ൫ܩ  = ൝൬− 12 ௠∗௫൰ݖ (when ݉ = 0(ݐ (when ݉ ≠ (ݐ  (3-110)

 

3.4.1.1. Differential by ࢚࢞ࢠ  

      First, the differential of ܩ௧௫ by ݖ௧௫ is considered. 

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௧௫ = ௧௫ݖ߲߲ܵ ∘ ௧௫൯ݖෘ൫ܩ + ܵ ∘ ௧௫ݖ௧௫൯߲ݖෘ൫ܩ߲  (3-111)

௧௫ݖ௧௫൯߲ݖෘ൫ܩ߲  = ௧௫ݖ௧௫൯߲ݖശ൫ܩ߲ − ௧௫ݖ௧௫൯߲ݖԦ൫ܩ߲  (3-112)

 ൭߲ܩശ൫ݖ௧௫൯߲ݖ௧௫ ൱௠௡ = ൝ߛ௡ − ௠ߛ௠ߛ + ௡ߛ (when ݊ = 0(ݐ (when ݊ ≠ (ݐ  (3-113)

 ൭߲ܩԦ൫ݖ௧௫൯߲ݖ௧௫ ൱௠௡ = 0 (3-114)

 ∴ ௧௫ݖ௧௫൯߲ݖෘ൫ܩ߲ = ௧௫ݖ௧௫൯߲ݖശ൫ܩ߲  (3-115)

and 
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௧௫ݖ∂∂  ቆൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ሙܵߤ ௭భߤ ௭మ∗ ௧௫ݖ߲߲ܵ ߤ ௭మ + ߤ ௭భ∗ ௧௫ݖ߲߲ܵ ߤ ௭భߤ ௭మ∗ ሙܵߤ ௭మ
+ ߤ ௭మ ∗ ሙܵߤ ௭భߤ ௭భ∗ ௧௫ݖ߲߲ܵ ߤ ௭మ
+ ߤ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ ௭భߤ௭భ ∗ ሙܵߤ ௭మቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆߤ ௭భ ∗ ߲ ሙ߲ܵݖ௧௫ ߤ ௭భݖۦଶ|ݖଶۧ + ߤଵۧݖ|ଵݖۦ ௭మ∗ ߲ ሙ߲ܵݖ௧௫ ߤ ௭మ + ߤ ௭మ ∗ ߲ ሙ߲ܵݖ௧௫ ߤ ௭భݖۦଵ|ݖଶۧ

+ ߤଵۧݖ|ଶݖۦ ௭భ ∗ ߲ ሙ߲ܵݖ௧௫ ߤ ௭మቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ߤଶۧ) +4൫ݓ|ଵݓۦଵۧݓ|ଶݓۦ ௭భ∗ ሙܵߤ ௭భݖۦଶ|ݖଶۧ + ߤଵۧݖ|ଵݖۦ ௭మ ∗ ሙܵߤ ௭మ + ߤ ௭మ∗ ሙܵߤ ௭భݖۦଵ|ݖଶۧ+ ߤଵۧݖ|ଶݖۦ ௭భ ∗ ሙܵߤ௭మ൯ ቆߤ௪భ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଶݓۦ௪భߤ
+ ௪మߤଵۧݓ|ଵݓۦ ∗ ௧௫ݖ߲߲ܵ ௪మߤ + ௪మߤ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଵݓۦ௪భߤ
+ ௪భߤଵۧݓ|ଶݓۦ ∗ ௧௫ݖ߲߲ܵ  ௪మቇߤ

ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)4+ + (ଶۧݖ|ଵݖۦଵۧݖ|ଶݖۦ ቆߤ௪భ ∗ ሙܵߤ௪భߤ௪మ ∗ ௧௫ݖ߲߲ܵ ௪మߤ
+ ௪భߤ ∗ ௧௫ݖ߲߲ܵ ௪మߤ௪భߤ ∗ ሙܵߤ௪మ + ௪మߤ ∗ ሙܵߤ௪భߤ௪భ ∗ ௧௫ݖ߲߲ܵ ௪మߤ
+ ௪మߤ ∗ ௧௫ݖ߲߲ܵ ௪భߤ௪భߤ ∗ ሙܵߤ௪మቇ 

ଶۧݖ|ଶݖۦଵۧݖ|ଵݖۦ)4+ + (ଶۧݖ|ଵݖۦଵۧݖ|ଶݖۦ ቆߤ௪భ ∗ ߲ ሙ߲ܵݖ௧௫ ଶۧݓ|ଶݓۦ௪భߤ
+ ௪మߤଵۧݓ|ଵݓۦ ∗ ߲ ሙ߲ܵݖ௧௫ ௪మߤ + ௪మߤ ∗ ߲ ሙ߲ܵݖ௧௫ ଶۧݓ|ଵݓۦ௪భߤ
+ ௪భߤଵۧݓ|ଶݓۦ ∗ ߲ ሙ߲ܵݖ௧௫  ௪మቇߤ

(3-116)
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+4൫ߤ௪భ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ + ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ + ௪మߤ ∗ ሙܵߤ௪భݓۦଵ|ݓଶۧ+ ௪భߤଵۧݓ|ଶݓۦ ∗ ሙܵߤ௪మ൯ ቆߤ ௭భ ∗ ௧௫ݖ߲߲ܵ ߤ ௭భݖۦଶ|ݖଶۧ + ߤଵۧݖ|ଵݖۦ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ ௭మ + ߤ ௭మ∗ ௧௫ݖ߲߲ܵ ߤ ௭భݖۦଵ|ݖଶۧ
+ ߤଵۧݖ|ଶݖۦ ௭భ∗ ௧௫ݖ߲߲ܵ ߤ ௭మቇ 

 

3.4.1.2. Differential with other z 

      The differential of ܩ௧௫ by ݖ௧௬ which belongs to axis y instead of axis x, ݖ௦௫ 

and ݖ௦௬ which belong to s instead of axis t are considered here. 

௧௬ݖ௧௫൯߲ݖෘ൫ܩ߲  = 0 (3-117)

 ∴ ߲ ሙܵ൫ݖ௧௫൯߲ݖ௧௬ = ௧௬ݖ߲߲ܵ ∘ ௧௫൯ (3-118)ݖෘ൫ܩ

In similar ways, 

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௦௫ = ௦௫ݖ߲߲ܵ ∘ ௧௫൯ (3-119)ݖෘ൫ܩ

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௦௬ = ௦௬ݖ߲߲ܵ ∘ ௧௫൯ (3-120)ݖෘ൫ܩ

      Then differential of ܩ௧௫ are similar in Equation (3-116). 

 

3.4.1.3. Differential by orbital coefficients 

      The differential of ܩ௧௫ by orbital coefficients ߤ௜ are like as 

ߤ߲߲  ௭భ ௟ ቆൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁቇ (3-121)
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= 4 ቆߤ ௭భ ∗ ሙܵ ߤ߲ ௭భ߲ߤ ௭భ ௟ ଶۧݖ|ଶݖۦ + ߤ ௭భ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௟ ߤ ௭మ∗ ሙܵߤ ௭మ + ߤଶۧݖ|ଵݖۦ ௭మ ∗ ሙܵ ߤ߲ ௭భ߲ߤ ௭భ ௟+ ߤ ௭భ ∗ ሙܵߤ ௭మߤ ௭మ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ௟ቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ଵۧ +4ݓ|ଶݓۦ(ଶۧݓ|ଵݓۦ ቆߤ ௭భ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௟ ଶۧݖ|ଶݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ௟ ଶۧቇݖ|ଵݖۦ ൫ߤ௪భ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ+ ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ + ௪మߤଶۧݓ|ଵݓۦ ∗ ሙܵߤ௪భ+ ௪భߤ ∗ ሙܵߤ௪మݓۦଶ|ݓଵۧ൯ 

ߤ߲߲  ௭మ ௟ ቆൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ሙܵߤ ௭భߤ ௭మ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ௟ + ߤଵۧݖ|ଵݖۦ ௭మ ∗ ሙܵ ߤ߲ ௭మ߲ߤ ௭మ ௟ + ߤ ௭భ ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ ௟ ߤ ௭మ∗ ሙܵߤ ௭భ
+ ߤ ௭భ ∗ ሙܵ ߤ߲ ௭మ߲ߤ ௭మ ௟ ଵۧቇݖ|ଶݖۦ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ଵۧ) +4ݓ|ଶݓۦଶۧݓ|ଵݓۦ ቆݖۦଵ|ݖଵۧߤ ௭మ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ௟ + ߤ ௭భ ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ ௟ ଵۧቇݖ|ଶݖۦ ൫ߤ௪భ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ+ ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ + ௪మߤଶۧݓ|ଵݓۦ ∗ ሙܵߤ௪భ+ ௪భߤ ∗ ሙܵߤ௪మݓۦଶ|ݓଵۧ൯ 

(3-122)

For ߤ௪భ and  ߤ௪మ, z and w are permutated in Equation (3-121) and (3-122). 

 

3.4.2. Differential of ࢚࢏ࢁ 
3.4.2.1. Differential by ࢚࢞ࢠ 

      Differential of ௧ܷ௜ is considered in the similar way as 

௧௫ݖ߲߲  ቆൽ߰ቤ ߤ∂߰∂ ௭భ ௟ඁ − ൽ ߤ∂߰∂ ௭భ ௟ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ௧௫ݖ߲߲ܵ ߤ߲ ௭భ∂ߤ ௭భ௟ ଶۧݖ|ଶݖۦ + ߤ ௭భ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ߤ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ ௭మ
+ ߤ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ߲ ௭భ∂ߤ ௭భ௟ ଶۧݖ|ଵݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ߤ ௭భ ∗ ௧௫ݖ߲߲ܵ ߤ ௭మቇ 

(3-123)
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ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) + ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ଶۧݖ|ଶݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟  ଶۧቇݖ|ଵݖۦ

ቆߤ௪భ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଶݓۦ௪భߤ + ௪మߤଵۧݓ|ଵݓۦ ∗ ௧௫ݖ߲߲ܵ ௪మߤ
+ ௪మߤ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଵݓۦ௪భߤ + ௪భߤଵۧݓ|ଶݓۦ ∗ ௧௫ݖ߲߲ܵ  ௪మቇߤ

௧௫ݖ߲߲  ቆൽ߰ቤ ߤ∂߰∂ ௭మ ௟ඁ − ൽ ߤ∂߰∂ ௭మ ௟ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ௧௫ݖ߲߲ܵ ߤ ௭భߤ ௭మ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ௟ + ߤଵۧݖ|ଵݖۦ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟+ ߤ ௭మ ∗ ௧௫ݖ߲߲ܵ ߤ ௭భߤ ௭భ ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ௟ + ߤଵۧݖ|ଶݖۦ ௭భ ∗ ௧௫ݖ߲߲ܵ ߤ߲ ௭మ∂ߤ ௭మ௟ቇ (ݓۦଵ|ݓଵۧݓۦଶ|ݓଶۧ + ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆݖۦଵ|ݖଵۧߤ ௭మ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ + ߤଵۧݖ|ଶݖۦ ௭భ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ቇ 

ቆߤ௪భ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଶݓۦ௪భߤ + ௪మߤଵۧݓ|ଵݓۦ ∗ ௧௫ݖ߲߲ܵ ௪మߤ
+ ௪మߤ ∗ ௧௫ݖ߲߲ܵ ଶۧݓ|ଵݓۦ௪భߤ + ௪భߤଵۧݓ|ଶݓۦ ∗ ௧௫ݖ߲߲ܵ  ௪మቇߤ

(3-124)

For ߤ௪భ and  ߤ௪మ, z and w are permutated in Equations (3-123) and (3-124). 

 

3.4.2.2. Differential by orbital coefficients 

      The differential by orbital coefficients is expressed against different identifiers t, 

s like as 

ߤ߲߲  ௭భ ௧ ൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁ = 0 (3-125)

 = ߤ߲߲ ௭భ௦ ൽ߰ቤ ߤ∂߰∂ ௭భ௧ඁ − ൽ ߤ∂߰∂ ௭భ௧ ቤ߰ඁ (3-126)
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ߤ߲߲  ௭మ ௦ ൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁ 

= 4 ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ߤ ௭మ ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ ௦+ ߤ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ߤ ௭భ ∗ܵ ߤ߲ ௭మ߲ߤ ௭మ ௦ቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଶۧݓ|ଵݓۦଵۧݓ|ଶݓۦ

(3-127)

௪భߤ߲߲  ௦ ൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁ 

= 4 ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ଶۧݖ|ଶݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ௧ ଶۧቇݖ|ଵݖۦ ቆߤ௪భ ∗ܵ ௪భߤ௪భ߲ߤ߲ ௦ ଶۧݓ|ଶݓۦ
+ ௪మߤ ∗ܵ ௪భߤ௪భ߲ߤ߲ ௦  ଶۧቇݓ|ଵݓۦ

(3-128)

௪మߤ߲߲  ௦ ൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁ 

= 4 ቆߤ ௭భ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ଶۧݖ|ଶݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ଶۧቇݖ|ଵݖۦ ቆݓۦଵ|ݓଵۧߤ௪మ ∗ܵ ௪మߤ௪మ߲ߤ߲ ௦+ ௪భߤଵۧݓ|ଶݓۦ ∗ܵ ௪మߤ௪మ߲ߤ߲ ௦ቇ 

(3-129)

Differentials of ௧ܷ௭మ, ௧ܷ௪భ, ௧ܷ௪మ are derived in the similar way. 

 

3.4.3. Differential of ࢚࢞ࡳ by conjugate variables 

3.4.3.1. Differential by ࢠ∗ 
      Next, the differential of ࢚࢞ࡳ by conjugate variables is considered as 

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௧௫∗ = ∗௧௫ݖ߲߲ܵ ∘ ௧௫൯ݖෘ൫ܩ + ܵ ∘ ∗௧௫ݖ௧௫൯߲ݖෘ൫ܩ߲  (3-130)

∗௧௫ݖ௧௫൯߲ݖෘ൫ܩ߲  = ∗௧௫ݖ௧௫൯߲ݖശ൫ܩ߲ − ∗௧௫ݖ௧௫൯߲ݖԦ൫ܩ߲  (3-131)
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൭߲ܩശ൫ݖ௧௫൯߲ݖ௧௫∗ ൱௠௡ = ۔ۖەۖ
ۓ − 12 (when ݊ = ,ݐ ݊ ≠ ݉)2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ − 12 (when ݊ = ݐ = ݉)0 (when ݊ ≠ (ݐ  (3-132)

 ൭߲ܩԦ൫ݖ௧௫൯߲ݖ௧௫∗ ൱௠௡ = ൝− 12 (when ݉ = 0(ݐ (when ݉ ≠ (ݐ  (3-133)

and for other identifiers 

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௧௬∗ = ∗௧௬ݖ߲߲ܵ ∘ ௧௫൯ݖෘ൫ܩ + ܵ ∘ ∗௧௬ݖ௧௫൯߲ݖෘ൫ܩ߲  (3-134)

∗௧௬ݖ௧௫൯߲ݖෘ൫ܩ߲  = 0 (3-135)

 ∴ ߲ ሙܵ൫ݖ௧௫൯߲ݖ௧௬∗ = ∗௧௬ݖ߲߲ܵ ∘ ௧௫൯ (3-136)ݖෘ൫ܩ

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௦௫∗ = ∗௦௫ݖ߲߲ܵ ∘ ௧௫൯ݖෘ൫ܩ + ܵ ∘ ∗௦௫ݖ௧௫൯߲ݖෘ൫ܩ߲  (3-137)

 ൭߲ܩശ൫ݖ௧௫൯߲ݖ௦௫∗ ൱௠௡ = ቐ 2ඥߛ௡ߛ௠(ߛ௠ + (௡ߛ (when ݊ = ,ݐ ݉ = 0(ݏ (when ݊ ≠ (ݐ  (3-138)

 ൭߲ܩԦ൫ݖ௧௫൯߲ݖ௦௫∗ ൱௠௡ = 0 (3-139)

 ߲ ሙܵ൫ݖ௧௫൯߲ݖ௦௬∗ = ∗௦௬ݖ߲߲ܵ ∘ ௧௫൯ (3-140)ݖෘ൫ܩ

Total expression of differential is the same as Equation (3-116). 

 

3.4.3.2. Differential by orbital coefficients 

The differential by orbital coefficients is expressed as 



53  

ߤ߲߲  ௭భ ௟∗ ቆൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁቇ 

= 4 ቆ ߤ߲ ௭భ∗߲ߤ ௭భ ௟∗ ሙܵߤ ௭భݖۦଶ|ݖଶۧ + ߤ߲ ௭భ ߤ߲∗ ௭భ ௟∗ ߤܵ ௭భߤ ௭మ ∗ ሙܵߤ ௭మ + ߤ ௭మ ∗ ሙܵߤ ௭భ ߤ߲ ௭భ∗߲ߤ ௭భ ௟∗ ߤܵ ௭మ
+ ଵۧݖ|ଶݖۦ ߤ߲ ௭భ∗߲ߤ ௭భ ௟∗ ሙܵߤ ௭మቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆ ߤ߲ ௭భ ߤ߲∗ ௭భ௟∗ ߤܵ ௭భݖۦଶ|ݖଶۧ + ଵۧݖ|ଶݖۦ ߤ߲ ௭భ ߤ߲∗ ௭భ ௟∗ ߤܵ ௭మቇ ൫ߤ௪భ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ+ ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ + ௪మߤ ∗ ሙܵߤ௪భݓۦଵ|ݓଶۧ+ ௪భߤଵۧݓ|ଶݓۦ ∗ ሙܵߤ௪మ൯ 

(3-141)

ߤ߲߲  ௭మ ௟∗ ቆൽ߰ቤ ௧௫ඁݖ∂߰∂ − ൽ ௧௫ݖ∂߰∂ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ሙܵߤ ௭భ ߤ߲ ௭మ∗߲ߤ ௭మ ௟∗ ߤܵ ௭మ + ଵۧݖ|ଵݖۦ ߤ߲ ௭మ∗߲ߤ ௭మ ௟∗ ሙܵߤ ௭మ + ߤ߲ ௭మ ߤ߲∗ ௭మ ௟∗ ሙܵߤ ௭భݖۦଵ|ݖଶۧ
+ ߤ߲ ௭మ∗߲ߤ ௭మ ௟∗ ߤܵ ௭భߤ ௭భ∗ ሙܵߤ௭మቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ) ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆݖۦଵ|ݖଵۧ ߤ߲ ௭మ∗߲ߤ ௭మ ௟∗ ߤܵ ௭మ + ߤ߲ ௭మ ߤ߲∗ ௭మ௟∗ ߤܵ ௭భݖۦଵ|ݖଶۧቇ ൫ߤ௪భ ∗ ሙܵߤ௪భݓۦଶ|ݓଶۧ+ ௪మߤଵۧݓ|ଵݓۦ ∗ ሙܵߤ௪మ + ௪మߤ ∗ ሙܵߤ௪భݓۦଵ|ݓଶۧ+ ௪భߤଵۧݓ|ଶݓۦ ∗ ሙܵߤ௪మ൯ 

(3-142)

For ߤ௪భ and  ߤ௪మ, z and w are permutated in Equations (3-141) and (3-142). 

 

3.4.4. Differential of ࢚࢏ࢁ by orbital coefficients 

3.4.4.1. Differential by ࢚࢞ࢠ∗ 
      Differential of ௧ܷ௜ by orbital coefficients is derived in the same way like as 

∗௧௫ݖ߲߲  ቆൽ߰ቤ ߤ∂߰∂ ௭భ ௟ඁ − ൽ ߤ∂߰∂ ௭భ௟ ቤ߰ඁቇ (3-143)
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= 4 ቆߤ ௭భ ∗ ∗௧௫ݖ߲߲ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ଶۧݖ|ଶݖۦ + ߤ ௭భ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ߤ ௭మ∗ ∗௧௫ݖ߲߲ܵ ߤ ௭మ
+ ߤ ௭మ ∗ ∗௧௫ݖ߲߲ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ଶۧݖ|ଵݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ௟ ߤ ௭భ ∗ ∗௧௫ݖ߲߲ܵ ߤ ௭మቇ (ݓۦଵ|ݓଵۧݓۦଶ|ݓଶۧ + ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟ ଶۧݖ|ଶݖۦ + ߤ ௭మ ∗ܵ ߤ߲ ௭భ∂ߤ ௭భ ௟  ଶۧቇݖ|ଵݖۦ

ቆߤ௪భ ∗ ∗௧௫ݖ߲߲ܵ ଶۧݓ|ଶݓۦ௪భߤ + ௪మߤଵۧݓ|ଵݓۦ ∗ ∗௧௫ݖ߲߲ܵ ௪మߤ
+ ௪మߤ ∗ ∗௧௫ݖ߲߲ܵ ଶۧݓ|ଵݓۦ௪భߤ + ௪భߤଵۧݓ|ଶݓۦ ∗ ∗௧௫ݖ߲߲ܵ  ௪మቇߤ

௧௫ݖ߲߲  ቆൽ߰ቤ ߤ∂߰∂ ௭మ ௟ඁ − ൽ ߤ∂߰∂ ௭మ ௟ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ ∗௧௫ݖ߲߲ܵ ߤ ௭భߤ ௭మ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ + ߤଵۧݖ|ଵݖۦ ௭మ ∗ ∗௧௫ݖ߲߲ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟+ ߤ ௭మ ∗ ∗௧௫ݖ߲߲ܵ ߤ ௭భߤ ௭భ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ + ߤଵۧݖ|ଶݖۦ ௭భ∗ ∗௧௫ݖ߲߲ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ቇ (ݓۦଵ|ݓଵۧݓۦଶ|ݓଶۧ + ଶۧ) +4ݓ|ଵݓۦଵۧݓ|ଶݓۦ ቆݖۦଵ|ݖଵۧߤ ௭మ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ + ߤଵۧݖ|ଶݖۦ ௭భ∗ܵ ߤ߲ ௭మ∂ߤ ௭మ ௟ቇ 

ቆߤ௪భ ∗ ∗௧௫ݖ߲߲ܵ ଶۧݓ|ଶݓۦ௪భߤ + ௪మߤଵۧݓ|ଵݓۦ ∗ ∗௧௫ݖ߲߲ܵ ௪మߤ
+ ௪మߤ ∗ ∗௧௫ݖ߲߲ܵ ଶۧݓ|ଵݓۦ௪భߤ + ௪భߤଵۧݓ|ଶݓۦ ∗ ∗௧௫ݖ߲߲ܵ  ௪మቇߤ

(3-144)

For ߤ௪భ and  ߤ௪మ, z and w are permutated in Equations (3-143) and (3-144). 

 

3.4.4.2. Differential by orbital coefficients 

      The differential by orbital coefficients is expressed as 
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ߤ߲߲  ௭భ ௦∗ ൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁ 

= 4 ቆ ߤ߲ ௭భ ߤ߲∗ ௭భ௦∗ ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ଶۧݖ|ଶݖۦ + ߤ߲ ௭భ ߤ߲∗ ௭భ௦∗ ߤܵ ௭మߤ ௭మ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ

(3-145)

ߤ߲߲  ௭మ ௦∗ ቆൽ߰ቤ ߤ∂߰∂ ௭భ ௧ඁ − ൽ ߤ∂߰∂ ௭భ௧ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ߤ߲ ௭మ ߤ߲∗ ௭మ ௦∗ ߤܵ ௭మ
+ ଶۧݖ|ଵݖۦ ߤ߲ ௭మ ߤ߲∗ ௭మ ௦∗ ܵ ߤ߲ ௭భ߲ߤ ௭భ௧ቇ +ଶۧݓ|ଶݓۦଵۧݓ|ଵݓۦ)  (ଵۧݓ|ଶݓۦଶۧݓ|ଵݓۦ

(3-146)

௪భߤ߲߲  ௦∗ ቆൽ߰ቤ ߤ∂߰∂ ௭భ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ௧ ଶۧݖ|ଶݖۦ + ߤଶۧݖ|ଵݖۦ ௭మ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ቇ ቆ ௪భߤ߲ ௪భߤ߲∗ ௦∗ ଶۧݓ|ଶݓۦ௪భߤܵ
+ ௪భߤ߲ ௪భߤ߲∗ ௦∗  ଵۧቇݓ|ଶݓۦ௪మߤܵ

(3-147)

௪మߤ߲߲  ௦∗ ቆൽ߰ቤ ߤ∂߰∂ ௭భ௧ඁ − ൽ ߤ∂߰∂ ௭భ ௧ ቤ߰ඁቇ 

= 4 ቆߤ ௭భ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ ௧ ଶۧݖ|ଶݖۦ + ߤଶۧݖ|ଵݖۦ ௭మ∗ܵ ߤ߲ ௭భ߲ߤ ௭భ௧ቇ ቆݓۦଵ|ݓଵۧ ௪మߤ߲ ௪మߤ߲∗ ௦∗ ௪మߤܵ
+ ଶۧݓ|ଵݓۦ ௪మߤ߲ ௪మߤ߲∗ ௦∗  ௪భቇߤܵ

(3-148)

These ways of formulations are the same when ݏ = ,Differentials of ௧ܷ௭మ .ݐ ௧ܷ௪భ, ௧ܷ௪మ  

are also derived in the similar way. 

  



4. Ground state of H2 molecule 

      In this chapter, the simulation results for H2 molecule using the theory in 

Chapter 1 will be shown and discussed. A flow chart of the simulation is shown in 

Figure 4-1. First I will show results of optimization to ground-state of electron-nuclear 

wave function of H2 molecule. Next the vibrational period of molecule at ground-state 

will be discussed. 

 

 

Figure 4-1 The flow chart of the simulation. Formulation of equations of motions was shown 

in Chapter 2 and 3. I coded the simulation program along the formulae in MATLAB language. 

Then the Implementation and discussion of calculation results will be shown in this chapter 

and next chapter. 

 

4.1. Optimization to ground-state 

4.1.1. Gradient descent 

4.1.1.1. Case of M = 4 

      First, the number of Gaussians M is set 4 to assign one basis to each particle to 

consider the simplest case. For initial value sets, the widths of Gaussian γ are set as 

0.7)＝ߛ  0.7 30 30) . (4-1)

Formulation of 
equations of 
motions for 

variables depending 
on time in Ψ

Coding of the 
simulation program 
in MATLAB language

Implementation and 
discussion of 

calculation results
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The initial positions of Gaussians q are 

൭0.7＝ݍ  −0.7 0.7 −0.70 0 0 00 0 0 0 ൱ , (4-2)

and the initial momenta of Gaussians p are 

൭0＝݌  0 0 00 0 0 00 0 0 0൱ . (4-3)

where in Equations (4-2) and (4-3) rows are related to the number of Gaussians and 

columns are related to spatial coordinates x, y and z. 

      Orbital coefficients of 4 particles are set as 

ߤ  ௭భ = (1 0 0 0)௧ , (4-4)

ߤ  ௭మ = (0 1 0 0)௧ , (4-5)

௪భߤ  = (0 0 1 0)௧ , (4-6)

௪మߤ  = (0 0 0 1)௧ . (4-7)

      Figure 4-2 shows the variation of total energy with orbital coefficients fixed 

through the iterations of GDM optimizing the label of the complex number z of 

Gaussians. Here the total energy is converged to H = -0.9414 a.u. 

 

 

Figure 4-2 The variation of total energy at M = 4 for steps of gradient descent 
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optimization. 

      After the optimization, the positions of Gaussians q are 

൭0.6857＝ݍ  −0.6857 0.7932 −0.79320 0 0 00 0 0 0 ൱ , (4-8)

and the momenta of Gaussians p are 

൭0＝݌  0 0 00 0 0 00 0 0 0൱ . (4-9)

where the width of optimization step β in Equation (2-74) was 0.1. 

 

4.1.1.2. Case of M = 10 

      Next, the number of Gaussians M is set 10 to assign one basis to one proton 

and 4 bases to one electron. For initial value sets, the widths of Gaussian γ are set as 

0.64)＝ߛ  18 0.16 2.7 0.64 18 0.16 2.7 60 60)  . (4-10)

where the widths for electrons are selected to match with those of 6-31G basis set. 

The initial positions of Gaussians q are 

൭0.691＝ݍ  0.691 0.691 0.691 −0.691 −0.691 −0.691 −0.691 0.7 −0.70 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 ൱ (4-11)

and the initial momenta of Gaussians p are 

൭0＝݌  0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0൱ (4-12)

where in Equations (4-11) and (4-12) rows are related to the number of Gaussians and 
columns are related to spatial coordinates x, y and z. 
      Orbital coefficients of 4 particles are set as 

ߤ  ௭భ = (0.8 0.06 0.3 0.2 0.05 0 0 0 0 0)௧ (4-13)

ߤ  ௭మ = (0.05 0 0 0 0.8 0.06 0.3 0.2 0 0)௧ (4-14)

௪భߤ  = (0 0 0 0 0 0 0 0 1 0)௧ (4-15)

௪మߤ  = (0 0 0 0 0 0 0 0 0 1)௧ (4-16)

For this initial value set, the total energy was 
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ܪ  = −1.0346 a. u. . (4-17)

For these initial values, parameters were optimized with GDM except for widths γ. 

      After the optimization, the positions of Gaussians q are 

൭0.6469＝ݍ 0.6905 0.6680 0.6524 −0.6469 −0.6905 −0.6680 −0.6524 0.7072 −0.70720 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 ൱ (4-18)

and the momenta of Gaussians p are 

൭0＝݌  0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0൱ . (4-19)

Orbital coefficients of 4 particles after optimization are ߤ ௭భ = (0.7793 0.0381 0.2702 0.2993 0.0281 0.0102 −0.0208 0.0617 −0.0014 0.0009)௧ (4-20)ߤ ௭మ = (0.0281 0.0102 −0.0208 0.0617 0.7793 0.0381 0.2702 0.2993 0.0009 −0.0014)௧ (4-21)ߤ௪భ = (−0.0001 0.0229 −0.0002 0.0075 −0.0002 0.0002 −0.0000 −0.0011 0.9997 0.0000)௧ (4-22)ߤ௪మ = (−0.0002 0.0002 −0.0000 −0.0011 −0.0001 0.0229 −0.0002 0.0075 0.0000 0.9997)௧ (4-23)

The total energy was optimized to 

ܪ  = −1.0649 a. u. (4-24)

where the width of optimization step β in Equation (2-74) was 0.05. The end condition 
of the optimization was when the norm of gradients of parameter is less than 0.01 but 
the convergence was slow near this norm. Then the optimization was stopped before 
the end condition was satisfied. 
 

4.1.2. Imaginary time propagation 

4.1.2.1. With orbital coefficients fixed 

4.1.2.1.1. Case of M = 4 

      First, the number of Gaussians M is set 4 in the same way as GDM. Orbital 

coefficients are fixed through the time propagation in this section. Initial values are set 

in the same values as GDM case. 

      Figure 4-3 shows the time variation of total energy with orbital coefficients 

fixed through the ITP optimizing the label of the complex number z of Gaussians in the 

same way as GDM. Here the total energy is converged to H = -0.9414 a.u. Figure 4-4 

shows variations of the center positions of the Gaussian bases. The red lines represent 
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the positions of the Gaussian bases of the nuclei and the blue lines represent the 

positions of electrons. The Gaussian bases were set symmetrically with respect to x = 0 

on the x-axis. We can see that the motions of protons are slower than that of electrons 

and electrons are converging to their ground-state against the positions of protons at 

that time and after that moving synchronously with protons. 

      After the optimization, the positions of Gaussians q are 

൭0.6921＝ݍ  −0.6921 0.7993 −0.79930 0 0 00 0 0 0 ൱ , (4-25)

and the momenta of Gaussians p are 

൭0＝݌  0 0 00 0 0 00 0 0 0൱ . (4-26)

The values of Equation (4-25) are slightly different from those of GDM in Equation (4-8) 

and this would be the optimization of GDM was not completely converged yet. 

 

 
Figure 4-3 The time variation of total energy at M = 4 for imaginary time 

propagation. 
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Figure 4-4 Variations of the center positions of Gaussian bases developed for 

imaginary time at M = 4. The red lines represent the bases of the nuclei and the blue 

lines represent the bases of electrons. 

 

      Figure 4-5 shows the comparison of calculation time of GDM and ITP. For GDM, 

the steps in Figure 4-2 were normalized by total calculation time assuming that the 

calculation time for each step was the same. For ITP the calculation time was treated 

in the same way. Figure 4-6 shows the comparison of difference of total energy and 

convergence value in the log scale. Here the convergence speed is faster in ITP but the 

order of the convergence speed was the same in GDM and ITP. Straight lines in Figure 

4-6 indicate that the convergence speed against the calculation time was in the 

exponential order. 
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Figure 4-5 Comparison of total energy against calculation time of GDM and ITP. 

 

 
Figure 4-6 Comparison of difference of total energy and convergence value against 

calculation time of GDM and ITP in the log scale. 

 

4.1.2.1.2. Case of M = 10 

      In the optimization of ITP at M = 10, the values after the GDM optimization in 

Equations (4-18) to (4-23) are set as initial values for this optimization. In this section 

the orbital coefficients are fixed and the complex number label z of Gaussians are 

optimized. The time variations of the center positions of the Gaussian bases at this ITP 

iteration are shown in Figure 4-7. 
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Figure 4-7 Variations of the center positions of Gaussian bases developed for 

imaginary time. 10 bases were used for the system and set symmetrically with 

respect to x = 0 on the x-axis. 

 

The convergence profile of the total energy in ITP is shown in Figure 4-8. ܪ decreases 

towards −1.0665 a. u. 

 
Figure 4-8 The time variation of total energy at M = 10 for imaginary time 

propagation. 
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4.1.2.2. With orbital coefficients varied 

      In above sections, the optimization with orbital coefficients fixed was discussed 

and in this section the orbital coefficients are also optimized. Initial values are set at 

the values after optimization in section 4.1.2.1.2 and the number of basis is reduced to 

M=9. The reduced bases are G3 and G7 of width γ = 0.16 in Figure 4-7 and they are 

united to one basis of width γ = 0.16 locating on x = 0. This is because the optimization 

will be failed down without removing these two bases. If the orbital coefficients are 

allowed to be varied in optimization, G3 and G7 will come close to x = 0 and eventually 

the tensor cij in Equation (2-12) will get irreversible because bases of the same widths 

locate at the same place and the rank of cij is not enough. Then we cannot solve the 

EOMs Equation (2-18) and the calculation breaks down. To avoid this singularity, the 

two Gaussians are united to one. 

      The time variations of the center positions of the Gaussian bases at this ITP 

iteration are shown in Figure 4-9. the protonic and electronic Gaussians are optimized 

in different time scale. In the same way as the optimizations of ITP above, the 

electronic Gaussians are optimized within 10 a.u. to the electronic ground state and 

moving slowly with nuclear Gaussians. These different time scales originate from 

physical difference of mass for protons and electrons. The effect of difference of mass 

also appears in the time scale of dynamics for imaginary time. 



65  

 

Figure 4-9 Variations of the center positions of Gaussian bases developed for 

imaginary time. 9 bases were used for the system and set symmetrically with respect 

to x = 0 on the x-axis. The region of x-axis between 0.67 and 0.76 a.u. is expanded on 

the figure and 4 bases are shown here. Another basis for electron locates at x = 0. 

Red lines represent nuclear bases and blue lines represent electronic bases. 

 

      The detail of coefficients of the orbitals after this ITP optimization and related 

positions on x-axis and width γ are shown in Table 4-1. The coefficients of the orbitals 

and center positions of Gaussians are optimized through the ITP iteration and γ is 

fixed. 

      The convergence profile of the total energy in ITP is shown in Figure 4-10. The 

total energy was converged to −1.0684 a. u. at ߬ = 500 a. u. from −1.0665 a. u in 

section 4.1.2.1.2. Figure 4-11 shows 2-dimensional density maps of protons and 

electrons of the electron-nuclear wave function after the optimization. We can see the 

keen separated peaks for protons and density like broad crowd for electrons. The 

EOMs are totally symmetric for electrons and protons except for the mass, so the 
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difference of mass is inducing the different structures for electrons and protons. 

Figure 4-12 shows the additional information of the 1-dimensional density map 

of protons. There is a previous work1) indicating the 1D density map of nuclei of H2 by 

NOMO/HF method for the optimizing calculation of the static ground state. By 

comparing these results, we can see the same density map structure. This indicates 

that the ITP optimization from the time-dependent EOMs results at the consistent 

state with that from the ground state calculation by optimization method for static 

state with NOMO/HF method. 

 

Table 4-1 Detail of the values of the orbital coefficients, position, and widths of nine 

Gaussians after optimization at Figure 4-9 

 electron1 electron2 proton1 proton2 Position on x 

axis 

Width γ 

G1 1 0.020706 0.010425 -0.00223 0.6927 0.64 

G2 0.040195 0.017089 0.287161 -0.00064 0.7493 18 

G3 0.357373 0.357373 -0.00205 -0.00205 0 0.16 

G4 0.404203 0.050135 -0.02962 0.002468 0.6885 2.7 

G5 0.020706 1 -0.00223 0.010425 -0.6927 0.64 

G6 0.017089 0.040195 -0.00064 0.287161 -0.7493 18 

G7 0.050135 0.404203 0.002468 -0.02962 -0.6885 2.7 

G8 -0.00034 -0.00088 1 0.000142 0.7562 60 

G9 -0.00088 -0.00034 0.000142 1 -0.7562 60 
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Figure 4-10 Variation of the total energy ࡴ = ൻࢸหࡴ෡ หࢸൿ in imaginary time. The total 

energy converges towards the energy of the electron-nuclear ground state. 

 

 

Figure 4-11 2-dimensional density maps of protons and electrons of the optimized 

electron-nuclear wave function. The upper row shows 2D density of nuclei and the 

lower row shows 2D density of electrons. 
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Figure 4-12 2-dimensional and 1-dimensional density maps of protons of the 

optimized electron-nuclear wave function. The upper row shows 2D density of nuclei 

and the lower row shows 1D density of nuclei. 

 

4.1.3. Discussion for ground-state wave function 

      In section 4.1.2.1, the ground-state energy was obtained H = -0.9414 a.u. for M 

= 4 case and H = -1.0665 a.u. for M = 10 case. In aspect of variational principle, the 

total energy should be smaller for lager number of parameters and these values are 

reflecting this principle. Compared to those cases, in section 4.1.2.2 the orbital 

coefficients are allowed to be varied. In that case, the total energy is H = -1.0684 a.u. 

for M = 9 case. Even the number of bases decreased but the energy gets further 

smaller. It suggests that the M = 10 is not large number enough for the energy 

optimization and allowing orbital coefficients to change the energy can be more 

optimized with less number of Gaussians. However, in Born-Opennheimer 
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approximation the energy of H2 molecule is obtained as H = -1.174 a.u.2) and this value 

is smaller than that we obtained in this study. The difference of energy between wave 

function under Born-Oppenheimer approximation and electron-nuclear wave function 

should be only zero-point energy of molecular potential in Born-Oppenheimer picture. 

This difference is too large for zero-point energy. It is described by the problem of 

expression of electron-nuclear wave function with Gaussians. The ground-state energy 

for electron-nuclear wave function is reported by previous research3). In this research, 

the formulation of wave function in the present research is categorized as translation 

and rotation-contaminated (TRC)-NOMO. In the formulation of electron-nuclear wave 

function, the coordinates for translational motion can be separated converting the 

coordinates in the wave function such as, 

୲୭୲ୟ୪ߖ  = ୲୤ߖ୲୰ߖ , (4-27)

where ߖtr is wave function for translational motion and ߖtf is wave function for translation 

free part. This formulation is categorized as translation-free (TF)-NOMO and the 

ground-state energy is H = -1.073631 a.u. In this previous research, the energy of 

TRC-NOMO is reported as H = -1.051219 a.u. The value of present research is slightly 

lower than this value. The slight improvement may be ascribed to the optimization in 

the position of the Gaussian functions. Indeed, in another previous research for NOMO, 

the energy of H2 molecule is reported as H = -1.069 a.u.4) in the framework of 

TRC-NOMO. This value agrees with the energy of H = -1.0684 a.u. in the previous 

research. 

      However in the scheme of TF-NOMO, the energy is still high. In a previous 

research using explicitly correlated Gaussian (ECG) as basis function, the energy of H2 is 

reported as H = -1.164 a.u.5). Explicitly correlated Gaussian involves explicitly 

correlated term for 2 particles 1, 2 like as exp(ݎଵݎଶ). It is necessary to achieve this 

value to use 512 terms and there is also difficulty to formulate the wave function. The 

biggest problem is that the calculation cost is in proportion to M! (M is the total 

number of basis). The time complexity for ECG is factorial time and it is very slow as 

well as Grid method. There is the tradeoff between accuracy and calculation time. 
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      The CCS method resulted in slightly higher energy but could achieve almost 

limit value for TRC-NOMO only with M = 9. The strongest point of the CCS method is 

polynomial time complexity. When we consider the time-dependent molecular 

dynamics, the time complexity is the critical issue. From next section, the real time 

propagation will be simulated and discussed. 

 

4.2. Time-dependent dynamics 

4.2.1. Real time propagation with orbital coefficients fixed 

4.2.1.1. Case of M = 4 

      Next, the real time propagation will be considered. First, at M = 4 case, initial 

values are set at the values after ITP optimization in section 4.1.2.1.1. Figure 4-13 

shows the variation of the center positions of Gaussians for real time propagation. We 

can see that the center positions settle at the initial positions. The optimized 

ground-state is an equilibrium state for the parameters and they do not change in real 

time propagation. The calculation results reflect that appropriately. 

 

Figure 4-13 Variations of the center positions of Gaussian bases developed for real 

time at M = 4. The red lines represent the bases of the nuclei and the blue lines 

represent the bases of electrons. 
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      Second, a trajectory from initial values out of the equilibrium point is simulated 

to examine dynamics when electrons have momenta. The initial values are like below. 

The initial positions of Gaussians q are 

൭0.75＝ݍ  −0.75 0.7 −0.70 0 0 00 0 0 0 ൱ , (4-28)

and the momenta of Gaussians p are 

൭＝݌  0 0 0 00.1 −0.1 0 00 0 0 0൱ . (4-29)

Figure 4-14 shows the variation of the center positions of Gaussians for real time 

propagation. We can see the periodic motion of protons and electrons.  

 

Figure 4-14 Variations of the center positions of Gaussians for real time propagation 

at M = 4 with electronic initial momenta. The red lines represent the bases of the 

nuclei and the blue lines represent the bases of electrons. 
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The motions of electrons are not completely periodic and there complexity of 4 

particle problem shows up. Only 4 bases are used and orbital coefficients are fixed so 

apparently the motions of center positions are like classic motion but stable motions 

after 5000 a.u. are difficult to implement in classical calculation even if soft-core 

potential is introduced. Then this method can achieve the stable chemical bond with 

the least number of basis functions. 

 

4.2.1.2. Case of M = 10 

      Next to the equilibrium state, the real time propagation was calculated and the 

nuclear motion was examined with a vibrational period at M = 10 case. As a 

vibrationally excited state, the state 50 a.u. of imaginary time after the initial state in 

ITP in Figure 4-7 was chosen, and a vibrational motion of nuclei can be observed 

through time propagation of this state for real time space. Figure 4-15 shows the time 

variations of center positions of Gaussian bases in real time propagation. The meaning 

of symbol is the same as in Figure 4-7 and the same coefficients of orbitals were 

applied. From the numbers of Equation (4-20) to (4-23), it can be considered that G9 

and G10 represent the nuclear part of the wave function. Then the red lines of G9 

(solid) and G10 (dashed) represent the motions of nuclei. Figure 4-16 shows the 

expanded motion of G9 and the oscillation of the small amplitude with the period of 

299 a.u. (7.2 fs) can be seen. 
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Figure 4-15 Variations of the center positions of the Gaussian bases in real time. The initial 

positions of bases are the same as those at τ = 50 a.u. in Figure 4-7. The coefficients of 

orbitals are shown in Equation (4-20) to (4-23). The coefficients were fixed through the 

iterations. 

 

Figure 4-16 Expansion of the motion of G9 in Figure 4-15. 

 

Figure 4-17 shows the expanded motion of G1 and the oscillation of the electron with 
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the period of around 2 a.u. (50 as) can be seen. The faster oscillation reflects the 

lighter weight of electron than that of nucleus. 

      Figure 4-18 shows the variation of total energy in real time propagation. The 

variation of value starts from the 8th decimal place. The accuracy of Runge-Kutta 

method is set at under 10-6 per step and this variation is less than the error of 

Runge-Kutta. This indicates that the total energy is correctly conserved through the 

calculation. 

 

 
Figure 4-17 Expansion of the motion of G1 in Figure 4-15. 

 

 
Figure 4-18 Variation of total energy in real time propagation at M = 10 
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4.2.2. Real time propagation with orbital coefficients varied 

      In this section, real time propagation with orbital coefficients varied at M = 9 

will be simulated. A vibrational period of the ground state of H2 molecule is estimated 

in the following manner. By displacing the optimized positions of the respective 

Gaussian functions by 0.001 a.u. symmetrically with respect to x = 0, a small amplitude 

can be induced molecular vibration since the optimized ground-state is a stationary 

state as we saw in above sections. But in this situation, the electrons are not 

necessarily in the electronic ground state. The expanded region for the center 

positions of Gaussians of nuclei and electrons are shown in Figure 4-19 and Figure 4-20. 

We can see relatively large amplitude of vibration of electrons compared to nuclei. So 

ITP optimization for 15 a.u. time is executed after displacing and parameters at that 

time are set at initial values. Then from the different time scale for convergence as 

seen in Figure 4-9, vibrational excited state with electronic ground state can be 

achieved. 

A vibrational motion of nuclei can be observed through time propagation of 

this state for real time space. Figure 4-21 and Figure 4-22 show the time variations of 

center positions of Gaussian bases in real time propagation. Figure 4-21 shows the 

expanded region for the center positions of protonic Gaussians. Figure 4-22 also shows 

the time variations of center positions of electronic Gaussians. We can see that the 

vibrations of electrons are suppressed compared with Figure 4-20 but there are the 

several components of vibrational periods for nuclei and electrons. The longest period 

of synchronous motion for electrons and protons is 340 a.u. (8.2 fs) and this value is 

consistent with the vibrational period of H2, 331 a.u. (8.0 fs), obtained from the energy 

difference between the first vibrationally excited state (v’ = 1, J’ = 0) and the 

vibrational ground state (v’’ = 0, J’’ = 0) of H2 in the electronic ground state obtained 

spectroscopically6). We can also see faster time periods in addition to the same long 

time periods for nuclear vibration. Those faster vibrational periods are considered as 

those related to the electronic excitation. The electronic excitation is discussed in the 

next section. 
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Figure 4-19 Variations of the center positions of the Gaussians of protons in real time after 

only displacing the optimized positions of the respective Gaussian functions by 0.001 a.u. 

 

 

Figure 4-20 Variations of the center positions of the Gaussians of electrons in real time after 

only displacing the optimized positions of the respective Gaussian functions by 0.001 a.u. 
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Figure 4-21 Variations of the center positions of the Gaussians of protons in real time. 

 

 

Figure 4-22 Variations of the center positions of the Gaussians of electrons in real time. 
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4.2.3. Electronic excitation represented by floating Gaussian 

In order to discuss the interparticle couplings quantitatively, the expectation 

values of the squared nuclear-nuclear distance, rpp
2, the squared electron-nuclear 

distance, rpe
2, and the squared electron-electron distance, ree

2, defined respectively as 

 

۔ۖەۖ
(ݐ)௣௣ଶݎۓ ≡ ଵࡾ)|(ݐ)ߖۦ − (ݐ)௣௘ଶݎ,ۧ(ݐ)ߖ|ଶ)ଶࡾ ≡ ଵࡾ)|(ݐ)ߖۦ − ࢘ଵ)ଶ|ݎ,ۧ(ݐ)ߖ௘௘ଶ(ݐ) ≡ ଵ࢘)|(ݐ)ߖۦ − ࢘ଶ)ଶ|(ݐ)ߖۧ,  (4-30)

are evaluated. In deriving the temporal variations, a real-time propagation was 

performed by the adaptive Dormand-Prince Runge-Kutta method7). 

The temporal variations of rpp
2, rpe

2, and ree
2 of H2 thus obtained are shown in 

Fig. 2(a), 2(b), and 2(c), respectively. The oscillation with the period of 340 a.u. (8.2 fs) 

is seen commonly in rpp
2, rpe

2, and ree
2, which is seen in the discussion of the center 

position of basis functions. This means that not only the distance between the two 

protons, but also (i) the distance between one electron located in the vicinity of one 

proton and the other proton and (ii) the distance between one electron located in the 

vicinity of one proton and the other electron located near the vicinity of the other 

proton oscillate with the period of the vibrational motion of H2. After the Fourier 

transform of Figure 4-23 (a)-(c), the frequency distributions in Figure 4-24 (a)-(c) were 

obtained. The distinct peak appearing at 0.003 a.u. in frequency in Figure 4-24 (a)-(c) 

corresponds to the vibrational frequency of H2. 
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Figure 4-23 Time variation of (a) rpp

2 (proton-proton), (b) rpe
2 (proton-electron), and (c) ree

2 

(electron-electron) of H2 molecule in the real-time propagation. 
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Figure 4-24 Amplitudes of the Fourier transform of (a) rpp

2, (b) rpe
2, and (c) ree

2 of H2 molecule 

in the real-time propagation. The right row shows the different scales of the horizontal 

(frequency) axes for (d) rpp
2, (e) rpe

2, and (f) ree
2. 

 

The inset figure in each of the three subfigures in Figure 4-23 represents the 

expanded view of the corresponding parts. It can be seen in the insets of Figure 4-23 

(b) and (c) that oscillatory structures appear with the modulation period of around 10 

a.u. In order to examine this high frequency component, the high frequency region of 

the Fourier transformed spectra are expanded as shown in Figure 4-24 (d)-(f). A sharp 
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feature accompanying two small side peaks in the lower frequency side appear at 

around 0.094 a.u. and another sharp feature appears at around 0.164 a.u. commonly 

in Figure 4-24 (e) for rpe
2 and Figure 4-24 (f) for ree

2. In addition, in Figure 4-24 (d) for 

rpp
2, two sharp features appear at around 0.075 and 0.082 a.u., which are close to the 

frequencies of the two side peaks appearing in Figure 4-24 (e) and (f). These 

high-frequency components appearing above 0.05 a.u. can be related to the motion of 

electrons because the corresponding energy range is in a typical energy range of the 

electronic excitations. 

 

4.2.4. Assignment of the high frequency components 

In order to confirm that these high-frequency components are interpreted by 

the electronic excitation energies of H2, we examine if the spectral features in the 

spectrum of ree
2 are interpreted in terms of HF orbitals and if the respective peaks can 

be interpreted in terms of electronic excitation energies calculated by the 

time-dependent Hartree-Fock (TDHF) method. The electronic energies of the four 

lowest excited states, measured from the ground electronic state, thus obtained by the 

TDHF method are listed in Table 4-2, showing that the first excited state whose 

symmetry is ungerade has a main electron configuration described by the excitation of ߝ௨ଵ ←  ௚଴. The main electronic configurations for the second excited state (gerade), theߝ

third excited state (ungerade), and the fourth excited state (gerade) are ߝ௚ଵ ← ௨ଶߝ ,௚଴ߝ ← ௚ଶߝ ௚଴, andߝ ←  ,௚଴, respectively. In the calculations performed using Gaussian 09ߝ

the option of ghost atoms [21] was chosen in order to locate a floating orbital at x = 0. 

For the nine basis functions, the same parameters as those listed in Table 4-1 were 

adopted. The nuclear distance defined as the distance between the centers of G8 and 

G9 basis functions was set to be 1.5124 a.u., which is the optimized value by the ITP as 

shown in Table 4-1 and Figure 4-10. This value is consistent with the quantity of ඥݎ௣௣ଶ(ݐ = 0) = 1.5332 a. u. obtained by the floating Gaussian method. 
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Table 4-2. Excitation energies of H2 from the ground state to the four lowest electronic 

excited states calculated by the TDHF method using Gaussian 09. The basis set 

composed of nine Gaussian functions with the parameters shown in Table 4-1 is 

adopted. 

 Energy / eV 

(Energy / a.u.) 

Main Configuration 

 ଵ 16.0041ܧ∆

(0.588140) 

௨ଵߝ ←  ௚଴ߝ

 ଶ 17.9340ܧ∆

(0.659062) 

௚ଵߝ ←  ௚଴ߝ

 ଷ 58.5242ܧ∆

(2.15072) 

௨ଶߝ ←  ௚଴ߝ

 ସ 63.3917ܧ∆

(2.32960) 

௚ଶߝ ←  ௚଴ߝ

 

      We note that the spatial part of the electronic wave function calculated by 

using the floating Gaussian orbitals can be rewritten in terms of time-dependent 

orbitals of gerade and ungerade symmetries. The spatial part of the wave function can 

be written by a product of electronic and nuclear Slater determinants as 

,ଵݎۦ  ,ଶݎ ܴଵ, ܴଶ|(ݐ)ߖۧ = ,ଵݎ)ߖ ,ଶݎ ܴଵ, ܴଶ, (ݐ = ,ଵݎۦ ,ଵܴۦۧ(ݐ)௘ߖ|ଶݎ ܴଶ|ߖ௡(ݐ)ۧ= Φ௘(ݎଵ, ,ଶݎ ,Φ௡(ܴଵ(ݐ ܴଶ, (ݐ , (4-31)

The electronic slater determinant can be always expressed as 

 Φ௘(ݎଵ, ,ଶݎ (ݐ = ,ଵݎۦ =ۧ(ݐ)௘ߖ|ଶݎ 1√2 (߶ோ(ݎଵ, ,ଶݎ)௅߶(ݐ (ݐ + ߶ோ(ݎଶ, ,ଵݎ)௅߶(ݐ (32-4) ,  ((ݐ

using orbitals ߶ோ and ߶௅, where ߶ோ is the localized orbital mainly on positive area 

(right side) and ߶௅ is the localized orbital mainly on negative area (left side) on x-axis. ߶ோ  and ߶௅  are expressed using the time-dependent orbitals composed of 

time-dependent floating Gaussian functions as 
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߶ோ(ݎ, (ݐ
= ۧ(ݐ)௘ଶ߶|(ݐ)௘ଶ߶ۦۧ(ݐ)௘ଵ߶|(ݐ)௘ଵ߶ۦ)ۧ(ݐ)௘ଵ߶|ݎۦ + ଵସ  , (4-33)(ۧ(ݐ)௘ଵ߶|(ݐ)௘ଶ߶ۦۧ(ݐ)௘ଶ߶|(ݐ)௘ଵ߶ۦ

߶௅(ݎ, (ݐ
= ۧ(ݐ)௘ଶ߶|(ݐ)௘ଶ߶ۦۧ(ݐ)௘ଵ߶|(ݐ)௘ଵ߶ۦ)ۧ(ݐ)௘ଶ߶|ݎۦ + ଵସ  . (4-34)(ۧ(ݐ)௘ଵ߶|(ݐ)௘ଶ߶ۦۧ(ݐ)௘ଶ߶|(ݐ)௘ଵ߶ۦ

where the denominators in Equations (4-33) and (4-34) are taken to satisfy the 

normalization condition of |Φ௘(ݎଵ, ,ଶݎ |(ݐ = 1. ߶ோ and ߶௅ have the symmetry of 

 ߶ோ(ݎ, (ݐ = ߶௅(−ݎ, (ݐ . (4-35)

as shown in Table 4-1. Therefore the orbitals ߶ோ and ߶௅ can be decomposed into 

two components having gerade and ungerade symmetries as ቊ߶ோ(ݎ, (ݐ = ߶௚(ݎ, (ݐ + ߶௨(ݎ, ,ݎ)௅߶(ݐ (ݐ = ߶௚(ݎ, (ݐ − ߶௨(ݎ, (ݐ . (4-36)

In terms of ߶௚ and ߶௨, we can rewrite the electronic Slater determinant as 

 Φ௘(ݎଵ, ,ଶݎ (ݐ = √2 ቀ߶௚(ݎଵ, ,ଶݎ)௚߶(ݐ (ݐ − ߶௨(ݎଵ, ,ଶݎ)௨߶(ݐ ቁ  . (4-37)(ݐ

The gerade symmetry of Φ௘(ݎଵ, ,ଶݎ (ݐ  is always ensured by the relation of Φ௘(ݎଵ, ,ଶݎ (ݐ = Φ௘(−ݎଵ, ,ଶݎ− (ݐ . In the same way, the gerade nuclear Slater 

determinant can be represented in terms of nuclear single particle orbitals with gerade 

and ungerade symmetries. 

      Next, we discuss how those ungerade orbitals contribute to the spectra of ݎ௘௘ଶ(ݐ). To compare with the excited states calculated by Gaussian 09, we assume that 

the gerade and ungerade orbitals ߶௚(ݐ) and ߶௨(ݐ) are approximately represented 

by the 9 canonical molecular orbitals (MOs) used in Gaussian 09 as 

۔ۖەۖ
,ݎ)෨௚߶ۓ (ݐ ≈ ෍ ܽ௚௜ ௚௜߶(ݐ) ସ(ݎ)

௜ୀ଴߶෨௨(ݎ, (ݐ ≈ ෍ ܽ௨௜ ௨௜߶(ݐ) ସ(ݎ)
௜ୀଵ

   , (4-38)

where ൛߶௚௜ ൟ are the set of gerade MOs and ൛߶௨௜(ݎ)  ൟ the set of ungerade MOs(ݎ)
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generated in the HF calculation by Gaussian 09. The time-dependent coefficients of ܽ௚௜ and ܽ௨௜ (ݐ)   are calculated from the relationship of Equation (4-38) as (ݐ)

 ቊܽ௚௜ (ݐ) = ൻ߶௚௜ ห߶௚(ݐ)ൿܽ௨௜ (ݐ) = ൻ߶௨௜ ห߶௨(ݐ)ൿ , (4-39)

respectively. Here, ߶௚(ݐ)  and ߶௨(ݐ)  can be calculated using the relations 

represented by Equation (4-36) and Equations (4-33) and (4-34). The expectation value 

of ݎ௘௘ଶ(ݐ) is calculated by ݎ௘௘ଶ(ݐ) = ଵݎ)|(ݐ)Φ௘ۦ − ۧ(ݐ)ଶ)ଶ|Φ௘ݎ , (4-40)

where we used the normalization condition of the nuclear Slater determinant. By using 

the expression of Equation (4-37) , we can rewrite ݎ௘௘ଶ(ݐ) as ݎ௘௘ଶ(ݐ) = 4 ቀൻ߶୥(ݐ)หݎଵଶห߶୥(ݐ)ൿൻ߶୥(ݐ)ห߶୥(ݐ)ൿ
+ ۧ(ݐ)୳߶|(ݐ)୳߶ۦۧ(ݐ)ଵଶ|߶୳ݎ|(ݐ)୳߶ۦ + 2Reൻ߶୥(ݐ)หݎଵห߶୳(ݐ)ൿଶቁ 

(4-41)

using the symmetry of the electronic Slater determinant with respect to ݎଵ and ݎଶ. 

Against those relationships, we can consider the comparison with the electronic states 

calculated with the MOs of conventional HF methods by replacing Φ௘(ݐ) to Φ෩ ௘(ݐ) 

where Φ෩ ୣ denotes the function generated by the replacements of ߶௚ and ߶௨ in 

Equation (4-37) by ߶෨௚  and ߶෨௨  defined in Equation (4-38), respectively. The 

expectation value of ݎ௘௘ଶ(ݐ) is then calculated approximately by ݎ௘௘ଶ෪ (ݐ) = ൻΦ෩ ௘(ݐ)ห(ݎଵ − ଶ)ଶหΦ෩ݎ ௘(ݐ)ൿ . (4-42)

By evaluating ݎ௘௘ଶ෪  and after the Fourier transform, the frequency distribution was 

obtained as shown in Figure 4-25. 

     Figure 4-25 shows the results of the reproduction of the spectrum in Figure 4-24 

(f) based on Equations (4-38) and (4-39). The frequencies of peaks are consistent in 

Figure 4-24 (f) and Figure 4-25. However, the peak height of Peak 4 is about 30 % 

smaller in Figure 4-25. On the other hand, the norm of ߖۦ௘(ݐ)|ߖ௘(ݐ)ۧ calculated by 

using Equations (4-37) and (4-38) was 0.998 at t = 0. Those two observations indicate 

that the time-dependent motion of the center positions of floating Gaussian basis 

functions cannot be completely expressed only in the terms of the time variation of 
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orbital coefficients of the time-independent MOs even if the reproduced norm is as 

accurate as 99.8 %. 

 

 
Figure 4-25 The amplitude of the Fourier transformed spectrum of ree

2 of H2 by the 

calculation using the HF canonical MOs with the time-dependent coefficients shown 

in Equation (4-39). The peak numbers represent the assignments listed in Table 4-3. 

 

The frequency of each peak can be assigned with the help of orbital energy calculated 

by HF calculations as follows. For example, the term of ൻ߶୥(ݐ)หݎଵଶห߶୥(ݐ)ൿ  is 

approximately evaluated by using Equation (4-38) as 

 ൻ߶෨୥(ݐ)หݎଵଶห߶෨୥(ݐ)ൿ = ෍ ܽ௚௜ ௚௝ܽ(ݐ)∗ ൻ߶௚௜(ݐ) หݎଵଶห߶௚௝ൿ௜௝ . (4-43)

In order to interpret the frequency components in ݎ௘௘ଶ(ݐ) by canonical orbital 

energies, MOs used by TDHF, we will assume the following relationship as 

 ܽ௚௝ (ݎ)௚௝߶(ݐ) ≈ ܽ௚௝ ′݁ି௜ఌ೒ೕ ௧ ℏൗ ߶௚௝(ݎ) , (4-44)
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where ߝ௚௝ denotes the canonical orbital energy of the j-th gerade orbital. Therefore, 

the right-hand side in Equation (4-43) can be written as 

 ෍ ܽ௚௜ ௚௝ܽ(ݐ)∗ ൻ߶௚௜(ݐ) หݎଵଶห߶௚௝ൿ௜௝ ≈ ෍ ܽ௚௜ ′∗ܽ௚௝ ′݁ି௜ቀఌ೒ೕ ିఌ೒೔ ቁ௧ ℏൗ ൻ߶௚௜ หݎଵଶห߶௚௝ൿ௜௝   . (4-45)

Here we notice that the energy difference of two orbitals approximately corresponds 

to the energy difference of two electronic Slater determinants. For example, if we 

define five lowest energies of electronic states in the HF calculation as 

 

۔ۖۖەۖۖ
௚଴ܧۓ = ௨ଵܧ൫Φ଴଴௚௚൯ܧ = ௚ଵܧ൫Φ଴ଵ௚௨൯ܧ = ௨ଶܧ൫Φ଴ଵ௚௚൯ܧ = ௚ଶܧ൫Φ଴ଶ௚௨൯ܧ = ൫Φ଴ଶ௚௚൯ܧ

  , (4-46)

where Φ௜௝௚௨ means the Slater determinant composed of two canonical orbital as 

 Φ௜௝௚௨(ݎଵ, (ଶݎ = 1√2 ൫߶௚௜ (ଶݎ)௨௝߶(ଵݎ) + ߶௚௜ ൯(ଵݎ)௨௝߶(ଶݎ) , (4-47)

the energy differences in Table 4-2 are expressed using the relationships of Equations 

(4-46) and (4-47) as 

 

۔ۖەۖ
ଵܧ∆ۓ = ௨ଵܧ − ଶܧ∆௚଴ܧ = ௚ଵܧ − ଷܧ∆௚଴ܧ = ௨ଶܧ − ସܧ∆௚଴ܧ = ௚ଶܧ − ௚଴ܧ

  . (4-48)

The frequency related to the energy difference of two gerade states can be involved in 

the term of ൻ߶෨୥(ݐ)หݎଵଶห߶෨୥(ݐ)ൿ. In the same manner,  ൻ߶෨୳(ݐ)หݎଵଶห߶෨୳(ݐ)ൿ = ෍ ܽ௨௞∗(ݐ)ܽ௨௟ ଵଶ|߶௨௟ݎ|௨௞߶ۦ(ݐ) ۧ௞௟≈ ෍ ܽ௨௞′∗ܽ௨௟ ′݁ି௜൫ఌೠೖିఌೠ೗ ൯௧ ℏ⁄ ଵଶ|߶௨௟ݎ|௨௞߶ۦ ۧ௞௟ , (4-49)

and the frequency related to the energy difference of two ungerade states is turned 

out to be involved in this term. Also, the term of Reൻ߶෨୥(ݐ)หݎଵห߶෨୳(ݐ)ൿଶ
 can be 

expanded as 
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ൻ߶෨୥(ݐ)หݎଵห߶෨୳(ݐ)ൿଶ = ෍ ܽ௚௜ ൻ߶௚௜(ݐ)௨௞ܽ(ݐ)∗ หݎଵห߶௨௞ൿܽ௚௝ ௨௟ܽ(ݐ)∗ ଵห߶௨௟ݎൻ߶௚௝ห(ݐ) ൿ௜௝௞௟≈ ෍ ܽ௚௜ ′∗ܽ௚௝ ′∗ܽ௨௞′ܽ௨௟ ′݁ି௜ቄ൫ఌೠೖିఌ೒೔ ൯ାቀఌೠ೗ ିఌ೒ೕ ቁቅ௧ ℏൗ ൻ߶௚௜ หݎଵห߶௨௞ൿ௜௝௞௟ ൻ߶௚௝หݎଵห߶௨௟ ൿ . (4-50)

We can observe the sum of two energy differences of the ungerade state and the 

gerade state in Equation (4-50) such as ∆ܧଵ and ∆ܧଷ in Equation (4-48). Therefore, 

even if the electronic Slater determinant Φ෩ ௘ is gerade, the frequency related to the 

energy of ungerade states can be observed in ݎ௘௘ଶ(ݐ). 

 

Table 4-3 The energies of Peak 1 to Peak 5 in the Fourier transformed spectra of ree
2 of 

H2 in Figure 4-25 and those obtained by the TDHF method with the assignment in 

terms of the electronic excitation energies obtained by the TDHF method. 

Peak 

Number 

Peak Energy a) / eV 

(Peak Frequency / a.u.) 

Peak Energy b) / eV 

(Peak Frequency / a.u.)

Assignment c) 

1 12.9 

(0.0752) 

11.1366 

(0.065136) 

ଵܧ∆ + ଷܧ∆) − (ସܧ∆
2 14.0 

(0.0820) 

14.0742 

(0.082318) 

ଵܧ∆ + ଵܧ∆) − (ଶܧ∆
3 16.0 

(0.0938) 

17.9340 

(0.104893) 

 ଶܧ∆

4 28.15 

(0.1646) 

24.5862 

(0.143801) 

ଷܧ∆ −  ଵܧ∆

5 35.16 

(0.2056) 

32.0082 

(0.187211) 

ଵܧ∆ +  ଵܧ∆

a) Peak energies in Figure 4-25 obtained by the floating Gaussian method. 

b) Peak energies obtained by the TDHF method. 

c) Peak energies in b) are calculated by the energy difference of the electronic states 

calculated by the TDHF method shown in Table 4-2. 

 

      Table 4-3 shows the assignments of the peaks in Figure 4-25 using the 
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excitation energies calculated by TDHF in Table 4-2 along the rules of Equations (4-45), 

(4-49), and (4-50). The largest deviation between the energies of peaks and the 

assignments is 14 % in Peak 4. The deviation of 14 % is reasonable in consideration of 

the deviation of 30 % in the amplitude of Peak 4 between Figure 4-25 and Figure 4-24 

(f). In this way, we can explain why the energy of Σu state can contribute to the 

spectrum of ree
2. Therefore, the frequency values > 0.05 a.u.-1 in the amplitude of 

Fourier transformation of inter-particle distances are interpreted as energy differences 

related to the electronic excitation as the assignments shown in Table 4-3. 

 

4.2.5. Mass dependence of non-adiabatic coupling 

      Considering that the appearance of Peak 3 and Peak 4 in the Fourier 

transformed spectra of rpp
2 is ascribable to the non-adiabatic electron-nuclear 

couplings, the heights of Peak 3 and Peak 4 can be good indicators representing the 

extent of the non-adiabatic couplings. Because the extent of the couplings is 

considered to be influenced sensitively by the ratio of the mass of an electron with 

respect to the mass of a nuclei in a two-electron homonuclear diatomic molecule, the 

rpp
2 value of D2 was calculated by the floating Gaussian method, and the frequency 

distribution was obtained by the Fourier transform in the same manner as in the case 

of H2 as shown in Figure 4-26. 

 
Figure 4-26 Amplitude of Fourier transformation of rpp

2 of D2. The peaks of frequencies 

4 3 
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related to Peak 3 and 4 in Figure 4-25 are shown in the figure. 

 

Figure 4-26 shows the amplitude of Fourier transformation of rpp
2 of D2. The height of 

Peak 3 appearing at the frequency of 0.0943 a.u. and the height of Peak 4 appearing at 

the frequency of 0.1660 a.u. were found to be 8.83 x 10-7 and 3.46 x 10-7, relative to 

the height of the lowest frequency component representing the molecular vibration. In 

the case of H2, the relative heights of Peak 3 and Peak 4 are 8.55 x 10-6 and 8.95 x 10-6, 

respectively, and are found to be larger than in the case of D2 by one order of 

magnitude, which clearly shows that the non-adiabatic electron-nuclear coupling 

becomes more evident when the relative mass of nuclei becomes lighter. 
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5. Application of laser fields to H2 molecule 

      With the CCS method, the center position of Gaussian basis is regarded as the 

time-dependent variable and it can follow the motion against the electric force in 

intense laser fields. In this chapter, the motion of each floating Gaussian basis of H2 in 

intense laser fields with different carrier-envelope phases (CEPs) will be demonstrated 

against nuclear-electron wave function as a 4-particle problem. 

 

5.1. Demonstration with 1.5 cycle pulse laser 

      The laser field (ݐ)ܧ applied to the molecule is expressed as 

(ݐ)ܧ  = ݐ߱)sin(ݐ)ߝ଴ܧ + ߶), (5-1)

where ܧ଴, (ݐ)ߝ, ߱, and ߶ denotes the peak intensity, pulse envelope, frequency 

and CEP respectively. The peak intensity ܧ଴ of laser pulses applied in the simulation is 

0.3 a.u. The cycles of the carrier are 1.5 cycles and the wavelength is 780 nm. The 

polarization direction is x-axis. Figure 5-1 (a) shows the profile of electric field of these 

pulses and their envelope. 3 trajectories with different CEPs were calculated. The 

number of Gaussian bases of the wave function adopted for time propagation in these 

laser field is 4. One basis is assigned for each particle in H2 and the total number is 4. 

Figure 5-1 (b)-(d) show the time variations of center positions of Gaussian bases with 

CEPs of ߶ = 0, 2.0345, and π/2 respectively. Blue solid lines represent the center 

positions of bases of electrons and red dashed lines represent those of nuclei. In Figure 

5-1 (b), one electron is ejected at the peak intensity of the pulse and the other electron 

remains bound in the core. In Figure 5-1 (c), a single ionization occurs but the 

recollision of the electron to the bound electron can be observed. This is a 

characteristic phenomenon observed in intense laser field experiments. Furthermore 

the double ionization after the recollision can be observed in Figure 5-1 (d). This 

double ionization occurs after interaction of two electrons during ݐ = 50~100 a. u. 
and can be recognized as a non-sequential double ionization in contrast to a sequential 

double ionization. From the comparison of Figure 5-1 (c) and (d), we can see that a 

small change of the CEP has a large impact on the fate of the molecular ionization. 
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Figure 5-1 (a): Electric field amplitudes of three pulses adopted in the simulation. Three lines 

with legends represent carriers and dashed lines represent the envelope. (b): Variations of 

the center positions of the Gaussian bases with the CEP of ࣘ = 0. (c): Results with the CEP 

of ࣘ = π/2. (d): Results with the CEP of ࣘ = 2.0354 radian. On (b)-(d), solid lines show the 

center positions of electronic bases and dashed lines show those of nuclear bases. 

 

5.2. Ionization dependence on CEP and cycle of pulses 

      In the above section, we saw the influence of the CEP difference on the 

trajectories in intense laser fields. Next, the effect of the difference of the laser 

condition is examined by changing the numbers of the cycle, the CEP and the intensity 

of pulses. The dependence of ionization count of H2 molecule on such parameters will 

be simulated. 

 

(a) 
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5.2.1. Laser condition 

      The laser field (ݐ)ܧ applied to the molecule is expressed as (ݐ)ܧ = sin(ݐ)ߝ଴ܧ ቀ߱ݐ + ߶ − ݈݁ܿݕܿ × ߨ + 2ቁ, (5-2)ߨ

where ܧ଴, (ݐ)ߝ, ߱, and ߶ denotes the peak intensity, pulse envelope, frequency 

and CEP respectively. The polarization direction is x-axis. The wavelength is 780 nm 

and the envelope is sin-square shape like as (ݐ)ߝ = ൜sin(߱ݐ (2 ∗ ⁄(݈݁ܿݕܿ )ଶ while 0 < ݐ߱ (2 ∗ ⁄(݈݁ܿݕܿ < 0ߨ elsewhere . (5-3)

The laser pulse shapes are illustrated as Figure 5-2 for these parameters. The peak 

intensity ܧ଴ of laser pulses applied in the simulation is 0.25 or 0.3 a.u. 

 

 

Figure 5-2 Electric field amplitudes of laser pulse for different CEP and cycles. Red lines show 

envelope of pulses and blue lines are carriers when the CEPs are 0. The green line shows the 

carrier when the CEP is not 0. 
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      An ionization count for a certain condition is determined in a pseudo code like 

    if (r1 < 17.3 && r2 < 17.3) 

        ioncount=0; // H2 

    elseif  (r1 < 14.0 && r2 > 17.3) || (r1 > 17.3 && r2 < 14.0) 

        ioncount=1; // H2
+ 

    else 

        ioncount=2; // H2
2+ 

Where r1 is the norm of the center position of Gaussian of electron1 ( |ݖଵۧ ) and r2 is 

that of electron2 ( |ݖଶۧ ). 

      The step width for the variation of CEP is set at గଽ଴ in the simulation. 

 

5.2.2. E0 = 0.3 a.u. 

      First, for laser parameters, the peak intensity is fixed at E0 = 0.3 a.u. (= 3.2 × 

1015 W/cm2) and calculation results are shown when the cycle number is 2. Figure 5-3 

shows the laser pulse shape and ionization count for CEP difference. In this cycle, 

double ionization does not occur. 

 
Figure 5-3 laser pulse shape and ionization count for CEP difference at E0 = 0.3 a.u. and pulse 

cycle = 2. The left pane shows the laser pulse shape at CEP=0. The red line represents the 

envelope and the blue line represents the pulse carrier. The right pane shows the ionization 
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count of H2 molecule for CEP change. 

 

Figure 5-4 shows the laser pulse shape and ionization count for CEP difference when 

the cycle is 3.5. In this cycle, double ionization occurs when the CEP is 80 degree. 

 

 
Figure 5-4 laser pulse shape and ionization count for CEP difference at E0 = 0.3 a.u. and pulse 

cycle = 3.5. The left pane shows the laser pulse shape at CEP=0. The red line represents the 

envelope and the blue line represents the pulse carrier. The right pane shows the ionization 

count of H2 molecule for CEP change. 

 

Figure 5-5 shows trajectories at CEP = 80 degree and CEP = 82 degree. At CEP = 80 

degree the ionization is double ionization and at CEP = 82 degree the ionization is 

single ionization from the right pane in Figure 5-4. We can find the difference of 

ionization mechanism after t = 250 a.u. in Figure 5-5. At CEP = 80 one electron which 

once got away from the core came back to the core and collided with the other 

electron and after that both electrons were ionized. This is the non-sequential double 

ionization mechanism but at CEP = 82 degree the other electron remained at the core 

and eventually single ionization was observed. Hence the difference of CEP results at 

the separation of trajectories and the different ionization mechanism. 
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Figure 5-5 Comparison of trajectories at CEP = 80 degree and CEP = 82 degree for cycle = 3.5. 

The left pane shows variation of center positions of Gaussians at CEP = 80 degree. The right 

pane shows variation of center positions of Gaussians at CEP = 82 degree. The red lines 

represent the bases of the nuclei and the blue lines represent the bases of electrons. 

 

      Figure 5-6 shows the comparison of count of the ionized electron for the 

variation of the CEP at cycle = 4 and cycle = 4.5. First, we can see the major difference 

at 0 < CEP < 90 degree for double ionization. Figure 5-7 shows the comparison of 

trajectories at cycle = 4 and cycle = 4.5 for CEP = 30 degree. We can see the divergence 

around t = 320 a.u. for the double ionization. This is because the sub peak of the laser 

pulse is stronger in the longer cycle pulse related to the shape of envelope and the 

strength of sub peak is effecting the second ionization. The double ionization in cycle = 

4.5 is sequential double ionization and the strength of the sub peak is mainly dividing 

the ionization count between cycle = 4 and 4.5. Then the region of 0 < CEP < 90 degree, 

cycle = 4 case does not have any double ionization but cycle = 4.5 case has always 

double ionization. 



97  

 
Figure 5-6 Comparison of count of the ionized electron for the variation of the CEP at cycle = 

4 and cycle = 4.5. The left pane shows the ionization count of H2 molecule at cycle = 4. The 

right pane shows the ionization count of H2 molecule at cycle = 4.5. 

 

 
Figure 5-7 Comparison of trajectories at cycle = 4 and cycle = 4.5 for CEP = 30 degree. The left 

pane shows variation of center positions of Gaussians at cycle = 4. The right pane shows 

variation of center positions of Gaussians at cycle = 4.5. The red lines represent the bases of 

the nuclei and the blue lines represent the bases of electrons. 

 

Furthermore, Figure 5-8 shows the comparison of trajectories at CEP = 90 degree and 
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CEP = 120 degree for cycle = 4. From the left pane in Figure 5-6, the double ionization 

occurs at 90 < CEP < 180 degree. At CEP = 90 degree and CEP = 120 degree, the 

recollision of the electron to the core occurs around t = 270 a.u. and immediately the 

other electron is ionizing. These are the non-sequential double ionization and the NSDI 

is the main mechanism for double ionization at this cycle number. 

 

 
Figure 5-8 Comparison of trajectories at CEP = 90 degree and CEP = 120 degree for cycle = 4. 

The left pane shows variation of center positions of Gaussians at CEP = 90 degree. The right 

pane shows variation of center positions of Gaussians at CEP = 120 degree. The red lines 

represent the bases of the nuclei and the blue lines represent the bases of electrons. 

 

Figure 5-9 shows variation of center positions of Gaussians at CEP = 118 degree for 

cycle = 4.5. From Figure 5-6, ionization count for these CEP and cycle is 0. When we see 

the detail of trajectory, the recollisions occur 4 times, and at t = 420 and 520 a.u., the 

permutation of electrons occurs. Then, eventually both electrons are captured to 

nuclei and ionization count is 0. In this case, if the electric field is strong enough for the 

ionization, some trajectories still show no ionization and the detail of trajectory 

includes complicated motion of electrons. 
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Figure 5-9 Variation of center positions of Gaussians at CEP = 118 degree for cycle = 4.5. The 

red lines represent the bases of the nuclei and the blue lines represent the bases of 

electrons. 

 

      For the intensity peak of E0 = 0.3 a.u. (= 3.2 × 1015 W/cm2), all the figures of 

ionization count for CEP against the parameter of cycles from 2 to 5 are shown 

together in Figure 5-10. From 2 cycles to 3 cycles, ionization is limited to single 

ionization. At 3.5 cycles the first double ionization is observed and this is explained 

above as non-sequential double ionization. At 4 cycles, the double ionizations start to 

occur at 90 < CEP < 180 degree and this reason is also described above. From 5 cycles, 

in the region of 0 < CEP < 90 degree the double ionization also starts to occur and this 

region is dominated by sequential double ionization. At 5 cycles, the double ionization 

occurs at almost all the region of CEP. This suggests that 5 cycles is enough to induce 

double ionization independently of CEP difference. At longer cycles, the envelope is 
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closer to 1 against CEP change, and the peak and sub peaks tends to be stronger. Then 

at few cycle pulse in strong laser fields, the increase of cycle number affects directly 

the ionization count. 

 

 

Figure 5-10 Variation of count of the ionized electron for the CEP difference against the cycle 

number of the pulse at E0 = 0.3 a.u. Figures show results for cycle 2 to 5 with 0.5 step width. 

Left top letters of “Cycle:” on each pane shows the cycle number of the applied laser pulse. 

 

5.2.3. E0 = 0.25 a.u. 

      Next, the peak intensity is fixed at E0 = 0.25 a.u. (= 2.2 × 1015 W/cm2) and the 

ionization count for CEP difference is simulated changing cycle number of laser pulse. 

Figure 5-11 shows the ionization count for CEP from 4.5 cycle number to 9. Under 4 

cycles, the ionization is not observed at this peak intensity. From the 6 cycles, the 

double ionization is observed. At the 6 and 6.5 cycles, the double ionization is 

observed between the CEP of 0 to 90 degree, and the double ionization is mainly 

observed between the CEP of 0 to 90 degree. Figure 5-12 shows the comparison of 

trajectories at cycle = 6 and cycle = 7 for CEP = 34 degree. The recollision of the 

Cycle: 2 Cycle: 2.5 Cycle: 3 Cycle: 3.5 

Cycle: 4 Cycle: 4.5 Cycle: 5 
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electron to the core occurs around t = 350 a.u. at the left pane and t = 450 a.u. in the 

right pane. After those, the other electrons are ejected from the core. These are the 

non-sequential double ionization and the NSDI is the main mechanism for double 

ionization at this cycle number. 

 
Figure 5-11 Variation of count of the ionized electron for the CEP difference against the cycle 

number of the pulse at E0 = 0.25 a.u. Figures are shown for cycle 4.5 to 9 with 0.5 step width. 

Cycle: ~4 Cycle: 4.5 

ionization count: 0 

Cycle: 5 

Cycle: 5.5 Cycle: 6 Cycle: 6.5 

Cycle: 7 Cycle: 7.5 Cycle: 8 

Cycle: 8.5 Cycle: 9 
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Left top letters of “Cycle:” on each pane shows the cycle number of the applied laser pulse. 

Until 4 cycle the ionization counts are all zero and figure are not shown. 

 
Figure 5-12 Comparison of trajectories at cycle = 6 and cycle = 7 for CEP = 34 degree. The left 

pane shows variation of center positions of Gaussians at cycle = 6. The right pane shows 

variation of center positions of Gaussians at cycle = 7. The red lines represent the bases of 

the nuclei and the blue lines represent the bases of electrons. 

 

      Figure 5-13 shows the comparison of trajectories at CEP = 110 degree and CEP 

= 158 degree for cycle = 7. The recollisions of the electrons to the cores occur around t 

= 450 a.u. at the both cycles. After those, the other electron is ejected from the core. 

In those CEPs, the NSDI is also the main mechanism for double ionization. 

      Those situations indicate that the NSDI is the main mechanism for the double 

ionization at the beginning of the double ionization against the increase of cycle 

numbers. Compared to the case of E0 = 0.3 a.u., the larger number of cycles is required 

to induce the double ionizations. Furthermore, the region of starting angles of CEPs for 

the NSDIs are different between E0 = 0.3 a.u. and 0.25 a.u. Hence, we could see that 

the effects of CEPs for differentiate the ionization field and its mechanisms and 

trajectories. 
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Figure 5-13 Comparison of trajectories at CEP = 110 degree and CEP = 158 degree for cycle = 7. 

The left pane shows variation of center positions of Gaussians at CEP = 110 degree. The right 

pane shows variation of center positions of Gaussians at CEP = 158 degree. The red lines 

represent the bases of the nuclei and the blue lines represent the bases of electrons. 

 

5.2.4. E0 = 1 a.u. and 0.1 a.u. 

On the above discussion, I discussed the case when the peak intensity is E0 = 

0.3 a.u. and 0.25 a.u. This is because if the peak intensity is much larger than E0 = 0.3 

a.u., all the electron will be ejected or if the peak intensity is much smaller than E0 = 

0.1 a.u., no ionization occurs. Figure 5-14 shows the ionization counts for the CEP 

difference at E0 = 1 a.u. with 1 cycle (left pane) and at E0 = 0.1 a.u. with 9 cycle (right 

pane). In the left pane, the double ionization occurred for all the CEP angles even for 1 

cycle number. The point which is zero is the lack of count because the calculation of 

trajectory was truncated for too long calculation time. The reason is guessed that the 

multicollinearity appeared. Oppositely, no ionization was observed at E0 = 0.1 a.u. with 

9 cycle in the right pane even for 9 cycle number. The reason why the ionization count 

varies drastically for the peak intensity is first that the peak intensity in the scale of 

W/cm2 is proportional to the square of the peak electric field intensity E0. Another 

reason is that the number of basis functions is small. I used 4 bases for 4 particles with 
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fixed orbital coefficients and trajectories will be deterministic in that situation because 

the small probability for the ionization cannot be expressed. 

 
Figure 5-14 Counts of the ionized electron for the CEP difference at E0 = 1 a.u. with 1 cycle 

(left pane) and at E0 = 0.1 a.u. with 9 cycle (right pane). Left top letters of “Cycle:” on each 

pane shows the cycle number of the applied laser pulse. The step size for CEP was 6 degree. 

In the left pane, the calculation of trajectory was not finished at CEP = 146 degree and 326 

degree and plotted as 0 count. 

 

 

  

E0 = 1 a.u. 
Cycle: 1 

E0 = 0.1 a.u.
Cycle: 9 

ionization count: 0 
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6. Summary and perspectives 

6.1. Summary 

      In Chapter 1, the object of the present research was described with 

experimental facts. In the molecular dynamics in intense laser fields, there are unique 

phenomena such as ionization of molecules, recollision of electron, non-sequential 

double ionization, and ultrafast proton migration. The calculation cost such as required 

memory size and time complexity is the critical problem in the simulation of dynamics 

in intense laser field. In conventional grid calculation, huge memory is required to 

express the electron-nuclear wave function and the time complexity is exponential 

time for number of particle. It suggests that it is practically difficult to apply the grid 

method to investigate the electron-nuclear mechanics in intense laser field. 

      The approach of the present research is CCS method. In CCS, the basis function 

is expressed with floating Gaussian which has a time-dependent center position and 

momentum. Floating Gaussian is suitable to follow the electronic motion in intense 

laser field and its time complexity is polynomial time for the total number of basis. 

Hence, CCS method is expected to be a good approach for this problem. 

      In Chapter 2, first the general EOMs were derived for the parameters ξi in the 

wave function. The analytical expressions of integrals with floating Gaussian functions 

were formulated. For H2 system, the wave function consists of Slater determinants of 

protons and electrons as described in Chapter 3. Each determinant is expressed with 

orbital function electrons or protons. Orbital functions are expressed with the linear 

combination of CCS. The analytical forms of tensor cij and differential of Hamiltonian 

were derived clearly. Also each integral of Gaussian was derived analytically. Hence the 

EOMs of electron-nuclear wave function were prepared. 

       The methods for optimization to the ground-state were introduced. One is 

gradient descent method (GDM) and the other is imaginary time propagation (ITP) 

method. The parameters are complex number in the present research, and then GDM 

should be modified for that case. In chapter 4, the optimizations of GDM and ITP were 

compared in the case of M = 4 and the convergence was much faster in ITP 
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optimization. The optimized energy was H = -1.0665 a.u. in the case of M = 10 with 

orbital coefficients fixed and it was H = -1.0684 a.u. in the case of M = 9 with orbital 

coefficients varied. If the orbital coefficients were allowed to change, the total energy 

agreed with the limit of TRC-NOMO. 

      After we obtained the ground-state, real time propagation was simulated. In M 

= 4 case, it was confirmed that the bases did not move at the equilibrium points and 

stable oscillation and bonds were achieved against some initial momenta. The 

vibrational period of nuclei was 299 a.u. in the case of M = 10 with orbital coefficients 

fixed and it was 340 a.u. in the case of M = 9 with orbital coefficients varied. The 

experimental value of vibrational period is 331 a.u. and the result in M = 9 case was 

closer to the value. We could also observe the same vibrational periods in the 

calculation of squared inter-particle distances. Furthermore, the electronic excited 

states were by the MOs of the conventional HF calculation and the energies of 

electronic excited states calculated by the TDHF method. Through the Fourier 

transform analysis, we could observe the high frequency components related to the 

electronic excited states in the squared inter-nuclear distance. In the 

Born-Oppenheimer picture, electrons are always at ground-state and the nuclei will 

move slowly as a harmonic oscillator. The amplitude of the peak heights of those 

electronic frequency components depended on the mass of nuclei. Hence, we could 

confirm the non-adiabatic coupling between nuclei and electrons. 

      In Chapter 5, the laser field was introduced to the simulation and the molecular 

dynamics depending on the laser parameters was calculated. First the calculations for 

laser pulses of E0 = 0.3 a.u., 1.5 cycle, and three different CEPs were shown. In strong 

few cycle pulses, the difference of CEP critically affected ionization pathways and the 

non-sequential double ionization was observed. Next, changing the cycle number, the 

ionization count against the CEP difference was simulated for the laser pulses with the 

sin-square envelopes at E0 = 0.3 a.u. and 2.5 a.u. Then we could observe that the 

ionization counts were higher in E0 = 0.3 a.u. than in E0 = 0.25 a.u. and higher for 

longer cycles. We could see that there are regions where SDI and NSDI mainly 
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contribute respectively. For longer cycles, the ionization counts tended to be isotropic. 

The simulation was done in M = 4 and this was least value for 4-particle system. 

However, we could clearly see the effect of laser parameters such as CEP, peak 

intensity, and cycle number against the ionization yields. Those non-adiabatic ab initio 

calculations can be achieved due to the small calculation cost with floating Gaussian 

basis functions. 

 

6.2. Perspectives 

      In the present research, the width of Gaussian γ was fixed through the 

simulation. To treat γ as time-dependent parameter, the EOM for γ should be derived 

analytically. It might be more complicated to derive than other parameters, but more 

accurate calculation would be obtained by using the time-dependent γ. For example, 

the small amplitude of ionization can be expressed with widening of width of Gaussian. 

      In the calculation of the trajectories in laser fields in Chapter 5 was done with 4 

Gaussians with orbital coefficients fixed. However, there was difference for the 

ground-state calculation between M = 4 case and M = 9 case. If the trajectory is 

calculated with at M = 9 with orbital coefficients varied, more accurate and interesting 

results can be obtained. However, the calculation time per 1 trajectory is about couple 

of minutes for M = 4 case but more than days for M = 9 case. There is also the problem 

of instability when the orbital coefficients are allowed to change. Then it requires 

careful treat to expand the basis set for numerous calculation of trajectories. 

      The strong point of CCS is the polynomial time complexity for the number of 

Gaussian basis functions. The interesting object is a lager system than H2 molecule. 

Furthermore, the formulation for nuclei should be adopted for lager systems. Proton is 

especially light particle in nuclei and hybrid formulation for light proton and heavy 

nucleus (e.g. quantum mechanical treatment to proton, regarding heavy nucleus as 

Coulomb point) may be an efficient way to adapt the electron-nuclear wave function 

to the larger system. Matrix assisted laser desorption/ionization (MALDI) is one 

phenomenon of protein in the laser field. Another example of dynamics in the protein 
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is a proton pump at a biological membrane. The eventual goal is to adopt this method 

to the lager substance such as protein and discover interesting phenomena or control 

of reactions using laser field through calculations using floating Gaussian basis 

functions.  
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