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an electron-nuclear wave function with floating Gaussians
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Abstract
Chapter 1

The object of this thesis and the background of the theory and field are
introduced. First physical phenomena treated in the theory are described introducing
previous experimental research. Second theoretical methods for simulation are
described and compared.
Chapter 2

Theoretical formulation using floating Gaussians for quantum dynamics of
molecule is derived. Quantum mechanical equations of motion are derived and
necessary terms with floating Gaussians are analytically derived.
Chapter 3

General derivation in Chapter 2 is applied for H, molecule. Analytical
formulations of electron-nuclear total wave functions, integrals, and differentials by
parameters in wave function of H, molecule are obtained.
Chapter 4

Calculation results of simulation for a ground state of electron-nuclear wave
function of H, molecule are shown. Energies, periods of vibrations of squared
inter-particle distances of electrons and nuclei, comparison of electronic excitation
energies with the conventional HF methods, and non-adiabatic effects depending of
the mass of nucleus are discussed.
Chapter 5

Time-dependent quantal dynamics of H, molecule in intense laser fields are
simulated. Molecular dynamics depending on laser parameters are discussed.
Chapter 6

This thesis is summarized and perspectives are described.
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1. Introduction
1.1. Object of study

%2 such as

Unique molecular dynamics are observed in intense laser fields
tunnel ionization, electron recollision, proton migration3" 4 Coulomb explosion of
multiply charged ions, and molecular dynamics depending on carrier-envelop phase
(CEP) of laser pulse®. In order to describe such dynamics theoretically, it becomes
necessary to treat the electronic motion associated with ionization induced by the
interaction with the strong electric field and longtime dynamics during and after the
duration of excitation laser pulse. It requires a large calculation cost to simulate these
phenomena quantum mechanically and a method to deal quantum mechanically with
the motion of nuclei is needed to be developed. Especially iterative simulation and the
large calculation cost are required to investigate the dynamics under different
conditions of laser pulses such as CEPs. Due to heavy calculation cost in the simulation
of molecular dynamics in intense laser field, classical approach modified with some
terms of quantum effect is still effective in this field because of these difficulties® ”). In
this chapter, | will describe molecular dynamics in intense laser field first. Furthermore,

previous approaches for these dynamics will be introduced and problems on previous

works and the approach in present research will be described.

1.2. Dynamics in intense laser field

In intense laser field, the ionization of molecule occurs even if the photon
energy is smaller than the ionization energy. This can be described with the
mechanisms of multiphoton ionization and tunnel ionization. Figure 1-1 shows the
pictorial sketch of mechanism of multiphoton ionization. The electron absorbes several
photons simultanuously and is excited. If the energy level is higher than the potential
barieer of nuclear, the electron can be ejected even if the energy of one photon is
lower than the barieer. But the excitation probability is exponentially in proportion to
the number of photon to absorb, so the probability of ionization is not high if the laser

intensity is not strong. In further stronger laser field where laser field intensity is in the

6



range of 10%3~10% W/cmz, the laser field will behave as electric field and tunnel
ionization mechanism can be observed. Figure 1-2 shows the sketch of mechanism of
tunnel ionization. If the laser field is strong enough, the potential curve of nuclear wil
be distorted by the electric field of laser pulse. At that time, the potential barrier
against the bound state of electron will come lower and the probability of tunnel
phenomenon will increase. Once the electron tunnels the barrier, then the electron
can escape from the nuclear along the distorted potential. For those contribution, the

ion yield will increase in strong laser field.

lonization

Photon

Potential with nuclear

Electronic state

Figure 1-1 Sketch of multiphoton ionization

Electric field of laser

Tunnel ionization

>

Figure 1-2 Sketch of tunnel ionization



However, if we measure the ion vyield for double ionization for atoms or
molecules which have several electrons such as He atom and H, molecule against the
laser peak intensity, we will observe knee structure® shown in Figure 1-3. This knee
structure is described by two kinds of double-ionization mechanisms of sequential

double ionization (SDI) and non-sequential ionization (NSDI).

A

contribution of SDI

lon Yield

|
|
\

\ V4
S « Zcontribution of NSDI

. »
Laser Intensity

Figure 1-3 Sketch of relationship between laser intensity and ion field. Red solid line
shows the ionization probability of doubly charged ion against the peak intensity

variation.

If the laser field is strong enough to detach two electrons from nuclear, electrons can
be ionized independently without interaction between electrons. Then electrons are
ejected sequentially from the atom or molecule and this ionization mechanism is called
SDI. However, in a weaker laser field where the laser strength is not enough for SDI,
there is another contribution of double ionization. This ionization mechanism is NSDI
and it can be described by recollision of electron. Figure 1-4 shows the pictorial
explanation about mechanism of recollision of electron. In the strong laser field, the

laser field can be regarded as electric field and this electric field distorts the potential
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of nuclear. At that time, one electron will tunnel the potential and the other electron
will remain at the bound state in the core if the laser pulse is not strong for SDI. And
first the electron which tunneled the potential will go away from the core. But in laser
pulse, the electric field will alternate along the frequency of the pulse and the shape of
potential will be reversed after some time pass. Then this electron is forced to be back
to the core and it will collide with the core and the other electron. Then two electrons
can be ejected together and this ionization mechanism with interaction between two
electrons is called NSDI. NSDI will have the major contribution for the double

ionization when the laser pulse is not strong enough for SDI.

Time P 4

Tunnel ionization
A P “_‘._*
f NN . ‘,O‘

»/
Figure 1-4 Sketch of non-sequential ionization

This NSDI mechanism suggests that we should treat the dynamics of electrons
fully through the laser pulse duration and in the region of space which is distant from
the atomic or molecular core to simulate quantum mechanically. It contributes to
further heavier calculation cost than that of calculation for static state of ground-state.

Furthermore, those dynamics will depend on laser pulse condition. In strong
laser field, carrier-envelope phase (CEP) at few-cycle pulse plays an important role for
the ionization mechanism. Figure 1-5 shows the laser pulses which have different CEP
against the same duration, cycle, intensity and frequency. In the previous experiments),

the molecular dynamics of C,D, was reported. The location of ionization and direction

of dissociation of D" from molecular core will depend on the CEP difference and
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eventually the direction of bond-breaking will change by CEP difference. This result
suggests that the CEP will affect the chemical reaction and such a parameter in laser
pulses has important role in dynamics. Not only the CEP, but also other parameters
such as peak intensity, cycle, and wavelength contribute to dynamics in strong laser
fields. From the aspect of quantum calculation, we need to calculate trajectories
independently against the different laser conditions. In such a situation, the calculation
cost is more and more important issue to investigate molecular dynamics in intense

laser field.

Carrier-envelope phase (CEP)

r T
0.8 /

amplitude
=) © o o
o o N N fo )

©
D

o
(o)}

-0.8

|
0 50 100 150 200 250 300 350
time
Figure 1-5 Laser pulses which have different carrier envelope phase. Red lines
represent envelope of laser pulses. Yellow and blue lines represent carrier of laser

pulses.

In intense laser field, the nuclei are not necessarily at standstill while laser

910 the ultrafast proton migration in methanol was

pulse applied. In previous reports
observed as shown Figure 1-6. In the Born-Oppenheimer picture, it was considered

that nuclei are much heavier than electrons and they can be treated as fixed Coulomb
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points. But these experimental results show that protons are not fixed in the molecule
in the reaction with laser pulses. This fact suggests that protons should not be treated
as fixed Coulomb points in the theory to investigate molecular dynamics and
constriction of quantum mechanical theory for nuclei and electrons may give us new

interesting results and point of view.

- L - . .
7 @& a8 oy A A °
® ‘ —_—
©®© © — @ @ @ o
e . * @ -

Figure 1-6 Proton migration in CH;0H?*. Blue and red circles represent H atom.

At above description about molecular dynamics in intense laser field, |
described necessity to follow the electronic dynamics through the laser pulse and
calculate trajectory on each laser condition. At that time, the calculation cost and time
are the critical issue. Furthermore, we need to develop the theory to treat not only
electrons but also protons quantum mechanically. From next section, | will explain

about previous approaches for molecular dynamics calculation.

1.3. Classical approach
The one of approaches is a way to describe the ionization mechanism with

classical dynamics. It is difficult to construct stable chemical bonds with pure classical

12)

dynamics. Then soft-core interaction potentialll)' is used instead of Coulomb

potential. Soft-core interaction potential is represented as
1
VxZ+a?

Here x is the coordinate and a the parameter. When charge points are far away

V(x) = (1-1)

enough this potential behaves as usual Coulomb potential and when they are close the
potential is suppressed to finite. Hence the calculation of motion will be stabilized

avoiding singularity. For example, in the simulation of ionization of H, molecule in a
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strong laser field with this method, the motions of 4 particles are chaotic and nonlinear,
and the bond is unstable totally though there are periodic trajectorieslz). Furthermore,
there is a way to modify the classical approach with some additional terms of quantum
effect to satisfy Heisenberg principle6)’ 71321 1 this method, the additional potential
which satisfy the uncertainty principle

lpl x |r| = ¢h . (1-2)
Here & is a parameter for the calculation. Through calculations with classical
equations of motion, we can simulate many phenomena such as collisions of particles,
ionizations and can obtain statics for the information of kinetic energy release (KER)
and anisotropy of ionization and so on. On the other hand, we need parameters which
are not ab initio and we should construct additional potential for each number of

particles of the problem.

1.4. Grid method
One conventional way of quantum mechanical calculation is grid approach. In
ordinary grid approach, the grid space is used to represent the wave function. Figure
1-7 shows the pictorial example of grid representation. The strong point of grid
method is flexibility to express the wave function. Any shape of function can be
projected numerically into the grid space. But there are several weak points. In the grid
method, the calculation cost is extremely heavy. Even if we assume the calculation for
static state, we need huge memory to store the grid points. For example, in the case of
H, molecule as 2 electron problem on cylindrical coordinate, the memory size required
is
Y(pq, P2, 21,22, $): (50,50,200,200,20) = 16 Gbytes , (1-3)
only for two electrons. If we want to treat electron-nuclear wave function for H,
molecule, several billion times of this memory size will be required. In the present
resource, it is actually difficult to use peta or exa bytes of memory. Not only the

memory size, but also calculation time will be incredibly long.
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Figure 1-7 Example of grid representation of wave function. Wave function ¢ is

defined discretely on x and y.

Furthermore, it is necessary to prepare larger grid domain to simulate dynamics
in strong laser fields compared to static state calculation because the recollision
mechanism of electrons should be treated appropriately. As described in Figure 1-4,
even once electron gets distant from the core, there is a possibility that the electron
comes back and plays important role. Hence we should prepare lager grid domain to
follow the motion of electron which is not near the core.

There are previous works for dynamics of H, molecule in strong laser fields with
grid methods. One is Belfast method??. In this method, a mixed basis set was used for
the wave function and finite-difference method was used for the time propagation. In

this method, some dimensions are expressed with basis function and the application of
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grid is restricted to some dimensions. In another previous report23), the center-of-mass
motion of the electrons was approximately reduced. Naturally, the motions of nuclei

are fixed in the both simulations.

1.5. Coupled coherent state (CCS) method

Coupled coherent state (CCS) method is a way to deal with a time-variation
wave function effectively with floating Gaussian bases®***. Coherent state is a state
which returns complex number against operation of annihilation operator @ and

creation operator @' such as

alz) = z|z) , (1-4)
(z|at = (z|z* . (1-5)
And for example, a Gaussian like
1
4 J ip(t)q(t
(xlz) = (%)4 exp (—§<x —q(®)* + %p(t)(x —q(®) + —Lp(z)g( )) (1-6)

is one of coherent states. Figure 1-8 shows the image of this function.

A wide spatial range of grid is required to follow the motion of electron at
ionization, but in CCS method the motion of electrons can be expressed by variations
of center positions and phases of floating Gaussian bases and it is not necessary to
increase the number of basis against the spatial range of electronic motion at
ionization. In CCS method, for calculation of wave function, the time complexity is
O(M*), where M is total number of CCS bases. 4™ order comes from the heaviest

calculation part of 2 particle Coulomb integral. On the other hand, in grid method, the
L\3N
time complexity is O ((A—l) ) in 3-dimensional space, where L is range of grid per 1D,

Al is step width of each grid, and N is total number of particles. In grid method,
necessity of large grid domain means increase of L. However, in CCS method, the
floating Gaussian can follow the motion of electron which is distant from the core,
then M is independent from the motion of electrons.

Furthermore, the calculation cost of grid method will exponentially increase

against the number of particles. On the other hand, it is also necessary to increase the
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number of bases in CCS method, but the order of dependence is polynomial. Hence it
is practically impossible to use grid method but it is possible to apply CCS method for
larger system for simulation.

In the previous study of CCS, electron dynamics in strong laser fields was
investigated with CCS method in the system of He atom?® with the nucleus fixed. As
seen in proton migration, nuclei move very fast in the intense laser field. As well as the
deal with the electron dynamics, theoretical formulation of quantal dynamics of nuclei
is a point of the present research. The dynamics of H, molecule in the strong laser field
will be investigated in this paper as an example in the treatment of the

electron-nuclear wave function.

1/y

Amplitude

q %

Figure 1-8 One-dimensional coherent state with center position g and momentum p.

There are previous works of the electron-nuclear wave function of H,
molecule®*®*? as nuclear orbital-molecular orbital (NOMO) method, but those are for
time-independent static states. Previous works for CCS method to treat the dynamics
of nuclei are also still limited in the framework of Ehrenfest approximation.

In this thesis, formulation of time-dependent quantum mechanics by the
electron-nuclear wave function with CCS bases will be indicated. And the application

for H, molecule and its results will be shown and discussed.
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2. Quantum dynamics with floating Gaussians and general formulations

2.1. General equations of motion (EOMs)

The EOMs are derived from the variational principle. In the non-relativistic

guantum mechanics, the Lagrangian L is determined as

-

where H is the total Hamiltonian of the system, ¥ is the wave function of the

o
i H|'P> , (2-1)
ot

system, and tis the time. The action S of the system is expressed as follows,

[
S = j Ldt , (2-2)

t1
and the EOMs are obtained from the condition of the principle of least action,

55=0. (2-3)
6S is derived from Equation (2-2) as

tz Ja J

5S=f dt((‘l’+61}’ ih——H|‘P+6‘P>—<‘P ih——H|‘P>> (2-4)

t dt dat

tz I I
- ft dt (( i - H|‘P> +< i - H|5w>) . (2-5)
From integration by parts for t,

tz t2 a

f dt< lh—|5':” w dq | “dewrinsw (2-6)

f f f dq< [P s¥]} ) " e 65”1'?1%5”*) . (2-7)

SW¥(t,) = 8¥(t,) = 0 asthe boundary condition, then Equation (2-7) is formulated as

tZ tZ a
f dt< m—|5lp jfqu deoving v
t1

[
=j dt
t

1

(2-8)

Pl
—ih—

T

o¥

where 5/61: denotes differentiation of the bra vector with respect to time. Therefore
Equation (2-5) is derived from Equation (2-8) as

55 [ a

where 5/61: denotes differentiation of the ket vector with respect to time. Hence,
(sP|H|YP) + (P|H|sY¥) = s(¥|H|P)
= in((6¥|¥) - (¥]o¥))
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'ha H
T

P

Jd
o¥ ¥)+ 'P—iha—H 6¥)=0 (2-9)

(2-10)



is satisfied. Equation (2-10) is rewritten as

where {Ej} are the parameters describing the dynamics of the Gaussian wave packets

v
0¢;”

4

such as their positions and orbital momenta, H = (W|ﬁ|W),

_ 0zZ; 0Z; 1o
Cij = 5%, 3¢, (2-12)
and furthermore,
7 _ih W o ¥ - (2-13)
i T o[ \9¢;” '
As a notation,
o o™
V| Py p1a
0¢; 6{1-

and Equation (2-11) is not necessarily the same as the equation in the references 13)

on the complex conjugate of &; in the bra. This is because we are assuming that the

time-dependent variables are complex numbers. Here,

aZj_ih< o |ow| [ 2 ¥\ [0 |a¥| |0 awqj) (2-15)
08, 2 \\0& | a¢, 0§;0¢;]  \0g;"|ag| \og” ag;” '
aZl-_ih< ow |ow| [ |2 ¥\ [ov|ow¥| |0 awqj) (2-16)
95, 2 \\ag;" | g 05,06 \o& |og;| \ogtag| )

and ¥ is at least class C?, then
0 oV B 0 oV

0§,0¢;  0&; 08,
therefore the relationship of Equation (2-12) is satisfied.

(2-17)

Hence, the time variation of parameters in the wave function can be obtained

solving Equation (2-11) as

. 0H
§j = Z(C_l)jia_fi : (2-18)

2.1.1. In the case of unnormalized wave function

When the wave function is not normalized, if this wave function is put 1 as

21



)
Yy = —, .
= T 219)

then, Equation (2-13) is written as

_iff 1 v\ @y 9 [ 1 1 [ov
=) () - e
W \"10g;| ety 08 \J@lpy)  Wiv) \0g; (2-20)

_i( 1 ><¢|¢>>

05 \J W)/ @ly)
iR < ‘aw o
=2 \\*|55,] ~\og"

2.2. Derivation of Integrals for Gaussians

¢>> (2-21)

In this section, integrals for Gaussians are derived. In CCS method, wave
function is expanded with linear combination of floating Gaussians and integrals
needed in the EOMs can be derived in analytical form. Against the Gaussians

: - i) g ()
Y\3 14 2 | ip*™q
(x]2®) = (E) exp <_§(x —q®)? + Ep(k)(x —q®) + T) , (2-22)

the integrals for |z) is derived. Here a M-diminsional Gaussian |Z) is derived as

M
|Z) = HIZU‘)) , (2-23)
k=1

as a product of 1-dimensional Gaussians |z(k)). In present research, the dynamics on
real 3D space will be considered and M = 3.

2.2.1. Overlap integral

First, overlap integral (z’|z) is derived. In the case of 1 dimension,

1 .
(z'|z) = j_w dx (%)4 exp (—%(x —q')* + %p’(x -q")
(2-24)

1
ip'q"\" (vy* (__ b q)
+ 2h> (n) exp(—5(x—q) hp(x O+

Here,
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LIS A |

v N2 L, ~ iD'q y
eXp<_?(x—q)2_Ep(x—q)— )exp<_§(x_q)2

2h
(2-25)
Pq
hp(x q)+2h)
Y +v . Y Y i ,
= exp| - ¥+ (a+y'q)x = 50>+ |+ -px
2 2 2 A
e (2-26)
ip'q’" ipq ip'q’ ipq
YRR T +ﬁ>
= ex —y,+yx2+[(]/ +y' ')+i( - ')]x_ 14 2+]/_’ 12
(2-27)

i r I/
—ﬁ(pq—pq)>

2

_ry [(yq Y'q')++ (p p)])

2 <x Y +vy

= exp

1 [ L ! 2 1 r 12
+m[(yq+yq)+g(p—p)] 2[q +y'q’?] (2-28)

i r I/
—ﬁ(pq—pq)

If we use a label of complex number

1 1
_ y2q + ih_ly 2p ’ (2-29)
V2
we can derive as
1
q=Q2y)2z+2z") (2-30)
v 1
= —in(2) (z -z (2-31)
p = —ih (2) (z—-2z%)
—ih
pq=—- (2% — z?%) (2-32)
h |y’
I —_ | * I % 2-33
p'q 2l.\E(ZH)(Z z'") (2-33)



and
i
yg+v'q)+ ﬁ(p -p")

1

~ Gt a+ G-+ () 1+ 2 - @ -2

2 2
=2yz +2y'z"
-m[(l’Q‘*’V'CI')‘I‘ (- P)] (]/ ) \/—Z+\/—Z
1

— 2 1 %2 [
_(y,_}_y)(yz +y'z" +2yy'zz )

1 .
v@> +v'q? = Slz+2) + (2 +27)]
i 1
s ' = |2 _ %2 _ 12 rx2
» (Pa—p'a’) 2[2 7=z "tz ]

. 2 7 12 L o

~yYq°+vy'q +E(pq—pq)

1*2

1 x
= E[zz 422+ 2% 4 2 4 2225 4 222 + 22— =2 4 7 2]

1 '*2 ) E3
E[Zz + 272"+ 2zz" + 27’z ]

1 [( + I I)+l( /)]2 1[ 2+ 1 12] L ( I I)
207 +7) Yq+vy(q 7 p—p 2 Yq Y q ) pq—Dpq
= - (yzz + ]/’Z'*Z + 2 yy’zz’*) — l [ZZ +2*% 22" + z’z‘*]

' +v) 2

Y=V (o a2y, YV 1 '

=———(z"-2"" ) +— zz'"" [ZZ +7'7z7] .
2(y +V)( ) ' +v)

When we consider about generalized form of

f°° dx(C(x — q)* +D(x — q) + E)exp(—A(x — q)* + B)

= Cexp(B)f dx(x — q)?exp(—A(x — q)?)

24

(2-34)

(2-35)

(2-36)

(2-37)

(2-38)

(2-39)

(2-40)

(2-41)

(2-42)

(2-43)

(2-44)



+Dexp(B) f dx(x — q)exp(—A(x — q)?)

+Eexp(B) j°° dxexp(—A(x — q)?)

If we put y = VA(x — q), then dy = vAdx and

f_(:dx exp(—A(x — q)?) = A_%f

—00

(0] —

exp(—y*)dy = (%)2 (2-45)
foo (x — @)dxexp(—A(x — q)*) =0 (2-46)

fwdx(C(x —@)*+D(x—q) + E)exp(-A(x — q@)* + B)

1 _3 1 (2-47)
= exp(B) [CEA 2T+ EA zx/ﬁ] .
By comparing Equation (2-28) with Equations (2-43) and (2-47),
A=Y (2-48)
2
2/vy' 1
B = 2 _ g/*? - 72z — =|zz* + 7'7""] . (2-49)
2(1/ +V)( )+ 0'+v) 2
Hence 1 dimensional (Z’|z) is
1 1 _1
N AN AT S AN y—v o2 Y .
(z'|z) = <n> (n) ( 2 ) Vmexp (2(y’+y) (22 )+ (y +y)
(2-50)
1 [ + ), )k
> zz" + 7'7"]
1 \/—
L1y 4y 2 Y=V . any, 2NV,
=v4y4 | —— ex —F\z°"—Z + 7 ZZ
e < 2 > p<2(y +V)( ) 0'+v)
(2-51)

1[ + ), )k
EZZ zZz7] .

For the case of M dimension, it can be obtained as a product of 1D cases, then 3
dimensional (z’|z) is derived as
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o' +vy)

3
3 3 I+ _f _ !/ 2 !
(z'|z) = y'3y® <y > y) exp (—zz/y, +yy) (22— 2"%) + VY
(2-52)

1[ + ), )k
EZZ 2z .

2.2.2. Kinetic integral

Next, the integral for the operation of Laplacian is derived. In the same way as

the overlap integral, if we consider the 1D case,

(Z'|A)2) =J. dx <]/;>

. . (2-53)
+%> 72(7);) exp(——(x—q)2 hp(x—q)+ 22)

=

Y , [, )
exp(—;(x—q)”Ep(x—q)

Here

(%)

=

Y ) L, )
exp(—;(x—q)”ﬁp(x—q)

LN 1
i'q’\ L, (V)3 (__ TN _ ., ipq
+ 2h> v (n) exp(—5 (& —q) hp(x O+

() ey

® yl 1A l ! A
j dxexp(—;(x—q)z +op (x—q")

\_/

N

, (2-54)
l
+ ﬂ) {[ yx—q) + hp] - V} exp (——(x - q)*
pq
hp(x Q)+ Zh)
If we put
" .
= - [(Vq +v'q") +%(p - p’)] ) (2-55)
then,

= m (V7G+ 2+ @ +29) + (7= 2) =@ =2 (2-56)
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e

and Equation (2-54) is

2i 2
{Vz(x - q)* —;lm/(x —-q) —%— V}

- )2 (2-58)
=V2(x—ﬁ)2—2yz[(q—ﬁ)+yihp](x—ﬁ)+{y(q—ﬁ)+%p} -y,

then, each coefficient in Equation (2-47) is

a=rrr (2-59)
2
y—v 2y, Y 1
B=———(22-2"")+— zz* —=|zz* + 2’2"] , (2-60)
20/ + )’)( ) 0'+v) 2
C=y?, (2-61)
i 2
E= {y(q — ) + ﬁp} —y (2-62)
1 2
N N\ e (M ]
={y<<2y> 2 +2) = s (7 + 2 J?)>+(§) (z-z )} —y  (2:63)
% ! 2 2
_r ZZ—ZW(ZW-l_Z \/7) —y=Z 2r’ z— 2Vrv’ " -y (2-64)
2 o' +7) 210/ +yv)" ' +v) '
therefore,
1 2 ! 2 ! 2 !
14 144 14
(Z'|Alz) = y(Z'|z) |5{7= zZ—— z" —— (2-65)
Y 2('+yv) '+ o' +v)
In the case of 3D, in the same way as the overlap integral,
2
1 2y 2\yy' 3y’
(Z'|Alz) = y{Z'|2) |=4{— zZ—— 7"y - (2-66)
Y 2('+v) '+ ' +v)

2.2.3. Coulomb integral

In this section, a Coulomb integral between 2 particles as Equation (2-67) is

derived.

(z,'[{z,/| | | |z1}22) (2-67)

rn—n
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This formula of Gaussian integral can be integrated with Fourier transformation®. In

this case, if we put

V2
io=—— (2" v +2.v;) , (2-68)
nl (yil_l_yi) (Zl )/l Zl\/Z)
fl =ﬁ1 _ﬁz ) (2'69)
p=Vi-ii=+i2. (2-70)
Then,
(z,"{zy"] |z1)2,)
2 1 |r1_r2| 1 2
i, n\ (Y v (2-71)
(2 + 2)( 2t 2)

1
= (z1'|z:(2,"|z,) ;erf p

nWon. v . v
(2+2+2+2)

These results were validated by comparison with numerical integrations using
expressions of Equations (2-24), (2-53) and (2-67). Calculation of hundreds of
thousands of times with Monte Carlo integral resulted in agreement with upper 3
digits of calculation against the analytical forms.

2.3. Optimization methods

Through above discussions, we can obtain the quantum dynamics along the
EOMs. In this section, we will consider about how to get the ground state and

approaches for optimization.

2.3.1. Gradient descent method (GDM)

The usual way for optimization is gradient descent. We can know the analytical
. . ) . e
form of the integral of Hamiltonian £, then the integral of Hamiltonian can be

optimized to a local minimum through the gradient descent.
In usual gradient descent, H is defined on R®™ — R and with a small a, H

can be optimized through iterations as

J0H

6_xl- .

However, in the present research H(x) is defined on C* — C and the usual

Xiy1 = X; — A (2-72)

gradient descent cannot be adopted and needs to be improved.

For a small d,
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0H
H(x+d)=H(x)+a-d . (2-73)

Here if d is put with > 0,5 € R as

OH\"
d=— <_> , (2-74)
A 0x
then,
OH (9H\" oH |
= —_— —_— — = -_— _— (2-75)
HOc+d) = HOO — o= (52) =He -l
soif x isset properly to satisfy H(x + d) and H(x) to be real,
oH | oH|?
o 2 s (2-76)
'8|6x €RA ﬁ|ax =0
~H(x+d) <H(x) . (2-77)
Hence, through iterations of
oH\"
Xiv1 =X — B (a—xl) , (2-78)

the optimization of H can be achieved.

2.3.2. Imaginary time propagation (ITP) method

GDM is the simple method for the optimization but the convergence speed is
not necessarily fast. In present research, the formulations are for time propagation
and we can use the imaginary time propagation method for the optimization. It was
suggested that the imaginary time propagation may avoid the problem of a
convergence to a local minimum not to a global minimum®.

The imaginary time 1 is defined as
T=Iit . (2-79)

When we assume a vibrational component of e~i“t in the wave function, this
component is expressed as
e Wt = gm0t (2-80)
replacing the real time t by the imaginary time t. In that case, equation (2-80) will be
dumped exponentiallyas e ™®* - 0 in T - o .

The EOMs for the imaginary time is expressed from equation (2-18) as

dé; d¢; _ i OH
d—szd—”]t = —lZ(C l)ﬂa_fl . (2-81)

By imaginary time propagating this EOMs, the wave function can be converged to the
ground state.
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3. Theory for application to H, molecule
In this chapter, we will consider the application of general theory in Chapter 1
to H, molecule. We will treat the electron-nuclear wave function and the problem is

4-particle system.

3.1. Total wave function
3.1.1. Expression of wave function with 4 orbital functions
In the present research, nuclei are treated in the same way as electrons, and
the wave function of the system is represented as
|'¥) = [A)|B) (3-1)
in a product form of |A),|B) where |A) is the Slater determinant of electrons and
|B) is the Slater determinant of nuclei. Here they are treated in singlet configurations

and their spatial parts are written by the spatial orbital of each particle as
|z )| 22) + 122)|21)

[Spatial part of |A)] = ’
patial part o \/2((Zl|21>(22|22) + (2112,(23121))

(3-2)

[Spatial part of |B)]
_ lwi)lw,) + lwy ) lwy) (3-3)
\/2(<W1|W1><W2|W2) + (wylwy w, |lwy ) ,

where |z,),|z,) are spatial orbitals of electron 1, 2, and |wy),|w,) are spatial

orbitals of nuclear 1, 2.
The total Hamiltonian is integrated with this ¥ as follows.
(w|])
1

B 4((z1 |21 X221 22) + (z1122)(22 |21 ) (wy lwy Xwz (W) + (wy lwa Kw, [wy))

((Wz|(W1|<Zz|<Z1|H|Z1>|Zz>|W1>|W2) + (W1|<Wz|<Zz|<Z1|ﬁ|Z1)|Zz>|W1)|Wz>

w1 (W, (21 (22 | H 1 20)|22) W) W) + (wo | (wy (21 (22| H 20 | 20l wi)Iwa) (3.0
H(wa [(wy (2, [{z1 [ H 20| 22 ) W) lwy) + (wy [{w, (2,121 | H 21} 2;) [ w ) [wr )
Hwy (W, 1(z1 (2, | H 21 ) 2;) [wo) Wy ) + (wo [ (wy (21 {2, | H 21| 2, ) [w) lwy )
(W [(wy (2 121 | H | 2,120 wi Y wz ) + (wy [{w, (2, (21 | H | 22) |21 ) [ wy ) [ W)

+(wy (w21 [(z2 | H | 25) 20 Y lwy Mz ) + (o [{wy {24 {25 | H | 2,) 1 21 Y wy Y w,)
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+(wa [{wy (22 {2y |H|22) 2y lwa ) Wy ) + (wy (o {25 {2y | H | 2,) 1 21 Y wa )y )
+(W1|(W2|(Z1|(Zz|ﬁ|zz)|z1)|W2)|W1> + <W2|(W1|(Z1|(22|H|Zz)|z1)|W2>|W1))

-

H is symmetric against the exchange of z;, z,, that is

<Zz|(21|H|Z1>|Zz) = <Z1|(ZZ|H|Zz>|Z1) ) (3-5)
<Z1|(Zzlﬁlz1>|zz) = (22|(21|ﬁ|22>|21) ) (3-6)
using this relationship to Equation (3-4),
(¥|A|w)
1

B 2(z1121 4221 22) + (211221221 21) Wy [wy Xwa lwy) + (wy [w X wy [wy )
((Wz|(W1|<Zz|<Z1|ﬁ|Z1)|Zz>|W1)|W2) + (W1|<W2|<Zz|<Z1|H|Z1)|Zz)|W1)|W2>
+(wy (w21 (22 | H |2y )| 22 ) lwy Yz ) + (o [{wy {2y {25 | H | 21 )| 25 ) [y Y wy)

(W, [(wy (2, (21 | H120)|2) W) lwr) + (Wi Kwa (2, 1421 | H ] 21)|22) [wp ) wy)

(3-7)

+(W1|<W2|(Z1|<Zz|ﬁ|Z1)|Zz>|W2)|W1>
+ (Wz|<W1|<Z1|<Zz|ﬁ|Z1)|Zz>|W2)|W1>)
and also H is symmetric against the exchange of wy, w,,
(W2|(W1|H|W1)|W2) = <W1|(W2|H|W2>|W1) ) (3-8)
<W1|(W2|H|W1)|W2) = <W2|<W1|ﬁ|W2>|W1) ) (3-9)
then using this relationship to Equation (3-7),
(|H[%)
1
B (21121422122} + (21122022121 )) (wy [wy Xwo lwz) + (wy [wy Kw, [wy )

((Wz|<W1|(Zz|(Z1|H|Z1)|Zz)|W1>|W2> + <W1|(W2|<Zz|(Z1|ﬁ|Z1>|Zz)|W1>|W2)

(3-10)

+<W1|(W2|<Z1|(Zz|ﬁ|21>|22)|W1>|W2)

+ (Wz|<W1|<Z1|(22|H|Z1>|Zz)|W1)|W2))

3.1.2. Expression of each orbital with Gaussians
Next, each orbital is expressed by linear combination of total number M of

Gaussian bases |G,,) as follows,

|z,) = Z |G (3-11)
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|z) = Z 12 |Gy (3-12)
lwy) = Z [T [Ny (3-13)

lwy) = Zﬂr‘/:zz Gm) (3-14)

where u' is the column vector of M X 1 and this is the orbital coefficient of the each
particle i expressing the weight of Gaussian bases in the orbital. |G,,) is expressed in

the form of CCS as

3 )
Ym\4 12 i
(r16m) = () exp (=22 (r = qu©)? + 5 PO = Gn()
T 2 h
. (3-15)
N lpm(t)qm(t))
2h '
in the 3-dimensional space.
3.1.3. Expression of total Hamiltonian
In the case of H, molecule, total Hamiltonian is expressed as
~ 1 A A 1 1
H=——(A61+Aez+ﬂ+ﬂ>— —
2 My Mp) |re, —1p| |re, =1,
. (3-16)
| 3-16
|r€1 - rpzl
1 1 1

|r92 - rpzl ’ |re1 - rezl * |rP1 - rpzl ’ (re1 ’ rez rpl rp2) (t)

in atomic unit. e; and e, are symbols which represent electrons, and p; and p,
are for nuclei. In the present research, the nuclei are also treated quantum
mechanically, so the total Hamiltonian includes all terms for four particles in H;
molecule. The effect of laser field is involved as a time-dependent electric field E(t)

in length gauge.

3.2. Expression of each integral
The integral of total Hamiltonian H can be obtained in the analytical form and

it is needed to derive analytical forms of integrals in H.
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3.2.1. Overlap integral

The overlap integral is written as follows,

(mlz) = ) it <Z it <Gm|> 1Gn) = D HiE e (Gl G
(zalz) = ) it <Zu (G |>|Gn>—zu B Gl G

and if we use identifier i, j for each particle

(i) = > uh (Z u:l,l*<om|> 1Gu) = ) i 1 (GG

If the matrix S of M X M is determined

3
3 Ym T Vn
v )

2
*2
ex —
P <2(Vm + ) (" )+ (Ym
Equation (3-18) can be expressed as
(i)

3.2.2. Kinetic integral

as

YnVm .

V) nEm

= ui*Syj .

1

2

Next, the kinetic integral will be discussed. For example,

(Zal( |y, I2)172) = (z2)22) ) it (Z# (G |)A|Gn>

1 2y,
= <Zz|22>2ﬂ .uerl<Gm|G Yn [ { -
mn

__3¥m
Ym +vn)

If we put the matrix R of M X M as

2,/ Yn¥m -

Umtr) ™

34

Ym + ¥n)

g

[ZTI.ZTL* + Zmzm*]>

2

(3-17)

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)



2

1 2Ym 2\/ YnVm 3Vm
(R)mn = Zy — Z5 gt —— (3-25)
2 ((Vim + ) Vm + ¥n) Ym + ¥n)
and the matrix K of M X M as
K=SoR (3-26)

where operator o means multiplication of matrices against each element like as
(A °B)mn = Qmn X bn » (3-27)
which is called Hadamard product. Then, the kinetic integral can be expressed as

(i|Alf)y = ut' Ky (3-28)

3.2.3. Coulomb integral

Integral for Coulomb interaction is generally expressed as

(Z5 (24| | |z z,") . (3-29)

T — 1yl
By putting as

7 Yo + G’ Ym) » (3-30)

mnl] n (3-31)

pmnl] ’nmnu nmm} " ’nmnl] (3_32)

where the number of basesis Mand m,n,i,j < M. Then

Eq.(3-29)
Ym , Yo\ (Yi Vi -
zZq! Z I 1 2t2)G*y (3 33)
Z T T e 7G| Gu){Gi|Gy) 5 —erf | P (yfn Yi) ()i 7%)
ot mnij B+3+5+7)
Here M X M X M X M tensor P is put as
Yin  Yu\ (Vi Vi
B 1 (2+2)(2+2) (3-34)
(P)imnij = P —erf | Pmnij Ym Yo Vi Vi |’
mnij (?+7+2+2)
and
S (U L (3-35)
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p? = (u'pmn)t
and M XM X M X M tensor Cis put as
€ =S omn (S 04 Putj)

where P.;j means M X M dimension matrix D such as

(D)mn = (P)mnij )

(3-36)

(3-37)

(3-38)

and a operator o;; means the exectution of o against all ij. For example, the

procedure of tensor E = S o;; P
fori=1to M
forj=1toM
E(:,:,1,))=SeP(:,5,i,j);
end

end

is expressed with a pseudo code like as,

omn IS determined in the same way. Then Equation (3-29) is expressed as

(Z2 (24| |
1 mn,i,j

3.2.4. Integral for laser field

Integral for electric field is expressed as
(z2[{z1|7m1 - Elz,)| 2"y = = (Zz|Zzl)ZﬂrZr: .Ufz
mmn
Then if we put M x M matrix N as

(N)mn=ﬁmn'E )
and
L=SoN,

then integral for electric field is expressed with

1
_ 221 11s
m |Z1,>|Zzl)— z (‘u omn ('u °ij C"ij)mn::)mnij .

1,<Gm|Gn)7~lmn E .

(z1|ry - Elzy") = p*"Lu*' |

3.3. Differential of integral of Hamiltonian with each

To obtain dH/d¢;, itis needed to derive
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(3-39)

(3-40)

(3-41)

(3-42)

(3-43)



OH 0 ,

— =—(VY|H|Y) . (3-44)
0 0§ (PIA])
From Equation (3-10), Equation (3-44) is formulated as

d

o i)

0 1
B (a_fz (211214221 22) + (211 220(22|21)) (wy [wy Kwa lwy) + (W1|W2)(W2|W1)))
X ((Wol{wy (23 [{z1 |H |z ) o) Wi Y lwy) + (wy (o [(2, (21 | H | 21) | 25) [y Y, )
Hwy (W, (21 (22| H 20 ) 22) Wi lwy) + (wo [{wy (24 [(22 | H | 21) | 2,) lwy ) [w) (3-45)

1
* (21121122 22) + (2112222121 )) ((wy [y YW lwy) + (wy lwy Kwp [wy )

((Wz|(W1|<Zz|<21|H|Zl>|22>|W1>|W2> + (Wl|<W2|<Zz|<21|H|Z1>|Zz>|W1)|W2>

9%
+(wy (W, (21 (25 | H | 2y ) z2) W Y wy) + (wy [{wy [(z4 [{z5 | H | 21| 25) [wy ) wp))

To express Equation (3-45), it is easier way to obtain the next element generally as

(Wz|(W1|<Zz|<Z1|H|Z1,>|Zz'>|W1,)|W2'>

&
1 0
= (afl (walwy Ww, [wy ) + (wy [wy >6€l (wy|w,' )) ((z512,' Wz, |Al2,")

+ (21121 W2,|A12,"))

e (K TR PR POP A ) [ A
+ (W1IW1’)<W2IAIw2 ) (3-46)
(% (Walwy W 2a12") + (W) aa 2tz )<w1|<z1| 7zl
(% (WalwyYza12") + (walwy') aa 9l )<w1|< ol ey 122w )
(% (i lwy Nz 125") + i [y afl 9tz )<w2|< Iyl e
(6%<W1|W1 k') + (ol 5 9 (il ) (wal(za| oy 22 )
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(wy lwy Ww, |lw,")

(g
walw)) (2ol s ——

|r1 _ rzl |le)|22,>

+ (wq |wy )

0¢;

<a€l (21121 N 22125") + (2112’ )afl (2212, )) (W [{w | | lwi Y w,")

Iy — 1y

d
(Wi lwy " Ww, [wy") + (wy [wy ') = (w,|w, )) ((z212," Kz |7 - E|z,")

0¢;
+ (2112, Wz, |7 - E|Zz )

<afl

(21121 U 22|25") + (2112, ) (2312, >) ((walwy " Wwy |7 - Elw, ")

(afl ¢

+ (wylwy Yw, |7 - Elw,'))

1 0
= O Yo ) (5 ol W 812y + a2 Sl
o (Bl W l012)) + (a2 S 8122
1 , d A 0 s
=g 10 Wl ) (G alo w1 + Gz ') G 81 )

9]

' a—gi<W1'W1'><W2'A'W2'> + (il ) 7 walal)
—(w|lw;y " 23|z’ )afl wil(z1| 70— I, — 1| |21} lw,")

— (walwy "Nz, |2, )afl w1 l(zz| —— I, 2| |22 Y w, ")
—(wy w1 "Nz, 12, )afl (w2 {z4 | m |21 Y lw,")

— (wy|lwy"Nz4|2,") = (w2 (2 z|m|22’)|W2’)

afl

(z(z1| —=121.")|2;")

+(wy [wy Ww, lwy' )

< 1 — 7]

0
+ (21121 2,25’ )05

0
(z212,'Xz1 |7 - Elzy') + (2,12, >6f

0
57 (@l Elz)

(W2|< 1|—|W1’)|W2’) .
|y — 73]

0
+(w [wy N w, [w,’ )( (z|r - E|z,")

S

0
+ —A(z1|z,' 2317 - E|z,') + (z1|2,") =
a¢;
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(Wo[wy " Wwy |- Elwy ") + (wy |w, ) (wylr - Elw,')

d
—(z112,"W2,12,") (

0¢; afl

Wyl Yowalr L) + vy wy') 5 (s -+ Elwy'))

+ —_—
9¢; 9¢;
Then we need to obtain further details of differential by &; and it is shown in the next

section.

3.3.1. Differential by Gaussian label g%
3.3.1.1. Overlap integral
From differential of Equation (3-23),

< h=pt (3-47)
L gL U
and term 9S5/dg. is obtained putting M X M matrix A, B as
as
-=A+B, (3-48)
09x

where,

“Ym_ 2\YnVm

1. -
(D {“’”'Gn) <( 0 Gt 2% ) (uhenn =0 (3-49)
0 (whenn # i)

1 .
(B)ynn = {(Gm|6”><_§g" ) (whenm = i) (3-50)
0 (whenm # i)

In a similar way, 05/69,‘;* is obtained with M X M matrix C, D as

aS
5 l.*=C+D (3-51)
9x
where,
L) cwhenn o i
(Omn = {w’”'G")(_E‘g") (whenn =1) (3-52)
0 (whenn # i)

+ ) Ym + v0)
0 (whenm # i)

Yn = 2/ Yn¥m n 1 m .
(D)yn = {(G m|Gn )<(—g + <9 _ng ) (whenm =) ) (3-53)
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3.3.1.2. Kinetic integral

Differential of K is formulated with Hadamard product operator o from the

product rule as

where,

2 2 24/
6R> :{ Ym¥n { Ym .- Ynlm gt } (whenn = l)

<agi (Vm + yn) (Vm + Vn) Iz (Vm + Vn)
*/ mn 0 (whenn # 1)

Ym + ¥n) 9x Ym + ¥n)

(Ym + ¥n)
0 (whenm # 1)

<69§c* n

3.3.1.3. Electric field integral
Differential of L is expressed in similar way with K as

dL as - N
- =——0oN+ 50—
0g9x 09x 095

where,

~ v 2
a_N _ Y —— E, (whenn = L)
agi - (ym n)
*/ mn 0 (whenn # i)

3.3.1.4. Coulomb integral
Differential of C is derived from Equation (3-38) as

oc oS (S ) $So (65 p. )
ot~ agt "m0 B ogs )

dapP
#S omn S s (357)
U/ mn

First we obtain dP/dgt. Putting y,; as

R
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6R> :{_ZYn\/Yan { 2m o 2\Va¥m gm } (whenm = 0)

(3-54)

(3-55)

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)



ap/ag;; is expressed from Equation (3-34) as

)
ags (pmnu erf (Yaubmi )>

1
14 14 )
pmm} at at agx pmm}
and
erf(\/ Yau pmm}) exp( Vallpmm] ) \/ Yau pmm} ’
0 2, ’ anmm-j
agt mm] mm] ag; )
nmm]
anmnijz — Zﬁmm] a~mnl]
09x o 0gx
9 ﬁ;rcnm] aﬁ;nm]
(’)g 9 gt Pmmii = Pmnij agr
/_Val . a~mm}
erf(\/ Yau pmnl}) exp( yallpmnl] ) ag '
J x
By the way
o 1 1 a g™ oy
R p ,
agatc pmnij pmmjz agt mnij = pmnij3 ag;

and if we put

v Yall

(F)mnij = ﬁﬁexp(—ya”pmm.jz) -
mnij

mnij
~mnij aNmmJ
(N)mnl] ny agx )
then from Equations (3-61), (3-68) and (3-69),
daP
agt =N
where,
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1
3 erf(\/ )/allpmnij) ’

(3-61)

(3-62)

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)

(3-69)

(3-70)



(N)mnij = 3

f w2

VYm +¥n)
_ﬁmnij (—2 -
x—)/] (whenj =t)

(vi +v))

~mnij vV Zyt _ vV Zyt
Oty it
\ 0 (the others)

(whenn =1t)

(whenn=j=t)

Differential by g,ic* is obtained in similar way putting (N)mm-j as

where,

(N)mnij = 1

~mnij
o,

agL”

__ ~mnij
(N)mnij =Ny

)

w2y
(m + ¥n)

2y,
(vi +v))

~mnij vV zyt _ N ZYt
oty ity
0 (the others)

(whenm =t)

(wheni =1t)

(Whenm =i=1t)

3.3.2. Differential by orbital coefficients

(3-71)

(3-72)

(3-73)

Next, differential by orbital coefficient ,uli is obtained. For different particle

identifier z; and z,4, each differential by /-th elements of u“d and u?r" is derived

as
0 L oud
—(z¢|z4) = U S—=,
alllZd(fl d) K a,ulzd
0 ouzr’
— = (7|2a) = == 5w,
auff ! auff
d .. Ou?d
——(z7|A|z;) = u* K ,
a‘ulzd( fl | d> u aﬂlZd
d auzf*
—sz(ZfMIZd) =—=Kku*,
o Ky
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(3-74)

(3-75)

(3-76)

(3-77)



du?d

< Zg (Zfl?" . E|Zd> = ,lef*L_Zd ’ (3'78)
! o,
d a‘uzf* z
—Zf*(zf|r “Elzg) = T Lu?d (3-79)
oy, oy,
0 ) ouy¥
zd,( xl( y| |z M z,') = Z B omn <_zdl %) C::ij> ) (3-80)
ou, [Ty — 73 » oy,
mmn,i,j mn::/ mnij
where,
t
0 ( 0
ydr — Zal Zy* (3-81)
zg! ‘Ll Zq! nu' nu > 4
oy, oy,
In similar ways,
a 1 ! ! de, !
m(%“%ﬂm 1z, Mza')= z <W Omn (177" 0y C::ij)mn::> ) (3-82)
l mn,i,j l mnij
a 1 A A ! a#yd,
ol ez = ) 1 o (S oy Gy . (383
ou,” |ry — 73] 3 au>
Ky mmni,j Ky ey —
a 1 ! li aux‘i, !
F<ZX|<ZY|M|ZZ MNzg') = Z <W o mn (UY?' o C::ij)mn;:> : (3-84)
l mmn,i,j l mnij

3.4. Derivation of ¢;;

To solve equations of motion Equation (2-11), one needs to derive ¢;; and

0H/0&;. When [i) in Equation (2-19) is put as

[¥) = 14)B) , (3-85)
|4) = |z1)|z2) + |22)1z1) (3-86)
|B) = lwp)wy) + lwa)wy) (3-87)
then, for a variable &; inthe wave function |[y),
oW (&NNP(ED)
v aa) T (3-88)
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d
= {o7 4wy [{w, " [{z2 {21 | 21 ) 22 [wy ) [ wy)

0¢;
+ (wy wy " [(z, {21 121} z2) [wy ) wy) (3-89)
+Hwy [(wy'[(z1"1(z5 || 21 ) 22} [wy Y W)

+ (wy [y (21 (2" |z | Z2 ) Iwa M wa D) e, =,

= 4—{((z1' 212" 22) + (2312121 | 22)) (w1 " [wy Kw, [w,)

0¢;
(3-90)
+ (W, [wy wy ' lw, )} )
§ir=¢;
where,
lY(&) =14 B, (3-91)
|A"Y = |z, 2,) +12,7) |z, (3-92)
|B") = [wy)w,) + wy Mw, '), (3-93)

and P (¢;") meansthe wave function i where §; is replaced by &;'such as

V() =YL& b &) WG = (66 06 08 - (3-94)
By distinguishing &; and &/, it is able to express Equation (3-88) in simple form. In

similar ways, |z;'), |z5'), |w;'), and |[wy’) mean &; in them is replaced by ¢’
respectively.

If the label of the Gaussian basis

1 1
_ Ye2qx t ih_lyt 2Dx (3-95)
* V2

is selected as one of time-dependent variables in the wave function, using

Zt

Zt /=th
(3-96)
Yn = Vm 2\/ YnVm 1
(G |G)<—Z +——z, ——z*) whenn =t
N G T 1) 5 G+ T2 x) )
0 (whenn # t)
2 1
S — g =
(az > :{(GmIGn)< 5 Zm x) (whenm = t) (3-97)
tx/ mn 0 (whenm # t)
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@ @
= - (3-98)
ath mnly, 1=z, Gth mnly, 1=z,
it can be derived as
0y 0y
Zi, Zt,
= 4{(#Zl*§#zl(zz|zz> + (Z1|Z1).UZZ*§#ZZ + #22*5#21<Z1|22> (3-99)
+ <Zz|Zl>ﬂzl*§ﬂzz)(<w1|wl>(wz|W2) + (W |wy Y(wy [wy))
+((z1121 22| 2,) + <Zz|Z1><Z1|Zz))(ﬂwl*§HW1(Wz|W2> + (wy lwy )2 " Spv2
+ pW2 S (wy w,) + <W2|W1)IJW1*~§.UW2)}
If the coefficient of the orbitals ,ulz1 is chosen as the variable, then
P P 0y z
() = (] 2 =y 3-100
M oy > <0Mf 1 ¢> M aﬂfl> t o
co o™ f U™
=4 (.“Zl S —(22122) + (21| 2)u??"S zl> (wy lwy Y{w; [wy)
oy ou; (3-101)
+ (wo|lwy Kwq|w,))
In the same way, for the other particles,
oY L ou” L. ou”
Ylo—=) =4 (#21 S ——=A2,12) + (21|22 )u*>"S zl> (w [wy X wy [wy)
oy o o (3-102)
+ (walwy Kwq|wy))
Y c o Op™ L. 0u”
V| 7) =4\ (lz)u™ S —2 + u™ S5 (22121) | (wq [wy Xw, [wy)
oy o o (3-103)
+ (wolwy Xwq|wy))
oy coou™M
<1/J| W> = 4((z112:(22122) + (22|21 X2112;)) <#W1 S e (wz|ws)
! ! (3-104)
. O™
+ (wy [whu"2'S —-
oy,
P o Ou™?
<1/J| W> = 4((z112:(22122) + (22|21 X2112;)) <<W1|W1)HW2 Sa’uwZ
! ! (3-105)
. ou?
+u' S—W(W2|W1)>
oy, ?
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A differential of Z; by a conjugate variable is invariable from (2-21) like as

{z<$¢><<¢ a¢>_<a¢ "’>>} - 39 <<§_z‘/j ¢> _<¢

g \9g"
A AN
2(yly) (M afj*> <a§j ¢>) '

a¢;"

ﬂ» (3-106)

(3-107)

Z; for the variables of the label of the Gaussian basis or the coefficient of the

orbitals can be derived analytically from G, or Ut.

3.4.1. Differential of G,

Here we put

$(ze,) =SoG(z,) =S (5(th) - 5(th))

Yn = Vm 2\/ Yn¥m £ 1 % _
5(th) _ {(— +—- —=Zy x) (whenn =1t)

Z Z
G +v) ™ Gty ™% 2
0 (whenn #t)

1
5(th) — {(—Ezm*x) (When m = t)
0 (whenm # t)

3.4.1.1. Differential by z;,

First, the differential of G, by z;  is considered.

aS as . aG
(th) _ o G(th) + S o (th)

0z, B 0z, 0z,
aé(zfx) — aé(zfx) _ aé(ztx)
0z, 0z, 0z,
65(ztx) Yn ~ ¥Ym (whenn = t)
aZ— =1{Vm T ¥n
t  Jimn 0 (whenn #t)

65(ztx) _o
aztx .

- aé(ztx) B aé(ztx)
N 0z, B 0z,

and
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(3-108)

(3-109)

(3-110)

(3-111)

(3-112)

(3-113)

(3-114)

(3-115)



9] oY oY
aztx <<lp aztx> B <6th ¢>>

— 4 luzl*s'llzlllZZ*a_S‘uZZ + Ilzl*a_Suzlﬂzz*g'HZZ
0z, 0z

tx

* &5 * aS
+ ‘LLZZ Suzluzl _MZZ
0z,

, 0S v
e S/ﬂ) (w1 [wi ) |w)
tx

+ (walwy wy [w,))

.05 L. 05 L. 05
A\ p 2| ze) + (z |z T+ p T o iz [ 2,)
t

Zg, aztx ty

, 0§
+ (2|21 )u™t OT'HZZ> (wy lwy Y wy lwy)
tx

+ (W [wy wy [wy))

+4(#21*5‘#Z1<Zz|22) + (21 z)u?2"Sp% + p=2"Sp*i(z, | z,)

* 4 * aS
+ (2|21 )u*"Sp2) (uwl P

tx

ur{wy|wy)

W aS w W aS w
+ (wy [wy )"z aﬂ 24+ pure aZ_.U Ywy |wy)

x tx
+ (wy [wy )" aztxﬂ 2)
e . 0S
+4{(z1 |21 42,122) + (22121 X241 |22)) (le Spriut oz, p'?
gt 22 gy g Sy s 95
0z, 0z,
+uve” il MW1MW1*§MW2>
0z;,
, 0§
+4((z1|212;122) + (2212124 (22)) <.“W1 oz, ©{wo|w,)
o S w W as w
+ (wy w2 athﬂ S athﬂ wy [wy)
+ (wy [wy )" aztxﬂ 2)
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+4(HW1*§HW1<W2|W2) + (wy lwy )Wz Spvz + p2 " SuMi(w, |w,)
+ (wy [y )" Spz)

152y 2,) + (21|12, )u??" uez + p’ w2 (z,|z,)

< 2,* aS aS as
# 0z, 0z, 0z,
os >

aztx’"

3.4.1.2. Differential with other z

+ (232 )u?”

The differential of G, by Z¢,, which belongs to axis y instead of axis x, zg,

and Zs,, which belong to s instead of axis t are considered here.

G
ﬂzg (3_117)
azty

_ai(ztx) s .

on o o G(z,) (3-118)

In similar ways,

0y 0z, O 0tx) (3-119)
08(z,) as
0z;, 0z, ° Glze) (3420

Then differential of G, are similar in Equation (3-116).

3.4.1.3. Differential by orbital coefficients

The differential of G, by orbital coefficients ut are like as

9 o o
Wil(<¢ >< ¢>) 3121)

0z, 0z,
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=4[ s 2 iz + s P e (e §
M aualzzzz H au‘uﬂ 3 K u*,
* * 6#21
+,Ll21 S‘LLZZ,LLZZ Sa’ule> ((W1|W1><W2|W2)

+ (wy lw ) {w,|lwy )

Zq* 6/,12 z a o wi*&,w
+4 | pu 56/1 (23123) + ™ S@uz (z1]22) | (2" Su¥1(w |lw,)

+ (wy lwy )Wz Spvz + (wy [wy 2" Su¥s
+ .“Wl*sv'.uw2 (W2|W1))

oY oY
(')th> B <(')th lp>>

d < "
ou?z,

. Z2 . aﬂzz Z2 .
— z1* Z1,,2Z2* zZy* z1* Zy* z
= 4<u vSufiute Sawl + (24 |z )u?? 56”221 +u” awlu 2°5u”
cx Op”?
+u* SauZZI <Zz|Z1>> (wy |wy Xw; [wy)

+ (wq lwyXw; |lwy))

Zy* 3#22 4 * a w w
+4 | (zq |2y )u” Sa#Zzlﬂ‘ ! PP (Zz|21) (L2 Suv(wy |lw,)

+ (wy lwy)u"2"Suvz + <W1|W2>HW2 S
+ uW S (wy lwy ))

For u%* and u"2,zand w are permutated in Equation (3-121) and (3-122).

3.4.2. Differential of U
3.4.2.1. Differential by z;,

Differential of U} is considered in the similar way as

9 o o
0z, <<¢‘aﬂzll> <a‘“211 ¢>>

j— 4 aS a'uZl ( | )+ 21 S al'l21 ZZ* aS Zy
=4|un 0th6uz Z31Z2) T U oz 1l.u athﬂ
. 0S5 du* ou*t . 0S
Zy ZZ S Zy Z2
+u o2, Fur, ———(z1lz5) + au%1“ 04x” )
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(wy lwy Xwalwy) + (wy [wy Y (wy lw,))

e op*t ., ot
+4 (.Uzl Sauzll (z312,) + u? Sa,uzll (Z1|Zz)>

- as w Wk aSs w
uot az_li Ywy|wy) + (wy [wy)u"z" ——pu™2
tx

0z,

2 O L) (gl s o v
oz, 11W2 21Wy 0z,

X

i) oY oY
(1 s e )
Zty prz o \opz,
, 0S .. ou* , 0S du*
=4 pu*sr —pu* p#2’S + (21|21 )u*2
(.“ aztxli U o, 11211 9z, o™,
e B g O + {2y |z Ju” 95 op~
:u aztx‘u nu aﬂzzl ZZ Zl Au' aztxaﬂzzl
(3-124)
(wy [wi Xwp lwy) + (wy |wy Y wy [w,))
Lo op*? Lo, op*?
+4 | (z(|z)u?2"S + (z,|z )u*"S >
( 11Z1/U a,uzzl 21211 aMZZl
e 0S w ot aS w
urr athﬂ Ywy|wy) + (wy |wy )u'2 athﬂ 2

+ uve”

s Los
athH Ywy lwy) + (wy lwy e athﬂ 2

For u%* and u"2z,zand w are permutated in Equations (3-123) and (3-124).

3.4.2.2. Differential by orbital coefficients

The differential by orbital coefficients is expressed against different identifiers t,

0 oY oY
our, v ou’, opr,

0 oY oY
B ou” v op*, op*,

s like as

zp> =0 (3-125)

¢> (3-126)
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cooptt L 0u”
= 4(#21 S Z2 S
aﬂzl a‘uzzs
s optt L 0u”
VA Z
+ u® Sa’uzltli . a,uZZS> (wy|lwy Xw, [wy)

+ (walwy Xwy [w,))

0 oY B oY
oW1 <¢| a,uzlt> <6,uzlt ¢>

= (s gl 4 S k) ) (5 S )
+u"2’s aa/fv,‘zls (W1|W2)>
d d d
Oz <¢| a“lflt> ) <a“lflt ¢>
= (s Gl 4 S k) ) (b S
+ (wylw)ur"S aa:;uzzs)

Differentials of U/?,U,"*,U;"* are derived in the similar way.

3.4.3. Differential of G, by conjugate variables

3.4.3.1. Differential by z*
Next, the differential of G, by conjugate variables is considered as

03(z.,) s 06 (z.,)

0z; 0z;

aé(ztx) B aé(ztx) B aé(ztx)
0z;* B 0z, " 0z;*
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(3-129)

(3-130)

(3-131)



1
( —E(whennzt,nqtm)

aé(ztx)>
—2) ={ 2Va¥m
———————(whenn=t=m
mn (Vm + Vn) 2 ( )
0 (whenn # t)

(65(ztx)> _ {—% (whenm = t)

07" 0 (whenm # t)

and for other identifiers

Bl _ 05 o,y 5,0000)
azty* azty* tx azty*
06(z,) _
azty* B
0S(z,,) 9S .
0z, 0z, °6(2e.)
a:?(ztx) as aé(ztx)
0z, * 0z, * G(th) +5 0z, *
X X X
s 2./
aG(th) _ N Fnbim_ (whenn =t,m = s)
9z, * = Wm +va)
mn 0 (whenn # t)

<65(ztx)) B
B y—— =0
azsx .
0S(z,.) _ oS

z. * 0z *
asy asy

° é(ztx)

Total expression of differential is the same as Equation (3-116).

3.4.3.2. Differential by orbital coefficients

The differential by orbital coefficients is expressed as
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For u%* and u"2z,zand w are permutated in Equations (3-141) and (3-142).
3.4.4. Differential of U by orbital coefficients

3.4.4.1. Differential by z, *

Differential of Uti by orbital coefficients is derived in the same way like as
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3.4.4.2. Differential by orbital coefficients

The differential by orbital coefficients is expressed as
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These ways of formulations are the same when s = t. Differentials of U/2,U;",U,"

are also derived in the similar way.
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4. Ground state of H, molecule

In this chapter, the simulation results for H, molecule using the theory in
Chapter 1 will be shown and discussed. A flow chart of the simulation is shown in
Figure 4-1. First | will show results of optimization to ground-state of electron-nuclear
wave function of H, molecule. Next the vibrational period of molecule at ground-state

will be discussed.

/ Y J// k. 4 N
" Formulation of " "
equations of Coding of the Implementation and
motions for simulation program discussion of
variables depending in MATLAB language calculation results

ontimein ¥

Figure 4-1 The flow chart of the simulation. Formulation of equations of motions was shown
in Chapter 2 and 3. | coded the simulation program along the formulae in MATLAB language.
Then the Implementation and discussion of calculation results will be shown in this chapter

and next chapter.

4.1. Optimization to ground-state
4.1.1. Gradient descent
41.1.1.Caseof M=4
First, the number of Gaussians M is set 4 to assign one basis to each particle to

consider the simplest case. For initial value sets, the widths of Gaussian y are set as

y=(0.7 0.7 30 30). (4-1)



The initial positions of Gaussians g are

07 —07 07 -0.7
q=<0 0 0 0 ) (4-2)

0 0 0 0

and the initial momenta of Gaussians p are
0 0 0 O
p=({0 0 0 0. (4-3)
0 0 0 O

where in Equations (4-2) and (4-3) rows are related to the number of Gaussians and
columns are related to spatial coordinates x, y and z.

Orbital coefficients of 4 particles are set as

pr=(1 0 0 0), (4-4)
p2=(0 1 0 0, (4-5)
prr=0 0 1 0), (4-6)
u2=00 0 0 1)°. (4-7)

Figure 4-2 shows the variation of total energy with orbital coefficients fixed
through the iterations of GDM optimizing the label of the complex number z of

Gaussians. Here the total energy is converged to H =-0.9414 a.u.

-0.925

0 200 400 600 800
Steps

Figure 4-2 The variation of total energy at M = 4 for steps of gradient descent

57



optimization.

After the optimization, the positions of Gaussians g are

0.6857 —0.6857 0.7932 —-0.7932
g=| 0 0 0 0 , (4-8)
0 0 0 0
and the momenta of Gaussians p are
0 0 0 O
p= (0 0 0 0) . (4-9)
0 0 0 O

where the width of optimization step 8 in Equation (2-74) was 0.1.

4.1.1.2.Case of M=10
Next, the number of Gaussians M is set 10 to assign one basis to one proton

and 4 bases to one electron. For initial value sets, the widths of Gaussian y are set as

y=(0.64 18 0.16 2.7 0.64 18 0.16 2.7 60 60) . (4-10)

where the widths for electrons are selected to match with those of 6-31G basis set.

The initial positions of Gaussians g are

0.691 0.691 0.691 0.691 —0.691 —0.691 —0.691 —0.691 0.7 —0.7
q—< 0 0 0 0 0 0 0 0 0 0 > (4-11)
0 0 0 0 0 0 0 0 0 0

and the initial momenta of Gaussians p are
0 00O 0O O O0OO0OTO0OTPO
p= <0 0 0000 0 0O 0) (4-12)
0 0 00O 0O O 0O O0O0OTUO

where in Equations (4-11) and (4-12) rows are related to the number of Gaussians and
columns are related to spatial coordinates x, y and z.

Orbital coefficients of 4 particles are set as

p?=(0.8 006 03 02 005 0 0 0 0 0)° (4-13)
p?2=(0.05 0 0 0 08 0.06 03 02 0 0)° (4-14)
p"1 =0 0 0 0 0 0 0 0 1 0) (4-15)
pvz2=(0 0 0 0 0 0 0 0 0 1) (4-16)

For this initial value set, the total energy was
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H = —-1.0346 a.u. . (4-17)
For these initial values, parameters were optimized with GDM except for widths y.

After the optimization, the positions of Gaussians g are

0.6469 0.6905 0.6680 0.6524 —0.6469 —0.6905 —0.6680 —0.6524 0.7072 —0.7072
q=< 0 0 0 0 0 0 0 0 0 0 ) (4-18)
0 0 0 0 0 0 0 0 0 0
and the momenta of Gaussians p are
0O 00O O O O0OTO0OTUO0ODTFO
p=10 0 0 0 0 0 O O O O]. (4-19)
0O 00O 0O 0O O0OTO0OTUO0ODTO
Orbital coefficients of 4 particles after optimization are
p? = (07793 0.0381 0.2702 0.2993 0.0281 0.0102 —0.0208 0.0617 —0.0014 0.0009)" (4-20)
p”2 =(0.0281 0.0102 —0.0208 0.0617 0.7793 0.0381 0.2702 0.2993 0.0009 —0.0014)" (4-21)

©¥ = (=0.0001 0.0229 —0.0002 0.0075 —0.0002 0.0002 —0.0000 —0.0011 0.9997 0.0000)°  (4-22)
©¥2 = (=0.0002 0.0002 —0.0000 —0.0011 —0.0001 0.0229 —0.0002 0.0075 0.0000 0.9997)°  (4-23)
The total energy was optimized to

H = —1.0649 a. u. (4-24)

where the width of optimization step 8 in Equation (2-74) was 0.05. The end condition
of the optimization was when the norm of gradients of parameter is less than 0.01 but
the convergence was slow near this norm. Then the optimization was stopped before
the end condition was satisfied.

4.1.2. Imaginary time propagation

4.1.2.1. With orbital coefficients fixed

41.21.1. Case of M =4

First, the number of Gaussians M is set 4 in the same way as GDM. Orbital
coefficients are fixed through the time propagation in this section. Initial values are set
in the same values as GDM case.

Figure 4-3 shows the time variation of total energy with orbital coefficients
fixed through the ITP optimizing the label of the complex number z of Gaussians in the
same way as GDM. Here the total energy is converged to H = -0.9414 a.u. Figure 4-4

shows variations of the center positions of the Gaussian bases. The red lines represent
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the positions of the Gaussian bases of the nuclei and the blue lines represent the
positions of electrons. The Gaussian bases were set symmetrically with respecttox=0
on the x-axis. We can see that the motions of protons are slower than that of electrons
and electrons are converging to their ground-state against the positions of protons at
that time and after that moving synchronously with protons.

After the optimization, the positions of Gaussians g are

0.6921 -0.6921 0.7993 —-0.7993
q= < 0 0 0 0 ) , (4-25)
0 0 0 0
and the momenta of Gaussians p are
0 0 0 O
p= (0 0 0 0) . (4-26)
0 0 0 O

The values of Equation (4-25) are slightly different from those of GDM in Equation (4-8)

and this would be the optimization of GDM was not completely converged yet.

-0.925

0 100 200 300 400 500
Imaginary time 7 (a.u.)

Figure 4-3 The time variation of total energy at M = 4 for imaginary time

propagation.
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04 -

-0.8 .
0 50 100 150
Imaginary time 7 (a.u.)

Figure 4-4 Variations of the center positions of Gaussian bases developed for
imaginary time at M = 4. The red lines represent the bases of the nuclei and the blue

lines represent the bases of electrons.

Figure 4-5 shows the comparison of calculation time of GDM and ITP. For GDM,
the steps in Figure 4-2 were normalized by total calculation time assuming that the
calculation time for each step was the same. For ITP the calculation time was treated
in the same way. Figure 4-6 shows the comparison of difference of total energy and
convergence value in the log scale. Here the convergence speed is faster in ITP but the
order of the convergence speed was the same in GDM and ITP. Straight lines in Figure
4-6 indicate that the convergence speed against the calculation time was in the

exponential order.
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Figure 4-5 Comparison of total energy against calculation time of GDM and ITP.
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Figure 4-6 Comparison of difference of total energy and convergence value against

calculation time of GDM and ITP in the log scale.

4.1.2.1.2. Case of M=10

In the optimization of ITP at M = 10, the values after the GDM optimization in
Equations (4-18) to (4-23) are set as initial values for this optimization. In this section
the orbital coefficients are fixed and the complex number label z of Gaussians are
optimized. The time variations of the center positions of the Gaussian bases at this ITP

iteration are shown in Figure 4-7.
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Figure 4-7 Variations of the center positions of Gaussian bases developed for

imaginary time. 10 bases were used for the system and set symmetrically with

respect to x = 0 on the x-axis.

The convergence profile of the total energy in ITP is shown in Figure 4-8. H decreases

towards —1.0665 a.u.

-1.0645

-1.065

-1.0655

H(a.u.)

-1.066

-1.0665

-1.067

0 200 400
Imaginary time t(a.u.)

Figure 4-8 The time variation of total energy at M = 10 for imaginary time

propagation.
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4.1.2.2. With orbital coefficients varied

In above sections, the optimization with orbital coefficients fixed was discussed
and in this section the orbital coefficients are also optimized. Initial values are set at
the values after optimization in section 4.1.2.1.2 and the number of basis is reduced to
M=9. The reduced bases are G3 and G7 of width y = 0.16 in Figure 4-7 and they are
united to one basis of width y = 0.16 locating on x = 0. This is because the optimization
will be failed down without removing these two bases. If the orbital coefficients are
allowed to be varied in optimization, G3 and G7 will come close to x = 0 and eventually
the tensor ¢j in Equation (2-12) will get irreversible because bases of the same widths
locate at the same place and the rank of ¢; is not enough. Then we cannot solve the
EOMs Equation (2-18) and the calculation breaks down. To avoid this singularity, the
two Gaussians are united to one.

The time variations of the center positions of the Gaussian bases at this ITP
iteration are shown in Figure 4-9. the protonic and electronic Gaussians are optimized
in different time scale. In the same way as the optimizations of ITP above, the
electronic Gaussians are optimized within 10 a.u. to the electronic ground state and
moving slowly with nuclear Gaussians. These different time scales originate from
physical difference of mass for protons and electrons. The effect of difference of mass

also appears in the time scale of dynamics for imaginary time.
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Figure 4-9 Variations of the center positions of Gaussian bases developed for
imaginary time. 9 bases were used for the system and set symmetrically with respect
to x = 0 on the x-axis. The region of x-axis between 0.67 and 0.76 a.u. is expanded on
the figure and 4 bases are shown here. Another basis for electron locates at x = 0.

Red lines represent nuclear bases and blue lines represent electronic bases.

The detail of coefficients of the orbitals after this ITP optimization and related
positions on x-axis and width y are shown in Table 4-1. The coefficients of the orbitals
and center positions of Gaussians are optimized through the ITP iteration and y is
fixed.

The convergence profile of the total energy in ITP is shown in Figure 4-10. The
total energy was converged to —1.0684 a.u. at 7 = 500 a.u. from —1.0665a.u in
section 4.1.2.1.2. Figure 4-11 shows 2-dimensional density maps of protons and
electrons of the electron-nuclear wave function after the optimization. We can see the
keen separated peaks for protons and density like broad crowd for electrons. The

EOMs are totally symmetric for electrons and protons except for the mass, so the
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difference of mass is inducing the different structures for electrons and protons.

Figure 4-12 shows the additional information of the 1-dimensional density map

of protons. There is a previous work? indicating the 1D density map of nuclei of H, by

NOMO/HF method for the optimizing calculation of the static ground state. By

comparing these results, we can see the same density map structure. This indicates

that the ITP optimization from the time-dependent EOMs results at the consistent

state with that from the ground state calculation by optimization method for static

state with NOMO/HF method.

Table 4-1 Detail of the values of the orbital coefficients, position, and widths of nine

Gaussians after optimization at Figure 4-9

electronl | electron2 | protonl | proton2 | Position on x | Widthy
axis
G1 1 0.020706 | 0.010425 | -0.00223 | 0.6927 0.64
G2 0.040195 | 0.017089 | 0.287161 | -0.00064 | 0.7493 18
G3 0.357373 | 0.357373 | -0.00205 |-0.00205 |0 0.16
G4 0.404203 | 0.050135 |-0.02962 | 0.002468 | 0.6885 2.7
G5 0.020706 |1 -0.00223 | 0.010425 | -0.6927 0.64
G6 0.017089 | 0.040195 |-0.00064 | 0.287161 | -0.7493 18
G7 0.050135 | 0.404203 | 0.002468 | -0.02962 | -0.6885 2.7
G8 -0.00034 | -0.00088 |1 0.000142 | 0.7562 60
G9 -0.00088 | -0.00034 | 0.000142 |1 -0.7562 60
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Figure 4-10 Variation of the total energy H = (¥|H|¥) in imaginary time. The total

energy converges towards the energy of the electron-nuclear ground state.

15 1 -05 0 0.5 1 15
0.5
0 .
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y (a.u.)

Figure 4-11 2-dimensional density maps of protons and electrons of the optimized
electron-nuclear wave function. The upper row shows 2D density of nuclei and the

lower row shows 2D density of electrons.
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Figure 4-12 2-dimensional and 1-dimensional density maps of protons of the
optimized electron-nuclear wave function. The upper row shows 2D density of nuclei

and the lower row shows 1D density of nuclei.

4.1.3. Discussion for ground-state wave function

In section 4.1.2.1, the ground-state energy was obtained H = -0.9414 a.u. for M
= 4 case and H = -1.0665 a.u. for M = 10 case. In aspect of variational principle, the
total energy should be smaller for lager number of parameters and these values are
reflecting this principle. Compared to those cases, in section 4.1.2.2 the orbital
coefficients are allowed to be varied. In that case, the total energy is H = -1.0684 a.u.
for M = 9 case. Even the number of bases decreased but the energy gets further
smaller. It suggests that the M = 10 is not large number enough for the energy
optimization and allowing orbital coefficients to change the energy can be more

optimized with less number of Gaussians. However, in Born-Opennheimer
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approximation the energy of H, molecule is obtained as H =-1.174 a.u.? and this value
is smaller than that we obtained in this study. The difference of energy between wave
function under Born-Oppenheimer approximation and electron-nuclear wave function
should be only zero-point energy of molecular potential in Born-Oppenheimer picture.
This difference is too large for zero-point energy. It is described by the problem of
expression of electron-nuclear wave function with Gaussians. The ground-state energy
for electron-nuclear wave function is reported by previous research?. In this research,
the formulation of wave function in the present research is categorized as translation
and rotation-contaminated (TRC)-NOMO. In the formulation of electron-nuclear wave
function, the coordinates for translational motion can be separated converting the
coordinates in the wave function such as,

Piotar = Pur Pt (4-27)
where ¥,. is wave function for translational motion and W, is wave function for translation
free part. This formulation is categorized as translation-free (TF)-NOMO and the
ground-state energy is H = -1.073631 a.u. In this previous research, the energy of
TRC-NOMO is reported as H = -1.051219 a.u. The value of present research is slightly
lower than this value. The slight improvement may be ascribed to the optimization in
the position of the Gaussian functions. Indeed, in another previous research for NOMO,
the energy of H, molecule is reported as H = -1.069 a.u.” in the framework of
TRC-NOMO. This value agrees with the energy of H = -1.0684 a.u. in the previous
research.

However in the scheme of TF-NOMO, the energy is still high. In a previous
research using explicitly correlated Gaussian (ECG) as basis function, the energy of H; is
reported as H = -1.164 a.u.b. Explicitly correlated Gaussian involves explicitly
correlated term for 2 particles 1, 2 like as exp(ry1,). It is necessary to achieve this
value to use 512 terms and there is also difficulty to formulate the wave function. The
biggest problem is that the calculation cost is in proportion to M! (M is the total
number of basis). The time complexity for ECG is factorial time and it is very slow as

well as Grid method. There is the tradeoff between accuracy and calculation time.
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The CCS method resulted in slightly higher energy but could achieve almost
limit value for TRC-NOMO only with M = 9. The strongest point of the CCS method is
polynomial time complexity. When we consider the time-dependent molecular
dynamics, the time complexity is the critical issue. From next section, the real time

propagation will be simulated and discussed.

4.2. Time-dependent dynamics
4.2.1. Real time propagation with orbital coefficients fixed

4211.Caseof M=4

Next, the real time propagation will be considered. First, at M = 4 case, initial
values are set at the values after ITP optimization in section 4.1.2.1.1. Figure 4-13
shows the variation of the center positions of Gaussians for real time propagation. We
can see that the center positions settle at the initial positions. The optimized
ground-state is an equilibrium state for the parameters and they do not change in real

time propagation. The calculation results reflect that appropriately.

1 T T T T

Position x (a.u.)
o
o Ul

1
&
tn

1

0 100 200 300 400 500
Time t (a.u.)

Figure 4-13 Variations of the center positions of Gaussian bases developed for real
time at M = 4. The red lines represent the bases of the nuclei and the blue lines

represent the bases of electrons.
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Second, a trajectory from initial values out of the equilibrium point is simulated
to examine dynamics when electrons have momenta. The initial values are like below.

The initial positions of Gaussians g are

0.75 —0.75 0.7 —0.7
q=|{ 0 0 o 0 |, (4-28)

0 0 0 0

and the momenta of Gaussians p are
0 0 0 O
p=101 -01 0 0. (4-29)
0 0 0 O

Figure 4-14 shows the variation of the center positions of Gaussians for real time

propagation. We can see the periodic motion of protons and electrons.

1 T T T T

0.8

0.6

Position x (a.u.)
(@]

0 1000 2000 3000 4000 5000
Time ¢t (a.u.)

Figure 4-14 Variations of the center positions of Gaussians for real time propagation
at M = 4 with electronic initial momenta. The red lines represent the bases of the

nuclei and the blue lines represent the bases of electrons.
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The motions of electrons are not completely periodic and there complexity of 4
particle problem shows up. Only 4 bases are used and orbital coefficients are fixed so
apparently the motions of center positions are like classic motion but stable motions
after 5000 a.u. are difficult to implement in classical calculation even if soft-core
potential is introduced. Then this method can achieve the stable chemical bond with

the least number of basis functions.

4.21.2.Case of M=10

Next to the equilibrium state, the real time propagation was calculated and the
nuclear motion was examined with a vibrational period at M = 10 case. As a
vibrationally excited state, the state 50 a.u. of imaginary time after the initial state in
ITP in Figure 4-7 was chosen, and a vibrational motion of nuclei can be observed
through time propagation of this state for real time space. Figure 4-15 shows the time
variations of center positions of Gaussian bases in real time propagation. The meaning
of symbol is the same as in Figure 4-7 and the same coefficients of orbitals were
applied. From the numbers of Equation (4-20) to (4-23), it can be considered that G9
and G10 represent the nuclear part of the wave function. Then the red lines of G9
(solid) and G10 (dashed) represent the motions of nuclei. Figure 4-16 shows the
expanded motion of G9 and the oscillation of the small amplitude with the period of

299 a.u. (7.2 fs) can be seen.
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Figure 4-15 Variations of the center positions of the Gaussian bases in real time. The initial
positions of bases are the same as those at t = 50 a.u. in Figure 4-7. The coefficients of
orbitals are shown in Equation (4-20) to (4-23). The coefficients were fixed through the

iterations.
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Figure 4-16 Expansion of the motion of G9 in Figure 4-15.

Figure 4-17 shows the expanded motion of G1 and the oscillation of the electron with
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the period of around 2 a.u. (50 as) can be seen. The faster oscillation reflects the
lighter weight of electron than that of nucleus.

Figure 4-18 shows the variation of total energy in real time propagation. The
variation of value starts from the 8" decimal place. The accuracy of Runge-Kutta
method is set at under 10° per step and this variation is less than the error of

Runge-Kutta. This indicates that the total energy is correctly conserved through the

calculation.
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Figure 4-17 Expansion of the motion of G1 in Figure 4-15.
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Figure 4-18 Variation of total energy in real time propagation at M = 10
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4.2.2. Real time propagation with orbital coefficients varied

In this section, real time propagation with orbital coefficients varied at M = 9
will be simulated. A vibrational period of the ground state of H, molecule is estimated
in the following manner. By displacing the optimized positions of the respective
Gaussian functions by 0.001 a.u. symmetrically with respect to x = 0, a small amplitude
can be induced molecular vibration since the optimized ground-state is a stationary
state as we saw in above sections. But in this situation, the electrons are not
necessarily in the electronic ground state. The expanded region for the center
positions of Gaussians of nuclei and electrons are shown in Figure 4-19 and Figure 4-20.
We can see relatively large amplitude of vibration of electrons compared to nuclei. So
ITP optimization for 15 a.u. time is executed after displacing and parameters at that
time are set at initial values. Then from the different time scale for convergence as
seen in Figure 4-9, vibrational excited state with electronic ground state can be
achieved.

A vibrational motion of nuclei can be observed through time propagation of
this state for real time space. Figure 4-21 and Figure 4-22 show the time variations of
center positions of Gaussian bases in real time propagation. Figure 4-21 shows the
expanded region for the center positions of protonic Gaussians. Figure 4-22 also shows
the time variations of center positions of electronic Gaussians. We can see that the
vibrations of electrons are suppressed compared with Figure 4-20 but there are the
several components of vibrational periods for nuclei and electrons. The longest period
of synchronous motion for electrons and protons is 340 a.u. (8.2 fs) and this value is
consistent with the vibrational period of H,, 331 a.u. (8.0 fs), obtained from the energy
difference between the first vibrationally excited state (V' = 1, // = 0) and the
vibrational ground state (v’ = 0, J” = 0) of H, in the electronic ground state obtained
spectroscopicaIIyG). We can also see faster time periods in addition to the same long
time periods for nuclear vibration. Those faster vibrational periods are considered as
those related to the electronic excitation. The electronic excitation is discussed in the

next section.
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Figure 4-19 Variations of the center positions of the Gaussians of protons in real time after

only displacing the optimized positions of the respective Gaussian functions by 0.001 a.u.
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Figure 4-20 Variations of the center positions of the Gaussians of electrons in real time after

only displacing the optimized positions of the respective Gaussian functions by 0.001 a.u.
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Figure 4-21 Variations of the center positions of the Gaussians of protons in real time.
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Figure 4-22 Variations of the center positions of the Gaussians of electrons in real time.

77



4.2.3. Electronic excitation represented by floating Gaussian
In order to discuss the interparticle couplings quantitatively, the expectation
values of the squared nuclear-nuclear distance, r,,’, the squared electron-nuclear

distance, rpez, and the squared electron-electron distance, reez, defined respectively as

o () = (P (OI(R, — R [P (D)),
e’ (1) = (P OI(R, — )P (D)), (4-30)

LTeez(t) = (YOI — )P (),

are evaluated. In deriving the temporal variations, a real-time propagation was
performed by the adaptive Dormand-Prince Runge-Kutta method”).

The temporal variations of rppz, rpez, and ree” of H, thus obtained are shown in
Fig. 2(a), 2(b), and 2(c), respectively. The oscillation with the period of 340 a.u. (8.2 fs)
is seen commonly in rppz, rpez, and reez, which is seen in the discussion of the center
position of basis functions. This means that not only the distance between the two
protons, but also (i) the distance between one electron located in the vicinity of one
proton and the other proton and (ii) the distance between one electron located in the
vicinity of one proton and the other electron located near the vicinity of the other
proton oscillate with the period of the vibrational motion of H,. After the Fourier
transform of Figure 4-23 (a)-(c), the frequency distributions in Figure 4-24 (a)-(c) were
obtained. The distinct peak appearing at 0.003 a.u. in frequency in Figure 4-24 (a)-(c)

corresponds to the vibrational frequency of H,.
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(electron-electron) of H, molecule in the real-time propagation.
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in the real-time propagation. The right row shows the different scales of the horizontal

(frequency) axes for (d) ry,’, (€) roe, and (f) re. .

The inset figure in each of the three subfigures in Figure 4-23 represents the
expanded view of the corresponding parts. It can be seen in the insets of Figure 4-23
(b) and (c) that oscillatory structures appear with the modulation period of around 10
a.u. In order to examine this high frequency component, the high frequency region of

the Fourier transformed spectra are expanded as shown in Figure 4-24 (d)-(f). A sharp
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feature accompanying two small side peaks in the lower frequency side appear at
around 0.094 a.u. and another sharp feature appears at around 0.164 a.u. commonly
in Figure 4-24 (e) for rpe2 and Figure 4-24 (f) for ree. In addition, in Figure 4-24 (d) for
rppz, two sharp features appear at around 0.075 and 0.082 a.u., which are close to the
frequencies of the two side peaks appearing in Figure 4-24 (e) and (f). These
high-frequency components appearing above 0.05 a.u. can be related to the motion of
electrons because the corresponding energy range is in a typical energy range of the

electronic excitations.

4.2.4. Assignment of the high frequency components

In order to confirm that these high-frequency components are interpreted by
the electronic excitation energies of H,, we examine if the spectral features in the
spectrum of re.” are interpreted in terms of HF orbitals and if the respective peaks can
be interpreted in terms of electronic excitation energies calculated by the
time-dependent Hartree-Fock (TDHF) method. The electronic energies of the four
lowest excited states, measured from the ground electronic state, thus obtained by the
TDHF method are listed in Table 4-2, showing that the first excited state whose
symmetry is ungerade has a main electron configuration described by the excitation of
gk« eg. The main electronic configurations for the second excited state (gerade), the
third excited state (ungerade), and the fourth excited state (gerade) are eé} &,
b < &, and gf « g, respectively. In the calculations performed using Gaussian 09,
the option of ghost atoms [21] was chosen in order to locate a floating orbital at x = 0.
For the nine basis functions, the same parameters as those listed in Table 4-1 were
adopted. The nuclear distance defined as the distance between the centers of G8 and
G9 basis functions was set to be 1.5124 a.u., which is the optimized value by the ITP as
shown in Table 4-1 and Figure 4-10. This value is consistent with the quantity of

\Tpp?(t = 0) = 1.5332 a.u. obtained by the floating Gaussian method.
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Table 4-2. Excitation energies of H, from the ground state to the four lowest electronic
excited states calculated by the TDHF method using Gaussian 09. The basis set
composed of nine Gaussian functions with the parameters shown in Table 4-1 is

adopted.

Energy / eV Main Configuration

(Energy / a.u.)

AE;  16.0041 &y < &
(0.588140)

AE,  17.9340 g5 < &
(0.659062)

AE;  58.5242 e < &
(2.15072)

AE,  63.3917 ef < &
(2.32960)

We note that the spatial part of the electronic wave function calculated by
using the floating Gaussian orbitals can be rewritten in terms of time-dependent
orbitals of gerade and ungerade symmetries. The spatial part of the wave function can
be written by a product of electronic and nuclear Slater determinants as

(11,72, Ry, Ro | (£)) = W(ry, 12, Ry, Ry, ) = (1, 12 [Fe (O NRy, Ry [P (1))
= @, (1,15, )Pr(Ry, Ry, 1),

(4-31)

The electronic slater determinant can be always expressed as

D, (1,15, t) = (11, 12| (1))
1 (4-32)
= ﬁ (Pr(, )P (12, 1) + Pr(12, )P (11, 1))

using orbitals ¢r and ¢, where ¢y is the localized orbital mainly on positive area
(right side) and ¢, is the localized orbital mainly on negative area (left side) on x-axis.
¢r and ¢, are expressed using the time-dependent orbitals composed of

time-dependent floating Gaussian functions as
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$r(r,0)

B (rles (©)) (4-33)
(s (Dler (DN bea (D1dea (D)) + (s (D1dea (N b (Dlper (ONF

$,(r,0)

_ (rde2(6)) (4-34)
— -
(Pe1(®NPe1 ONPe2 () Pe2 () + (D1 () [Pz (DN Pez (D) P (£)))%

where the denominators in Equations (4-33) and (4-34) are taken to satisfy the

normalization condition of |®,(ry,1,,t)| = 1. ¢ and ¢, have the symmetry of
d)R(r, t) = d)L(_r, t) . (4'35)
as shown in Table 4-1. Therefore the orbitals ¢, and ¢, can be decomposed into

two components having gerade and ungerade symmetries as

¢R (T, t) = ¢g (T, t) + (nbu(r: t)
{qu (r,1) = by, 0) = b (1) (4:30)
In terms of ¢, and ¢,, we can rewrite the electronic Slater determinant as
q)e(rlf 72, t) = \/E (¢g (7"1, t)¢g (rz, t) - d)u(rl’ t)¢u(T2, t)) . (4'37)

The gerade symmetry of ®,(r,1,,t) is always ensured by the relation of
D, (ry, 1y, t) = O(—1y,—1,,t) . In the same way, the gerade nuclear Slater
determinant can be represented in terms of nuclear single particle orbitals with gerade
and ungerade symmetries.

Next, we discuss how those ungerade orbitals contribute to the spectra of
T,02(t). To compare with the excited states calculated by Gaussian 09, we assume that
the gerade and ungerade orbitals ¢,(t) and ¢, (t) are approximately represented

by the 9 canonical molecular orbitals (MOs) used in Gaussian 09 as
( 4
|Bo( ) = ) alb (D85

-
= , (4-38)

EREPRICTHO

i=1

where {qbg",(r)} are the set of gerade MOs and {qb{'t(r)} the set of ungerade MOs
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generated in the HF calculation by Gaussian 09. The time-dependent coefficients of

ag", (t) and a!/(t) are calculated from the relationship of Equation (4-38) as
{ag(t) = (pg¢4(®))
a, () = (ph]pu(®)

respectively. Here, ¢,(t) and ¢,(t) can be calculated using the relations

(4-39)

represented by Equation (4-36) and Equations (4-33) and (4-34). The expectation value
of 7,,2(t) is calculated by

Tee? (t) = (P (OI(r; — 12)?| P (D)) , (4-40)
where we used the normalization condition of the nuclear Slater determinant. By using
the expression of Equation (4-37) , we can rewrite 7,,2(t) as

ree?(6) = 4 ((9() 12?05 (D)5 (6)| b ()
(4-41)

+ (Pu (11 219u () bu (O (£)) + 2Re(pg ()13 9u (0)))
using the symmetry of the electronic Slater determinant with respect to r; and 1.
Against those relationships, we can consider the comparison with the electronic states
calculated with the MOs of conventional HF methods by replacing ®,(t) to ®,(t)
where ®, denotes the function generated by the replacements of ¢y and ¢, in
Equation (4-37) by ¢~>g and cf)u defined in Equation (4-38), respectively. The
expectation value of 7,,2(t) is then calculated approximately by
Too2(t) = (@, ()| (ry — )2 D (1)) - (4-42)
By evaluating r;:Z and after the Fourier transform, the frequency distribution was
obtained as shown in Figure 4-25.
Figure 4-25 shows the results of the reproduction of the spectrum in Figure 4-24
(f) based on Equations (4-38) and (4-39). The frequencies of peaks are consistent in
Figure 4-24 (f) and Figure 4-25. However, the peak height of Peak 4 is about 30 %
smaller in Figure 4-25. On the other hand, the norm of (¥, (t)|¥,(t)) calculated by
using Equations (4-37) and (4-38) was 0.998 at t = 0. Those two observations indicate
that the time-dependent motion of the center positions of floating Gaussian basis

functions cannot be completely expressed only in the terms of the time variation of
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orbital coefficients of the time-independent MOs even if the reproduced norm is as

accurate as 99.8 %.
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Figure 4-25 The amplitude of the Fourier transformed spectrum of ree. of H by the
calculation using the HF canonical MOs with the time-dependent coefficients shown

in Equation (4-39). The peak numbers represent the assignments listed in Table 4-3.

The frequency of each peak can be assigned with the help of orbital energy calculated
by HF calculations as follows. For example, the term of (¢g(t)|r12|¢g(t)) is
approximately evaluated by using Equation (4-38) as
(BOIr218,0) = Y ab ©alO(dblri|]) aa3)
ij
In order to interpret the frequency components in 7,,2(t) by canonical orbital

energies, MOs used by TDHF, we will assume the following relationship as
. . i i .
a) (¢, (r) = aj'e leyt/hcpg](r) ) (4-44)
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where eé denotes the canonical orbital energy of the j-th gerade orbital. Therefore,

the right-hand side in Equation (4-43) can be written as

. ; . ; e . ;
* J I\ ~ x Jr,—ileg—€g)t/h J
> a ©a©(giln?l6)) = Y abraye 5 MGl 9d) . (aas)
ij ij
Here we notice that the energy difference of two orbitals approximately corresponds
to the energy difference of two electronic Slater determinants. For example, if we

define five lowest energies of electronic states in the HF calculation as

(Eg = E(®gy
E; = E(®gy
{Eg =E(®57) (4-46)
E; = E(®7;
\E§ = E(®7;

where CI)igju means the Slater determinant composed of two canonical orbital as

cpg_u(rl,rz) = %(d)g(rl)gbl{(rz) + ¢>§(rz)¢,ﬁ'(r1)) ) (4-47)

the energy differences in Table 4-2 are expressed using the relationships of Equations
(4-46) and (4-47) as

—r1 0
A =Fg =k (4-48)
AE; = EZ — E?
AE, = EZ — E?

The frequency related to the energy difference of two gerade states can be involved in
the term of (@g(t)|r12|@g(t)). In the same manner,

(Bu(O12[6u(0) = D ak" OO @kInIgk)

kl

)l e k2 )

kl

(4-49)

and the frequency related to the energy difference of two ungerade states is turned

out to be involved in this term. Also, the term of Re((ﬁg(t)|r1|d;u(t))2 can be

expanded as
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(GOl |Bu () = ) b ©akO(@Ir|ok)a; Ok () ]n]eL)

ijkl

~ Z a;’*aé’*al’j’afi’e_i{(gﬁ_gé)J'(S‘l‘_Eé)}t/h((;b;|r1|¢1’f) <¢£]]|T1|¢Ill) .

ijkl

(4-50)

We can observe the sum of two energy differences of the ungerade state and the
gerade state in Equation (4-50) such as AE; and AE; in Equation (4-48). Therefore,
even if the electronic Slater determinant d~>e is gerade, the frequency related to the

energy of ungerade states can be observed in 7,,2(t).

Table 4-3 The energies of Peak 1 to Peak 5 in the Fourier transformed spectra of reo” Of
H, in Figure 4-25 and those obtained by the TDHF method with the assignment in

terms of the electronic excitation energies obtained by the TDHF method.

Peak Peak Energy @ / eV Peak Energy * / eV Assignment ©

Number (Peak Frequency / a.u.) (Peak Frequency / a.u.)

1 12.9 11.1366 AE; + (AE; — AE,)
(0.0752) (0.065136)

2 14.0 14.0742 AE, + (AE, — AE,)
(0.0820) (0.082318)

3 16.0 17.9340 AE,
(0.0938) (0.104893)

4 28.15 24.5862 AE; — AE,
(0.1646) (0.143801)

5 35.16 32.0082 AE; + AE,
(0.2056) (0.187211)

a) Peak energies in Figure 4-25 obtained by the floating Gaussian method.
b) Peak energies obtained by the TDHF method.
c) Peak energies in b) are calculated by the energy difference of the electronic states

calculated by the TDHF method shown in Table 4-2.

Table 4-3 shows the assignments of the peaks in Figure 4-25 using the
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excitation energies calculated by TDHF in Table 4-2 along the rules of Equations (4-45),
(4-49), and (4-50). The largest deviation between the energies of peaks and the
assignments is 14 % in Peak 4. The deviation of 14 % is reasonable in consideration of
the deviation of 30 % in the amplitude of Peak 4 between Figure 4-25 and Figure 4-24
(f). In this way, we can explain why the energy of 2, state can contribute to the
spectrum of re.”. Therefore, the frequency values > 0.05 a.u. in the amplitude of
Fourier transformation of inter-particle distances are interpreted as energy differences

related to the electronic excitation as the assignments shown in Table 4-3.

4.2.5. Mass dependence of non-adiabatic coupling

Considering that the appearance of Peak 3 and Peak 4 in the Fourier
transformed spectra of r,,’ is ascribable to the non-adiabatic electron-nuclear
couplings, the heights of Peak 3 and Peak 4 can be good indicators representing the
extent of the non-adiabatic couplings. Because the extent of the couplings is
considered to be influenced sensitively by the ratio of the mass of an electron with
respect to the mass of a nuclei in a two-electron homonuclear diatomic molecule, the
rpp2 value of D, was calculated by the floating Gaussian method, and the frequency
distribution was obtained by the Fourier transform in the same manner as in the case

of H, as shown in Figure 4-26.
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Figure 4-26 Amplitude of Fourier transformation of r,,” of D,. The peaks of frequencies
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related to Peak 3 and 4 in Figure 4-25 are shown in the figure.

Figure 4-26 shows the amplitude of Fourier transformation of rpp2 of D,. The height of
Peak 3 appearing at the frequency of 0.0943 a.u. and the height of Peak 4 appearing at
the frequency of 0.1660 a.u. were found to be 8.83 x 10”7 and 3.46 x 107, relative to
the height of the lowest frequency component representing the molecular vibration. In
the case of H,, the relative heights of Peak 3 and Peak 4 are 8.55 x 10° and 8.95 x 10°,
respectively, and are found to be larger than in the case of D, by one order of
magnitude, which clearly shows that the non-adiabatic electron-nuclear coupling

becomes more evident when the relative mass of nuclei becomes lighter.
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5. Application of laser fields to H, molecule

With the CCS method, the center position of Gaussian basis is regarded as the
time-dependent variable and it can follow the motion against the electric force in
intense laser fields. In this chapter, the motion of each floating Gaussian basis of H, in
intense laser fields with different carrier-envelope phases (CEPs) will be demonstrated

against nuclear-electron wave function as a 4-particle problem.

5.1. Demonstration with 1.5 cycle pulse laser
The laser field E(t) applied to the molecule is expressed as

E(t) = Eye(t)sin(wt + ¢), (5-1)
where E;, €(t), w, and ¢ denotes the peak intensity, pulse envelope, frequency
and CEP respectively. The peak intensity E, of laser pulses applied in the simulation is
0.3 a.u. The cycles of the carrier are 1.5 cycles and the wavelength is 780 nm. The
polarization direction is x-axis. Figure 5-1 (a) shows the profile of electric field of these
pulses and their envelope. 3 trajectories with different CEPs were calculated. The
number of Gaussian bases of the wave function adopted for time propagation in these
laser field is 4. One basis is assigned for each particle in H, and the total number is 4.
Figure 5-1 (b)-(d) show the time variations of center positions of Gaussian bases with
CEPs of ¢ = 0,2.0345, and /2 respectively. Blue solid lines represent the center
positions of bases of electrons and red dashed lines represent those of nuclei. In Figure
5-1 (b), one electron is ejected at the peak intensity of the pulse and the other electron
remains bound in the core. In Figure 5-1 (c), a single ionization occurs but the
recollision of the electron to the bound electron can be observed. This is a
characteristic phenomenon observed in intense laser field experiments. Furthermore
the double ionization after the recollision can be observed in Figure 5-1 (d). This
double ionization occurs after interaction of two electrons during t = 50~100 a. u.
and can be recognized as a non-sequential double ionization in contrast to a sequential
double ionization. From the comparison of Figure 5-1 (c) and (d), we can see that a

small change of the CEP has a large impact on the fate of the molecular ionization.
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Figure 5-1 (a): Electric field amplitudes of three pulses adopted in the simulation. Three lines
with legends represent carriers and dashed lines represent the envelope. (b): Variations of
the center positions of the Gaussian bases with the CEP of ¢ = 0. (c): Results with the CEP
of ¢ =mn/2. (d): Results with the CEP of ¢ = 2.0354 radian. On (b)-(d), solid lines show the

center positions of electronic bases and dashed lines show those of nuclear bases.

5.2. lonization dependence on CEP and cycle of pulses

In the above section, we saw the influence of the CEP difference on the
trajectories in intense laser fields. Next, the effect of the difference of the laser
condition is examined by changing the numbers of the cycle, the CEP and the intensity
of pulses. The dependence of ionization count of H, molecule on such parameters will

be simulated.
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5.2.1. Laser condition

The laser field E(t) applied to the molecule is expressed as
/i1
E(t) = Eye(t)sin (wt + ¢ —cycle x T + E)' (5-2)

where E;, €(t), w, and ¢ denotes the peak intensity, pulse envelope, frequency
and CEP respectively. The polarization direction is x-axis. The wavelength is 780 nm
and the envelope is sin-square shape like as

£(t) = {sin(a)t/(z * cycle))? while 0 < wt/(2 * cycle) < us (5-3)

0 elsewhere

The laser pulse shapes are illustrated as Figure 5-2 for these parameters. The peak

intensity E, of laser pulses applied in the simulation is 0.25 or 0.3 a.u.

0.4 T T

Electric Field {a.u.)

0 100 200 300 400 500 600
Time (a.u.)

Figure 5-2 Electric field amplitudes of laser pulse for different CEP and cycles. Red lines show
envelope of pulses and blue lines are carriers when the CEPs are 0. The green line shows the

carrier when the CEP is not 0.
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An ionization count for a certain condition is determined in a pseudo code like

if (r\<17.3 && r, <17.3)
ioncount=0; // H,

elseif (r;1<14.0&&r,>17.3) || (r1>17.3 && r, < 14.0)
ioncount=1; // H,"

else
ioncount=2; // H,**

Where r; is the norm of the center position of Gaussian of electronl (|z;) ) and ry is

that of electron2 ( |z,) ).

The step width for the variation of CEP is set at % in the simulation.

5.2.2. E;=0.3 a.u.
First, for laser parameters, the peak intensity is fixed at Eg = 0.3 a.u. (= 3.2 x
10" W/cm?) and calculation results are shown when the cycle number is 2. Figure 5-3
shows the laser pulse shape and ionization count for CEP difference. In this cycle,

double ionization does not occur.
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Figure 5-3 laser pulse shape and ionization count for CEP difference at E, = 0.3 a.u. and pulse
cycle = 2. The left pane shows the laser pulse shape at CEP=0. The red line represents the

envelope and the blue line represents the pulse carrier. The right pane shows the ionization
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count of H, molecule for CEP change.

Figure 5-4 shows the laser pulse shape and ionization count for CEP difference when

the cycle is 3.5. In this cycle, double ionization occurs when the CEP is 80 degree.

Electric Field (a.u.)

04 L . . .
0 100 200 300 400 500

Time (a.u.)

Figure 5-4 laser pulse shape and ionization count for CEP difference at E, = 0.3 a.u. and pulse
cycle = 3.5. The left pane shows the laser pulse shape at CEP=0. The red line represents the
envelope and the blue line represents the pulse carrier. The right pane shows the ionization

count of H, molecule for CEP change.

Figure 5-5 shows trajectories at CEP = 80 degree and CEP = 82 degree. At CEP = 80
degree the ionization is double ionization and at CEP = 82 degree the ionization is
single ionization from the right pane in Figure 5-4. We can find the difference of
ionization mechanism after t = 250 a.u. in Figure 5-5. At CEP = 80 one electron which
once got away from the core came back to the core and collided with the other
electron and after that both electrons were ionized. This is the non-sequential double
ionization mechanism but at CEP = 82 degree the other electron remained at the core
and eventually single ionization was observed. Hence the difference of CEP results at

the separation of trajectories and the different ionization mechanism.
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Figure 5-5 Comparison of trajectories at CEP = 80 degree and CEP = 82 degree for cycle = 3.5.
The left pane shows variation of center positions of Gaussians at CEP = 80 degree. The right
pane shows variation of center positions of Gaussians at CEP = 82 degree. The red lines

represent the bases of the nuclei and the blue lines represent the bases of electrons.

Figure 5-6 shows the comparison of count of the ionized electron for the
variation of the CEP at cycle = 4 and cycle = 4.5. First, we can see the major difference
at 0 < CEP < 90 degree for double ionization. Figure 5-7 shows the comparison of
trajectories at cycle = 4 and cycle = 4.5 for CEP = 30 degree. We can see the divergence
around t = 320 a.u. for the double ionization. This is because the sub peak of the laser
pulse is stronger in the longer cycle pulse related to the shape of envelope and the
strength of sub peak is effecting the second ionization. The double ionization in cycle =
4.5 is sequential double ionization and the strength of the sub peak is mainly dividing
the ionization count between cycle = 4 and 4.5. Then the region of 0 < CEP < 90 degree,
cycle = 4 case does not have any double ionization but cycle = 4.5 case has always

double ionization.
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Figure 5-6 Comparison of count of the ionized electron for the variation of the CEP at cycle =
4 and cycle = 4.5. The left pane shows the ionization count of H, molecule at cycle = 4. The

right pane shows the ionization count of H, molecule at cycle = 4.5.
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Figure 5-7 Comparison of trajectories at cycle = 4 and cycle = 4.5 for CEP = 30 degree. The left
pane shows variation of center positions of Gaussians at cycle = 4. The right pane shows
variation of center positions of Gaussians at cycle = 4.5. The red lines represent the bases of

the nuclei and the blue lines represent the bases of electrons.

Furthermore, Figure 5-8 shows the comparison of trajectories at CEP = 90 degree and
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CEP = 120 degree for cycle = 4. From the left pane in Figure 5-6, the double ionization
occurs at 90 < CEP < 180 degree. At CEP = 90 degree and CEP = 120 degree, the
recollision of the electron to the core occurs around t = 270 a.u. and immediately the
other electron is ionizing. These are the non-sequential double ionization and the NSDI

is the main mechanism for double ionization at this cycle number.
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Figure 5-8 Comparison of trajectories at CEP = 90 degree and CEP = 120 degree for cycle = 4.
The left pane shows variation of center positions of Gaussians at CEP = 90 degree. The right
pane shows variation of center positions of Gaussians at CEP = 120 degree. The red lines

represent the bases of the nuclei and the blue lines represent the bases of electrons.

Figure 5-9 shows variation of center positions of Gaussians at CEP = 118 degree for
cycle = 4.5. From Figure 5-6, ionization count for these CEP and cycle is 0. When we see
the detail of trajectory, the recollisions occur 4 times, and at t = 420 and 520 a.u., the
permutation of electrons occurs. Then, eventually both electrons are captured to
nuclei and ionization count is 0. In this case, if the electric field is strong enough for the
ionization, some trajectories still show no ionization and the detail of trajectory

includes complicated motion of electrons.
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Figure 5-9 Variation of center positions of Gaussians at CEP = 118 degree for cycle = 4.5. The
red lines represent the bases of the nuclei and the blue lines represent the bases of

electrons.

For the intensity peak of Eo = 0.3 a.u. (= 3.2 x 10" W/cm?), all the figures of
ionization count for CEP against the parameter of cycles from 2 to 5 are shown
together in Figure 5-10. From 2 cycles to 3 cycles, ionization is limited to single
ionization. At 3.5 cycles the first double ionization is observed and this is explained
above as non-sequential double ionization. At 4 cycles, the double ionizations start to
occur at 90 < CEP < 180 degree and this reason is also described above. From 5 cycles,
in the region of 0 < CEP < 90 degree the double ionization also starts to occur and this
region is dominated by sequential double ionization. At 5 cycles, the double ionization
occurs at almost all the region of CEP. This suggests that 5 cycles is enough to induce

double ionization independently of CEP difference. At longer cycles, the envelope is
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closer to 1 against CEP change, and the peak and sub peaks tends to be stronger. Then
at few cycle pulse in strong laser fields, the increase of cycle number affects directly

the ionization count.

a

Cycle:2 Cycle:2.5
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150,

Figure 5-10 Variation of count of the ionized electron for the CEP difference against the cycle
number of the pulse at E; = 0.3 a.u. Figures show results for cycle 2 to 5 with 0.5 step width.

Left top letters of “Cycle:” on each pane shows the cycle number of the applied laser pulse.

5.2.3. E;=0.25 a.u.

Next, the peak intensity is fixed at Eo = 0.25 a.u. (= 2.2 x 10> W/cm?) and the
ionization count for CEP difference is simulated changing cycle number of laser pulse.
Figure 5-11 shows the ionization count for CEP from 4.5 cycle number to 9. Under 4
cycles, the ionization is not observed at this peak intensity. From the 6 cycles, the
double ionization is observed. At the 6 and 6.5 cycles, the double ionization is
observed between the CEP of 0 to 90 degree, and the double ionization is mainly
observed between the CEP of 0 to 90 degree. Figure 5-12 shows the comparison of

trajectories at cycle = 6 and cycle = 7 for CEP = 34 degree. The recollision of the
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electron to the core occurs around t = 350 a.u. at the left pane and t = 450 a.u. in the
right pane. After those, the other electrons are ejected from the core. These are the
non-sequential double ionization and the NSDI is the main mechanism for double

ionization at this cycle number.

Cycle: ~4 Cycle: 4.5 Cycle: 5 .
ionization count: 0 |
Cycle: 5.5 Cycle: 6 Cycle: 6.5
20— o -2 @ 5 __7§:D7__2__7. i ,20/__,---'9:]"-2--,. w0
- 15 i 15 7
180j 10
210", H , "';:'n

w0 e
210

Cycle:9

Figure 5-11 Variation of count of the ionized electron for the CEP difference against the cycle

number of the pulse at E, = 0.25 a.u. Figures are shown for cycle 4.5 to 9 with 0.5 step width.
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Left top letters of “Cycle:” on each pane shows the cycle number of the applied laser pulse.

Until 4 cycle the ionization counts are all zero and figure are not shown.
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Figure 5-12 Comparison of trajectories at cycle = 6 and cycle = 7 for CEP = 34 degree. The left
pane shows variation of center positions of Gaussians at cycle = 6. The right pane shows
variation of center positions of Gaussians at cycle = 7. The red lines represent the bases of

the nuclei and the blue lines represent the bases of electrons.

Figure 5-13 shows the comparison of trajectories at CEP = 110 degree and CEP
= 158 degree for cycle = 7. The recollisions of the electrons to the cores occur around t
= 450 a.u. at the both cycles. After those, the other electron is ejected from the core.
In those CEPs, the NSDI is also the main mechanism for double ionization.

Those situations indicate that the NSDI is the main mechanism for the double
ionization at the beginning of the double ionization against the increase of cycle
numbers. Compared to the case of £y = 0.3 a.u., the larger number of cycles is required
to induce the double ionizations. Furthermore, the region of starting angles of CEPs for
the NSDIs are different between Eg = 0.3 a.u. and 0.25 a.u. Hence, we could see that
the effects of CEPs for differentiate the ionization field and its mechanisms and

trajectories.
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Figure 5-13 Comparison of trajectories at CEP = 110 degree and CEP = 158 degree for cycle = 7.
The left pane shows variation of center positions of Gaussians at CEP = 110 degree. The right
pane shows variation of center positions of Gaussians at CEP = 158 degree. The red lines

represent the bases of the nuclei and the blue lines represent the bases of electrons.

5.2.4. Eo=1 a.u. and 0.1 a.u.

On the above discussion, | discussed the case when the peak intensity is Ep =
0.3 a.u. and 0.25 a.u. This is because if the peak intensity is much larger than £y = 0.3
a.u., all the electron will be ejected or if the peak intensity is much smaller than Ey =
0.1 a.u., no ionization occurs. Figure 5-14 shows the ionization counts for the CEP
difference at Ep = 1 a.u. with 1 cycle (left pane) and at Eg = 0.1 a.u. with 9 cycle (right
pane). In the left pane, the double ionization occurred for all the CEP angles even for 1
cycle number. The point which is zero is the lack of count because the calculation of
trajectory was truncated for too long calculation time. The reason is guessed that the
multicollinearity appeared. Oppositely, no ionization was observed at Ep = 0.1 a.u. with
9 cycle in the right pane even for 9 cycle number. The reason why the ionization count
varies drastically for the peak intensity is first that the peak intensity in the scale of
W/cm? is proportional to the square of the peak electric field intensity Eo. Another

reason is that the number of basis functions is small. | used 4 bases for 4 particles with
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fixed orbital coefficients and trajectories will be deterministic in that situation because

the small probability for the ionization cannot be expressed.

Eo=1a.u. E0=O.1 a.u.
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Figure 5-14 Counts of the ionized electron for the CEP difference at E; = 1 a.u. with 1 cycle
(left pane) and at E, = 0.1 a.u. with 9 cycle (right pane). Left top letters of “Cycle:” on each
pane shows the cycle number of the applied laser pulse. The step size for CEP was 6 degree.
In the left pane, the calculation of trajectory was not finished at CEP = 146 degree and 326

degree and plotted as 0 count.
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6. Summary and perspectives
6.1. Summary

In Chapter 1, the object of the present research was described with
experimental facts. In the molecular dynamics in intense laser fields, there are unique
phenomena such as ionization of molecules, recollision of electron, non-sequential
double ionization, and ultrafast proton migration. The calculation cost such as required
memory size and time complexity is the critical problem in the simulation of dynamics
in intense laser field. In conventional grid calculation, huge memory is required to
express the electron-nuclear wave function and the time complexity is exponential
time for number of particle. It suggests that it is practically difficult to apply the grid
method to investigate the electron-nuclear mechanics in intense laser field.

The approach of the present research is CCS method. In CCS, the basis function
is expressed with floating Gaussian which has a time-dependent center position and
momentum. Floating Gaussian is suitable to follow the electronic motion in intense
laser field and its time complexity is polynomial time for the total number of basis.
Hence, CCS method is expected to be a good approach for this problem.

In Chapter 2, first the general EOMs were derived for the parameters & in the
wave function. The analytical expressions of integrals with floating Gaussian functions
were formulated. For H, system, the wave function consists of Slater determinants of
protons and electrons as described in Chapter 3. Each determinant is expressed with
orbital function electrons or protons. Orbital functions are expressed with the linear
combination of CCS. The analytical forms of tensor ¢; and differential of Hamiltonian
were derived clearly. Also each integral of Gaussian was derived analytically. Hence the
EOMs of electron-nuclear wave function were prepared.

The methods for optimization to the ground-state were introduced. One is
gradient descent method (GDM) and the other is imaginary time propagation (ITP)
method. The parameters are complex number in the present research, and then GDM
should be modified for that case. In chapter 4, the optimizations of GDM and ITP were

compared in the case of M = 4 and the convergence was much faster in ITP
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optimization. The optimized energy was H = -1.0665 a.u. in the case of M = 10 with
orbital coefficients fixed and it was H = -1.0684 a.u. in the case of M = 9 with orbital
coefficients varied. If the orbital coefficients were allowed to change, the total energy
agreed with the limit of TRC-NOMO.

After we obtained the ground-state, real time propagation was simulated. In M
= 4 case, it was confirmed that the bases did not move at the equilibrium points and
stable oscillation and bonds were achieved against some initial momenta. The
vibrational period of nuclei was 299 a.u. in the case of M = 10 with orbital coefficients
fixed and it was 340 a.u. in the case of M = 9 with orbital coefficients varied. The
experimental value of vibrational period is 331 a.u. and the result in M = 9 case was
closer to the value. We could also observe the same vibrational periods in the
calculation of squared inter-particle distances. Furthermore, the electronic excited
states were by the MOs of the conventional HF calculation and the energies of
electronic excited states calculated by the TDHF method. Through the Fourier
transform analysis, we could observe the high frequency components related to the
electronic excited states in the squared inter-nuclear distance. In the
Born-Oppenheimer picture, electrons are always at ground-state and the nuclei will
move slowly as a harmonic oscillator. The amplitude of the peak heights of those
electronic frequency components depended on the mass of nuclei. Hence, we could
confirm the non-adiabatic coupling between nuclei and electrons.

In Chapter 5, the laser field was introduced to the simulation and the molecular
dynamics depending on the laser parameters was calculated. First the calculations for
laser pulses of Eg = 0.3 a.u., 1.5 cycle, and three different CEPs were shown. In strong
few cycle pulses, the difference of CEP critically affected ionization pathways and the
non-sequential double ionization was observed. Next, changing the cycle number, the
ionization count against the CEP difference was simulated for the laser pulses with the
sin-square envelopes at Eg = 0.3 a.u. and 2.5 a.u. Then we could observe that the
ionization counts were higher in Eg = 0.3 a.u. than in Eg = 0.25 a.u. and higher for

longer cycles. We could see that there are regions where SDI and NSDI mainly
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contribute respectively. For longer cycles, the ionization counts tended to be isotropic.
The simulation was done in M = 4 and this was least value for 4-particle system.
However, we could clearly see the effect of laser parameters such as CEP, peak
intensity, and cycle number against the ionization yields. Those non-adiabatic ab initio
calculations can be achieved due to the small calculation cost with floating Gaussian

basis functions.

6.2. Perspectives

In the present research, the width of Gaussian y was fixed through the
simulation. To treat y as time-dependent parameter, the EOM for y should be derived
analytically. It might be more complicated to derive than other parameters, but more
accurate calculation would be obtained by using the time-dependent y. For example,
the small amplitude of ionization can be expressed with widening of width of Gaussian.

In the calculation of the trajectories in laser fields in Chapter 5 was done with 4
Gaussians with orbital coefficients fixed. However, there was difference for the
ground-state calculation between M = 4 case and M = 9 case. If the trajectory is
calculated with at M = 9 with orbital coefficients varied, more accurate and interesting
results can be obtained. However, the calculation time per 1 trajectory is about couple
of minutes for M = 4 case but more than days for M = 9 case. There is also the problem
of instability when the orbital coefficients are allowed to change. Then it requires
careful treat to expand the basis set for numerous calculation of trajectories.

The strong point of CCS is the polynomial time complexity for the number of
Gaussian basis functions. The interesting object is a lager system than H, molecule.
Furthermore, the formulation for nuclei should be adopted for lager systems. Proton is
especially light particle in nuclei and hybrid formulation for light proton and heavy
nucleus (e.g. quantum mechanical treatment to proton, regarding heavy nucleus as
Coulomb point) may be an efficient way to adapt the electron-nuclear wave function
to the larger system. Matrix assisted laser desorption/ionization (MALDI) is one

phenomenon of protein in the laser field. Another example of dynamics in the protein
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is a proton pump at a biological membrane. The eventual goal is to adopt this method
to the lager substance such as protein and discover interesting phenomena or control
of reactions using laser field through calculations using floating Gaussian basis

functions.
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