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Quasi-free (p,2p) knockout 

reaction of 23,25F 

Tsz Leung TANG 

Graduate School of Science, University of Tokyo 

Abstract 

 

The change of the neutron dripline from oxygen to fluorine indicates the 1d5/2 proton affects the neutron 

shell structure. We aim to know how the neutron sd-shell structure is changed by the 1d5/2 proton in 

neutron-rich 23F and 25F nucleus using proton spectroscopy. The spectroscopy is free from the effects 

of the proton shell structure, because the 1d5/2 proton in 23F or 25F is a single-particle state due to the 

𝑍 = 8 magicity and even neutron number. If the neutron shell structure is not changed by the proton in 

23,25F, after the sudden removal of that proton, the spectroscopic factor of that proton should be unity 

and not fragmented. Therefore, the effect on the neutron-shell from the proton will be shown on the 

spectroscopy.  

 

The quasi-free 23,25F(p,2p) direct knockout reactions in inverse kinematics were performed in RIBF, 

RIKEN Nishina Center. Secondary beams of 23F and 25F were produced at ~280A MeV. The missing 

four-momentum of the residual oxygen (22O or 24O) was reconstructed using coincidence measurement 

of the incident nucleus and the two scattered protons. The excitation energy of the residue was then 

deduced. 

 

From the experimental results, the occupation number of the 1d5/2 proton of 25F was 0.1 ± 0.3 and the 

proton is indeed in single-particle state. Meanwhile, the spectroscopic strength of the 1d5/2 proton of 23F 

or 25F were fragmented. These pointed that the change of the sd-shell neutron structure due to the 1d5/2 

proton is the reason of the fragmentation. The change of neutron shell suggests the disappearance of 

𝑁 = 16 magicity. The nuclear structures of the 25F and 23F demonstrated the Type-1 shell evolution. 

The comparison with the present shell model interactions (SFO, USDB, and SDPF-MU) indicated that 

the tensor force should be stronger. Also, the spectroscopic strength of the p-orbit was ~0.8 in 23,25F, 

this shows that the short-range correlation in neutron-rich nuclei is as same as stable nuclei. 
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Chapter 0  

Prologue 

This chapter introduce the idea behind this study. We will briefly go through the background and then 

bring up the objective of this thesis. The detail will be presented in Chapter 1.  

 

0.1 Background 

One of the main objectives in nuclear physics is to understand the nuclear structure across the entire 

nuclide chart from the nucleon-nucleon interaction. The nucleon-nucleon interaction in free space is 

well known, but the medium modification and correlation effects are not trivial [1]. One of the 

interesting features is the shell evolution that the shell structure changes with number of protons and 

neutrons. It is a result of the interplay between different kinds of nuclear forces [2] [3]. With the access 

of radioactive nuclei, many new phenomena were discovered on the neutron rich region among the light 

nuclei (nuclear mass number 𝐴 < 40) [4]. Figure 0-1 shows the region of where new features appear in 

the light nuclei region. For example: the neutron halo (yellow boxes) [5], the disappearance of the  

𝑁 = 8 shell closure [6] [7], the island of inversion [8] [9] [10], the intruder state [11], the disappearance 

of the magic number 𝑁 = 20 [12], and the emergence of a new magic number 𝑁 = 16 [13] [14] [15].  

 

 

Figure 0-1 – New phenomena in the light nuclei region.  

The x-axis is the neutron number. The y-axis is the proton number. The nuclide chart was remake 

from Reference [16]. 
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We are curious and aim to study how the neutron sd-shell structure is changed by the 1d5/2 proton in 

neutron-rich 23,25F nuclei using proton spectroscopy. The change of the neutron dripline from oxygen 

to fluorine draws or attention. The neutron dripline of oxygen is at 24O, which is 𝑁 = 16. The neutron 

dripline of fluorine extended from 𝑁 = 16  to 𝑁 = 20  by just a single 1d5/2 proton. Naively, this 

indicates the 1d5/2 proton in fluorine affects the neutron shell by lowering the 1d3/2 neutron orbit below 

the neutron threshold. The neutron dripline was studied by many theories [16] [17] [18]. The effects on 

the neutrons due to the excessive neutrons themselves were studies in many neutron-transfer or neutron-

removal experiments [19].  

 

The proton removal spectroscopy on neutron-rich fluorine isotopes are an ideal place to study the sd-

shell structure and the proton-neutrons interaction. The 1d5/2 proton should be more sensitive to the 

neutron sd-shell structure than the structure of 16O due to the double magic. The 1d5/2 proton is also in 

a single-particle state mainly because of the 𝑍 = 8  magicity. These makes the proton removal 

spectroscopy on fluorine free from the effect of the proton shell. When the single 1d5/2 proton is 

suddenly removed from fluorine nucleus, only neutrons are left on the sd-shell and the shell structure 

should be remained the same. If the fluorine nucleus is a simple system formed by adding a proton on 

top of an oxygen nucleus, so that the neutron-shell structure does not change, then the spectroscopic 

factor of the proton should be unity and not fragmented (see section 1.1.2 for spectroscopic factor). The 

result of the spectroscopic can be used to study the change of the neutron-shell structure, for example, 

the spin-orbit splitting of the 1d-shell could be reduced by the proton [20].  

 

The 1d5/2 proton of 23F or 25F are in a single-particle state mainly due to 𝑍 = 8 magicity. The proton 

magicity 𝑍 = 8 is very robust because the shell gap between the 1d5/2 orbit and 1p1/2 orbits is roughly  

10 MeV. The even number of neutrons and the weak proton-neutron correlation energy (0.7 MeV for 

23F and 0.07 MeV for 25F, section 1.1.4) also support that the 1d5/2 proton is in a single-particle state. 

The valance proton in similar nuclei like 49Sc or 209Bi are in a single-particle state. The 1f7/2 proton of 

49Sc is surrounded by 8 neutrons in the 1f7/2 orbit. Using proton transfer reaction, the spectroscopic 

factor of the proton is 1 [21]. Another example is 209Bi, the spectroscopic factor of the 1h9/2 proton is 

0.95 using proton transfer reaction [22].  

 

In addition to the sd-shell, there is almost no data for the states below Fermi surface (the p-orbit and 1s-

orbit) for fluorine isotopes. There is one review journal shown the single-particle levels of the p-orbit 

[23], but it did not give any reference for that data. The extraction of the single-particle energy and 

spectroscopic factor, or the occupation number, could provide better understanding on the nucleon-

nucleon interaction below the Fermi surface [24]. 
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The (e,e ṕ) knockout reaction should be the most ideal method to study the proton spectroscopy. 

Because of the radial sensitivity and the rather simple reaction mechanism that only involves Coulomb 

force [1] [25]. However, in radioactive nuclei, an inverse kinematics must be used. And the beam 

intensity is small. A quasi-free proton knockout reaction is currently the most ideal and feasible method 

to study the proton spectroscopy of neutron rich nuclei [25] [26].  

 

0.2 Thesis Objective 

This study aims to probe the change of the neutron shell due to the 1d5/2 proton using proton knockout 

spectroscopy. The spectroscopic properties of the proton bound state of 23,25F, such as single-particle 

energy, spectroscopic factor, or the occupation number (the sum rule of the spectroscopic factors), will 

be measured or extracted. Besides of the sd-shell, the p-shell can also be studied under the same reaction. 

 

This study also aims to establish a method to probe the single-particle state of radioactive nuclei by 

(p,2p) knockout reaction using inverse kinematics and spin-polarized proton target. The experience 

gained from this study can shine a light on future experimental method and technique. 

 

0.3 Thesis Organization 

This thesis is arranged as follows: Chapter 0 provides a brief introduction and the motivation.  

Chapter 1 focuses on nuclear structure theory and the experimental method used in this work.  

Chapter 2 describes the experimental set-up, explaining the technical issues. The data analysis and 

results are described in Chapter 3. Here, we explain the methods used to extract the spectroscopic factor 

from the experimental data. We discuss the comparison of the results with present shell interactions in 

Chapter 4. This study is summarized in Chapter 5.  

 

Following the main body of the text, we have included several appendices the reader may find useful. 

In Appendix A, we show some detailed calculations on the subjects. Appendix B focuses on the theory 

of proton polarization. Appendix C describes the solid spin-polarized proton target and Appendix D 

focuses on data analysis of proton-proton elastic scattering.   
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Chapter 1  

Nuclear Shell Structure and  

Knockout Reaction 

The present understandings of the nuclear structure will be described in the first half of this chapter. 

We are going to briefly explain the independent particle model, single-particle state, and spectroscopic 

factor. Then we describe three main components of the nuclear force and their effects. Following the 

discussion of the theory, we revisit the past experiments conducted on fluorine isotopes. In the second 

half of this chapter, we explain our experimental method including the kinematics of the knockout 

reaction and a brief explanation of the calculation of theoretical cross sections. 

 

1.1 Nuclear Shell Structure 

A nucleus is made of protons and neutrons. The nucleons are confined in a tiny volume by the nuclear 

potential that the energy levels of the nucleon orbits are quantized. From the nucleon separation energy 

and the first excitation energy, some stable nuclei with certain number of protons or neutrons are found 

to be more tightly bound than their neighbors. These numbers are 2, 8, 20, 28, 40, 50, 82, and 128, 

which are also called “magic numbers” [27]. These observations suggest the nuclear orbits are grouped 

in shells.  

 

The bound nucleons are moving around their center of mass and carrying orbital angular momentum. 

Each of them has an intrinsic spin of 1/2. Therefore, one of the component of nuclear force is spin-orbit 

coupling. This force is more attractive when nucleon’s spin is parallel to the angular orbital momentum. 

For example, the 1p3/2 orbit is more tightly bound than the 1p1/2 orbit [28].  

 

The energy gap between the 𝑗 = 𝑙 + 𝑠 orbit and the 𝑗 = 𝑙 − 𝑠 orbit is called the spin-orbit splitting, 

where 𝑗 is the total angular momentum, 𝑙 is the orbital angular momentum, and 𝑠 is the intrinsic spin. 

In the late 1940s, M. G. Mayer proposed a strong spin-orbit coupling on a spherical harmonic oscillator 

to model the potential well of the nucleus. Using this model, it is possible to reproduce the magic 

numbers up to 128 and correctly predicted the spin-parity of nuclei ground state [28] (Figure 1-1).  

 

Nucleons fill the energy shells from the lowest level and obey Pauli’s exclusion principle. The 

independent particle model (IPM) assumes each nucleon orbiting around a mean field and does not 
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interact with each other. This model well predicts the properties of nuclei with one plus (or minus) 

magic number. Interestingly, the strength of the spin-orbit splitting cannot be fully reproduced using 

nucleon-nucleon two-body spin-orbit (LS) coupling [29] [30] [31]. Later development on the meson-

exchange theory explains the origin of the spin-orbit coupling (from the 𝜎 and 𝜔 mesons), but also 

introduced others contributions, for example, tensor force and spin-isospin interaction [32]. There is no 

full understanding of the splitting yet.  

 

 

Figure 1-1 – Evolution of energy level by adding spin-orbital coupling [33].  

The N is the number of simple harmonic oscillators (S.H.O.). The l2 is the square of orbital angular 

momentum. The l⋅s is the spin-orbit coupling. 

 

Before proceeding further, we feel it is necessary to define the bound, unbound, resonance, excited, 

valence, occupied, and unoccupied orbit. These terms are illustrated in Figure 1-2. Here, the bound 

orbits are below the particle threshold and the unbound orbits are above. The occupied orbits have at 

least one nucleon each. The valance orbit is the outermost occupied orbit according to the IPM. The 

excited orbits are higher energy than the valance orbit. When describing a single-particle orbit, “state” 

and “orbit” are having the same meaning.  
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Figure 1-2 – Terminology of orbits.  

The bound, unbound, resonance, excited, valance, occupied, and unoccupied orbits are shown in the 

figure. The valance orbit for fluorine nucleus is the 1d5/2 proton. The unoccupied states are the excited 

states and unbound states. 

 

1.1.1 Nuclear Mean Field Shell Model and Single-Particle Energy 

The mean field shell model (or mean field) is an effective theory and especially suitable for closed shell 

nuclei. It treats the interaction experienced by a nucleon as an average mean field created by others 

nucleons. The total Hamiltonian of a nucleus (up to two-body interaction) is 

𝐻 =∑
𝑃𝑖
2

2𝑚𝑖
𝑖

+∑∑𝑉𝑖𝑗
𝑗<𝑖𝑖

, (1.1.1) 

where the first term is the kinetic energy (where 𝑃𝑖 is the momentum and 𝑚𝑖 is the mass of the 𝑖-th 

nucleon) and the second term 𝑉𝑖𝑗 is the two-body interaction between nucleons, or the nucleon-nucleon 

interaction. The mean field 𝑈𝑖 is added, so that 

𝐻 =∑(
𝑃𝑖
2

2𝑚𝑖
+ 𝑈𝑖)

𝑖

+∑(∑𝑉𝑖𝑗
𝑗<𝑖

− 𝑈𝑖)

𝑖

=∑ℎ𝑖
𝑖

+ 𝐻𝑅 = 𝐻0 + 𝐻𝑅 , (1.1.2) 

where ℎ𝑖 is the single-particle Hamiltonian and 𝐻𝑅 is the residual interaction. The first term 𝐻0 is also 

called the non-interacting potential that each nucleon is moving independently. When the residual term 

is very small and neglected, it is called the single-particle picture or the independent particle model 

(IPM). The simplest way of finding a self-consistent mean field from a given nuclear interaction is the 

Hartree method [34]. In order to minimize the total energy and preserve the anti-symmetry of the total 

wavefunction (this introduces an exchange term), the Hartree-Fock method of variation can be used. 

The mean field model can cope with paring (the Hartree-Fock-Bogoliubov method) and deformation. 

A common phenomenological mean field is the Woods-Saxon potential.  
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The IPM is a good approximation when the residual interaction 𝐻𝑅 is negligible compared to the non-

interacting term 𝐻0. The IPM successfully explains the properties of nuclei with one nucleon added or 

removed on a magic nucleus. The spin-parity of the ground state and first few excited states of those 

nuclei can be well explained [35]. Nuclear deformation can be handled by changing the mean field to a 

non-spherical type. However, it is beyond the mean field model to study nucleon-nucleon correlation 

or configuration mixing.  

 

 

Figure 1-3 – Single-particle energy from quasi-free scatterings as a function of atomic number [23].  

The solid line is only a guideline.  

 

The single-particle energy 𝜖 is the eigen-energy of the single-particle Hamiltonian ℎ, such that 

ℎ|𝜙𝑖⟩ = 𝜖𝑖|𝜙𝑖⟩, (1.1.3) 

where 𝜙𝑖 is the wavefunction of 𝑖-th state for a single nucleon. The experimental separation energies of 

different orbits of different elements are shown in Figure 1-3. The single-particle energies for states 

near the Fermi surface of a closed-shell nucleus is related to the binding energy or the single-particle 

separation energy. The single-particle energies for protons are 

𝜖𝑝
>(𝑍, 𝑁) = 𝐵𝐸(𝑍,𝑁) − 𝐵𝐸(𝑍 + 1,𝑁) =  −𝑆𝑝(𝑍 + 1, 𝑁), 

𝜖𝑝
<(𝑍, 𝑁) = 𝐵𝐸(𝑍 − 1,𝑁) − 𝐵𝐸(𝑍,𝑁) =  −𝑆𝑝(𝑍, 𝑁), 

(1.1.4) 

where 𝜖𝑝
> is the single-particle energy for the proton on top of a nucleus with proton number Z and 

neutron number N and 𝜖𝑝
< is the single-particle energy for the proton of the nucleus. The shell gap for 

a closed-shell nucleus is defined as 𝐸𝑔 = 𝜖𝑝
<(𝑍, 𝑁) − 𝜖𝑝

>(𝑍, 𝑁) [17].  
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The single-particle energies for states away from the Fermi surface can be obtained from knockout or 

transfer reactions. Figure 1-4 shows a comparison of the neutron single-particle energies of 16O and 

40Ca between experimental data, SKX, and NL3 calculations. SKX is the skyrme potential with 

parameters fitted to the binding energies, root-mean-square charge radius, and single-particle energies 

of spherical nuclei [36]. NL3 is a parameter set for a relativistic mean-field calculation [37]. The NL3 

calculation predicts the energy levels more accurately than SKX calculation. It is surprise that the 

relativistic calculation gives better prediction because the average nucleon kinematic energy is 35 MeV 

and much smaller than the nucleon mass of ~1 GeV/c2. Figure 1-5 and Figure 1-6 show the proton 

single-particle energies of 23F and 25F calculated using WSPOT, SKX, and experimental binding energy 

respectively. WSPOT is a simple Woods-Saxon potential with spin-orbit coupling [38]. The parameters 

of WSPOT are listed in Table 1-1. The parameters of the diffuseness 𝑎 = 0.35 fm and the reduced 

radius 𝑅0 = 1.15 fm are fixed [39]. The depths of central potential and spin-orbit potential are fitted for 

single-particle energy of 23F (25F), 22O (24O) [40], and the root-mean-square charge radius of 23F (25F) 

[41]. 

 

 

Figure 1-4 – The neutron single-particle energy of 16O and 40Ca.  

The experimental values are compared SKX and NL3 potential in mean field calculation [38]. 

 

Table 1-1 – List of WSPOT parameters. 

 𝑉0 [MeV] 𝑉𝑙𝑠 [MeV] 𝑅0 [fm] 𝑎 [fm] 
23F -67.855 18.04 

1.15 0.35 25F -66.312 19.58 
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Figure 1-5 – The proton single-particle energies of 23F. 

They are calculated by WSPOT [38], SKX and experimental binding energy. 

 

 

Figure 1-6 – The proton single-particle energies of 25F.  

They are calculated by WSPOT, SKX and experimental binding energy. 

 

 

The shell model (or interactive shell model) calculation is based on the independent particle model to 

cope with the residual interaction. The off-diagonal terms are the reason for the nucleon-nucleon 

correlation and configuration mixing. The calculation diagonalizes the Hamiltonian within some major 

shells [42]. Due to the huge number of bases involved, it is more computationally suitable on light 

nuclei or within a truncated configuration space. The shell model cannot calculate the single-particle 

energies but uses them as one of the inputs; therefore, it is mainly used in calculating ground state and 

the excited states. The other input is the two-body matrix elements that bases on the nuclear interactions. 

The occupation number, which is the average number of particles in an orbit, can be calculated using 

the shell model calculation. The occupation number can be measured experimentally by the sum of the 

spectroscopic factors. It is worth to notice that because of the virtual excitation, there are ~30% highly 

excited component in the real wavefunction, which is neglected in the shell model calculation [38]. 
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1.1.2 Spectroscopic Factor 

The IPM assumed that nucleons are moving in a mean field independently, so that each nucleon is 

moving in a single-particle orbit. In this case, the spectroscopic factor equals 1. A correlated nucleon 

has a spectroscopic factor smaller than 1. There are two kinds of spectroscopic factors: theoretical and 

experimental. The theoretical spectroscopic factor only depends on the nuclear structure, while the 

experimental spectroscopic factor is more complicated that it depends on the nuclear structure and the 

reaction mechanics. These two kinds of spectroscopic factor should be the same in principle. 

1.1.2.1 Theoretical Spectroscopic Factor 

The definition of the theoretical spectroscopic factor can be found in References [38] [26] [43] [44] [45] 

[46] [47]. A brief definition borrowed from the References [26] [43] [44] is presented below.  

 

In a nucleon knockout reaction, a nucleon is removed from a nucleus |𝐴⟩ to produce nucleus |𝐵⟩ in state 

𝐽𝐵. The Hamiltonian 𝐻𝐴 of the nucleus A can be expressed as 

𝐻𝐴 =∑ℎ𝑖
𝑖

+∑𝑅𝑖𝑗
𝑖≠𝑗

= ℎ1 + 𝐻𝐵 + 𝑅1𝐵, 𝑅1𝐵 = ∑ (𝑅𝑖𝑗 = 𝑉𝑖𝑗 − 𝑈𝑖)

𝑖>1,𝑗>1

 
(1.1.5) 

where ℎ𝑖 is the single-particle Hamiltonian, 𝑅𝑖𝑗 is the two-body residual interaction, ℎ1 is the single-

particle Hamiltonian of the interested nucleon, 𝐻𝐵 is the Hamiltonian of the nucleus B, and 𝑅1𝐵 is the 

total two-body residual interaction between the nucleon and the nucleus B. The wavefunctions of the 

single-particle orbit |𝑛𝑙𝑗⟩ (where 𝑛 is the principle quantum number, 𝑙 is the orbital angular momentum, 

and 𝑗 is the total angular momentum of an orbit) came from the mean field calculation. The relation 

between them can be expressed as 

|𝐴⟩𝐽𝐴 = |𝐵 + 1⟩ =∑∑𝛽𝑛𝑙𝑗(𝐴, 𝐵
′)

𝑛𝑙𝑗

[|𝑛𝑙𝑗⟩|𝐵′⟩𝐽
𝐵′
]
𝐽𝐴

𝐵′

=∑∑𝛽𝑛𝑙𝑗(𝐴, 𝐵
′)

𝑛𝑙𝑗

[𝑎𝑛𝑙𝑗
† |𝐵′⟩𝐽

𝐵′
]
𝐽𝐴

𝐵′

, 

(1.1.6) 

where 𝐵′ represents the various states of nucleus |𝐵⟩ in state 𝐽𝐵′ ,  [ ]𝐽𝐴  is the antisymmetric operator 

and vector coupling to the total spin 𝐽𝐴, the coefficient 𝛽 is the spectroscopic amplitude, and the 𝑎𝑛𝑙𝑗
†

 is 

the creation operator of the orbit |𝑛𝑙𝑗⟩. The isospin was dropped for simplicity.  

 

By applying ⟨𝐵| from the left side of the equation (1.1.6) 

⟨𝐵|𝐴⟩ = |𝑛𝑙𝑗⟩̂ = ∑𝛽𝑛𝑙𝑗(𝐴, 𝐵)|𝑛𝑙𝑗⟩ ,

𝑛𝑙𝑗

 (1.1.7) 

and the spectroscopic factor is the square of coefficient 𝛽𝑛𝑙𝑗, such that 
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𝑆𝑛𝑙𝑗(𝐴, 𝐵) = |𝛽𝑛𝑙𝑗(𝐴, 𝐵)|
2
, (1.1.8) 

where the quasi-particle state |𝑛𝑙𝑗⟩̂  (or called overlap orbit) is not necessary orthogonal with each other 

and not equal a pure single-particle state |𝑛𝑙𝑗⟩, unless the off-diagonal terms of the residual interaction 

are zero. Because the off-diagonal terms create configuration mixing when diagonalizing the total 

Hamiltonian [equation (1.1.5)], then the spectroscopic factors are fragmented. Since a wavefunction 

must be normalized, therefore ∑|𝛽𝑛𝑙𝑗|
2
= 1 and |𝛽𝑛𝑙𝑗|

2
> 0, thus the value of the spectroscopic factor 

lays between 0 and 1.  

 

A bra ⟨𝐴| can act from the left side of the equation (1.1.6) 

⟨𝐴|𝑎𝑛𝑙𝑗
† |𝐵′⟩ = 𝛽𝑛𝑙𝑗(𝐴, 𝐵

′). (1.1.9) 

The spectroscopic factor is also related to the norm of the square of the overlap of the wavefunction of 

two nuclei by a creation operator 𝑎𝑛𝑙𝑗
†

 

𝑆𝑛𝑙𝑗(𝐴, 𝐵) = |⟨𝐴|𝑎𝑛𝑙𝑗
† |𝐵⟩|

2
. (1.1.10) 

Therefore, the spectroscopic factor also reflects the overlap/likeliness of |𝐵⟩ nucleus pluses one nucleon 

with |𝐴⟩ nucleus.  

 

1.1.2.2 Spectroscopic Strength and Occupation Number 

The spectroscopic strength of an orbit is the sum of the spectroscopic factors of that orbit. The sum rule 

for the spectroscopic factors over all states of |𝐵⟩, in which a nucleon is knocked out from an orbit |𝑛𝑙𝑗⟩, 

is an average number of occupancy of the orbit |𝑛𝑙𝑗⟩  

𝑛𝑠ℎ∑𝑆𝑛𝑙𝑗(𝐴, 𝐵𝐽𝐵)

𝐽𝐵

= 𝑛𝑠ℎ∑|𝛽𝑛𝑙𝑗(𝐴, 𝐵𝐽𝐵)|
2

𝐽𝐵

= 𝑛𝑛𝑙𝑗(𝐴), (1.1.11) 

where 𝑛𝑠ℎ is the shell limit (IPM limit) or the number of nucleon in the orbit |𝑛𝑙𝑗⟩ under IPM, 𝑛𝑛𝑙𝑗(𝐴) 

is called the occupation number. The shell limit is equal to 2𝑗 + 1 for a closed shell or equal to the 

maximum number of particles for an open shell. For example, the proton shell-limit of the 1d5/2 orbit in 

23F is 1 and that is 6 in 40Ca. The fraction of occupancy is the ratio between the occupation number and 

the shell limit 𝑛𝑠ℎ ≤ (2𝑗 + 1). It is also as same as the spectroscopic strength. Note that equation (1.1.11) 

does not hold for transfer transition [43]. Figure 1-7 shows the occupation number calculated using the 

shell model calculation on the sd-shell [38]. Because of the nucleon-nucleon correlation, the occupancy 

of each sub-shell is not 100%, but the sum for all sub-shells is always equal to the shell limit. 
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Figure 1-7 – The theoretical proton occupation number.  

It was calculated for N=Z nuclei using the shell model. The filled circles are 1d5/2 orbit, the open 

squares are 2s1/2 orbit, and the crosses are 1d3/2 orbit. The lines show the shell limit. This figure is 

taken from Reference [38].  

 

In statistical mechanics, the density of states of a non-interactive fermion system follows the Fermi-

Dirac distribution. In the IPM model, each nucleon is moving under the mean field without nucleon-

nucleon correlation. The fraction of occupancy in a function of kinetic energy should have a shape edge 

on the Fermi surface. Because of the nucleon-nucleon correlation (or more precisely, the long-range 

correlation [48]), the Fermi surface diffused. The short-range correlation due to the hard repulsive core 

reduces the fraction of occupancy below the Fermi surface and extends the high-energy tail. A typical 

shape of the distribution is shown in Figure 1-8 [49].  In the figure, the FG stands for the non-correlated 

Fermi-gas, which is the IPM model. The SRC and LRC stand for the short-range and long-range 

correlation respectively. The “corr. cont.” stands for the correlated continuum. 𝑛(𝐸) is the fraction of 

occupancy in function of energy 𝐸. 𝑛𝑐(𝐸) is the fraction of occupancy in continuum. 𝑧 is the quasi-

particle strength of nuclear matter, which is similar to the fraction of occupancy. 𝐸𝐹 is the energy of the 

Fermi surface. The blue data points are located at the single-particle energies of difference orbits of 

208Pb. The fractions of occupancy for 16O, 40Ca, 48Ca, and 90Zr also show similar distribution [24]. The 

SRC is supposed to be localized and independent of nuclear system. Therefore, we may expect a similar 

fraction of occupancy appears on radioactive nuclei. 
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Figure 1-8 – The fraction of occupancy in a function of Fermi energy of 208Pb [49].  

See main text for detail. 

1.1.2.3 Experimental Spectroscopic Factor 

The experimental spectroscopic factor 𝑆𝑒𝑥𝑝 is deduced from dividing the (differential) cross section by 

a theoretical value, in which a unity spectroscopic factor (single-particle orbit) and proper treatment of 

the reaction mechanism are assumed, so that  

(
𝑑𝜎

𝑑𝛺
)
𝑒𝑥𝑝

= 𝑆𝑒𝑥𝑝 × (
𝑑𝜎

𝑑𝛺
)
𝐷𝑊𝐼𝐴

, (1.1.12) 

where 𝑑𝜎/𝑑Ω is the differential cross section, DWIA is an aberration for the distorted wave impulse 

approximation [50]. The skeleton of the DWIA calculation will be shown in Section 1.2.4. 

 

The correctness of the theoretical calculation relies on the assumed reaction mechanism. We used the 

DWIA reaction model for the reaction calculation [50]. This is a modification of a distorted wave Born 

approximation for a knockout reaction at medium and high incident energy. The impulse approximation 

was assumed that the major reaction channel is the quasi-free proton-proton elastic scattering and other 

reaction channels can be neglected [51].  

 

1.1.2.4 Reduction Factors 

The off-diagonal terms of the residual Hamiltonian lead to states mixing [1] [38] [48] [52]. The mixing 

spreads the spectroscopic factors of a state/nucleon to higher excitation energies, and then the sum of 

the spectroscopic factors up to the measurement limit could be smaller than the shell limit. The 

experimental sum of the spectroscopic factors can be compared with the shell limit, it tells us the 

deviation from the IPM and reveals the existence of the residual interaction. A comparison to the shell 

model calculation with certain interaction can help to study the detail of the nuclear force. The deviation 
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from unity implied an incomplete treatment on the shell model calculation [38] [53] or on the reaction 

models. Therefore, there are two kinds of reduction factors. One compares to the shell limit 

𝑅 =
𝑆𝑒𝑥𝑝

𝑛𝑠ℎ
, (1.1.13) 

and the other one compares to theoretical spectroscopic factor [53] 

𝑅𝑆 =
𝜎𝑒𝑥𝑝

𝜎𝑡ℎ𝑆𝑡ℎ
=
𝑆𝑒𝑥𝑝

𝑆𝑡ℎ
, (1.1.14) 

where 𝜎 and 𝑆 are the cross section and the spectroscopic factor respectively. The subscripts 𝑒𝑥𝑝 and 

𝑡ℎ mean the experimental and the theoretical respectively.  

 

The reduction factors 𝑅 for the ground state orbit of 16O, 40Ca, and 208Pb are between 0.6~0.9 [54] [55] 

[56] [57]. Figure 1-9 is taken from Reference [58], which compared reduction factors from (e,e′p) and 

(d,3He) reactions for the ground state of 12C, 16O, 31P, 40Ca, 51V, 90Zr, 142Nd, 206Pb, and 208Pb. The 

reduction is mainly due to the correlation that virtually excited nucleons into highly excited states [38]. 

 

Figure 1-9 – The proton reduction factor R deduced from (e,e′p) and (d,3He) reaction of difference 

nuclei [58]. 

 

Figure 1-10 shows another study by A. Gade et al. on the other reduction factor 𝑅𝑆. A relationship 

between 𝑅𝑆  and a “boundedness” Δ𝑆 = 𝜂(𝑆𝑛 − 𝑆𝑝), where 𝑆𝑛  and 𝑆𝑝 are the separation energies of 

neutron and proton respectively, is found. Here, 𝜂 is +1 for neutron removal and -1 for proton removal 

[59]. The study used the shell model calculation with difference interactions for the theoretical 

spectroscopic factor 𝑆𝑡ℎ and the Eikonal theory for the theoretical cross-section 𝜎𝑡ℎ. The author stated 

that the relationship is originated from the nuclear structure that deeply bound states are more correlated 

with other nucleons, and then the spectroscopic factors reduced. The small reduction factor is 

interpreted as correlation effects that are beyond the effective interactions used in the shell model 

calculation. However, several experiments comparing the transfer and knockout reactions suggest the 

relationship is originated from reaction mechanism [60] [61].  
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By comparing Figure 1-9 and Figure 1-10, the results on the stable isotopes shows that the spectroscopic 

factors of shell model calculation are as same as that of the IPM. This is because the true wavefunction 

should include the highly virtual excited states (> 10ℏ𝜔) due to the short-ranged interaction, but the 

shell model calculation ignored that and renormalized the wavefunction. Therefore, a quenching factor 

of ~0.7 should be multiplied on the spectroscopic factor of the shell model calculation. 

 

Figure 1-10 – The reduction faction RS of different nuclei [59].  

We call this figure as the Gade plot. 

 

The reduction of the spectroscopic factors of oxygen isotopes was studied theoretically by included 

coupling-to-continuum degree of freedom [62]. The result is shown in Figure 1-11. The study stated 

that for the deeply bound protons near Fermi surface, the reduction is mainly due to many-body 

correlations arising from the coupling to the scattering continuum when the neutron scattering states 

are treated properly. The study also stated that the spectroscopic factors of the 1p1/2 proton of oxygen 

isotopes depend on the tail of neutron wavefunction.  

 

Figure 1-11 – The theoretical spectroscopic factors of valance nucleon of oxygen isotopes [62]. 

Note that the asymmetry energies were theoretical values. 
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A short summary, the reduction factors of nuclei near stable valley are approximately 0.7. The Gade 

plot (Figure 1-10) shows a relationship between reduction factors and 𝛥𝑆 [53] [59]. However, the plot 

did not agree with the results from some transfer reactions [61] [60]. Also the plot can be reproduced 

using different theoretical calculations by including more nucleon-nucleon correlation [62] or 

reconsidering the radial overlap of the wavefunctions [63]. Therefore, the origin of the relationship in 

the Gade plot is still unclear. It could be due to the nucleon-nucleon correlation (as the author’s claim), 

the calculation of the theoretical reaction cross-section, or the treatment of the shell model calculation. 

 

Although the reduction factors of ~0.7 are common for stable nuclei, the IPM is applied well on nuclei 

that are made of a doubly close shell core plus or minus one nucleon. Therefore, the spectroscopic 

factors for those nuclei are close to unity. An example of such nucleus with single-particle ground state 

neutron is 17O (𝑆1𝑑5/2 = 0.8) [64] (𝑆1𝑑5/2 = 1.0) [65]. It consists of a double magic 16O core plus a 

neutron on the 1d5/2 orbit. Also, the neutron is weakly bound so that the virtual excitation is small. 

 

1.1.3 Nuclear Forces 

In the beginning of section 1.1, we mentioned that the spin-orbital splitting plays an important role in 

determining the nuclear shell structure. The splitting can be approximated using an effective mean field 

spin-orbit coupling. The form of the mean field spin-orbit coupling can be understood relatively simply 

and classically. When a nucleon is moving near the center of a nucleus, it is surrounded by other 

nucleons in all direction and then not sensitive to the orbital angular momentum, as the nuclear force is 

almost isotropic. But a surface nucleon senses an uneven force that creates an orbital angular momentum. 

Thus, the mean field spin-orbit coupling is strong on the nuclear surface and weak at the interior. The 

effective mean field spin-orbit coupling 𝑉𝑙𝑠 is proportional to the derivative of mean field 𝑈 of a nucleus. 

It takes the form 

𝑉𝑙𝑠 ∝
𝑑𝑈(𝑟)

𝑑𝑟
(𝑙 ⋅ 𝑠), 𝑙 ⋅ 𝑠 = {

𝑙

2
, 𝑗 = 𝑙 + 𝑠

−
𝑙 + 1

2
, 𝑗 = 𝑙 − 𝑠

. (1.1.15) 

Here, the small letter 𝑙 and 𝑠 are the orbital angular momentum and the intrinsic spin of a nucleon 

respectively. A Woods-Saxon potential is a good approximation of the effective mean field. The 

gradient of this potential is strong on the surface and weak in the interior. Neutron-rich nuclei have 

more diffusive surface because of excessive neutrons, and then the strength of the coupling is reduced 

[66] [67] [68]. 

 

The mean field spin-orbit coupling is originated from microscopic two-body or many-body forces. The 

primary contribution is the nucleon-nucleon spin-orbit coupling. This microscopic nucleon-nucleon 
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spin-orbit coupling involves only two nucleons and its strength has been measured from free nucleon-

nucleon scattering. It is surprised that the nucleon-nucleon spin-orbit coupling only contributes 

approximately half of the total mean field spin-orbit coupling [31].  

 

Another important component of the spin-orbit coupling is the tensor force. The tensor force is the main 

reason that the deuteron is more tightly bound than other proton-proton and neutron-neutron systems. 

Therefore, the tensor force is expected to play an important role in the nuclear structure. The 

microscopic origin of the tensor force is the spin-spin coupling as nucleon carries intrinsic spin. The 

tensor force is mediated by 𝜋 or 𝜌 meson [32], and it takes the form 

𝑉𝑇 ∝
1

𝑟3
(𝜎1⃗⃗ ⃗⃗ ⋅ 𝜎2⃗⃗⃗⃗⃗ − 3(𝜎1⃗⃗ ⃗⃗ ⋅ 𝑟̂)(𝜎2⃗⃗⃗⃗⃗ ⋅ 𝑟̂))(𝜏1⃗⃗⃗⃗ ⋅ 𝜏2⃗⃗ ⃗⃗ ),  (1.1.16) 

where the 𝜏 is the isospin vector, 𝜎⃗  is the spin vector, and 𝑟̂  is the unit vector of relative position 

between two spins with length 𝑟. The effect of the tensor force is repulsive when two parallel spins 

aligned and attractive when they are anti-aligned. The situation analogy to two classical dipole magnets. 

The tensor force can be also expressed as [20] 

𝑉𝑇 = 𝑓(𝑟)([𝜎1⃗⃗ ⃗⃗  𝜎2⃗⃗⃗⃗⃗]
2 ⋅ 𝑌2)(𝜏1⃗⃗⃗⃗ ⋅ 𝜏2⃗⃗ ⃗⃗ ), (1.1.17) 

where 𝑓(𝑟) is the radial component, 𝑌2 is a spherical harmonic of rank 2, and [𝜎1⃗⃗ ⃗⃗  𝜎2⃗⃗⃗⃗⃗]
2 represents the 

spins coupled to form a rank 2 tensor.  Since a nucleon has intrinsic spin of 1/2, two nucleons can couple 

to spin-1 or spin-0 pair. Only the spin-1 pair is able to form a rank 2 tensor. Therefore, the two nucleons 

must have a parallel spin for the tensor force to act upon them. The mechanism of the tensor force is 

illustrated in Figure 1-12. A more detailed explanation can be found on Reference [16]. 

  

 

Figure 1-12 – Mechanism of the tensor force.  

(a) The interaction between a proton in 𝒋>,< = 𝒍 ± 𝟏/𝟐 and a neutron in 𝒋>
′ = 𝒍′ + 𝟏/𝟐 of the tensor 

force. (b) The exchange processes contributing to the monopole interaction of the tensor force [20]. 

 

Other component is the three-nucleon force. As the name suggests, this is a three-body force. It is 

different from the nucleon-nucleon spin-orbit coupling and the tensor force, which are two-body forces. 

Three nucleons involved as a nucleon excitation to Δ(1232) that connects others two nucleons when de-

excited. The three-nucleon force was introduced from the analyzing power puzzle to explain the (N,d) 
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scattering data [42]. Analyzing power is the ability to produce left-right asymmetric differential cross 

section. The analyzing power was unable to be explained by the two-body forces and it is called the 

analyzing power puzzle.  

 

The three-nucleon force could be the reason for the position of the neutron dripline of oxygen, in which 

the last bound isotope is at 𝑁 = 16 [18]. There are others theoretical studies on the effect of the three-

nucleon force [69] [70]. Figure 1-13 shows the ground state energies of nitrogen and fluorine isotopes 

using a mean field calculation with two-body and three-body interactions. The results of three-body 

interaction have better agreement with the experimental ground state energies.  

  

Figure 1-13 – The ground state energies of nitrogen and fluorine isotopes calculated using the three-

body force [70]. 

 

In a short summary, we have briefly explained the effects and the roles of each component of the spin-

orbit coupling: the nucleon-nucleon spin-orbit coupling, the tensor force, and the three-nucleon force. 

The first two components can be explained using one-meson exchange from chiral effect field theory 

[32]. This theory is derived from the quantum chromodynamics (QCD) for the low energy region. The 

spin-orbit coupling and the central force (a force only depends on the relative position) come from the 

𝜎 and 𝜔 mesons. The spin-isospin interaction and the tensor force come from the 𝜋 and 𝜌 mesons. 

However, the contribution of each term to the mean field spin-orbit coupling is still unknown 

experimentally. Ando and Bando [30], Heghes and Couteur [29], and Pieper and Pandharipande [31] 

have estimated the contribution of each component theoretically. They all reached the similar 

conclusion that the nucleon-nucleon spin-orbit coupling contributes about 50%, the tensor force 

contributes about 25%, and the other component contributes the rest 25% (see Figure 1-14).  Note that 

this partition is for the stable nuclei. Two questions naturally arise: 1) What is the exact partition? 2) 

Does this partition change toward the neutron dripline (as there are many extraordinary discoveries 

toward the neutron dripline)?  
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Figure 1-14 – Contribution to spin-orbit splitting from different component [29] [30] [31].  

 

1.1.4 Proton Shell Structure of Fluorine Isotopes 

Fluorine isotopes are interesting place to study for three primary reasons: 1) the sd-shell proton should 

be in a single-particle orbit because of  the 𝑍 = 8 magicity, large shell gap between 1d5/2 and 1p1/2 orbits, 

and week proton-neutron correlation energy as we will see later, so that it serves as a simple probe of 

the excessive neutrons, 2) the isotopes chain span the new magic number 𝑁 = 16 [13] [14] and the 

island of inversion, so that a lot of exotic phenomena can be studied, and 3) fluorine has a long extended 

neutron dripline 𝑁 = 22 [71]. Fluorine isotopes can be thought as if a 16O + 1d5/2 proton + sd-shell 

neutrons system, such that the 16O serves as a non-interactive core because the double magicity of 16O. 

It is amazing that a single proton on an sd-shell can hold twelve sd-shell and two pf-shell neutrons on 

top of a 16O core! 

 

 

Figure 1-15 – The experimental data of proton separation energy of fluorine and oxygen isotopes [72]. 

The separation energy is same as the single-particle energy of oxygen isotopes near Fermi surface. 

The difference between the separation energy is the shell gap between 1p1/2 and 1d5/2 orbits.  

 

The experimental shell gap between the 1p1/2 and 1d5/2 orbits is deduced from the binding energy [72] 

and is shown in Figure 1-15. The average shell gap is ~10 MeV. There are peaks at 𝑁 = 8 and 𝑁 = 16. 

The 𝑁 = 8 peak is caused by the decrease of the proton separation energy of 17F and the slightly 

increase of the proton separation energy of 16O. This peak is expected as 8 is a magic number. The 1d5/2 
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proton in 18F becomes more tightly bound by adding a 1d5/2 neutron. The separation energies of the 1p1/2 

proton of oxygen almost increase linearly with neutron number. The peak at 𝑁 = 16 is interesting as it 

provides supporting evidence for the new magic number [13] [14].  

 

The nucleon-nucleon correlation energy can be extracted using the binding energy or separation energy 

Δ𝑝𝑛(𝑍,𝑁) = 𝑆𝑝(𝑍, 𝑁) + 𝑆𝑛(𝑍, 𝑁) − 𝑆𝑝𝑛(𝑍, 𝑁), (1.1.18) 

where 𝑆𝑝𝑛(𝑍, 𝑁) is the separation energy of a proton and a neutron at the same time of a nucleus (𝑍, 𝑁) 

with 𝑍 protons and 𝑁 neutrons. The equation can be understood by considering the Hamiltonians of 

three nuclei (𝑍,𝑁), (𝑍 − 1,𝑁), and (𝑍,𝑁 − 1). The Hamiltonian of (𝑍 − 1,𝑁) nucleus is 𝐻 + ℎ𝑛 + 𝑉𝑛, 

where 𝐻 is the Hamiltonian of (𝑍 − 1,𝑁 − 1) nucleus, ℎ𝑛  is the neutron Hamiltonian and 𝑉𝑛  is the 

residual interaction energy between the (𝑍 − 1,𝑁 − 1 ) nucleus and the neutron. Similarly, the 

Hamiltonian of the (𝑍,𝑁 − 1) nucleus is 𝐻 + ℎ𝑝 + 𝑉𝑝, and that of the (𝑍,𝑁) nucleus is 𝐻 + ℎ𝑛 + ℎ𝑝 +

𝑉𝑛 + 𝑉𝑝 + 𝑉𝑛𝑝. Here, 𝑉𝑛𝑝 is the residual interaction between the proton and neutron. The proton-neutron 

separation energy is the terms ℎ𝑛 + ℎ𝑝 + 𝑉𝑛 + 𝑉𝑝 + 𝑉𝑛𝑝 . Therefore, the proton-neutron correlation 

energy is equation (1.1.18). The neutron-neutron correlation energy can be extracted by replacing 

proton with neutron in the above equation.  

 

The correlation energy of fluorine isotopes is shown in Figure 1-16. Because fluorine has only one 

proton on the 1d5/2 orbit, the proton-proton correlation energy is not meaningful. The proton-neutron 

correlation energy with odd neutron numbers is always higher than those with even neutron numbers. 

It is interesting that with ~5 MeV extract correlation energy, 18F is still not a stable isotope until one 

more neutron is added. The neutron-neutron correlation energies of odd neutron numbers are all 

negative, because removing two neutrons requires breaking a pair. It is also interesting that the neutron-

neutron and proton-neutron correlation energies of even-neutron number suddenly drop at 𝑁 = 16; this 

may be related to the new magic number 𝑁 = 16.  

 

Figure 1-16 – The nucleon-nucleon (NN) correlation energy of fluorine isotopes. 
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The experimental data of proton knockout reaction are limited for fluorine isotopes because it has only 

one stable isotope [40], and it is difficult to access exotic nuclei with sufficient intensity for a successful 

study in the past. A 19F(e,e′p) reaction was performed but it does not discuss neither single-particle state 

nor spectroscopic properties [73]. A 19F(p,2p) knockout reaction reported only the 2s-shell proton was 

observed [74]. A proton knockout reaction on unstable fluorine isotopes using a 12C target was 

performed a decade ago by M. Thoennessen et al. [75]. The study focused on the valance orbit of exotic 

fluorine isotopes using 12C(24,25,26F,23,24,25O) reactions at 50A MeV. The exclusive scattering experiment 

found that the spectroscopic factors for 12C(24F,23O), 12C(25F,24O), and 12C(26F,25O) are 0.9 ± 0.1,  

0.49 ± 0.08, and 0.5 ± 0.2 respectively. Besides the valance state, the 1p1/2 and 1p3/2 orbits was stated 

(Figure 1-3) in Reference [23], but no reference was given. 

 

The only stable isotope of fluorine is 19F, it has low-laying negative parity excited states, which indicate 

a strong state mixing. According to the normal shell ordering, the 1d5/2 state is the lowest energy state 

in the sd-shell. The sd-shell proton of the 19F should be in the 1d5/2 state and the two neutrons in the 

1d5/2 state couple to a total spin zero. Thus, the ground state spin of 19F should be 5/2. In fact, its ground 

state spin-parity is 1/2+ instead of 5/2+. The low laying negative parity excited states and abnormal 

ground state spin suggest that 19F is deformed [76] or the 2s1/2 state is more tightly bound than the 1d5/2 

state [74].  

 

A common way to study the proton valance state and excited states of fluorine is using the proton 

transfer reaction on the oxygen isotopes 16,17,18O, such as the (d,n), (3He,d), and (α,t) reactions. The 

proton excited state of 19F was studied using a 18O(d,n)19F reaction at 25 MeV and the spectroscopic 

factors of the 2s1/2  of 19F up to 14 MeV was reported to be 0.72 ± 0.41 [77]. A 18O(3He,d)19F reaction 

reported that the spectroscopic factor of the valance 2s1/2 proton at ground state  is 0.42 [78]. The proton 

states on the sd-shell were studied by an (α, t) reaction on 16,17,18O at 65 MeV [79]. The experimental 

cross-sections were compared with an exact-finite-range distorted wave Born approximation (DWBA) 

calculation. The spectroscopic factors of the valance proton of 17,18,19F up to 14 MeV are 1.3, 1.38, and 

1.13 respectively. The spectroscopic strength of the proton valance state of even-neutron fluorine 

isotopes are shown in Figure 1-17.  
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Figure 1-17 – The spectroscopic strength of the valance proton of ground state of even-neutron 

fluorine isotopes  [75] [77] [79] [80]. 

The solid dots are full strength of the valance proton. The hollow dot is partial strength of the valance 

proton. The cross is the result from S. Michimasa [80]. Note that the data were collected under 

different reactions and energies. 

 

The excited states or the valance state of unstable fluorine isotopes were studies using either 𝛽− decay 

from unstable oxygen isotopes [81] or proton transfer reactions. S. Michimasa et al. studied the 23F  

using 𝛾-ray spectroscopy via a proton transfer reaction from 4He to the 22O [82], the study showed pure 

proton excited states at 2.27 MeV (𝑗𝜋 = 1/2+)  and 4.06 MeV (𝐽𝜋 = 3/2+) above the ground state. 

The spin-orbital splitting between the 1d3/2 and 1d5/2 orbits was found to be 4.06 MeV by assuming that 

there was no fragmentation for those states. The experimental cross sections were compared with the 

DWBA calculation, and the spectroscopic strength of the ground state (𝐽 = 5/2) and the 4.06 MeV (𝐽 =

3/2) state were found to be 6.6 and 1.2 respectively [80]. The experimental excited levels were 

compared using shell-model calculation with USDB interaction [83]. They also found that the shell gap 

energy of the proton 1d5/2 and 1d3/2 orbits have to be increased by 1.2 MeV to reproduce the experimental 

spin-orbit splitting. The left figure of Figure 1-18 shows the evolution of the proton 1d5/2 state and 2s1/2 

state with respect to neutron numbers [81]. The right figure of Figure 1-18 shows the level scheme on 

25F obtained by Zs. Vajta et al. [84].  

 



23 

 

 

Figure 1-18 – The experimental proton unoccupied shell structure of fluorine isotopes [81] [84]. 

 

1.1.5 Prediction of the Shell Model Calculation 

From the change of the neutron dripline between oxygen and fluorine, we could expect the sd-shell 

proton affects the sd-shell neutrons and changes the neutron shell structure. In a simplest model, 

assuming the sd-shell proton is always in the 1d5/2 orbit as the ground state spin of most even-neutron 

fluorine isotopes are 5/2, the wavefunction of fluorine can be written as a coupling between the 1d5/2 

proton |𝜋1𝑑5/2⟩, the sd-shell neutrons |𝜈𝑠𝑑⟩, and the inert 16O core | O16 ⟩, such that 

|F⟩𝐽𝐹 = [|𝜋1𝑑5
2

⟩ |𝜈𝑠𝑑⟩| O16 ⟩]
𝐽𝐹

= [|𝜋1𝑑5
2

⟩ |O𝑏𝑜𝑢𝑛𝑑⟩]
𝐽𝐹

. (1.1.19) 

Because the neutron shell changed from oxygen to fluorine, the wavefunction of the bound oxygen is 

not as same as that of the free oxygen, so that the overlap of the wavefunctions between the ground 

state oxygen and fluorine is not 100%. Also, the bound oxygen wavefunction has to be expressed from 

many excited state of oxygen, and then the quasi-proton state should be fragmented.  

 

We used the shell model calculation to investigate the shell structure of 22,24O and 23,25F with OXBASH 

[85]. The calculations were carried out in isospin formalism in the psd model space with the SFO 

Hamiltonian [86]. Sixty wavefunctions were calculated up to 2ℏ𝜔 excitation, so that the maximum 

excitation energy was roughly 22 MeV. The SFO Hamiltonian was made to give good predictions on 

the excitation energy and the B(GT) value among the p-shell exotic light nuclei. The calculation shows 

that the p-shell is always filled in the ground state of fluorine and oxygen. We assumed that the sd-shell 

proton is always in 1d5/2 shell, because the occupation numbers of (23F,22O) and (25F,24O) are 0.9. Thus, 

we can extract the neutron configuration even in the isospin formalism. 
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Since the p-shell is always filled in the ground state, we also use different model spaces and interactions 

to explore the model space and interactions dependency. The sd-shell model space with the USDB [83] 

interaction and the sdpf-shell model space with the SDPF-MU [87] interaction are used. The 

probabilities of different configurations of the ground state of 22,24O and 23,25F from the shell model 

calculation are shown in Table 1-2 and Table 1-3. The calculation of the ground state of 16,22O and 15,21N 

are also done and the results are shown in Table 1-4. 

 

Table 1-2 – Neutron shell configurations of 23F and 22O from the shell model calculation.  

The number represents the number of neutron in each orbit. For example, “425130” means 4 neutrons 

in 1p3/2, 2 neutrons in 1p1/2, 5 neutrons in 1d5/2, 1 neutron in 2s1/2, 3 neutrons in 1d3/2, and 0 neutron in 

1f7/2. SF stands for spectroscopic factor. 

Neutron 

Configuration 

SFO USDB SDPF-MU 
23F [%] 22O [%] 23F [%] 22O [%] 23F [%] 22O [%] 

42420 45.14 66.32 12.57 13.72 14.46 14.44 

42321 12.56 3.40 2.45 – 2.32 – 

42222 9.65 7.97 1.57 1.18 2.78 1.90 

42510 9.20 – 8.74 – 5.15 – 

42600 7.37 10.01 56.92 75.01 47.04 66.57 

42411 4.32 1.14 4.95 3.31 3.08 1.55 

42402 3.53 2.55 6.56 5.9 10.50 9.04 

42330 3.12 – – – – – 

42312 2.28 – – – – – 

42501 1.13 – 4.76 – 3.46 – 

424002 – – – – 1.99 1.97 

SF 
0.62 (0 MeV, 0+) 0.92 (0 MeV, 0+) 0.89 (0 MeV, 0+) 

0.30 (1.9 MeV, 2+) 0.16 (3.2 MeV, 2+) 0.11 (3.6 MeV, 2+) 

 

Table 1-3 – Neutron shell configurations of 25F and 24O from the shell model calculation.  

Neutron 

Configuration 

SFO USDB SDPF-MU 
25F [%] 24O [%] 25F [%] 24O [%] 25F [%] 24O [%] 

42620 67.05 83.71 79.58 91.00 57.4 74.16 

42422 15.85 10.50 7.62 6.25 11.47 9.53 

42521 9.27 – 6.25 2.29 4.65 – 

42611 1.82 – – – – – 

42602 1.63 – 3.90 – 7.89 4.71 

42512 1.54 – – – – – 

424202 – – – – 1.84 1.67 

426002 – – – – 2.37 2.16 

SF 0.90 (0 MeV, 0+) 1.01 (0 MeV, 0+) 0.95 (0 MeV, 0+) 
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Table 1-4 – Neutron shell configurations of 16O, 15N, 22O, and 21N from the shell model calculation.  

Neutron 

Configuration 

SFO Neutron 

Configuration 

SFO 
16O [%] 15N [%] 22O [%] 21N [%] 

42000 81.80 85.18 42420 66.32 63.09 

31101 5.57 4.24 42600 10.01 5.70 

40200 4.15 2.50 42222 7.97 10.88 

22101 2.20 2.39 42321 3.40 6.14 

31200 2.05 1.70 42402 2.55 2.14 

22200 1.27 1.25 42411 1.14 1.80 

   32420 – 3.45 

   32231 – 2.12 

   32510 – 1.90 

SF 0.95 (0 MeV, 0+)  0.93 (0 MeV, 0+) 

 

From the configuration, the neutron shell structure changes a lot from oxygen to fluorine, but not from 

nitrogen to oxygen. This indicates the 1d5/2 proton strongly affects the sd-shells neutrons. This is only 

possible if the proton interacts strongly with the neutrons.  

 

The strong interaction explained the difference of the position of the neutron dripline between oxygen 

and fluorine. Figure 1-19 demonstrates the idea. In oxygen, the sd-shell neutrons are bound by the mean 

field of 16O and themselves except the 1d3/2 orbit. However, in fluorine, the interaction between π1d5/2 

and ν1d3/2 lowers the energy of the 1d3/2 neutron orbit and the dripline extended. In fact, the isoscalar 

monopole energy [38] of the π1d5/2 and ν1d3/2 of the SFO, USDB, and SDPF-MU interactions are -3.6 

MeV, -3.7 MeV, and -3.2 MeV respectively, and the experimental neutron separation energy of 25O is 

-0.78 MeV (unbound). Therefore, the 1d5/2 proton can make the 1d3/2 neutron bound theoretically. The 

experimental neutron separation energy of 26F is 0.77 MeV.  

 

 

Figure 1-19 – Illustration of the change of the neutron shell caused by the 1d5/2 proton.  

See main text for explanation. 
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The levels of the excitation energy of 22,24O and 23,25F are shown in Figure 1-20, Figure 1-21, Figure 

1-22 and Figure 1-23 respectively. The USDB interaction has better agreement with the experimental 

excitation-energy levels.  

 

Figure 1-20 – Level scheme of 22O. 

 

Figure 1-21 – Level scheme of 24O. 

 

 

Figure 1-22 – Level scheme of 23F. 
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Figure 1-23 – Level scheme of 25F. 

 

A good shell model interaction should able to reproduce the experimental binding energy 𝐵𝐸𝑒𝑥𝑝. The 

binding energy of the core 𝐵𝐸(𝑐𝑜𝑟𝑒) has to be added on the binding energy 𝐸, that calculated from the 

shell model interaction, to get the total binding energy 𝐵𝐸𝑠ℎ = 𝐸 + 𝐵𝐸(𝑐𝑜𝑟𝑒). The results show in 

Table 1-5 and Table 1-6. In the case of SFO interaction, the particle threshold (~ 20 MeV) should be 

subtracted. The calculated binding energies of 23,25F are worse than that of 22,24O from the experimental 

value. This is due to the Coulomb force is missing that the single-particle energies of proton and that of 

neutron are the same, but in fact, the neutron single-particle energies are always lower than that of 

protons because of the Coulomb interaction. The USDB interaction with Coulomb force has a very 

good agreement with experimental binding energy [83]. 

 

Table 1-5 - Binding energies [MeV] of 22O and 23F. 

 SFO, BE(4He) = 28.3 MeV USDB, BE(16O)=127.6 MeV SDPF-MU 

 23F 22O 23F 22O 23F 22O 

𝐸 166.4 150.8 51.2 34.5 53.0 35.5 

𝐵𝐸𝑠ℎ 194.7 179.1 178.8 162.1 180.6 163.1 

𝐵𝐸𝑒𝑥𝑝 175.3 162.0 175.3 162.0 175.3 162.0 

diff. 19.4 17.1 3.5 0.1 5.3 1.1 

 

Table 1-6 – Binding energies [MeV] of 24O and 25F.  

 SFO, BE(4He) = 28.3 MeV USDB, BE(16O)=127.6 MeV SDPF-MU 

 25F 24O 25F 24O 25F 24O 

𝐸 180.9 163.2 59.6 41.2 62.2 42.7 

𝐵𝐸𝑠ℎ 209.2 191.5 187.2 168.8 189.8 170.3 

𝐵𝐸𝑒𝑥𝑝 183.4 170.4 183.4 170.4 183.4 170.4 

diff. 25.8 21.1 3.8 -1.6 6.4 -0.1 
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1.2 Experimental Method 

Transfer, pick-up, and knockout reactions are used to study the single-particle properties and the 

nucleon-nucleon interaction [88]. Transfer reaction focuses on the unoccupied states [82] [55] and 

measures the emptiness of a state. Pick-up and knockout reactions focus on the occupied states. Both 

transfer and pick-up reactions require momentum matching, that has to be included in the reaction 

mechanism. Some pioneering works on the proton occupied states are done using (e,e′p) [57] [89], (p,2p) 

[74] [90] [91] [92] [56], (d,3He) [93] and other single-proton knockout experiments [75]. One of the 

findings is the spectroscopic factors are around 20% to 40% smaller than the shell limit for most stable 

nuclei [58]. This indicates that the nucleon-nucleon correlation cannot be ignored and the independent 

particle model is merely a first order approximation.  

 

To study the proton spectroscopy of 23,25F, it is better to use a direct knockout reaction [25]. There are 

many types of knockout experiments designed to measure the single-particle energy of the orbital/bound 

protons. For example, (e,e′p) reaction uses the Coulomb force and only sensitive to proton. It is widely 

used on stable nuclei [57] [89]. (n,d) reaction is not easy because of many technical issues, like the 

small efficiency of neutrons detection. The (p,2p) reaction uses a proton to knockout an orbital proton 

[56] [74] [94] [90]. In this type of experiment, a spin-polarized proton can be used to distinguish the 

𝐽> = 𝑙 + 𝑠 state and 𝐽< = 𝑙 − 𝑠 state by measuring the asymmetry in the differential cross section, for 

example 16O(p,2p)15N [95] [96]. There are also inverse knockout experiments on nuclear targets [93] 

[75].  

 

The (p,2p) reaction in inverse kinematics at medium energy was chosen with four reasons: 1) 23F and 

25F are unstable and short life time, they have to be produced by nuclear reaction and accelerated to 

relativistic speed to increase the life time in the laboratory frame, 2) proton is the cleanest probe that it 

will not be excited and the proton-proton bound state does not exist, and 3) medium energy proton 

should be able to probe the deeply bound states and ensure direct reaction. The impulse approximation 

is applicable at medium energy, so that the knockout reaction can be treated quasi-freely, and the 

reaction mechanism can be simplified [50] [51].  

 

1.2.1 Knockout Reaction and Single-Particle State 

A knockout reaction with the impulse approximation can be used to probe the single-particle state 

because the reaction matrix 𝑇 is 

 𝑇 ∝ ⟨𝜙1𝜙2𝐵|𝑉𝑁𝑁|𝐴𝜙0⟩ = ⟨𝜙1𝜙2|𝑉𝑁𝑁|⟨𝐵|𝐴⟩𝜙𝑜⟩

= ⟨𝜙1𝜙2|𝑉𝑁𝑁  ∑ 𝛽𝑛𝑙𝑗(𝐴, 𝐵)|𝑛𝑙𝑗⟩𝑛𝑙𝑗 |𝜙𝑜⟩, 
(1.2.1) 
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where 𝜙  are proton distorted waves, 𝑉𝑁𝑁  is the nucleon-nucleon interaction, 𝐴  and 𝐵  are the 

wavefunctions of the nuclei A and B respectively. The second step used the impulse approximation that 

the reaction can be treated quasi-freely as proton-proton scattering. The last step of equation (1.2.1) 

used equation (1.1.7). The reaction matrix is proportional to the quasi-particle state; therefore, the 

reaction cross-section can be used to probe the spectroscopic factor. Note that the degree of freedom of 

the incident proton is the intrinsic spin only. If the incident particle contains many nucleons, the internal 

degree of freedom has to be considered, and the reaction matrix element is not only connected to the 

spectroscopic factor of nucleus A but also that of the incident particle because of the exchange terms in 

the incident channel that introduced from anti-symmetric requirement. 

 

The reaction can be treated quasi-freely and be applied the impulse approximation because the incident 

energy is high enough [50]. The high incident energy implies short reaction time when compare with 

nucleon motion, so that the nucleons can be treated as stationary. For a 300 MeV proton, the speed is  

2 fm per 10−11 ps. The diameter of 23F is about 7 fm, therefore the proton travelling time inside the 

nucleus is at most 4 × 10−11 ps. The Fermi energy of a nucleon is ~35 MeV, or 1 fm per 130 ×

10−11ps. Within the proton travelling time, the nucleons are moved 0.03 fm, therefore the nucleon 

motion is almost freeze.  

 

High incident energy also implies a short de Broglie wavelength, which is 1.5 fm for 300 MeV proton. 

In such a short wavelength and negligible nucleon motion, the incident proton can only interact with 

one or two nucleon and the rest nucleons does not participate in the reaction. Because of this, the 

reaction is mostly on the nuclear surface as the incident proton will be scattered. The energy-time 

uncertainty also allows an energy fluctuation larger than the binding energy, so that the energy 

conservation can be neglected during the very short reaction time [51]. The reaction time is at most 4 ×

10−11 ps, and the energy fluctuation is ~30 MeV, which is larger than the separation energy. Since the 

binding energy was neglected during the time of reaction, the reaction can be treated as free proton-

proton scattering that the calculation of the reaction matrix only has kinematics and phase-space 

components. The reaction is not exactly free but quasi-free because the energy must be balanced in the 

kinematics eventually. 

 

1.2.2 Kinematics of Knockout Reaction 

In the reference frame of the fluorine nucleus, the proton approaches at medium kinetic energy 𝑇. An 

orbital (or bound) proton is knocked out quasi-freely, and then an oxygen nucleus is left behind in 

ground state or excited states. A classical picture of the (p,2p) knockout reaction is illustrated in  

Figure 1-24. A round rectangle is inserted in the figure to illustrate the kinematics in the frame of center 

of momentum (C.M. frame).   
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Figure 1-24 – Illustration of a (p,2p) knockout reaction in the nuclear frame.  

 

The reaction in nuclear rest frame is notated as 𝐴(𝑎, 𝑐𝑑)𝐵 and 𝐴 = 𝐵 + 𝑏, where 𝐴 is the target nucleus, 

𝑎 is the incident proton, 𝑐 and 𝑑 are the scattered and knocked out proton, 𝐵 is the reaction residue, and 

𝑏 is the orbital proton. The proton 𝑏 is knocked out from nucleus 𝐵 after being directly struck by the 

proton 𝑎 , and the proton 𝑎  and 𝑏  become 𝑐  and 𝑑  respectively. Since our experiment uses inverse 

kinematics, we use another notation 𝑇(𝐹, 𝑂)12 and 𝐹 =  𝑂 +  𝑘 to avoid confusion, where 𝑇 is the 

proton target, 𝐹 is the fluorine nucleus, 𝑂 is the oxygen residual, 𝑘 is the bound proton, and 1 and 2 are 

the scattered and knocked out protons, respectively when working in the laboratory reference frame. 

The relativistic four-momenta ℙ, of the reaction in the nuclear rest frame are 

ℙ𝐴 + ℙ𝑎 = ℙ𝑐 + ℙ𝑑 + ℙ𝐵, ℙ𝑏 = ℙ𝐴 − ℙ𝐵, (1.2.2) 

and in the laboratory reference frame 

ℙ𝐹 + ℙ𝑇 = ℙ1 +ℙ2 + ℙ𝑂 , ℙ𝑘 = ℙ𝐹 − ℙ𝑂 . (1.2.3) 

 

We can rearrange equation (1.2.2) into 

ℙ𝑏 + ℙ𝑎 = ℙ𝑐 + ℙ𝑑 . (1.2.4) 

Note that the four-momentum ℙ𝑏 is a quasi-proton and its mass is defined from equation (1.2.2) that it 

is different from the mass of a free proton. Since ℙ𝐴 is stationary, the magnitude of the momentum of 

ℙ𝑏 is equal to that of the residue ℙ𝐵 but opposite direction. There are 6 unknowns in the reaction: the 

momentum of the residue 𝑝𝐵⃗⃗ ⃗⃗⃗ = 𝑘⃗⃗(𝑘, 𝜃𝑘 , 𝜙𝑘), the separation energy for an orbital proton 𝑠𝑝, and the 

scattering angles (𝜃𝑁𝑁, 𝜙𝑁𝑁) at the rest frame of the nucleon-nucleon center of momentum (the small 

picture of Figure 1-24). By measuring the scattering angles and the kinetic energy of the scattered 

protons, the four-momenta of the scattered proton ℙ1(𝑇1, 𝜃1, 𝜙1)  and the knockout proton 
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ℙ2(𝑇2, 𝜃2, 𝜙2) can be reconstructed, then the four-momentum ℙ𝑏 can be reconstructed. And then the 

separation energy can be deduced by 

𝑠𝑝 = 𝑚(ℙ𝑂) + 𝑚(ℙ𝑇) − 𝑚(ℙ𝐹), (1.2.5) 

where 𝑚(ℙ) is the mass of a four-momentum ℙ.  

 

1.2.3 Kinematics Calculation 

A kinematics of the 23F(p,2p) knockout reaction was calculated as shown in Appendix A.1. In the 

calculation, the incident energy of the proton in the nuclear frame is 290 MeV. The scattering angle in 

the reference frame of the center of momentum of the incident proton and orbital proton 𝜃𝑁𝑁 ran from 

0o to 360o and 𝜙𝑁𝑁 = 0° (Figure 1-24). Figure 1-25 shows the scattered energy of proton versus the 

scattering angle in the frame of laboratory with fixed 𝑘 = 100 MeV/c, 𝜃𝑘 = 60°, and 𝜙𝑘 = 0° on 

different values of 𝑠𝑝. The different colors loci in Figure 1-25 represent different values of 𝑠𝑝. When 

𝜃𝑁𝑁 runs from 0o to 360o, the loops start at maximum energy and run clockwise. The scattered angle 

for maximum kinetic energy is not zero because of 𝜃𝑘 = 60°. The shapes of the locus are different for 

different separation energies. This is reasonable as some energies is lost to the separation energy. This 

simple kinematics calculation shows that the scattering angle ranges from 0o to 80o in the laboratory 

reference frame, but the energy can vary with different kinematic conditions.  

 

 

Figure 1-25 – Kinetic energy vs scattering angle in the laboratory reference frame.  

The red, brown, green, and blue curves correspond to sp = 0, 10, 20, and 30 MeV respectively. The 

momentum of the residue is 100 MeV/c, and the 𝜽𝒌 = 𝟔𝟎°. This is kinematics calculation and no 

detector acceptance is considered. 

 

1.2.4 Estimation of Differential Cross Section  

Differential cross section is calculated by a DWIA method from the code THREEDEE [50] [97]. The 

code calculates the kinematics in the nuclear frame. The kinematics inputs are the incident energy of 
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the proton (𝑇𝑎), the separation energy (𝑠𝑝), the kinetic energy of a scattered proton (𝑇𝑐), the scattered 

angles of recoil protons (𝜃𝑐 , 𝜃𝑑) and the non-planar angle (𝛽𝑑 = 𝜙𝑑 − 𝜙𝑐). The knockout reaction of 

the type 𝐴(𝑎, 𝑐𝑑)𝐵, 𝐴 = 𝐵 + 𝑏 are separated into 4 channels: the 𝑎 +  𝐴, 𝑐 +  𝐵, 𝑑 +  𝐵, and 𝑏 +  𝐵. 

The other inputs are the optical potential parameters, nuclei spins, mass number, and charge number for 

each channel.  

 

1.2.4.1 Formulism 

The triple differential cross section and the scattering amplitude 𝑓 are 

𝑑𝜎

𝑑Ωc𝑑Ω𝑑𝑑𝐸𝑐
= |𝑓|2, 𝑓 ∝ ∫𝜒𝑐

∗𝜒𝑑
∗ Φ𝐵

∗𝑉𝑎𝑏𝜒𝑎Φ𝐴𝑑𝑟𝐴𝑑𝑟𝑎, (1.2.6) 

where 𝜒𝑎 , 𝜒𝑐 , and 𝜒𝑑 are the distorted wave of the incident particle 𝑎, the scattered particle 𝑐, and the 

knocked out particle 𝑑. 𝑟𝐴 is the coordinates of all nucleons of the nucleus 𝐴. 𝑟𝑎 is the relative position 

of the particle 𝑎 to the nucleus 𝐴. Because of the impulse approximation, the particle 𝑎 only interacts 

with an orbital nucleon 𝑏  with free-space potential 𝑉𝑎𝑏 . The intrinsic wavefunctions Φ𝐴  and Φ𝐵 

represent the nucleus 𝐴 and 𝐵, so that 

∫Φ𝐵
∗Φ𝐴𝑑𝑟𝐴 = ∫𝜙𝑛𝑙𝑗𝑑𝑟𝑏 . (1.2.7) 

Here, 𝜙𝑛𝑙𝑗 is the wavefunction of the orbital (or bound state) nucleon 𝑏 with coordinate 𝑟𝑏. The orbit 

was labeled by the 3 quantum number 𝑛 (principle quantum number), 𝑙 (orbital angular momentum), 

and 𝑗 (total angular momentum). The scattering amplitude reduced to 

𝑓 ∝ ∫𝜒𝑐
∗𝜒𝑑
∗ 𝑉𝑎𝑏𝜒𝑎𝜙𝑛𝑙𝑗𝑑𝑟𝑏𝑑𝑟𝑎. (1.2.8) 

We can understand it better by replacing the distorted waves with plane waves. 

𝑓 ∝ ∫𝑒−𝑖𝑘𝑐𝑟𝑐𝑒−𝑖𝑘𝑑𝑟𝑑 𝑉𝑎𝑏(𝑟)𝑒
𝑖𝑘𝑎𝑟𝑎𝜙𝑛𝑙𝑗𝑑𝑟𝑏𝑑𝑟𝑎. (1.2.9) 

Notes that the coordinates are related by (Figure 1-26) 

𝑟𝑎 =
𝑀𝐴 − 1

𝑀𝐴
𝑟𝑏 − 𝑟, 

𝑟𝑐 = 𝑟𝑏 − 𝑟, 

𝑟𝑑 = 𝑟𝑏 , 

(1.2.10) 

where 𝑀𝐴 is the mass of nucleus 𝐴, and  𝑟 is the relative position between particle 𝑎 and orbital nucleon 

𝑏. Rearranging the equation, we found that 

𝑓 ∝ ∫𝑒−𝑖(𝑘𝑎−𝑘𝑐)𝑟𝑉𝑎𝑏(𝑟)𝑑𝑟∫ 𝑒
−𝑖(𝑘𝑐+𝑘𝑑−𝑘𝑎 

𝐴−1

𝐴
)𝑟𝑏 𝜙𝑛𝑙𝑗𝑑𝑟𝑏 . (1.2.11) 

The scattering amplitude contains two parts, one is the free-space scattering, and another is the bound 

state. 
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Figure 1-26 – A diagram of coordinates of the A(a,cd)B , A=B+b reaction.   

 

The outputs of the calculation are a triple differential cross section 

𝑑3𝜎𝐷𝑊𝐼𝐴
𝑑𝑇𝑐𝑑𝛺𝑐𝑑𝛺𝑑

    and    𝐴𝑦 (1.2.12) 

where 𝑇𝑋  and 𝛺𝑋  are the kinetic energy and the solid angle of the particle 𝑋 respectively. 𝐴𝑦  is the 

analyzing power that related to the asymmetry of the differential cross section when the nuclear spin 

has fixed orientation.  

 

1.2.4.2 Optical Potential 

Nuclear potentials are need for the code THREEDEE to calculate the differential cross section. The 

Dirac phenomenological potential with EDAD2 (energy-dependent-A-dependent) global parameter set 

was used [97]. We denote this potential as Dirac-Cooper global potential. This parameter set is obtained 

from fitting the proton scattering data with energy ranging from 20 MeV to 1040 MeV using 12C, 16O, 

24Mg, 28Si, 40Ca, 48Ca, 56Fe, 60Ni, 90Zr, and 208Pb nuclei. The fitting of the parameter set has at most 3% 

systematic error. The optical potentials (central and spin-orbital terms) of 23F + p and 25F + p are shows 

in Figure 1-27. The magnitude of the spin-orbital terms is smaller than that of the central term.  

 

Figure 1-27 – Optical potential of 23F at the proton energy 289 MeV and 25F at the proton energy 

277 MeV from-Cooper potential.  

 

The radius and diffuseness of the real and imaginary, central and spin-orbital optical potentials of  

22O + p system are set to be 1.27 𝐴1/3 fm and 0.67 fm respectively for calculating the bound state of the 

proton [39]. The charge radiuses of all channels are set to 1.25 𝐴1/3 fm. A non-locality parameter 



34 

 

caused by the exchange term was switched off in the calculation. The calculation included a damping 

(Perey factor) of the proton wavefunctions that is caused by the nucleus and can be traced back to the 

Darwin term of relativistic scattering theory.  

 

1.2.4.3 Integrated Cross Section 

The quantities in the nuclear frame 𝑇𝐶 , 𝜃𝑐 , 𝜙𝑐 , 𝜃𝑑 , 𝜙𝑑 are used to calculate the quantities in the laboratory 

frame 𝑇1, 𝜃1, 𝜙1, 𝑇2, 𝜃2, 𝜙2 . An acceptance filter (defined by detectors) was applied with additional 

kinetic energy filter 350 > 𝑇1, 𝑇2 > 30 MeV. The energy of the scattered proton (𝑇𝑐) was varied from 

10 MeV to 300 MeV, with step 20 MeV. The scattering angles (𝜃𝑐 , 𝜃𝑑) are varied from 0o to 180o with 

step 10o, and 𝜙𝑐 , 𝜙𝑑 are varied from -24o to 24o with step 4o. Smaller step size was checked and gave 

no significant difference. The energy filter was determined by energy loss due to multiple scattering 

when a proton passes through 72-mm N2 gas, two 128-μm Kapton films, and at least 1-meter-thick air 

(see Appendix A.5). The integrated cross-section is calculated using the formula 

𝜎𝐷𝑊𝐼𝐴 = ∫ ∫ ∫
𝑑3𝜎

𝑑𝑇𝑐𝑑𝛺𝑐𝑑𝛺𝑑
sin 𝜃𝑐 sin 𝜃𝑑 𝑑𝜙𝑐𝑑𝜙𝑑

𝜙

−𝜙

𝑑𝜃𝑐

70°

20°

𝑑𝜃1𝑑𝑇𝑐

350

30 

 

    = ∑[(
𝑑3𝜎

𝑑𝑇𝑐𝑑𝛺𝑐𝑑𝛺𝑑
)
𝑖

sin(𝜃𝑐(𝑖)) sin(𝜃𝑑(𝑖)) 𝛥𝑇𝑐𝛥𝜃𝑐𝛥𝜃𝑑Δ𝜙𝑐Δ𝜙𝑑]

𝑖

, 

(1.2.13) 

where Δ means the step size of each qualities. The integrated cross section in the frame of laboratory is 

as same as that of the frame of nucleus because of the acceptance filter. 

 

We found that the cross-section is insensitive to the strength of the spin-orbital potential. The theoretical 

cross-section is increased by 30% if the Perey factor turned off.  

 

1.2.4.4 Detector Acceptance 

We simulated the energy emittance that limited by angular acceptance using a Monte Carlo method for 

both 23F (at 290 MeV) and 25F (at 277 MeV). The initial inputs are the separation energy, the Fermi 

momentum vector, and the proton-proton center of momentum frame scattering angles. The separation 

energy of 23F was set to be 13.26 MeV or 30 MeV, and that of 25F was set to be 14.43 MeV. The 

magnitude of the Fermi momentum was approximated as a triangular distribution with base ranging 

from 0 MeV/c to 250 MeV/c and peaked at 100 MeV/c. The direction of the Fermi momentum and the 

scattering angles were set to be spherically isotopic. We generated 50,000 events and then gated those 

events with the detector angular acceptance. There are about 5,000 events left. The resulting acceptance 

are plotted over Figure 1-25 and shown in Figure 1-28. We can see there are almost no events below 30 

MeV. In fact, there are only 8 events out of ~5000 events below 30 MeV. When the separation energy 

increase, the opening angle reduces (Figure 1-29). A similar energy emittance for 25F(p,2p) reaction 

was obtained and shown in Figure 1-30.  
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Figure 1-28 – The angular and energy acceptance of 23F(p,2p) reaction at 290A MeV for separation 

energy of 13.6 MeV.  

 

 

Figure 1-29 – The angular and energy acceptance of 23F(p,2p) reaction at 290A MeV for separation 

energy of 30 MeV.  

 

 

Figure 1-30 – The angular and energy acceptance of 25F(p,2p) at 277A MeV for separation energy of 

14.4 MeV. 
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The result can be understood using the momentum transferred and Fermi momentum. The Fermi 

momentum of a nucleon is ranging from 0 to 260 MeV/c. In quasi-free knockout approximation in the 

nuclear frame, the minimum momentum transfer is on the forward angle (40o) and equal 550 MeV/c for 

300 MeV proton. Thus, the minimum momentum of the knockout proton would be 290 MeV/c or  

44 MeV. Although the above explanation is in the nuclear frame, this gives the idea that there is a 

minimum kinetic energy of the scattered proton due to large transferred momentum.  

 

1.2.5 Orbit Identification 

The orbit identification is needed for knowing the orbit of the knocked out proton. Because the 

momentum of the orbital proton has same magnitude of that of the residual nucleus, and the momentum 

distribution depends on the orbital angular momentum. Momentum distributions from different orbits 

were calculated using the code THREEDEE with fixed 𝜃𝑁𝑁 = 70°, 𝜃𝑘 = 60°, and 𝜙𝑁𝑁 = 𝜙𝑘 = 0°. 

The result is shown in the upper plot of Figure 1-31. The strength of the s-orbit is concentrated on the 

low momentum region and the strength of the d-orbits have peaks around 120 MeV/c. The orbital 

angular momentum can be identified by the peak position on the momentum distribution. The 𝐽> or 𝐽< 

can be distinguished from the analyzing power (lower plot of Figure 1-31).  

 

 

Figure 1-31 – Momentum distribution in the nuclear frame for different orbital angular momenta.  

The upper plot is the DWIA triplet differential cross section and the lower plot is the analyzing power. 

The cross section is scaled. The separation energy is 10 MeV, θNN is 70o and 𝛉k is 60o and the incident 

energy of the proton is 290 MeV. 

 

Generally, non-zero analyzing power (or asymmetry of cross section) exists in scattering experiments 

due to symmetries (parity, rotation, and time reversal) [98]. The physical origin of the asymmetry of 
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the cross section in the knockout reaction is due to the proton-proton interaction and multiple scattering 

or absorption of the scattered proton inside the nucleus [99]. Because of the proton-proton interaction 

and symmetries, the scattering cross section 𝜎 takes the form [98] 

𝜎 = 𝜎0(1 + 𝑃𝑦𝐴𝑦 + 𝑃𝑦
𝑇𝐴𝑦

𝑇 + 𝑃𝑥𝑃𝑥
𝑇𝐶𝑥𝑥 + 𝑃𝑧𝑃𝑥

𝑇𝐶𝑧𝑥 + 𝑃𝑥𝑃𝑧
𝑇𝐶𝑥𝑧 + 𝑃𝑦𝑃𝑦

𝑇𝐶𝑦𝑦

+ 𝑃𝑧𝑃𝑧
𝑇𝐶𝑧𝑧), 

(1.2.14) 

where 𝜎0 is the scattering cross section for the non-polarized beam and target, 𝑃𝑖 is the polarization 

along the 𝑖-axis, the superscript 𝑇 stands for the target, 𝐴𝑦 is the analyzing power along the y-axis, and 

𝐶𝑗𝑘 is the spin-spin correlation coefficient between the projectile with spin on the 𝑗-axis and the target 

with spin on the 𝑘-axis. In the nuclear frame, a y-axis polarized proton hits on a bound proton inside 

the nucleus. Under the impulse approximation, the effective interaction can be approximated by the free 

proton-proton interaction. The cross section reduces to 

𝜎 = 𝜎0(1 + (𝑃𝑦 + 𝑃𝑦
𝑇)𝐴𝑦 + 𝑃𝑦𝑃𝑦

𝑇𝐶𝑦𝑦). (1.2.15) 

Therefore, only the bound proton with a spin on the y-axis can be knocked out. The experimental value 

for the coefficient 𝐶𝑦𝑦 is positive. It is close to unity for incident energy of 300 MeV and scattering 

angle in the frame of the center of momentum between 20o to 160o [100]. A simple reason for the 

coefficient 𝐶𝑦𝑦 to be positive is the nucleon-nucleon spin-orbit coupling, in which the total spin of the 

two protons have to be parallel (or S = 1). The coefficient 𝐴𝑦 has a maximum value of 0.3 for incident 

energy of 300 MeV. The acceptance of the detectors limited the scattering angle from 40o to 140o in the 

center-of-momentum frame. Therefore, the bound proton most likely spins in the same direction to 

produce a large cross-section.  

 

The second reason for the asymmetry of the cross section in the knockout reaction is due to the multiple 

scattering or absorption as the scattered proton passes through the nucleus [99]. Figure 1-32 shows a 

classical picture of a knockout reaction. The scattered proton (𝑘2 in the figure) from the left and has to 

pass through the nucleus. The mean free path [101] of a slow proton (large 𝜃2) is smaller than the 

nuclear radius, and then the proton suffers from multiple scattering when passing through the nucleus. 

Therefore, the cross section at this outgoing angle (small 𝜃1 and large 𝜃2) is reduced. Now, when the 

𝜃1  becomes large, 𝜃2  becomes small, the path through the nucleus reduces, and the cross section 

increases as there is no multiple scattering. The consequence is a front-back or left-right asymmetry 

(due to the correlation of 𝜃1 and 𝜃2) of the cross section. This is reflected in the analyzing power 𝐴𝑦, 

as 𝐴𝑦 must be an odd function of 𝜃1 caused by time reversal symmetry.  
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Figure 1-32 – Classical kinematic picture of a knockout reaction [99]. 

 

Without loss of generality, we can assume the projectile proton is spin up (pointing out of the paper). 

The projectile proton can knock out a bound proton from the left side or the right side. Recalling that 

the bound proton has to be the same spin (pointing out of the paper) for the spin-orbit coupling to act 

upon. Therefore, the bound proton being knocked out on the left side has total spin 𝐽> = 𝑙 + 𝑠 and it 

has total spin 𝐽< = 𝑙 − 𝑠 when it was knocked out from the right. From the above discussion, the 

analyzing power for 𝐽> and 𝐽< has opposite sign. However, in reality, the knock out could take place 

anywhere in the nucleus, which makes the relation of the analyzing power between 𝐽>  and 𝐽< 

complicated. As Figure 1-31 shows, the analyzing powers from the 1p1/2 and 1p3/2 orbits have same sign 

at high momentum 𝑘.    
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Chapter 2  

Experimental Setup 

This chapter focuses on the experimental setup from the beam production to the details and performance 

(resolution and efficiency) of the detectors. The scattered protons were detected by two sets of detectors, 

placed on the left and right sides of the target. The residue identification was also important; it was done 

using the SHARAQ spectrometer.  

 

2.1 Beam Production and Beam Time 

A primary beam of 48Ca was accelerated to 345 MeV/nucleon with an intensity of 200 pnA using the 

Super-conductive Ring Cyclotron of RIKEN Nishina Center. The cyclotron was operated at 37 MHz. 

The 48Ca beam hit on a 9Be target with thickness of 30 mm and then fragments were produced. An 

aluminum degrader with thickness of 8 mm was used to improve purity. The BigRIPS in-flight fragment 

separator [102] (Figure 2-1) separated the fragments according to the mass-to-charge (A/Q) ratio and 

momentum. Because the fragments have similar A/Q ratios, the secondary beam was a cocktail beam. 

The detail of the secondary beam production is listed in Table 2-1. 

 

Table 2-1 – The list of secondary beam production. 

Magnetic 

rigidity 

Total rate of 

secondary 

beam 

Intensity of 

primary beam 

Production target Degrader 

Material Thickness Material Thickness 

7.13 Tm 70 kcps 200 pnA 9Be 30 mm Al 8 mm 

 

2.1.1 Experiment Flow 

The experiment was started at 9 am, May 28th, 2012. A pure proton beam was used for optical alignment 

in the first 6 hours, and proton-proton elastic scattering was measured for the next 6 hours. The elastic 

scattering was performed to determine the absolute magnitude of the polarization of the spin-polarized 

proton target. Detector was calibrated using the data from the proton-proton elastic scattering runs.  

 

A beam tuning for the secondary beam was started at 9 am, May 29th, 2012. The physical runs of the 

23F(p,2p) reaction on a cocktail beam (35% of 23F, 18% of 22O) were started at 12 am midnight, May 

30th. The 23F cocktail beam was ended at 9:08 pm, May 31th. A 25F cocktail beam was delivered and the 
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25F(p,2p) reaction was measured from June 2nd to June 4th. Spin-up and spin-down of the orientation of 

the proton polarization were measured for each beam. The beam times is summarized in Table 2-2. 

 

Table 2-2 – Beams and their measurement duration. 

Beam 

Target 

Polarization 

Direction 

Total Beam 

Intensity 

[cps] 

Total 

Measurement 

Duration 

[hh:mm:ss] 

Date (start, end) 

Proton 

(Pure) 

Down 1.27 × 105 
 

2:44:58 28th May, 20:46:02 

Up 1.27 × 105 1:54:16 29th May, 9:00:07 

23F / 22O 
Up 1.28 × 105 11:32:14 30th May, 0:26:31 

Down 1.16 × 105 3:11:22 31st May, 9:08:32 

25F / 24O 
Up 1.78 × 104 14:49:43 2nd Jun, 19:56:44 

Down 2.16 × 104 12:51:27 4th Jun, 9:00:00 

 

2.2 Particle Transportation 

Figure 2-1 shows the BigRIPS and the SHARAQ spectrometer [103] in the Radioactive Isotopes Beam 

Facility (RIBF) of RIKEN Nishina Center. The BigRIPS starts from focal plane F0 that was the positon 

of the primary target, and continues until the STQ-H19 (Super-conducted Triplet Quadrupole) that was 

just before the focal plane F-H10. Particle identification was done using the time-of-flight (TOF) from 

the F3 to F-H9 focal planes and the energy loss in F-H9 (or F3). Two drift-chambers (DCX1 and DCX2) 

were placed between the STQ-H19 and the target chamber for beam trajectory tracking. The F6 focal 

plane was a momentum dispersion plane with momentum dispersion of 75 mm/1%. A PPAC (F6-PPAC) 

was placed at the F6 focal plane for measuring the momentum of the secondary beam. The F6-PPAC 

was used only in the optical runs for beam tuning and 25F runs, because the momentum spreading of the 

23F beam was 0.2% (Section 3.1.2). 

 

The SHARAQ spectrometer (Figure 2-2) was continuous from F-H10 (or S0). It consists of a 

superconductive double quadruple magnet (SDQ), two dipole magnets (D1 and D2), and a quadruple 

magnet (Q3). In this experiment, only the SDQ and the D1 were used. The position just before the SDQ 

is labeled as S0D (S0 downstream) and the focal plane after D1 is labeled as S1.  
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Figure 2-1 – The beam transportation system, the BigRIPS and the SHARAQ spectrometer. 

The primary target (9Be) was placed at F0. The secondary target (proton) was placed between  

F-H10 and SHARAQ-SDQ, it is labeled as a red line. 

 

2.3 Particle Detectors 

The following is a brief summary of the detector setup on the detector type and location. An illustration 

of the setup near SHARAQ is drawn in Figure 2-2. A plastic scintillator was located at the F3 focal 

plane (F3PL), a PPAC (F6-PPAC) [104] was located at the F6 momentum dispersion plane, a plastic 

scintillator was located at F-H9 focal plane (FH9PL), and two drift chambers (DCX1 and DCX2 [105]) 

were located after the STQ-H19 (Figure 2-1). These detectors were upstream (of the target) detectors. 

They provided information of the beam such as charge state, kinetic energy, and beam trajectory. The 

target position is labeled as S0. The downstream (of the target) detectors consisted of two set of 

detectors placed on left and right sides and series of residue detectors.  Each set of left/right detectors 

had a multi-wire drift chamber (MWDC [106]) and a trigger plastic scintillator (Tpla). The residual 

nuclei had passed through a plastic scintillator (S0DPL) and a drift chamber (DCS0D) before entering 

the SHARAQ spectrometer [103]. The residues were then deflected by the SHARAQ-D1 magnet 

according to their masses, charge states, and momenta. The focal plane after the SHARAQ-D1 magnet 

is labeled as S1. The residues were detected using a MWDC-S1 (MWDC located at S1) and a Hodo 

array (plastic scintillators hodoscope). A spin-polarized solid proton target [107] [108] was used. A 

carbon target was placed 160 mm downstream of the target for carbon background subtraction. The 

order of locations and corresponding detectors are listed in Table 2-3.  

Proton target 
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Figure 2-2 – The layout of particle detectors after focal plane F-H9.  

The green boxes are drift chambers. The blue are plastic scintillators. The orange arrow is the beam 

direction. The cerise arrows are the scattered protons.  

 

Table 2-3 – List of detectors and their order of location. 

Location Detectors 

F3 F3PL 

F6 F6PPAC 

F-H9 
DC91 

FH9PL 

Before target DCX1, DCX2 

S0 Target (not a detector) 

After target 

Tpla-L, Tpla-R 

MWDC-L, MWDC-R 

S0 downstream 
S0DPL  

DCS0D 

S1 
MWDC-S1 

Hodo 
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Figure 2-3 – Experiment set-up at F-H10, viewed from the top of the SHARAQ-SDQ.  

The beam is coming from top of the picture. The orange cylinder is STQ-H19.  

 

2.3.1 Plastic Scintillator (F3PL, FH9PL, Tpla-L, Tpla-R, and S0DPL) 

There were five plastic scintillators along the BigRIPS and SHARAQ beam line. The F3PL and the 

FH9PL were focal plane plastic scintillators, and they were located at focal plane F3 and FH9, 

respectively. The Tpla-L and the Tpla-R were trigger plastic scintillators placed behind the MWDC-L 

and the MWDC-R respectively. They acted as the time reference for the MWDCs. They also provided 

the energy of the scattered proton from the TOF measurement. The S0DPL was a downstream plastic 

scintillator for the reaction residues. When we do not distinguish the left or right detector, we use Tpla 

and MWDC.  

 

All these five plastic scintillators were connected with a photo-multiplier tube (PMT) on each ends. The 

leading time of each PMT was recorded using time-to-digital converters (TDCs). The timing of a plastic 

scintillator was defined as the arithmetic average of the leading time of the PMTs in both ends. The 

light output, which is related to the energy loss, in the plastic scintillator was recorded by analogy-to-

digital converters (ADCs). The energy loss was defined as the geometric mean of the energy loss of the 

PMTs in both ends. The timing and energy loss are shown in Figure 2-4. The blue box represents a 

plastic scintillator with length 𝐿. The black arrow is the path of a particle that passed through the 

scintillator at position 𝑥 and creates scintillation light at time 𝑇 with light output 𝑄0. The two opposite 



44 

 

dotted yellow arrows are the scintillation light. The leading time 𝑡𝑖  and the light output 𝑄𝑖  were 

recorded. The timing 𝑡 and the energy loss 𝑄 were defined using arithmetic mean and geometric mean 

respectively. The symbol 𝛽𝑐 is the speed of light in the plastic scintillator, typical value is 0.67 of speed 

of light in vacuum. The symbol 𝑎 is the attenuation length of the plastic scintillator, typical value is 1 

to 2 meters. 

 

Figure 2-4 – Definition of the timing t and energy loss Q in a plastic scintillator.  

See main text for detail. 

 

An illustration of the connections of the plastic scintillators to the TDCs are shown in Figure 2-5. The 

F3PL was connected to two TDCs – V1190 (time windows = 200 ns) and V775 (time windows =  

200 ns). The FH9PL was connected to another two TDCs – model V1190 (time windows = 4500 ns) 

and V775 (time windows = 170 ns). The TDC V1190 is a multi-hit TDC with channel-to-ns (ch2ns) 

factor about 100 ps/channel. The TDC V775 is a signal-hit TDC with channel-to-ns factor about  

80 ps/channel. All TDCs V775 were set at common stop mode. 

 

Figure 2-5 – Detectors and TDC connections. The colored arrows are only for clear presentation.  

The blue boxes are plastic scintillators. The green box is MWDC. The boxes with rounded corners 

are TDCs. 

 



45 

 

The Tpla-L and Tpla-R were the trigger plastic scintillators behind the MWDC-L and the MWDC-R 

respectively. The perpendicular distance from the Tpla-L (or Tpla-R) to the target was 1400 mm. There 

were two PMTs at the ends of each trigger plastic scintillator. The PMT with a forward angle is labeled 

by F, and of backward angle is labeled by B. For example, PMT-LB is the PMT on the Tpla-L and with 

the backward angle. Both plastic scintillators were 1500 mm wide, 13 mm thick and 500 mm high. 

Since the Tpla-L and Tpla-R provided the trigger signal, the acceptance was then defined by their 

geometry. The height of the Tpla was not large enough to fully cover the height of the MWDC, therefore 

we cannot detect events on the edge of MWDCs (Figure 2-6).  

 

Figure 2-6 – The geometry of the MWDC and the Tpla.  

The height of the Tpla was not fully covered by the height of the MWDC. The MWDC was 17.5 mm 

higher. Note that the experimental setup was symmetric on the XZ plane, the figure only shows the 

upper half.  

 

The S0DPL was placed 1457 mm downstream of the target and in front of the DCS0D (Figure 2-2). It 

and the FH9PL formed a primary residue particle-identification (PID) by ΔE-TOF method. However, 

the high voltage of the S0DPL was not well set so it was difficult to separate the charge number. A 

detailed residue PID was analyzed by using the SHARAQ spectrometer, the MWDC-S1, and the Hodo 

array. 

2.3.1.1 Time Calibration 

Time calibration only ran for the TDC V775 that connected to the FH9PL, the Tpla-L, the Tpla-R, and 

the S0DPL but not the F3PL. The channel-to-ns (ch2ns) conversion factors were calibrated using a time 

calibrator. It was set to a period of 10 ns with a time range of 120 ns. By subtracting the channel number 

of the 13th peak and the 1st peak and dividing by 120, we obtained the factor for each PMT. The linearity 

was also checked. The values of ch2ns for each TDC channel are listed in Table 2-4. The negative value 

means that the TDC was in common-stop mode. 
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Table 2-4 – Channel-to-ns used for the TDC modules. 

 *TDC V1190  / #TDC V767 TDC 775 (calibrated) 

 Left-PMT Right-PMT Left-PMT Right-PMT 

F3PL* 0.09765625 0.09765625 0.051882 0.0049554 

FH9PL* 0.09765625 0.09765625 -0.07742 -0.07732 

S0DPL NA NA -0.07562 -0.07782 

Tpla-L# 0.8 0.8 -0.07747 -0.07787 

Tpla-R# 0.8 0.8 -0.07687 -0.07702 

 

The absolute values of the TOF were calibrated using the proton beam runs because the kinematics of 

the proton-proton elastic scattering is well known. From now on, we adapt a notation that TOF(A-B) is 

the time-of-flight from point or detector A to point or detector B. The TOF(target-Tpla) and scattering 

angle are correlated, as shown in Figure 2-7. The broad distribution was caused by the time resolution, 

reactions with carbon, and multiple scattering.  

 

 

Figure 2-7 – Correlation between the scattering angle and the TOF(target-Tpla) in the proton-proton 

elastic scattering.  

The left plot is from the Tpla-L and the right plot is from the Tpla-R. The red line is the theoretical 

curve. The unit of the y-axis is nano-second. 

2.3.1.2 Time Resolution 

The time resolution was only calculated for the FH9PL, the Tpla-L, and the Tpla-R. It was based on the 

standard deviation of the fitting of a Gaussian distribution on the experimental distribution of the time-

difference between the leading times from the two PMTs at the end of each plastic scintillator. The 

detailed description of the time resolution calculation is shown in Appendix A.2. The time resolution 

of the F3PL was ignored because it did not affect the energy resolution of the scattered proton much 

{we can see it later in section 3.7. The effect of the time resolution was only ~10% of the target-hit-

time [equation (3.73)]}. Also the momentum spread of the 23F beam was only 0.3% (sigma, Figure 3-2), 
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therefore, the energy resolution of the beam was high enough that the event by event calculation of 

beam energy from TOF(F3PL-FH9PL) was not necessary.  

 

The time resolution of the FH9PL from the TDC V775 was deduced by tracking from a drift chamber, 

which was located 15 mm in front of the FH9PL. Figure 2-8 shows the position dependence of the time-

difference. By selecting a narrow position width, the time resolution of each position can be deduced. 

The average time resolution of the FH9PL was 220 ps. The time resolutions of the Tpla-L and the Tpla-

R were deduced with the tracking result of the MWDC-L and the MWDC-R respectively. The average 

time resolutions of the Tpla-L and the Tpla-R are 500 ps and 600 ps respectively (Figure 2-9 and Figure 

2-10).  

 

 

Figure 2-8 – Time resolution of the FH9PL from TDC V775 using the DC91.  

The x-axes are the projected position on the FH9PL from the tracking result of the DC91. The y-axis 

on the upper figure is the time difference between the PMTs of the FH9PL. The y-axis on the lower 

figure is the time resolution. 
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Figure 2-9 – Time resolution of the Tpla-L.  

The x-axes are the position on the Tpla-L calculated from the projection of the tracking result of the 

MWDC-L. The y-axis on the upper figure is the time difference between the PMTs at the Tpla-L. The 

y-axis on the lower figure is the time resolution. 

 

 

 

Figure 2-10 – Time resolution of the Tpla-R.  

The x-axes are the position on the Tpla-R calculated from the projection of the tracking result of the 

MWDC-R. The y-axis on the upper figure is the time difference between the PMTs at the Tpla-R. The 

y-axis on the lower figure is the time resolution. 
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2.3.2 Drift Chamber (DCX1 and DCX2) 

The DCX1 and DCX2 were used for tracking the trajectory of the secondary beam. The trajectory was 

used to deduced the size of the beam spot on the target. The DCX1 has three planes: X (24 wires), U 

(24 wires), and Y (16 wires). The DCX2 has four planes: U (24 wires), V (24 wires), V′ (24 wires), and 

U′ (16 wires). The time reference for the drift-time was taken from the FH9PL with the TDC V775. The 

configurations are listed in Table 2-5. The “Plane Pos.” is the abbreviation of plane position. 

 

Table 2-5 – Configuration of DCX1 and DCX2. 

 

 

DCX1 

 

 

 

 

DCX2 

 

 

 

 

 

 

Size [mm2] 144 × 216 144 × 216 

Plane label X U Y U V V′ U′ 

Wire angle [deg] 0 30 -45 -30 30 30 -30 

Plane Pos. [mm] -877 -868 -859 -613.5 -604.5 -595.5 -586.5 

Cell width [mm] 9 9 9 9 9 9 9 

Center [wire] -12.5 -12.5 -8.5 -12.5 -12 -12.5 -13 

Number of wire 24 24 16 24 24 24 24 

 

The drift-time-to-drift-length conversion was deduced by integrating the drift-time distribution, so that 

the resulting drift-length distribution was uniform. We found that the alignment of the DCX2 was off-

set by 2.1 mm vertically during experiment. This offset was included in the tracking algorithm. The two 

drift chambers were combined as a single 7-plane detector in the tracking algorithm, which was multi-

dimension linear regression. The outline of the theory of the regression is shown in Appendix A.3. Since 

the DCX1 and DCX2 were regarded as a single detector, we denote it as DCX1X2. The tracking gave 

the usual ray parameters (X, A, Y, B), where X and Y are the x and the y position on the target 

respectively, A and B are the incident angles on the x-z plane and the y-z plane respectively. 

  

The detection efficiency was defined as the number of tracked events over the number of particles that 

passed through. We assumed the transmission rate from the FH9PL to the DCX1X2 was 100%. The 

number of particles that passed through was the event count on the FH9PL. The detection efficiency of 

the DCX1X2 was 93.4%.  

 

The tracking uncertainty of each of the ray parameters was deduced by the sum of square of residues 

and the covariance matrix from the regression [109]. Figure 2-11 shows the distribution of the tracking 

uncertainties. The uncertainties of X and Y are 0.8 mm and 1.6 mm respectively. The uncertainties of 

A and B are 1.4 mrad and 2.4 mrad respectively. 
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Figure 2-11 – The uncertainty of estimated parameters of the DCX1X2. 

 

2.3.3 Multi-Wire Drift Chamber (MWDC-L and MWDC-R) 

The MWDC was 1740 mm in width, 640 mm in height, and 250 mm in depth. The schematic of the 

MWDC is shown in Figure 2-12. It has 6 planes, labels as XX′UU′VV′. The detection area was 400 mm 

× 1120 mm (for the X plane). The number of wires of the X and X′ planes, U and U′ planes, and V and 

V′ planes were 56, 44, and 44 receptivity. The primed planes were shifted by ¼  cell (5 mm).   

 

Figure 2-12 – Schematics view of MWDC structure [106].  

The MWDC’s local coordinate is shown on upper left with small letters. The local y axis was parallel 

with the y-axis of the laboratory frame.  
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The wire directions of the X and X′ planes were vertical (Figure 2-12) i.e. parallel to the laboratory’s 

Y-axis (Figure 2-14). The UU′ wires and VV′ wires made angle of 36.87º [cos−1(0.8)] with respect to 

the XX′ wires. Because of this configuration, the corners were only covered by 4 planes. All cell sizes 

(perpendicular to wire direction) were 20 mm × 16 mm.  The cells of the X′ and V′ planes were shifted 

toward the positive x-axis. The U′ plane was shifted to the negative x-axis. The wire alignment is shown 

in Figure 2-13. The voltage supply for the MWDC-L was 2900 V for the cathode and 3100 V for the 

potential line, it was 3000 V for the cathode and 3150 V for the potential line for the MWDC-R. The 

counter gas was 60% Ar + 40% C2H6. 

 

 

Figure 2-13 – Illustration of the MWDC wire plane configuration.  

The orange dots are wire. Note that this is a cross section on the x-z plane, the width of the cell size of 

the U, U′, V, and V′ planes are 25 mm because the wire directions are not perpendicular to the x-z 

plane. 

 

Table 2-6 – MWDC configuration. 

 MWDC 

Size [mm2] 1120 × 400 

Plane label X X′ U U′ V V′ 

Wire angle [deg] 0 0 36.87 36.87 -36.87 -36.87 

Plane Pos. [mm] -40 -24 -8 8 24 40 

Cell width [mm] 20 20 20 20 20 20 

Center (L) [wire] 48.143 47.893 37.9894 38.2394 37.9894 38.2394 

Center (R) [wire] 9.107 8.857 6.7606 7.0106 6.7606 7.0106 

Number of wires 56 56 44 44 44 44 
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Figure 2-14 – The geometry of target, MWDCs, and Tplas.  

The coordinate systems of the laboratory and the MWDC frames are shown. The laboratory frame 

coordinates are labeled by capital letters. The coordinates of the MWDC frame are labeled by small 

letters. 

 

The global positions of the MWDC-L, MWDC-R, Tpla-L, Tpla-R, S0DPL, and DCS0D are shown in 

Figure 2-14. In the laboratory reference frame, the x-y plane of the MWDC made 30º with the beam 

line. The closed distance from the target to the MWDC mid-plane was 1022 mm at 60º forward angle. 

The angular acceptance covered from 20º to 70º.  

2.3.3.1 Data Selection 

The timing and energy of each wire were recorded by TDC and ADC respectively. A data selection was 

necessary because it ruled out the noise signals, improve the tracking quality, and reduce the calculation 

time by reducing the number of combinations between planes and wires. The time reference of the drift-

time was the timing of the Tpla by TDC V767. Although the Tpla was located 378 mm away, the time 

delay of the scattering protons with energy ranging from 20 to 350 MeV was 6 ns at most. The drift-

velocity was approximately 5 mm per 100 ns. Therefore, the timing of the Tpla did not affect the drift-

time significantly. The drift-time distribution is shown in the left plot of Figure 2-15. The events with 

drift-time below -150 ns were counted as noise and discarded. The drift-time was selected from -150 ns 

to 160 ns. The energy loss distribution is shown in the right plot of Figure 2-15. The signal between 10 
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- 20 ch cannot produce any tracking with small sum of square of residual. They were probably noise 

and caused by scattered electrons (delta ray). Therefore, the energy loss was selected between 20 ch 

and 4000 ch. 

 

 

Figure 2-15 – Distribution of the drift-time (left) and the energy loss (right) in MWDC-L. 

2.3.3.2 Ray Tracking Algorithm 

Ideally, six values from all wire planes were recorded when a charged particle passed through the 

MWDC. The goal of the ray tracking is to obtain the tracking parameters: the hit positions (𝑋, 𝑌) and 

the incident angles (𝐴, 𝐵), from those six values. The tracking algorithm can be formulated using linear 

algebra and matrix formulism, in which the positions and the incident angles are used to form the ray 

vector 𝛽 = (𝑋, 𝐴, 𝑌, 𝐵).  

 

A wire vector 𝑤⃗⃗⃗ = (𝑤𝑋, 𝑤𝑋′ , 𝑤𝑉 , 𝑤𝑉′ , 𝑤𝑈, 𝑤𝑈′) is the fired wire ID of each plane. The drift-length (𝐷𝐿) 

is calculated from a drift-time-to-drift-length function 𝑓(𝐷𝑇), where 𝐷𝑇 is the drift-time. The function 

𝑓 is not necessarily the same for each plane. In each event, all possible combination of positions vector 

𝒫𝑞⃗⃗⃗⃗⃗ = 𝑤⃗⃗⃗ + 𝑐𝑞|𝐷𝐿⃗⃗⃗⃗⃗⃗ | is constructed, where 𝒫𝑞⃗⃗⃗⃗⃗ contains the position information from all planes, 𝑐𝑞 is the 

left-right ambiguity vector with elements either +1 or -1,  𝐷𝐿⃗⃗⃗⃗⃗⃗ = (𝐷𝐿𝑋, 𝐷𝐿𝑋′ , 𝐷𝐿𝑉 , 𝐷𝐿𝑉′ , 𝐷𝐿𝑈, 𝐷𝐿𝑈′) is 

the drift-length vector, and 𝑞 is the index of possible combination, such that 𝑞 = 1,2,… , 2𝑛, for 𝑛 fired 

planes. The size of the vectors is equal to the number of fired plane, which could be 5 or 6. Then the 

best estimated ray vector 𝛽̂𝑞 = (𝑋, 𝐴, 𝑌, 𝐵)𝑞 and the sum of square of residues (SSR) 𝑆𝑆𝑅𝑞 for each 

possible position 𝒫𝑞⃗⃗⃗⃗⃗  is calculated by multi-dimension linear regression (Appendix A.3). The 

combination with minimum SSR is the most probable ray vector. In cases of multi-hits on each plane, 

all possible combinations of wires are calculated.  



54 

 

2.3.3.3 Incident Angle Correction 

The theory of linear regression assumed that the drift-lengths are measured on the wire planes, but this 

assumption was broken by the cylindrical electric potential and the particles with large incident angles. 

The particles with scattering angle of 60º hit the MWDC normally, and the particles with scattering 

angle of 20º hit the MWDC at 40º with respect to the local z-axis of the MWDC (Figure 2-14). Figure 

2-16 illustrates the situation. A trajectory with a ray vector 𝛽 (black arrow) passes through a cell. The 

drift-length 𝐷𝐿  is not parallel with the wire plane, because the shape of the electric potential is 

cylindrical. Therefore, the drift-length 𝐷𝐿 is not the desired drift-length 𝐷𝐿𝑍 (which is from the point 

𝑃 to the position of the wire 𝑤, Figure 2-16), and breaks the assumption of linear regression. The true 

ray vector 𝛽 can only be correctly deduced by using 𝐷𝐿𝑧. If we use 𝐷𝐿 and put it into the tracking 

algorithm, we get an incorrect ray vector 𝛽̂ (the green arrow).  

 

Figure 2-16 – Illustration of large incident angle.  

𝒘 is the wire postion. The dotted circle is the equal potential surface. See main text for detail. 

 

An iteration method was introduced to approximate the drift-length on the wire plane 𝐷𝐿𝑍. We first 

used the position vector 𝒫⃗⃗ = 𝑤⃗⃗⃗ + 𝑐|𝐷𝐿⃗⃗⃗⃗⃗⃗ | , with incorrect drift-length 𝐷𝐿  to calculate a first 

approximation of the ray vector 𝛽̂0 = (𝑋0, 𝐴0, 𝑌0, 𝐵0). A correction parameter 𝛼 was constructed from 

this ray vector as 

𝛼̂0(𝑖) = √1 + (𝐴0 cos 𝜃𝑖 + 𝐵0 sin 𝜃𝑖)2, (2.1) 

where 𝛼̂ is the best estimator of 𝛼, 𝑖 is the index of the planes, and 𝜃 is the wire angle. Then we had a 

first correction of the position vector 𝒫1⃗⃗⃗⃗⃗⃗ = 𝑤⃗⃗⃗ + 𝑐|𝐷𝐿⃗⃗⃗⃗⃗⃗  𝛼0| , and then used it to calculate the second 

approximation of the ray vector 𝛽̂1, and 𝛼̂1, and then 𝒫2⃗⃗⃗⃗⃗⃗ = 𝑤⃗⃗⃗ + 𝑐|𝐷𝐿⃗⃗⃗⃗⃗⃗  𝛼1|, and so on. The iteration is 

shown in Figure 2-17. The 𝐷𝐿𝑧 after 5 iterations in the MWDC-L is shown in Figure 2-18. A smaller 
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wire ID corresponds to a large incident angle and the maximum 𝐷𝐿𝑧 can be larger than half of the cell 

size (10 mm). 

 

 

Figure 2-17 – Iteration for incident angle correction. 

 

 

Figure 2-18 – The corrected drift length versus wire ID from MWDC-L.  

According to the geometry, the wire ID 45 is for normal incident, and wire ID 0 is for largest incident 

angle. 

 

The results of before and after the iteration on the tracking are shown in Figure 2-19. The tracking 

parameters 𝑋 and 𝐴 are related because the target can be approximated as a point source. In the MWDC 

frame (Figure 2-14), the relation between 𝑋 and 𝐴 was 𝑋 = 1022 𝐴, and the target image should be a 

straight line (Figure 2-19). The result of no iteration was stripped at larger incident angle region, where 

the x-position was smaller than -400 mm. The strips disappeared after 5 iterations. This indicates that 

the iteration method improved the tracking.   
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Figure 2-19 – Comparing ray tracking between iteration and without for the MWDC-L.  

There are three main loci. The top and thin locus is originated from the carbon target. The middle 

line above the bottom locus is originated from the NMR coil, which was in front of the target. The 

bottom line is originated form the target. The normally incident protons hit at 𝒙 = 𝟎 mm. The results 

with no iteration and 5 iterations are shown on the left and right respectively. The zip-zig pattern 

around 𝒙 = −𝟕𝟎𝟎 mm was gone. The large incident-angle protons hit that region.  

 

2.3.3.4 Drift-Time to Drift-Length Conversion 

The drift-length distribution should be uniform within a cell due to a small angular acceptance. A typical 

method to deduce the drift-time-to-drift-length function 𝑓  is using the drift-time distribution. The 

integration of the drift-time distribution should be the desired function, because it results in a uniform 

drift-length distribution.  

 

Any two distributions ℎ(𝑥) and 𝑔(𝑦) can be related by 

ℎ(𝑥)Δ𝑥 = 𝑔(𝑦)Δ𝑦. (2.2) 

If one of the distribution is uniform, say 𝑔(𝑦) = 𝑐𝑜𝑛𝑡𝑠, then the other distribution is calculated using 

𝑑𝑦

𝑑𝑥
∝ ℎ(𝑥), 

𝑦 ∝ ∫ℎ(𝑥)𝑑𝑥. 

(2.3) 

However, this method does not always work, for example, the drift-length distribution should not be 

uniform for a focused beam, or the drift-length depends on the incident angle, which was the case in 

our experiment.  

 

We used the “omitted plane method” to deduce the drift-time-to-drift-length function 𝑓. For an event 

with 6 planes fired and traceable, we omitted one of the plane, and then performed a 5-plane ray tracking 

(5-PRT) with the incident angle correction. On one hand, the 5-PRT gave a ray vector, and then we 

could use this ray vector to estimate the drift-length on the k-th omitted plane 𝐷𝐿𝑧𝑘̂ and 𝐷𝐿𝑘̂. On the 
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other hand, the 6-plane ray tracking (6-PRT) with the incident angle correction gave others estimations 

on the drift-length 𝐷𝐿𝑍̂ and 𝐷𝐿̂. If the drift-time-to-drift-length function 𝑓 was correct, the 𝐷𝐿̂  and 

𝐷𝐿𝑘̂ should be the same. By comparing the 𝐷𝐿̂  and 𝐷𝐿𝑘̂, we could get the true conversion function.  

 

The flow of the omitted plane method is shown in Figure 2-20. We used equation (2.3) to make the 

initial guess of the conversion function 𝑓0. The flow contains two loops. The red loop in Figure 2-20 is 

for the incident angle correction (Figure 2-19). This loop is necessary for giving a more reliable 𝐷𝐿𝑧 

and then a better estimation of 𝐷𝐿̂𝑧𝑘. The outer loop is for the conversion function. The factor of the 

incident angle correction in the 5-PRT is 𝛼̂𝑘. It can be replaced by 𝛼̂ from the 6-PRT. The goal for the 

iteration is to obtains as small 𝐷𝐿 − 𝐷𝐿̂𝑘 as possible. 

 

 

Figure 2-20 – The procedure of finding drift-time-to-drift-length conversion function.  

The subscript 𝒌 means omitting the k-th plane.  

2.3.3.5 Detection Efficiency 

The detection efficiency contained two parts: fired efficiency and tracking efficiency. The fired 

efficiency is the ratio of the number of events for which at least one plane was fired over number of 

charged particles that passed through. Assuming the fired efficiency of each plane is 𝜖 and the total 

number of charged particles that passed through is 𝑁, the number of planes fired is following the 

binomial distribution 𝑁𝑖 = 𝑁𝐶𝑖
6𝜖𝑖(1 − 𝜖)6−𝑖, where 𝑁𝑖 is the number of events for which 𝑖 planes were 

fired, 𝐶𝑖
6 = 6!/(𝑖! (6 − 𝑖)!) is the binomial factor. The fired efficiency is 𝜖𝑓𝑖𝑟𝑒𝑑 = 1 − (1 − 𝜖)

6. The 

count of 0 plane fired was ignored, because the Tpla can be fired by gamma ray. The fired plane 

distribution is shown in Figure 2-21. The distribution does not exactly follow binomial distribution. 

This is because of the wire configuration and also the fired efficiencies of each plane may be different. 

The efficiency was only deduced for the central area, because the corners were not covered by 6 planes 

but 4 planes (Figure 2-12). We also restricted that the energy loss of Tpla had to be larger than 1000 ch 

to ensure charged particle was passing through. The fitting with a binomial distribution showed that the 

fire efficiencies of each plane of the MWDC-L and MWDC-R were 0.968 and 0.933 respectively. 
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Figure 2-21 – Distribution of number of fired planes for the MWDCs. 

 

The tracking efficiency is defined as the ratio of the number of tracked events over the number of events 

for which at least one plane was fired. The result is shown in Figure 2-22. 

 

Figure 2-22 – Distribution of tracked events.  

No track means the SSR is larger than 10 mm2. 

 

The individual detection efficiencies were 80% and 78% for the MWDC-L and the MWDC-R 

respectively. The combined detection efficiency was a simple product because the two MWDC were 

operating independently. The detection efficiency is listed in Table 2-7. Note that the efficiency 

depended on the hit position, an average value was taken and the result had approximately 3% 

uncertainty. 

 

Table 2-7 – Detection efficiency of MWDC. 

 MWDC-L MWDC-R 

Fire eff. (plane) 0.968 0.933 

Fired eff. 1.0 1.0 

Tracking eff. 0.80 0.78 

Detection eff. 0.80 0.78 

Combined eff. 0.624 
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2.3.3.6  Position and Angular Resolution 

The resolution can be calculated by equation (A.3.15) (see Appendix A.3 for more detail). The 

distributions of the uncertainty of the best estimated ray parameters 𝑋, 𝐴, 𝑌, 𝐵 are shown in Figure 2-23. 

Because the degree of freedom can be two in the 6-PRT or one in the 5-PRT, the distribution was a 

mixture of chi distributions with degree of freedom of two and one. The estimated standard error of 

each ray parameter was the peak value of the corresponding distribution.  

 

The drift velocity of the electrons in the MWDC was approximately 5 mm/100 ns. The time resolution 

of the drift time was 1 ns at most. Therefore, the drift-length resolution should be at least 0.05 mm. The 

experimental resolution of the X position was 0.1 mm, the additional uncertainty was caused by the 

tracking, the approximation methods, and the time delay caused by the distance between the MWDC 

and the Tpla. 

 

 

Figure 2-23 – Distribution of the uncertainties of the ray parameters. 

 

2.3.4 Drift Chamber DCS0D 

The DCS0D was located around 1.5 m downstream of the target and behind the S0DPL. The 

configuration is shown in Table 2-8. Due to the configuration, the DCS0D can only track the positions 

(𝑋, 𝑌 ). The time reference of the DCS0D came from the S0DPL. The drift-time-to-drift-length 

conversion table was deduced by integrating the drift-time distribution. The detection efficiency was 

95.9% for oxygen, which was selected from the Hodo array.  
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Table 2-8 – Configuration of the DCS0D. 

 DCS0D 

Size [mm2] 144 x 216 

Plane label X X′ Y Y′ 

Wire angle [deg] 90 90 0 0 

Plane Pos. [mm] -15 -5 5 15 

Cell width [mm] 12 12 12 12 

Center [wire] 21 21.5 11 11.5 

Number of wires 40 40 20 20 

 

2.3.5 Hodo Array and MWDC-S1 

The Hodo array and the MWDC-S1 were placed at the exit of the SHARAQ-D1 magnet (or D1 magnet 

for short, Figure 2-2). They were used for the residue identification. The relative position of the MWDC-

S1 and the Hodo array are shown in Figure 2-24. The Hodo array was a hodoscope consisting of 14 

identical plastic scintillators. Each scintillator is labelled as Hodo-0 to Hodo-13. We call anyone of 

them as Hodo when no label is specified and Hodos for multiple of them. Each Hodo was 85 mm in 

width, 180 mm in height, and 5 mm in depth. Each of them was connected to one PMT, and the timing 

and the energy loss were recorded. The even labelled Hodos were 10 mm downstream from the odd 

labelled Hodos. Adjacent Hodos were overlapped by 5 mm. The model of the MWDC-S1 was basically 

as same as the MWDC-L and the MWDC-R. The MWDC-S1 made a 13.5 degree with respect to the 

optical axis and paralleled to the exit plane of the D1 magnet. The Hodo array paralleled to the MWDC-

S1. The timings of the MWDC-S1 and each Hodo were recorded by TDC V1190.  

 

 

Figure 2-24 – Relative position of the MWDC-S1 and the Hodo array.  

The thin blue lines represent each Hodo. The normal of the exit plane of the SHARAQ-D1 magnet 

makes 13.5o with the optical axis of the beam. The laboratory’s coordinate is shown in the left side 

with capital letters. The local coordinate of the MWDC-S1 and the Hodo array is inside the MWDC-

S1 with small letters.  
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2.3.5.1 Hodo Array 

The multiplicity of the Hodo array is shown in Figure 2-25. There were 72% single-hit events. In the 

multi-hit events, 73% were caused by adjacent-hit. Only 7.8% of multi-hit events were true multi-

particle-hit. 

 

 

Figure 2-25 – Multiplicity of Hodo.  

(Left) Multiplicity, (middle) Adjacent-Hit, (Right) Hodo-ID vs multiplicity. 

 

The timing was recorded by TDC V1190 with a 2.8 μs time window. The true events were selected 

using a time gate (-270 ns to -210 ns). The TOF(S0DPL-Hodo) was calibrated for the Hodo-7 and the 

Hodo-8 by 23F and 22O. The time offsets of the rest of the Hodos were calibrated using the overlap area 

between the adjacent Hodos. The time offsets and the channel-to-nano-second conversion factors are 

listed in Table 2-9. Note that the Hodo-13 was not used because the number of counts was very small.  

 

Table 2-9 – Hodo time offset and ch2ns conversion factors. 

 Offset ch2ns 

Hodo-00 50.18 

0.09765625 

Hodo-01 49.28 

Hodo-02 49.58 

Hodo-03 50.28 

Hodo-04 50.58 

Hodo-05 50.08 

Hodo-06 50.18 

Hodo-07 49.02 

Hodo-08 46.45 

Hodo-09 44.48 

Hodo-10 44.78 

Hodo-11 44.48 

Hodo-12 41.98 

Hodo-13 0.00 

  

We found that the energy loss of each Hodo depended on the timing. The left plot in Figure 2-26 shows 

the energy loss versus timing in the Hodo-8. This correlation was because the recording time window 

of the ADC overlapped with signals marginally. The time window depended on the trigger time and the 

timing of a Hodo was 𝑡𝐻𝑜𝑑𝑜 = 𝑡𝑟𝑎𝑤 − 𝑡𝑡𝑟𝑖𝑔, where 𝑡𝑡𝑟𝑖𝑔 was the trigger time of the DAQ, and it was 
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from the Tpla in the ppcoin trigger (see Section 2.4.1). When the trigger time came earlier, the time 

window covered a whole signal, and the recorded energy was independent from the timing. But when 

the trigger time was late, the time window only covered portion of a signal and only recorded part of 

the energy loss. Therefore, the recorded energy loss depended on the timing. This was corrected by 

normalizing the signal with a function of time. The left plot in Figure 2-26 shows 9 loci, from the top 

is fluorine, the next on is oxygen, then nitrogen, and so on. The function was extracted by using the 

locus of the oxygen. The result of the correction of the Hodo-8 is shown in the middle plot of Figure 

2-26.The energy projection of the middle plot is shown in the right plot. 

 

 

Figure 2-26 – Correction between the energy loss and the timing from the Hodo-8.   

The energy loss vs timing before (left) and after (middle) correction. The right figure is the 

projection on the corrected energy loss.  Note that the left plot is not a PID plot but simply energy 

loss versus timing of the Hodo-8. 

2.3.5.2 MWDC-S1 

The MWDC-S1 was a 6-plane multi-wire drift chamber similar to the MWDC-L and the MWDC-R, 

except the configuration of the X and X′ planes were swapped. The time reference came from the Hodo 

timing. Because of the multiplicity of the Hodo, the timing with largest energy loss was selected as the 

reference timing (see Appendix 0 for a detailed explanation). The detection efficiency of the  

MWDC-S1 was 95.9%. The tracking results are shown in Figure 2-27. The relation between the ray 

parameters 𝑋 and 𝐴 was almost linear because of the point source nature of the target. and the D1 

magnet can be regarded as a simple magnifying lens. The value of 𝐴 was −0.24 =  − tan(13.5°) at  

𝑋 = 0 mm reflected that the x-y plane of the MWDC-S1 made a 13.5 degrees with the optical axis. The 

image of 𝑌 versus 𝑋 shows the image of the Hodo array (the upper right plot of Figure 2-7). The 

resolutions of the tracking parameters are shown in Figure 2-28.  
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Figure 2-27 – The coincident plots for the tracking parameters from the MWDC-S1. 

 

 

Figure 2-28 – The distributions of the standard error of tracking parameters from the MWDC-S1. 
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2.3.6 Detectors Performance 

The efficiencies of all plastic scintillators and the Hodo array were assumed to be 100%. The time 

resolutions of plastic scintillators were calculated with the help of nearest drift-chambers. The detectors 

performances are summarized in Table 2-10.  

 

Table 2-10 – Detectors efficiencies and resolutions. 

Detector Efficiency Resolution [sigma] 

F3PL 100% NA 

FH9PL 100% 220 ps 

Tpla-L 100% 500 ps 

Tpla-R 100% 600 ps 

S0DPL 100% NA 

DCX1X2 90.2% 

σ(X) = 0.8 mm,  

σ(Y) = 1.4 mm 

σ(A) = 1.4 mrad,  

σ(B) = 2.4 mrad 

MWDC-L 80% 

σ(X) = 0.1 mm,  

σ(Y) = 0.2 mm 

σ(A) = 4 mrad,  

σ(B) = 13 mrad 

MWDC-R 78% 

σ(X) = 0.15 mm,  

σ(Y) = 0.2 mm 

σ(A) = 4 mrad,  

σ(B) = 13 mrad 

DCS0D 95.9% NA 

MWDC-S1 95.9% 

σ(X) = 0.25 mm,  

σ(Y) = 0.4 mm 

σ(A) = 8 mrad,  

σ(B) = 27 mrad 

Hodo array 100% NA 

 

2.4 Data Acquisition System 

Many triggers were used in the experiment. We will only focus on 2 triggers: beam trigger and proton-

proton coincident (ppcoin) trigger. The beam trigger was a down-scaled trigger from the FH9PL. The 

down-scaled ratio was 1/40, or one in 40 events was recorded. The ppcoin trigger was fired when both 

of the Tpla-L and the Tpla-R were triggered. The triggers were not mutually exclusive.  

2.4.1  Circuit Diagram of The ppcoin Trigger 

The ppcoin trigger was the tag of the (p,2p) events. The circuit diagram of the ppcoin trigger is shown 

in Figure 2-29. The orange colored boxes represent PMTs of the Tpla. The PMTs were the starting 

points of the signals. The arrows represent the flow of signals. The signals from the PMT-LB, LF, RB, 

and RF were fed into discriminators with threshold of -19 mV and output time width of 80 ns. The light 

traveled at 0.66c inside the Tpla of 1500 mm long, the maximum time difference between the forward 

and the backward signals should not be more than 10 ns. The forward PMTs, LF and RF, were delayed 
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by 20 ns so that the time reference was always the forward PMTs. The delayed forward signal and the 

backward signals were combined in a coincident module. The signal of the Tpla-R was fed into a gate 

generator to give a 50 μs time gate. The combined signal of the Tpla-L was further delayed by 210 ns 

because of the cable length. Therefore, the reference time of the ppcoin trigger was the signal from the 

PMT-LF. The signals from the PMTs were duplicated by fan-in-fan-out units (L.FIFO). Each signal 

was delayed by 600 ns, and fed into QDC V792 for recording the energy loss in the Tpla. 

 

 
Figure 2-29 – Circuit diagram for the ppcoin trigger.  

See main text. The single arrow to the QDC V792 did not mean signals were combined, each signal 

was recorded separately in the QDC. 

 

2.5 Spin-Polarized Solid Proton Target 

The spin-polarized target was installed to provide an asymmetry on the differential cross section so that 

the  𝐽> = 𝑙 + 𝑠 and 𝐽< = 𝑙 − 𝑠 orbits of the bound proton can be distinguished [96]. However, Because 

of the insufficient yield and small absolute polarization (30%) [110], the asymmetry cannot be extracted 

with sufficient accuracy and precision (Appendix C.9). Therefore, the target system is not presented in 

here, but detailed reports can be found in References [111] [112] and Appendix C. 
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Chapter 3  

Data Analysis and Results 

The objectives of the analysis are to obtain the excitation energy of the reaction residue, then deduce 

the cross section, the spin state, and the spectroscopic factor. We present the 23F(p,2p) analysis first, the 

analysis method of the 25F(p,2p) reaction was the same and the results are shown after. The reaction 

identification was the first step of the analysis. After that, the excitation-energy spectrum of the reaction 

residue was extracted. The integrated cross-sections and the spectroscopic factors were then deduced. 

Italic font is used for gates to avoid confusion. 

 

3.1 Properties of the Incident Beam 

3.1.1 Particle Identification 

Since the F6-PPAC was switched off in physical runs of 23F, the particle identification was done by Δ𝐸-

TOF method and the plot is shown in Figure 3-1. The gate on 23F is shown in the red square. The 23F 

nucleus was selected between 5680 < Δ𝐸 < 6060 ch and −1465 < TOF < −1460. The purity of 23F 

was 36.5% from event by event identification.  

 

 

Figure 3-1 – The ΔE-TOF plot upstream PID. The 23F gate is inside the red rectangle.  
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3.1.2 Kinetic Energy 

The distribution of kinetic energy per nucleon (KE/A) of 23F was obtained from the optics runs and is 

shown in Figure 3-2. The spread of the kinetic energy was ± 0.7 MeV/nucleon or ± 0.2%.  

 

Figure 3-2 – The distribution of the kinetic energy per nucleon obtained from the F6-PPAC.  

 

3.1.3 Beam Profile 

The beam profile on the target was deduced from the tracking of the DCX1X2. The beam profile under 

the beam trigger is shown in Figure 3-3. The left plot is the position distribution and the right plot is the 

angular distribution under the 23F gate and the beam trigger. The circle in the left figure shows the 

position of the target crystal (Section 3.3). The target-hit-ratio was defined as the number of events 

within the circle over the number of tracked events by the DCX1X2, and it was 61.3%. 

 

 

Figure 3-3 – Bema Profile on the target deduced from ray tracking of DCX1X2.  

(Left) The beam image on the target crystal, where X and Y is the x and y positions. (Right) The 

incident angles A and B of the beam. 
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3.2 Reaction Vertex and Carbon Background 

The reaction vertex was back-tracked using the MWDC-L and the MWDC-R together with the tracking 

of the DCX1X2. The 3-dimension coordinates of the reaction vertex are denoted as vertex(X), vertex(Y), 

and vertex(Z). The vertex(X) and vertex(Y) are also denoted as S0.X and S0.Y respectively. The 

vertex(X) and vertex(Y) were calculated using the tracking results of the DCX1X2. Using the ray-

tracking results [X and A (Figure 2-19)] of each MWDC, an interception of the ray on the laboratory 

Y-Z plane and the vertex(X) was calculated. The Z-position of the interception was the vertex(Z). Since 

the interception was an extrapolation of the tracking results, the interceptions from the MWDC-L and 

the MWDC-R could be different and an uncertainty-weighted average was used as the vertex(Z). The 

resolution of vertex(X) and vertex(Y) were approximately 1 mm, and the resolution of vertex(Z) was 

approximately 15 mm.  

 

The vertex(Z) under 23F ∩ ppcoin ∩ vertexXY ∩ tofS0dS1 ∩ pidZ gates is shown in Figure 3-4. The 

peak around vertex(Z) = 10 mm is the target crystal. A vertexZ gate for the target was defined as 

|vertex(Z)-10|<30 mm. A clear target and carbon peaks are shown in Figure 3-4. The vertexZ gate cover 

95% of the Gaussian with central at 10 mm.  

 

A carbon target was placed at 160 mm downstream of the target. It provided an estimation for the carbon 

contamination. The carbon target was identified from the vertex(Z). In Figure 3-4, the peak around 

vertex(Z) = 170 mm is from the carbon target. A carbon gate was defined as |vertex(Z)-160|<30 mm 

and is called as vertexZc. We define a Common gate in here for future discussion. The Common gate is 

formed by a union of the 23F gate and the ppcoin trigger.  

 

  

Figure 3-4 – vertex(Z) under 23F ∩ ppcoin ∩ vertexXY ∩ tofS0dS1 ∩ pidZ gates. 

The gate definitions are listed on Table 3-2. The histogram was fitted with 2 Gaussians and a second-

order polynomial. The reduced chi-squared is 1.8. The vertexZ gate is defined between the red lines. 

The vertexZc gate is defined between the green lines. 
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3.3 Target Position and TOF(S0D-S1) 

The target was surrounded by a thick hydrogen free target holder (made from PCTFE, 

polychlorotrifluoroethylene, [CF2-CFCl]n). Since the beam trigger and the ppcoin trigger are not 

exclusive, the target position cannot be determined by comparing the beam profile from the beam trigger 

and that from the ppcoin trigger. The other way was using the different in energy losses between the 

residues with large charge number and small charge number.  

 

Whenever the 23F beam hit on the 8 mm thick target holder and 2 scattered protons were detected by 

the Tplas, residues were produced. The residues with large charge number lost more energy in the target 

holder than the residues with small charge number because of the Bethe’s formula. Therefore, from the 

target holder, only residues with small charge number can reach to the Hodo array. Because the target 

crystal was 1 mm thin, the energy losses for all residues were small, hence, most of them can reach to 

the Hodo array. Therefore, by gating on the residue with charge number > 5 from the Hodo array, the 

position of the target crystal can be revealed. The left plot of Figure 3-5 shows the target position. We 

define a gate for the residue with large charge number in the Hodo array, and called it as Hodo-charge 

gate. The plot was calculated by dividing 2 plots - a plot with the Hodo-charge gate ∩ vertexZ gate ∩ 

Common gate divided by a plot with the negation of the Hodo-charge gate ∩ vertexZ gate ∩ the 

Common gate. The target crystal was a circle, which centered at (X,Y) = (0.4, 1.8) mm with radius of 7 

mm. We define a vertexXY gate as the circle of the target crystal. 

 

 

Figure 3-5 – Images of target crystal position.  

See main text. The right figure is an inverse of the left figure. The guided circles are red in color. The 

largest red circle is 14 mm diameter. This circle is also the vertexXY gate. 

 

The target position was cross checked with another method. Residues lost more energy in the target 

holder than in the target crystal, due to the different thicknesses, that resulted in a longer TOF(S0D-S1) 

on the target holder. Therefore, the position of the target crystal can also be revealed using a gate on the 
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TOF(S0D-S1). Figure 3-6 shows the correlation between the S0.X and the TOF(S0D-S1). The target 

crystal ranged from S0.X  (-7, +7) mm. The TOF was longer at outside because of the thick target 

holder.  A tofS0DS1 gate was defined as 32 ns < TOF(S0D-S1) < 35 ns to eliminate most events from 

the target holder. Figure 3-7 shows that the crystal position deduced from the tofS0DS1 gate. The result 

was consistent with Figure 3-5.  

 

Figure 3-6 – The plot of S0.X versus TOF(S0D-S1). 

The plot was gated on a union of the oxygen gate from the Hodo array, |vertex(Z)| < 7 mm, and  

|S0.Y| < 2 mm. The tofS0DS1 gate is defined from 32 ns to 35 ns, or between the red lines. 

 

 

Figure 3-7 – The crystal position revealed using the tofD0DS1 gate.  

See main text.  The right plot is the inverse of the left plot. 

 

3.4 Residue Identification 

The target crystal contained carbon atoms and the size of the beam spot was larger than the size of the 

target crystal, therefore, many kinds of residual nuclei were produced in the target and in the target 
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holder. The SHARAQ spectrometer was used to identify the residues. We had tried two methods, one 

was using the magnetic rigidity of the SHARAQ spectrometer, TOF, and flight-length. Another was a 

phenomenological approach using the tracking results from the MWDC-S1 and the DCS0D, and the 

TOF(S0D-S1). It turned out that the phenomenological approach gave better mass resolution. 

 

3.4.1 Analysis of Downstream PID with the SHARAQ spectrometer 

A phenomenological approach is presented in here. The calculation involved the S0DPL, the DCS0D, 

the MWDC-S1, and the Hodo array. The flow chart of the Z and the A/Q deduction is shown in  

Figure 3-8. We will explain the process of multi-hit data from the Hodo array first.  

 

There were 14 Hodos, the data of each event was a 3 columns and 14 row multi-dimensional array. 

Each row for a Hodo and stored the charge number (Hodo.Z, this was empty at the beginning), the 

energy loss (Hodo.ΔE), and the timing (Hodo.ch). The goal is to reduce the multiplicity into one by 

selecting a particular row from the data. The energy loss was corrected to Hodo_Corr.ΔE as shown in  

Section 2.3.5.1. Hodo_Corr.ΔE was converted into charge number Hodo.Z using a simple scaling.  A 

proper range of the timing of each Hodo was selected and gave the true event (Hodo_trueEvent). The 

Hodo_trueEvent still contained data from multiple Hodos. The multiplicity was reduced to 1 by 

selecting the largest Hodo.Z among the 14 Hodos. This was called “Largest Z selection”. The data 

Hodo_U only contained the charge number and the timing. The Z number was Hodo_U.Z.  

 

 

Figure 3-8 – The flow chart of calculating the Z and A/Q value.  

See main text for detail explanation.  

 



72 

 

The deduction of the A/Q value was using the MWDC-S1, the DCS0D, and the TOF(S0D-S1). The 

timing from Hodo_U was used as the time reference for the drift-time of the MWDC-S1. It also formed 

the TOF(S0D-S1) with the timing from the S0DPL. The correlation between the x-positions of the 

MWDC-S1 and DCS0D can eliminate the angular dependence. The correlation between the x-position 

of the MWDC-S1 and TOF(S0D-S1) can eliminate the momentum dependence. The corrected x-

position of the MWDC-S1 would be independent of incident angle and momentum and then it is related 

to the A/Q value.  

 

We applied a charge number gate |𝑍 − 8| < 0.6 to select the oxygen isotope. Under this gate, the x-

position of the MWDC-S1 𝑥𝑆1  was made to be independent of the x-position of the DCS0D 𝑥𝑆0𝐷 

(Figure 3-9) using formula 

𝑥 =
𝑥𝑆1 + 0.1296𝑥𝑆0𝐷
1 − 0.04874𝑥𝑆0𝐷

, (3.4.1) 

where 𝑥 is the corrected x-position of the MWDC-S1. Under the same charge number gate, a correlation 

can be seen between the corrected x-position of MWDC-S1 and the TOF(S0D-S1) (Figure 3-10). We 

fitted the data with a 2-dimenstion function to get the A/Q value 

𝐴

𝑄
= 0.75409 − 0.0021946𝑥 + 1.64 × 10−6𝑥2 + 0.05327𝑡,  (3.4.2) 

where 𝑡 is the TOF(S0D-S1). The constant term in equation (3.4.2) was set so that the value of A/Q of 

23F is 23/9.  

 

Figure 3-9 – Correlation between the x-position of MWDC-S1 and that of DCS0D. 
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Figure 3-10 – Correlation between the corrected x-position of the MWDC-S1 and the TOF(S0D-Hodo). 

 

Figure 3-11 shows the Z number distribution. The standard deviations of the Z number from the fitting 

of multiple Gaussians were 0.3, except for the fluorine. The number of channel in the Hodo was ranging 

from ~500 to ~4000, roughly 500 channels for one element. Standard deviation of 0.3 corresponds to 

the resolution of energy loss of 150 channels. Thus, the relative energy resolution of the Hodo was ~5% 

for oxygen. The Z - A/Q plot of the residues is shown in Figure 3-12.  

 

 

Figure 3-11 – Charge number distribution from the Hodo array.  

The plot was gated under the 23F gate and the ppcoin trigger. The small fraction of Z = 9 comes from 

accidental events. A pidZ gate is defined between the dashed black lines, or from Z = 7.3 to Z = 8.6. 

The gate covered 95% of the oxygen strength. 
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Figure 3-12 – A Z-A/Q plot of the residues. 

The plot was under union of the vertexXY gate, the tofS0DS1 gate and the vertexZ gate. The irregular 

hexagons are the gates for residual oxygen. 

 

The plot of the mass number of the oxygen isotopes is shown in Figure 3-13. The standard deviations 

of the mass number from the fitting with multi-Gaussians were 0.2 for most of the peaks except for 22O 

and 18O. The standard deviation of the mass number can be checked using 𝐴 = 𝑄
𝑐

𝑢𝛾𝛽
 𝐵𝜌 (1 +

𝑥

⟨𝑥|𝛿⟩
), 

where 𝑄 is the charge state, 𝑐 is the speed of light in vacuum in mm/ns, 𝑢 is 931.5 MeV/c2, 𝐵𝜌 is the 

magnetic rigidity of the SHARAQ-D1 magnet, 𝛾𝛽 is the Lorentz factor of the particle, 𝑥 is the position 

on the focal plane, and ⟨𝑥|𝛿⟩ is the momentum dispersion. Using 𝜎(𝐴) =
𝐴

 ⟨𝑥|𝛿⟩
𝜎(𝑥), 𝜎(𝑥)~15 mm 

was the position resolution of an isotope (Figure 3-9), the dispersion was then ~1650 mm/100%. This 

value agreed with the theoretical dispersion of 1350 mm/100%.  

 

Figure 3-13 – The mass number of oxygen isotopes under the pidZ gate.  

The pidZ gate was defined in Figure 3-11. The standard deviations of each peak is 0.2, except for 22O 

and 18O. 
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21O 20O 
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3.5 Residue Disintegration – Neutron Emission 

The residue 22O can be highly excited after a proton was knocked out from the 1p-shell or the 1s-shell. 

When the excitation energy is higher than the particle thresholds, nucleon(s) emission could happen, 

especially for the direct reaction. The neutron separation energy of 22O is 6.85 MeV. Therefore, if the 

excitation energy of 22O residue from the 23F(p,2p) reaction is larger than 6.85 MeV, the residue 22O 

will be excited, emit a neutron, and become 21O. Similarly, 20,19O can be detected when the excitation 

energy of the residue 22O is higher than 2- or 3-neutron threshold. The multiple-neutron thresholds for 

22O and 24O are shown in Table 3-1. The excitation-energy spectrum was partitioned by selecting 

different oxygen isotopes. For example, selecting (23F,21O) restricts the excitation energy of 22O from 

6.8 MeV to 10.7 MeV. 

 

Table 3-1 – Multiple-neutron thresholds of 22O and 24O in MeV. 

 22O 24O 

1-neutron threshold 6.8 4.2 

2-neutron threshold 10.7 6.9 

3-neutron threshold 18.3 13.8 

4-neutron threshold 22.2 17.6 

5-neutron threshold 30.3 25.2 

 

3.6 Reaction Identification  

The reaction identification of the 23F(p,2p)22O* reaction required selecting the 23F, the protons in the 

target crystal, the ppcoin trigger, and the oxygen isotopes. The 23F was selected by the upstream PID 

(Figure 3-1). The ppcoin trigger was the coincident trigger of both of the Tpla-L and the Tpla-R (Section 

2.4.1). Although the ppcoin trigger contained proton-gamma or gamma-gamma accidental events, those 

gamma events were ruled out by the tracking of the MWDC-L or the MWDC-R, because MWDCs are 

not sensitive to gamma ray. The oxygen isotopes were selected by the residue PID (Section 3.4). 

 

The (p,2p) condition was checked using the angular correlation of the scattered protons. Figure 3-14 

shows the correlation. The left plot is from the target; it clearly shows a correlation. The right plot is 

from the carbon target; it does not show any correlation.   
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Figure 3-14 – Correlation of the scattered protons.  

The left plot is gated on the 23F, Target, and pidZ gates. The right plot is gated on the 23F, Carbon, and 

pidZ gates. The ppcoin gate is implicitly included.  

 

Because the target crystal was made of C10H8 molecules (Figure B-1), elimination and estimation of 

carbon background were necessary. We defined serval gates and list them in Table 3-2. The vertexXY 

gate selected the target crystal and excluded the target holder (Figure 3-5). The tofS0DS1 gate also 

applied to rule out possible contamination from the target holder (Figure 3-6). The vertexZ gate was 

necessary to separate the target crystal and the carbon target (Figure 3-4). The union of the vertexXY 

gate and the vertexZ gate set a 3-dimensional gate on the target crystal to exclude the background from 

target holder and surrounding materials. A vertexZc gate selected the position of the carbon target for 

carbon background estimation. 

 

Table 3-2 – Gates definition of the 23F(p,2p) reaction. 

Category Gate Name Description Figure 

Upstream PID 23F Graphical cut  Figure 3-1 

2p ppcoin Selected from trigger condition  

Target 

vertexXY 
Circle of radius 7 mm and centered at 

(0.4, 1.8) mm in  
Figure 3-5 

tofS0DS1 35 ns >TOF(S0D-S1) > 32 ns  Figure 3-6 

vertexZ |vertex(Z) – 10| < 30 mm Figure 3-4 

vertexZc |vertex(Z) – 160| < 30 mm Figure 3-4 

Downstream 

PID 

pidZ 8.6 > Z > 7.3  Figure 3-11 
22O 

Graphical cuts Figure 3-12 21O 
20O 

 

The signal and background gates are defined in Table 3-3. The “Target” gate was defined as a union of 

the vertexXY gate, the vertexZ gate and the tofS0DS1 gate. The “Carbon” gate was a union of the 

vertexXY gate, the vertexZc gate, and the tofS0DS1 gate. The “Common” gate was redefined as the union 

of the 23F gate and ppcoin gate. The signal gate for the 22O ground state was a union of the Common 

gate, the Target gate, and the 22O gate from the residue PID. The corresponding carbon background 
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gate was union of the Common gate, the Carbon gate, and the 22O gate. Similar signal and background 

gates were defined for excited states of 22O. 

 

Table 3-3 – Definition of signal and background gates of the 23F(p,2p) reaction.  

 Signal gate Carbon background gate 

Target vertexXY ∩ vertexZ ∩ tofS0DS1  / 

Carbon / vertexXY ∩ vertexZc ∩ tofS0DS1 

Common 23F ∩ ppcoin 

22Og.s. Common ∩ Target ∩ 22O Common ∩ Carbon ∩ 22O 
22O* → 21O+n Common ∩ Target ∩ 21O Common ∩ Carbon ∩ 21O 
22O* → 20O+2n Common ∩ Target ∩ 20O Common ∩ Carbon ∩ 20O 

 

3.7 Excitation-Energy Spectrum 

The experimental proton separation energy 𝑠𝑝(𝑛𝑙𝑗), which is the energy required to knock out a proton 

from the |𝑛𝑙𝑗⟩ orbit. It can be calculated from the four-momenta of the incident fluorine nucleus ℙ𝐹, 

the target proton ℙ𝑇, and the scattered protons ℙ1 and ℙ2. In order to construct the four-momenta, the 

energy and the direction of the particles have to be deduced. Note that the experimental proton 

separation energy is different from the usual proton separation energy 𝑆𝑝, which is calculated from the 

experimental binding energies. 

 

The energy can be deduced from the time information and the length of the flight length. The TOF from 

the target to the Tpla was found by following steps. The average time (Tavg) from the F3PL and the 

FH9PL gave the TOF(F3-FH9) with a proper time offset 

TOF(F3 − FH9) = 𝑡𝐹𝐻9 − 𝑡𝐹3 + 𝜏1 + 𝑇𝑂𝐹(𝐵𝜌0), (3.7.1) 

where 𝑡𝑖 were the Tavg of the 𝑖 detector, 𝜏1 was the time offset which set the 𝑡𝐹𝐻9 − 𝑡𝐹3 to be zero, and 

𝑇𝑂𝐹(𝐵𝜌0) was the TOF that calculated from the magnetic rigidity 𝐵𝜌0 of the BigRIPS. It turned out 

that the value of 𝜏1 + 𝑇𝑂𝐹(𝐵𝜌0) was the same for the proton, 23F, and 25F beams. It was not surprised 

but expected as the total time offset should be a constant. The TOF(FH9-target) was calculated using 

the TOF(F3-FH9) with the known positions of the F3 focal plane, the FH9 focal plane, and the target 

ToF(FH9 − target)

ToF(F3 − FH9)
=
L(FH9 − target)

L(F3 − FH9)
=
10.865[m]

74.075[m]
= 0.1467, (3.7.2) 

where L(A-B) was the flight length from point A to point B. There were some thin detectors from F3 

to FH9, but the energy loss should be small as the kinematic energy of the beam is high. Thus, the TOF 

should not be affected much. The target-hit-time was 

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝐹𝐻9 + TOF(FH9 − target). (3.7.3) 

The TOF from the target to the Tpla or to the S0DPL were then calculated from  
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TOF(target − X) = 𝑡𝑋 − 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = TOF(FH9 − X) − TOF(FH9 − target) + 𝜏𝑋 , (3.7.4) 

where X can be the Tpla or the S0DPL, and 𝜏𝑋 is the time offset for each 𝑋.  

 

The flight length from the target to the Tpla can be found using the tracked position on the MWDC and 

the reaction vertex. The four-momenta of the scattered protons ℙ1 and ℙ2 were constructed from the 

TOF(target-Tpla), the flight length L(target-Tpla), and the scattering angles(𝜃, 𝜙 ). The four-momenta 

were further corrected from the deflection caused by the polarization magnet and the incident angles of 

23F. 

 

The four-momentum of the incident fluorine nucleus ℙ𝐹 was constructed from the incident energy and 

the tracking of the DCX1X2. The incident energy was obtained using the TOF(F3-FH9) for the 23F runs 

or the F6-PPAC for the 25F runs (Section 3.1.2). The experimental separation energy was calculated by 

equation (3.7.5). The excitation energy of the reaction residue was then deduced by subtracting the 

experimental separation energy from the proton separation energy of the fluorine nucleus. The flow of 

the calculation is shown in Figure 3-15. 

 

 

Figure 3-15 –Flow chart of the calculation of the experimental proton separation energy.  

The chart only shows the calculation for ℙ1, the same calculation also applied for ℙ2. L stands for left. 

The ℙT is the four-momentum of a proton at the target. 𝒑̂ is the unit vector of momentum.  β is the 

velocity of the scattered proton over the speed of light. sp(nlj) is the separation energy of a proton 

knockout from nlj orbit, m(ℙ) is the mass of a four-momentum ℙ, Ex is the excitation energy of the 

residue with nlj-hole state, and Sp(F) is the proton separation energy of fluorine.  
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The calculation formula of the experimental separation energy 𝑠𝑝 and the excitation energy 𝐸𝑥 are 

𝑠𝑝 = 𝑚( 𝑂∗22 ) + 𝑚𝑝 −𝑚(
23𝐹) = 𝑚(ℙ𝐹 +ℙ𝑇 − ℙ1 − ℙ2) + 𝑚𝑝 −𝑚(ℙ𝐹), (3.7.5) 

𝐸𝑥 = 𝑠𝑝 − 𝑆𝑝( 𝐹23 ). (3.7.6) 

Here 𝑚(𝑋)  is the mass of the four-momentum 𝑋 , 𝑚𝑝  is the mass of proton, and ℙ𝑖  is the four-

momentum, in which 𝑖 can be: 𝐹 for the fluorine nucleus, 𝑇 for the proton in the target, 1 and 2 for the 

scattered protons. The proton separation energy of 23F is 13.26 MeV. The accuracy of the formula was 

checked with the proton-proton elastic scattering [110]. Values of masses were taken from Reference 

[72]. Figure 3-16 shows the coincident plot of the excitation energy and the oxygen mass number for 

the 23F(p,2p) reaction. The loci of the excitation energies are well isolated by mass number.  

 

 

Figure 3-16 – The coincident plot of excitation energy versus oxygen mass number for 23F(p,2p) 

reaction with 23F ∩ ppcoin ∩ Target gates. 

 

The excitation-energy spectrum with carbon background subtraction for the 23F(p,2p) reaction is shown 

in Figure 3-17. The scaling factor of the carbon background was 1, which was adjusted so that the 

average strength of the negative part of the energy spectrum was zero. The carbon target was 0.6 mm 

thick and the density was ~2 g/cm3. The particle density of the carbon in the carbon target was  

0.01𝑁𝐴 cm-2, where 𝑁𝐴 is the Avogadro’s number The particle density of carbon in the target was 0.9 ×

10−2𝑁𝐴  cm-2 [equation (3.8.2)]. Thus, the scaling factor was reasonable. Figure 3-17 shows three 

histograms using 22O (red), 21O (green), and 20O (blue) gates. The experimental resolution (~5 MeV) 

was consistent with the detector resolutions. The main contribution of the resolution was the uncertainty 

of the TOF(target-Tpla), which was ~500 ps. Because of the insufficient energy resolution, we can only 

fit with a single Gaussian for each histogram. The results of the fits and the counts are listed in Table 

3-4. The statistical error was included in the fitting. The error bar is not shown in the plot for clear 

presentation. The notation (23F,AO) means the residual AO was selected. 
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Figure 3-17 – Excitation-energy spectrum of 22O from the 23F(p,2p) reaction.  

The red, green, and blue color stands for 22O gate, 21O gate, and 20O gate respectively. 

 

Table 3-4 – The fitting results and counts of the 23F(p,2p) reaction. 

Partition Ex [MeV] Width [MeV] Count 

(23F, 22O) 1.0(8) 6.0(6) 110(15) 

(23F, 21O) 9.5(4) 7.9(4) 386(29) 

(23F, 20O) 18.0(5) 9.7(5) 442(32) 

 

3.8 Integrated Cross-Section 

The integrated cross-section was calculated by 

𝜎 = ∫
𝑑3𝜎

𝑑Ω1𝑑Ω2𝑑𝑇1
𝑑Ω1𝑑Ω2𝑑𝑇1 =

Count

𝑁𝑇𝑁𝐵𝑃𝐵𝐻𝜆𝜖𝑡
, (3.8.1) 

where the count is taken from Table 3-4, section 3.7. The count was integrated on the detector angular 

acceptance and energy acceptance. The energy acceptance was defined by the TOF(target-Tpla) 

window. The window was ranging from 0 ns to 50 ns, which was corresponding to minimum energy of 

4 MeV. The minimum theoretical kinetics energy of the scattered proton was 30 MeV (Figure 1-28). 

And the average energy loss caused by multiple scattering was 10 MeV (Figure A-10). Therefore, the 

TOF windows was able to covered the lowest energy proton. The experimental energy-angular 

acceptance is shown in Figure 3-18. 
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Figure 3-18 – The experimental acceptance of 23F(p,2p) (left) and 25F(p,2p) (right).  

The plots are gated by Common, Target, and pidZ gates. The carbon background did not remove. 

 

In equation (3.8.1), 𝑁𝑇  was the number of protons in target, 𝑁𝐵 was the number of particles of the 

(secondary) beam, 𝑃𝐵 was the purity of 23F isotope, 𝐻 was the target-hit-ratio, 𝜆 was the DAQ live time, 

𝜖 was the total detection efficiency and 𝑡 was the transmission rate from S0D to S1. The calculation 

elements in the denominator and their relative errors are listed in Table 3-5. The target thickness was 

1.0 ± 0.1 mm. The molar mass of naphthalene (C10H8) is 128.17 g/mol. The density of the target crystal 

is 1.14 g/cm3. Each naphthalene molecule has 8 protons. The number of protons 𝑁𝑇 in the target crystal 

was 

𝑁𝑇 =
1.14

128.17
× 8 × 0.1 × 𝑁𝐴 = 4.285 × 10

21 cm−2, (3.8.2) 

where 𝑁𝐴  is the Avogadro’s number. The relative error of 𝑁𝑇  is 10%, which was came from the 

thickness of the target. The rate of event was uniform from beginning to the end of the experiment, 

therefore, the thickness of the target was the same throughout the experiment.  

 

The beam luminosity was the sum of the product of 𝑁𝐵  and 𝜆 for each runs. The beam purity was 

deduced in Section 3.1.1. The target-hit-ratio 𝐻 was calculated from the tracking result of the DCX1X2 

(Figure 3-3). The relative error of 𝐻 came from the tracking uncertainty of 1 mm. Because the beam 

spot was larger than the crystal and off–centered, the uncertainty of the target radius or center resulted 

in a significant change of the number of events. The efficiencies of each detector were discussed in 

Chapter 2. The relative errors of the efficiency of most of the detectors were assumed to be zero, except 

for the MWDC-L and the MWDC-R, because their efficiency slightly depended on the position.  

 

The transmission rate from S0D to S1 were checked by the XY image of the MWDC-S1 and the image 

was shown in Figure 3-19. The Y-detection range was between -130 mm and 50 mm (Figure 2-27). The 

oxygen isotopes were within the detection range and concentrated around the optical axis (X = 0), so 

that they did not hit any obstacle, thus the transmission rate was 100% for oxygen isotopes. There are 
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two loci on the figure. This is because the A/Q ratios of the oxygen isotopes are around the A/Q ratio 

of the beam (23F) and the image of the beam was gated out by ppcoin trigger.  

 

Figure 3-19 – The XY image of MWDC-S1 after gates.  

The yellow region is the acceptance. It is clear that the oxygen isotopes are fully captured. The gate 

is a union of the Common, Target, pidZ, and 60>Ex>-40 MeV gates.  

 

The elements of the calculation of the integrated cross-section are listed in Table 3-5. The systematic 

errors due to the reaction identification in the 23F(p,2p) reaction was small. The 23F gate was clean, so 

the graphical cut would not be a problem. The systematic error of the vertexXY gate was included in the 

Target-Hit-Ratio. The systematic error of vertexZ gate was small, because the gate covered 98% 

strength from the crystal (Figure 3-4). The systematic error of the graphical cut of the downstream PID 

was small. In Figure 3-16, the coincident plot between the excitation energy and mass number shows a 

clear separation in mass number. Thus, the total systematic relative error contained only the errors in 

Table 3-5 and it was 18.5%. The cross section was then calculated and listed in Table 3-6. The 

uncertainties in the “count” column are only statistical, but the uncertainties of the cross sections 

included the systematic error. 

Table 3-5 – Value of calculation elements in 23F. 

  Value Relative error 

Number of protons [cm-2] 𝑁𝑇 4.285 × 1021 10% 

Beam luminosity ∑𝑁𝐵𝜆  3.63 × 109 / 

Beam purity 𝑃𝐵 0.37 / 

Target-Hit-Ratio 𝐻 0.61 15% 

Eff. Of DCX1X2 𝜖 (DCX1X2) 0.90 / 

Eff. Of MWDC-L 𝜖 (MWDC-L)  0.80 3.0% 

Eff. Of MWDC-R 𝜖 (MWDC-R)  0.78 3.0% 

Eff. Of DCS0D  𝜖 (DCS0D) 0.977 / 

Transmission(S0D-S1)  T 1.0 / 

Eff. Of MWDC-S1 𝜖 (MWDCs) 0.96 / 
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Table 3-6 – The experimental integrated cross-section of the 23F(p,2p) reaction.  

The systematic errors from Table 3-5 were included in the error of cross section.  

Partition Ex [MeV] Count Integrated  

Cross-section [ub] 

(23F, 22O) 1.0(8) 110(15) 61(14) 

(23F, 21O) 9.5(4) 386(29) 213(44) 

(23F, 20O) 18.0(5) 442(32) 243(50) 

 

3.9 Identification of Orbital Angular Momentum 

The orbital angular momentum of each partition can be identified using the momentum distribution of 

the residue in the fluorine nuclear frame, in which the momentum of the residue 𝑘⃗⃗  has the same 

magnitude of the knocked out proton. The four-momentum of the residue in the laboratory frame is 

ℙ𝑅 = ℙ𝐹 + ℙ𝑇 −ℙ1 − ℙ2. (3.9.1) 

The four-momentum of the residue in the fluorine nuclear frame was calculated by a Lorentz 

transformation 𝐿(−𝛽𝐹⃗⃗ ⃗⃗⃗) 

ℙ𝑅
′ = 𝐿(−𝛽𝐹⃗⃗⃗⃗⃗) ⋅ ℙ𝑅 , 𝛽𝐹⃗⃗⃗⃗⃗ =

𝑝𝐹⃗⃗⃗⃗⃗

𝐸𝐹
,    ℙ𝑅

′ = (𝐸𝑅 , 𝑘⃗⃗) (3.9.2) 

where 𝛽𝐹⃗⃗ ⃗⃗⃗ was the Lorentz boots vector of the incident fluorine nucleus and 𝐸𝑅 was the total energy of 

the residue. The ℙ𝐹 = (𝐸𝐹 , 𝑝𝐹⃗⃗⃗⃗⃗) was the four-momentum of fluorine nucleus, 𝑝𝐹⃗⃗⃗⃗⃗ was momentum vector, 

and 𝐸𝐹 was the total energy. The uncertainty of the magnitude of the experimental missing momentum 

𝑘 was approximately 15 MeV/c. 

 

The momentum distributions for each partition in Figure 3-17 are shown in the left plot of Figure 3-20, 

Figure 3-21, and Figure 3-22. Momentum distributions of different orbits from the DWIA calculation 

(Section 1.2.4) are included in the plot. The analytical form of the theoretical momentum distribution 

is very complicated. The theoretical momentum distributions were approximated with a 

phenomenological model function 

𝐺𝐿(𝑥) = 𝐴 𝑒
−
𝛼

𝑥0
(𝑥−𝑥0) 𝑥

𝛼

𝑥0
𝛼 + 𝛿𝐿0𝐺𝑎𝑢𝑠𝑠, (3.9.3) 

where 𝐴 is the maximum value, 𝑥0 is the peak position, 𝛼 is a parameter for controlling the width, 𝐿 is 

the angular momentum, 𝛿𝑖𝑗  is the Kronecker delta, and 𝐺𝑎𝑢𝑠𝑠 represent a Gaussian function. The 

angular momentum is implicitly included in the parameters 𝛼 and 𝑥0. The peak position for a fixed orbit 

is almost the same and slowly depends on the excitation energy according to code THREEDEE 

calculation. The peak position for the d-shell varies from 130 to 145 MeV/c for 𝐸𝑥 = 0 to 20 MeV. The 

peak position for the p-shell varies from 90 to 105 MeV/c for 𝐸𝑥 = 0 to 20 MeV. The first term of the 

function is not accurate to describe the 2s-shell, because the function has no node, therefore, a Gaussian 
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is added in the case for the 2s-shell. Since the uncertainty of the missing momentum was 15 MeV/c, we 

did not convolute the model function with the uncertainty, because the effect is small as the variance of 

the model function is ~ (60 MeV/c)2 that an additional variance of (15 MeV/c)2 can be neglected. 

Examples of the fitting of the phenomenological model function is shown in left plot of Figure 3-20 

and Figure 3-21.  

 

By simple inspection, there was no significant s-shell component in all partitions, and the 1p3/2 and 1p1/2 

distribution had the same shape but different in amplitude. In order to evaluate the orbital angular 

momentum of each partition, after fitted the model function 𝐺  to the theoretical distribution, the 

experimental momentum distribution was tested with the null hypothesis of a combined function 

𝑎𝐺1(𝑥) + 𝑏𝐺2(𝑥), where 𝑎 and 𝑏 are the testing parameters, 𝐺1(𝑥) is the 1d5/2 distribution, and 𝐺2(𝑥) 

is the 1p3/2 distribution. The goal of the test is to obtain the reduced chi-squared 𝜒2/𝑛𝑑𝑓 of 1. The 

reduced chi-squared of different 𝑎 and 𝑏 are shown in the right plots of Figure 3-20, Figure 3-21, and 

Figure 3-22. In the figures, the lowest value of the reduced chi-squared was marked and the 

corresponding 𝑎 and 𝑏 were shown.  

 

The total number of bin was 40 and the two parameters were fitted. The degree of freedom is 38. 

According to the reduced chi-squared distribution, the 90% two-tailed confident interval of the reduced 

chi-squared ranges from 0.65 to 1.4. If the reduced chi-squared is smaller than 0.65, the fitting is too 

good to be true. If it is larger than 1.4, the fitting is no different from chance. There errors of 𝑎 and 𝑏 

was taken as a one-sigma width. It corresponds to the value with 𝜒𝑚𝑖𝑛
2 + 1. The error of 𝑏 is then 0.15. 

Since the contour ellipse rotated 45 degrees, thus the error of 𝑎 is also 0.15. The portion of the cross 

section from 1d5/2 orbit and p-orbit are also shown in Table 3-7. The first error is the total uncertainty 

and the second error is the uncertainty from the testing parameters. 

 

Table 3-7 – The value of minimum reduced chi-squared, 𝒂, and 𝒃. 

Partition 𝜒2/𝑛𝑑𝑓 𝑎 𝑏 𝜎𝑒𝑥𝑝(1d5/2) [μb] 𝜎𝑒𝑥𝑝(p-orbit) [μb] 

(23F, 22O) 0.75 0.50 ± 0.15 0.15 ± 0.15 47 ± 11 ± 14 14 ± 3 ± 14 

(23F, 21O) 0.77 0.32 ± 0.10 0.40 ± 0.10 95 ± 20 ± 30 118 ± 24 ± 30 

(23F, 20O) 0.93 0.36 ± 0.10 0.62 ± 0.10 89 ± 18 ± 25 154 ± 32 ± 25 

 

We also used the excitation energy and parity of known states to determine the orbit. In the (23F,22O) 

partition, the mean excitation energy was close to 0 MeV and the known states are positive parity. 

Therefore, we assign the (23F,22O) partition to be originated from 1d5/2 distribution. In the (23F,21,20O) 

partitions, the excitation energy was large. The mean excitation energy of the (23F,21O) partition was 

consistent with the shell gap between 1d5/2 and 1p1/2 orbits. Therefore, these two partition should be 

dominated by p-orbit but mixed with little d-orbit.  
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Figure 3-20 – Momentum distribution of residue for the (23F,22O) partition.  

The solid curves and colored histograms are calculated from code THREEDEE. The excitation energy 

of 0 MeV was used in the calculation. The cross marks the minimum reduced chi-squared. 

 

 

Figure 3-21 – Momentum distribution of residue for the (23F,21O) partition.  

The solid curves and colored histograms are calculated from code THREEDEE. The excitation energy 

of 10 MeV was used in the calculation. The cross marks the minimum reduced chi-squared. 

 

 

Figure 3-22 – Momentum distribution of residue for the (23F,20O) partition.  

The solid curves are calculated from code THREEDEE. The excitation energy of 20 MeV was used in 

the calculation. The cross marks the minimum reduced chi-squared. 

 

(0.5,0.15) 

(0.32,0.4) 

(0.36,0.62) 
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3.10 Analysis Result of 25F 

The 25F(p,2p) reaction was analyzed and the excitation-energy spectrum of 24O was extracted through 

the same analysis procedure as in the 23F(p,2p) reaction. The incident energy of 25F was 277A MeV with 

an uneven momentum spread of 2%. Therefore, the incident energy was calculated in event by event 

basic using F6-PPAC. The upstream particle identification of 25F was done by the Z-A/Q plot, where Z 

is the charge number and A/Q is the mass to charge ratio. The plot was calculated using the energy loss 

in the FH9 plastic, the TOF(F3-FH9), F6-PPAC, and the magnetic rigidity of the BigRIPS. The 

upstream PID and downstream PID are shown in Figure 3-23 and Figure 3-24, respectively.  

 

Figure 3-23 – The Z - A/Q plot from optics runs of the 25F beam. The 25F gate is the red square. 

 

 

Figure 3-24 – Downstream PID plot of the 25F(p,2p) reaction. 

The gates of oxygen residues show in the irregular hexagons. This plot was gated on Common ∩ Target 

gates. 
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The charge distribution of the downstream PID is shown in Figure 3-25. The mass number of oxygen 

isotopes is shown in Figure 3-26. The downstream PID was merely enough to separate the mass number 

of the oxygen isotopes as the mass separation only 4𝜎. The isotopes were selected using graphic cuts 

on Figure 3-24. 

 

Figure 3-25 – Distribution of the charge number in downstream PID. 

The standard deviations of each peak are 0.3. This plot was gated on Common ∩ Target gates. 

 

 

Figure 3-26 – The distribution of the oxygen mass number in downstream PID. 

This plot was gated on Common ∩ Target gate and 60 MeV>Ex>-40 MeV gate. The standard deviations 

of each peak are 0.25, except for the 24O peak. 
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Figure 3-27 – Excitation-energy spectrum of 24O from the 25F(p,2p) reaction. 

The red, green, blue, and pink color stand for 24O gate, 23O gate, 22O, and 21O gate respectively. 

 

The excitation-energy spectrum of the 24O from the 25F(p,2p) reaction is shown in Figure 3-27. The red, 

green, blue, and pink histograms were deduced using 24O, 23O, 22O and 21O gates respectively. A single 

Gaussian was fitted for each partition due to the insufficient energy resolution. Note that the fitting of 

the (25F,21O) partition was not good as a strong peak located at 14 MeV was not fitted. However, the 14 

MeV peak was included in counting. The elements for the cross section calculation are listed in  

Table 3-8.  

 

Table 3-8 – Value of calculation elements in 25F. 

  Value Relative error 

Number of protons [cm-2] 𝑁𝑇 4.285 × 1021 10% 

Beam luminosity ∑𝑁𝐵𝜆  1.50 × 109 / 

Beam purity 𝑃𝐵 0.42 / 

Target-Hit-Ratio 𝐻 0.47 21% 

Eff. Of DCX1X2 𝜖 (DCX1X2) 0.90 / 

Eff. Of MWDC-L 𝜖 (MWDC-L)  0.80 3.0% 

Eff. Of MWDC-R 𝜖 (MWDC-R)  0.78 3.0% 

Eff. Of DCS0D  𝜖 (DCS0D) 0.977 / 

Transmission (S0D-S1) T 1.0 / 

Eff. Of MWDC-S1 𝜖 (MWDCs) 0.96 / 

 

Since the downstream PID in the 25F(p,2p) reaction was not as good as that of the 23F(p,2p) reaction. 

The excitation energy was plotted against the oxygen mass number and is shown in Figure 3-28. The 
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isotopes are not well separated. The systematic error from the downstream PID was estimated using 

narrow gates on the mass number and the pidZ gate, instead of the graphical cuts on Figure 3-24. The 

mass gate was set to be 2𝜎  in width, which contained 68.2% of the total strength, so that the 

contamination from other isotopes was 5%. The estimated full-strength count was compared with the 

count of graphical cut and it was 10% more. The final count was taken as an average of the counts from 

these two methods of downstream PID. The final statistical error was an average of the statistical errors 

from these two methods. The systematic error due to the downstream PID was the standard deviation 

of the counts, and it was 5%. The total systematic error, including the elements in Table 3-8 was 24%. 

The results of fittings of Figure 3-27, the counts, and the integrated cross-sections of all partitions are 

listed in Table 3-9. 

 

 

Figure 3-28 – Excitation energy versus oxygen mass number. 

The plot is under the Target ∩ pidZ gate. 

 

Table 3-9 – The results of the fitting, counts, and the integrated cross-sections from 25F(p,2p) reaction.  

The error of the integrated cross-section included systematic error. The * means the fitting is not good, 

because the partition could contain two peaks. 

Partition Ex [MeV] Width [MeV] Count 𝜎𝑒𝑥𝑝 [μb] 

(25F, 24O) 

 
-0.8(1.0) 5.2(1.1) 36(8) 56(18) 

(25F, 23O) 

 
7.2(1.1) 6.3(0.8) 55(10) 86(26) 

(25F, 22O) 

 
12.8(0.7) 7.7(0.8) 176(19) 274(71) 

(25F, 21O) 

 
25.2(0.7)* 2.7(0.5)* 47(13) 73(27) 

 

The momentum distributions of all partitions are shown in Figure 3-29, Figure 3-30, Figure 3-31, and 

Figure 3-32. The momentum distributions were also tested with null hypothesis of 𝑎𝐺1(𝑥) + 𝑏𝐺2(𝑥), 

which is as same as section 3.9. The results are shown in the right plots of Figure 3-29, Figure 3-30, 

Figure 3-31, and Figure 3-32. The degree of freedom was 18. The 90% two-tailed confident interval is 

from 0.52 to 1.6. The error of the testing parameters 𝑎  and 𝑏  are the value with 𝜒𝑚𝑖𝑛
2 + 1 , or 

24O 

23O 

22O 

21O 



90 

 

𝜒𝑚𝑖𝑛
2 /𝑛𝑑𝑓 + 0.06 . Note that the reduced chi-squared of the (25F,23,21O) partitions are out of the 

confident interval. This means the null hypothesis is rejected and the parameter is meaningless in this 

sense.  

 

Table 3-10 – The value of minimum reduced chi-squared, 𝒂, and 𝒃. 

Partition 𝜒2/𝑛𝑑𝑓 𝑎 𝑏 𝜎𝑒𝑥𝑝(1d5/2) [μb] 𝜎𝑒𝑥𝑝(p-orbit) [μb] 

(25F, 24O) 0.54 0.64 ± 0.10 0.00 ± 0.10 58 ± 18 ± 9 0 ± 0 ± 9 

(25F, 23O) 2.3 0.40 0.00 86 ± 26 0 ± 0 

(25F, 22O) 0.57 0.46 ± 0.10 0.34 ± 0.10 158 ± 41 ± 34 116 ± 30 ± 34 

(25F, 21O) 2.2 0.0 0.5 0 ± 0 73 ± 27 

 

The orbital angular momentum can be assigned using the momentum analysis and other experimental 

facts. The (25F,24O) partition must be from 1d5/2 orbit, because the 24O has no bound excited state that 

the partition must only contain the ground state. The momentum analysis also agrees that the partition 

is originated from d-orbit. Since the result of the hypothesis testing is not meaningful for the (25F,23,21O) 

partitions, by a simple inspection on the peak position, the (25F,23O) partition was originated from d-

orbit. Because of the large excitation energy, the (25F,21O) partition was most probability originated 

from the p-orbit. The mean excitation energy of the (25F,22O) partition is 12.8 MeV that it is agreed with 

the shall gap between the 1d5/2 and 1p1/2 orbits. This suggests the partition should be dominated by p-

orbit.  

 

 

Figure 3-29 – Momentum distribution of residue for the (25F, 24O) partition.  

The solid curves are calculated from code THREEDEE. The excitation energy of 0 MeV was used in 

the calculation. The cross marks the minimum reduced chi-squared. 

 

(0.64,0.00) 
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Figure 3-30 – Momentum distribution of residue for the (25F, 23O) partition.  

The solid curves are calculated from code THREEDEE. The excitation energy of 15 MeV was used in 

the calculation. The cross marks the the minimum reduced chi-squared. 

 

 

Figure 3-31 – Momentum distribution of residue for the (25F, 22O) partition.  

The solid curves are calculated from code THREEDEE. The excitation energy of 13 MeV was used in 

the calculation. The cross marks the the minimum reduced chi-squared. 

 

 

Figure 3-32 – Momentum distribution of residue for the (25F, 21O) partition.  

The solid curves are calculated from code THREEDEE. The excitation energy of 25 MeV was used in 

the calculation. The cross marks the minimum reduced chi-squared. 
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3.11 Reliability of the Results 

We verified the data analysis and the results in 6 aspects and concluded that the data analysis and the 

results are reliable. 

 

1) The analysis method 

The same physical data (timings and positions) were analyzed using an independent analysis code 

and different gating conditions. The cross section of the 22O(p,2p)21N reaction (22O came along with 

23F, Figure 3-1) was deduced and the result was 122 ± 26 μb. This value agreed with an independent 

analysis by S. Kawase [113]. The reliability of the analysis method has been confirmed.  

2) The correctness of the excitation energy  

The calculation was crosschecked using the proton-proton elastic scattering (Appendix D.6). Also, 

the residue PID and the residue excitation energy are not related in the analysis, but still, the (22O,21N), 

(23F,22O) and (25F,24O) partitions are located on approximately 0 MeV. Moreover, the central values 

for most partitions are within the range of the neutron thresholds, except for the (25F,23O) and (25F,21O) 

partitions, these could be due to the uncertainty of the downstream PID and insufficient statistics. 

These indicate that the calculation of the excitation energy is accurate.  

3) Missing strength caused by background estimation 

The carbon background was crosschecked using the target holder, which contained a lot of carbon 

atoms. Figure 3-33 shows the vertex(Z). The blue line is gated from the union of the Common gate, 

the vertexXY gate, the tofS0DS1 gate, and the pidZ gate (see Table 3-2 for gates definition). And the 

red line is gated from the union of the Common gate, the negation of the vertexXY gate, the tofS0DS1 

gate, and the pidZ gate. The red line is scaled to cover the strength of the carbon target. The deduced 

counts using this scale were consistent with the pervious analysis within uncertainties. 

 

 

Figure 3-33 – The vertex(Z) plot of the vertexXY gate (blue) and !vertexXY gate (red). 

The Common ∩ tofS0DS1 ∩ pidZ were included for both lines. 
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4) Contamination of downstream PID gate 

The contamination from other isotopes was ruled out in the 23F(p,2p). Figure 3-16 shows the 

correlation plot between the excitation energy and the oxygen mass number from the 23F(p,2p) 

reaction. All loci are clearly separated. However, the downstream PID separation of the 25F(p,2p) 

reaction was not clear and contamination may exist (Figure 3-28). The systematic error caused by 

the downstream PID was accounted using narrow gate on mass number and charge number, and it 

was 5%.  

5) Missing strength caused by the Target gating  

The Target gate was a union of the vertexZ gate, the vertexXY gate, and the tofS0DS1 gate. We 

deduced the excitation-energy spectrum by varying the gate conditions of the vertexZ gate 

(|vertex(Z)|<60 mm) or using the negation of the tofS0DS1 gate, and no strength was observed. The 

excitation-energy spectrum from a modified vertexXY gate (7 mm < r < 14 mm) is shown in Figure 

3-34. The red, green, and blue histograms are form (23F,22O), (23F,21O), and (23F,20O) respectively. 

There is no strength for the (23F,22O) and (23F,21O) partitions, but the count of the (23F,20O) partition 

is 26 ± 13 count, which is within the uncertainty of the count from the original vertexXY gate (442 

± 32 count). Also, the modified vertexXY gate selected the events from the target holder. Those 

events are probably accidental events.  

 

Figure 3-34 – The excitation energy of 22O from the 23F(p,2p) reaction with a modified vertexXY gate.  

See main text for detail explanation. The red, green, and blue histograms are for (23F,22O), (23F,21O), 

and (23F,20O) respectively. 

 

6) Correctness of calculation elements of the cross section calculation  

The calculation elements in Table 3-5 and Table 3-8 were cross checked and deduced independently 

by S. Kawase [113]. The values were consistent.   
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Chapter 4  

Discussion 

We discuss the experimental results and observations first. After that, the spectroscopic factors were 

extracted using the DWIA calculation. A unified nuclear structure of 23,25F is proposed based on the 

results. The results and the underneath mechanism were then compared with the shell model calculation. 

4.1 Results and Observations 

We summarize the results of the 23F(p,2p) and 25F(p,2p) reactions in Table 4-1. 

 

Table 4-1 – Results of the (p,2p) reactions from 23F and 25F.  

Partition Ex [MeV] Width [MeV] 𝜎𝑒𝑥𝑝 [μb] 𝑛𝐿𝑗 

23F(p,2p)     

22O 1.0 ± 0.8 6.0 ± 0.6 61 ± 14 1d5/2 

21O 9.5 ± 0.4 7.9 ± 0.4 
456 ± 67 d-orbit + p-orbit 

20O 18.0 ± 0.5 9.7 ± 0.5 

25F(p,2p)     

24O -0.8 ± 1.0 5.2 ± 1.1 56 ± 18 
142 ± 31 

1d5/2 

23O 7.2 ± 1.1 6.3 ± 0.8 86 ± 26 1d5/2 

22O 12.8 ± 0.7 7.7 ± 0.8 
348 ± 82 d-orbit + p-orbit 

21O 25.2 ± 0.7 2.7 ± 0.4 

 

There are several observations: 

1) the mean excitation energies of the partitions (23F,21O) and (25F,22O) agreed with the shell gap 

between 1d5/2 orbit and 1p1/2 orbit, 

2) the width of the (25F,24O) partition was the smallest, 

3) the integrated cross-section of the (23F,22O) and (25F,24O) partitions were similar, 

4) the total integrated cross-sections of 23F (517 ± 68 μb) and 25F (490 ± 82 μb) were similar, 

5) the strength of the 1d5/2 proton of 25F was fragmented, and 

6) the observed strength of the 1d5/2 proton of 23F was two times smaller than that of 25F. 
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Figure 4-1 – Known excited states and neutron thresholds of 22O and 24O. 

 

The observation 1) indicates that a peak from the 1p1/2 orbit dominates the partitions. The observation 

2) can be understood by the fact that there is no bound excited state of 24O (Figure 4-1), therefore, the 

(25F,24O) partition only contains 1 peak and the width of that partition is the resolution of excitation 

energy. The others partitions could contain many peaks that made the width larger. Since the nuclear 

potentials of 23F and 25F should be more or less similar, the integrated cross section of these two nuclei 

should be also similar. This explained the observation 3) and 4). The observation 5) and 6) will be 

discussed in the next two sub-sections. 

 

There are three other issues. First, a (π1d5/2)1(π1p)-1 particle-hole state was formed in the residue 22O 

(24O) when a p-orbit proton of 23F (25F) was knocked out. The particle and hole can couple into 2 states 

with spin-parity of 2- and 3- from a 1p1/2 hole, or 4 states with spin-parity of 1-, 2-, 3- and 4- from a 1p3/2 

hole. However, those fragmentations cannot be observed in the energy spectra due to the insufficient 

resolution.  

 

Second, no significant signal was observed from neither the 1s- nor the 2s-orbits. However, the 

existence of those orbits cannot be ruled out absolutely. The missing s-orbit peaks could be due to the 

insufficient energy resolution and the lack of statistics. The large absorption in the nuclear interior 

caused by the imaginary potential and the insufficient residue PID of light oxygen isotopes may also be 

the reasons for the missing 1s-orbit. 

 

Third, from Figure 1-32, one of the scattered protons would pass through the residual nucleus and could 

interact with it, so that the residual nucleus would be excited. However, the possibility of multi-step 

process should be very small in quasi-free knockout experiment. T. Noro showed that the cross sections 

of the multi-step process in quasi-free 12C(e,e ṕ)11B and 12C(p,2p)11B reactions were only 1% of the 

total cross section [114]. 



96 

 

4.1.1 Fragmentation of the Strength of the 1d5/2 State of 25F 

The (25F,24O) partition is originated from the knockout of the 1d5/2 proton, because there is only one 

bound state of 24O below neutron threshold. The momentum distribution of the (25F,23O) partition did 

not show any significant s-orbit signal but d-orbit signal (Figure 3-30). The positive parity of the known 

excited states (Figure 4-1) between 1-neutron and 2-neutron threshold also indicates the partition should 

be originated only from the sd-shell, unless there are some undiscovered states of negative parity. 

Because the 2s1/2 orbit is in the middle of the 1d5/2 and 1d3/2 orbits, and there is no significant s-orbit 

strength, it is not likely the configuration mixing happens in the 1d5/2 and 1d3/2 orbits but skips the 2s1/2 

orbit. Therefore, that partition should be most probably originated from the knockout of the 1d5/2 proton. 

Thus, the strength of the 1d5/2 proton of 25F was fragmented. The fragmentation in 25F indicates the 1d5/2 

proton changes the neutron-shell structure. 

 

4.1.2 Strength of the 1d5/2 Proton of 23F  

The integrated cross sections were similar between 23F and 25F [observation 3) and 4)]. This suggests 

the knockout cross-sections of the 1d5/2 proton should be also similar between 23F and 25F. But the 

observed knockout cross-sections of the 1d5/2 proton up to 6.8 MeV of 23F (61 ± 14 μb) and 25F (142 ± 

31 μb) were very different. The momentum distribution of the (23F,21O) partition (Figure 3-21) indicates 

some strengths from the 1d5/2 orbit. These evidences suggest that there were some missing strengths 

form the 1d5/2 proton above the neutron threshold. The missing strength was buried under the strong 

peaks of the p-orbit proton, because the strength of the p-orbit proton should be approximately 6 times 

more than that of the 1d5/2 proton, because there are 6 p-orbit protons and 1 d-orbit proton The missing 

strength indicates that the strength of the 1d5/2 proton of 23F was also fragmented, similar in the case of 

25F. Besides, the missing strength also suggests some undiscovered positive parity states above neutron 

threshold.  

 

4.1.3 Deformation effects  

Mean field calculations suggested that 23F nucleus is deformed with quadruple deformation parameter 

𝛽2 = −0.2 [115] [116] [117], while 16O, 22O, 24O, and 25F nuclei are spherical. Figure 4-2 shows the 

first 2+ excitation energy (or E(2) transition energy) of oxygen of even neutron number [40]. The 

excitation energy is an indicator for nuclear deformation [77]. The figure supports that 16O and 24O are 

spherical because of the double magicity, and 22O should be close to spherical. The deformation of 23F 

from mean field calculation suggests many wavefunctions of excited 22O is required to form the 

deformed wavefunction of 23F, and then the spectroscopic factors of the 1d5/2 proton spreads to many 

excited states of 22O.  
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Figure 4-2 – The first 2+ excitation energy of even-neutron oxygen isotopes.  

 

A theoretical study on the cross section of a (p,2p) reaction of slightly deformed nuclei showed that the 

cross section increased (decreased) for oblate (prolate) deformed nuclei, because of the focusing effect 

[94]. A (d,p) reaction on the deformed nucleus 182W (𝛽2 = 0.25) showed that the theoretical cross 

section based on spherical potential is too small [118] [119]. However, these two studies cannot help to 

explain our experimental results. More studies are needed to clarify the issue.  

 

4.1.4 The Observability of the Fragmentation 

The fragmentation of the strength of the 1d5/2 proton in both 23F and 25F were observed indirectly or 

directly. The first excited state of 24O is above neutron threshold. This allows the fragmentation of the 

strength of the 1d5/2 proton of 25F to be observed using neutron thresholds. There could be 

fragmentations in the case of 23F, but the excited states of 22O are low-lying that the experimental energy 

resolution is insufficient to separate them. The width of the (23F,22O) partition was larger than that of 

the (25F,24O) partition indicates there were multiple peaks inside that partition (Table 4-1).  

 

4.2 Experimental Spectroscopic Factors 

The experimental spectroscopic factor was deduced by comparing the experimental cross section and 

theoretical cross section (Section 1.1.2.3). The theoretical cross section was calculated using the DWIA 

method (Section 1.2.4). The spectroscopic factor was set to be unity in the calculation. A 3-dimensional 

kinematics calculation with the detector acceptance was performed. The incident energy of the proton 

and the experimental separation energy [equation (3.7.5)] were used. The Dirac-Cooper global potential 

was used to calculate the scattering optical potential (section 1.2.4.2). The bound state wavefunction 

was controlled by the reduced radius (𝑅/𝐴1/3) and diffuseness parameter of the potential well of the 

fluorine isotopes. The potential depth was calculated by the code to reproduce the separation energy. 

The dependence of the DWIA cross-section on the reduced radius and diffuseness parameters is shown 
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in Figure 4-3. The DWIA cross-section is sensitive to the reduced radius (27 μb per 0.1 fm) and less 

sensitive to the diffuseness parameters (10 μb per 0.1 fm). A little inconsistence between the Dirac-

Cooper global potential and the nuclear potential well may introduce error in the DWIA cross-section. 

The reduced radius of the imaginary vector and scalar potentials of the Dirac-Cooper global potential 

are 1.15 fm. The current reduced radius of the nuclear potential is 1.27 fm. That could result maximum 

20% error. 

 

 

Figure 4-3 – The theoretical cross-section calculated by Dirac-Cooper global potential with different 

radius and diffuseness parameter of the bound state wavefunction.  

 

The DWIA cross-section against excitation energy of 22O is shown in Figure 4-4. The DWIA cross-

section decreases when the excitation energy increases, because the radial integral of a deeper bound 

state is smaller [equation (1.2.11)], and the flux of incident proton losses inside of the nucleus due to 

the imaginary potential so that the chance for the incident proton interacts with a deeper bound state 

becomes small.  

 

 

Figure 4-4 – The DWIA cross-section against excitation energy of 22O from the 23F(p,2p) reaction. 

 

The DWIA cross-section of each partition was taken at the experimental mean energy and an error was 

taken into account due to the width of the partition. The spectroscopic factors of the 23F(p,2p) and 

25F(p,2p) reactions are listed in Table 4-2 and Table 4-3 respectively. The orbit assignments were 
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discussed in Chapter 3. Since the 1p1/2 and 1p3/2 orbits cannot be distinguished, the orbits were grouped 

and called as the p-orbit. The peak position of the p-orbit was taken as the cross-section weighted mean. 

The uncertainty and the width of the p-orbit were using error propagation without weighting. The DWIA 

cross-section was taken as the cross-section weighted mean of the 1p1/2 and 1p3/2 orbits. 

 

Table 4-2 – Cross sections and spectroscopic factors from the 23F(p,2p) reaction. 

Partition Ex [MeV] 
Width 

[MeV] 

𝜎𝑒𝑥𝑝 

[μb] 
Ex (DWIA) 𝐿 (DWIA) 

𝜎𝐷𝑊𝐼𝐴 
[μb] 

𝑆𝑒𝑥𝑝 

(23F,22O) 1.0(8) 6.0(6) 61(14) 0 1d5/2 166(28) 0.37(10) 

(23F,21,20O) 14.0(6) 12.5(6) 456(67) 15 p-orbit 93(25) 4.9(1.5) 

  

Table 4-3 – Cross sections and spectroscopic factors from the 25F(p,2p) reaction. 

Partition Ex [MeV] 
Width 

[MeV] 

𝜎𝑒𝑥𝑝 

[μb] 
Ex (DWIA) 𝐿 (DWIA) 

𝜎𝐷𝑊𝐼𝐴 
[μb] 

𝑆𝑒𝑥𝑝 

(25F,24O) 

 
-0.8(1.0) 5.2(1.3) 53(18) 0 1d5/2 149(24) 0.38(14) 

(25F,23O) 

 
7.2(1.1) 6.3(0.8) 86(26) 5 1d5/2 125(26) 0.69(25) 

(25F,22,21O) 

 
15.4(1.3) 9.2(1.3) 347(76) 16 p-orbit 80(24) 4.4(1.6) 

 

The sum of the spectroscopic factors up to 6.8 MeV (neutron threshold) of the 1d5/2 proton of 23F was 

only 0.37 ± 0.10. The value was quite small when comparing to the shell limit of 1. This indicates the 

change of neutron-shell structure. However, there were some missing strengths located in the (23F,21,20O) 

partitions as we explained on section 4.1.2, and the total sum of the spectroscopic factors should be 

larger. The sum of the spectroscopic factors up to 18 MeV of the p-orbit was 4.9 ± 1.5. The shell limit 

for the p-orbit was 6, so the fraction of occupancy was 0.82 ± 0.25. Note that the p-orbit included some 

strength from 1d5/2 orbit. The spectroscopic factor should be treated as an upper limit of the p-orbit. 

 

The spectroscopic factor of the (25F,24O) partition was 0.38 ± 0.14 and it was much smaller than unity. 

This again indicates the change of neutron-shell structure. The sum of the spectroscopic factors of the 

(25F,23O) partition was 0.69 ± 0.25. Because both (25F,24O) and (25F,23O) partitions were originated from 

the 1d5/2 proton. Therefore, the sum of the spectroscopic factors of the 1d5/2 proton was 1.06 ± 0.28. The 

sum of the spectroscopic factors of the p-orbit was 4.4 ± 1.6 and the fraction of occupancy was 0.72 ± 

0.27.  
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Figure 4-5 – The spectroscopic strength of the valence proton of the ground state of even-neutron 

fluorine isotopes [75] [77] [79] [80].  

The solid dots represent full strength of the valance proton. The hollow dots represent partial strength 

of the valance proton. The cross is the result from S. Michimasa [80]. 

 

The results is compared with past results and shown in Figure 4-5. The spectroscopic factors of the 

(23F,22O) and (25F,24O) partitions are plotted as hollow orange dots. Our result was consistent with the 

result obtained by M. Thoennessen et al. [75]. They used a 12C(25F,24O) reaction at 50.4A MeV and the 

spectroscopic factor of (25F,24O) was 0.5 ± 0.1.  

 

The sum of the spectroscopic factors of the 1d5/2 proton of 25F was 1.0 ± 0.3 and is plotted as an orange 

solid dot in Figure 4-5. The total spectroscopic strength was consistent with that of 17,19F. The figure 

shows that the 1d5/2 proton is in a “single-particle orbit” but the strength of the 1d5/2 proton of 25F was 

fragmented. The result from S. Michimasa et al. on 23F using 4He(22O,23F) at 35A MeV is also plotted 

as a brown cross. The spectroscopic factor of the 1d5/2 proton of 23F was reported to be 1.1 [80]. Since 

the result was obtained by subtracting all excited states from γ-spectroscopy, and the experimental setup 

was not sensitive to the ground state, therefore a large uncertainty is expected.  

 

4.2.1 Wavefunction of 25F 

From the experimental results, the wavefunction of 25F could be expressed as a linear combination of 

the couplings of the wavefunction of the 1d5/2 proton and the wavefunction of 24O core [equation 

(1.1.19)]. The 24O core can be in the ground state and the excited states. The spectroscopic factor for 

the 24O ground state was 0.38, and that for the first few excited states was 0.69. The wavefunction of 

25F is then written as 
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(4.1) 

where the coupling of the 1d5/2 proton with the ground state of 24O is weak and the coupling with excited 

states of 24O is strong (the relative strength is important in here). This coupling is unusual when 

considering that the 1d5/2 proton is a valence nucleon of a nucleus that is on top of a double magic 24O 

nucleus. For example, the 1p1/2 proton in 16O [120], the 1d5/2 neutron in 17O [64], the 1p1/2 proton of 18O 

[92], and the 1d3/2 proton of 40Ca [56], are all strongly coupled with the ground state of the residues and 

weakly coupled (or not coupled) to the excited states of the residues. Also, the spectroscopic factors of 

the valance proton of similar nuclei 49Sc and 209Bi are close to unity that the valance proton is strongly 

coupled with the ground state of the double magic core [21] [22].  

 

4.2.2 Occupation Number 

For the 1d5/2 proton of 25F, the sum of the spectroscopic factors up to 6.8 MeV (2-neutrons threshold) 

was 1.06 ± 0.28. In principle, the occupation number is the sum of the spectroscopic factors for all 

energy. Therefore, the occupation number for the 1d5/2 proton was at least 1.06 ± 0.28, thus, the sd-shell 

proton mainly locates in the 1d5/2 orbit. This picture agrees with the “single-particle picture”.  

 

The p-orbit of 23F or 25F is at least 10 MeV below Fermi surface. Since the spectroscopic factors were 

summed up to ~20 MeV, the sum of the spectroscopic factors of the p-orbit should be close to the 

occupation number. The fractions of occupancy equaled 0.82 ± 0.25 and 0.72 ± 0.27 for 23F and 25F 

respectively. These values agree with the case of 208Pb (Figure 4-6). Similar fractions of occupancy that 

below Fermi surface were also observed for 16O, 40Ca, 48Ca, and 90Zr [24]. The reduction of the 

occupation number below Fermi-surface is due to short-range correlation [38]. Our result indicates that 

the short-range correlation in neutron rich 23,25F nuclei is similar to that of stable nuclei for the protons 

far below the Fermi surface.  
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Figure 4-6 – Fraction of occupancy of the p-orbit of 23F and 25F.  

See section 1.1.2.4, Figure 1-8. 

 

4.3 A Unified Picture of the sd-shell of 23,25F 

The experimental results show that the 1d5/2 proton of 25F is in a single-particle orbit but the 

spectroscopic strength of that proton was fragmented. This implies that the neutron-shell structure is 

changed by the proton. Since 23F shows similar knockout cross-section and fragmentation, we could 

expect the wave functions of neutron-rich fluorine isotopes 23F and 25F are similar. The wavefunction 

can be expressed as 

| F𝐴 ⟩ = |𝜋⟩ ⊗ (𝛽0| Og.s.
𝐴−1 ⟩ +∑𝛽𝑖| Oi𝐴−1 ⟩), (4.2) 

where 𝛽0 is the square-roots of the spectroscopic factor, |𝜋⟩ is the wavefunction of the 1d5/2 proton, 

| Og.s.
𝐴−1 ⟩ is the wavefunction of the oxygen core in ground state, | Oi𝐴−1 ⟩ is the oxygen core in excited 

state, and the operator ⊗ represents antisymmetric operator, isospin coupling, and spin coupling. The 

proton wavefunction can be factorized out because it is a single-particle state. 

 

This means that fluorine nucleus is not a simple system formed by adding a 1d5/2 proton on top of a free 

oxygen nucleus, because the proton changes the neutron shell structure. Large components of the 

neutron shell are formed using excited states of oxygen. This suggests that the configuration mixing in 

the neutron shell of fluorine is larger than that of oxygen, the spacing between 1d5/2, 2s1/2 and 1d3/2 orbits 

of fluorine are smaller than that of oxygen, and the 𝑁 = 16 magicity disappears. 
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Figure 4-7 – The mechanism of the change of neutron shell structure by the 1d5/2 proton in fluorine.  

See main text for explanation.  

 

Figure 4-7 shows a possible mechanism of the change of the neutron shell structure by the 1d5/2 proton 

in fluorine. The dashed lines are the energy levels of the d-orbit of oxygen. The red lines are the energy 

levels of the d-orbit of fluorine. The wavy lines are the proton-neutron interaction. Because the overlap 

between d-orbit and s-orbit is small and then the interaction is weak, we assumed that the 2s1/2 orbit is 

unaffected by the 1d5/2 proton. According to the mechanism of tensor force [20], the 1d5/2 proton lowers 

the 1d3/2 neutron orbit and drops below the neutron threshold. The proton also raises the 1d5/2 neutron 

orbit. The energy gap between 1d3/2 and 2s1/2 orbits in 24O is ~5 MeV, this gap becomes smaller due to 

the proton-neutron tensor interaction. Because the energy states are closer, the neutron configuration 

mixing increases, and the 𝑁 = 16 magicity disappeared. This is the Type-1 shell evolution driven by 

the tensor force [121].  

 

4.4 Shell Model Calculation  

In order to investigate the hypothesis of the Type-1 shell evolution, the shell structures of 23,25F and 

22,24O were calculated using shell model calculation. As following section 1.1.5, the SFO interaction in 

the p-sd model space was used, Figure 4-8 (Figure 4-9) shows the result of the spectroscopic factors of 

various proton orbits from the 23F(p,2p)22O [25F(p,2p)24O] reaction. The calculated excitation energies 

roughly agree with the experiment values and support that p-orbit peaks dominate the (23F,21,20O) and 

(25F,22,21O) partitions. The bottom-left corner of the plots shows the percentage of d-orbit and p-orbit 

form the analysis of momentum distributions (section 3.9 and 3.10). Note that those values have roughly 

30% uncertainty.  
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Figure 4-8 – The shell model calculation on the spectroscopic factors for the 23F(p,2p) reaction.  

The top plot is the result of shell model calculation. The bottom plot is the experimental result. The 

bottom-left corner shows the precentages of d-orbit and p-orbit. see main text for detail. 

 

 

Figure 4-9 – The shell model calculation on the spectroscopic factors for the 25F(p,2p) reaction.  

The top plot is the result of shell model calculation. The bottom plot is the experimental result. The 

bottom-left corner shows the precentages of d-orbit and p-orbit. see main text for detail.   

 

The spectroscopic factors of the experimental results are compared with that of shell model calculation 

using different interactions in Table 4-4. The sums of the shell-model spectroscopic factors (using SFO 

interaction) of the 1d5/2 proton of 25F is 1.0. The sum of the experimental spectroscopic factor of the 

1d5/2 proton on 25F was 1.06 ± 0.28. This agreed with the result of the shell model interaction. The 

strength of the 1d5/2 proton of 23F should be also fragmented, we expect that the sum of the spectroscopic 
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factors is also similar to that of 25F and agrees with shell model calculation. It is worthy to notice that 

the shell model calculation in section 1.1 supports the change of neutron structure due to the 1d5/2 proton.  

 

Table 4-4 –Spectroscopic factors of experimental results and shell model calculations.  

Partition 𝑆𝑒𝑥𝑝 𝑆𝑡ℎ(SFO) 𝑆𝑡ℎ(USDB) 𝑆𝑡ℎ(SDPF-MU) 

23F(p,2p)     

22O 0.37 ± 0.10 0.92 1.08 1.00 

21,20O 4.9 ± 1.5 5.21 - - 

25F(p,2p)     

24O 0.38 ± 0.14 0.9 1.01 0.95 

23O 0.69 ± 0.25 0.1 - - 

22,21O 4.2 ± 1.6 6.139 - - 

 

The spectroscopic factors of shell model interactions have to be multiplied by a quenching factor of 

~0.7 for normally bound nucleon. However, even including the quenching factor, the experimental 

spectroscopic factor of the (25F,24O) partition still disagrees with the theoretical value. Moreover, the 

present shell model interactions cannot reproduce the fragmentation. In 25F, the SFO interaction shows 

some strengths of 0.1 form the knock-out of the 1d5/2 proton above the neutron threshold (Figure 4-9), 

but the strength is much smaller than the experimental value of ~0.7.  

 

4.4.1 Deficit of the Shell Model Interactions 

The discrepancy between the experimental and the shell model spectroscopic factors indicates there are 

missing components in the shell model interactions. Three possible causes will be discussed: missing 

of three-nucleon force, deformation effect of 23,25F, and insufficient tensor force.  

 

From Figure 1-13, the ground state binding energy of fluorine isotopes are reproduced with better 

agreement to the experimental value. It indicates the wavefunction of fluorine nucleus is more accurate 

when including three-nucleon force. However, since all shell model interactions are effectively fitted 

on experimental data, the three-nucleon force is implicitly included in the two-body matrix elements. 

One possibility is that, there are some components of the three-nucleon force may be not appeared in 

the fitting data. Considering the fluorine is the first isotopes that has a proton in the sd-shell and 23,25F 

are close to the neutron dripline, there could be some missing components of the three-nucleon force 

which were not included in the fitting. Since the major component should be included in the shell model 

interaction, although missing some components of the three-nucleon force may be possible, it would 

not be the major factor for the discrepancy. 
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The 23,25F nuclei could be deformed. As discussed in section 4.1.3, some mean field calcualtions suggest 

23F is slightly defromed. However, the shell model calculation should able to handle small deformation 

effect. Therefore, the deformation should not be the main reason for the discrepancy. 

 

The strength of the tensor force near neutron dripline could be difference and stronger than that of stable 

nuclei. If the strength of the tensor force increased, the shell gap between the 1d5/2 and 1d3/2 neutron 

orbits could be smaller [20], and then the neutron configuration mixing would be stronger. In oder to 

explore this hypothesis and imitate an effect of a stronger tensor force, a toy model based on the USDB 

interaction was used. The original single particle energy of the 1d3/2 orbit was 2.117 MeV. This toy 

model keeps the single particle energy of the 1d3/2 state of 24O, and lowers that of 25F.  

 

Figure 4-10 shows the result. The orange line is the spectroscopic factor of the 24O ground state 

multiplied by a quenching factor of 0.7. The blue line is the sum of the spectroscopic fatcors of 24O 

excited states up to 20 MeV. The single particle state has to be lowered by ~3.5 MeV to  

-1.5 MeV in order to be agreed with the experiemntal result. Note that the monopole-interaction energies 

bewteen the 1d5/2 proton and 1d3/2 neutron in the shell model interactions are roughlty -3.5 MeV (section 

1.1.5) and the expeiemntal neutron separation energy of 26F is 0.77 MeV. Although it is a toy model, 

the result suggests the tensor force should be stronger. 

 

 

Figure 4-10 – The spectroscopic factors of the toy model on 25F.  

The two dashed lines indicates the experimental spectroscopic factors. The initial single-particle 

energy of the 1d3/2 neutron is 2.1 MeV. The ground-state spectroscopic factor of the ground state was 

multiplied by a quenching factor (QF). 

 

The energy levels of 25F using the toy model is shown in Figure 4-11 with experimental data and the 

result from the original USDB interaction. Since the single-particle energy of the 1d3/2 state of the 

neutron is lowered by 3.5 MeV to -1.5 MeV in the toy model, the state-mixing is stronger and the level 

density is also higher. The energy levels of the toy model suggests lowering the single-particle energy 

to imitate the tesnor force is a very crude appraoch. Since the toy model keeps the single-particle energy 

of 24O, the energy levels of 24O does not changed. 
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Figure 4-11 – The energy levels of 25F from experiment, USDB interaction, and the modified USDB 

interaction (USDB toy).  

 

4.4.2 Comment on Our Results and the Gade Plot 

We have to emphasis that our results show that the reduction factors 𝑅𝑠 = 𝑆𝑒𝑥𝑝/𝑆𝑡ℎ accidentally agreed 

with the Gade plot (Figure 1-10). The author claimed that the plot was due to the correlation effect of 

the removed nucleon. However, there is no correlation effect in the 1d5/2 proton of 25F, which is a single 

particle state, and the fragmentation is due to the change of the neutron shell. More fundamentally, the 

Gade plot relied on the accuracy of the shell model interactions, and our result indicates that the present 

shell model interactions are inaccurate. Therefore, the comparision between our results with the Gade 

plot is not valid. 

 

4.5 Conclusion 

We measured the integrated cross-section of the knocked-out deeply bound protons of 23F and 25F. The 

total integrated cross-sections, up to 20 MeV excitation energy, of (23F,22O) and (25F,24O) were similar. 

The spectroscopic factors were extracted using the DWIA calculation with the momentum analysis. The 

occupation numbers of the deeply bound 1d5/2 proton of 25F was obtained and equaled 1.0 ± 0.3. Large 

fragmentations of the strength of the 1d5/2 proton of 23F or 25F were observed (indirectly in the case of 

23F). Since the 1d5/2 proton is a single-particle state, therefore, the fragmentation of the strength was 

caused by the change of neutron shell structure. The wavefunction of 25F has large component of 24O 

excited states indicates that the configuration mixing in the neutron shell is larger than that of oxygen. 

Larger configuration mixing indicates the spacing between 1d5/2, 2s1/2 and 1d3/2 orbits should be smaller 

than that of oxygen, and the 𝑁 = 16 magicity disappears. The possible mechanism of the change of the 
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neutron shell by the 1d5/2 proton could be the tensor force that the 1d3/2 neutron orbit lowered while the 

1d5/2 neutron orbit raised. 

 

The spectroscopic strength of the 1d5/2 proton of 25F and excitation energies of 23,25F agreed with the 

shell model calculation. But the shell model interactions (SFO, USDB, and SDPF-MU) cannot produce 

the fragmentation of the strength. This indicates that the interactions are insufficient for the deeply 

bound nucleons near the neutron dripline. Using a toy model based on USDB interaction, the single 

particle energy of the 1d3/2 state has to be lowered by ~3.5 MeV to reproduce the fragmentation of the 

spectroscopic strength of 25F. This suggests the strength of the tensor force should be stronger than 

present interactions. 

 

Additional to the sd-shell, the occupation numbers of the p-orbit proton of 23,25F, which is at least 10 

MeV below the Fermi surface, were also deduced and equaled ~4.5 or ~75% of the IPM limit. This 

value was similar to that of 16O, 40Ca, 48Ca, 90Zr, and 208Pb. It suggests that the short-range correlation 

in nuclear interior is same for neutron rich and stable nuclei.   



109 

 

Chapter 5  

Summary 

How the neutron sd-shell structure is changed by the 1d5/2 proton in neutron-rich 23,25F nuclei? The 

change of neutron dripline from oxygen to fluorine suggests that the neutron-shell structure is difference 

between neutron-rich oxygen and fluorine because of the single 1d5/2 proton. For example, if the 

neutron-shell structure of fluorine is as same as that of oxygen, the spectroscopic factor of the 1d5/2 

proton should be unity. Using proton removal spectroscopy and the fact that the 1d5/2 proton is in a 

single-particle orbit, we can study how the proton changes the neutron shell. 

 

The quasi-free (p,2p) direct knockout reaction at medium energy is a clean and simple reaction to study 

the spectroscopic properties. The 23,25F cocktail beams were produced by RIBF, RIKEN Nishina Center 

using the BigRIPS in-flight fragment separator and were transported to the SHARAQ spectrometer. 

The 23,25F nuclei were ~285A MeV and bombarded on a proton crystal-target (C10H8). The (p,2p) 

knockout reaction was identified using coincident of the two scattered protons. The energies and the 

scattering angles of the protons were measured using plastic scintillators and multi-wire drift chambers 

that covered forward angle from 20° to 70°. The reaction residues were identified using the SHARAQ 

spectrometer. The missing mass or the excitation energy was deduced using the four-momenta of the 

incident nuclei, the target proton, and the two scattered protons. The carbon background was estimated 

using a carbon target. The spectra of the excitation energy were partitioned using neutron thresholds of 

the residues.  

 

The experimental integrated cross-sections were compared with the DWIA calculation after analysis of 

momentum distributions. The result shows that the spectroscopic factors of the ground state of the 

oxygen residue are too small. This indicates the neutron shell do change by the proton. Also, the 

fragmentation of the spectroscopic strength of the 1d5/2 proton was observed in 25F (indirectly observed 

in 23F). Using the fact that the 1d5/2 proton is in a single-particle state, which was also confirmed by this 

experiment that the occupation number of the 1d5/2 proton was 1.0 ± 0.3, the fragmentation implies that 

the wavefunction of 25F could be expressed as | F25 ⟩ ≈ √0.36[|𝜋⟩| Og.s.
24 ⟩] + √0.65{[|𝜋⟩| O24 1⟩] +

[|𝜋⟩| O24 2⟩] + ⋯ } +⋯, where |𝜋⟩ is the wavefunction of 1d5/2 proton and | O24 𝑖⟩ is the wavefunction 

of the excited state of 24O. The single 1d5/2 proton changes the neutron sd-shell structure significantly 

that 25F has large component of excited 24O. This result indicates that the configuration mixing in the 

neutron shell in 25F is larger than that in 24O. This is possible when the spacing between 1d5/2, 2s1/2 and 

1d3/2 orbits in 25F becomes smaller and the 𝑁 = 16 magicity disappears. The experimental results 
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suggest a similar case should be in 23F. The possible mechanism of the change of the neutron shell by 

the proton could be the tensor force that the energy of the 1d3/2 neutron orbit lowered while that of the 

1d5/2 neutron orbit raised. The nuclear structures of the 25F and 23F demonstrated the Type-1 shell 

evolution, which driven by tensor force. 

 

The experimental results were compared with the shell model calculations to explore the shell structure. 

The sum of the spectroscopic factors of the 1d5/2 proton of the experiment was agreed with that of the 

calculation. However, none of the present interactions (SFO, USDB, and SPDF-MU) can reproduce the 

fragmentation in the 25F(p,2p) reaction. Using a toy model, the single particle energy of the 1d3/2 state 

of USDB interaction has to be lowered by ~3.5 MeV to reproduce the fragmentation of spectroscopic 

strengths of 25F. 

 

Additional to the sd-shell, the occupation numbers of the p-shell, which is at least 10 MeV below the 

Fermi surface, were obtained. The fractions of occupancy are ~0.75 for both 23F and 25F, which is similar 

to that of stable nuclei 16O, 40Ca, 48Ca, 90Zr, and 208Pb. This suggests the short-range correlation is same 

for stable and unstable nuclei. 

 

In conclusion, we aim to know how the neutron shell structure is changed by the 1d5/2 proton in 23,25F. 

Using proton removal spectroscopy, the experimental results implied that the 25F cannot be expressed 

as a simple system of a proton on top of the ground state of double magic 24O that the 1d5/2 proton 

reduces the d-shell gap of the neutron shell, increases the neutron configuration mixing, and then the 

𝑁 = 16 magicity disappears. The change of the neutron shell by the 1d5/2 proton could be explained 

using Type-I shell evolution driven by tensor force. The discrepancy between the experimental results 

and the shell model interactions suggests that the strength of the tensor force should be stronger than 

present shell model interactions.  
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Appendix A  

Miscellaneous Calculations  

A.1 Kinematics of Knockout Reaction 

In the reference frame of fluorine nucleus, the proton is coming at medium energy. After an orbital 

proton was knocked out, the residual oxygen nucleus is in an excited state. We assume that the knockout 

process does not change the nuclear structure but only leaving a hole based on the impulse 

approximation. If we notate the reaction as 𝑇(𝐹, 𝑂)12, 𝐹 = 𝑂 + 𝑘  in the laboratory frame, we have 

five four-momenta. The conservation law in the laboratory frame is 

ℙ𝑇 + ℙ𝐹 = ℙ1 + ℙ2 + ℙ𝑂 , ℙ𝑘 = ℙ𝐹 − ℙ𝑂 , (A.1.1) 

where ℙ is four-momentum, the subscript 𝑇  stands for the proton target, 𝐹  stands for the fluorine 

nucleus, 1 stands for the knocked out proton, 2 stands for the scattered proton, 𝑂 stands for the oxygen 

residue, and 𝑘 stands for the orbital proton. The information of the incident proton, the fluorine, the 

scattered proton and the knocked out proton were detected in the experiment. The only missing 

information was the four-momentum of the oxygen residue.  

 

Figure A-1 – Illustration on the energy level of a knockout reaction and the definition of the separation 

energy 

 

The mass of the excited residue 𝑚𝑂
∗  pluses the mass of proton 𝑚𝑝 is equal to the mass of fluorine 𝑚𝐹 

and the experimental proton separation energy 𝑠𝑝 

𝑚𝑂
∗ +𝑚𝑝 = 𝑚𝐹 + 𝑠𝑝, (A.1.2) 

or 

𝑠𝑝 = 𝑚𝑂
∗ +𝑚𝑝 −𝑚𝐹 . (A.1.3) 
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The energy part and the momentum part in the conservation law [see equation (A.1.1)] are 

𝐸𝑇 +𝑚𝐹 = 𝐸1 + 𝐸2 + 𝐸𝑂 , 

𝑝𝑇⃗⃗⃗⃗⃗ = 𝑝1⃗⃗ ⃗⃗ + 𝑝2⃗⃗⃗⃗⃗ + 𝑘⃗⃗, 𝑘⃗⃗ = 𝑝𝑂⃗⃗ ⃗⃗⃗ 
(A.1.4) 

where 𝐸 is the total energy, 𝑝 and 𝑘⃗⃗ are the momenta. The conservation laws can be rearranged as 

𝐸𝑇 + (𝑚𝐹 − 𝐸𝑂) = 𝐸1 + 𝐸2, 

𝑝𝑇⃗⃗⃗⃗⃗ − 𝑘⃗⃗ = 𝑝1⃗⃗ ⃗⃗ + 𝑝2⃗⃗⃗⃗⃗. 
(A.1.5) 

Then, the four-momentum of the orbital proton (quasi-proton) can be defined as 

ℙ𝑘 = (𝑚𝐹 − 𝐸𝑂 , −𝑘⃗⃗), 

𝐸𝑂 = √𝑚𝑂
∗ 2 + 𝑘2 = √(𝑚𝐹 −𝑚𝑝 + 𝑠𝑝)

2
+ 𝑘2. 

(A.1.6) 

Thus the many-body scattering reduced to a 2 body proton-quasi-proton inelastic scattering, and the 

conservation law becomes 

ℙ𝑇 + ℙ𝑘 = ℙ1 + ℙ2. (A.1.7) 

Changing into the center of momentum (CM) frame, by a center of momentum four-momentum 

ℙ𝑐 = (𝐸𝑐, 𝑝𝑐⃗⃗ ⃗⃗ ) =
1

2
(ℙ𝑇 + ℙ𝑘). (A.1.8) 

The required boost of the Lorentz transform is 

𝛽 = −
𝑝𝑐⃗⃗ ⃗⃗

𝐸𝑐
= −

𝑝𝑇⃗⃗⃗⃗⃗ − 𝑘⃗⃗

𝐸𝑇 +𝑚𝐹 − 𝐸𝑂
. (A.1.9) 

In the CM frame 

𝑝𝑇
′ + 𝑝𝑘

′ = 𝑝1
′ + 𝑝2

′ = 0. (A.1.10) 

The energy part from the CM frame to the laboratory frame is 

𝐸1 + 𝐸2 = 𝛾(𝐸1
′ + 𝐸2

′) − 𝛾𝛽 ⋅ (𝑝1
′ + 𝑝2

′ ) = 𝛾(𝐸1
′ + 𝐸2

′). (A.1.11) 

Define the total energy in the CM frame be 

𝐸 =
1

𝛾
(𝐸1 + 𝐸2) =

1

𝛾
(𝐸𝑇 +𝑚𝐹 −√(𝑚𝐹 −𝑚𝑝 + 𝑆𝑒𝑥𝑝)

2
+ 𝑘2), (A.1.12) 

then 

𝐸1
′ + 𝐸2

′ = √𝑚𝑝2 + 𝑝1
′2 + √𝑚𝑝2 + 𝑝2

′2 = 𝐸. (A.1.13) 

The solution of the scattered momneutm in the CM frame can be found by solving equations (A.1.10) 

and (A.1.13). The solution is 

𝑝1
′ 2 =

1

2
(𝐸2 − 4𝑚𝑝

2), (A.1.14) 



113 

 

The four-momentum of ℙ1′ and ℙ2′ can be calculated with a suitable rotation by the scattering angles 

𝜃𝑁𝑁 and 𝜙𝑁𝑁. By an inverse Lorentz transform, the four-momentum in any reference frame can be 

calculated. 

 

We can calculate the scattering angles of ℙ1 and ℙ2, given the 𝑠𝑝, 𝑘⃗⃗, 𝜃𝑁𝑁 and 𝜙𝑁𝑁,  In experiment, we 

know ℙ𝑇, 𝑚𝐹, 𝑚𝑂 and measure ℙ1 and ℙ2. The 𝑠𝑝 is given by 

𝑠𝑝 = 𝑚𝑂
∗ +𝑚𝑝 −𝑀𝐹

= √(𝐸𝑇 +𝑚𝐹 − 𝐸1 − 𝐸2)2 − (𝑝𝑇⃗⃗⃗⃗⃗ − 𝑝1⃗⃗ ⃗⃗ − 𝑝2⃗⃗⃗⃗⃗)2 +𝑚𝑝 −𝑚𝐹. 
(A.1.15) 

The missing momentum is 

𝑘⃗⃗ = 𝑝𝑇⃗⃗⃗⃗⃗ − 𝑝1⃗⃗ ⃗⃗ − 𝑝2⃗⃗⃗⃗⃗. (A.1.16) 

 

 

We are going to show a supplementary calculation for the energy of the knocked out proton. We notate 

the reaction as 𝐴(𝑎, 𝑐𝑑)𝐵, 𝐴 = 𝐵 + 𝑏 in the nuclear frame, which is used in the code THREEDEE. We 

have five four-momenta and the conservation law in the nuclear frame is 

ℙ𝐴 + ℙ𝑎 = ℙ𝑐 + ℙ𝑑 + ℙ𝐵, ℙ𝑏 = ℙ𝐴 − ℙ𝐵, (A.1.17) 

where 𝐴 is fluorine nucleus, 𝑎 is the incident proton, 𝑐 and 𝑑 are the scattered protons, 𝐵 is the oxygen 

residue, and 𝑏 is the orbital proton. The kinematics input of the code THREEDEE are the proton 

separation energy 𝑠𝑝, the incident proton kinetics energy 𝑇, the scattered proton kinetics energy  𝑇𝑐, the 

scattered proton angle 𝜃𝑐, the knocked out proton angle 𝜃𝑑, and the off-plane angle 𝛽𝑑 = 𝜙𝑑 − 𝜙𝑐. We 

can calculate the total energy of the scattered proton 𝐸𝑑, the magnitude of the momentum of the residual 

oxygen 𝑘, the polar angles of the oxygen 𝜃𝑘 and 𝜙𝑘, the scattering angles in the rest frame of the center 

of momentum 𝜃𝑁𝑁 and 𝜙𝑁𝑁. According to the energy-momentum conservation laws 

𝑚𝐹 + 𝑇 +𝑚𝑝 = 𝑚𝑝 + 𝑇𝑐 + 𝐸𝑑 + 𝐸𝑂 , (A.1.18a) 

𝑝𝑇 = 𝑝𝑐 cos(𝜃𝑐) + 𝑝𝑑 cos(𝜃𝑑) + 𝑘 cos(𝜃𝑘), (A.1.18b) 

0 = 𝑝𝑐 sin(𝜃𝑐) cos(𝜙𝑐) + 𝑝𝑑 sin(𝜃𝑑) cos(𝜙𝑑) + 𝑘 sin(𝜃𝑘) cos(𝜙𝑘), (A.1.18c) 

0 = 𝑝𝑐 sin(𝜃𝑐) sin(𝜙𝑐) + 𝑝𝑑 sin(𝜃𝑑) sin(𝜙𝑑) + 𝑘 sin(𝜃𝑘) sin(𝜙𝑘), (A.1.18d) 

using equation (A.1.18c) and (A.1.18d), eliminate 𝜙𝑘 

𝑘2 sin2(𝜃𝑘) = 𝑝𝑐
2 sin2(𝜃𝑐) + 𝑝𝑑

2 sin2(𝜃𝑑) + 2𝑝𝑐𝑝𝑑 sin(𝜃𝑐) sin(𝜃𝑑) cos(𝛽𝑑), (A.1.19) 

combine equation (A.1.18b) and (A.1.19), eliminate 𝜃𝑘 

𝑘2 = 𝑝𝑇
2 + 𝑝𝑐

2 + 𝑝𝑑
2 − 2𝑝𝑇𝑝𝑐 cos(𝜃𝑐) − 2𝑝𝑑𝑝𝑇 cos(𝜃𝑑)

+ 2𝑝𝑐𝑝𝑑(cos(𝜃𝑐) cos(𝜃𝑑) + sin(𝜃𝑐) sin(𝜃𝑑) cos(𝛽𝑑)). 
(A.1.20) 

Square the equation (A.1.18a) after separated out 𝐸𝑂 

𝐸𝑂
2 = 𝑚𝑂

2 + 𝑘2 = (𝑚𝐹 + 𝑇 − 𝑇𝑐)
2 − 2𝐸𝑑(𝑚𝐹 + 𝑇 − 𝑇𝑐) + 𝐸𝑑

2, (A.1.21) 
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Set 𝑎 = 𝑚𝐹 + 𝑇 − 𝑇𝑐 , Δ = cos(𝜃𝑐) cos(𝜃𝑑)+ sin(𝜃𝑐) sin(𝜃𝑑) cos(𝛽𝑑) , and substitute 𝑘  with 

equation (A.1.20), and then replace 𝑝𝑑 = √𝐸𝑑
2 − 𝑚𝑝

2 

𝑚𝑂
2 + 𝑝𝑇

2 + 𝑝𝑐
2 −𝑚𝑝

2 − 2𝑝𝑇𝑝𝑐 cos(𝜃𝑐) + (2𝑝𝑐Δ − 2𝑝𝑇 cos(𝜃𝑑))√𝐸𝑑
2 −𝑚𝑝2

= 𝑎2 − 2𝐸𝑑𝑎, 

(A.1.22) 

grouping the constant terms and set 𝑏 = 𝑚𝑂
2 + 𝑝𝑇

2 + 𝑝𝑐
2 −𝑚𝑝

2 − 2𝑝𝑇𝑝𝑐 cos(𝜃𝑐)− 𝑎
2 , and 𝑐 =

2𝑝
𝑐
Δ − 2𝑝

𝑇
cos(𝜃𝑑) 

𝑏 − 𝑐√𝐸𝑑
2 −𝑚𝑝2 = −2𝐸𝑑𝑎, (A.1.23) 

after some manipulation 

(4𝑎2 − 𝑐2)𝐸𝑑
2 + 4𝑎𝑏𝐸𝑑 + 𝑏

2 + 𝑐2𝑚𝑝
2 = 0. (A.1.24) 

There are two solutions of 𝐸𝑑 , one corresponds to real 𝑝𝑑  and the other one is complex 𝑝𝑑 .  After 

obtained 𝐸𝑑, the four-momenta ℙ𝑑 and ℙ𝐵 are known, we can easily deduce 𝜃𝑘, 𝜙𝑘, 𝜃𝑁𝑁, and 𝜙𝑁𝑁.  

 

A.2 Time Resolution of Plastic Scintillators 

A typical plastic scintillator equips 2 PMTs at the ends. We define the leading time of each PMT be 𝑡1 

and 𝑡2 and assume the time reference has no uncertainly. The times recorded are 

𝑡1 = 𝑡𝐻 +
𝑥

𝛽𝑐
+ 𝑡𝑊1 + 𝜏1 + 𝛿𝑡1 − 𝑇, 

𝑡2 = 𝑡𝐻 +
𝑙 − 𝑥

𝛽𝑐
+ 𝑡𝑊2 + 𝜏2 + 𝛿𝑡2 − 𝑇, 

(A.2.2) 

where 𝑡𝐻 is the real time of the scintillator is being hit, 𝑥 is the distance between the hit position and 

the PMT, 𝛽𝑐 is the average speed of light in the scintillator and the light guide,  𝑡𝑊 is the additional 

time caused by the walk effect, 𝜏 is the time offset, 𝛿𝑡 is the time uncertainty, and 𝑇 is the reference 

time. The time-average and time-difference are defined as 

𝑡̅ =
𝑡1 + 𝑡2
2

= 𝑡𝐻 +
𝑙

2𝛽𝑐
+
1

2
(𝑡𝑊1 + 𝑡𝑊2) +

1

2
(𝜏1 + 𝜏2) +

1

2
𝛿𝑡1 +

1

2
𝛿𝑡2 − 𝑇, 

𝛥𝑡 = 𝑡1 − 𝑡2 =
𝑥

𝛽𝑐
+ (𝑡𝑊1 − 𝑡𝑊2) + (𝜏1 − 𝜏2) + 𝛿𝑡1 − 𝛿𝑡2. 

(A.2.2) 

The uncertainly of time-difference is 

𝛿(Δ𝑡)2 = 𝛿 (
𝑥

𝛽𝑐
)
2

+ 𝛿(𝑡𝑊1 − 𝑡𝑊2)
2 + 𝛿𝑡1

2 + 𝛿𝑡2
2. (A.2.3) 

In most cases, we can assume both time-uncertainly are the same or similar 

𝛿𝑡1~𝛿𝑡2 = 𝛿𝑡. (A.2.4) 
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With a further assumption that the walk effect is not serious, that is usually in case for large light output. 

Or the hit position is on the middle of the scintillator. Then, the uncertainly of the time-difference is 

simplified to 

𝛿(Δ𝑡)2 = 𝛿 (
𝑥

𝛽𝑐
)
2

+ 𝛿𝑡1
2 + 𝛿𝑡2

2. (A.2.5) 

And with the same assumptions and the hit-time 𝑡𝐻 has no uncertainty, the uncertainly of the time-

average is 

𝛿(𝑡̅)2 =
1

4
(𝛿𝑡1

2 + 𝛿𝑡2
2) =

1

4
(𝛿(Δ𝑡)2 − 𝛿 (

𝑥

𝛽𝑐
)
2

) , 

𝛿(𝑡̅) =
1

2
√𝛿(Δ𝑡)2 − 𝛿 (

𝑥

𝛽𝑐
)
2

~
1

2
𝛿(Δ𝑡). 

(A.2.6) 

If there is a drift chamber near the plastic scintillator, the hit-location can be known by the tracking 

result, and then a fixed position range can be selected. Assuming the events are within Δ𝑥 = 1 mm and 

the speed of light in the plastic is 0.66c, the quantity 𝛿 (
𝑥

𝛽𝑐
) = 5 ps, which can be neglected.  

 

A.3 Multiple Dimension Linear Regression 

The ray tracking was done using the theory of multi-dimension linear regression. If the position of the 

trajectory is (𝑋, 𝑌, 𝑍), and  

𝑋 = 𝐴𝑍 + 𝑋0 
𝑌 = 𝐵𝑍 + 𝑌0 

(A.3.1) 

where 𝐴, 𝐵 are the parameters related to the incident angle and 𝑋0, 𝑌0 is the position at 𝑍 = 0. Hence, 

the position vector 𝑟 can be parameterized by 𝑍 

𝑟(𝑍) = (𝑋(𝑍), 𝑌(𝑍), 𝑍) = (𝑋0, 𝑌0, 0) + 𝑍(𝐴, 𝐵, 1) = 𝑟0⃗⃗⃗⃗ + 𝑍𝑛⃗⃗. (A.3.1) 

 

In theory of multi-dimension linear regression [109], the master equation is 

𝑃𝑖 = 𝐻𝑖𝑗𝛽𝑗 + 𝜖𝑖, (A.3.2) 

Where 𝑃𝑖 is the dependent variable from the 𝑖-th measurement, 𝛽𝑗 is the fitting parameter, 𝐻𝑖𝑗 is the 

independent variable that defines from the point of measurement, and 𝜖𝑖 is the error. In the case of 6-

plane ray tracking for a 6 planes MWDC, the above set of equation reads as 
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(

 
 
 

𝑋1
𝑋2
𝑈1
𝑈2
𝑉1
𝑉2)

 
 
 
=

(

 
 
 

𝑍1 1 0 0
𝑍2 1 0 0

cos 𝜃𝑈 𝑍3 cos 𝜃𝑈 sin 𝜃𝑈 𝑍3 sin 𝜃𝑈
cos 𝜃𝑈 𝑍4 cos 𝜃𝑈 sin 𝜃𝑈 𝑍4 sin 𝜃𝑈
cos 𝜃𝑉 𝑍5 cos 𝜃𝑉 sin 𝜃𝑉 𝑍5 sin 𝜃𝑉
cos 𝜃𝑉 𝑍5 cos 𝜃𝑉 sin 𝜃𝑉 𝑍6 sin 𝜃𝑉)

 
 
 
(

𝐴
𝑋0
𝐵
𝑌0

) +

(

 
 

𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6)

 
 
, (A.3.3) 

or in a matrix form 

𝑃 = 𝐻 ⋅ 𝛽 + 𝜖. (A.3.4) 

The degree of freedom is the number of rows subtracted by the number of parameters in 𝛽 

𝐷𝐹 = 6 − 4 = 2. (A.3.5) 

The unbiased best estimator of the ray vector 𝛽 is 𝛽̂, and this gives 𝑃̂, the best estimator of 𝑃 

𝑃̂ = 𝐻 ⋅ 𝛽̂. (A.3.6) 

The normal equation, which is as same as the equation deduced by least square method is 

𝐻𝑇 ⋅ 𝐻 ⋅ 𝛽̂ = 𝐻𝑇 ⋅ 𝑃. (A.3.7) 

Thus, the solution for the best estimator of 𝛽 is 

𝛽̂ = (𝐻𝑇 ⋅ 𝐻)−1 ⋅ 𝐻𝑇 ⋅ 𝑃 = 𝐺 ⋅ 𝑃. (A.3.8) 

The estimated respond can be calculated by equation (A.3.6) 

𝑃̂ = 𝐻 ⋅ 𝐺 ⋅ 𝑃. (A.3.9) 

The residue vector is defined as 

𝑒 = 𝑃 − 𝑃̂. (A.3.10) 

The sum of square of residues is 

𝑆𝑆𝑅 = 𝑒 ⋅ 𝑒𝑇 =∑(𝑃𝑖 − 𝑃𝑖̂)
2
. (A.3.11) 

The unbiased sample variance is 

𝜎2 =
𝑆𝑆𝑅

𝐷𝐹
. (A.3.12) 

The variances of 𝛽̂ and 𝑒 are 

𝑉𝑎𝑟(𝛽̂) = (𝐻𝑇 ⋅ 𝐻)−1𝜎2, 

𝑉𝑎𝑟(𝑒) = (𝐼 − 𝐻 ⋅ 𝐺)𝜎2. 
(A.3.13) 

This algorithm can be extended to any-number-plane ray tracking as long as the inverse of 𝐻𝑇 ⋅ 𝐻 exist. 

We found that even in the case of 4-plane, this inverse exist, although the sample variance is undefined 

as the degree of freedom becomes zero. In this case, the linear regression becomes solving equation 

(A.3.2). When a weighting is needed. The master equations becomes 

(𝑊 ⋅ 𝑃) = (𝑊 ⋅ 𝐻) ⋅ 𝛽 + (𝑊 ⋅ 𝜖) , (A.3.14) 
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where 𝑊𝑖𝑗 = 𝛿𝑖𝑗𝑤𝑖 , 𝑤𝑖 is the weighting factor.  

The covariance matrix of 𝛽̂ and 𝑒 for 6-plane ray tracking in MWDC-L/R are, 

𝑉𝑎𝑟(𝛽̂) = (

0.799 0.018 −0.775 0.073
0.018 8.123 × 10−4 −0.016 0.002
−0.775 −0.016 2.01 −0.103
0.073 0.002 −0.103 9.212 × 10−3

)𝜎2, 

𝑉𝑎𝑟(𝑒) =

(

 
 
 

0.35 −0.42 −0.12 0.17 −0.02 0.07
−0.42 0.60 0.05 −0.16 −0.17 0.06
−0.12 0.05 0.16 −0.12 0.25 −0.21
0.17 −0.16 −0.12 0.11 −0.13 0.12
−0.02 −0.17 0.25 −0.13 0.49 −0.37
0.07 0.06 −0.21 0.12 −0.37 0.29 )

 
 
 
𝜎2. 

(A.3.15) 

The covariance matrix of 𝛽̂ and 𝑒 for 7-plane ray tracking in DCX1, DCX2 are, 

𝑉𝑎𝑟(𝛽̂) = (

5.632 0.008 0.026 0.000
0.008 1.062 × 10−5 0.000 0.000
0.026 0.000 17.753 0.024
0.000 0.000 0.024 3.387 × 10−5

)𝜎2 

𝑉𝑎𝑟(𝑒) =

(

 
 
 
 

0.53 −0.4 −0.29 −0.01 0 0.01 0.03
−0.40 0.3 0.22 −0.01 −0.01 0.01 −0.01
−0.29 0.22 0.17 −0.04 0 −0.01 0.03
−0.01 −0.01 −0.04 0.55 0 0 −0.5
0 −0.01 0 0 0.52 −0.5 0
0.01 0.01 −0.01 0 −0.5 0.48 0
0.03 −0.01 0.03 −0.5 0 0 0.45 )

 
 
 
 

𝜎2 

(A.3.16) 

 

A.4 Scheme of code THREEDEE 

The code THREEDEE uses the DWIA method to calculate the differential cross section of a knockout 

reaction. The flow chart of the code THREEDEE is shown in Figure A-2. The code first calculates the 

bound state radial wavefunction (BDSTS) from a predefined Woods-Saxon shape central potential, 

spin-orbit potential, and the Coulomb potentials, with user-input parameters. If the depth of the central 

potential is not specified, the code finds a consistence depth with the bound state wavefunction. Next, 

the code calculates the partial distorted wave (DSTWAV) from the Dirac phenomenological global 

potential with the central, the spin-orbit, and the Coulomb terms (EDAD, DP, COULPOT, and SCHEQ). 

The S-matrix of each partial wave is deduced by comparing with the Coulomb wavefunction. In 

additional, the Perey factor is also calculated from the Dirac phenomenological global potential 

(SCHEQ), and this enhanced asymmetry in the cross section by adding a damping effect on the distorted 

wavefunction (DAMP). If a potential table was used (GET_POTS_FROM_FILE), the Perey factor does 

not calculate, and no damping on the distorted wavefunction. The kinematics of the scattered particles 

then are calculated (PROLOG) and the corresponding partial distorted waves are also calculated with 

kinetic energy and Dirac phenomenological global potential of the residue.  At this point, all radial parts 
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of the partial distorted waves are calculated. Each radial part of the distorted wave is combined with 

Winger D-matrix (WAVEB), which is the angular part, to form the complete wavefunction. 

 

 

Figure A-2 – Flow chart of the code THREEDEE.  

The blue texts are the name of subroutines.  

 

The scattering amplitude 𝑓(𝐸𝑐 , Ω𝑐 , Ω𝑑) is calculated by Gaussian integration 

𝑓(𝐸𝑐, Ω𝑐, Ω𝑑) = ∫𝜒𝑐
∗𝜒𝑑
∗𝑉𝑎𝑏𝜒𝑎𝜙𝑏𝑑𝑟𝑎𝑑𝑟𝑏 , (A.4.1) 

where 𝜒 are distorted wave for particle a, c, and d. The bound state wavefunction is 𝜙𝑏. The scattering 

amplitude also depends on 𝐸𝑑, but 𝐸𝑐 and 𝐸𝑑 are correlated.  

 

A.5 Multiple Scattering and Energy Acceptance 

Because of the multiple scattering, the actual energy acceptance cannot be zero but a minimum value. 

We estimate the effect of multiple scattering using data from LISE++, which is from the code ATIMA 

[122]. We are aware the energy loss for low energy proton could be inaccurate. An energy loss 

calculation for low energy was calculated in the case of 10 MeV proton in 1-meter-air [123]. The energy 

loss was smaller by 3% than that of ATIMA. Therefore, the low energy effect should be insignificant. 

The multiple scattering produces energy loss 𝑑𝐸, energy staggering 𝛿𝐸 (which is the fluctuation of 

energy loss), angular staggering 𝛿𝜃, and lateral spread 𝑑. These qualities are illustrated in  Figure A-3.  
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Figure A-3 – Meaning of energy loss dE, energy staggering δE, angular staggering δθ, and lateral 

spread d.  

 

We use a simplified picture of the experimental setup as in Figure A-4. There is the target crystal, 72-

mm N2 gas, 128-μm Kapton film, then 38-mm vacuum, another 128-μm Kapton film, then at least 1-

meter-thick air. We neglected the effect of the MWDC in front of the Tpla. We also did not include the 

boundary effect of the crystal. 

 

 

Figure A-4 – Illustration of the materials of the multiple scattering process.  

The drawing is not in scale. The pink box is the crystal target. The blue circle is the N2 gas. The yellow 

arcs are Kapton film. The rest is air. The purple arrows are the path of the proton that originates 

inside the target. 

 

We denote a point on a boundary be 𝑃 = (𝑟, 𝑘, 𝐸, 𝑡), where 𝑟 is the position, 𝑘 = (𝜃, 𝜙) is the unit 

vector of the direction that 𝜃 is the polar angle and 𝜙 is the azimuthal angle, 𝐸 is the energy, 𝑡 is the 

time elapsed. The process of calculating the effect of multiple scattering is shown in Figure A-5.  
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Figure A-5 -The flow chart of multiple scattering calculation. 

 

At the beginning, an initial point 𝑃0 = (𝑟0, 𝑘0, 𝐸0, 0) was randomly generated uniformly inside the 

crystal. The direction and energy are also randomly generated. And the time elapsed is set to be 0. The 

travel path 𝐿 inside the crystal can be calculated using the position and direction. Using the travel path 

and energy, the energy loss, energy staggering, angular staggering, and lateral spread was calculated. 

Since the lateral spread due to the crystal is only order of few μm, we neglected the lateral spread. The 

energy loss was randomly draw from a Gaussian distribution 𝐺(𝑑𝐸, 𝛿𝐸2) of mean 𝑑𝐸 and variance 

𝛿𝐸2. We limited the energy loss should be smaller than the original energy 𝐸0 and larger than 0. The 

polar angle of a temporary direction vector was randomly draw from a Gaussian distribution of mean 

𝜃0 and variance 𝛿𝜃2, while the azimuthal angle was kept the same. Then the new direction vector was 

calculated by randomly rotating the temporary direction vector around the old direction vector with a 

random angle 𝛼. The new position was calculated by offset the old position in the direction of the old 

direction vector by the length of the path. The time elapsed was calculated using the path length and 

mean energy (𝐸0 + 𝐸1)/2. Thus, we have the new point 𝑃1 on the boundary between the crystal and N2 

gas. We repeat the process that the lateral spread was very small and neglected. We added the lateral 

spread to the position after the air. The lateral spread vector is calculated using the cross product of the 

direction vector 𝑘5 and z-axis (0,0,1), then rotating this vector around 𝑘5 with a random angle, finally 

multiplied by the lateral spread which draw from a Gaussian distribution of mean 0 and variance 𝑑2. 

i.e.,  

Δ𝑟 = 𝑟5 + 𝐿𝑎𝑖𝑟𝑘5 + 𝐺(0, 𝑑)𝑅𝑜𝑡(𝛼, 𝑘5) ⋅ (𝑘5 × 𝑧), 
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𝐿𝑎𝑖𝑟 =
1400 − 𝑟5 ⋅ 𝑛

𝑘5 ⋅ 𝑛
, 

where 𝑛 = (± sin 60° , 0, cos60°) is the normal vector of the plane of plastic, 1400 is the minimum 

distance from target to plastic. In case the particle loss all energy or the energy is smaller than the 

stopping thickness, the position, direction, energy, and time elapsed were set to 0. The stooping 

thickness of the materials are shown in Figure A-6, Figure A-7, and Table A-1. 

 

Figure A-6 - Stopping thickness in function of energy in crystal 

 

 

Figure A-7 - Stopping thickness in function of energy in Air 

 

Table A-1 – The stopping thickness or energy of the materials.  

Material Stopping Thickness [mm] or Energy [MeV] 

Crystal 𝑠𝑐𝑟𝑦(𝐸) = 0.00681𝐸
2 + 0.032 𝐸 − 0.02328 

N2 (72 mm) 5.5 MeV 

Kapton (128 μm) 3.3 MeV 

Vacuum 0 MeV 

Air 𝑠𝑎𝑖𝑟(𝐸) = 7.89 𝐸
2 + 48.40 𝐸 − 117.27 

 

To identify the minimum energy that can pass through N2 gas, Kapton films, and air, we simulate 

random energy from (10, 30) MeV and angles of 𝜃 ∈ (15°, 70°) and 𝜙 ∈ (−20°, 20°). The result is 

shown in Figure A-8. 
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Figure A-8 – The effective kinematic acceptance due to multiple scattering of N2 gas, Kapton films 

and air. 

 

The result shows that the minimum energy that can pass through N2 gas, Kapton films, and air is 13 

MeV. Therefore, the minimum energy of the original proton should be larger than 13 MeV, in order to 

reach to the detector. 

 

Next, we simulate the full effect caused by all materials. The initial position was generated randomly 

inside the crystal, but the boundary of the crystal was not considered. The energy is generated randomly 

from (10, 30) MeV. The ray direction is randomly generated between 𝜃 ∈ (15°, 70°)  and 𝜙 ∈

(−20°, 20°). The result shows in Figure A-9. The minimum energy that can be detected is around 14 

MeV. Therefore, the minimum range of the effective energy acceptance is 14 MeV. Ideally, the energy 

range of the detection is very small, only limited by the time window. We assume the windows is 

ranging from 0 ns to 50 ns, which is corresponding to minimum energy of 4 MeV. 
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Figure A-9 – The distribution after multiple scattering.  

The left plot is the initial distribution that being detected. The right plot is the distribution of initial 

energy. 

 

  
Figure A-10 – The energy loss due to multiple scattering.  

The left plot is the total energy. The right plot is the energy lost in crystal. 

 

 

A.6 Basic of Nuclear Magnetic Resonance (NMR) 

The direction of the spin of a spin-polarized protons ensemble under a static magnetic field can be 

rotated by applying a transverse magnetic field (field strength is 𝐻𝑁𝑀𝑅 ). This is called NMR. According 

to Rabi precession theory, the Hamiltonian in the Laboratory frame is 
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𝐻𝐿 = Ω𝐼𝐼𝑧 + cos(𝜔𝑁𝑀𝑅𝑡) 𝐼𝑥, (A.5.1) 

and the Hamiltonian in the rotating frame is, 

𝐻𝑅 = (𝜔𝑁𝑀𝑅 − Ω𝐼)𝐼𝑧 + Ω𝑅𝐼𝑥, (A.5.2) 

where 𝐼𝑧 and 𝐼𝑥 are the z- and x- component of the spin angular momentum operator in the rotating 

frame. 𝜔𝑁𝑀𝑅 is the frequency of the transverse magnetic field,  Ω𝑅 is the transverse Larmor frequency, 

such that 

Ω𝑅 = 𝛾𝐼𝐵𝑁𝑀𝑅 , (A.5.3) 

where 𝐵𝑁𝑀𝑅 is the magnetic field strength generated from the NMR coil, and 𝛾𝐼 is the gyromagnetic 

ratio. Ω𝐼  is the Larmor frequency of proton under external magnetic field 𝐵 , the relation with the 

magnetic field is 

Ω𝐼 = 𝛾𝐼𝐵. (A.5.4) 

The gyromagnetic ratio of proton is  𝛾𝐼 = 267.5 Mrad s
−1 T−1 = 41.577 MHz T−1. In general, the 

(𝜔𝑁𝑀𝑅 −Ω𝐼) is not zero and creates an effective magnetic field (or the precession axis) on the x-z plane 

of the rotating frame. The precession axis in the rotation frame is 

𝑟 = |𝑟|(cos(𝜃) , 0, sin(𝜃)), 

|𝑟| = √(𝜔𝑁𝑀𝑅 − Ω𝐼)2 + Ω𝑅
2 = Ω𝑒𝑓𝑓, 

tan(𝜃) =
𝜔𝑁𝑀𝑅 −𝜔𝐼

𝜔𝑅
. 

(A.5.5) 

The magnitude of the magnetic field along the precession axis determines the angular frequency of the 

precession. 

 

Figure A-11 – Illustration of the mechanism of the NMR.  

The green arrow is the direction of the effective magnetic field or the precession axis, the blue arrow 

is the spin direction and the red arrow is the x-y plane projection of the spin. The blue circle is the 

locus by the tip of the spin and the red ellipse is the locus by the tip of the red arrow.  

 

The locus of the tip of a normalized polarization vector 𝑣 is rotating around the precession axis and 

form a cone (Figure A-11). The locus can be found by using the Euler angle 
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𝑣 = 𝑅𝑦(𝜃)𝑅𝑧(𝛼)𝑅𝑦(−𝜃)𝑧̂ = (

cos(𝜃) sin(𝜃) (1 − cos(𝑎))

− sin(𝜃) sin(𝛼)

cos(𝜃)2 + sin(𝜃)2cos (𝛼)

), (A.5.6) 

where 𝜃 is the angle between the precession axis (direction of effective magnetic field) and the z-axis. 

𝛼  is the rotating angle of the polarization vector around the precession axis. The NMR coil only 

sensitive to the transverse component, thus, the magnitude of the NMR signal is 

𝐴 = sin(𝜃)√cos2(𝜃) (1 − cos(𝛼))2 + sin2(𝛼). (A.5.7) 

 

A.7 Fourier Transformation of the NMR Frequency 

Spectrum 

This chapter explains the relationship between the NMR signal, or the FID (free induction decay) signal, 

and the frequency spectrum. The FID signal can contain different frequencies and can be written as a 

complex signal as 

𝑠(𝑡) =∑𝐴𝑛𝑒
𝑖2𝜋𝑓𝑛𝑡+𝑖𝜙𝑛𝑒−𝑡/𝑇𝑛

𝑛

, (A.6.1) 

where 𝐴𝑛 is the amplitude of each frequency, 𝑓𝑛 is the frequency, 𝜙𝑛 is the phase shift, and 𝑇𝑛 is the 

decay time constant. The frequency spectrum can be obtained by Fourier transform on a finite time 

domain 

𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
𝑎+𝐿

𝑎

. (A.6.2) 

Since the integration is a linear operator, the Fourier spectrum is 

𝑆(𝑓) =∑𝐴𝑛∫ 𝑒𝑖2𝜋𝑓𝑛𝑡+𝑖𝜙𝑛𝑒−𝑡/𝑇𝑛𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
𝑎+𝐿

𝑎𝑛

 , 

𝑆(𝑓) =∑
𝐴𝑛𝑒

𝑖𝜙𝑛𝑒𝑖2𝜋(𝑓𝑛−𝑓)𝑎𝑒−𝑎/𝑇𝑛

𝑖2𝜋(𝑓𝑛 − 𝑓) − 1/𝑇𝑛
𝑛

 (𝑒𝑖2𝜋(𝑓𝑛−𝑓)𝐿𝑒−𝐿/𝑇𝑛 − 1). 

(A.6.3) 

 

Let’s assume the integration interval is much larger than the decay time and the integration start time is 

smaller than the decay time, so that  𝐿 ≫ 𝑇𝑛 ≫ 𝑎, then the result simplified to 

𝑆(𝑓) =∑
𝐴𝑛𝑒

𝑖𝜙𝑛𝑒𝑖2𝜋(𝑓𝑛−𝑓)𝑎

1

𝑇𝑛
− 𝑖2𝜋(𝑓𝑛 − 𝑓)𝑛

 

(A.6.4) 
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=∑
𝐴𝑛

1

𝑇𝑛
2 + 4𝜋

2(𝑓𝑛 − 𝑓)2𝑛

(
1

𝑇𝑛
+ 𝑖2𝜋(𝑓𝑛 − 𝑓)) 𝑒

𝑖(𝜙𝑛+2𝜋(𝑓𝑛−𝑓)𝑎) . 

The real part and imaginary part are 

𝑅𝑒(𝑆𝑛(𝑓)) = 𝐴𝑛

1

𝑇𝑛
1

𝑇𝑛
2 + 4𝜋

2(𝑓𝑛 − 𝑓)2
cos(𝜙𝑛 + 2𝜋(𝑓𝑛 − 𝑓)𝑎), 

𝐼𝑚(𝑆𝑛(𝑓)) = 𝐴𝑛
2𝜋(𝑓𝑛 − 𝑓)

1

𝑇𝑛
2 + 4𝜋

2(𝑓𝑛 − 𝑓)2
sin(𝜙𝑛 + 2𝜋(𝑓𝑛 − 𝑓)𝑎). 

(A.6.5) 

The amplitude is 

|𝑆𝑛(𝑓)| = 𝐴𝑛
1

√
1

𝑇𝑛
2 + 4𝜋

2(𝑓𝑛 − 𝑓)2
. 

(A.6.6) 

By using the amplitude, the phase is gone and the result is simpler.  The maximum and the FWHM 

(full-width half-maximum) of each peak are 

|𝑆(𝑓𝑛)| = 𝐴𝑛𝑇𝑛, 

FWHM =
√3

𝜋𝑇𝑛
. 

(A.6.7) 

Therefore, the FWHM is inversely proportional to the decay time constant. If we assume the cross terms 

of the Fourier Amplitude are small and can be neglected, which mean the frequency peaks are well 

separated, then we have 

|𝑆(𝑓)| =∑|𝑆𝑛(𝑓)|

𝑛

=∑
𝐴𝑛

√
1

𝑇𝑛
2 + 4𝜋

2(𝑓𝑛 − 𝑓)2𝑛

. 
(A.6.8) 

 

A.8 Single Electron – Single Proton Continuous Wave Solid 

Effect 

The solid effect is the heart of the dynamic nuclear polarization (DNP). It relies on the hyperfine 

coupling between an electron and a proton. In order to maximized the coupling, the Larmor frequencies 

of them have to be similar for resonance to occur, but the gyromagnetic ratios of electron (28025 MHzT-

1) and proton (42.577 MHzT-1) are so different, about 660 times difference. Therefore, the DNP 

employed a traversed microwave to reduce the Larmor frequency of the electron in rotating frame, and 

then matching the Larmor frequency of the proton. The Hamiltonian between an electron, a proton, and 

the external magnetic fields is 
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𝐻 = 𝐻𝑧 +𝐻𝑆𝐼 + 𝐻𝑟𝑓 , 

𝐻𝑧 = Ω𝑆𝑆𝑧 + Ω𝐼𝐼𝑧 , 

𝐻𝑆𝐼 = 𝐴0 (𝑆 ⋅ 𝐼 − 3(𝑆 ⋅  𝑟̂)(𝐼 ⋅ 𝑟̂)), 

𝐻𝑟𝑓 = 2Ω𝜇 cos𝜔𝑡 𝑆𝑥 = Ω𝜇𝑆𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡), 

(A.7.1) 

where, 𝐻 is the total Hamiltonian, 𝐻𝑧 is the Larmor term from the electron interacts with an external 

magnetic field, the Ω𝑆 and Ω𝐼 are the Larmor frequencies of the electron and the proton respectively, 

and the 𝑆𝑧 and 𝐼𝑧 are the electron and proton spin operators at z-axis. 𝐻𝑆𝐼 is the electron-proton spin-

spin hyperfine coupling term, 𝐴0 = (
𝜇0

4𝜋
) 𝛾𝑒𝛾𝑝

ℏ

𝑟3
 is the coupling strength, 𝑟̂ the relative positon unit 

vector, and 𝑟 is the relative distance. The coupling strength is about 3 MHz for 1 Å  separation. 𝐻𝑟𝑓 is 

the electron spin affected by an external transverse microwave term, 𝜔 is the microwave frequency, Ω𝜇 

is the electron Larmor frequency caused by the microwave, 𝑡 is time, and 𝑆𝑥 is the electron spin operator 

at x-direction because the microwave was applied from the y-axis and the magnetic field oscillating on 

the x-axis. The hyperfine coupling term can be expanded, without loss of generality, as 

𝐻𝑆𝐼 = 𝐴𝑆𝑧𝐼𝑧 + 𝐵𝑆𝑧𝐼𝑥, 𝐴 = 𝐴0(1 − 3 cos
2 𝜃𝑟), 𝐵 = −

3

2
𝐴0 sin 2𝜃𝑟  (A.7.2) 

where 𝜃𝑟 is the polar angle of 𝑟̂. The coefficients of terms related with 𝑆𝑥 and 𝑆𝑦 are zero, due to the 

electron polarization is only on the z-axis. The coefficients of the term related with 𝐼𝑦 can be set to zero 

by rotating the coordinate system. The total Hamiltonian in the laboratory’s frame is 

𝐻 = Ω𝑆𝑆𝑧 + Ω𝐼𝐼𝑧 + 𝐴𝑆𝑧𝐼𝑧 + 𝐵𝑆𝑧𝐼𝑥 + Ω𝜇𝑆𝑥(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡). (A.7.3) 

In order to understand the effect of the microwave on the hyperfine term, we can change to the rotating 

frame created by the microwave. The rotating frame operator is 

𝑈𝑅 = 𝑒
𝑖𝑆𝑧𝜔𝑡, (A.7.4) 

The rotating frame total Hamiltonian is 

𝐻𝑅 = 𝑈𝑅𝐻𝑈𝑅
−1 − 𝜔𝑆𝑧, (A.7.5) 

After a change in rotation frame along with the oscillating frame, the high frequency terms are truncated. 

The total Hamiltonian becomes time independent 

𝐻𝑅 = (𝛺𝑆 − 𝜔)𝑆𝑧 + Ω𝜇𝑆𝑥 + Ω𝐼𝐼𝑧 + 𝐴𝑆𝑧𝐼𝑧 + 𝐵𝑆𝑧𝐼𝑥, (A.7.6) 

The effective magnetic field direction is tilted on the x-z plane, the tilted operator is 

𝑈𝑇 = 𝑒
𝑖𝜃𝑆𝑦 , tan 𝜃 =

Ω𝜇

𝛺𝑆 + 𝜔
, (A.7.7) 

Apply the tilted operator on 𝑆𝑧 and 𝑆𝑥, we get 

𝑈𝑇𝑆𝑧𝑈𝑇
−1 = cos 𝜃 𝑆𝑧 − sin 𝜃 𝑆𝑥, 

𝑈𝑇𝑆𝑥𝑈𝑇
−1 = sin 𝜃 𝑆𝑧 + cos 𝜃 𝑆𝑥. 

(A.7.8) 

Then, we have the effective Larmor frequency on tilted rotating frame 
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(𝛺𝑆 + 𝜔)𝑆𝑧 + Ω𝜇𝑆𝑥 → Ω𝑒𝑓𝑓𝑆𝑧, 

Ω𝑒𝑓𝑓 = √(𝛺𝑆 + 𝜔)2 + Ω𝜇2 . 
A.7.9) 

The other terms in 𝐻𝑅 transformed to 

𝐴𝑆𝑧𝐼𝑧 + 𝐵𝑆𝑧𝐼𝑥 → 𝐴 cos 𝜃 𝑆𝑧𝐼𝑧 − 𝐴 sin 𝜃 𝑆𝑥𝐼𝑧 + 𝐵 cos 𝜃 𝑆𝑧𝐼𝑥 − 𝐵 sin 𝜃 𝑆𝑥𝐼𝑥 (A.7.10) 

Substitute 

𝑆𝑥 =
𝑆+ + 𝑆−
2

, 𝐼𝑥 =
𝐼+ + 𝐼−
2

. (A.7.11) 

And define 

𝐻𝑆𝐼
𝑇 = 𝐴𝑆𝑧𝐼𝑧 + 𝐵𝑆𝑧𝐼𝑥

= 𝐴 cos 𝜃 𝑆𝑧𝐼𝑧 −
𝐴

2
sin 𝜃 (𝑆+ + 𝑆−)𝐼𝑧 +

𝐵

2
cos 𝜃 𝑆𝑧(𝐼+ + 𝐼−)

−
𝐵

4
sin 𝜃 (𝑆+𝐼− + 𝑆−𝐼+) −

𝐵

4
sin 𝜃 (𝑆+𝐼+ + 𝑆−𝐼−) 

(A.7.12) 

The rotated frame titled total Hamiltonian is 

𝐻𝑇 = Ω𝑒𝑓𝑓𝑆𝑧 + Ω𝐼𝐼𝑧 + 𝐻𝑆𝐼
𝑇 . (A.7.13) 

 

The spin-flip operator 𝑆±𝐼∓  is contained titled rotated truncated hyper-fine Hamiltonian 𝐻𝐼𝑆
𝑇  is the 

reason for spin transfer from the electron to the proton. In order to see the time evolution of the 

polarization, we have to go to interaction picture, by an operator [124] 

𝑈𝐻 = 𝑒
−𝑖(Ω𝑒𝑓𝑓𝑆𝑧+Ω𝐼𝐼𝑧)𝑡 = 𝑒−𝑖Ω𝑒𝑓𝑓𝑆𝑧𝑡𝑒−𝑖Ω𝐼𝐼𝑧𝑡. (A.7.14) 

The time-dependence transform changes the Hamiltonian, so that 

𝑑

𝑑𝑡
|𝜓⟩𝐻 = −𝑖𝑉|𝜓⟩𝐻, 𝑉 = 𝑈𝐻(𝐻𝐼𝑆

𝑇 )𝑈𝐻
−1. (A.7.15) 

For spin-half particle 

𝑒−𝑖Ω𝑒𝑓𝑓𝑆𝑧𝑡 = cos (
Ω𝑒𝑓𝑓

2
𝑡) 1 + 2𝑖 sin (

Ω𝑒𝑓𝑓

2
𝑡) 𝑆𝑧, 

𝑒−𝑖Ω𝐼𝐼𝑧𝑡 = cos (
Ω𝐼
2
𝑡) 1 + 2𝑖 sin (

Ω𝐼
2
𝑡) 𝐼𝑧 , 

(A.7.16) 

where 1 is identical matrix. And by the relation of angular momentum operator 

[𝑆𝑧, 𝑆±] = ±𝑆±, [𝐼𝑧 , 𝐼±] = ±𝐼±, (A.7.17) 

thus, we have 
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𝑈𝐻𝑆𝑧𝐼𝑧𝑈𝐻
−1 = 𝑆𝑧𝐼𝑧, 

𝑈𝐻𝑆𝑧𝐼±𝑈𝐻
−1 = 𝑆𝑧𝐼±𝑒

±𝑖Ω𝐼𝑡, 

𝑈𝐻𝑆±𝐼𝑧𝑈𝐻
−1 = 𝑆±𝐼𝑧𝑒

±𝑖Ω𝑒𝑓𝑓𝑡, 

𝑈𝐻𝑆±𝐼±𝑈𝐻
−1 = 𝑆±𝐼±𝑒

±𝑖(Ω𝐼+Ω𝑒𝑓𝑓)𝑡, 

𝑈𝐻𝑆±𝐼∓𝑈𝐻
−1 = 𝑆±𝐼∓𝑒

±𝑖(Ω𝑒𝑓𝑓−Ω𝐼)𝑡. 

(A.7.18) 

We can see that each term is rotating in different frequencies in laboratory frame.  In order to make 

𝑉 = 𝑈𝐻(𝐻𝐼𝑆
𝑇 )𝑈𝐻

−1 be time independent, so that the density matrix 𝜌 can be computed by 

𝜌(𝑡) = 𝑒−𝑖𝑉𝑡𝜌0𝑒
𝑖𝑉𝑡, (A.7.19) 

and the spin transfer term 

−
𝐵

4
sin 𝜃 (𝑆+𝐼− + 𝑆−𝐼+), (A.7.20) 

survive and not truncated by high frequency,  we can choose 𝜔 and Ω𝜇, such that 

Ω𝑒𝑓𝑓 = Ω𝐼   ⟹  √(𝛺𝑆 + 𝜔)2 + Ω𝜇2 = Ω𝐼 , (A.7.21) 

which is the Hartmann – Hahn condition. The terms 𝑆𝑧𝐼±, 𝑆±𝐼𝑧 , and 𝑆±𝐼± truncated. And the final 

Hamiltonian is 

𝑉 = 𝐴 cos 𝜃 𝑆𝑧𝐼𝑧 −
𝐵

4
sin 𝜃 (𝑆+𝐼− + 𝑆−𝐼+). (A.7.22) 

 

The polarization of the electron and the proton in the laboratory’s rest frame are 

𝑃𝑒 = Tr(2𝑆𝑧𝜌), 𝑃𝐼 = Tr(2𝐼𝑧𝜌). (A.7.23) 

 

The operator 𝜌, 𝑆𝑧 and 𝐼𝑧 also have to be transformed as 

𝑆𝑧 → 𝑆𝑧 → cos 𝜃 𝑆𝑧 − sin 𝜃 𝑆𝑥

→ cos 𝜃 𝑆𝑧 − sin 𝜃 (𝑆𝑥 cos(Ω𝑒𝑓𝑓𝑡) − 𝑆𝑦 sin(Ω𝑒𝑓𝑓𝑡))

→ cos 𝜃 𝑆𝑧 , 

(A.7.24) 

𝐼𝑧 → 𝐼𝑧 → 𝐼𝑧 , (A.7.25) 

and for the special case, 𝜃 =
𝜋

2
, 𝑆𝑧 → 0. Thus, only the component of the electron polarization takes 

part in the spin transfer. The initial polarization 𝑃𝑒 = 𝑃𝑒0  and 𝑃𝐼 = 𝑃𝐼0 along z-axis, and no polarization 

along transverse axis, The transformation of density matrix in the basis |𝑚𝑠, 𝑚𝐼⟩, takes the form 

𝜌 =
1

4
1 +

𝑃𝑒0
2
𝑆𝑧 +

𝑃𝐼0
2
𝐼𝑧 + 𝑃𝑒0𝑃𝐼0𝑆𝑧𝐼𝑧. (A.7.26) 

Thus, after the transforms 

𝜌 →
1

4
1 +

𝑃𝑒0
2
cos 𝜃 𝑆𝑧 +

𝑃𝐼0
2
𝐼𝑧 + 𝑃𝑒0𝑃𝐼0 cos 𝜃 𝑆𝑧𝐼𝑧 . (A.7.27) 
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And the polarization are 

𝑃𝑒 = 2𝑇𝑟(𝑆𝑧𝜌)

= 2𝑇𝑟 (cos 𝜃 𝑆𝑧

⋅ 𝑒−𝑖𝑉𝑡 (
1

4
1 +

𝑃𝑒0
2
cos 𝜃 𝑆𝑧 +

𝑃𝐼0
2
𝐼𝑧 + 𝑃𝑒0𝑃𝐼0 cos 𝜃 𝑆𝑧𝐼𝑧) 𝑒

𝑖𝑉𝑡) 

𝑃𝐼 = 2𝑇𝑟(𝑆𝑧𝜌)

= 2𝑇𝑟 (𝐼𝑧

⋅ 𝑒−𝑖𝑉𝑡 (
1

4
1 +

𝑃𝑒0
2
cos 𝜃 𝑆𝑧 +

𝑃𝐼0
2
𝐼𝑧 + 𝑃𝑒0𝑃𝐼0 cos 𝜃 𝑆𝑧𝐼𝑧) 𝑒

𝑖𝑉𝑡) 

(A.7.28) 

Simplify, we get 

𝑃𝑒 = 𝑃𝑒0 cos
2 𝜃 cos2 (

𝐵

4
sin 𝜃 𝑡) + 𝑃𝐼0 cos 𝜃 sin

2 (
𝐵

4
sin 𝜃 𝑡) 

𝑃𝐼 = 𝑃𝑒0 cos 𝜃 sin
2 (
𝐵

4
sin 𝜃 𝑡) + 𝑃𝐼0 cos

2 (
𝐵

4
sin 𝜃 𝑡) 

(A.7.29) 

The larger the 𝜃, the smaller the usable electron polarization, however, the smaller the 𝜃, the longer 

time for polarization transfer. And from the equation, the proton polarization is bound by 

𝑃𝐼(max) = 𝑃𝑒0 cos 𝜃. (A.7.30) 

The solid effect for other experimental [125] is calculated in Figure A-12. The actually vale of 𝐴0, 𝜃𝑟 

and Ω𝜇 is unknown. The value was adjusted to reproduce the fact that the magnitude of the proton 

polarization was maximum for 𝑡~16 μs. Note that the truncation of equation (A.7.18) is not applicable 

for Ω𝑒𝑓𝑓  and Ω𝐼  are small. This happens when the external magnetic field is weak and Ω𝐼 =

42.58 MHzT−1 is small, which is the condition for this experiment. Because of the existence of the 

other terms in equation (A.7.18), the proton polarization reduced through other spin-flip channels.   

 

Figure A-12 – The solid effect with the experimental conditions in ref [125].  

The blue and red curves are truncated electron and proton polarization respectively. The light blue 

and red curves are exact polarizations of the electron and the proton from equation respectively 

(A.7.3). 
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Appendix B  

Theory on Proton Polarization 

In this appendix, we are going to explain the principle and theory of the polarization method. A brief 

explanation is follow: The electron is excited from the ground state 𝑆0 to higher energy states by laser 

irradiation. When the electrons relax from the higher energy states, part of them undergo inter-system-

crossing to the first triplet state 𝑇1 [126] [127]. Under a static magnetic field, the triplet state Zeeman 

levels are separated and created an effective electron polarization between any 2 states of the triplet 

state. The effective electron polarization can be transferred to the protons via the hyperfine interaction 

using a transverse microwave under the Hartmann-Hahn condition [128] [129]. The spin-polarization 

further diffuse to others protons via the dipole-dipole interaction [129]. 

 

B.1 Brief History on Spin-Polarized Proton Target 

The development of the spin-polarized proton target for nuclear experiments has a long history. Early 

development was based on the thermal polarization (also called bull-force method) using Boltzmann 

distribution [108]. The target was operated under low temperature (few K) and high magnetic field (few 

T). Although the polarization can be as high as 70%, the high magnetic field deflects the path of charged 

particles. This makes the measurement and data analysis becomes difficult or even impossible.  

 

On 1953, Overhauser proposed a method to polarize metal nuclei by transferring the polarization from 

spin-polarized conduction electrons [130]. The Overhauser’s effect is based on the hyperfine interaction 

between the electron spin and the nuclear spin. In order for the polarization transfer, the electron and 

the nucleus gyromagnetic ratio should be similar. Later, Abragam and Goldman [129] extended 

Overhauser’s idea to crystalline substance and called it as “solid effect”. On 1962, Hartmann and Hahn 

developed a method that makes the gyromagnetic ratio of the nucleus and that of the electron be the 

same in a tilted rotating frame created by a microwave [128]. Because the polarization transfer is 

conducted in the rotating frame, it is also known as the dynamic nuclear polarization (DNP) (Appendix 

A.8). On 1985, Van Kesteren, Wenckebach, and Schmidt successfully produced “High, long-lasting, 

dynamic proton polarization” using the photo-excited triplet states of electrons in a pentacene doped 

crystal [131]. Since then, many people are working on to get a higher polarization using pentacene 

doped molecules [107] [132] [133] [134].  
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Throughout all the efforts mentioned above, the spin-polarized proton target, developed in Center of 

Nuclear Study, University of Tokyo, is a unique device that was designed for nuclear scattering 

experiments at high temperature (100K) and low magnetic field (0.064 T). We will explain the principle 

in this chapter and the operation of the target in the next chapter.  

 

B.2 Materials 

Pentacene is non-magnetic at the ground singlet state but paramagnetic in the excited triplet state [127] 

[132] [135]. The electron populations of the sub-state among the excited triplet state are different and 

that creates an effective polarization between any two sub-states. Therefore, it serves as a good 

polarization material as the nucleus-electron polarization/relaxation channel is closed at the ground state 

but opened at the excited states. However, a pure pentacene is a very sensitive to oxidation upon 

absorption of UV or visible light. Therefore, naphthalene (C10H8) doped with 0.05 mol% pentacene 

(C22H14) crystal was used [136]. The schematic chemical structures of pentacene and naphthalene are 

shown in Figure B-1. The properties of these chemicals are listed in Table B-1. 

 

 

Figure B-1 – Diagrams of a naphthalene and a pentacene molecules  [127].  

The number indicated the hydrogen atoms and the arrows defined the molecular axis. The circle 

represents the 𝝅-bond. 

 

Table B-1 – Physical Properties of Naphthalene and Pentacene in bulk. 

 Naphthalene Pentacene 

Molar Mass [g mol−1] 128.17 278.36 

Density [g/cm3] 1.14 1.3 

Proton Density [mol/cm3] 0.07116 0.05029 

Carbon Density [mol/cm3] 0.08895 0.07903 

Melting point [K] 353 662 

Sublimation point [K] always 645 

Crystal Structure Monoclinic Triclinic 
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B.3 Excitation of Pentacene to the Triplet State and Triplet 

State Polarization 

The schematic energy levels of the pentacene in the naphthalene are shown in Figure B-2. The ground 

state is a singlet state (odd symmetry), which has no magnetic property because all electrons are coupled 

and total angular momentum is zero. The excited states from the ground state are all singlet state due to 

the conservation of symmetry. However, the fine-interaction (similar to the spin-orbital coupling) 

between the pentacene 𝜋-electrons can populate the triplet states (even symmetry). The transition from 

the singlet state to the triplet states is called inter-system crossing. Theory predicted that the transition 

rate is independent of temperature and external magnetic field. The triplet state is paramagnetic that the 

populations of each level are different [134]. This creates an effective polarization between any 2 levels. 

The paramagnetic property provided a channel to polarize the nucleus using the hyperfine-interaction 

between the 𝜋-electrons and the protons [127] [137] [138] [139]. 

 

Figure B-2 – Pentacene energy levels scheme. Copy from Reference [140]. 

 

The electron triplet population can be described by a simple rate equation among the 5 states 𝑆0, 𝑆1, 𝑇1
1, 

𝑇1
0 and 𝑇1

−1. The rate equations can be written in a single matrix equation 

𝑑𝑁⃗⃗⃗

𝑑𝑡
= 𝑅 ⋅ 𝑁⃗⃗⃗, (B.3.1) 

where 𝑁⃗⃗⃗ = (𝑁𝑆1 , 𝑁1, 𝑁0, 𝑁−1, 𝑁𝑆0) is the population vector of the first excited singlet state, the 3 triplet 

states and the ground state. The rate matrix 𝑅 takes the form 

𝑅 =

(

  
 

−𝐴 −𝑊 − (𝑔1 + 𝑔0 + 𝑔−1) 0 0 0 𝑊
𝑔1 −𝑘1 − 𝜅10 𝜅10 0 0
𝑔0 𝜅10 −𝑘0 − 𝜅10 − 𝜅0(−1) 𝜅0(−1) 0

𝑔−1 0 𝜅0(−1) −𝑘−1 − 𝜅0(−1) 0

𝐴 +𝑊 𝑘1 𝑘0 𝑘−1 −𝑊)

  
 
, 
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 (B.3.2) 

where 𝐴 is the fluorescein rate, which is 23.5 ns or 43 × 106 s−1 for pentacene in p-terphenyl host 

[141] (we assumed the rate is not different significantly.), 𝑊 is the induced rate by the laser. The 

coefficient 𝑔𝑖 are the transition rates from 𝑆1 state to 𝑇1
𝑖 triplet states. The coefficient 𝑘𝑖 are the rates 

from 𝑇1
𝑖 to 𝑆0, or the dark decay rate. The coefficient 𝜅𝑖𝑗 is the phonon mixing rate between triplet states 

𝑇1
𝑖 and 𝑇1

𝑗
. Since the rate matrix is time independent, the solution is 

𝑁⃗⃗⃗(𝑡) = 𝐸𝑥𝑝(𝑅 𝑡) ⋅ 𝑁⃗⃗⃗(0). (B.3.3) 

 

B.4 Continuous Wave Solid Effect 

The dynamic nuclear polarization involves 1 electron spin and many nuclear spin is called solid effect 

[129]. It required a microwave irradiation with frequency close to the electron spin resonance (ESR) 

frequency. If the ESR has to be induced by laser irradiation (the ESR frequency only resonances 

between triplet states, and the triplet states are excited by laser irradiation.), the solid effect also called 

microwave-induced optical nuclear polarization (MI-ONP).  

 

The continuous wave solid effect is the basic principle of transferring the electron spin polarization to 

the nuclear spin. The detailed calculation can be found in Appendix A.8. The condition for polarization 

transfer is 

(𝛺𝑆 − 𝜔𝜇)
2
+ 𝛺𝜇

2 = 𝛺𝐼
2, (B.4.1) 

which is called the Hartmann-Hahn condition [128]. The 𝛺𝑆  is the ESR frequency of the electrons in 

the triple state, which depends on the external magnetic field. 𝛺𝐼 = 𝛾𝐼𝐻 is the Larmor frequency of the 

proton, 𝛾𝐼 is the proton gyromagnetic ratio, 𝐻 is the strength of the external magnetic field. 𝜔𝜇 is the 

microwave frequency, and 𝛺𝜇  is the Larmor frequency of the electrons, which is induced by the 

microwave wave magnetic component 𝐻𝜇. The Hartmann-Hahn condition can be interpreted as the 

effective Larmor frequency (𝛺𝑒𝑓𝑓
2 = (𝛺𝑆 −𝜔𝜇)

2
+ 𝛺𝜇

2) of the electrons in the rotating frame is equal 

to the Larmor frequency of the nucleus in the laboratory’s frame. (In fact, both Larmor frequencies 

should be in the rotating frame, but the Larmor frequency of the electron is much higher than that of 

the nucleus, then the effective Larmor frequency of nucleus in rotating frame is same as in the 

laboratory’s frame. That is the reason for the name “microwave induced double nuclear resonance”.) 

When this condition is fulfilled, the electron polarization can be transferred to the protons and polarize 

it. However, the usable electron polarization depends on the factor (Figure B-3) 

cos 𝜃 =
𝛺𝑆 − 𝜔𝜇

√(𝛺𝑆 − 𝜔𝜇)
2
+ 𝛺𝜇2

=
𝛺𝑆 − 𝜔𝜇

𝛺𝐼
 . 

(B.4.2) 
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It is because the electron polarization is precessing around the effective magnetic field (Ω𝑒𝑓𝑓 ). 

Therefore, if 𝛺𝑆 = 𝜔𝜇, there will be no polarization transfer even the condition is matched.  

 

Figure B-3 – Pictorial presentation of the Hartmann-Hahn condition in rotating frame.  

See the main text for detailed explanation. 

 

In Figure B-3, the circle radius is 𝛺𝐼, the z-axis is the direction of the laboratory’s magnetic field and 

the x-axis is the rotating magnetic field direction viewed in the rotating frame. In the rotating frame, 

which is in phase with the microwave magnetic component, the electron polarization is rotating around 

the effective magnetic field direction with frequency Ω𝑒𝑓𝑓. The electron interacts with the nucleus by 

hyperfine coupling, when the electron Larmor frequency (in rotating frame) is as same as the nuclear 

Larmor frequency, the polarization can be transferred back and forth by the operator 

𝑆+𝐼− + 𝑆−𝐼+, (B.4.3) 

where 𝑆 is the spin operator for electron and 𝐼 is spin operator for the proton. 

 

The ESR frequency of pentacene depends on the external magnetic field [127] [134]. The Hamiltonian 

for the electron triplet state is 

𝐻 = 𝑅 ⋅ 𝐻𝑍𝐹𝑆 ⋅ 𝑅
−1 + 𝛾𝑒𝐵

𝑆𝑧
ℏ
, (B.4.4) 

where  𝛾𝑒  is the gyromagnetic ratio of electron. 𝐵  is the external magnetic field strength. 𝑅  is the 

rotating operator that rotates the crystal frame to the Laboratory’s frame. 𝐻𝑍𝐹𝑆 is the Zero Field Splitting 

Hamiltonian of the triplet state. It takes the form [127] 
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𝐻𝑍𝐹𝑆 = 𝐷 (𝑆𝑧
2 −

2

3
) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) =

(

 
 
 

𝐷

3
0 𝐸

0 −
2𝐷

3
0

𝐸 0
𝐷

3)

 
 
 
, (B.4.5) 

where 𝐷 = 1381.5 MHz and 𝐸 = −42.5 MHz are the Zero Field Splitting parameters. The 𝑆𝑥, 𝑆𝑦, and 

𝑆𝑧 are spin 1 operator. If the crystal long axis (the X-axis in Figure B-1) is parallel with the external 

magnetic field, by using a suitable rotation operator 

𝑅 =
1

2
(
1 −√2 1

√2 0 −√2

1 √2 1

), (B.4.6) 

and solving the eigenvalues. The Zeeman levels of the triplet state in the laboratory’s frame are 

𝜔+ = −
𝐷 − 3𝐸

6
+
1

2
√(𝐷 + 𝐸)2 + 4 𝛾𝑒2𝐻2, 

𝜔0 =
𝐷

3
− 𝐸, 

𝜔− = −
𝐷 − 3𝐸

6
−
1

2
√(𝐷 + 𝐸)2 + 4 𝛾𝑒2𝐻2. 

(B.4.7) 

 

If we focus on the transition of  |𝑚 = 0〉 state and |𝑚 = −1〉 state, the Ω𝑆 is the difference between 

Ω𝑠 = (𝜔0 − 𝜔−). (B.4.8) 

The dependence of the Zeeman levels on magnetic field is plotted in Figure B-4. 

 

 

Figure B-4 – Zeeman Energy under the external magnetic field that parallel to the pentacene X-axis. 
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B.5 Adiabatic Field Sweep and Integrated Solid Effect 

In order to coup with the magnetic field fluctuation due to the crystal internal magnetic environment 

and including more electrons take part in the polarization transfer, an adiabatic field sweep is applied. 

Together with a field sweep and solid effect, it is called integrated solid effect. 

 

Figure B-5 – Field fluctuation and field sweep.  

Notices that the 𝛀𝑰 circle also splitted, but due to the small gyromagnetic ration, the splitting is very 

small and can be neglected.  

 

The effect of magnetic field fluctuation is demonstrated in Figure B-5. The electron Larmor frequency 

depends on the total magnetic field. The total magnetic field is the sum of the external field and crystal 

field. The crystal field is created from the neighborhood electrons. The contribution of the crystal field 

is different for different electrons and created a distribution. This distribution is a shadow region 

between 2 effective Larmor frequencies in Figure B-5, which are created by highest and lowest total 

magnetic field. The gyromagnetic ratio of electron is about 600 times larger than that of the proton. 

Therefore, the electron is more sensitive to the field fluctuation and the proton Larmor frequency 

distribution can be neglected. The crystal field is ±3 mT, corresponding to ± 80 MHz at 64.4 mT, which 

is much larger than the proton Larmor frequency (2.74 MHz) at that external field. The adiabatic field 

sweep means that the change of the direction of the effective magnetic field is smaller than the Larmor 

frequency of electron 

|√((𝜔0 − 𝜔−)𝐻(𝑡) − 𝜔𝜇)
2

+ 𝛺𝜇2| ≫ |
𝑑𝜃

𝑑𝑡
|. (B.5.1) 

The variation magnetic field and the magnetic field are 

𝛥𝐻(𝑡) ≪ 𝐻0, 

𝐻(𝑡) = 𝐻0 + 𝛥𝐻(𝑡)~𝐻0. 
(B.5.2) 

After calculations and approximation 



138 

 

𝛺𝐼
3 ≫ 𝛾𝑒𝛺𝜇 |

𝑑𝐻(𝑡)

𝑑𝑡
|, (B.5.3) 

when this condition is satisfied, the effective magnetic field (𝛾𝑒𝐻𝑒𝑓𝑓 = 𝛺𝑒𝑓𝑓) will rotate slowly and 

the electron polarization will process around it and follow this direction. That makes more electrons 

under different effective magnetic field able to satisfy the Hartmann-Hahn condition and take part in 

the polarization transfer.  

 

To see the essential of the adiabatic field sweep, we can imagine the opposite case that it is not adiabatic, 

say, we apply a positive and negative additional field. When positive additional field applied, the usable 

polarization is 𝑃𝑒 cos 𝜃, where 𝑃𝑒 is the electron polarization in the z-axis. However, when the negative 

additional field applied, the usable polarization is 𝑃𝑒 cos(𝜋 − 𝜃) = −𝑃𝑒 cos 𝜃 , which transfer a 

“negative polarization” that reduce and even cancel the nuclear polarization. By using an adiabatic 

sweeping field, the electron polarization follows the effective magnetic field as the field rotates. Thus 

the usable polarization is always positive.  

 

B.6 Polarization Diffusion 

A spin-polarized proton in a pentacene molecule can react with other nuclear spin through the dipole-

dipole interaction. It is similar to the hyperfine interaction. The Hamiltonian takes the form 

𝐻𝐼𝐼 ∝∑𝐼𝑖⃗⃗⃗ ⋅ 𝑇𝑖𝑗 ⋅ 𝐼𝑗⃗⃗⃗ ⃗. (B.6.1) 

The 𝑇𝑖𝑗 is the dipole-dipole coupling tensor, which is inversely proportional to the distance. Since the 

distance between the protons in the pentacene is about several Angstroms. Therefore, the transition 

probability is much lesser then the polarization transfer.   
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Appendix C  

Solid Spin-Polarized Proton Target 

We explained the principle of the proton spin polarization in the previous appendix. A magnetic field, 

a laser, a microwave, and a sweeping magnetic field are required to polarize protons. A known-axes 

naphthalene crystal (C10H8) with radius of 7 mm was placed in the center of the magnet pole. The crystal 

was cool to -165ºC. A photo diode was used to detect the pulsed laser beam and sent a trigger signal to 

a wave-function generator. This trigger signal turns on a microwave and a sweeping magnetic field. 

The magnitude of the polarization was monitored by a NMR system. Figure C-1 is a photograph of the 

target system during the preparation of the experiment. A conceptual diagram of the target system is 

shown in Figure C-2. The structure of the pulses in one beam pulse is shown in Figure C-3. The 

parameters for the target system is shown in Table C-1. 

 

 

Figure C-1 – Photo of the target chamber and the magnet under operation.  

The radioactive beam was coming from behind. The 2 red coils provide statics magnetic field. The 

chamber is placed in between. The electronic system of polarization is placed under the magnet (out 

of the photo). It was operated at -165ºC. The magnet coils are painted in dim red. The “red light” 

inside the chamber is the scattered light by the target crystal. The fog on the left side was due to the 

emission of cold nitrogen gas. The green light at the back side of the chamber was the ambience light 

from Argon laser beams. 
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Figure C-2 – Conceptual overview of the target system.  

The arrows represent the flow of controlling signal. The lines represent connections. The boxes with 

different colors represent different sub-systems. 

 

 

 

Figure C-3 – Pulses configuration for polarization during the experiment. 
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Table C-1 – Configuration of the polarization system. 

Chamber Temperature -160 ~ -170 oC Laser 1 output power 10.8 ~ 11.0 W 

Magnetic Field 64.2~65.8 mT Laser 2 output power 12.1 ~ 12.3 W 

Field sweep frequency 30 kHz Repetition frequency 7kHz 

Field sweep magnitude 2.4 mT Repetition period 142.86 us 

Field sweep Delay 16.1 us Pulse width 41.6 ~ 50.2 us 

Field sweep Phase 0o / 180o Microwave frequency 2.677 ~ 2.709 GHz 

Field sweep supply voltage ±40V Microwave output power 3.4 W 

Field sweep supply current 0.6A Microwave Delay 10.5 us 

 

C.1 Crystal and Crystal Preparation 

A single crystal of naphthalene doped 0.05 mol% pentacene is a commercial product. It was cut into a 

14 mm diameter and 1 mm thick sample for the experiment. The crystal has 3 molecular axes which 

named a, b and c. The geometry of the crystal was listed in Table C-2, and displayed in Figure C-4.  

 

Table C-2 – Crystal properties of naphthalene 

Number of molecules in a unit cell 2 

Cleavage plane a-b plane 

Lattice period 

a 8.2 Å  

b 6.0 Å  

c 8.7 Å  

Plane angle 

𝛼 : a-b 90˚ 

𝛽 : a-c 123˚ 

𝛾 : b-c 90˚ 

 

Figure C-4 – Crystal structure of the naphthalene and pentacene doping.  

The pentacene replaced 2 naphthalene molecules. The picture is taken from Reference [140].  

 

The a-b plane is the only cleavage plane. This property and the birefringence give us an easy method to 

identify the crystal axis. The crystal was cut little on the edge. Since the cleavage plane is easy to 

separate, it leaves parallel planes or lines on the cut surface. By removing a small portion of the crystal 

along the cleavage plane, the a-c plane can be identified by birefringence. The process is demonstrated 

in Figure C-5.  
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a. A roughly cut crystal. The surface 

is a-c plane. 

 

b. Cut a small piece along the a-b 

plane. 

 

c. Under a polarizer on vertical 

direction, the hair under the crystal 

does not shift. 

 

d. Under a polarizer on horizontal 

direction, the hair under the crystal 

was shift. The shift direction 

indicates the c-axis. 

Figure C-5 – Demonstration of finding the crystal axis. 

 

The axes-identified crystal was polished from several mm thick to 1mm. In order to make the crystal 

surface be clear and transparent, we used 4000 grits sand paper at finial polishing.  

 

C.2 Static Magnet and Small Magnetic Field 

The magnet produced a uniform 64.2mT ~ 65.8 mT statics magnetic field across 50 mm diameter from 

the center. Figure C-6 shows the magnetic field variation during beam time. We changed the magnetic 

field after the field sweep coil has been fixed on May 31st. The ESR frequency is linear at around 64mT 

(Figure B-4). It is related with the magnetic field by 
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ΩS =
𝐷

2
−
3

2
𝐸 + √(

𝐷 + 𝐸

2
)
2

+ 𝛾𝑒2𝐵2 ≈
𝐷

2
−
3

2
𝐸 + 𝛾𝑒𝐵, (C.2.1) 

Therefore, the change of the ESR frequency for 1 mT is 28 MHz. This does not affect the polarization 

as the NMR signal is almost the same (Figure C-24). 

 

 

Figure C-6 – Magnetic field during experiment. 

 

By using the NMR signal of a water sample (5 mm × 5 mm × 15 mm), we can determine the 

homogeneity of the magnetic field on the crystal. The FID (free induction decay) signal and the 

frequency spectrum of the water sample are shown in Figure C-7. The detail of the convertion can be 

found in Appendix A.7. The central peak of the frequency spectrum is caused by a vertical offset of the 

signal. The FWHM of the water peak is about 1 kHz. By knowing that the proton gyromagnetic ration 

is 42.577 MHz/T and the Larmor frequency of the proton is 2.75 MHz at 64.4 mT, the homogenous of 

the magnetic field around the water sample is less than 1 part in 2750, about 0.04%. 

 

 

Figure C-7 – FID signal and freqeuncy spectrum of water sample.  

The peak near 0 kHz is due to an vertical offset of the FID signal.  

 

The magnetic field is measured using water nuclear magnetic resonance (NMR) and constantly 

monitored by a Hall probe (F. W. Bell, Hall generator model BH200). The sensitivity of 9.58 mV/kG 
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was provided from the factory. The working temperature is from -40oC to +100oC, the temperature 

dependence from 20oC to +80oC is 0.08%/ oC. The Hall probe connected to a mulitmeter (Keithley 2000 

multimeter). Since the position of the Hall probe is not at the center of the magnet field, it was placed 

below the vacuum chamber, and then the magnetic field strength was different from the crystal position. 

This was calibrated using a water sample, which placed at the target position. The result is shown in 

Figure C-8. The sensitivity is 10.247 mV/kG, with error 0.06%. A larger sensitivity is expected, since 

the field strength should be larger at the Hall probe for a Helmholtz type coil.  

 

 

Figure C-8 – Measured Hall probe voltage against the water NMR frequency. 

 

A small magnetic field is desired because the deflection of the scattered proton should be minimized. 

The diameter of the magnet core is 110mm, separated by 100mm. If we assumed a uniform magnetic 

field 𝐵 covering an area of radius 𝑟, the Lorentz force of a proton with velocity 𝛽 =
𝑣

𝑐
 is 

|𝐹⃗| = |𝑞 𝑣⃗ × 𝐵⃗⃗| = 𝑞𝑐𝛽𝐵, (C.2.2) 

The deflection is defined as the angle between exiting angle and original angle. It is 

𝜃 = 2 sin−1 (
𝑟𝑞𝐵

2𝑚𝑣
)~

𝑟𝑞𝐵

𝑚𝑐𝛽
, 𝑓𝑜𝑟 𝐵 ≪

𝑚𝑐𝛽

𝑟𝑞
, (C.2.3) 

If the magnetic field is large and comparable to the value 
𝑚𝑐𝛽

𝑟𝑞
, the charge particle will be trapped inside 

the magnetic field. For our experiment condition, the scattered proton has 𝛽~0.2 to 0.6,  𝑟~0.1 m and 

𝐵 = 70 mT, the deflection is 𝜃 ≤ 10 mrad or 0.6 degree. For a slow proton (𝛽 = 0.2) the deflection 

on 1 m away is about 10 mm, which is half-cell of the MWDC-L and R. 

 

C.3 Crystal axis and Magnetic Field Direction 

The crystal X-axis (Figure B-1) should be parallel to the external field. If the crystal axis makes some 

angle with the field, the Zeeman states will not be a pure state but mixed.  
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C.4 Scattering Chamber 

The scattering chamber need to fulfill 4 purposes: 1) provides a vacuum for beam transportation, 2) 

cools the crystal to 100K by liquid nitrogen, 3) allows scattered particles detection, and 4) contains 

target crystal and polarization components. Thus, the scattering chamber contains two chambers. A 

cooling chamber is inside a vacuum chamber. The vacuum chamber provides a thermal insulation. In 

order to let scattered particles passed through while maintaining the pressure. Kapton films of 128µm 

were used in both chambers.  

 

The internal structure of the scattering chamber is drawn in Figure C-9. The crystal target is in 

transparent pink. The two green lines represent the light paths of the lasers beams. The yellow films are 

Kapton films of 128 μm each. The copper rings on the top and bottom of the crystal are the magnetic 

field sweep coil. The target holder was made of hydrogen-free plastic. Because of the complex structure 

of the target system, a large among of background events was expected.  

 

 

Figure C-9 – CAD drawing for the target system. 

The vacuum chamber, cooling chamber, interior structure, crystal position and Laser beam path are 

shown. Electric cables are not included in this drawing. 
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Figure C-10 – Assembly of the cooling chamber. 

 

C.4.1 Vacuum 

The vacuum provides two functions: 1) Connection with the beam pipe, and 2) thermal insulation. The 

pressure inside the vacuum chamber should be less then 10−2 mbar (1 mbar = 0.75 Torr = 100 Pa = 

9.89 × 10−4 atm), which is medium to high vacuum [142], for getting temperature as low as -165 oC. 

A rotary vacuum pump from Alcatel model 2010SD was used for pumping. The pumping speed is 9.7 

m3/h, corresponding to 2.69 L/s. According to the factory, the ultimate total pressure at open gas ballast 

is 10−2 mbar. A molecular pump (Edwards PT640Z010 STP-iX455 Turbomolecular pump) was also 

used. Its pumping speed of 𝑁2 and 𝐻2 are 300 L/s. The principle ultimate pressure is 6.5×10-9 mbar. 

The pump starts to operate when chamber pressure is smaller than 0.1 mbar. The vacuum chamber is 

connected with an upstream MWDC for beam tracking. A schematic diagram for the vacuum system is 

shown Figure C-11. The final vacuum is 7 × 10−2 mbar. 



147 

 

 

Figure C-11 – Schematic view of the vacuum system.  

The green lines are Mylar foils.  

 

The vacuum chamber is connected with an upstream drift chamber DCX2 for beam tracking on the 

target. The front end of the vacuum chamber is a 180º arc window. The area of the arc window is 

approximately 34000 mm2 and perimeter is about 900 mm. Another leakage is from the cooling 

chamber. The cooling chamber is inside the vacuum chamber (Figure C-9). The cooling chamber has a 

lot of components, the arc windows, two laser widows, one beam window, and two flanges for cabling 

and inlet of nitrogen gas, that create possible leakage (Figure C-10). Since the cooling chamber was 

placed inside. It is difficult to find out the leakage. We had tested the cooling chamber by submerging 

it into bucket of ethanol and pumping nitrogen gas at around 1.5 atm. Some leakages were fixed.  

 

The vacuum is 6×10-3 mbar with the vacuum chamber alone. The vacuum is 6.5×10-2 mbar after we 

installed the cooling chamber. The final vacuum at -165oC is 7×10-2 mbar.  

 

C.4.2 LN2 Cooling 

The temperature was monitored and controlled by a temperature control unit (OMRON E5CN Basic-

type Digital Temperature Controller). The temperature sensor was a Pt-100 resistance type thermometer, 

which was placed inside the chamber, just above the crystal holder. The temperature was control by the 

feed-back temperature and a heater coil inside a LN2 tank. The temperature variation during the beam 

time is shown in Figure C-12. The temperature went to room temperature from May 31st, 9 am, because 

we had to open the chamber and fix the field sweep coil. In most of the time, the temperature was 

ranging from -155ºC to -170ºC, around -165 ± 5ºC. 
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Figure C-12 – Temperature during experiment. 

 

 

Figure C-13 – LN2 consumption during experiment. 

 

C.5 Optical System 

The laser rays diagram is illustrated in Figure C-14. One of the rays turned left and the other turned 

right after the lasers. The rays focused by a f = 100 mm lenses. Both rays passed through a chopper to 

produce a laser pulse. The chopper was placed at the focal point at where the width of the beam was the 

narrowest. The laser pulse then passes through a f = 100 mm lenses to enlarge the beam back to its 

original width. It then entered an optical couplers and be transported by optical fibers. The lengths of 

the optical fibers are 100 meter each. A photograph of the chopper system is shown in Figure C-15. 
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Figure C-14 – Schematic view of the laser system.  

The Lasers and the target system were placed at different rooms. 

 

 

Figure C-15 – Photograph of the laser and the chopper system.  

The 2 laser beams were reflected and pass through a chopper, and then entered optical couplers. 

 

The optical fibers deliver the laser from the laser’s room to the target, which installed along the beam 

line. We check that the beam profile after the fibers that the beam did not distorted and kept at TEM00 

mode. The fiber’s end was connected to another optical coupler. The beam divergence can be adjusted 

by the optical coupler and focused on the crystal. The laser spot on the target crystal is shown in Figure 

C-16. 
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Figure C-16 – Laser spot on the target crystal on May 26th, before beam time.  

This photo viewed from the forward angle, outside the chambers. The green spot on the left is the 

scattered laser light by the inner (cooling) chamber windows. The laser spot was enlarged and fine-

tuned to cover as large area as possible. 

 

The chopper was formed by two chopper disks of 40 slits and 50% duty each. The duty is the ratio 

between beam-on and pulse period. The frequency of the chopper was monitored and controlled by a 

chopper control unit from Scitec Instruments Ltd, Optical Chopper model 310CD. By overlapping the 

two chopper disks, we can adjust the duty. Let’s the frequency be 𝑓, the pulse width of the chopped 

laser ray is 𝑡𝑝, the duty is 𝛼 

𝑓𝛼 = 𝑡𝑝. (C.5.1) 

Two Argon Lasers, model Innova Sabre DBW25 from Coherent, Inc. were used at single-wavelength 

mode at 514.5 nm. These are a continuous wave (CW) laser, but we added an optical chopper to create 

laser pulse. According to the factory manual, at this wavelength, the beam divergence (full angle) is 

0.35 mrad, beam waist at 1/𝑒2 point is 2.1 mm, and the polarization is 100:1 vertical. The maximum 

power output at 514.5 nm is 10 W. 

 

Two optical fibers are 100 m long each. One was model ST400E from Mitsubishi. Co., with diameter 

400 µm, numerical aperture (NA)=0.2, transmission lost was 5 dB/km and maximum power was 2000 

W for CW laser. Another one was 100 µm diameter with NA=0.2. We lost the manufacturer information 

for this fiber.  

 

An optical coupler was used to feed the laser output into the fiber. A lens was used with matching the 

fiber diameter and NA. The formulas are 

𝑑

2
>
𝜃

2
𝑓, 𝑁𝐴 >

𝐷

2𝑓
, (C.5.2) 

Combined them and get 

𝑑

𝜃
> 𝑓 >

𝐷

2 𝑁𝐴
, (C.5.3) 
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where 𝑑 is fiber diameter, 𝑁𝐴 is the numerical aperture of the fiber, 𝑓 is the focal length of the lens, 𝜃 

is the full divergence of Laser and 𝐷 is the diameter of Laser. Put the factory data of Laser and fiber, 

we have 

1143 > 𝑓 > 5.25 mm, for 𝑑 = 400 μn  

  256 > 𝑓 > 5.25 mm, for 𝑑 = 100 μn 
(C.5.4) 

We used a 65 mm lens for the 400 µm fiber and a 16.59 mm 10X objective for the 100 µm fiber as input 

optical coupler. 

 

After passed through the fibers, we need another optical coupler to collimate the beam. The waist of the 

beam we needed is smaller than 8 mm and distance between the lenses to target crystal is around 600 

mm. The calculation for this similar as above 

𝑤

2
> 𝑁𝐴 𝑓′, 𝜙 =

𝑑

2𝑓′
 (C.5.5) 

where 𝑤 is the beam waist, 𝜙 is the beam half divergence and 𝑓′ is the focal length. Since we want to 

focus the beam at long optical path, the divergence has to be small. We used a 35mm lens for 400 µm 

fiber and a 16.59 mm 10X objective for the 100 µm fiber.  

 

All mirrors and lenses are from Sigma Koki, Inc. Mirrors are designed to work at 500nm. Lenses have 

multi-layer anti-reflection coating and working at 549nm. 

 

C.6 Microwave 

The microwave was generated by a network analyzer (Rohde & Schwarz Vector Network Analyzer 

1127.8500.60 ZVM). The whole circuit diagram is shown in Figure C-17. The output microwave was 

fed into a custom made computer control switch. The microwave then output to a circulator. The 

circulator passed the signal to a logic switch. This logic switch stopes the wave when there is no trigger 

signal. When the logic switch stops the signal, the signal is reflected back to the circulator. The 

circulator passed the reflection signal to a dummy load to protect the computer control switch and the 

Network Analyzer. After the logic switch, the microwave was amplified and went to a directional 

coupler. The directional coupler produced a coupling signal. The coupling signal was measured by a 

power meter. The microwave then went to another circulator. The circulator simply passed the 

microwave back to the computer control switch and then went to chamber. The circular acted as a circuit 

protector and provided a way to measure the reflected microwave. The reflected microwave was 

monitored by an oscilloscope (CRO). It is because the pulse shape is important for adjusting the position 

of the Loop-Gap-Resonator (LGR).  
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Figure C-17 – Circuit diagram of the microwave system 

 

Inside the chamber, the microwave emits from an antenna coil. A LGR is surrounded the crystal. The 

microwave frequency should be matched with the resonance frequency of LGR to get maximum power 

transfer to the crystal.  

 

C.7 Field Sweep 

The high current is generated by a voltage controlled current source (VCCS) made from an Op-Amp 

(see Figure C-18). The Op-Amp was APEX microtechnology model PA05. It has maximum output 

current of 30 A, maximum input voltage difference of ±20V, and maximum supply voltage of ±100V. 

The output current is given by 

𝐼𝑜𝑢𝑡 = −
𝑉𝑖𝑛
𝑅𝑠

𝑅𝑓

𝑅𝐼
. (C.7.1) 

The values of resistors 𝑅𝐼 and 𝑅𝑓 were the same in our setup. The value of resistor  𝑅𝑠 was very small 

that we only use a copper wire as the resistor. The magnetic field was measured by a Hall probe from 

F. W. Bell model 5180 Gauss Meter. 
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Figure C-18 – Effective circuit of the Voltage Controlled Current Source 

 

The Helmholtz – like field sweep coil was custom made from a high current copper wire. The separation 

of the coil is fixed around 30mm by the chamber. The radius is limited to 15mm due to the crystal 

position. By a simple calculation (𝐵 = 𝜇0𝑛𝐼
𝑟2

(𝑟2+(
𝑧

2
)
2
)

3
2

), the maximum magnetic field should be 

produced by coil of 20 mm radius, therefore, we have to use 15mm. We used a 7mm diameter copper 

wire with 12 turns on each coil (12 turns in upper coil, 12 turns in lower coil). The calculated magnetic 

field and field line is shown in Figure C-19. We can see the calculated field is almost uniform in the 

crystal area. We compressed it to be an elliptic coil to improve the uniformity. It is because the crystal 

was a thin disk with diameter of 14 mm and thickness of 1 mm. An elliptical coil can provide higher 

uniformity and field strength with same current. Due to the limited space of the interior, we compressed 

the coil into an elliptical shape with major axis 20mm and minor axis 10mm. A 8.4 A current is required 

to generate 2.4 mT. 

 

Figure C-19 – Calculated magnetic field line and strength of the field sweep coil (unit = 1mm).  

The Black circle is the size of crystal. 
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The field sweep was applied before the microwave by 9.9 us for it to rise. When the microwave was 

turned on, the field sweep is sweeping from maximum to minimum. The minimum is reached when the 

microwave is tuned off.  

 

 

Figure C-20 – The magnetic field of field sweep coil.  

The red line is the applied voltage. The green line is the measured magnetic field. The delay of the 

signals was caused by the cable length. 

 

C.8 Polarization Measurement of NMR 

The polarization was measured by two methods: Nuclear Magnetic Resonance (NMR) and proton-

proton elastic scattering. These two methods then be compared and used to calibrate the NMR signal. 

The calibrated NMR signal can easily be used to monitor the polarization anytime. The measurement 

of the proton-proton elastic scattering will be discussed in Appendix D. 

 

C.8.1 NMR 

A spin undergoes precession along an external magnetic field. This is known as Larmor precession. 

When a traverse oscillating magnetic field applied at the Larmor precession frequency, the effective 

field is perpendicular to the spin direction in the rotating frame of the spin, and the precession is along 

this effective field. A well-controlled pulsed traverse oscillating field with definite time interval can 

rotate the spin by 90º in the laboratory’s frame. After the pulse, the spin keeps precessing along the 

external magnetic field and undergoes Free Induction Decay (FID). The decay is caused by the tendency 

that the spin will eventually align with the magnetic field direction by interacting with other spins. The 

proton polarization can be measured by detecting the FID signal. This technique is called nuclear 

magnetic resonance (NMR). A brief calculation is on Appendix A.6. A detail explanation can be found 

on [143].  
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A PROT Series Wideband Fourier Transform NMR Spectrometer from Thamway Co., Ltd was used. 

It is an all-in-one NMR tower which provided all NMR components, from frequency generator, gate 

generator, mixer, preamplifier, amplifier, and computer. A typical NMR circuit is shown at Figure C-21.  

 

 

Figure C-21 – Typical NMR circuit and circuit elements. 

 

We made a NMR coil and matching its impedance with a tuner. The NMR coil was 16 mm diameter 

with 33 turns, made by copper wire of 0.5 mm diameter. The tuner circuit is shown in Figure C-22. It 

contained two capacitors, one in parallel (shunt) and the other was in series. The parallel capacitor had 

200 pF. The tuner and coil were connected by a cable with unknown capacitance and resistance. 

According to the transmission line theory, the total impedance of the coil, the cable between coil and 

tuner, and the tuner (𝑍𝐿) should be equal to the transmission line impedance (𝑍0) , so that no reflection 

wave and power can fully transmitted into the coil. The reflectance is 

Γ =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

. (C.8.1) 

The input impedance (the impedance “sees” by the source) is related to a lossless transmission line by 

𝑍𝑖𝑛 = 𝑍0
1 + Γ 𝑒−2𝜅𝐿

1 − Γ𝑒−2𝜅𝐿
= 𝑍0

𝑍𝐿 + 𝑖𝑍0 tan(𝜅𝐿)

𝑍0 + 𝑖𝑍𝐿 tan(𝜅𝐿)
, (C.8.2) 

where 𝜅 is the wave number of the transmission wave inside the cable, in which the refractive index or 

the speed of light is difference from free space. For the BNC cable we used, the velocity factor is 0.66. 

A BNC cable with length 𝐿 should be fulfilled the condition 

𝜅𝐿 = 2𝜋𝑛 +
𝜋

2
, (C.8.3) 

or the quarter wave-length matching. Under this matching, the input impedance is 
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𝑍𝑖𝑛 =
𝑍0
2

𝑍𝐿
. (C.8.4) 

When the impedance matching 𝑍0 = 𝑍𝐿  or Γ = 0 , the source only “see” the transmission line 

impedance regardless the length. Usually, electric device is set and designed that the input impedance 

is 50 Ω. Although the impedance matching condition alone can give 𝑍𝑖𝑛 = 𝑍0 = 50 Ω, the prefect 

matching, i.e. 𝑍0 = 𝑍𝐿, usually hard to achieve, especially the tuner is easily affected by environmental 

EM field.  

 

Figure C-22 – Tuner and coil circuits. 

 

The impedance matching condition was achieved with a network analyzer (Advantest R3754B Network 

Analyzer). The network analyzer generated a sweeping frequency signal and measures the reflection 

lost and the device impedance. We adjust the capacitors (in the tuner) so that the impedance is 50 Ω at 

the working frequency (in our case is 2.832 MHz).  

 

Figure C-23 – A screen captured from network analyzer.  

The upper screen is the smith chat, and lower screen is the reflection loss. 

 

After matched the impedance and found the NMR frequency, there are 3 parameters (The magnetic 

field, the NMR pulse width 𝑡𝑁𝑀𝑅, and power of the NMR pulse) have to be adjusted. The standard 

procedure is using high power pulse and short NMR pulse. It is because a high power pulse makes the 

rotation axis in rotating frame closer to the rotating x-axis. A 90º pulse (or 𝜋/2 pulse) satisfies the 

condition 
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𝑡𝑁𝑀𝑅Ω𝑒𝑓𝑓 =
𝜋

2
, (C.8.5) 

where Ω𝑒𝑓𝑓 is the effective Larmor frequency of the proton spin. By changing the magnetic field, we 

can pick-up the water NMR signal. We can further calibrate the Hall probe by the water NMR signal 

(Figure C-8).  

 

The power of the NMR pulse was adjusted by the “Level” of the NMR system. The actual power output 

is roughly proportional to the Level. We don’t have a detail relationship. Therefore, we have to search 

different settings. The 90º pulse gives maximum FID signal. This is a very good starting point. After 

found the 90º pulse, we can also found that 180º pulse (polarization inversion) and a smaller pulse.  

 

The 90º pulse can be confirmed by a second pulse after the transverse relaxation time. The transverse 

relaxation time (perpendicular to the static magnetic field) is short, about 100 µs. If it was a 90º pulse, 

all spins had rotated by 90º, precesses on the x-y plane. After the transverse relaxation time, the 

transverse polarization is gone but the longitudinal polarization does not build-up yet. The polarization 

is zero at that time. If a second 90º pulse is applied, the FID signal should be zero. The FID signal of 1st 

and 2nd pulse is changing with the Level. When the FID signal of the 2nd pulse meets zero again, this is 

the 90º pulse. The settings of the NMR system is shown in Table C-3. 

 

Table C-3 – NMR settings. 

NMR frequency 2.785 MHz 

Pulse width 2 µs 

Level for 180 degrees pulse 600 

Level for 90 degrees pulse 550 

Level for 4~5 degrees pulse 400 

Gain 20 dB 

 

C.8.2 FID signal  

The FID signal displayed on the CRO was recorded and calculated to give the “FID area” by root-mean-

square of the FID amplitude at all data points 

√∑(𝑠𝑖)2 + (𝑐𝑖)2
𝑁

𝑖

= FID area. (C.8.6) 

The FID area is a numerical integration of the FID signal. This is directly proportional to the 

magnetization of the crystal.  The induced electric field in the coil is, by integral form of Faraday 

equation 

ℰ2 = −
𝜕

𝜕𝑡
∫𝐵1⃗⃗⃗⃗⃗ ⋅ 𝑛2̂ 𝑑

2𝑥2, (C.8.7) 
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where the subscript 1 for the crystal, subscript 2 for the NMR coil. Included the geometry factor from 

the 𝐵1⃗⃗⃗⃗⃗ field generated by the crystal and the finite length of the coil, with the help of Stoke’s theorem, 

we have 

ℰ2 = −
𝜇0
4𝜋

𝜕

𝜕𝑡
∮∮

𝑀⃗⃗⃗(𝑟1⃗⃗⃗ ⃗) × 𝑛1̂
|𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗|

𝑑2𝑥1 ⋅ 𝑑𝑙2⃗⃗⃗ ⃗, (C.8.8) 

Or in short form 

ℰ2 = −𝐹
𝑑

𝑑𝑡
𝑀⃗⃗⃗, (C.8.9) 

where 𝐹  is the filling factor between magnetized sample 1 and coil 2. It is related to the mutual 

inductance. The FID signal is proportional to the e.m.f. in the coil times the gain of the NMR system. 

Thus, the integration gives us the magnitude of the magnetization and the spin polarization. 

 

C.8.3 Polarization Inversion 

The traditional method to reverse the polarization is by destroying the polarization and start building-

up in opposite direction. However, this method requires long time as the build-up rate is usually 7 to 15 

hours. In order to quickly inverse the polarization, we apply a 180º NMR pulse to the system and 

changing the field sweep direction. Recalling the Figure B-5, if the field sweep direction reversed, 

although the effective electron polarization will not be reversed, the proton polarization is building up 

in opposite direction, which is the same direction with the 180 degree rotated proton magnetization.  

 

The 180º pulse can be verified again by 2nd pulse. If the 1st pulse and 2nd pulse also give small signal, 

the corresponding Level is 180º pulse (see Figure C-24). However, the 180º pulse is not easy to achieve. 

It is because the proton Larmor frequency broadening. That makes different spins rotate at different 

frequencies. When the leading spin made 180º rotation, the trail spin is still far away from 180 degrees 

caused by the Larmor frequency differences. This broadening reduced the total magnetization and 

polarization. The best polarization inversion is about 60% (Figure C-24).  

 

C.8.4 Results of NMR Measurement 

During experiment, we measured the polarization by NMR every 2 hours. We applied a weak NMR 

pulse, corresponding to about 4º ~ 5º of rotation of the magnetization, to make minimum influence on 

polarization while able to detect NMR signal. The weak pulse was found by multiple pulses. The FID 

signal was measured for every 10 pulses, and total 100 pulses were measured. The corresponding 90º 

pulse signal was 12.75 times bigger. The FID signal during the experiment is shown in Figure C-24. 

Different beams were shadowed with different colors. The magnitude of polarization for FID area equal 

150 is 30% (see Appendix D.5).  
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Figure C-24 – Polarization during experiment.  

The proton runs were shaded with pink color, the 23F runs were shaded with red color, the 14O runs 

were shaded with green color, and the 25F runs were shaded with blue color. 

 

C.9 Analyzing Power 

The analyzing power of each partition can be deduced from the left-right asymmetry of the differential 

cross section. The yield 𝑌 of the knockout reaction is 

𝑌𝐿/𝑅
↑/↓
(𝛥𝜃𝐿/𝑅) = 𝛼𝐿/𝑅𝑌0 (1 + 𝑠𝐿/𝑅

↑/↓
𝐴𝑦𝑃

↑/↓) , 𝑠𝐿/𝑅
↑/↓
= {
+1, 𝐿↑, 𝑅↓

−1, 𝐿↓, 𝑅↑
, (3.13.1) 

where 𝑌(𝛥𝜃) is the yield in the sector of scattering angle Δ𝜃, 𝑌0 is the average non-polarized yield, 𝐴𝑦 

is the average analyzing power in the sector, 𝑃 is the average magnitude of the spin polarization of the 

proton target. The subscripts 𝐿, 𝑅 represent left and right and the superscripts ↑, ↓ represent spin-up and 

spin-down of the target. 𝛼𝐿/𝑅 is the systematic asymmetry factor. Spin-up and spin-down runs were 

performed to cancel the systematic bias. The laboratory scattering angle was divided into 5 sectors from 

20o to 70o. The systematic asymmetry was cancelled by using a combined yield 

𝑌𝐿 = √𝑌𝐿
↑𝑌𝑅
↓, 𝑌𝑅 = √𝑌𝑅

↑𝑌𝐿
↓ , (3.13.2) 

and the asymmetry 𝜖 is 

𝜖 = 𝐴𝑦𝑃 =
𝑌𝐿 − 𝑌𝑅
𝑌𝐿 + 𝑌𝑅

. (3.13.3) 

The statistical uncertainty of the asymmetry is 

𝛿𝜖 =
2√𝑌𝐿

2𝛿𝑌𝑅
2 + 𝑌𝑅

2𝛿𝑌𝐿
2

(𝑌𝐿 + 𝑌𝑅)2
. (3.13.4) 

The uncertainty of the analyzing power is 

𝛿𝐴𝑦 = 𝐴𝑦√(
𝛿𝜖

𝜖
)
2

+ (
𝛿𝑃

𝑃
)
2

. (3.13.5) 
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The magnitude of the proton polarization was 0.30 ± 0.07, which was deduced from the proton runs 

(see Appendix D.5 for polarization measurement). The magnitudes of the polarization for the 23F runs 

were more or less the same, while the magnitudes for the 25F runs were reduced, according to the NMR 

measurement (Figure C-24).  

 

Ideally, the analyzing power should be calculated in a narrow range of residue’s momentum. i.e., the 

momentum distribution in Figure 3-20 should be sectored, and then deduced the analyzing power by 

left-right asymmetry of the differential cross section in each momentum sector. However, because of 

small statistics, we were unable to do so. The theoretical analyzing power was calculated by the DWIA 

method (Section 1.2.4). In order to have a consistent comparison, the theoretical cross section for the 

left or the right detector was plotted into a histogram, and the theoretical analyzing power was calculated 

using equation (3.13.2) to (3.13.5). Note that the theoretical analyzing powers had a similar trend, 

because the residues’ momentum was integrated. These results agree with Figure 1-31 and the 

momentum distributions of Figure 3-20, Figure 3-21, and Figure 3-22. In Figure 1-31, the analyzing 

powers for all orbits (except the 2s1/2) have the same sign from 100 MeV to 200 MeV.  

 

The results of analyzing power for each peak from the 23F(p,2p) reaction are shown in Figure C-25, 

Figure C-26, and Figure C-27. The data point in angle sector 60o to 70o was omitted as there was no 

yield. The error of the yield 𝑌𝐿
↑, 𝑌𝑅

↑, 𝑌𝐿
↓, and 𝑌𝑅

↓ included the error of carbon background. When the yield 

is smaller than 3, the error of 1.15, 1.30, and 2.00 were used for yield of 0, 1, and 2 respectively because 

of Poisson distribution. Because of small statistics, the analyzing powers suffered large uncertainty. 

Therefore, it provides no help to distinguish the total angular momentum.  

 

Table C-4 – Table of yield for 23F(p,2p). 

θ [deg] 𝑌𝐿
↑ 𝑌𝑅

↑ 𝑌𝐿
↓ 𝑌𝑅

↓ 𝑌𝐿 𝛿𝑌𝐿 𝑌𝑅 𝛿𝑌𝑅 𝐴𝑦 𝛿𝐴𝑦 DWIA 

(23F,22O) partition 

25 22 17 3 4 9.38 2.89 7.14 2.68 0.452 0.801 -0.33 

35 28 26 10 8 14.97 3.74 16.12 3.87 -0.124 0.578 -0.16 

45 20 22 10 11 14.83 3.97 14.83 3.74 0.000 0.613 0.24 

55 23 27 3 3 8.31 2.80 9.00 3.11 -0.134 0.804 0.25 

(23F,21O) partition 

25 38 53 15 12 21.35 4.24 28.20 4.66 -0.460 0.436 -0.34 

35 90 75 24 19 41.35 6.10 42.43 5.94 -0.043 0.339 -0.14 

45 76 86 19 22 40.89 5.79 40.42 5.72 0.019 0.334 0.04 

55 49 39 10 15 27.11 4.40 19.75 4.15 0.524 0.449 0.53 

(23F,20O) partition 

25 49 44 11 8 19.80 4.92 22.00 4.66 -0.176 0.545 -0.39 

35 98 80 19 20 44.27 6.52 38.99 6.10 0.212 0.360 -0.05 

45 82 106 14 16 36.22 5.79 38.52 6.24 -0.103 0.380 0.10 

55 27 26 8 7 13.75 3.46 14.42 3.81 -0.080 0.608 0.46 
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Figure C-25 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1d5/2 shell for (23F,22O) partition in Figure 3-17.  

 

 

Figure C-26 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p1/2 shell for (23F,21O) partition in Figure 3-17.  

 

 

Figure C-27 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p3/2 shell for (23F,20O) partition in Figure 3-17.  
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Table C-5 – Table of yield for 25F(p,2p). 

θ [deg] 𝑌𝐿
↑ 𝑌𝑅

↑ 𝑌𝐿
↓ 𝑌𝑅

↓ 𝑌𝐿 𝛿𝑌𝐿 𝑌𝑅 𝛿𝑌𝑅 𝐴𝑦 𝛿𝐴𝑦 DWIA 

(25F,24O) partition 

25 0 2 1 1 0.00 1.51 1.41 1.44 -3.333 7.141 -0.36 

35 6 1 0 2 3.46 2.41 0.00 1.80 3.333 3.556 -0.01 

45 5 7 4 2 3.16 1.98 5.29 1.94 -0.840 1.149 0.09 

55 0 7 1 1 0.00 1.44 2.65 1.97 -3.333 3.720 0.39 

(25F,23O) partition 

25 5 2 1 3 3.87 2.04 1.41 1.85 1.550 1.878 -0.4 

35 10 10 14 15 12.25 2.63 11.83 2.86 0.057 0.539 0.02 

45 12 16 13 12 12.00 2.86 14.42 2.87 -0.306 0.518 0.09 

55 3 2 3 1 1.73 1.48 2.45 1.85 -0.572 1.846 0.47 

(25F,22O) partition 

25 10 20 14 15 12.25 3.28 16.73 3.74 -0.516 0.580 -0.4 

35 26 28 37 36 30.59 4.53 32.19 4.72 -0.085 0.347 0.02 

45 28 27 26 26 26.98 4.58 26.50 4.33 0.030 0.393 0.09 

55 15 5 13 14 14.49 3.20 8.06 2.74 0.950 0.659 0.47 

(25F,21O) partition 

25 1 2 3 11 3.32 2.74 2.45 2.33 0.501 2.055 -0.4 

35 17 8 9 13 14.87 3.39 8.49 3.20 0.911 0.712 0.02 

45 5 14 13 4 4.47 3.04 13.49 3.43 -1.674 0.983 0.09 

55 1 0 5 2 1.41 1.76 0.00 1.90 3.333 8.972 0.47 

 

Some absolute values of 𝐴𝑦 are larger than 1. This is because either 𝑌𝐿 or 𝑌𝑅 is zero that the asymmetry 

is 1 and the polarization of the target is 30%.  

 

Figure C-28 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p3/2 shell for (25F,24O) partition in Figure 3-27.  

Note that the range of analyzing power is from -6 to 6.  
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Figure C-29 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p3/2 shell for (25F,23O) partition in Figure 3-27.  

Note that the range of analyzing power is from -2 to 2.  

 

 

Figure C-30 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p3/2 shell for (25F,22O) partition in Figure 3-27.  

Note that the range of analyzing power is from -2 to 2.  

 

 

Figure C-31 – The combined yields of left and right detector, analyzing power, and theoretical 

analyzing power of 1p3/2 shell for (25F,21O) partition in Figure 3-27.  

Note that the range of analyzing power is from -6 to 6.  
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Appendix D  

Analysis and Results of Proton Elastic 

Scattering 

The proton-proton elastic scattering was used to measure the absolute magnitude of the polarization of 

the proton target. Besides, it provides calibration data for major detectors in the experiment. This section 

will explain the polarization measurement and the calibration results. 

D.1 Calculating Formula of Magnitude of Polarization 

The absolute magnitude of the proton polarization can be found by the proton-proton elastic scattering. 

The differential cross section of 𝑝(𝑝, 𝑝)𝑝 elastic scattering is [88] 

𝑑𝜎

𝑑Ω
= (

𝑑𝜎

𝑑Ω
)
0
(1 + 𝐴𝑦(𝜃)𝑛̂ ⋅ 𝑃⃗⃗), (D.1.1) 

where (
𝑑𝜎

𝑑Ω
)
0

 is the differential cross section for the non-polarized proton-proton elastic scattering, 

𝐴𝑦(𝜃) is the analyzing power which is angle dependence, 𝑃⃗⃗ is the polarization vector of the target and 

𝑛̂ = 𝑘𝑖̂ × 𝑘𝑓̂ is a normal unit vector of the scattering plane. The angles 𝜃, 𝜙 are following the usual 

definition. The inner product 𝑛̂ ⋅ 𝑃⃗⃗ usually denoted as 𝑃𝑦.  

 

Figure D-1 – The coordinate system for a proton-proton elastic scattering. 

 

The yield 𝑌 (number of true events detected) is proportion to the counting time 𝛥𝑇, the number of 

particle of the beam 𝑁𝐵, the number of protons per unit area in the target 𝑁𝑇, the detector efficiency 𝜖, 

the DAQ system life time 𝛼, the detector acceptance ΔΩ, and differential cross section 
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𝑌(𝜃, 𝜙) = 𝛥𝑇𝑁𝐵𝑁𝑇𝜖 𝛼 ∫
𝑑𝜎

𝑑Ω
sin 𝜃 𝑑𝜃𝑑𝜙

𝜃2

𝜃1

. (D.1.2) 

To get the magnitude of the polarization of the target, we can place 2 detectors at 𝜙 = 0 and 𝜙 = 𝜋, 

𝑌𝐿 = 𝑌(𝜃, 𝜙 = 0)

= 𝛥𝑇 𝑁𝐵𝑁𝑇𝜖 𝛼 ∫ ∫ (
𝑑𝜎

𝑑Ω
)
0
(1 + 𝐴𝑦(𝜃)𝑃𝑦) sin 𝜃 𝑑𝜃

𝜙(𝜃2)

𝜙(𝜃1)

𝑑𝜙
𝜃2

𝜃1

, 

𝑌𝑅 = 𝑌(𝜃, 𝜙 = 𝜋)

= 𝛥𝑇𝑁𝐵𝑁𝑇𝜖 𝛼 ∫ ∫ (
𝑑𝜎

𝑑Ω
)
0
(1 − 𝐴𝑦(𝜃)𝑃𝑦) sin 𝜃 𝑑𝜃

𝜙(𝜃2)

𝜙(𝜃1)

𝑑𝜙
𝜃2

𝜃1

. 

(D.1.3) 

Because 𝐴𝑦(𝜃)is independence of angle 𝜙 [88]. Thus 

𝐴𝑦(𝜃)𝑃𝑦 =
𝑌𝐿 − 𝑌𝑅
𝑌𝐿 + 𝑌𝑅

. (D.1.4) 

The error of the asymmetry 

𝐴𝑦𝛥𝑃𝑦 =
2

(𝑌𝐿 + 𝑌𝑅)2
√𝑌𝐿

2𝛥𝑌𝑅
2 + 𝑌𝑅

2𝛥𝑌𝐿
2. (D.1.5) 

 

The detectors set up is shown in Figure 2-14. The geometry of acceptance is shown in Figure D-2. In 

the left plot, the beam is coming from the left, outside of the box. The crystal is a dark purple disk 

(enlarged 10 times for illustration). The scattered protons are presented by the 2 black arrows. The blue 

lines are the outlines of the MWDC’s acceptance area on an imaginary sphere (green). The red outlines 

are the projection of the MWDC’s windows on the sphere. The black outlines are the projection of the 

acceptance area on the crystal’s plane. The 𝜙 dependence on 𝜃 is plotted in the right figure. 

 

 

Figure D-2 – Geometry of the MWDC acceptance (Left).  

Angular distribution of azimuthal open angle (Right). See text for explanation. 
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D.2 Conditions of Elastic Scattering 

A proton beam at 260 MeV was bombarded on the spin-polarized solid target made of mainly 

naphthalene (C10H8), which was surrounded by hydrogen-free plastic (PCTFE, 

polychlorotrifluoroethylene, [CF2-CFCl]n) holder. The data was recorded whenever both Tpla-L and 

Tpla-R were fired (the ppcoin trigger, see Section 2.4.1). The number of the beam proton and the DAQ 

live time are shown in Table D-1.  

 

Table D-1 – Scalar data for scattering runs 

 Count (scattering runs) 

 Spin-up Spin-down 

FH9 plastic 1,254,720,099 874,817,768 

Request 374,914 259,190 

Accepted 287,755 199,918 

DAQ live time 76.75% 77.13% 

 

Although the target crystal and the surrounding material contain carbon atom, the proton-proton elastic 

scattering has a distinguish fingerprint on the opening angle for identification. The opening angle is 

almost 90o, while the proton-carbon elastic scattering has much larger opening angle. Moreover, the 

recoiled carbon cannot acquire enough energy to pass through two 128-μm Kapton films on the 

chamber’s windows. Therefore, the proton-carbon elastic scattering events cannot be detected, as the 

trigger was set that both Tplas were fired. However, the proton-carbon inelastic scattering, especially 

the 12C(p,2p) events can create a proton-pair that can be recorded. This gave a broad background signal.  

 

The proton-proton elastic scattering opening angle is calculated and shown in Figure D-3. The opening 

angle in the laboratory frame 𝛥𝜃𝐿𝑎𝑏 = 𝜃1 + 𝜃2 is not 90º and not a delta peak because of the relativistic 

effect. The scattering angle in the rest frame of the center of momentum 𝜃𝑁𝑁 is limited from 40 o to 140 

o due to the detector acceptance. The opening angle has a peak at 86.5 o after convolution with a Gaussian 

function with 0.3º uncertainties.  
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Figure D-3 – Proton-proton elastic scattering.  

Left: Opening angle in the Laboratory’s frame 𝜟𝜽𝑳𝒂𝒃 against scattering angle in the c.m. frame 𝜽𝑵𝑵. 

Right: The red curve is the 𝜟𝜽𝑳𝒂𝒃 distribution. Green curve is Gaussian distribution with sigma 0.3 

deg. Blue curve is the convolution of the red curve by the green curve.   

 

The experimental data of the 𝛥𝜃𝐿𝑎𝑏 is shown in Figure D-4. It shows a peak on a broad background. 

Although the peak is located on 86 o instead of 86.5 o, it must be the proton-proton elastic scattering 

peak. The reason for the shift could be a fine misalignment of the experimental setup. The effect of the 

magnetic deflection was included in the calculation that it could not be the main contribution to the 

shift. The opening angle was gated by different opening angle sections (40 o – 60 o, 60 o – 80 o, 80 o – 

100 o, 100 o – 120 o and 120 o – 140 o). 

 

 
Figure D-4 – Experimental data of opening angle. 

 

The spin polarization was monitored by the NMR method during experiment (Appendix C.8.1). Figure 

D-5 shows the NMR amplitude (in term of the integrated area of the free induction decay) during the 

PPES runs. The red shaded area represents the recorded scattering data of the spin-up runs, and the blue 

shaded area represents the recorded scattering data of the spin-down runs. The NMR measurements 

took place between runs. The average amplitude of the spin-up runs was 147 a.u. and that of spin-down 

runs was -115 a.u.. The amplitude of spin-down is approximately 78% of that of spin-up. The total 

recorded duration of spin-down runs is also shorter than that of spin-up runs.  
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Figure D-5 – NMR signals during the PPES runs.  

See main text for detail explanation. 

 

D.3 Background Elimination 

There are 3 independent qualities, spherical angles (𝜃, 𝜙) and the separation energy 𝑠𝑝. The proton-

proton elastic scattering events have a well-defined opening angle Δ𝜃𝐿𝑎𝑏 = 𝜃1 + 𝜃2 and it must be 

coplanar Δ𝜙 = 𝜙1 − 𝜙2 = 180°. The separation energy is not helpful in this case because a lot of 

background events came from the carbon scattering, which occurred in both the target crystal and the 

surrounding material. Another quality, 𝑍𝑏𝑒𝑎𝑚  was constructed by the ray tracking result from the 

MWDCs 

𝑍𝑏𝑒𝑎𝑚 =
𝐴 𝑧0 − 𝑋

𝐴 cos 60° − sin 60°
, (D.3.1) 

where 𝑋, 𝐴 are the ray parameters, 𝑧0 is the perpendicular distance from crystal to the MWDC, and 60° 

is the MWDC tilted angle (Figure 2-14). The 𝑍𝑏𝑒𝑎𝑚 is the z-position on the Y-Z plane, which is an 

approximated reaction vertex. A weighted 𝑍𝑏𝑒𝑎𝑚 was calculated from both MWDC-L and MWDC-R. 

Figure D-6 shows the result of the weighted 𝑍𝐵𝑒𝑎𝑚. The meaning of the 𝑍𝐵𝑒𝑎𝑚 is similar to vertex(Z) 

(Section 3.3). The peak at 0 mm is from the target and the target holder. The peak at 50 mm is from the 

NMR coil. The peak at 170 mm is from the carbon target. 
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Figure D-6 – Plot of weighted ZBeam.  

See main text for detail explanation. 

 

The coplanar angle 𝛥𝜙 is shown in Figure D-7. There are 2 closely packed peaks. The main peak is 

around 0o, and the second peak is around -10o.  

 

Figure D-7 – Coplanar angle Δϕ, 2 peaks are closely located. 

 

We can see that, it is hard to define a suitable gate on Δ𝜙 and 𝑍𝐵𝑒𝑎𝑚 but Δ𝜃. Thus, an opening angle 

central gate (84o to 89o) and side gate (81.5o to 84o or 89o to 91.5o) were used as the signal and the 

background gate respectively. The central gate selected the proton-proton elastic scattering events and 

background events. The side gate selected background events.  
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Figure D-8 – Gates and result on ZBeam.  

(Left) The central and the side gate of the opening angle. (Middle) the gate on 𝒁𝑩𝒆𝒂𝒎. (Right) the 

Subtracted histogram of 𝒁𝑩𝒆𝒂𝒎.  

 

The results of the gating are shown in Figure D-8. The left plot is the 𝛥𝜃 gates, the blue line is the 

central gate and the red line is the side gate. The middle plot is the 𝑍𝐵𝑒𝑎𝑚  under 𝛥𝜃  gates with 

corresponding color. The right plot is the subtraction. The subtraction was fit by a Gaussian. The count 

range is between the two green lines. The side gate gives fairly good background estimation.  

D.4 Summary of Gates 

The gates are listed in Table D-2. 

Table D-2 – List of gates in proton-proton elastic scattering analysis. 

Gate Name Content 

Central gate Opening angle from 84o to 89o 

Side gate Opening angle from 81.5o to 84o or from 89o to 91.5o  

𝑍𝐵𝑒𝑎𝑚  Weighted  𝑍𝐵𝑒𝑎𝑚 from -40 mm to 60 mm 

OpenPhi |𝛥𝜙 − 180°| < 7.5°  

 

D.5 Polarization Measurement 

The scattering angle in the rest frame of the center of momentum 𝜃𝑁𝑁 is divided into 5 sectors (40o – 

60o, 60o – 80o, 80o – 100o, 100o – 120o and 120o – 140o). The central and side gates of the opening angle 

are applied. The yield is counted from the 𝑍𝐵𝑒𝑎𝑚 as same as Figure D-8. The result is shown in Table 

D-3. The error is shown in the bracket besides of the yield. The total yield is 5032. 

 

Table D-3 – Yields of the proton-proton elastic scattering. 

 𝑌𝐿
↑ 𝑌𝑅

↑ 𝑌𝐿
↓ 𝑌𝑅

↓ 

40o – 60o 235(31) 309(40) 201(27) 183(28) 

60o – 80o 713(63) 767(63) 509(53) 422(52) 

80o – 100o 1149(80) 1098(81) 635(67) 600(66) 

100o – 120o 766(64) 733(64) 387(52) 496(54) 

120o – 140o 270(33) 227(30) 167(27) 197(26) 

Total  3133(129) 3134(131) 1899(107) 1898(107) 
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In order to cancel the systematic asymmetry, spin-up and spin-down runs were measured. The yield 

𝑌𝐿/𝑅
↑/↓(𝛥𝜃𝑁𝑁) = 𝛼𝐿/𝑅𝐿

↑/↓𝜖𝜎 (1 + 𝑠𝐿/𝑅
↑/↓
𝐴𝑦𝑃

↑/↓),  

 𝐿↑/↓ = 𝑁𝑇∑(𝑁𝐵
↑/↓
)
𝑖
𝜆𝑖

𝑖

, 𝑠𝐿/𝑅
↑/↓
= {
+1, 𝐿↑, 𝑅↓

−1, 𝐿↓, 𝑅↑
, 

(D.5.1) 

where 𝑌(𝛥𝜃𝑁𝑁) is the yield in the sector of 𝜃𝑁𝑁, 𝐿 is the luminosity,  𝑁𝑇 is the number of protons in 

target, 𝑁𝐵 is the number of protons in beam that on the target, 𝜆 is the DAQ live time, 𝜖 is the detection 

efficiency, 𝜎 is the integrated cross section of no polarization, 𝐴𝑦 is the mean analyzing power, 𝑃 is the 

mean magnitude of the spin polarization of the proton target. The subscripts 𝐿, 𝑅 represent left and right 

side and the superscripts ↑, ↓ represent spin-up and spin-down. 𝛼𝐿/𝑅 is the systematic asymmetry factor 

and the proportional background factor. 

 

If we assume the polarization of spin-up and spin-down are the same and assumed the background is a 

fraction of signal. A combined yield can eliminate the asymmetry factor 𝛼, it is 

𝑌𝐿 = √𝑌𝐿
↑𝑌𝑅
↓, 𝑌𝑅 = √𝑌𝑅

↑𝑌𝐿
↓, (D.5.2) 

The result is shown in Figure D-9. The asymmetry is calculated by 

𝑎𝑠𝑦𝑚 = 𝐴𝑦𝑃 = 
𝑌𝐿 − 𝑌𝑅
𝑌𝐿 + 𝑌𝑅

, (D.5.3) 

The mean analyzing power is obtained from CNS database. The polarization is calculated for each 

sector and a weighted mean is used. The resulting spin polarization is -30.5% ± 7.3%.  

 

 

Figure D-9 – Yield and asymmetry of the proton-proton elastic scattering. 

 

The magnitude of the spin polarization of spin-up and that of spin-down are different from the NMR 

measurement (Figure D-5). In order to eliminate the asymmetry, spin-up and spin-down on one-side is 

used.  Assuming the 𝑃↑ = 𝑘𝑃↓ = 𝑃, the asymmetry 
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𝐴𝑦𝑃 =
𝑌𝐿
↑𝐿↓ − 𝑌𝐿

↓𝐿↑

𝑌𝐿
↑𝐿↓𝑘 + 𝑌𝐿

↓𝐿↑
, 𝐴𝑦𝑃 =

𝑌𝑅
↓𝐿↑ − 𝑌𝑅

↑𝐿↓

𝑌𝑅
↓𝐿↑ + 𝑌𝑅

↑𝐿↓𝑘
, (D.5.4) 

The weighted average of the polarization is -31.8% ± 12.7% for spin-up and 24.8% ± 9.9% for spin-

down.  

 

D.6 Integrated Cross Section 

The number of particles in the beam and the DAQ live time can be obtained from the scalar data. 

However, the beam is not 100% overlap with the target. The beam profile is shown in the left plot of 

Figure D-10. The black circle is the crystal that the hit-ratio is about 32.8%. Because the DCX1X2 are 

turned off during the scattering runs, the target-hit-ratio 

Target − Hit − Ratio =
#on crystal

#proton
=
#tracked on crystal

#tracked
. (D.6.1) 

 

 

Figure D-10 – Beam profile and Hit ratio from the optics runs. 

 

The target thickness is 1 mm. The molar mass of naphthalene is 128.17 gmol-1. The density of the crystal 

is 1.14 gcm-3. Each molecule has 8 protons. The number of protons on the crystal is 

𝑁𝑇 =
1.14

128.17
× 8 × 0.1 × 𝑁𝐴 = 4.285 × 10

21 cm−2. (D.6.2) 

 

The MWDCs combined detection efficiency is 75.9%. This efficiency is a combined efficiency of both 

MWDC-L and MWDC-R. Individual detection efficiency constrains two parts: tracking efficiency and 

fire efficiency. The fired efficiency is deduced from number of fired planes and fit by binomial 

distribution. The tracking efficiency is deduced from the number of tracked events over the number of 

events that at least one plane was fired. The product of these two efficiencies is the ratio of number of 

tracked particle over number of particles pass through.  
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Table D-4 – MWDC efficiency in the proton runs. 

 MWDC-L MWDC-R 

Tracking efficiency 96.2% 88.0% 

Fired efficiency 96.1% 93.4% 

Detection efficiency 92.4% 82.2% 

Combined efficiency 75.9% 

 

The experimental cross section is 

𝜎𝑒𝑥𝑝 =
𝑌↑ + 𝑌↓

0.328 𝑁𝑇 (∑ (𝑁𝐵)𝑖𝜆𝑖𝑖 ) 0.759
= 2.72 × 10−27cm−2

= 2.70 mb ± 0.27 mb 

(D.6.2) 

 

The uncertainty mainly came from the target thickness. The target was polished by hand that the 

thickness uncertainly might be almost 10%. 

 

To compare with the theoretical cross section, the cross section and analyzing power of 260 MeV in the 

laboratory’s frame is shown in Figure D-11 [100]. The integrated cross section 

𝜎𝑡ℎ = ∫ (
𝑑𝜎

𝑑𝛺
)
𝐿𝑎𝑏
sin 𝜃𝐿𝑎𝑏 𝜙(𝜃𝐿𝑎𝑏)𝑑𝜃𝐿𝑎𝑏

70°

20°

= 2.51 mb, (D.6.3) 

where the azimuthal acceptance 𝜙, of the MWDC depends on 𝜃𝐿𝑎𝑏. The experimental cross section is 

more than the theoretical cross section. This may be due to under-estimated background. 

 

 

Figure D-11 – Differential cross section and analyzing power in Laboratory’s reference frame [100]. 

 

D.7 Angular Resolution 

The opening angle around |𝜃𝑁𝑁 − 90°| < 5° is almost a delta distribution with width 0.0141° (Figure 

D-3). The 85° < 𝜃𝑁𝑁 < 95°  gate was applied on the 𝛥𝜃 . The |𝛥𝜙 − 180°| < 7.5°  gate was also 

applied. The result shows in Figure D-12. The blue line on the left is the 𝛥𝜃 with 80° < 𝜃𝑁𝑁 < 90° 

gate and  |𝛥𝜙 − 180°| < 7.5°  gate. The red line was applied 85° < 𝜃𝑁𝑁 < 95°  gate and  |𝛥𝜙 −
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180°| > 7.5° gate. The right plot is the subtraction and fitted by a Gaussian. The sigma of the fit is 0.5o 

= 8.7 mrad. If we assume the angular resolutions from MWDC-L and R are the same 

𝜎(𝜃1) ≈ 𝜎(𝜃2) ≈ 6 mrad. (D.7.1) 

The resolutions of the tracking parameter X of the MWDC-L and MWDC-R are approximately 0.1 mm. 

Considering the minimum distance from MWDCs to the target crystal is 1 meter, the contribution of 

the angular resolution from the MWDC tracking uncertainty can be neglected. The angular uncertainty 

could be due to multiple scattering from target to detector, which is about 1.2 to 1.4 meter with nitrogen 

gas, Kapton films and air in between.  

 

 

Figure D-12 – Resolution of opening angle.  

(Left) The distribution of opening angle near 𝜽𝑵𝑵 = 90 (see main text). The blue line is signal. The 

red line is estimated background. (Right) The background subtracted signal with Gaussian fitting. 

 

D.8 Separation Energy Resolution  

The separation energy 𝑠𝑝 of proton-proton elastic scattering is calculated using the formula 

𝑠𝑝 = (1 − 𝛾)𝑚𝑝 − 𝛾(𝑇1 + 𝑇2) + 𝛾𝛽(𝑝1 cos 𝜃1 + 𝑝2 cos 𝜃2) (D.8.1) 

where 𝛾 and 𝛽 are the Lorentz factor of incident particle, 𝑚𝑝 is the mass of proton, 𝑇 is the kinetic 

energy and 𝑝 is the momentum. Thus, the resolution of separation energy depends on the time resolution 

and the angular resolution. The result of opening angle gate (85° < 𝜃𝑁𝑁 < 95° and |𝛥𝜙 − 180°| <

7.5°)  applied on spectrum of 𝑠𝑝 is shown in Figure D-13. The blue line on the left plot is with the gate 

85° < 𝜃𝑁𝑁 < 95° and |𝛥𝜙 − 180°| < 7.5°. The red line is with the gate 85° < 𝜃𝑁𝑁 < 95° and |𝛥𝜙 −

180°| > 7.5°. The right plot is the subtraction and fit with two Gaussians. The uncertainty of the larger 

peak is approximately 3 MeV. 
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Figure D-13 – Spectra of excitation energy of the proton-proton elastic scattering.  

(Left) The distribution of excitation energy with gates (see main text). The blue line is signal. The red 

line is estimated background. (Right) The background subtracted signal with Gaussian fitting.  
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