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Abstract

In this thesis, we study six-dimensional superconformal field theories (SCFTs), brane engineer-
ings of them, and circle/torus compactifications of them.
In the former half, we summarize some of known results about 6dN =1SCFTs. Since a 6d SCFT

sits on UV side of renormalization group flows among 6d theories and is generally strongly cou-
pled, we cannot probe those theories with perturbative methods. However, a tensor branch effec-
tive field theory which describes the near IR regime captures some aspects of the strongly coupled
UV physics, for example the anomaly polynomial. We will first review the general near IR 6d
N =1 physics and the calculation of the anomaly polynomial. Then, we look at brane/singularity
engineerings of some specific 6d SCFTs in string/M-theory, which guarantees the existence of 6d
SCFTs.
In the latter half, we focus on the circle/torus compactifications of 6d SCFTs. We consider com-

pactifications of two classes of 6d SCFTs. One is very-higgsable theories and the other is theories
higgsable to N =(2, 0) theories. As well as finding general properties of such compactifications,
we identify 4d theories obtained by the torus compactification for some examples of 6d theories.
The 4d theories obtained by the considered compactifications tend to be described by a class S
theory or a combination of different class S theories.
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1. Introduction

1.1. Motivation

1.1.1. General motivation

Quantum field theory (QFT), the framework that describes our world above the Planck scale,
has been a rich research subject in Physics. Among QFTs, the supersymmetric ones are exten-
sively studied and many nontrivial facts are discovered although the real-world QFT, which is the
standard model below the electroweak scale, is non-supersymmetric. The reason to study super-
symmetric theories is that we would like to understand analytically general features of quantum
field theory beyond the level of perturbation, and so far typically we need supersymmetry to inves-
tigate such non-perturbative phenomena in QFT. In particular, the fixed points of renormalization
group (RG) flow of supersymmetric theories, that is superconformal field theories (SCFTs) are
the most important class.
This thesis is devoted in particular to six-dimensional (6d) SCFTs. One of the reasons to study

theories in 6d (, not 4d in which we live,) theories is to think of “What is quantum field theory?”. In
6d supersymmetric Lagrangian, there is no classically marginal or relevant coupling. Therefore,
all the theories are free in IR on a generic point of its moduli, and in UV the couplings diverges.
In 4d QED, the gauge coupling is classically marginal but IR-free in the quantum theory, meaning
that the theory suffers from Landau pole and needs additional scale below the Landau pole that
cures the divergence of the gauge coupling. In 6d, every interacting theory looks like having a
Landau pole, therefore it seems that there is no way to cure it.
Fascinatingly, this conclusion is not true. String/M-theory constructions [1, 2] established the

existence of UV completed 6d supersymmetricN =(2,0) 1theories, if one believes the consistency
of the string/M-theory. Further, there is no need to add scales by hand, but the theory automat-
ically cures itself. In UV, the theory is strongly coupled and there is no known Lagrangian that
describes the UV physics. Still, the existence of such theories is as believable as the existence2of
string/M-theory because of various consistencies which have been checked.
The very lesson here is that a QFT is not (necessarily) defined by a Lagrangian, and 6d SCFTs

are good model cases of non-Lagrangian 3theories. We would like to investigate how to treat
such theories and calculate physical observables. Actually, the author and the collaborators found

1The symbolN denotes the number of supersymmetries by the unit of minimal spinor representation of the consid-
ered dimension, as usual. 6d admits symplectic Majorana-Weyl fermions therefore the type of the supersymmetry
algebra is specified by a pair of integers each represents the number of supercharges with +/− chiralities. In 6d,
N =(1, 0) supersymmetry algebra has 8 supercharges which is equal to the number of supercharges in 4d N =2
algebra. A brief explanation is in Section 2.1. For more detail, see, for example, Appendixes of [3].

2Here the word “existence” means theoretical (or mathematical) existence. We are not going to discuss whether this
world is governed by the string/M-theory.
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1. Introduction

in [4] that the anomaly polynomial, which is one of physical observables, of a strongly coupled
SCFT can be derived only from the data of IR nearly-free physics connected with the considered
SCFT by renormalization group flow.

1.1.2. Another reason: compactification

Another reason why we study 6d theories, which is closely related to the above, is that the said
dimension is the maximum dimension which admits the superconformal symmetry [5]. A single
6d SCFT can generate various lower dimensional (including 4d) supersymmetric theories via
compactification (or dimensional reduction), therefore 6d SCFTs are possibly useful tools to study
lower dimensional theories. In fact, the relation between 6d N =(2,0) theories and 4d N =2
theories called class S theories [6] is known to be much interesting and important.
The final objective of the researches included in this thesis is to generalize this seminal result

to less supersymmetric situations. There are much more 6dN =(1, 0) SCFTs thanN =(2,0) ones,
therefore we expect richer structure among them and their compactifications.

Class S theories Not only a single QFT has profound aspects but also an appropriate family
of QFTs tends to have abundant structures, and such collective features are attracting more and
more attentions.
One of the most important family of QFT is the so-called class S theories, introduced by Gaiotto

in 2009 [6]. The class S theories are defined by means of the six-dimensional N = (2,0) theory
of type G = An , Dn , E6,7,8, which we denote T (2,0)

G . A member of the family is a four dimensional
N = 2 supersymmetric QFT which can be obtained by compactification of the six-dimensional
N = (2, 0) theory on a Riemann surface (a smooth two-dimensional surface) C possibly with
certain punctures. The existence of 6d N =(2, 0) is conjectured by the string/M-theory, and the
theory does not admit any Lagrangian description known so far. However, assuming the existence
and a few additional properties deduced easily from string/M-theory miraculously predicts many
properties among the class S theories which is otherwise very difficult to see.
The easiest case is when the two-dimensional surface C is a torus T 2 with the flat metric.

Then all sixteen supercharges in the 6dN =(2, 0) theory are preserved and therefore the 4d theory
is expected to be the N =4 Super Yang-Mills theory (SYM) whose vector field components is
described by the Lagrangian

4π2

g 2
trF ∧ ⋆F +

θ

4
trF ∧ F. (1.1.1)

where F is the field strength of the G vector field. 4 The complex structure τ (ratio of two period
“lengths” of the T 2) is identified with the gauge coupling τ = θ

2π +
πi

2g 2 . This realization of the
4dN =4 SYM is accompanied by a highly nontrivial fact: from 6d point of view, there is a large
diffeomorphism acting on T 2 which sends the complex structure τ to − 1

τ , the resulting 4dN =4

3Again we would like to remark that non-Lagrangian means there is no known Lagrangian now.
4In this thesis the field strength F is multiplied by i

2π compared to the usual notation used in Physics. With this
normalization, F is valued in the integer cohomology when the gauge group is abelian.
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SYM should also be invariant under the map. This is called S-duality. 5 6

Note that the S-duality is the relation between a strongly coupled theory and a weakly coupled
theory, therefore it is very difficult to show the duality starting from the Lagrangian. However,
the construction using mysterious N =(2,0) theory reveals the duality seemingly easily. Yet this
is at this stage just that the mystery of the S-duality is translated to the mystery of the 6dN =(2,0)
theory, but the class S construction in [6] also provides other highly nontrivial facts about the
N =2 theories. This is why Gaiotto’s introduction of class S theories is considered a seminal
contribution.

With less supercharges? The aim of the research contained in this thesis is to generalize the
above story on 6d N =(2,0) SCFTs and 4d N =2 theories to theories with less supercharges. In
[11,12], many 6dN =(1, 0) SCFTs (which have eight supercharges) are engineered and classified
in the F-theory language. WhileN =(2, 0) theories are classified by simply-lacedDynkin diagrams
which contains two infinite series of AN , DN and three exceptions E6,7,8, there are much more
N =(1,0) theories.
When an N =(1, 0) theory is compactified on a general Riemann surface, half of the super-

charges are broken and thus the resulting 4d theory possesses 4d N =1 supersymmetry. Such
construction might enable us to generate various strongly coupled N =1 systems probably we
have never known, and to reveal duality relationships among them.

1.1.3. What will be actually studied in this thesis

Torus compactification Although our final goal is to investigate putting N =(1,0) theories
on general Riemann surfaces, in this thesis we will consider only torus (T 2) compactifications
of them as a starting point. Since T 2 is flat, all the eight supercharges of a 6d N =(1,0) theory
remains upon the T 2 compactification, giving us a 4dN =2 theories.

Intricate M-theory background A byproduct of the recent researches on the 6d SCFTs was
to reveal some intricate facts on M-theory backgrounds [13] which preserves eight supercharges.
For example, an M5-brane, which is a six-dimensional object in M-theory, can split into several
parts when trapped in the singularity of the ALE space C2/Γg with g = Dk , E6,7,8. In this thesis
we will see some of such nontrivial physics of M-theory along the way of reviewing the known
results on 6d SCFTs.
We would like to emphasize this byproduct, therefore contents in the review part Chapter 2 are

described mainly in the M-theory language. It is hoped that the a review part, though it is review,
might play a complementary role to the available literature, because in the literature usually 6d
SCFTs are engineered and described mainly by means of F-theory.

5 This statement is not precise. The global structure of 4d gauge group changes under the S-dual, meaning that the
6d theory is not completely invariant under the large diffeomorphism. See [7].

6 The first idea of the S-duality came in [8], and strong evidences for N =4 case were discovered in 90’s: e.g. [9].
The relation to 6d theories was proposed in [10] for the abelian case.
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1. Introduction

1.2. Structure of the thesis and rough summary

Here we explain the structure of the thesis and roughly summarize the result. This thesis contains
four chapters: the first one is this introduction, the second one is devoted to reviewing known re-
sult (containing slightly new considerations) on 6d SCFTs, the third one includes themain contents
about compactifications of 6d SCFTs, and we conclude in the last. The main chapter is further
split into three sections. Each section correspond to one of the author’s and his collaborators’
paper:

• Section 3.1: “6dN = (1,0) theories on T 2 and class S theories: Part I” [14]

• Section 3.2: “S 1/T 2 compactifications of 6dN = (1, 0) theories and brane webs” [15]

• Section 3.3: “6dN = (1,0) theories on T 2 and class S theories: Part II” [16]

Some amount of the results in [14] is also dissolved into Chapter 2.
In Section 3.1, we will consider the torus compactification of a 6d N =(1, 0) SCFT T which

satisfies a condition we call “very-higgsable”. The main result there is

The torus compactification 4dT of a very-higgsable 6d theory T has a strongly coupled 4dN =2
SCFT fixed points. The 4d central charge can be calculated from 6d anomaly polynomial. The
torus modulus τ is not a marginal deformation of the 4d SCFT 4dT , but it is irrelevant.
This is a generalization of well-known relation between the 6d E-string theory and the E8 theory
of Minahan and Nemeschansky. Note that in this case the torus modulus τ is not a marginal
deformation of the 4d theory, as opposed to the case of N =(2, 0) theory explained above. This
means that the story of class S theory [6] cannot be naively imported into the whole N =(1,0)
theories.
In Section 3.2, we investigate concrete examples of very-higgsable 6d theories, which are hig-

gsable to E-string theory. There we will find

For a theory in the class of very-higgsable theories we consider, the torus compactification is
identified with a class S theory whose Gaiotto curve C is a three-punctured sphere.

We will extensively use the method of 5d brane webs [17], generalizing the analysis of [18].
In Section 3.3, we study 6d theories which are “higgsable to N =(2,0) theories”. An example

of a “higgsable to an N =(2,0) theory” is an N =(2, 0) theory itself. Those theories are not very-
higgsable, and thus the above result for very-higgsable theories are not applied. The result can be
roughly summarized as follows:

For a 6d theory T which is higgsable to anN =(2, 0) theory, its torus compactification 4dT does
not generally have a fixed point composed of a single coupled 4d SCFT (without turning onWilson
lines along the torus). Rather, in some examples the 4d theory 4dT has a fixed point containing
two class S theories coupled with each other by IR free gauges fields. The torus modulus τ is a
marginal deformation of one of them. In some special cases, one of two class S theories happens
to be trivial, and the fixed point is a single class S theory.
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A N =(2, 0) is included in the “some special cases” mentioned above, and there are infinitely
many other N =(1, 0) theories in it. Therefore, we hope many properties of class S theories can
be generalized to those cases when we put on those theories on general Riemann surfaces, though
it is far from the scope of this thesis.

Possible shortcut This paper is almost linearly organized. However, Section 2.5 and Sec-
tion 3.2 is somewhat isolated, therefore can be skipped if the contents in Section 3.2 is not needed.

1.3. General notations and remarks

Before starting the main part, we need to define some notations which will be frequently used in
the thesis.
First, we are going to discuss various 6d theories. A 6d theory will be denoted by a symbol T .

To denote some specific theories, we will modify the symbol T like T (g,g)
N (the definition of this

theory will be given later). In Chapter 3, we will talk about circle/torus compactifications of a 6d
theory T . The resulting 5d/4d theories are denoted by 5dT , 4dT , respectively. If the 6d theory is
T (g,g)

N , the compactified theories are 5dT (g,g)
N , 4dT (g,g)

N .
In the text various Lie algebras/groups appears. The group theoretical constants and their nota-

tions are summarized in Appendix A.We denote 6d gauge groups by g rather thanG and treat them
as Lie algebras. Our consideration will be independent of global structures of 6d gauge groups,
so we will not be careful about them, e.g. whether the gauge group is SU(N ) or SU(N )/ZN . The
notation G will be used for a type of N =(2, 0) theory, which is classified by G = A, D , E root
systems. In Section 3.3
In this thesis we will heavily use the language of differential forms. We use the notation where

A means gauge-potential 1-form and F does its field strength 2-form. The star symbol ⋆ denotes
the Hodge dual, so that the Yang-Mills action functional is proportional to

∫
F ∧ ⋆F . We also

encounter 2-form field B everywhere in this thesis, and its field strength 3-from is denoted by H .
The convention of the Minkowski metric is (−,+,+,+,+,+).

Terminologies defining classes of N =(1, 0) SCFTs To study torus compactifications, it
will turn out to be convenient to classify N =(1,0) SCFTs by the IR fixed point of the Higgs
branch flow triggered by a most generic Higgs branch vev. The ”very-higgsable” theories refers
to theories whose Higgs flow ends at the free fixed point containing only Nambu-Goldstone hy-
permultiplets. When the generic Higgs flow of aN =(1, 0) SCFT ends at aN =(2, 0) SCFT up to
NG hypers, the theories is called ”higgsable toN =(2,0) theory”. As a subclass of very-higgsable
theories, theories with Higgs flow go through (higher rank) E-string theory are called ”higgsable
to E-string theory” in this thesis.
As explained before, very-higgsble theories are considered in Section 3.1, theories higgsable to

E-string theory are in Section 3.2, and theories higgsable toN =(2,0) theory are in Section 3.3. In
those sections, the terminologies are used for a bit narrower meaning for technical reasons. The
precise definitions of the terminologies are introduced in each corresponding sections.
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2. Six dimensional superconformal field
theories

In dimensions d ≤ 4, one might think that it might be best to start from a Lagrangian theory to
study (super) conformal field theories. Some CFTs are weakly coupled, and many others can
be described as an IR limit of Lagrangian theories in these dimensions. We can exploit many
techniques for studying such theories depending on Lagrangian and path-integral formalism. On
the other hand, in d = 5, 6, a coupling constant in Lagrangian always becomes weak when the
theory flow into IR, therefore a non-free fixed point sits at UV. This is a completely different
situation from d ≤ 4.
A known good strategy to find such UV fixed points is string theory construction. Branes in

string theory, or an intersection of branes, carry its worldvolume theory on it, and often there
is a limit in which the worldvolume theory becomes decoupled from any scales in the string
theory. This limit defines a CFT. Another way of obtaining a CFT is from a singularity of a
compactification geometry. Actually, a singularity and branes or an intersection of branes are
often dual to each other.
While such string theory construction almost ensures the existence of SCFTs (if we believe the

existence of string theory), it does not tell us the physics of obtained SCFTs clearly at once. As
we will see, in the six-dimensional case, what brane configurations and the singular geometry
directly tells us is the low energy effective particles on the tensor branch. Thus, we need to
extract informations about UV fixed points from IR effective physics. So far, the only quantities
which can be read from general IR effective spectrum is the anomaly polynomial, which is strictly
constrained as we will see.
In this chapter, first we remind ourselves nearly free fields with 6d N = (1,0) symmetry, and

study anomaly constraints on the IR effective theory. Then, we will quickly review string theory
construction of 6d SCFTs, mainly focusing on M-theory one.

2.1. IR effective spectrum and tensor branch anomaly
matching

As said above, a nontrivial 6d SCFT sits at UV, not IR as in d ≤ 4, and flows to a free theory in IR.
Thus, we have a nearly free Lagrangian theory in near-IR, which consists of 6d N = (1, 0) super
multiplets. There is no relevant deformation preserving this amount of supersymmetry, therefore
a possible flow should be triggered by a vev of the scalars [19]. Here we focus on one of two
types of scalar vev called the tensor branch, which preserves su(2)R symmetry of the UV theory,
and find a strong anomaly constraint on tensor branch theory. Actually, the strong constraint

11



2. Six dimensional superconformal field theories

components
tensor B+µν, ξ+i , a

vector A+µ, λ−i
hyper ψ+,ϕi

Table 2.1.: The names and physical components of 6d N = (1, 0) supermultiplets. The meanings
of letters representing component fields can be found in the main text. The fermions
ξ+, λ− in the tensor and vector multiplets are doublets of su(2)R and the symplectic
Majorana-Weyl condition is imposed, while the fermion ψ+ in the hypermultiplet is
neutral under the R-symmetry. As said in the main text, the complex scalars ϕ in the
hypermultiplet also form a doublet of su(2)R .

also completely determines the anomaly polynomial of the ’t Hooft anomalies with respect to
gravitational backgrounds, R-symmetry backgrounds, flavor symmetry backgrounds, and their
mixtures.

2.1.1. N = (1, 0) supermultiplets

Let us start from enumerating the 6d N = (1, 0) supermultiplets whose components have spin
no more than 1. A supersymmetry parameter of the 6d N =(1, 0) supersymmetry transforms as a
chirality-plus symplectic-Majorana Weyl spinor ϵi which satisfies

ϵ∗i = εi j Bϵ j , Γϵ j = ϵ j (2.1.1)

where i = 1, 2 is the index of the doublet of the su(2)R , εi j is the antisymmetric tensor, B is a
matrix acting on spinors satisfying B M µνB−1 = −M µν∗ for a Lorentz generator M νµ, and Γ is
the chirality operator. The supercharge Q i

α satisfies the commutation relation

{Q i
α,Q j

β }= 2εi j Γ
µ
αβ∂µ. (2.1.2)

In this thesis we will not treat this algebra directly. Instead, all the necessary information are
encoded into the bosonic part of the supersymmetric effective action which we will see. There
are three types of such multiplets, which are tensor, vector, and hypermultiplets as summarized in
Table 2.1.
The only N = (1,0) multiplet unique to six dimensions is the tensor multiplet. A tensor mul-

tiplet consists of a self-dual tensor filed B+µν, a chirality-plus (Majorana) fermion ξ+, and a real
scalar a . The self-dual condition means the field strength 3-form H is self-dual: H = ⋆H with
⋆ being the Hodge star operator under the Minkowski signature. 1 Supersymmetry prohibits a
potential for a , and thus each tensor multiplet is accompanied by a real dimension 1 flat direction,
which is called the tensor branch. The scalar a is not charged under the su(2)R symmetry, so
that the tensor branch vev preserves the R-symmetry. A tensor multiplet reduces to a u(1) vector
multiplet in 5d upon circle compactification.
1The relation between H and B can differ from H = dB since the Bianchi identity for H can be modified. This will
be important later for anomaly matching.
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A vector multiplet contains a gauge field Aµ valued in a gauge algebra g, and a chirality-minus
gluino λ− valued in the adjoint representation. Note that a vector multiplet does not include any
scalar field; thus, there is no “Coulomb branch” in 6d. 2

A hypermultiplet is composed of a quaternionic scalarϕ and chirality-plus fermionψ+, whose
flat direction is called the Higgs branch, as in the case of lower dimensions. The quaternion scalar
ϕ charged as a doublet under the su(2)R symmetry, and thus a Higgs vev breaks the R-symmetry.
A N = (2, 0) tensor multiplet, which is the only N = (2,0) supermultiplet with spin not more

than one, can be decomposed into oneN = (1,0) tensor multiplet and one u(1) vector multiplet.

2.1.2. Tensor branch effective theory and Green-Schwartz topological
coupling

We need not only the free supersymmetric spectrum, but also we need possible IR interactions.
Here we consider an RG flow from an UV fixed point caused by a generic tensor branch vev, so
that the IR theory contains at least one tensor multiplet.
Although there is no local Lagrangian description for the self-dual tensor field B+ without any

auxiliary fields and preserving the manifest 6d Lorentz invariance, in the following we are going
to consider “pseudo-actions” for it whose variational derivatives, formally performed ignoring
the self-duality, give equations of motion. Path-integral formulations using auxiliary fields or
non-local action is available in the literature [20, 21] though the equations of motion are enough
in our context.
First, we consider the case with N of tensor multiplets and with none of other types of super-

multiplets. The free pseudo-action for the bosonic part of them is

−π
∫
ηi j
�
dai ∧ ⋆da j +Hi ∧ ⋆H j

�
(2.1.3)

with ai being scalars and Hi being tensors field strengths. As the rule to derive an equation of
motion from a pseudo-action, the variation of Hi with respect to Bi is defined as

δHi (x )
δdB (y ) j

=δ(6)(x − y )δi j . (2.1.4)

The supersymmetry relates the kinetic terms of scalars and tensors. Note that the kinetic matrix
ηi j should be positive definite for the scalars to have kinetic terms with the correct sign.
The symmetric matrix ηi j is a convention-independent physical quantity when tensor fields are

appropriately normalized as follows. The gauge variance of the tensor field is

Bi → Bi +dλi (2.1.5)

where λi is a 1-form gauge parameter. More precisely, λ should be a U(1) connection on the
6-dimensional manifold X6. This means when we pick a 2-dimensional submanifold M2, the

2Some literature calls the flat direction of a tensor multiplet scalar a the Coulomb branch. In this thesis we avoid that
to emphasise that the scalar a belongs to a tensor multiplet, not a vector multiplet.
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2. Six dimensional superconformal field theories

integral ∫
M2

dλi (2.1.6)

can take a nontrivial but quantized value when the homology class [M2] is nontrivial. We normal-
ize so that the minimal value of the above integral is 1, therefore the integral is valued in Z. The
theory possesses surface defects with a coupling to B defined by

−2πq i
def

∫
M2

Bi . (2.1.7)

Gauge invariance forces that the defect charge q i
def should be integers. With this defect, The

equation of motion and the Bianchi identity become

d ⋆Hi = dHi =ηi j q
j
defP.D.[M2], (2.1.8)

where ηi j is the inverse matrix of ηi j and P.D.[M2] is the Poincaré dual of the homology class
[M2]. In the following we raise and lower the indices i , j using ηi j and ηi j .

The theory should also be able to contain a dynamical string which also couples with Bi . We
define the dynamical self-dual string charge qi using the coupling between a dynamical string qi

occupying M2 and Bi as

2πηi j qi

∫
M2

B j . (2.1.9)

With this coupling, the Bianchi identity becomes

dHi =−qi P.D.[M2]. (2.1.10)

We quantize the field strengthsHi so that qi takes values inZN withN being the number of tensor
multiplets, and possible qi fills the lattice ZN . 3 Then, the matrix ηi j describes the difference
between the dynamical charge lattice Λ spanned by qi and the defect charge lattice Λ∗ spanned by
qi ,def =ηi j q i

def. Further, the gauge invariance of the coupling for any integer charge qi requires

ηi j ∈Z (2.1.11)

which is the 6d version of the Dirac-Zwanziger charge quantizaiton [22]. The quotient Λ∗/Λ is an
observable of a theory and called the defect group.

Demanding a string/defect preserves a half of the supersymmetry, the supersymmetric comple-

3One can formally add anti-self-dual two-form field making the pseudo-action an actual action, then the quantum
consistency requires eiS should be invariant under the gauge transformation. Or, one can discuss without hand-
waving pseudo-action argument in the language of differential cohomology [21].
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tion of the coupling (2.1.7) and (2.1.9) includes 4

(∞−ai )q
i
defvolM2, aiη

i j q j volM2, (2.1.12)

where volM2 is the volume of M2 and we dropped an unimportant overall coefficient. As seen,
the tension of a dynamical string is controlled by the tensor vev a i = ηi j a j . A dynamical string
should become massless at the UV SCFT point where a i = 0 since the cosmological constant
on the dynamical string is prohibited by the scale invariance of the SCFT. On the other hand, a
defect has infinite cosmological constant as it is not dynamical, though its repose to a change of
the tensor vev ai is meaningful. Later, to determine ηi j for a theory engineered with branes, we
will compare couplings (2.1.12) for minimally charged defects and minimally charged strings.
Here, we would like to make an assumption on the tensor branch theory of 6d SCFT, which we

are going to use throughout this thesis. That is:

Given a 6d SCFT, The string charge qi of a dynamical string completely classifies the type of the
string in the tensor branch theory. In other words, no two distinct types of dynamical strings have
the same charges.

For every concrete theory treated in this thesis, this assumption holds5. The motivation is the
following. The tensions of two strings which have the same string charges should be controlled
by only one component of the tensor vevs. And changing the difference M of the worldsheet
cosmological constants of the two strings seems not to contradict to any low-energy consistency.
This is an analogy for the relation between mass parameters and flavor symmetries in 4d N =2
theories. However, since the 6d UV SCFT does not have marginal or relevant deformations,
there is no place where such a parameter M arises6. Since still there might be an unknown UV
mechanism which prohibits the IR parameter M , this argument is not a proof.
Next, we would like to include vector multiplets. The kinetic term for the gauge field

∫
F ∧⋆F

havemass dimension 4, and thus the coupling constant is irrelevant. Instead, a classicallymarginal
coupling
∫

a F ∧ ⋆F provides gauge kinetic term via vev of the scalar a . If we assume that the
tensor branch effective theory has a UV fixed point, the only available scales in the tensor branch
theory are the vev of tensor scalars ai . Therefore, all gauge couplings should be identified with
the vev of tensor scalars. Therefore, the action including bosons in vector and tensor multiplets is

2π

∫
η̃i a
�

ai
1

4
TrFa ∧ ⋆Fa +Bi

1

4
TrFa ∧ Fa

�
, (2.1.13)

with Fa (a = 1, · · · ,M ) being the field strength for a simple component ga of the whole gauge
algebra. We do not assume the tensor branch theory contains abelian vector multiplets, since

4Taking M2 to be the flat plane along the x1, x2 direction, the supersymmetric variation of the Lagrangian (2.1.9)
is proportional to εi j ϵ̄i Γ

12ξ j , which can be canceled by the variation of a that is proportional to εi j ϵ̄iξ j if the
parameter εi have a definite chirality along the plane.

5Further, to the best of the author’s knowledge, there is no known counterexample.
6The 6d UV theory can be a little string theory. In that case, the UV little string theory is accompanied by a string
scale M and therefore the assumption is wrong.
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2. Six dimensional superconformal field theories

the anomaly cancellation condition which will be discussed later prohibits abelian factor. The
coefficients of the two terms are related by supersymmetry again [23].
We call the topological coupling between B and the characteristic class c2(Fi ) =

1
4 TrFi ∧ Fi ,

which is the second Chern class when the gauge algebra is su, the 6d Green-Schwartz coupling,
because these terms will play the same role in the 6d anomaly cancellation mechanism [24] as the
celebrated 10d Green-Schwartz coupling does in 10d supergravity anomaly cancellation [25], as
we will soon see. Therefore, the gauge coupling 1/g 2 is controlled by the tensor branch vev of
ai .
The Green-Schwartz coupling in (2.1.13) induces a modification of the Bianchi identity for Hi

through the equation of motion and the self-dual condition as

dHi =−ηi j η̃
j a c2(Fa ), (2.1.14)

where ηi j is the inverse matrix of ηi j . When a zero-sized (anti-)instanton string in terms of
ga localizes on the two-dimensional subspace M , the class c2(Fa ) becomes −P.D.[M ], and the
Bianchi identity (2.1.14) get identical to (2.1.10), meaning an instanton string for gauge algebra
ga carries charges q a

i = −ηi j η̃
j a under the tensor fields Bi , forming a sublattice Λinstanton in the

charge lattice Λ. The assumption about dynamical string made above requires Λinstanton should be
a rank M sublattice of Λ where M is the number of simple components of the gauge algebra.
Further, if a primitive instanton strings have charge V which is not primitive in Λ but x times

a primitive vector v , there are two distinguishable types of strings with charge V , one is the
instanton, another is coincident x strings with charge v . Therefore, Λinstanton should be a primitive
sublattice of Λ. Thus, we can retake a primitive basis of Λ which contains primitive basis of
Λinstanton, such that

η̃i a =ηi a . (2.1.15)

For later use, we rewrite the bosonic action for the tensor and vector multiplets:

2π

∫
ηi j
�
−1

2
dai ∧ ⋆da j − 1

2
Hi ∧ ⋆H j +ai

1

4
TrFj ∧ ⋆Fj +Bi c2(Fj )

�
. (2.1.16)

Here, formally we regard the gauge algebra as a direct product of N gauge algebras ⊕N
i gi , with

gi possibly empty.

2.1.3. Anomaly matching

Classically, any global symmetry in the spectrum and the interactions in a field theory can be
gauged by making backgrounds fields coupled to the symmetry dynamical. This entail the in-
troduction of the kinetic term for the gauge field when the symmetry is continuous. Quantum
anomaly is the obstruction for this gauging procedure in a quantized theory.
One should distinguish anomalies for gauge symmetry and anomalies for global symmetry.

The former is a constraint; the gauge anomaly should vanish for the quantum theory to be consis-
tent. The latter is an observable, and can be though of as an effective action for non-dynamical
backgrounds.
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The local anomaly of continuous symmetries, which is called ’t Hooft anomaly, can be charac-
terized by an anomaly polynomial I8 defined by the descent equation 7

I8 = dI (0)7 , δI (0)7 = dI (1)6 (2.1.17)

where I6 is the 6-form which determines the variation of the anomaly effective action W by
δW =
∫

X6
I6, and δ is an infinitesimal variation of background fields. The anomaly polynomial

I8 should be an invariant closed 8-form consisting of background fields.
Assume that the considered 6d IR theory has gauge group gi , flavor group fi , and R-symmetry

group R = su(2). In this thesis we ignore U(1) flavor symmetries, which are anomalous in most
cases in 6d, and do not consider U(1) gauge group, therefore we assume gi , fi to be semi-simple.
The possible terms in the anomaly polynomial 8-from I8 can be constructed from the characteristic
classes TrF F 4

fi
, c2(Ffi ) =

1
4 TrF 2

fi
, c2(R ) =

1
4 TrF 2

R and the Pontryagin classes p1(T ),p2(T ) of the
tangent bundle T X6. For example, I8 can contain

I8 ⊃ Trfi F 4
fi

, c2(Ffi )c2(R ), c2(Ffi )p1(T ), p2(T ). (2.1.18)

How about the terms including the gauge field strength Fgi
? As already told, the pure gauge

anomaly, namely the terms proportional to Trgi
F 4
gi
or c2(Fgi

)2 should vanish for the theory to be
consistent. Further, the UV fixed point should be able to couple with gravity background, which
requires that the gauge-gravity anomaly terms, namely c2(Fgi

)p1(T ), in near IR effective theory
should be absent. The mixed R-gauge anomaly c2(Fgi

)c2(R ) should also vanish, since we require
the UV fixed point has superconformal symmetry, which contains R-symmetry. Finally, as we
will see in string construction, we are also going to assume all non-U(1) classical flavor symmetry
exists after quantization, which requires c2(Ffi )c2(gi ) to be absent. In summary, we require that
all pure- and mixed- anomalies involving gauge field Fgi

should vanish, and this is going to give
strong constraints on the IR theory spectrum.
Fermions contained in various multiplets induce ’t Hooft anomaly Inaive from their 1-loop 4-

point Feynman diagram. In our notation, which is summarized in Appendix A, the anomaly
polynomial of Weyl fermions in a representation ρ becomes

Â(T )trρeiF , (2.1.19)

where Â(T ) is the A-roof genus with respect to the tangent bundle T X6 of the spacetime. For each
N =(1,0)multiplet, the 1-loop contribution for the anomaly polynomial is also summarized in the
Appendix. The important thing is that even for the vector multiplet with non-abelian gauge group,
the gauge anomaly is present in 6d, and it is impossible to cancel the gauge anomaly by adding
hypermultiplet. Thus, we need another source of anomaly that cancels this. This is completely
the same situation as when considering the 10d vector multiplet. Therefore, we expect that the
Green-Schwartz coupling induces additional anomaly IGS, and in the total anomaly I8 = Inaive+IGS

all the anomalies involving gauge field strength might vanish.
As in the 10d Green-Schwartz mechanism, the modified Bianchi identity (2.1.14) requires that

7The descent equations should be regarded as equations on the universal line bundle.
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2. Six dimensional superconformal field theories

the definition of the field strength should change into

Hi = dBi −CSk , (2.1.20)

where CSk is the Chern-Simons 3-form normalized by dCSk = c2(Fk ). To this Hi to be invariant,
the tensor field Bi should vary under the gauge transformation as it cancels the variation of the
Chern-Simons form. The variation of B induces variation of the pseudo-action (2.1.13), though
it is not clear that variation calculates correct anomaly. Actually, in [26], using mathematical
technique of differential cohomology, it was shown that the contribution to I8 from the topological
coupling is

1

2
ηi j c2(Fi )c2(Fj ). (2.1.21)

This 6d version of anomaly contribution was also observed as a required consistency from string
theory in [24].
For example, let us see the case where the number N of tensor multiplets is one, the gauge

algebra is su(3), and there is no hypermultiplet. As stated in Appendix A, the anomaly from
fermions in a vector with gauge algebra su(3) and a tensor multiplet is

Inaive =−3

2
c2(F )

2− 1

4
c2(F )p1(T )−3c2(R )c2(F )

− 7

24
c2(R )

2− 7

48
c2(R )p1(T )− 11p1(T )2

1920
− 7p2(T )

480
. (2.1.22)

The pure gauge contribution− 3
2 c2(F )2 can be canceled by theGreen-Schwartz contribution (2.1.21)

with η= 3.
The su(3) pure SYM theorywith one tensor is the only pure SYM theory allowed by the anomaly

cancellation condition with an su gauge algebra. For su(N ), which have an independent quartic
Casimir, the naive anomaly polynomial contains a term proportional to TrF 4, which cannot be
killed by the Green-Schwartz contribution composed of c2(F ). For su(2), the contribution for the
pure gauge anomaly is − 4

3 c2(F )2 which is again unable to cancel by (2.1.21) because η should be
an integer 8.
Aside from su(3), exceptional gauge algebras e6,7,8, f4 except for g2 and so(8) can form pure

SYM theory with one tensor. For those algebras TrF 4 is related to c2(F )2, because of non-
existence of independent quartic Casimir for exceptional groups and just an accident for so(8).
Moreover, the coefficient η in IGS is integer for those algebras, as listed in Table 2.2. We will see
the UV SCFTs for all of those theories can be engineered in F-theory.
Along this line, one can classify possible gauge algebras and matter hypers with which the

gauge anomaly canceled by the Green-Schwartz contribution [27]. The global gauge anomaly
coming from the homotopy group π6(G ) which exists for G = SU(2),SU(3) and G2 needs also to
be considered, and it constrains the number of hypers charged under the gauge group 9 We do not
list up the allowed matter spectra, since we are rather interested in specific theories which can
8The global gauge anomaly also prohibits su(2) without hypers.
9When only fundamental hypers are considered, the number of fundamentals should be 4, 0 mod6 for SU(2),SU(3),
and 1 mod 3 for G2 [28].
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su(3) so(8) f4 e6 e7 e8

η 3 4 5 6 8 12

Table 2.2.: Gauge algebras with which the pure SYM theory with one tensor is allowed by the
anomaly can be condition. The number in the second row indicates the coefficient η
in IGS which should be an integer.

be engineered from M-theory. It is easy to check that the will-be-appeared tensor branch matter
spectra satisfy the gauge anomaly cancellation.
As said, the gauge-gravity and gauge-R mixed anomalies should also vanish to have a UV

SCFT. To achieve this, we generalize the Green-Schwartz coupling to include gravity background
and R-symmetry background as

2π

∫
ηi j Bi ∧ I j (2.1.23)

with
I i =ηi j I j = η̃

i j c2(Fj )+q i
Rc2(R )+q j

gravp1(T ). (2.1.24)

For a theory which admits an F-theory construction (namely all known 6dN =(1, 0) theories), the
coefficient q

j
grav is calculated to be [4, 29] 10

q j
grav =η

j j −2 (no sum in j ) (2.1.25)

Then the Bianchi identity for the field strength H is modified as

dHi =−Ii , (2.1.26)

and the contribution to the anomaly IGS from this modified tensor field strength is

IGS =
1

2
ηi j Ii I j . (2.1.27)

Therefore, the whole anomaly polynomial Itot is the sum of the naive one-loop contribution Inavie
and the above Green-Schwartz contribution IGS:

Itot = Inaive+ IGS (2.1.28)

For the case of pure su(3) with one tensor (2.1.22), the cancellation of gauge anomalies requires

I = c2(F )+ c2(R )+
1

12
p1(T ). (2.1.29)

The total anomaly polynomial, which is equivalent to the anomaly polynomial of the UV SCFT

10 There are some theories dropped from the classification of [11,12]. Such theories still can be constructed in F-theory
when O7+ orientifold is taken into account [30]. For such theories the calculation [4, 29] is not true because −ηi j

differs from the geometrically defined intersection form, but the result q j
grav =η

i i −2 still holds.
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2. Six dimensional superconformal field theories

by ’t Hooft anomaly matching, is

Itot = Inaive+ IGS

=
5

48
c2(R )p1(T )+

29

24
c2(R )

2+
3

640
p1(T )

2− 7p2(T )
480

.
(2.1.30)

In general, when the number M of the simple components of the gauge algebra is maximal,
i.e. is equal to the number N of tensor multiplet, the contribution IGS is completely determined
by the gauge anomaly cancellation condition, and the total anomaly polynomial can be obtained
by square-completing Inaive and then subtracting the constant part. We are going to see other
examples in the following. For the case of M <N , which include the most important N = (2,0)
case where M = 0, we need other information on 6d SCFT obtained e.g. from string realization
to determine the total anomaly polynomial.

2.1.3.1. Notation

Here we would like to introduce a notation which appeared in [11, 13]. It often happens that the
tensor branch theory is “linearly shaped”, namely

ηi j =

¨
1 |i − j |= 1

0 |i − j |> 1
. (2.1.31)

In that case, we denote the tensor branch effective theory as

[f2] · · · [fN−1]
[f1] g1 g2 · · · gN−1 gN [fN ]

η11 η22 · · · ηN−1,N−1 ηN N
. (2.1.32)

The numbers under the i th gauge algebra denotes the diagonal componentηi i of the chargematrix,
and the algebras fi in square brackets mean flavor symmetries, which will often be abbreviated.
gi can be ∅,usp(0) or su(1). ∅ and usp(0) both means there is nothing other than a tensor multi-
plet, while su(1) always neighbors a node with su(2) and there is a “su(1)− su(2) bifundamental”
which is actually a fundamental of su(2) 11. The off-diagonal component ηi j is considered 1
when i , j are adjacent and is zero otherwise. Typically, on a generic point of the tensor branch,
there are bifundamental hypers between adjacent gauge or flavor algebras, otherwise it should be
mentioned.
Further, generalizing the notation, if some of ηi j is not 1, we write as follows:

[gL ] g1 g2 · · · gN [gR ]
η11 〈η12〉 η22 · · · ηN N . (2.1.33)

where abbreviated ηi j are still considered to be 1.

11usp(0) is used as a special case of usp(2N ) with N = 0, and the meaning is the same as ∅. The notion su(1) means
the Kodaira type I1 fiber in the F-theory literature. See [31] for more detail.
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2.1.4. Non-generic point of tensor branch

At the origin of the tensor branch where a i = 0 for all i , the UV SCFT TUV arises. Here we
consider the subspace of the tensor branch where a k = 0 for a certain k while a i ̸= 0 for i ̸= k .
We use the index ı̂ , ȷ̂ which runs the same region as i , j but ı̂ , ȷ̂ ̸= k . On the subspace, a string
with string charge qi = δk

i becomes massless while other strings remain massive. Then the IR
theory contains both a strongly coupled SCFT sector which we denote Tk and a weakly coupled
Lagrangian sector.
Since the tensor multiplet including a k is contained in the strongly coupled SCFT sector Tk ,

there are only N −1 weakly coupled tensor mode out of N tensor modes at a generic point. The
original kinetic term for tensor scalars is

ηi j da i ∧ ⋆da j =ηı̂ ȷ̂ da ı̂ ∧ ⋆da ȷ̂ + terms including a k , (2.1.34)

which implies the kinetic matrix η̂ı̂ ȷ̂ for the remaining scalars a ı̂ is obtained by just omitting k th
row and column: η̂ı̂ ȷ̂ = ηı̂ ȷ̂ . We define charge matrix η̂ı̂ ȷ̂ by the inverse matrix of η̂i j . The new
charge matrix η̂ı̂ ȷ̂ with upper indices is

η̂ı̂ ȷ̂ =ηı̂ ȷ̂ − ηı̂ kη ȷ̂ k

ηk k
. (2.1.35)

Note that when ηk k ≥ 2, η̂i j becomes fractional, meaning the gauge parameters λ̂i for tensor
fields B̂ ȷ̂ = η̂ ȷ̂ ȷ̂ B ȷ̂ satisfies

∫
M2
λ̂i ∈ ηk kZ for ηi k ̸= 0. Instead of re-normalizing B̂ , we rather

keep this normalization.
Let us rephrase what was said using the notation introduced in the previous section for the case

where (2.1.31) is satisfied. When a k set to be zero, the tensor branch structure (2.1.32) reduces
to

[gL ] g1 g2 · · · gk−1 gk+1 · · · gN [gR ]
η11 η22 · · · η̂k−1,k−1 〈η̂k−1,k+1〉 η̂k+1,k+1 · · · ηN N , (2.1.36)

and the gk−1 and gk+1 vectors are coupled with the SCFTTk which should have gk−1⊕gk+1 flavor.
The most frequently seen case is when ηk k = 1 12. In this case the tensor branch structure reduces
like

gk−1 gk gk+1

ηk−1,k−1 1 ηk+1,k+1 =⇒ gk−1 gk+1

ηk−1,k−1−1 ηk+1,k+1−1
. (2.1.37)

We name the subspace of the tensor branch where we can reach through the recursive uses of
the operation (2.1.37) a contracted subspace. Further, we let the most singular subbranch in the
contracted subspace called the endpoint (although it is not a point) according to [11]. On the
endpoint no diagonal component of the kinetic matrix η̂i j for not-shrunken tensors is 1.
After shrinking a k , the remaining GS coupling is merely

∫
B ı̂ Iı̂ , and the contribution to the

anomaly polynomial from this remaining GS coupling is ÎGS =
1
2 η̂

ı̂ ȷ̂ Iı̂ I ȷ̂ . Using the tensor branch

12This is because in the F-theory language shrinking the cycle with self-intersection number −ηk k =−1 does not make
singularity of the base geometry worse. Therefore, such contractions is convenient to classify possible singularity
structure [11].
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2. Six dimensional superconformal field theories

structure (2.1.36) after shrinking a k , the total anomaly polynomial I [TUV] is calculated as
I [TUV] = Înaive+ I [Tk ] + ÎGS (2.1.38)

where Înaive is the contribution from Lagrangian matters in (2.1.36). Compared with the original
formula

I [TUV] = Inaive+ IGS, (2.1.39)

from the tensor branch structure at a generic point, we have

I [Tk ] = Inaive,k + IGS− ÎGS

= Inaive,k +
1

2

1

ηk k
I k I k .

(2.1.40)

with Inaive,k being the one-loop contribution from tensor including a k , vector coupled with a k ,
and hypers coupled with the vector. This means in the a ı̂ →∞ keeping a k finite, the remaining
pseudo-action including B k is

−π
∫

1

ηk k

�
H k ∧∗H k +2B k I k

�
. (2.1.41)

2.2. Six dimensional N = (2,0) theories

In the previous section we used a “bottom-up” approach, meaning that we searched consistency
conditions for a Lagrangian IR theory to be UV-completed by an SCFT. From now on, we are
going to use “top-down” approach, namely engineering 6d SCFT itself with branes/singularities in
string/M/F-theory. In this section, we focus on 6d SCFTs with maximal supersymmetryN =(2,0).
N =(2, 0) SCFTs are believed to be classified by An , Dn , E6,7,8 root system. We denote the
N =(2, 0) theory of typeG byT (2,0)

G whereG specifies one of A,D , E root system. The IR effective
theory should beN =(2, 0) tensor multiplets, and the kinetic matrix ηi j is thought to be the Cartan
matrix of corresponding A, D , E . Actually the reference [32] argues that the matrix ηi j of a tensor
branch kinematic matrix ηi j of anN =(2,0) theory should be the Cartan matrix of one of A, D , E
root systems, from anomaly cancellation with respect to the worldsheet theory of the massive
strings in the tensor branch theory.
In the following we will remind M/string constructions of N =(2, 0) theories and important

consequences from the constructions. The N =(2, 0) theory of type An or Dn can be constructed
by branes in eleven-dimensional M-theory [2]. The N =(2, 0) theory of type E6,7,8 cannot be
engineered by branes in M-theory, but an orbifold singularity in Type IIB string allows us to
construct them [1].

2.2.1. N = (2, 0) theories of type A, D from M5-branes

The M-theory is the (thought-to-exist) UV completion of the 11d supergravity. The 11d super-
gravity contains a three form field Cµνρ , which is accompanied by two types of M-theory branes
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each coupled to the 3-from field C or the dual 6-form field C ∨ with dC ∨ = ⋆dC . The former
brane with three dimensions is called M2-brane and the latter brane with six dimension is called
M5-brane.
We can decouple theN =(2,0) supersymmetric 6d worldvolume theory on M 5 branes from the

11d supergravity sector of by taking the limit where the 11d Planck length ℓP goes to zero. The
worldvolume theory on a single M5-brane is thought to be a freeN =(2,0) tensor multiplet. When
there are two parallel M5-branes at a distance of ã , there can be an open M2-brane bridging two
M5-branes which looks a massive string with tension ã/ℓ3

P . Thus, if we take the ℓP → 0 limit
with a 1 = ã/ℓ3

P fixed, the decoupled theory has massive strings with tension a 1 in its spectrum.
The scaled distance a 1, which have the mass dimension of a 6d scalar, is nothing but the tensor

branch vev of the decoupled theory. Note that this a 1 should be identified with a tensor scalar
with upper index in our notation since the massive string tension is determined by a i :(2.1.12). At
the origin a 1 = 0 of the tensor branch, the string becomes massless. Correspondingly, the theory
on coincident two M5-branes should be a non-free theory. Further, since there is no available
scale after taking the ℓP → 0 limit when the two M5 collides, the worldvolume theory is expected
to be an SCFT. Actually there is the rotational isometry SO(5) emerges around M5-branes in
the M-theory geometry, which is identified with SO(5)R symmetry of N =(2, 0) supersymmetry,
indicating restoration of the N =(2,0) superconformal symmetry. The SCFT on coincident two
M5-branes is calledN =(2,0) theory of type A1 after ignoring the center-of-mass mode of the two
M5s. 13 This construction generalizes to the case of T (2,0)

AN
, namely the worldvolume theory on

the coincident N +1 M5-branes up to the center-of-mass mode.
Let us determine the charge matrix ηi j . For simplicity, we consider the T (2,0)

A1
case. The tensor

branch theory is a N = (2, 0) tensor multiplet whose scalar corresponds to the distance between
two M5-branes scaled by ℓ3

P . As said, the massive dynamical string comes from an M2-brane
suspended between the M5-branes, and a defect comes from a half-infinite M2-brane ending one
of the M5-branes as depicted in Figure 2.1. From this picture, one can read off the coupling
(2.1.12). When the vev a 1 increases by ∆a 1 fixing the center of mass, the length of M2 bridging
M5s increases by the same amount, while the length of a half-infiniteM2 decreases only by 1

2∆a 1.
Therefore, the dynamical string charge is twice of negative of the defect charge, meaning η = 2.
For T (2,0)

AN
, the same consideration reveals

ηi j =


2 i = j

−1 |i − j |= 1

0 otherwise
, (2.2.1)

which is the Cartan matrix of AN type. The non-diagonal component comes from the fact that the
dynamical string coupled with a i+1 behaves as a defect charged under a i when a i+1 goes infinite.
The important property of the theoryT (2,0)

An
is that its compactification on S 1 is the 5dmaximally

super Yang-Mills(MSYM) with gauge group G = AN . This fact comes from that an M5 brane

13Ignoring the center-of-mass mode makes the theory “meta”, meaning the theory gain discrete gravitational anomaly.
For such a theory, background geometry is not enough to define its partition function, which is similar to 2d non-
modular-invariant chiral CFTs [7].
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2. Six dimensional superconformal field theories

M5 M5

M2
M2

a 1

Figure 2.1.: The brane engineering of T (2,0)
A1

. The tensor vev corresponds to the distance between
M5s and a string and a defect are created by M2.

wrapping the M-circle is identified with a D4-brane in the Type IIA string, and the worldvolume
theory of coincidentN+1D4-branes is the 5dMSYM. The relation between the 5d gauge coupling
g and the M-circle radius R6 is

1

R6
=

8π2

g 2
. (2.2.2)

which identifies the KK-scale and the one-instanton action, since a D0-brane in Type IIA comes
from a momentum along the M-circle.
The tensor branch of the 6d theory goes to the Coulomb branch of 5d MSYM, and a self-dual

string on the tensor branch wrapping M-circle becomes a W-boson. Thus, the self-dual string
charge matrix ηi j should be identified with the charge matrix of W-bosons under the U(1) gauge
symmetries remaining on the tensor branch, and thus ηi j should be the Cartan matrix of G = AN ,
which is consistent with what we observed.
It is also possible to construct T (2,0)

DN
. M-theory admits a Z2 “orientifold” action which flips the

5 coordinates x 6∼10. It also flips the sign of the three from field C =Cµνρdxµdx νdxρ . The fixed
plane of this action is calledMO5-plane, and becomes O4− when compactified [33]. Therefore, N
M5-branes stacked with MO5 the charge matrix ηi j equals the Cartan matrix ofG =DN , because
when the branes and the plane wrapping the M-circle are identified with D4-branes and an O4−
which produces 5d DN MSYM. The relation (2.2.2) also holds for this G =DN case.

2.2.2. N = (2, 0) theories of type A, D , E from orbifold singularities in Type
IIB stirng

One might wonder whether an N =(2, 0) theory T (2,0)
G for another root system G exists. The

answer is that G should be simply-laced, and thus other possibilities are G = E6,7,8. However, no
method to engineer G = E6,7,8 case in M-theory frame is known (so far). Therefore, we should go
to another frame by string duality chain to generalize the above M-theory construction.
To do that, let us first play with G = AN case. We start from N + 1 M5 branes occupying the

directions x 0∼5. Compactifying x 10 gives Type IIA string theorywithN+1NS5 branes occupying
x 0∼5. We would like to further compactify x 9 and take T-dual with respect to that direction. It is
known that an NS5-brane transforms into a KK monopole in the T-dualized frame, therefore after
doing the described duality chain we obtain the Type IIB stirng on the multi-centered Taub-NUT
space.
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Figure 2.2.: The exceptional divisor of the singularity C2/ZN+1. It contains N irreducible com-
ponents each isomorphic to CP1, and they are linearly aligned so that an irreducible
component intersects with neighbor components.

Colliding the centers of the Taub-NUT space gives a singular space, and the singularity structure
is the same as the singularity of AN -type ALE orbifold C2/ZN+1. Thus, we conclude the duality

N +1 coincident M5-branes in M-theory
duality⇔ Type IIB on C2/ZN+1 (2.2.3)

after taking CFT-decoupling limits in both sides.
How are the tensor branch parameters realized in the Type IIB frame? The singularity of
C2/ZN+1 admits blow-up resulting in a smooth space with the exceptional divisor consisting of
N irreducible components Ci each isomorphic to CP1 depicted in Figure 2.2. In the above dual-
ity (2.2.3), the distance between M5 branes, or the tensor branch vev ai , is mapped to the sizes
of irreducible components of the exceptional divisor. The kinetic matrix ηi j of the scalars ai is
related to that of scalars bi = i

∫
Ci

B10d by supersymmetry with B10d being the NSNS two-form
field, which can be read from∫

X6×C2/ZN+1

dB10d ∧ ⋆dB10d =

∫
X6

∑
i , j

(−Ci ·C j dbi ∧ ⋆db j ) (2.2.4)

where Ci ·C j =
∫

Ci
P.D.[C j ] is the intersection form of the 2-cycles. Thus, for the duality to be

consistent, Ci ·C j should be the minus of the Cartan matrix of AN root system.
Amassive string on the tensor branch is realized by aD3-branewrapping the exceptional divisor

in the Type IIB frame. AD3-brane filling 4-manifoldM4 has a charge for the anti-self-dual 5-form
field strength F5 so that the Bianchi identity becomes

dF5 =−P.D.[M4]. (2.2.5)

Compactifying Type IIB string on the resolvedC2/ZN , the localized modes of F5 can be described
by the self-dual 3-form field strengths Hi related to F5 by

dF5 =
∑

i

Hi ∧P.D.[Ci ], (2.2.6)

which mean a D3-brane wrapping Ci and filling two-dimensional subspace M transverse to the
resolved C2/ZN has Hi charge as

dHi = P.D.[M ], (2.2.7)

as expected.
This Type IIB orbifold construction of N =(2, 0) theories can be generalized to more general

ALE orbifoldC2/ΓG where ΓG is a finite subgroup of SU(2) acting onC2 labeled by a simply-laced
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2. Six dimensional superconformal field theories

Figure 2.3.: The exceptional divisor of the singularity C2/ΓE8
. The irreducible components are

aligned along the E8 Dynkin diagram. This pattern holds also for other ALE singu-
larities.

root system via the McKay correspondence. Concretely, ΓAN
is ZN+1, ΓDN

is the binary dihedral
group of order 4N −8, and ΓE6,7,8

is binary tetrahedral, octahedral, icosahedral group, respectively.
The intersection form of 2-cycles in resolved C2/ΓG is known to be equal to minus of the Cartan
matrix of the root system of type G , so is the charge matrix of corresponding N =(2, 0) theory.
For example, the exceptional divisor of C2/ΓE8

can be depicted as Figure 2.3.
For G = DN , we have both M-theory brane construction and Type IIB orbifold construction

and we expect those are dual:

N M5-branes stacked with OM5-plane in M-theory
duality⇔ Type IIB on C2/ΓDN

(2.2.8)

and actually the orientifold process in M-theory producing OM5 is mapped to orbifolding with re-
spect to a Z2 isometry of the multi-centered Taub-NUT space resulting in a singularity isomorphic
to the singularity of C2/ΓDN

.
For G = E6,7,8, we cannot go to the M-theory frame which was convenient to read off the S 1

compactified theory. However, we still expect that the compactified theory is the 5d MSYMwith
gauge group G , since D3-branes wrapping Ci ×S 1 have the same charge matrix as the W-bosons
of gauge group G .

2.2.3. Anomaly polynomials for N =(2, 0) theories

The anomaly polynomial for A-typeN =(2, 0) is first derived in [34,35] by calculating the anomaly-
inflow into N +1 M5-branes filling X6 of M-theory spacetime X11 = X6×R5. In brief, the Chern-
Simons coupling of the M-theory,

2π

∫
X11

�
1

6
C ∧G ∧G −C ∧ I8

�
, I8 =

1

48

�
p2(T X11)− 1

4
(p1(T X11))

2
�

, (2.2.9)

together with the coupling between N +1 M5-branes and the C field

2πN

∫
X6

C ∨ (2.2.10)

induces anomalous variation in terms of SO(5) rotation symmetry of the transverse R5 ,which
should be the anomaly of the worldvolume theory of N + 1 M5-branes. The resulting anomaly
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8-form of T (2,0)
AN

with the center-of-massN =(2,0) tensor multiplet is

I [N +1 M5-branes] = I [T (2,0)
AN
] + I [N =(2,0) tensor]

=
(N +1)3

24
p2(SO(5)R )− (N +1)I8

(2.2.11)

with identifying pi (T X11) = pi (T X6)+pi (SO(5)R )where pi (SO(5)R ) is the Pontryagin class of the
SO(5)R bundle coming from the transverseR5. Note that the characteristic N 3 behavior cannot be
reproduced by a gauge theory and therefore such contribution should come from intricate physics
of massless strings.
The reference [36] conjectured the following formula for general T (2,0)

G :

I [T (2,0)
G ] =

h∨G dG

24
p2(SO(5)R )+ rG I [N =(2, 0) tensor]. (2.2.12)

For G =DN this conjecture is confirmed by anomaly-inflow calculation in [37]. In the following
we would like to derive this in an almost field-theoretical way, where the only information from
string/M-theory is that the S 1 compactification is the 5d MSYM [4].
As we studied in the Subsection 2.1.3, the anomaly polynomial should decompose as

I [T (2,0)
G ] = rG I [N =(2,0) tensors] + IGS (2.2.13)

where the Green-Schwartz contribution is

IGS =
1

2
ηi j Ii I j . (2.2.14)

Therefore, what we should know is the Green-Schwartz coupling Ii . Since the IR theory of an
N =(2,0) theory does not contain any vector multiplet, we cannot determine Ii by gauge anomaly
cancellation condition. Instead, we use the S 1 compactification as mentioned.
Upon S 1 compactification with radius R6, T (2,0)

G becomes the 5d MSYM with gauge group
G , and on its Coulomb branch, which comes from the 6d tensor branch, we have U(1)rG vector
multiplets and massive states with masses proportional to the Coulomb branch vev. The Coulomb
branch vectors A5d

i come from the 6d tensors with relation A5d
i ,µ =

1
R6

Bi ,µ5. The Green-Schwartz
coupling (2.1.23) turns into the 5d Chern-Simons coupling

2π

∫
ηi j A5d

i ∧ I j , (2.2.15)

with unknown 4-forms I j . The vev break the SO(5)R symmetry down to SU(2)R × SU(2)L, and
thus I j depends on SU(2)R and SU(2)L backgrounds.
Since we have a Lagrangian UV description of the 5d theory which is MSYM as opposed to

the 6d thoery itself, the above CS coupling in the Coulomb branch IR theory is calculable from
the UVMSYM. Actually, integrating out massive fermions creates CS terms through the triangle
Feynman diagram [38]. A fermion with mass term coefficient m (with its sign meaningful), U(1)
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2. Six dimensional superconformal field theories

charge q , and having the representation ρ under a background non-abelian field strength FBG,
which is now the su(2) R-symmetry background, produces the CS term

2π

∫
1

2
(signm )q A5d ∧ (1

2
trρF 2

BG+dρ
1

24
p1(T )). (2.2.16)

The characteristic class 1
2 trρF 2

BG+dρ
1

24 p1(T ) counts the number of zero modes of ϕ in the pres-
ence of the background instantons, and 1

2 (signm )q is the shift of U(1) charge of the to instantons.
(2.2.16) can also be recognized as the CS coupling in the instanton worldline action.

All the remaining things to do is enumerate massive fermions and their charges in the Coulomb
branch theory. For each root α of the 5d gauge group G , there is a massiveN =2 vector multiplet
with mass |v · α| and charges under the unbroken U(1)rG determined by α. To see the sign of
the mass term of massive fermions in the multiplet, note that the Yukawa coupling of the N =2
multiplet is

ψΓ IϕI ·αψ (2.2.17)

where Γ I is the Gammamatrices of SO(5)R symmetry with I being the index of it, andψ is charged
under the R-symmetry as a spinor. We give vev to only one ofϕI , sayϕI=5 = v , breaking SO(5)R
into SO(4)≃ SU(2)R ×SU(2)L . Then the components of ψ with SO(5)R -chirality-minus has mass
coefficient −v ·α and forms a SU(2)R doublet, while those with SO(5)R -chirality-plus has mass
coefficient +v ·α and forms a SU(2)L doublet. Under this identification of N =1 subgroup of
N =2 supersymmetry algebra, the SO(5)R -chirality-minus fermions are considered to belong to
N =1 massive hypermultiplets since they are charged under SU(2)R , while other fermions belong
to massive vector multiplets.

Substituting these informations into (2.2.16), the CS coupling is

2π

∫
ηi j A5d

i ∧
∑
α:root

1

4
α j sign(v ·α)(c2(L )− c2(R )) (2.2.18)

and from (2.2.17) the GS coupling is

Ii =
∑
α:root

1

4
αi sign(v ·α)(c2(L )− c2(R ))

=
∑

v ·α>0

1

2
αi (c2(L )− c2(R ))

=ρi (c2(L )− c2(R )),

(2.2.19)

with ρi being the Weyl vector. The last ingredient we need is “the strange formula of Freudenthal
and de Vries”:

ηi jρiρ j =
1

12
h∨G dG , (2.2.20)

which reproduces the formula (2.2.12) with identifying (c2(L )− c2(R ))2 with p2(SO(5)). Note that
this method using CS coupling induced by massive fermions is applicable even to T (2,0)

E6,7,8
.
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2.3. E-string theory

From this section we start to generalize the construction of N =(2,0) theories into N =(1, 0) by
introducing additional orientifolds, orbifolds, or branes which preserve half of the supersymmetry.
First, we consider the N =(1,0) theory called E-string theory and its higher rank generalization.
The theory can be most simply defined as a worldvolume theory of a zero-sized E8 instanton
in E8 × E8 heterotic string [39], though here other frames related by string duality chains are
convenient. After explaining some duality frames, we generalize the calculation of the anomaly
polynomial to the E-string case.

2.3.1. Heterotic M-theory description of E-string theory

It is hard to find the tensor branch mode of the E-string theory defined as a zero-sized instanton
in the heterotic string theory frame. To detect the tensor branch, we go to the M-theory frame
with two Hořava-Witten domain walls [40, 41] which is dual to E8 × E8 heterotic string. The
Hořava-Witten domain wall, also known as the M9-brane, is the ten-dimensional fixed plane of
the orientifold action

x 10→−x 10, C →−C . (2.3.1)

Hořava and Witten argued that the M-theory CS coupling (2.2.9) induces anomaly localized on
the fixed plane, and therefore the plane should support a 10d matter system. The anomaly-inflow
into the M9-brane can be canceled by a 10d N =1 vector multiplet with gauge group E8. When
the x 10 direction is compactified, there are two M9-branes both have E8 vectors, and the system,
which is called heterotic M-theory, is considered to be the strong coupling limit of the E8 × E8

heterotic string.
In heterotic M-theory, we can consider an M5-brane localized along x 10 direction near one of

the M9-branes as pictured in Figure 2.4. Since the M5 brane can be incorporated into the M9
brane as an E8 instanton, the world volume theory on the M5 probing M9 is identified with the
E-string theory. The instanton moduli space which make the M5-brane non-zero size instanton
is recognized as the Higgs branch of the E-string theory. When the M5-brane is separated from
the M9-brane, an M2 brane suspended between the M5- and M9-brane behaves as a massive
string with mass proportional to the distance between the M5- and M9-brane. When the M5 is
attached to the M9, the string becomes massless and the nontrivial SCFT arises. Since the M9
brane supports 10d E8 vector field, the SCFT potentially have E8 flavor symmetry. In addition to
that, the SCFT posesses SO(4) ∼ SU(2)R × SU(2)L symmetry coming from rotation of directions
transverse to both M9 and M5. The SU(2)R subgroup is regarded as the R-symmetry ofN =(1,0)
algebra, and the remaining SU(2) is a (non-R) flavor.
This construction can easily be generalized to the higher rank case, namely multiple M5-branes

probingM9. We denote the rank N E-string theory, which corresponds to N M5s onM9, by T Est
N .

On the tensor branch, there are N tensor modes coming from positions of M5 transverse to M9,
and N − 1 hyper modes coming from positions of M5 tangent to M9. The center of mass hyper
mode tangent to M9 is decoupled from T Est

N .
The higher rank theory has various RG flows as shown in Figure2.5. When N − i of total N

M5-branes on the M9 are moved away from the M9, the theory flows into the sum of T (2,0)
AN−i−1

,
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M5

M9

(a) Tensor branch

M5

M9

(b) SCFT point

instanton

M9

(c) Higgs branch

M5 M5 M5

M9

(d) Higher rank the-
ory

Figure 2.4.: The E-string theory is the worldvolume theory on anM5-brane probing anM9-brane.
Higgs branch is identified with instanton moduli. The higher rank generalization
refers to multiplet M5-branes probing M9.

T Est
N

T Est
N−1+ tensorT (2,0)

AN−1
+ tensor T (2,0)

AN−i−1
+T Est

i + tensor

T Est
N−1+hyper

a N ̸= 0
a i ̸= 0

a 1 ̸= 0

Higgs

Figure 2.5.: RG flows from T Est
N . ai denotes the tensor vev of i th tensor mode counting from the

left of Figure 2.4d. On 1 dimensional subset of the tensor branch, the theory flows to
sum of an N =(2,0) theory, an E-string theory and a Nambu-Goldston tensor mode.
On the Higgs branch, the theory flows to the E-string theory with less rank plus NG
hyper modes.

T Est
i and a Nambu-Goldstone tensor mode. For the Higgs branch, when one of M5s is dissolved

into the M9, the theory flows into the E-string theory with one less rank accompanied by a NG
hyper mode.
The charge matrix ηi j for T Est

N is also determined by this M-theory construction as we did
for T (2,0)

AN
. This time increasing the tensor branch parameter a 1 corresponds to moving M5 while

fixing M9, not the middle point between M5 and M9. Thus, the dynamical string charge is the
same as negative of the defect charge, namely η= 1. For higher rank theory, we have

ηi j =


1 i = j = 1

2 i = j ̸= 1

−1 |i − j |= 1

0 otherwise

. (2.3.2)

Or, if we use the notation explained in Subsection 2.1.3.1 we have,

[e8] ∅ su(1) · · · su(1)
1 2 · · · 2

. (2.3.3)

Let us determine the S 1 compactified theory of the rank N E-string theory. Upon compactifi-
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cation, the M5 becomes D4 as before, and the M9 becomes O8− stacked with 7 D8-branes and 1
D8-brane separated from O8− so that the string coupling diverges at O8− [42]. When we intro-
duce the Wilson line in terms of E8 gauge field on M9 breaking E8 down to SO(16), in the Type
IIA frame all the eight D8 branes are located on top of the O8−. At the origin of the 5d Coulomb
branch where the N D4-brane touches the O8−-D8 stack, the theory of the open strings on the
D4-branes is the 5d N =1 USp(2N ) gauge theory with 8 fundamental hypers charged under the
SO(16) flavor symmetry and a hyper in the irreducible antisymmetric representation of the gauge
group. Thus, the potential E8 flavor symmetry of the E-string theory cannot be trivial. The funda-
mentals come from D4-D8 strings, and the irreducible antisymmetric representation come from
strings between D4 and themselves or their mirror.

2.3.2. Anomaly polynomials for E-string theories

The anomaly polynomial of the E-string theory is first obtained in [43] using anomaly inflow in
the heterotic-M frame. The calculation is just a combination of the anomaly inflow for M5 and
anomaly inflow for M9. Here, instead, we generalize the “field theoretical” method in 2.2.3.
In 2.2.3, we worked on a generic point of the tensor branch of T (2,0)

G . Here, since we already
know I [T (2,0)

AN
], it is enough to use the non-generic tensor branch flow T Est

N →T (2,0)
AN
+ tensor with

only a 1 having nonzero vev. Since the NG tensor mode have GS coupling with backgrounds, the
total anomaly can be written as

I [T Est
N ] = I [T (2,0)

AN
] + I [tensor] + IGS. (2.3.4)

Among the whole GS coupling 2π
∫
ηi j Bi ∧ I j = 2π

∫
ηi j B i ∧ I j at a generic point, the contribu-

tion containing I j , j ̸= 1 is included in I [T (2,0)
AN
], and therefore

IGS =
1

2
η11I 1I 1 =

N

2
I 1I 1. (2.3.5)

Here we used the fact that the inverse matrix ηi j of the matrix (2.3.2) is

ηi j =N +1−max(i , j ). (2.3.6)

To calculate I from 5d CS coupling induced by massive fermions, we compactify T Est
N with

Wilson line breaking flavor E8 into its maximal rank subgroup SO(16) so that we obtain the La-
grangian theory as explained. When compactified, the 6d flow induces the 5d Coulomb branch
flow

USp(2N ) with 8 flavor + 1 irred. antisymmetric→ SU(N −1)MSYM+N =1 U(1) vector.
(2.3.7)

All the fundamental hypers becomes massive. They have U(1) charge 1, and behaves as N copies
of the vector representation of SO(16). From the irreducible antisymmetric representation breaks
down to the adjoint of SU(N −1) leaving N 2−N massive hypers with U(1) charge 2. There are
also N 2+N massive vectors, also have U(1) charge 2. As before, the fermions in massive hypers
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M5 M5 M5 C2/Γg

Figure 2.6.: M-theory brane construction of conformal matterT (g,g)
N . N +1M5-branes are probing

the singular locus of the ALE-orbifold.

are charged under SU(2)R and fermions in massive vectors are charged under SU(2)L .
Collecting these informations and using the formula (2.2.16), one get

η11I 1 =
N 2

2
χ4+N I4, I4 = c2(FE8

)+
1

4
(p1(T )−2(c2(L )+ c2(R ))) (2.3.8)

with χ4 = c2(L )− c2(R ) being the Euler class of the SO(4) bundle. We have used the fact that the
embedding of SO(16) into E8 have the embedding index 1 and thus c2(FSO(16)) = c2(FE8

). Using
(2.1.28), we get the anomaly polynomial

I [T Est
N ] + I [hyper] =

N 3

6
χ2

4 +
N 2

2
χ4I4+N (

1

2
I 2

4 − I8), (2.3.9)

which agrees with the result of the anomaly inflow [43].

2.4. Conformal matters

To construct the E-string theory, we have considered the M-theory orientifold whose fixed-plane
is 10-dimensional. Here, instead we would like to think on ALE-orbifold in M-theory, namely
M-theory on R1,6 ×C2/Γg with Γ/g being the finite subgroup of SU(2) labeled by a ADE root
system g. In M-theory, an M2-brane can wrap a cycle of the resolved ALE-orbifold producing
a 7d massive vector multiplet charged under the 7d U(1) vector whose scalar superpartner is the
size of the cycle. The charges of the massive vectors coming from M2-branes are determined by
the Dynkin diagram associated to g, therefore in the limit where all cycles vanish there is the 7d
g vector multiplet on the singular locus.
To construct 6d N =1 SCFTs, we further introduce N + 1 M5 branes as pictured in Figure.

2.6. The resulting SCFTs, after ignoring the center-of-mass tensor mode, are called conformal
matters [13] and we call them T (g,g)

N . Each segment of the singular locus bounded by two M5-
branes supports 6d dynamical g vector multiplet, and half-infinite singular loci support g flavor.
Moving an M5 away from the singular locus corresponds to a Higgs vev. When all the M5-branes
are located away from the singular locus, the theory flows into the N =(2,0) theory T (2,0)

AN
. The

case with N = 0, which is called minimal, the theory is very higgsable, meaning that it has a Higgs
flow into some hypers. This property, which we call “higgsable to T (2,0)

AN
”, become important in

the next chapter. Consequently, the charge matrix ηi j should be the same as that of T (2,0)
AN

.
The finite group Γg is a finite subgroup of the SU(2)L subgroup of the SO(5) rotating transverse

direction of M5s. When g = A, U(1) subgroup of SU(2)L remains, though we will ignore it for
simplicity in the following.
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NS5 NS5 NS5
k D6 branes

Figure 2.7.: Type IIA description of T (Ak−1,Ak−1)
N .

When g = D , E , an M5 brane on top of the singular locus can be “fractionated”, and between
fractional M5 branes a vector multiplet with lower rank (possible empty) gauge group arises.
Before mentioning those complicated situations, we discuss the g= A case.
The anomaly polynomial can be calculated by anomaly inflow as demonstrated in an Appendix

of [4], and the result is

I [T (g,g)
N−1 ] + I [tensor] =

N 3|Γg|2
24

c2(R )−N I8

− N |Γg|
2

c2(R )(J4,L + J4,R )− 1

2
(I [vector,FgL

] + I [vector,FgR
]) (2.4.1)

with

I8 =
1

48

�
p2(T )−p1(T )c2(R )− 1

4
p1(T )

2
�

(2.4.2)

J4 =
rg+1− 1|Γg|

48
(4c2(R )+p1(T ))+ c2(F ). (2.4.3)

We are going to see how to get the same result from the method of Subsection 2.1.3 which was
also proposed in the same paper [4].

2.4.1. (Ak−1, Ak−1) conformal matter

2.4.1.1. Type IIA frame description

When g = Ak−1, we can go to the Type IIA frame as follows. Instead of the ALE space C2/Zk ,
the same singularity can be realized in N +1-centered Taub-NUT space as we saw in Subsection
2.2.2. Then far from the singularity the geometry is asymptotically R3×S 1, therefore the system
admit a Type IIA description. The Ak−1 singularity on which 7d su(k ) vector multiplet lives is
replaced by k of D6-branes, and M5s becomes NS5s as depicted in Figure 2.7.
The tensor branch theory is a linear quiver accompanied with tensor multiplets. Namely, in ad-

dition to N of su(k ) vector multiplets live in segments of D6s partitioned by NS5s, strings striding
over an NS5 behave as bifundamental hypers charged under adjacent su(k ) vectors. In particu-
lar, T (Ak−1,Ak−1)

0 is just a bifundamental hyper. In the notation explained in Subsection 2.1.3.1 the
tensor branch structure is

[su(k )L ] su(k )1 su(k )2 · · · su(k )N [su(k )R ]
2 2 · · · 2

. (2.4.4)
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2.4.1.2. Anomaly polynomial

Since all tensor modes are coupled with vectors, the method in Subsection 2.1.3 can be applied.
Just enumerating the naive contributions from the matter spectrum and doing square completion
is needed, and the result agrees with (2.4.1).
For later use, we would like to determine each GS coupling I i . Each I i have the form

I i = η̃i J c2(FJ )+q i
R c2(R )+q i

gravp1(T ). (2.4.5)

where the index J runs both gauge and flavor algebras. Note that a gauge or flavor zero-sized
instanton in the vectors on the singular locus can be regarded as an M2-brane inside the locus, and
therefore q i J should be the charges of dynamical strings or defects corresponding to M2-branes.
The charge can be read by the method we discussed in 2.2.1 and we get η̃i J = ηi J for gauge
instantons and η̃i J =−1 for flavor instantons. Then, gauge anomaly cancellation condition forces
q i

R = k , q i
grav = 0.

2.4.1.3. Weakly gauged Higgs branch of T (Ak−1,Ak−1)
0

As said, the minimal conformal matter T (Ak−1,Ak−1)
0 , which is the worldvolume theory on an M5

probing C2/Zk , is just a bifundamental. How can we relate the mere bifundamental of su(k ) and
the ALE C2/Zk orbifold?
There are two different type of Higgs branchi of T (g,g)

N : One is a Higgs vev preserving both
gL ,R flavors, and the other breaks. Then, the former corresponds to moving an M5 away from
the singular locus, since the flavor gauge backgrounds living on the half-infinite singular locus
as 7d vectors do not acquire masses in the process. This subbranch of the Higgs branch can be
regarded as the Higgs branch ofT (g,g)

N with both flavors infinitesimally weakly gauged. Therefore,
when the number of M5s is one, the weakly gauged Higgs vev should be identified with position
of the M5, and thus the weakly gauge Higgs branch of T (g,g)

0 should be C2/Γg. For the su(k )
bifundamental T (Ak−1,Ak−1)

0 , this can be easily realized.
The scalars in the bifundamental are arranged into Q i

a and Q̃ a
i each of which is in the repre-

sentation (k, k) and (k, k) of the su(k )⊕2 subalgebra of the whole flavor u(2k ). su(k )⊕2 invariant
combination of these scalars are

B = detQ , B̃ = detQ̃ , M =
1

k
trQQ̃ . (2.4.6)

The scalar components of each su(k ) flavor current multiplet, called moment maps, are

µi
j =Q a

j Q̃ i
a −Mδi

j , µ̃a
b =Q a

i Q̃ i
b −Mδa

b . (2.4.7)

Since µ, µ̃ are charged under su(k )⊕2, we would like to set µ = µ̃ = 0, or QQ̃ =M 1k×k = Q̃Q as
an equation of k ×k matrices with 1k×k being the identity matrix. Taking determinant, we have

B B̃ =M k (2.4.8)
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which is the algebraic equation describing the singularity C2/Zk .
Instead, we can turn on the Higgs vev µ, µ̃ as

µ= µ̃= diag(m1, · · · , mk ), (2.4.9)

then the relation (2.4.8) becomes

B B̃ =
k∏
i

(M +mi ), (2.4.10)

which describes C2/Zk with deformed complex structure. Therefore, the Higgs vev µ= µ̃ corre-
sponds to the complex structure deformation of the M-theory geometry.

2.4.2. (Dk , Dk ) conformal matter

2.4.2.1. Type IIA description and fractional M5

When g=Dk , we can still go to a Type IIA description. We again replace the ALE space with the
ALF space of Dk type, which have the same singularity structure as the ALE space and asymp-
totically is R3×S 1. Since on the singular locus supports so(2k ) gauge group, in Type IIA frame
we should see a stack of an O6−-plane and 2k D6-branes.
This time, an M5 brane probing the singular locus corresponds to two NS5 branes on the O6−-

plane. The O6-D6-NS5 system is known to engineer so(2k )-usp(2k −8) alternating quiver gauge
theory, and therefore the type of O6-plane should be different between left and right of an NS5.
The number 8 comes from the D6-charge ±4 of O6±-plane. Thus, one NS5 brane cannot escape
from O6-plane. On the other hand, in the M-theory frame an M5 brane can freely move away
from the singularity, concluding that an M5 cannot be the M-theory uplifting of one NS5-brane
trapped in an O6-plane.
This fact implies that an M5 brane on the D-type ALE singularity can be fractionated; an M5-

brane can split into two of half-M5-branes, each of which becomes an NS5-brane in the Type
IIA frame: see Figure 2.8. A half of the segments of the singular locus of C2/ΓDk

should support
usp(2k−8) gauge rather than so(2k ). This is a “frozen” version of theC2/ΓDk

singularity, meaning
that 8 of Kähler parameters are prohibited by a nontrivial discrete C -flux [44, 45]. The half-
M5-brane is a domain wall between frozen and non-frozen singularities. We will see that this
fractionation continues to the case with g= e6,7,8.
We can also consider N + 1 M5s probing C2/ΓDk+8

with the discrete C -flux. The theory has
usp(2k )⊕usp(2k ) flavor, and we denote it T (usp(2k ),usp(2k ))

N . It is also higgsable to T (2,0)
AN

.

2.4.2.2. Tensor branch structure

The vector and hyper matters are the so(2k )− usp(2k − 8) quiver as said. The charge matrix ηi j

can be read off from the Type IIA description, though a bit trickier than T (2,0)
AN

case. Consider
T (Dk ,Dk )

0 case. In Type IIA frame, there are 2 NS5s that intersects with O6-D6 stack. Between
the NS5s, the type of the orientifold is O 6+ and the number of D6s is 2k −8 (counting the mirror
images), and outside the segment between NS5s the type of the orientifold is flipped to O 6− and
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M5 M5 M5 C2/ΓDk

fractionate
1
2M5 1

2M5 1
2M5 1

2M5 1
2M5 1

2M5

go to Type IIA

NS5 NS5 NS5 NS5 NS5 NS5
O6− O6+ O6− O6+ O6− O6+ O6−

O6+D6

Figure 2.8.: M-theory and Type IIA brane construction of conformalmatterT (Dk ,Dk )
N . Since the D6

brane charges of O6± is different by eight, the number of D6 branes stacked with O6±
should be adjusted so that the total D6 charge is the same between left and right side
of each NS5 brane. Thus, the tensor branch theory is read to be an so(2k )-usp(2k −8)
alternating quiver.

the number of D6s is 2k . The point is that O6+-plane admits a half-D2-brane embedded within
it while O6− does not14. Therefore, a minimal dynamical string corresponds to a half-D2-brane
bridging NS5s while a minimal defect is created by half-infinite one (full) D2-brane, concluding
η11 = 1. When k = 4, the gauge algebra is usp(0) = ∅, and thus the tensor branch structure
of T (D4,D4)

0 is the same as that of T Est
1 therefore we might expect T (D4,D4)

0 = T Est
1 identifying the

so(8)⊕so(8) flavor of T (D4,D4)
0 as the subgroup of the e8 flavor of T Est

1 . Actually, both the O6-NS5
system and the O8-D8-NS5 system can be dualized into the same F-theory frame [13].
Next, let us think about T (usp(2k ),usp(2k ))

0 . This time a defect comes from a half-infinite half-D2-
brane, while a dynamical string does from a suspended full D2. The charge counting concludes
η11 = 4. In the same manner, for general rank conformal matter T (Dk ,Dk )

N , the tensor branch
structure is

[so(2k )] usp(2k −8) so(2k ) · · · usp(2k −8) so(2k ) usp(2k −8) [so(2k )]
1 4 · · · 1 4 1

, (2.4.11)

and for T (usp(2k ),usp(2k ))
N it is

[usp(2k )] so(2k +8) usp(2k ) · · · so(2k +8) usp(2k ) so(2k +8) [usp(2k )]
4 1 · · · 4 1 4

. (2.4.12)

The Higgs branch to T (2,0)
AN

is not open at a generic point of tensor branch of T (Dk ,Dk )
N , but

only where each half-M5 brane collides with another to form a full M5-brane, or in field theory
language where a i = 0with gi = usp(2k−8). On that subbranch, which we call the“root toT (2,0)

AN
”,

14This can be understood from +-type orientifold projection realizes SO group on D2 branes while −-type projection
does USp, and USp(n ) with odd n does not exist. Another reasoning can be found in the footnote in Subsec-
tion 2.4.3.

36



the tensor branch structure is

[so(2k )L ] so(2k )1 · · · so(2k )N [so(2k )L ]
2 · · · 2

, (2.4.13)

and between adjacent so(2k ) there areminimal conformalmattersT (Dk ,Dk )
0 behaving like “(so(2k ),so(2k ))

bifundamentals”.

2.4.2.3. Anomaly polynomial

Calculating the anomaly polynomial for T (Dk ,Dk )
N from the tensor branch structure (2.4.11) and

checking the agreement with (2.4.1) is easy. Instead, for N ≥ 1, we can work on the subbranch
(2.4.13) and calculate the anomaly polynomial as

I [T (Dk ,Dk )
N ] =

N∑
i=1

I [so(2k )ivector] +
N∑

i=0

I [T (Dk ,Dk )
0 {so(2k )i ,so(2k )i+1}] + IGS (2.4.14)

where IGS is the Green-Schwartz contribution only from the tensors remaining in (2.4.13). The
bracket {} specifies flavor or gauge algebras in (2.4.13) with so(2k )0 = so(2k )L , so(2k )N+1 =
so(2k )R . The Green-Schwartz couplied IGS is identified to be 1

2η
i j Ii I j with ηi j being the Cartan

of AN type and
ηi j = I i = η̃i J c2(FJ )+ (2k −2)c2(R ), (2.4.15)

where η̃i J is the same as that in (2.4.5).

2.4.3. (Ek , Ek ) conformal matter

The ramining conformal matters are of type E . As we have seen for the g = D case, the tensor
branch structure of T (g,g)

0 encodes the fractionation of an M5 probing C2/Γg. Therefore studying
T (E ,E )

0 is interesting also from theM-theory perspective. Indeed, the fractionation pattern is much
more complicated than g = D case. We have investigated T (g,g)

N for g = A, D using the Type
IIA frame with which it is easy to read off the IR gauge theory description. For g = E , the
generalization of the above Type IIA frame is not known, and therefore we should go along another
way. In [13], the analysis was achieved by dualizing into the F-theory frame and blowing-up
procedure. Here instead we insist on understanding in the M-theory frame.

2.4.3.1. Fractionation patterns and discrete C -flux on C2/ΓE6,7,8
.

As said, an ALE singularity of type D , E can admit discrete C -flux, and we expect that a frac-
tional M5-brane behaves as a domain wall between regions with different C -fluxes. The possible
discrete C -flux is [44–46] ∫

S 3/Γg

C =
n

d
=: r mod. 1 (2.4.16)
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E6:
r 1

3 , 2
3

1
2

gr ∅ su(3)
E7:

r 1
4 , 3

4
1
3 , 2

3
1
2

gr ∅ su(2) so(7)

E8:
r 1

6 , 5
6

1
5 , 2

5 , 3
5 , 4

5
1
4 , 3

4
1
3 , 2

3
1
2

gr ∅ ∅ su(2) g2 f4

Table 2.3.: Possible nontrivial values of discreteC -flux aroundC2/ΓE6,7,8
singularities and remain-

ing gauge algebras after freezing.

where S 3/Γg is an orbifolded unit sphere surrounding the singularity, d is one of the Dynkin label
in the Dynkin diagram of type g and n is coprime with d . We refer the remaining gauge group
after freezing with discrete C -flux r as gr , and the singularity with the flux as gr type singularity.
We order the possible value of r by its value so that r0 = 0< r1 < r2 < · · ·< rm = 1 with m being
the number of the possible r . The possible r and gr are listed in Table 2.3 for g= E6,7,8. Later we
will give a derivation of this table.

Consider a domain wall between gr and gr ′ type singularity. The M5-brane charge of the
domain wall can be calculated by ∫

S 4/Γg

dC = r ′− r mod. 1 (2.4.17)

regarding the S 4/Γg surrounding the domain wall as S 3/Γg times an interval. Thus, we expect one
M5 brane probing C2/Γg split into n fractional branes with charge ri − ri−1. Therefore, the theory
T (E6,7,8,E6,7,8)

0 on a full M5-brane probing C2/ΓE6,7,8
has m − 1 tensor branch. The tensor branch

structures for T (E6,7,8,E6,7,8)
0 is

T (E6,E6)
0 :

[e6] ∅ su(3) ∅ [e6]
6 1 3 1 6

, (2.4.18)

T (E7,E7)
0 :

[e7] ∅ su(2) so(7) su(2) ∅ [e8]
8 1 2 3 2 1 8

, (2.4.19)

T (E8,E8)
0 :

[e8] ∅ ∅ su(2) g2 ∅ f4 ∅ g2 su(2) ∅ ∅ [e8]
12 1 2 2 3 1 5 1 3 2 2 1 12

. (2.4.20)

The numbers can be determined by F-theory technique [13] or can be read from M2-brane re-
alization of strings/defects under an assumption about the minimal fractional M2-brane probing
gr singularity as we will see soon. Anomaly cancellation requires that between su(2) and so(7)
there should be a 1

2 (2, 8spin) hyper, and between su(2) and g2 there should be a 1
2 (2, 7+ 1) hyper.

The number under flavor algebras are used for generalization to N ≥ 1. For example, the tensor
branch structure of T (E6,E6)

1 is

T (E6,E6)
1 :

[e6] ∅ su(3) ∅ e6 ∅ su(3) ∅ [e6]
1 3 1 6 1 3 1

. (2.4.21)
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Though the anomaly cancellation also fixes the charge matrix ηi j , here we would like to read
off from the M-theory brane physics. As we saw that for g=Dk an M2-brane probing so(2k )1/2 =
usp(2k − 8) singularity can be fractionated into half-M2-branes, it is also expected that an M2
probing gr singularity with r ̸= 0 is fractionated. Let us assume that the minimal charge of a
fractional M2 is 1

d when r = n
d
15. This assumption correctly reproduce the matrix ηi j .

For example, let us determine η22 of T (E7,E7)
0 . r2 =

1
3 , g2 = su(2), and the fractional M5-brane

between r1 and r2 region have charge 1
12 , the one between r2 and r3 region have charge 1

6 . We
call the former fractional M5 brane M512, and the latter M523. When the distance (normalized by
ℓ3

P ) between M512 andM523 increases by∆a 2 fixing the center-of-mass of M512 andM523, M512

moves by 2
3∆a 2 and M523 does 1

3∆a 2, since the mass of a fractional M5-brane is proportional
to its charge because of the supersymmetry. Therefore, while the change of the tension of a
dynamical string coming from a fractional M2-brane with charge 1

3 bridging M513 and M523 is
1
3∆a 2, the tension of a defect coming from a half-infinite fractional M2-brane ending on M512 or
M523 changes by 1

4
2
3∆a 2 = 1

2
1
3∆a 2 = 1

6∆a 2, concluding η22 = 2.

2.4.3.2. Remarks on tensor branch physics

The tensor branch structures (2.4.18), (2.4.19), (2.4.20) contain tensor modes without a vector. As
in the case of T (D4,D4)

N , those tensor modes are expected to become E-string theories when their
vev are turned off keeping other vev non-zero. Therefore, the theory on that subbranch can be
considered as a linear quiver gauge theory with non-perturbative E-string matters. Concretely, for
T (E6,E6)

0 , when vev without vector are deactivated, the structure (2.4.18) becomes

T (E6,E6)
0 :

[e6] ∅ su(3) ∅ [e6]
1 3 1

−→ [e6] su(3) [e6]
1

. (2.4.22)

The dynamical su(3) couples with two T Est
1 through the embedding su(3)⊕ e6 ⊂ e8, and each re-

maining flavor e6 becomes the left and right e6 flavors. For T (E7,E7)
0 the same shrinking procedure

gives

T (E7,E7)
0 :

[e7] ∅ su(2) so(7) su(2) ∅ [e8]
1 2 3 2 1

−→ [e7] su(2) so(7) su(2) [e8]
1 3 1

. (2.4.23)

The su(2) gauges the subgroup of the flavor of a E-string theory T Est
1 .

For T (E8,E8)
0 , since the tensor branch structure (2.4.20) contains the substructure equivalent to

that of T Est
2 , after shrinking all the tensors without vectors we have

[e8] su(2) g2 f4 g2 su(2) [e8]
1 2 3 2 1

, (2.4.24)

where each su(2) vector couples with the su(2) flavor of T Est
2 , and between g2 and f4 there is an

15According to [46, 47], a frozen singularity in M-theory is dual to F-theory with Zd shift-orientifold, namely the Zd

acts on a S 1 as 2
d π translation and on a plane as 2

d π rotation. A fractional M2 is dualized to a D3 wrapping 1
d of

S 1 and trapped at the origin of the plane, which means that the fractional charge is 1
d .
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E-string theory T Est
1 with its g2⊕ f4 ⊂ e8 flavor subalgebra gauged.

A higher rank conformal matter T (g,g)
N should be able to be Higgsed into T (2,0)

AN
when the frac-

tional branes are combined to form a full M5. This situation corresponds to all the tensor vev
except for those coupled with g vectors are set to be zero. For the theory T (g,g)

N to be higgsable
to T (2,0)

AN
, the charge matrix should be the same as that of T (2,0)

AN
. To check this, an easy way is to

recursively shrink down the tensor vev with ηi i = 1. For T (E6,E6)
1 , this procedure goes

[e6] ∅ su(3) ∅ e6 ∅ su(3) ∅ [e6]
1 3 1 6 1 3 1

−→ [e6] su(3) e6 su(3) e6

1 4 1
−→ [e6] e6 [e6]

2
.

(2.4.25)
One can also check that the similar but slightly longer procedure gives that the desired subbranch
structures for T (E7,8,E7,8)

1 are
[e7] e7 [e7]

2
,
[e8] e8 [e8]

2
, (2.4.26)

which are consistent with the fact that those theories are higgsable to T (2,0)
A1

. For N ≥ 2, the same
operation results in

[g] g · · · g [g]
2 · · · 2

, (2.4.27)

which is the root to T (2,0)
AN

.

2.4.3.3. T 3 compactification and frozen gauge algebras

Here we would like to understand the freezing pattern in Table 2.3 along the line of [14]. To do
that, we consider T 3 compactification ofT (g,g)

0 . TheM-theory space times isR1,2×T 3×R×C2/Γg,
and an M5 wrapping T 3 probes the singularity. Regarding one dimension of T 3 as the M-circle,
we get Type IIA on R1,2×T 2×R×C2/Γg with a D4 wrapping T 2 on the singularity. After taking
T-duality twice which transforms D4 into D2 and go up to M-theory, the space time becomes
topologically the same as the starting point, but an M2 brane probing the singularity.
Since the singular locus filling R1,2×R×T 3 supports the T 3 compactified 7d SYMwith gauge

group g, an M2 brane can be absorbed into the SYM as an instanton on R×T 3. We denote the
coordinate on this R by t (regarded as if it were “time”). We can define the CS invariant CS(t )
along {t }×T 3, and existence of an instanton requires CS(∞)−CS(−∞) = 1. If fractionation of
an M5 in the original frame translated into that of a triply periodic instanton, the M5 charge in the
original frame becomes the difference of the CS invariant. Thus, we expect a g-bundle on T 3 can
admit fractional CS invariant.
Fractional CS invariant on T 3 can be realized by imposing nontrivial Wilson line along the

three independent cycles of T 3 [48]. The Wilson line along T 3 determined by three elements
g⃗ = (g1, g2,g3) commuting each other of the Lie group G is, called a commuting triple. Let us
denote the conjugacy class of g⃗ by [g⃗ ], and the set of [g⃗ ] by T G . We introduce an order into T G
by the CS invariant CS[gi ] modulo 1 on T 3 with Wilson line g⃗ .
At t =−∞, the Wilson line is trivial. Suppose that at t = t0 a nontrivial Wilson line (g1, g2, g3)
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is suddenly turned on, then after shrinking T 3 the point t = t0 looks to support and domain wall
with charge CS(t = t0 + 0)−CS(t = t0 − 0). At t = t0 + 0, the gauge algebra g is broken to the
commutant g[g⃗ ] of g⃗ = (g1, g2, g3). Therefore, at a generic point of the triply periodic instanton
moduli, we have a 3d gauge theory with gauge algebra

⊕
[g⃗ i ]∈T G \{[(1,1,1)]} g[g⃗ i ].

From the data in [48], the possible values of CS[g⃗ i ] coincide with (2.4.16), and the correspond-
ing remaining gauge algebra g[g⃗ i ] is the Langlands dual of algebra listed in Table 2.3 (though
all algebras in Table 2.3 except for so(7) are self-Langlands dual). This is because we did T-dual
twice which effectively acts on the gauge algebra as an S-dual.

2.4.3.4. Anomaly and GS coupling

Using the tensor branch structures (2.4.22), (2.4.23), (2.4.24) after tensor vev in E-string subsys-
tems are turned off and the information on I [T Est

N ] (2.3.9), it is tedious the but straightforward to
check (2.4.1) for T (E6,7,8,E6,7,8)

0 .
For general N , it is convenient to consider the configuration (2.4.27). As we saw in the case

with g=Dk , the anomaly polynomial can be calculated by

I [T (ek ,ek )
N ] =

N∑
i=1

I [(ek )ivector] +
N∑

i=0

I [T (Dk ,Dk )
0 {(ek )i , (ek ) j }+ IGS (2.4.28)

with (ek )i denoting the i th ek gauge algebra. One can also check that the GS coupling I i =ηi j I j

is
I i =ηi J c2(FJ )+h∨(g)c2(R ), (2.4.29)

which is also valid for g= A, D .

2.4.4. Circle compactification and generalized base-fiber duality

Though a 6dN =(1,0) SCFT usually does not admit a Lagrangian description (at the origin of the
tensor branch), its circle compactification into a 5d theory tends to have a Lagrangian even at the
origin of the 5d Coulomb branch and can become weakly coupled on some parameter region. We
have seen thatN =(2,0) reduces to the MSYM, and an E-string theory reduces to a 5dN =1 usp

gauge theory with some matters when the flavor is appropriately broken by Wilson lines.
The conformal matters T (g,g)

N also have similar situation. Since all tensor modes are coupled
with vectors on a generic point of the tensor branch, those vectors become strongly coupled at
the origin and the compactified theory is expected to flow into a 5d fixed point 5dT (g,g)

N . Thus, to
have a 5d weakly coupled Lagrangian, all the gauge fields should become massive and decouple
by introducing Wilson line.
The M-theory orbifold-brane construction again tells us about the 5d theory. Compactifying

theM5s on a circle, we get the Type IIA configuration where N +1 D4 branes probing the orbifold
singularity C2/Γg. This system is nothing but what considered in [49]. The Wilson line parameter
corresponds to the expectation value of bi =

∫
Σi

B10d, the integration of the 10d NSNS 2-form
B10d over a vanishing cycle Σi . Their orbifold analysis concludes that the 5d theory is a quiver
gauge theory whose quiver shape is the affine Dynkin diagram of type ĝ, with ĝ being the affine
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version of g. At each node of the affine Dynkin diagram there exists a 5d N =1 vector multiplet
with gauge algebra su((N +1)di ) where di is the Dynkin label corresponding to that node, and at
each edge there sits a bifundamental. The gauge coupling 8π2

g 2
i
of the gauge group on the i th node

is proportional to bi , and the sum of the gauge couplings
∑

i
8π2

g 2
i
including the affine node is the

inverse 1
R6

of the circle radius R6. A more detailed analysis will be made in Section 3.3.

2.4.5. Closing the flavors of T (su(k ),su(k ))N

A conformal matter T (g,g)
N has two flavors [g⊕2] each of which couples with 7d g SYM. The

boundary condition of the 7d SYM is the Dirichlet boundary condition, which preserves the g 7d
gauge symmetry. Instead, we can impose a half-BPS Nahm-pole boundary condition which is
specified by a nilpotent element µ of the complex algebra gC [50]. The nilpotent orbits of left and
right flavor algebras constitute a Higgs subbranch, and the Higgs flow defines a new 6d SCFT
T (g,g)

N {µL ,µR } after ignoring NG hyper modes. This operation is called (partial) closing. 16The
theory only depends on the conjugacy classes of µL ,µR . The flavor symmetries of this theory are
commutants of µL ,µR .
The tensor branch structure ofT (g,g)

N {µL ,µR } can also be determined using F-theory techniques,
though we here analyze it using Type IIA brane construction for g = A case along the line of
[51–53]. For g=D , E case, we will see some examples in Subsection 3.3.3. A systematic study
is in [54].
A nilpotent orbit in su(k ) is determined by a k × k Jordan standard form, which is specified

by a partition Y = [y1, y2, · · · ] of k with yi being the size of the i th largest Jordan block. We also
regard Y as a Young diagram whose i th column has height yi . We denote the nilpotent orbit
labeled by a Young diagram Y by OY , and let T (Ak−1,Ak−1)

N {YL , YR }mean T (Ak−1,Ak−1)
N {µL ,µR }with

µL ,R ∈ OYL ,R
. A brane realization of the nilpotent Higgs vev can be achieved by introducing D8

branes into the Type IIA construction of T (Ak−1,Ak−1)
N as depicted in Figure 2.9.

The zeroHiggs vev corresponds to Y = [1k ], andwe denote that Young diagram F . Whenµ is in
the principal orbit, which is defined as the largest nilpotent orbit and corresponds to Y = [k ] =: C
, the flavor algebra is completely broken and the Higgsing is called the full-closing.
The situation is almost parallel to Type IIA brane construction of 4dN =2 quiver gauge theory

and its closing, and thus the tensor branch gauge theory can be identified using the Hanany-
Witten effect as in 4d case 17. A simple example is illustrated also in Figure 2.9. In general,
the gauge groups can be calculated as follows. Let denote elements of the transpose Y ⊤ of Y as
Y ⊤ = [ℓ1, · · ·ℓy1

] with ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓy1
> ℓy1+1 := 0, and define mi := ℓi − ℓi+1, L i =

∑i
j=1 ℓ j .

Then when N ≥ y1, the tensor branch structure of T (g,g)
N {F, Y } is

[su(my1
)] [su(my1−1)] · · · [su(m2)]

[su(k )L ] su(k ) · · · su(k = L y1
) su(L y1−1) · · · su(L2) su(L1) [su(m1)]

2 · · · 2 2 · · · 2 2
, (2.4.30)

16This name is originally for flavors of 4d class S theories.
17One also can do a field theoretical analysis which we skip.
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NS5 NS5 NS5 NS5

D8 D8
Hanany-Witten
========⇒

D8 D8

m =−1m = 0

Figure 2.9.: Type IIA description of T (A2,A2)
3 {F, YR } with F = [1, 1, 1], YR = [2,1]. The right edge

of the stack of D6s is ended on two D8s in the way specified by the Young diagram
YR . The dotted lines represents D6 segments removed by the Higgsing operation.
Moving the left D8 across two NS5 branes causes Hanany-Witten effect resulting in
the left configuration. Between two D8s, the Romans mass m become −1, meaning
an NS5 tend to move to the right therefore balancing condition at the NS5 is changed
as depicted. The tensor branch gauge theory can be read off from this configuration
as an su(3)1-su(3)2-su(2) quiver with 3 su(3)1 fundamentals, one su(3)2 fundamental
and one su(2) fundamental.

where su(k ) repeats N +1− y1 times. When the charge matrix ηi j is an A-type Cartan, the gauge
anomaly cancellation requires every su(n ) gauge algebras to have 2n flavors, and actually this
condition is satisfied.
The gauge algebras near the right edge become smaller due to the Higgsing, and gradually

becomes larger when going to the left. In particular, when Y = C = [k ] the above tensor branch
structure is read as

[su(k )] su(k ) · · · su(k ) su(k −1) · · · su(2) su(1)
2 · · · 2 2 · · · 2 2

. (2.4.31)

Taking account of the u(1) flavors ignored above, the total (non-anomalous) flavor algebra coming
from the original [su(k )R ] flavor before closing is the Levi subalgebra s(

⊕
i u(mi )) of su(k )whose

element commutes with an element in OY .
When both [su(k )L ,R ] are closed, the “ramp” structure appears on the both sides, and the total

flavor algebra is the direct sum of two Levi subalgebras of [su(k )L ,R ] each specified by YL , YR ,
when N +1 is lager than the sum of heights of two Young diagrams YL ,R . Otherwise, the theory
T (Ak ,Ak )

N {µL ,µR } degenerates into T (Ak ′ ,Ak ′ )
N {Y ′L , Y ′R } with some k ′ < k .

2.5. Higgsable to E-string theories

We have seen that an important class of theories T (g,g)
N which is higgsable to N =(2, 0) theories

can be realized as N +1 M5-branes probing C2/Γg singularity. Here we introduce M9 in addition,
constructing a class of theories higgsable to T Est

N whose compactification will be investigated in
3.2. The system was studied in the reference [55] in the F-theory frame. The analysis here using
M-theory and Type I’ frames is motivated by (and most of them are essentially already presented
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M9

C2/Γg

Figure 2.10.: M-theory construction of T (M9,g)
N with N = 3.

in ) [12, 13, 56].

2.5.1. M-theory construction

In [55], the theory of E8 small instantons probing C2/Γg was investigated. Using the heterotic-M
duality, the same system can be described as N M5 branes probing the intersection of M9 and the
singular locus of C2/Γg as depicted in Figure 2.10. We call the theory T (M9,g)

N . The theory has
E8⊕g flavor symmetry, where the former is charged under the 10d E8 vector on M9 and the latter
is charged under the 7d g vector of the half-infinite singular locus.

Moving N M5 branes away from the singularity along M9 we get the rank N E-string theory,
which indicates that there is a Higgs branch flow

T (M9,g)
N

Higgs−−→T Est
N . (2.5.1)

Since T Est
N is very-higgsable, T (M9,g)

N is also very-higgsable.

Instead of the above Higgs branch flow, we can move N M5 branes away from M9 along the
singular locus, which corresponds to a tensor branch flow. On the tensor branch, the M-theory
system is very similar to that of the conformal matter T (g,g)

N−1 . However, this time one side of the
singular locus ends on M9, which might impose nontrivial boundary condition on the 7d SYM
living on the singular locus. Therefore, supposing that boundary condition is the Nahm-pole
boundary condition with nilpotent orbit O0, the tensor branch flow is

T (M9,g)
N

tensor−−−→T (g,g)
N−1 {O0, F }. (2.5.2)

Then the tensor branch structure should look like

[e8] g1 g2 · · ·
1 η22 · · · (2.5.3)

with some subalgebra g1 of g which commute with O0, where the part

[g1] g2 · · ·
η22 · · · (2.5.4)
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is the tensor branch structure of [T (g,g)
N−1 {O0, F }]. In the following we denote this situation by
[e8] g1

1
[T (g,g)

N−1 {O0, F }]. (2.5.5)

To be consistent with the e8 flavor, the tensor mode with ηk k = 1 is supposed to produce the
rank 1 E-string theory because we do not know another example of rank 1 6d SCFT with e8

flavor. Therefore, we conclude that g1 =∅ and the commutant of O0 does not contain non-abelian
subgroup. Further, in [13, 55] the tensor branch structure is derived from the F-theory frame.
From their result, the tensor branch structure of T (M9,su(k ))

N with N ≥ k is

[e8] ∅ su(1) su(2) · · · su(k ) · · · su(k ) [su(k )]
1 2 2 · · · 2 · · · 2

, (2.5.6)

which implies O0 is the maximal orbit meaning the full-closing of [gL ]. The result in the references
are also consistent with O0 being the maximal orbit for g=Dk , E6. 18

As we did for T (g,g)
N , we can partially close the g flavor on the half-infinite singular locus.

On the other hand, since the e8 flavor does not come from 7d SYM but 10d SYM on M9, the
flavor admits different operation. In the M-theory construction, the M9 occupying C2/Γg admits
nontrivial E8 flat bundle without breaking any supersymmetry. Those flat bundles are classified
by homomorphisms

ρE8
: Γg→ E8. (2.5.7)

The e8 flavor is broken down to the subgroup commuting with the image of ρE8
. Therefore, we

have defined a variant of T (M9,g)
N labeled by a homomorphism ρE8

and a nilpotent orbit O of g,
and we denote it T (M9,g)

N {ρE8
,O }. We abbreviate O when O is trivial. The flavor symmetry is

Z (e8, ImρE8
)⊕Z (g,O ), where Z (g,g′) is the subalgebra of g commuting with subspace g′ ⊂ g.

A flat bundle with nontrivial ρE8
should also determine a certain boundary condition of the 7d

g SYM at the intersection point, and therefore we expect there is a mysterious map

{hom. Γg→ E8}→ {Nilpotent orbits of g}. (2.5.8)

Denoting the image ofρE8
under the abovemap byOρE8

, the tensor branch structure ofT (M9,g)
N {ρE8

}
should be

[f] g1

1
[T (g,g)

N−1 {OρE8
, F }], (2.5.9)

with some flavor f and some gauge algebra g1. f should be a (possibly empty) subalgebra of
Z (e8, ImρE8

), g1 should be a simple subalgebra of Z (g,OρE8
) or empty, and they should satisfy

Z (Z (g,OρE8
),g1)⊕ f= Z (e8, ImρE8

).
The map (2.5.8) was investigated in [12], and determined for g = su(k ) with small k where

Z (e8, ImρE8
) uniquely determines ρE8

, but in general it remains to be explored.

18The gauge algebras remaining in the “root to T Est
N ” can be obtained by colliding simple punctures in class S of type

Dk , E6. We do not have enough information about punctures in class S of type g= E7,8.
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NS5 NS5 NS5 NS5
D8O8−+7D8

Hanany-Witten
========⇒ NS5 NS5 NS5 NS5

D8O8−+7D8

Figure 2.11.: Type I’ brane construction of T (M9,su(k ))
N with k = 3, N = 4. After causing Hanany-

Witten effect, the tensor branch structure (2.5.6) can be read off.

2.5.2. Type I' description for g= su(k )

Instead of directly determining the map (2.5.8), we can explore possible tensor branch structure
for the case where g = su which can be constructed in Type I’ frame using the result of [51, 52],
which is the strategy of [56].

2.5.2.1. g1 =∅ case with O8−

First, we focus on the case with g1 in (2.5.9) is empty, which was the interest of [15] and will
be treated in 3.2. As said, the M9 in M-theory becomes the O8−-8D8 stack and the C2/Γsu(k )
singularity becomes k of D6s in the Type I’ frame. When ρE8

is trivial, the whole E8 flavor
should remain, and possible brane configuration with surviving E8 symmetry constructed of by
O8−, 8D8s, k of D6s and NS5s is what is depicted in 2.11.
As a generalization, the k D6s can end on 8 D8-branes near the O8− with a pattern specified

by a young diagram Y with no more than 8 columns, resulting in a theory T (M9,su(k ))
N {ρE8

} with a
certain ρE8

which satisfies OρE8
=OY . The tensor branch structure is

[e9−ℓ1
] ∅

1
[T (su(k ),su(k ))N−1 {Y , F }]. (2.5.10)

where [T (su(k ),su(k ))N−1 {Y , F }] is (2.4.30) (after flipping the left and the right). For small k , ek means
e5 = so(10), e4 = su(5), e3 = su(3)⊕ su(2), e2 = su(2)⊕ su(2), e1 = su(2). The e8 flavor on M9 is
broken down to

e8 ⊃ e9−ℓ1
⊕ su(ℓ1)⊃ e9−ℓ1

⊕ s
� y1⊕

i=1

u(mi )

�
, (2.5.11)

with Y ⊤ = [ℓ1,ℓ2, · · · ,ℓy1
] and mi = ℓi − ℓi+1. Note that the Levi subgroup which is the flavor of

T (su(k ),su(k ))N−1 {Y , F } also comes from the e8 vector fields on M9 in the M-theory construction, not
from the 7d vectors on C2/ΓAk−1

singular locus.
Combining with the closing of the [su(k )] flavor, one can engineer a theory with tensor branch

structure
[e9−u1

] ∅ su(u2) su(u3) · · · su(uN )
1 2 2 · · · 2

, (2.5.12)

where ui satisfies u2 ≤ 8, 2ui −ui−1−ui+1 ≥ 0 (u1 = uN+1 := 0). The Type I’ construction is de-
picted in Figure 2.12. We call the theoryT (M9,su){ui }. Their compactification will be investigated
in Section 3.2.
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u₂
NS5

O8 +(8-u₂)D8s

u₃

m₂ m₃

 u N

m N

NS5

O8 

n₈ n₈+n₇ n₈+n₇+6 n₈+n₇+6N Y

Hanany-Witten effectFigure 2.12.: Type I’ brane construction of T (M9,su)
N {ui } [51, 52]. The × mark represents an NS

5 brane, the horizontal line represents the stack of D6 branes, and the vertical lines
represent D8 branes or the stack of O8− plane and D8 branes. The symbols in the
circles are the numbers of the branes there. The mi D8 branes intersecting with ui

D6 segments supports su(mi ) flavor symmetry. The gauge anomaly cancellation
requires mi = 2ui −ui−1−ui+1.

2.5.2.2. O8∗-plane

In the discussion so far, we use the O8− plane in the brane construction. However, we can have
an alternative orientifold 8-plane in Type I’ brane engineering: O8∗ plane [42, 56, 57].
In [42, 57], the theory of a D4 brane probing the stack of O8− plane and n ≤ 8 D8 branes was

investigated. When the dilaton background at O8− diverges, the theory has en+1 flavor symmetry
and called En+1 theory. Moreover, it was found that the E2 theory has two distinct mass defor-
mations which keep the dilaton background infinite; one is called E1 theory with e1 = su(2) flavor
symmetry and another is called Ẽ1 theory with ẽ1 = u(1) symmetry. The Ẽ1 theory has further
mass deformation to the E0 theory which has no flavor symmetry.

This indicates that there are two distinct ways of splitting one D8 brane out of the stack of O8−
plane and one D8 brane. They are realized using the different kind of orientifold 8-plane called
O8∗ in [56] as follows:

O8− + D8→O8−,D8
↘O8∗+D8,D8→O8∗,D8,D8.

(2.5.13)

Here + denotes the stack of two objects, while a comma means that the two objects exist sepa-
rately. As a consequence, the flavor symmetry living on the O8− plane with the divergent dilaton
background is e1, while that for O8∗+D8 is ẽ1.

Using O8∗-plane, we can engineer a theory with the tensor branch structure

[ẽ9−u1
] ∅ su(u2) su(u3) · · · su(uN )

1 2 2 · · · 2
, (2.5.14)

whichwe callT (M9,su)∗ {ui }. When u2 ≤ 7 the theory is identical toT (M9,su){ui } sinceO8∗+2D8=O8−+D8,
therefore we impose u2 ≥ 8 when we write T (M9,su)∗ {ui }. Note that the two theories T (M9,su){u2 =
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8, u3 = 8, · · · } and T (M9,su)∗ {u2 = 8, u3 = 8, · · · }, which are
[e1] ∅ su(8) su(8) · · ·

1 2 2 · · ·,
[ẽ1] ∅ su(8) su(8) · · ·

1 2 2 · · ·, (2.5.15)

are different theories because the gauged su(8) subalgebra of the e8 flavor of the E-string is differ-
ent. In the former case the su(8) subalgebra is embedded into e8 through the maximal subgroup
su(8)⊕ su(2), while in the later case the su(8) subalgebra is embedded through the maximal sub-
group su(9).

2.5.2.3. g= su,g1 ̸=∅ case
Here we will see some examples of the case with g1 in (2.5.9) is not empty. To engineer such
theories in Type I’, D6 branes should intersect with the O8-plane. There are three distinct way of
intersecting D6 with the O8:

1. Even number (2k ) of D6 directly intersect with O8−. The orientifold project the su(2k )
onto usp(2k ).

2. An NS5 brane sits on the intersecting point. The su(k ) gauge fields on the D6s ending on
the 1

2 NS5 possesses a rank 2 antisymmetric hyper.

3. D6 branes are intersecting with O8∗.

As an example of case 1., when 2k D6 intersect with O8−-8D8 stack coming from M9 and NS5
are probing the D6s, the theory looks

[so(16)] usp(2k ) su(2k ) · · · su(2k ) [su(2k )]
1 2 · · · 2

. (2.5.16)

The usp(2k ) gauge group should have 2k +8 fundamental hypers because of the anomaly cancel-
lation, with 2k of them being gauges by the neighboring su(2k ). When a 1

2 NS5 is trapped at the
intersection point (in this case the number of D6 can be odd), the theory becomes

[su(8)] su(k ) su(k ) · · · su(k ) [su(k )]
1 2 · · · 2

. (2.5.17)

In this case the orientifold projection acts on a bifundametal hyper, therefore the leftmost su(k )
have 8+ k fundamental plus one rank-2 antisymmetric hyper. The gauge anomaly still cancels
thanks to the element η11 of the charge matrix is 1.
The case 3. is intricate [56]. Herewe onlymention that using this configurationwe can engineer,

for example,
[su(9)] su(6) su(6) [su(6)]

1 2 2
(2.5.18)

where the leftmost su(6) possesses 15 fundamentals and a half-hyper with rank-3 totally antisym-
metric tensor representation.

48



Understanding those three cases from the M-theory point of view would be interesting. Those
cases just come from different choices of the E8 flat bundle ρE8

. The case 2. suggest that with
some ρE8

the intersecting point of C2/Zk singular locus and M9 have intrinsic M5 charge, but
with other flat bundles realizing case 1. the intersection point does not have M5 charge.
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3. Circle and torus compactifications

In Chapter 2, we have reviewed some basic properties of some examples of 6d SCFTs. In this
chapter, we would like to investigate torus compactifications of the theories which appeared in
the previous chapter.
As said in Chapter 1, the torus compactification of the N =(2,0) theory of type G gives 4d
N =4 SYM with gauge group G . In this case, two important properties are

1. The theory is superconformal at the origin of its moduli, and

2. the torus modulus τ is identified with the (exactly) marginal coupling τ ofN =4 SYM. In
particular, the SL(2,Z) modular group act as the S-duality onN =4 SYM 1.

It is not obvious these properties are universal for torus compactification ofN =(1,0) theories.
Actually, in Section 3.1, for a very-higgsable theory, which is defined as a theory which is at a

generic point of Higgs branch the system is gapped or hypers, we will find the following claim :

When a 6dN =(1, 0) theory T is very-higgsable, its torus compactification 4dT has a supercon-
formal point on its moduli, and the torus modulus τ corresponds to an irrelevant operator on
the superconformal fixed point. In particular, the SL(2,Z) modular group acts trivially on the
superconformal fixed point.

Awell-known example is T =T Est
N [59]. In that case the compactified theory 4dT Est

N is the higher
rank generalization of the E8 theory of Minahan-Nemeschansky, which does not have a marginal
deformation. Another example of a very-higgsable theory is T (g,g)

0 , and we will observe that the
torus compactified theory 4dT (g,g)

0 can be identified with a class S theory of type g. Further, we
study torus compactifications of theories which is higgsable to T Est

N in Section 3.2 using web
diagrams, and conclude the compactified theory can be also described as a class S theory of type
AK −1 with some K when the theory satisfies certain additional conditions.
Finally, we will generalize the analysis for T (g,g)

0 to general T (g,g)
N and its closing T (g,g)

N {µL ,µR }
in Section 3.3. Those theories are higgsable to N =(2,0) theory 2of type AN , and the most of
analysis will be also generalized to theories higgsable toN =(2, 0) theories of D , E type. There,
we will observe that:
1N =4 SYM is not self-dual under the S-duality even when G = SU(N ) since its Langlands dual is SU(N )/ZN .
The global data depends on choice of basis of cycle, and this is because the “meta”-ness of the AN−1 N =(2,0)
theory [58]. This subtlety exists also for N =(1, 0) theories which is not very-higgsable though we will not study
further in this direction.

2Here, we focus on the case where we can go to the root to N =(2,0) theory by recursively shrinking tensor vev a k

with ηk k = 1. In other words, the root toN =(2, 0) is the endpont. A counterexample of this restriction is T (usp,usp)
N .
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when a 6d N =(1,0) theory T is higgsable to T (2,0)
G , the torus compactification 4dT can be de-

composed as
4dT = 4dS {G }/Gτ (3.0.1)

with some 4dN =2 theory 4dS {G } with flavor G , where /Gτ denotes the 4dN =2 gauging of the
G flavor of 4dS {G } with marginal gauge coupling τ. The theory 4dS {G } is further decomposed
as

4dS {G }= (4dU{G , H }× 4dV {H })/HIRF (3.0.2)

where 4dU , 4dV are certain 4dN =2 SCFTs whose flavors are indicated in the bracket, and /HIRF

denotes the gauging of the diagonal of H flavors of the two 4d SCFTs with an IR free gauge
coupling. Therefore, in general, the 4d theory decouples into two SCFTs at the most singular
point of the Coulomb moduli space3. When the tensor branch structure on the root to T (2,0)

G

includes su(1) or ∅ gauge algebra, 4dV {H }=∅ and H =∅, and therefore 4dS {G }= 4dU{G } is
superconformal.

For T (Ak ,Ak )
N {µL ,µR } and T (Dk ,Dk )

N {µL ,µR }, the theories 4dU and 4dV will be identified with
certain class S theories, and in some cases we find thatH and 4dV happens to be trivial. Therefore,
in such cases, the two properties of compactification of N =(2,0) theories posed above are also
satisfied and a generalization of Gaiotto’s class S story to this case might be expected to exist. 4

3.1. Compactification of very-higgsable theories: T Est
N and T (g,g)

0

In this section, we investigate torus compactification 4dT of a 6d very-higgsable theory T . Ac-
tually we would like to set a stronger condition than just being higgsable to free hypers, which is
the following:

• All tensor vev can be turned off using only the procedure (2.1.37) recursively. Using the
terminology introduced below (2.1.37), the endpoint is trivial.

• The charge matrix ηi j satisfies (2.1.31).

By the term very-higgsable, we mean these conditions in the following. An example with non-
trivial defect group but being higgsable to a hyper is T (usp,usp)

0 . Further, we are going to use the
empirical fact

• In the GS coupling 2π
∫

Bi ∧ I i at a point in the contracted subspace of the tensor branch ,
the coefficient q i

grav of
1
4 p1(T ) in I i is always ηi i −2:

I i ⊃ q i
grav

1

4
p1(T ), q i

grav =η
i i −2. (3.1.1)

3Here we do not introduce Wilson lines along the torus. When generic Wilson lines are turned on, the situation is
different [60].

4Instead, if we allow ourselves to turn onWilson lines as we discussed in Subsection 2.4.4 forT (g,g)
N , the two properties

are satisfied when compactified further to 4d, since the affine quiver is conformal in 4d. In fact the generalization
to compactification by general Riemann surfaces with nontrivial flavor bundles gives 4d N =1 SCFTs [61], and
g= Ak−1 case which is called class Sk is somewhat extensively studied [60,62].
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which is derived from (2.1.31) and the empirical equation (2.1.25). As said there, this fact holds
for all F-theory-constructible theories which includes all the known theories.
First, we study the torus compactification of a general very-higgsable theory T , and prove
• The 4d theory has a superconformal point, and the SCFT does not have marginal coupling,
and

• the 4d central charges a , c can be written as a linear combination of the coefficients of the
6d anomaly polynomial of T .

In particular when T = T Est
N , the formula obtained correctly recovers the known central charges

of the rank N E8 theory of Minahan and Nemeschansky.
Further, we consider the case of T = T (g,g)

0 and identify the compactified theory 4dT (g,g)
0 as a

class S theory of type g using string dualities in Subsection 3.1.2. We will also do consistency
checks.
The contents of this section was originally appeared in [14] by the author of this thesis and his

collaborators.

3.1.1. General properties and central charges of 4dT
3.1.1.1. Subbranch H of the 4d Coulomb branch

First we define a subbranchH of the Coulomb branch of 4dT . On the contracted subspace of the
tensor branch of a very-higgsable theory T , the tensor branch structure looks

· · · gk−1 gk gk+1 · · ·
ηk−1,k−1 1 ηk+1,k+1 . (3.1.2)

Between gk and gk±1, there might be a Lagrangian or non-Lagrangian matter. For example, the
structure expressed in the most right part of (2.4.22) is in the contracted space, and su(3) and [e6]
are coupled with an E-string trough the embedding su(3)⊕ e6 ⊂ e8, which is non-Lagrangian.
Let us focus on the tensor mode a k with ηk k = 1 associated with gk . When compactified on

T 2, the tensor scalar a k and the 4d scalar

b k =

∫
T 2

B k (3.1.3)

coming from the 6d self-dual tensor field B k forms a 4d Coulomb branch (complex) scalar

u ∼ exp(a k +2πib k ). (3.1.4)

This classical description of u is valid where a k ≫ volT 2. The metric of the u-space is that
of cylinder there, since b k is identified with b i by the 6d large gauge transformation. It is not
obvious whether it is meaningful to talk about u where a k is not large, because a priori the scalar
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3. Circle and torus compactifications

u can mix with the scalars coming from other tensors and scalars from 6d vector 5. However,
we will see later that the gauge algebra gk is IR free in 4d, and thus we can separate u from
other Coulomb parameters even quantum mechanically when the couplings of gauge fields with
gauge algebra other than gk are sufficiently weak. We letH denote the complex one-dimensional
subbranch spanned by u .
Further, the IR free-ness of gk ensures that the structure ofH is invariant under the Higgs flow.

Since Higgs branch does not admit quantum correction, the gauge field associated to gk can be
Higgsed. Then, the resulting theory is the T 2 compactified rank 1 E-string (plus other decoupled
modes) [59]. Therefore, the special structure, in particular the positions of singularities, of the
subbranchH is the same as those of the Coulomb branch of the compactified E-string theory6.

3.1.1.2. Structure of H
As said above, the structure ofH is universal among any tensor mode with ηk k = 1. Therefore,
the problem of determining the structure ofH is reduced to the case of the rank 1 E-string theory
T Est

1 .
An easy way to capture the singularity structure of H is to consider the brane construction

of the E-string theory. The rank-1 E-string theory is the worldvolume theory on one M5 brane
probing the M9. When compactified on S 1, this M-theory system reduces to the Type IIA system
with a stack of O8−and eight of D8s coming from the M9 and one D4 coming from the M5.
Further compactify and taking T-dual along that compactifying circle, we get a Type IIB system
with 2 O7−, 8D7, one D3, which is depicted in Figure 3.1.
It is known from the F-theory analysis [63,64] that 2 O7−-planes and 6 D7-branes can be com-

bined to become an E8 7-brane. Therefore, the restoration of the E8 flavor of the E-string theory
T Est

1 should corresponds to this emergence of the E8-brane. As also illustrated in Figure 3.1, there
are two additional D7-branes, and the position space of D3, which is identified with the Coulomb
branchH , is the cigar with one E8 superconformal point and two of points where a D7-D3 free
hyper emerges. We set the coordinates of those singular points to be u = 0, 1,λ with a complex
number λ by a linear fractional transformation on u fixing the infinity. Since the modulus τ of
the torus is just related to the position λ of a D7 relative to the E8-brane, it does not affect the
superconformal physics at the E8 point.
Let us determine the special geometry of H assuming that the associated Seiberg-Witten ge-

ometry is a torus fibration:
y 2 = x 3+ x f (u )+ g (u ). (3.1.5)

The special coordinates a and its dual aD are

da

du
=

∫
A

dx

y
,

daD

du
=

∫
B

dx

y
(3.1.6)

where A, B are cycles of the elliptic curve (3.1.5). Since the complex structure τ(u ) = daD
da should

5The Higgs branch is robust under the compactification thanks to eight supercharges, thus u does not mix with Higgs
scalars.

6Instead, asymptotic behavior (3.1.4) is enough to constrain the special geometry as said in [14].
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O7−

O7−

D7sD7s D3
Restoring E8
======⇒ E8 brane

Figure 3.1.: Depiction of the brane realization of the Coulomb branchH of rank 1 E-string the-
ory. The left shows perturbative configuration where E8 flavor is broken. The geom-
etry depicted is a cylinder divided by the orientifold Z2, and the gray curve between
O7s are identified with the other curve between them. Colliding O7s and 6 D7,they
non-perturbatively become an E8 brane, and the Coulomb branch looks like the right
picture. The position of the D3 corresponds to the Coulomb branch coordinate u , the
E8-brane represents the superconformal point where the E8 theory of Minahan and
Nemeschansky is realized, and the remaining 2 D7-branes represents two free-hyper
point in H . Far away from the singular points, the Coulomb branch is a cylinder
described by (3.1.4).

be asymptotically equal to the complex structure of the compactifying torus when |u | →∞, f , g
behave as f → u 4n , g → u 6n (ignoring the coefficient) with some integer n in the limit. The fact
that the metric ds 2 = Im(da ∗daD ) on H should be asymptotically cylinder, because of (3.1.4),
determines n to be 1.

Therefore, f (u ), g (u ) are polynomial of order 4, 6 respectively, and thus the discriminant ∆=
27 f 2 + 4g 2 has generically 12 zeros. 7However, when the E8 flavor restores, we expect only
three zeros are separated, and at the two hyper points the order of vanishing of ∆ should be one.
Imposing that the worst singularity sits at u = 0, the only possibility is

f (u ) = u 4, g (u ) = u 5+u 6, (3.1.7)

up to coefficients.

The R-charge R [u ] of u at the superconformal point u = 0 can also be determined. From (3.1.5)
and(3.1.7), the R-charge of x , y are

R [x ] =
5

3
R [u ], R [y ] =

5

2
R [u ]. (3.1.8)

The Seiberg differentialλ is determined by ∂ λ∂ u =
dx
y , and has R-charge 2. Thus, we have 2−R [u ] =

R [x ]−R [y ] =− 5
6 R [u ], and conclude R [u ] = 12.

7 This number is related to the fact that an O7− is actually a non-pertubative bound-state of (1, 1) and (1,−1) 7-branes
and thus there are 12 branes in the left of Figure 3.1. We are going to heavily use this fact in Section 3.2.
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3. Circle and torus compactifications

3.1.1.3. Method to calculating central charges

Here we briefly describe the method of calculating the 4d central charges of a 4d N =2 SCFT
with one-dimensional Coulomb branch, that was developed in [65]. The generalization to theories
with multi dimensional Coulomb branch is straightforward and can be found in the reference. The
method relies on the topological twisting of 4dN =2 with (topologically nontrivial) background
metric and flavor fields [66]. After twisting and integrating out massive modes, the partition
function should look like

Z =

∫
Coulomb branch

[dµ]A(u )χB (u )σ
∏

i

Ci (u )
ni Zgen(µ), (3.1.9)

where [dµ] is themeasure for the vector multipletµ to which u belongs, Zgen(u ) is the contribution
coming from integrating out all modes but the multiplet µ, and topological invariants χ ,σ, ni are
the Euler number, the signature 1

3

∫
p1(T ) and the instanton number

∫
c2(Ffi ) with respect to the

i th flavor fi . Zgen(u ) is calculated using the spectrum away from singular points in the Coulomb
moduli. Other terms depending on backgrounds are prohibited by the topological invariance, and,
to keep the twisted BRST invariance, the “functions” A(u ), B (u ),Ci (u ) of the Coulomb branch
modulus u should be holomorphic. The reason of the quotation mark is explained just below.
As said in [66], the measure [dµ] is not invariant under the S-duality that maps the special

coordinate a to aD and vector multiplet fields µ to µD , but

[dµ] =τ−
χ
2 [dµD ], τ=

daD

da
. (3.1.10)

For the partition function Z to be invariant, the “function” A(u )χ should absorb this modular
anomaly, therefore A(u ) is actually a function on the SL(2,Z) cover of the Coulomb branch deter-
mined by the torus fibration on it (B , C are also not single valued, but still functions on a finite
cover). Therefore, we can write A(u ) as

A(u ) = Â(u )
�

dτ

du

� 1
4

(3.1.11)

with Â(u ) being invariant under the S-duality, since�
dτD

du

� 1
4

=τ− 1
2

�
dτ

du

� 1
4

(3.1.12)

where τD =− 1
τ . 8

At a superconformal point u = u∗, theN =2 U(1)R and SU(2)R symmetries should restore, and
their (non-gauge) ’t Hooft anomalies are known to be related to conformal central charges a , c and
flavor levels ki with respect to flavor algebras fi [67–69]. For N =2 theories, the U(1)R -grav2,

8In fact, in general A(u ) though to be equal to ( ∂ u
∂ a )

1
2 . The later calculation will be simplified when this formula is

assumed [65].
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U(1)R -SU(2)2R and U(1)R -f2
i ’t Hooft anomalies is related to the a , c ,ki as

d ⋆ JU(1)R = 2(c −a )p1(T )+4(c −2a )c2(R )+
∑

i

ki c2(Ffi ). (3.1.13)

This equation is for the untwisted theory, and the twisting forces

c2(R ) =−1

2
χ4− 1

4
p1(T ) (3.1.14)

with χ4 being the Euler density. Therefore, after twisting, the anomaly (3.1.13) becomes

d ⋆ JU(1)R = 2(2a − c )χ4+ c p1(T )+
∑

i

ki c2(Ffi ). (3.1.15)

Comparing the variation δ log Z obtained from this anomaly equation and from the equation
(3.1.9) around the considered superconformal point, we obtain

a =
1

4
R [A|u∗] + 1

6
R [B |u∗] +agen (3.1.16)

c =
1

3
R [B |u∗] + cgen (3.1.17)

ki =R [C |u∗] +ki ,gen (3.1.18)

where agen, cgen,ki ,gen are contribution from Zgen(u ) and R [A, B , C |u∗] are the charges of A, B , C
with respect to the U(1)R restored at u = u∗. We define δap ,δcp ,δki ,p by the difference between
the central charges of the CFT arises at u = p and agen, cgen, ki ,gen.

3.1.1.4. Central charges of the E8 theory of Minahan and Nemeschansky

Next, let us derive the central charges of the superconformal point of T 2 compactified T Est
1 , as a

warming up, by investigating the behaviors of the functions A, B ,C defined above. Wewill almost
repeat the calculation appeared in [65] though slightly change it to fit with the later calculation. We
let AE , BE ,CE denote the functions A, B , C for the case of 4dT Est

1 . Soonwe generalize this analysis
to general very-higgsable theories. Note that since the U(1)R symmetry at the superconformal
point is emergent at low-energy, we cannot obtain the 4d anomaly polynomial just integrating the
6d anomaly polynomial. However, the method we have reviewed above enables us to calculate
4d central charges a , c , which are linearly related with coefficients of the 4d anomaly polynomial
by supersymmetry. The necessary ingredients are using the SW geometry of H and the 6d GS
coupling

2π

∫
B ∧ I , I = c2(FE8

)− c2(R )+
1

4
p1(T ). (3.1.19)

The asymptotic behavior of the functions AE , BE , CE around |u | ∼∞ can be easily read from
the GS coupling (3.1.19). Upon compactification and twisting the GS coupling becomes the 4d
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3. Circle and torus compactifications

coupling ∫
I log u , I =

1

2
χ4+

1

2
p1(T )+ c2(FE8

) (3.1.20)

where |u | ∼∞, and therefore the asymptotic behaviors of the functions A, B , C are determined
to be

AE ∼ u
1
2 , BE ∼ u

3
2 , CE ∼ u (where |u | ∼∞). (3.1.21)

Since BE , CE are free from modular anomaly, it is easy to determine their behaviors around the
superconformal point from the argument principle. At u = p = 1,λ, just a massless hyper arises;
therefore, we have δp a = 1

24 , δp c = 1
12 δp k = 0, R [u ] = 2. From (3.1.16),(3.1.17),(3.1.18), we

get

ordp AE = 0, ordp BE =
1

8
, ordp CE = 0 (3.1.22)

for the hyper points p = 1,λ with ordp meaning the order of the zero at p . Thus, from (3.1.21),
the argument principle says

ord0BE =
5

4
, ord0CE = 1. (3.1.23)

Then, from (3.1.17),(3.1.18) and the fact R [u |0] = 12, we have

δ0c = 5, δ0k = 12. (3.1.24)

To use the argument principle for AE (u ), we should know the behavior of dτ
du around u =

0, 1,λ,∞ which can be determined only by the special geometry ofH . Around the infinity, the
j -invariant j = 4 f 3

∆ behaves like j ∼ 1+ u−1 (ignoring coefficients), and the function τ(u ) goes
to the non-singular τ(∞) which is equal to the modulus of the compactifying torus; therefore the
asymptotic behavior of dτ

du is

dτ

du
=

dτ

d j

d j

du
∼ u−2, (u ∼∞). (3.1.25)

Around the hyper points u ∼ p = 1, λ, τ∼ log(u −p ) [70] from the one-loop computation. Near
the E8 superconformal point u ∼ 0, the j invariant behaves j ∼ u 2. There is a formula for τ:

τ∝ 2F1(
1
6 , 5

6 , 1; 1−α)
2F1(

1
6 , 5

6 , 1;α)
(3.1.26)

with j = 1
4α(1−α) and the hypergeometric function 2F1. Using the asymptotic behavior of the

hypergeometric function which is 2F1(a , b , c ; z )∼ z−a + z−b where z ∼∞, we have

dτ

du
∼ u− 1

3 , (u ∼ 0). (3.1.27)

Then it is straightforward to find the orders of the function ÂE (u ) = AE (
dτ
du )
− 1

4 . From (3.1.21),(3.1.22)
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and the behavior of dτ
du , we have

ÂE ∼ u , (u ∼∞), ordp ÂE =
1

4
, (p = 1,λ), (3.1.28)

concluding

ord0ÂE =
1

2
, ord0AE =

5

12
, R [AE |0] = 5. (3.1.29)

Substituting obtained R-charges R [AE , BE ,CE |0] and agen =
5

24 , cgen =
1

12 coming from the vec-
tor multipletµ, which is the onlymassless modes at a generic point, into (3.1.16),(3.1.17),(3.1.18),
we obtain the central charges of the superconformal point of 4dT Est

1 , which is thought to be the
E8 theory of Minahan and Nemeschansky, as

a =
95

24
, c =

31

6
, kE8

= 12. (3.1.30)

This agrees with the holographic calculation [71], although it is not completely sure that the holo-
graphic calculation is valid for N = 1.

3.1.1.5. Recursive calculation of 4d central charges

Now, we are ready to compute the central charges a , c , ki for general T 2 compactified very-
higgsable theory 4dT . We are going to recursively prove the following proposition P [N :

• P [N ]: For any very-higgsable theory T with rank (the number of tensor modes) less than
or equal to N , the 4d central charges of the compactified theory 4dT is

a = 24α−12β −18γ

c = 64α−12β −8γ

ki = 48κi ,

(3.1.31)

where α,β ,γ,κi are the coefficients of the 6d anomaly polynomial I [T ] defined as
I [T ]⊃αp1(T )

2+βp1(T )c2(R )+γp2(T )+
∑

i

κi p1(T )c2(Ffi ). (3.1.32)

The (3.1.31) can be directly checked for free hypers, tensors, vectors. In particular, the proposition
P [0] holds, since a free hyper is the very-higgsable theory.
To prove P [N + 1] with assuming P [N ], we consider a rank N + 1 very-higgsable theory T+.

Because of being very-higgsable, there is a one-dimensional subspace of the tensor branch of T+
where the theory looks like

[f] g T
1

(3.1.33)

with some (possibly empty) gauge algebra g and a rank N very-higgsable theory T (possibly
consists of multiple coupled component) coupled with the tensor mode (a k , B k ) with ηk k = 1.
When g ̸= ∅ the rank N theory T should have g flavor and gauged by the dynamical vector
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3. Circle and torus compactifications

multiplet, while if g=∅ a defect of T should be charged under the tensor mode B k so that after
shrinking a k we get the coupled SCFT T+.
Then, first we prove that g is IR free in 4d when g ̸= ∅, which was postponed to prove, using

the formula (3.1.31) for T . The GS coupling of B k is

2π

∫
B k ∧ I , I =−c2(Fg)+ c2(Ff)+d c2(R )+

1

4
p1(T ) (3.1.34)

from (2.1.16) and the empirical assumption (3.1.1). The 6d gauge anomaly cancellation condition
for g tells that

I [g] + I [T ] + 1

2
I 2 ⊃ (−h∨g

48
+κg− 1

16
)p1(T )c2(Fg) = 0. (3.1.35)

Using P [N ], the 4d flavor central charge k
4dT
g of 4dT is k

4dT
g = 4h∨g + 12 therefore the beta

function of g in 4d on a generic point is (positively) proportional to

k
4dT
g −4h∨g = 12≥ 0, (3.1.36)

and thus the gauge field with algebra g is IR free in 4d.

Knowing that g is IR free if not empty, we can isolate the subbranch H of the 4d Coulomb
branch spanned by the complex Coulomb scalar u coming from (a k , B k ), and the SW structure
ofH is identified with that of 4dT Est

1 , as seen in the previous part of this subsection. Therefore,
we can repeat the analysis for 4dT Est

1 that we have already done. The only deference here from
the previous case is that the coefficient of c2(R ) in I can be different from that in (3.1.19). The
values δ0a ,δ0c ,δ0k are now

δ0a =
3

4
−3d , δ0c = 2−3d , δ0kf = 12, δ0kg =−12. (3.1.37)

The total kg is 0 at the superconformal point, which is consistent with the fact that at the point the
R-symmetry should be non-anomalous. The difference of anomaly polynomials of T and T+ is

I [T+]− I [T ] = I [g] + I [tensor] +
1

2
I 2,

1

2
I 2 ⊃ 1

32
p1(T )

2+
1

4
d p1(T )c2(R )+

1

4
c2(Ff),

=:δαp1(T )
2+δβp1(T )c2(R )+δκfc2(Ff).

(3.1.38)

Using the fact that (3.1.31) holds also for free tensor and vector multiplets and

δ0a = 24δα−12δβ ,

δ0c = 64δα−12δβ ,

δ0kf = 48δκf,

(3.1.39)

one can completes the proof of P [N +1].
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3.1.1.6. Example: T Est
N

Let us apply the formula (3.1.31) to the case with T = T Est
N . Substituting the 6d anomaly poly-

nomial (2.3.9), the 4d central charges are

a =
3

2
N 2+

5

2
N − 1

24
, c =

3

2
N 2+

15

4
N − 1

12
,

kE8
= 12N , kSU(2)L = 6N 2−5N −1,

(3.1.40)

which agree with the result of [65] for the rank N E8 theory9.

3.1.2. 4dT (g,g)
0 and Class S

In this subsection we will find that the torus compactification of a minimal conformal matter
T (g,g)

0 (g = A, D , E ) can be identified with a Class S theory by using the brane construction of
the conformal matters and string dualities, and do some consistency checks utilizing methods
developed in the previous part of this section.

3.1.2.1. String duality to Class S theory

We start from the M-theory realization of T (g,g)
0 which is one M5-brane probing the C2/Γg sin-

gularity with trivial discrete C -flux. Compactifying on a torus, going down to the Type IIA and
taking T-dual to the Type IIB frame, the 4d theory 4dT (g,g)

0 can be described by a D3-brane probing
the same C2/Γg singularity in Type IIB on R1,3 ×R×S 1 ×C2/Γg. The geometry of the singular
locus is R1,3×R×S 1 and it shares the flat 4d space R1,3 with the D3.
Since the position modulus of the D3 is decoupled as the center of mass mode, the D3 probing
C2/Γg should behave as a codimension-2 defect of the N =(2,0) theory of type g, which lives on
the singular locus. Regarding two infinities of R ×S 1 as full punctures, we predict the 4d theory
is a class S theory, namely

4dT (g,g)
0 =Tg{F, X , F } (3.1.41)

where Tg{O1,O2,O3}means the class S theory with CP1 with 3 punctures each labeled by a nilpo-
tent orbit Oi of g, F is the full puncture corresponding to the trivial orbit, and X is a certain
puncture coming from the D3. Determining X is the remaining task.
When g= Ak−1, we knowT (Ak−1,Ak−1)

0 is a 6d su(k )⊕2 bifundamental hyper, therefore 4dT (Ak−1,Ak−1)
0

is the 4d version of that. It is known that TAk−1
{F,S , F } with S being the simple puncture corre-

sponding to the subregular (the second largest) orbit [k−1, 1] is the bifundamental hyper, therefore
(3.1.41) is true with g= Ak−1, X = S . Also, for general g= A, D , E , we are tempted to conjecture
that

4dT (g,g)
0 =Tg{F,S , F }. (3.1.42)

In the following we would like to do some consistency checks listed below:

• the 4d central charges,

9The method here is never independent of the method of [65]. This is just a consistency check.
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3. Circle and torus compactifications

• the dimension of the Coulomb branch, and

• the geometry of the Higgs branch.

In [72], the statement (3.1.42) is verified using an F-theory construction of T (g,g)
N and the mirror

maps.
As a corollary of (3.1.42), since the closing of g⊕2 flavors in 6d should resulting in the same

closing in 4d, we have
4dT (g,g)

0 {OL ,OR }=Tg{OL ,S ,OR }. (3.1.43)

3.1.2.2. 4d central charges

Using the formulas (2.4.1) and (3.1.31), the 4d central charges of 4dT (g,g)
0 are

a =
1

24
(1+6χΓg
��Γg��−5dg), c =

1

12
(1+3χΓg
��Γg��−2dg), kg = 2h∨g , (3.1.44)

with χΓg = 1+ rg− 1|Γg| . To compare, the formula of 4d central charges a , c for Tg{O1,O2,O3} can
be found in [73], which are

a =−1

3
h∨g dg− 5

24
rg+
∑

i=1,2,3

a (Oi ) (3.1.45)

c =−1

3
h∨g dg− 1

6
rg+
∑

i=1,2,3

c (Oi ) (3.1.46)

with a (Oi ), c (Oi ) being contributions from the puncture Oi , given by

a (F ) =
1

24
(4h∨g dg− 5

2
dg+

5

2
rg), a (S ) =

1

24
(6
��Γg��χΓg +1), (3.1.47)

c (F ) =
1

12
(2h∨g dg−dg+ rg), c (S ) =

1

12
(3
��Γg��χΓg +1) (3.1.48)

for O = F,S . The flavor central charge for the g flavor associated to the full puncture is

kg = 2h∨g . (3.1.49)

It is straightforward to check the agreement between the central charges calculated from the de-
scription 4dT (g,g)

0 and from the class S description.

3.1.2.3. Coulomb branch dimension

The 4d Coulomb branch (complex) dimension d of 4dT (g,g)
0 can be directly calculated from the

tensor branch quiver of T (g,g)
0 . Instead, it is convenient to further compactify the theory and take

the mirror. The 3d theory is identified with the worldvolume theory of an instanton in the 7d SYM
theory on R×T 3 as we have seen in Subsection 2.4.3. The Higgs branch of the 3d mirror theory
is thus the g one-instanton moduli on R× T 3 modulo center of mass mode whose quaternionic
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dimension is calculated by the Atiyah-Patodi-Singer index theorem [45] as

d = h∨g − rg−1. (3.1.50)

Therefore, the complex dimension of the 4d Coulomb branch is equal to this d .
The Coulomb branch dimension formula for the class S theory Tg{O1,O2,O3} is also in [73],

which is
d =
∑

i=1,2,3

dim d (Oi )−dg (3.1.51)

where d (Oi ) is the Spaltenstein dual of Oi . For O = F,S , we have

dim d (F ) = dg− rg, dim d (S ) = 2(h∨g −1). (3.1.52)

Substituting these, we recover (3.1.50).

3.1.2.4. Higgs branch geometry

As the final check, we match the complex geometry of weakly gauged Higgs branch, which is
introduced in 2.4.1, of both side in (3.1.42). The weakly gauged Higgs branch of T (g,g)

0 is C2/Γg
which is manifest from the M-theory brane construction. Thus, our task is to determine the com-
plex geometry of the weakly gauged Higgs branch of Tg{F,S , F }. We have already done that for
g = A in 2.4.1 when the class S theory is merely hypers. Let Xg denote the full Higgs branch of
Tg =T{F, F, F } acted by the flavor groups G 3 =: G1×G2×G3. The Higgs branch Xg is equipped
with three corresponding holomorphic moment maps

µ1,2,3 : XG → gC. (3.1.53)

The key relation among them is [74, 75]

trµk
1 = trµk

2 = trµk
3 (3.1.54)

for any positive integer k . Further, the index analysis in [74] shows that all theG3 invariant Higgs
branch operators are generated by µ1 and µ2. Weakly gauging in terms of G1×G3 corresponds to
the hyperKähler quotient by the groups, where µ1,µ3 are imposed to be zero µ1 = µ2 = 0. This
operation forces µ2 ∈N whereN is the total nilpotent orbit in gC. Therefore, the weakly gauged
Higgs branch of Tg is the nilpotent orbitN .
Then we partially close one of F by a nilpotent vev e ∈ OS where OS is the subregular orbit

corresponding to the puncture S and e should be a generic element of OS . e can be represented as
ρ(σ+) with some homomorphism ρ : su(2)→ g and the ladder operator σ+ of su(2). In the partial
closure operation we remove NG hyper modes which are of the form [e , x ] with some x ∈ gC.
The remaining modes of the image of the moment map µ2 is

Se := {x + e |[x ,ρ(σ−)] = 0} (3.1.55)

which is called the Slodowy slice. Therefore, the weakly gauged Higgs branch of Tg{F,S , F } is
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3. Circle and torus compactifications

Se ∩N . Then the theorem in [76, 77] concludes

Se ∩N =C2/Γg (3.1.56)

as a complex geometry when e is a generic element of OS , which is what we wanted to prove.

3.2. Compactification of theories higgsable to T Est
N

In this section, which is devoted to explain the paper [15], we investigate circle/torus compacti-
fication of a class of 6d SCFTs T (M9,su){ui }, T (M9,su)∗ {ui } introduced in Subsection 2.5.2 whose
tensor branch quivers are

[f1] ∅ su(u2) su(u3) · · · su(uN )
1 2 2 · · · 2

. (3.2.1)

u2 should be no more than 8 for T (M9,su){ui } and no more than 9 for T (M9,su)∗ {ui }, and the flavor
f1 is e9−u2

for T (M9,su){ui } and ẽ9−u2
for T (M9,su)∗ {ui }. For other theories which is higgsable

to E-string theories with su gauge groups briefly examined in the last part of Subsection 2.5.2,
basically the same method is applied in [78]. 10

Our main claim here for the S 1/T 2 compactification 5dT (M9,su){ui },4dT (M9,su){ui } is
5dT (M9,su){ui }= bTK {Y1, Y2, Y3}, (3.2.2)

where bTK {Y1, Y2, Y3} is the 5d uplifting of the 4d Class S theory TK {Y1, Y2, Y3} of type AK −1,
whose UV curve is the sphere with three punctures Y1, Y2, and Y3.

K denotes 6N +n7+n8, where nI = #{i = 2,3, · · · ,N |ui+1−ui ≥ I }. Y2 and Y3 are the partitions
of K defined by Y2 = [2N +n7+n8, 2N ,2N ] and Y3 = [3N +n7,3N +n8]. Let Y T

1 = [ℓ1, · · · ,ℓN ]
be the partition of K obtained by taking the transpose of the Young diagram Y1, then

ℓi = 0 (i ≥N −n6+1)

ℓN−i+2 = 6−ui +ui−1 (i = 2, · · · ,N −n6)

ℓ1 = 6+uN .

(3.2.3)

The 4d version of the statement

4dT (M9,su){ui }=TK {Y1, Y2, Y3} (3.2.4)

automatically follows.

When ui = 0 for all i = 2, · · · , N , T 6d{ui = 0} is the rankN E-string theory, and the corresponding
class S theory is bT6N {[N 6], [2N , 2N ,2N ], [3N ,3N ]}which is proposed in [18] as the S 1 compact-

10The paper [78] coincidently appeared on arXiv with [15]. The basic strategy is almost the same, and the former
covers more general cases than the latter.
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ification of the rank N E-string theory. 11 Thus, our claim generalizes the result of them. For the
compactifications of T 6d∗ {ui }, the claim is

5dT (M9,su)∗ {ui }= bTK∗{Y1, Y ∗2 , Y ∗3 }, (3.2.5)
4dT (M9,su)∗ {ui }=TK∗{Y1, Y ∗2 , Y ∗3 }, (3.2.6)

where K∗ = 6N +n7+n8+n9, Y ∗2 = [2N +n7,2N +n8,2N +n9], and Y ∗3 = [3N +n7+n8+n9,3N ].
Y1 is defined by the same equations as the former case. When u2 ≤ 7, K∗ = K , Y ∗2 = Y2 and Y ∗3 = Y3

holds.

Note that a single 4d SCFT might admit multiple class S constructions, and thus the above class
S descriptions are not necessarily unique.
In Subsection 3.2.1.3, by T-dualizing the Type I’ brane construction, we will find the 5-brane

web describing the 5d SCFT obtained by the S 1 compactification. The resulting web has three
external legs of 5-branes terminated at 7-branes [18],and from the webs we will show the re-
sults (3.2.2) and (3.2.5). Then, it follows that the T 2 compactification is given by the A-type 6d
N =(2,0) theory on a sphere with three punctures, confirming (3.2.4) and (3.2.6).
In section 3.2.2.2, we will provide further evidence for the 4d version of our main claims (3.2.4)

and (3.2.6) by calculating 4d conformal and flavor central charges in two ways. First the charges
are obtained from the 6d tensor branch structure and the formula (3.1.31) we derived, and then we
get the same quantities from the corresponding class S description by using themethods developed
in [73, 80]

3.2.1. IIB web diagrams

In this section, we establish the dualities (3.2.2), (3.2.4), (3.2.5) and (3.2.6). First of all, we briefly
recall a class of 5d SCFTs introduced in [18] as 5d uplifts of some class S theories. Each of them
is engineered by a junction of 5-branes with three legs which consist of K 5-branes with charges
(1, 0), (0,1) and (1,−1) respectively, as illustrated in Figure 3.2. They are terminated at 7-branes
of type (1, 0), (0, 1) and (1,−1), respectively. The ending pattern of the 5-branes at the 7-branes
specifies a partition of K and then we associate a Young diagram Yi (i = 1, 2, 3) for each leg.
Whenwe shrink the internal part of theweb to a single point, we obtain the 5d SCFT bTK {Y1, Y2, Y3},

the right hand side of (3.2.2). Upon further reduction to 4d, this 5d theory becomes the class S
theory TK {Y1, Y2, Y3} in (3.2.4).
To connect this 5-brane web construction of the 5d SCFT bTK {Y1, Y2, Y3} with the Type I’ brane

engineering in Section 2.5, we utilize T-duality and Hanany-Witten effect. This proceeds as
follows. First, we T-dualize the Type I’ brane configuration in Sec 2.5 to obtain the Type IIB
brane configuration with 5-branes and 7-branes, which corresponds to the S 1 compactification of
T (M9,su)
(∗) {ui }. Second, by taking a mass decoupling limit, we find the web configuration which

11 When ui = 1 for i = 2, · · · ,N , T 6d{ui = 1} is the rank N E-string theory plus a decoupled hyper, and the correspond-
ing theory is bT6N {[N 5, N −1,1], [2N ,2N ,2N ], [3N ,3N ]}, which was firstly observed by the index calculation [79].
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3. Circle and torus compactifications

K

K

K

Y₁

Y₂

Y₃

Figure 3.2.: The 5-brane web configuration introduced in [18]. It has three legs made up of K
5-branes of type (1,0), (0, 1) and (1,−1) respectively. The 5-branes in each leg ter-
minate on 7-branes of the same type. The ending pattern of each leg at the 7-branes
determines the Young diagram Yi . Since the internal 5-brane web configuration is
determined (up to flop transitions) by the boundary data K and Yi (i = 1,2, 3), we do
not write it explicitly. The 5d SCFT from this web is the 5d uplift bTK {Y1, Y2, Y3} of
the class S theory TK {Y1, Y2, Y3}.

describes the 5d SCFT 5dT (M9,su)
(∗) {ui } obtained by the zero radius limit R6→ 0. This mass defor-

mation is achieved by moving one 7-brane toward the infinity without creating 5-branes due to
Hanany-Witten effect.
Finally, we move the remaining 7-branes toward the infinity. During the process, Hanany-

Witten effect creates additional 5-branes. We find that the resulting 5-brane web configuration is
that of Figure 3.2, a three pronged junction of 5-branes terminated at 7-branes. Thus, we establish
the results (3.2.2), (3.2.4), (3.2.5) and (3.2.6). In the rest of this section, we explain the strategy
outlined above more concretely.

3.2.1.1. Notations on 7-branes

Before moving to the concrete process, we summarize notations and conventions we use in the
rest of this section about 7-branes in Type IIB [17,18,81–83]. Let X[P,Q ] denotes the 7-brane with
charge [P,Q ]where P,Q are coprime. We use the following aliases A=X[1,0], B=X[1,−1], C=X[1,1],
and N=X[0,1]. The monodromy matrix K (X[P,Q ]) = K[P,Q ] of the 7-brane X[P,Q ] is

K[P,Q ] =

�
1+PQ −P 2

Q 2 1−PQ

�
. (3.2.7)

A 5-brane with charge (p , q ), when anti-clockwise crossing the branch cut of the 7-brane X[P,Q ],
becomes a (p ′, q ′) 5-brane where�

p ′
q ′
�
= K[P,Q ]

�
p
q

�
=

�
p
q

�
− (P q −Q p )

�
P
Q

�
. (3.2.8)
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X[P,Q]

(p,q)
(p ,q )‘ ‘

X[P,Q]

(p,q)
(p ,q )‘ ‘

Pq-Qp

Figure 3.3.: The Hanany-Witten effect between a 7-brane and a 5-brane.

When a 7-brane X[P,Q ] crosses a (p , q ) 5-brane as in the Figure 3.3, the Hanany-Witten effect
attaches (P,Q ) 5-branes to the 7-brane. The number of the emergent (P,Q ) 5-branes should be
|P q −Q p | so that the tension balances at the trivalent point.
When there are some 7-branes X[P1,Q1], X[P2,Q2], · · · , X[Pn ,Qn ] arranged anti-clockwise in this or-

dering, we denote the configuration by just writing them as

X[P1,Q1]X[P2,Q2] · · ·X[Pn ,Qn ], (3.2.9)

and the corresponding monodromy matrix as

K (X[P1,Q1]X[P2,Q2] · · ·X[Pn ,Qn ]) = K[Pn ,Qn ]K[Pn−1,Qn−1] · · ·K[P1,Q1]. (3.2.10)

We can rearrange two 7-branes X[P1,Q1], X[P2,Q2] by the following rule:

X[P1,Q1]X[P2,Q2] =X[P2,Q2]X[P ′1 ,Q ′1] =X[P ′2 ,Q ′2]X[P1,Q1], (3.2.11)

where �
P ′1
Q ′1

�
= K[P2,Q2]

�
P1

Q1

�
,

�
P ′2
Q ′2

�
= K[P1,Q1]

�
P2

Q2

�
. (3.2.12)

We name some important 7-brane configurations such as

EN =AN−1BCC=AN X[3,−1]N, (3.2.13)bEN = EN X[3,1] =AN−1BCBC=AN BX[1,2]X[2,1]. (3.2.14)

Here we assume that N ≥ 2. When N = 1, we cannot equate E1 = BCC to AX[3,−1]N by the
operations (3.2.11); therefore, the latter is an inequivalent configuration which is denoted as Ẽ1.
We define E0 by X[3,−1]N. The configuration b̃E1 and bE0 is again given by Ẽ1X[3,1] and E0X[3,1]

respectively.

3.2.1.2. Warm up: T-dual of E-string theory

To begin with, we start from the case where all the gauge algebras are empty in (3.2.1), where the
6d theory is now the rank-N E-string theory. While the result of this section was first obtained
in [18], we adopt the T-duality argument from [84].
We start from the Type I’ brane configuration where we have seven D8 branes on top of the
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D8O8 +7D8s NS5 NS5 NS5 O7 NS5 NS5 NS5

T-dual

Type I’

D7s

Type IIB

O7

Figure 3.4.: T-dual of the Type I’ brane configuration realizing S 1 compactified higher rank E-
string theory. The O8− plane wrapping S 1 becomes two O7− planes and the eight
D8s become eight D7 branes, while the NS5 branes in type I’ remain to be NS5.

BC

B C

O7

A8

O7

Figure 3.5.: The Type IIB brane configuration in Figure 3.4 seen from the left. The O7− planes
splits into B and C branes, therefore there are twelve 7-branes wrapped by the N
circles of 5-branes.

O8− plane and one D8 brane slightly away from the O8− plane. There are also N NS5 branes
away from that O8−-D8 system where the Romans mass is 0.
After the S 1 compactification, we can take the T-dual of the brane system to obtain the Type

IIB O7−-D7-NS5 system, as illustrated in Figure 3.4. Note that this T-dual is valid because in the
Type I’ configuration, the Romans mass is 0 far from the O8− plane, and thus the dual Type IIB
geometry should asymptotically be the cylinder.
Since the O7− plane is the bound state of two 7-branes of type B and C [85] and the D7 brane

is of type A, the system is equivalent to N 5-branes encircling twelve 7-branes bE9 = A8BCBC as
shown in Figure 3.5, which is considered in [86]. Note that since each 7-brane has deficit angle
1
6π, the total deficit angle of twelve 7-branes is 2π, and therefore the metric of the diagram Figure
3.5 is that of the cylinder outside of where 7 branes sit. The same fact is also related to the fact
K (bE9) = 1.

Mass decoupling of Kaluza-Klein modes. The configuration in Figure 3.5 engineers the
theory with Kaluza-Klein modes [86]. To obtain the 5d SCFT with e8 × su(2) global symmetry
from the E-string theory on S 1, we need to decouple the Kaluza-Klein modes by taking R 6→ 0
preserving the global symmetry.
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This can be achieved by rearranging the 7-branes by BCBC = BCCX[3,1] and moving X[3,1]

toward the infinity, leaving the E9 7-brane inside the circles of 5-branes. Here we show that
we can make this decoupling without introducing additional 5-branes coming from the Hanany-
Witten effect.
To this end, we note that each 7-brane inside the circle has a branch cut that runs toward the

infinity. When the circle of 5-brane crosses the cut, the (p , q ) charge of the 5-brane which makes
up the circle changes to (p ′, q ′) according to the formula (3.2.12). The fact K (bE9) = 1 ensures that
the charge of the 5-brane comes back to its original value after crossing all the cuts from the 7-
branes, as required by the consistency. We can choose the charge at a small segment in the circle
to be (3,1). Then, we can move the 7-brane X[3,1] to the infinity through that segment without
Hanany-Witten effect.

Pulling out 7-branes. In order to obtain the 5-brane web as in Figure 3.2, we rearrange the
7-branes and pull them out from the circles. We rearrange the five 7-branes E3 = A2BCC in the
remaining 7-branes E9 inside the circles as

E3 =A2BCC=BN2C2 =BNA2N=B3N2, (3.2.15)

where we used AB = BN, NC = AN and NA = BN. Note that this rearrangement is nothing but
moving two A branes from the leftmost to the rightmost in E3.
Then, we move the three types of 7-branes A, B and N toward the infinity. To count the number

of additional 5-branes created by Hanany-Witten effect, we concretely keep track of the charges
of the circle of 5-brane. When decoupling the 7-brane X[3,1], we take the charge in the segment of
the circle to be (3, 1). Then, using (3.2.12) the change of the charge is given as

(3, 1)
A−→ (2,1)

A−→ ·· · A−→ (−3,1)
B−→ (−1,−1)

B−→ (1,−3) (3.2.16)
B−→ (3,−5)

N−→ (3,−2)
N−→ (3,1),

where the symbols on top of the arrows represents the fact that 5-brane crosses the cut emanating
from the 7-brane of the corresponding type. The 5-brane charge goes back to the initial value
(3, 1), as already mentioned.
Then, we pull out the 7-branes from the inside of the circle along the cut. The formula (3.2.8)

and the change in the 5-brane charge (3.2.16) give the number of 5-branes created by Hanany-
Witten effect when the 7-brane crosses the circle of 5-brane. We have one extra (1,0) 5-brane
attached to A, extra two (1,−1) 5-branes attached to B, and extra three (0,1) 5-branes attached to
N respectively after crossing a circle of 5-brane.
Finally, we have a three-pronged junction of 5-branes where each legs have 6N 5-branes ter-

minated at 7-branes as shown in Fig 3.6. The patterns of terminations correspond to the Young
diagrams Y1 = [N 6], Y2 = [2N , 2N ,2N ] and Y3 = [3N ,3N ]. For example, N (1, 0) 5-branes are
grouped into a bunch and are terminated at a single A.
This 5-brane web describes the 5d theory bTK {Y1, Y2, Y3} [18]. Thus, we have shown using T-

duality and Hanany-Witten effect that the S 1 compactification of rank-N E-string theory is the 5d
uplift of the class S theory.
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N N
N
N
N
N
N

3N3N

2N
2N

2NN

A6
B3

N2 Hanany-Witten effect

Figure 3.6.: Pulling out eleven 7-branesA6B3N2 from the inside of theN circles of 5-brane creates
the 5-brane junction with three legs due to Hanany-Witten effect. Each leg consists
of 6N 5-branes. These 5-branes are grouped as shown in the right hand side of the
figure and each group is terminated at a 7-brane.

3.2.1.3. T-dual of 6d theory T (M9,su)
(∗) {ui }

Next we would like to generalize the result of Sec 3.2.1.2 to T (M9,su){ui }. To this end, we take
T-dual of the Type I’ brane configuration we studied in Subsection 2.5.2. Before taking T-dual,
it is (just technically) convenient to cause Hanany Witten transitions as depicted in Figure 3.7.
Then, after taking T-dual, the resulting Type IIB configuration is illustrated in Figure 3.8. We
note that the case considered in Sec 3.2.1.2 corresponds to n7 = n8 = 0 and Y1 = [N 6].
The O8− plane and two D8 branes at x 6 = 0 become six 7-branes bE3 = A2BCBC. The NS5

branes become the N circles of 5-branes wrapping the six 7-branes bE3 =A2BCBC. We also have
D6 branes in the Type I’ configuration, which become extra (1,0) 5-branes in the Type IIB setup.
n7 and n8 (1,0) 5-branes are attached to two A 7-branes wrapped by the N circles of 5-branes
respectively. These extra 5-branes extend toward the infinity and we have 6N +n7+n8 5-branes
out of the circles due to Hanany-Witten effect. They are terminated at A type 7-branes, which
come from 6+ uN D8 branes sitting where x 6 is very large in the Type I’ configuration. The
ending pattern is specified by the Young diagram Y1 in (3.2.3).
The setup in Figure 3.8 includes the Kaluza-Klein modes. The decoupling of these modes can

be done as in Sec 3.2.1.2 by rewriting bE3 = E3X[3,1] and moving X[3,1] toward the infinity. Again,
no additional 5-branes are created during the decoupling and we have five 7-branes E3 = A2BCC
inside the circles.

Pulling out 7-branes. In order to obtain the 5-brane web as in Figure 3.2, we rearrange the
7-branes inside the circles and pull them out toward the infinity. The rearrangement can be done
by moving the 7-branes as in (3.2.15). We carefully keep track the effect from the extra n7 and
n8 (1, 0) 5-branes attached to the two A type 7-branes in Figure 3.9. After the rearrangement, one
of the three Bs has new n7 +n8 5-branes and the two Ns have new n7 and n8 5-branes attached
to it respectively.
Then, we pull all the 7-branes out of the circles. As in Sec 3.2.1.2, we have one extra (1,0)
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u₂
NS5

O8 +(8-u₂)D8s

u₃

m₂ m₃

 u N

m N

NS5

O8 

n₈ n₈+n₇ n₈+n₇+6 n₈+n₇+6N Y

Hanany-Witten effect

Figure 3.7.: Upper: The same as Figure 2.12. Lower: Type I’ configuration after the pre-
processing Hanany-Witten transitions. There are two D8 branes near the O8− plane,
each has n7 and n8 D6 branes ending on it, and uN +6 D8 branes on the right side of
the N th NS5 brane. The K = n8+n7+6N D6 branes end on the stack of uN +6 D8
branes, and the pattern of the ending is specified by the Young diagram Y1 (3.2.3) [53].

N

A
B

B
C

n₇

n₈
n₈+n₇+6N Y₁

A

C

Figure 3.8.: The Type IIB web for the 6d theory T (M9,su){ui } on S 1 with Kaluza-Klein modes.
We have N circles of 5-branes. Outside the circles, we have a leg of 6N +n7 +n8

5-branes terminated at 7-branes as specified by the partition Y1. Inside the circle, we
have six 7-branes A2BCBC. n7 and n8 5-branes are attached to the two A 7-branes
respectively.
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n₇
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ABC
C n₈
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B

B

B

n₇
n₈

N

n₇+n₈

n₇
n₈

Figure 3.9.: The 7-brane rearrangement inside the circle of 5-branes. Extra n7 and n8 5-branes
attached to two A create the junction of 5-branes due to the Hanany-Witten effect.
First, we move two A across the cut of B. A becomes N and we obtain the middle
configuration. Second, we move two Cs through the branch cuts of Ns. After that
process, C2 becomes B2 since they cross the cuts from two N. Finally, by moving one
B along its cut, we obtain the configuration in right.

N

n₇

n₈
n₈+n₇+6N Y₁

n₇
n₈

n₇+n₈

N

n₈+n₇+6N Y₁
n₇

n₈

n₈+n₇+2N

n₈+3N

n₇+3N

n₇+n₈
2N
2N

Figure 3.10.: Pulling the eleven 7-branes from the inside of the circles of 5-branes, we again obtain
the junction of 5-branes with three external legs.

5-brane attached to A, extra two (1,−1) 5-branes attached to B, and extra three (0, 1) 5-branes
attached to N respectively after crossing a circle of 5-brane. The result is shown in Figure 3.10.
We again have a three-pronged junction of 5-branes where each leg has K = 6N + n7 + n8 5-
branes terminated at 7-branes. The patterns of terminations are given by the Young diagrams Y1,
Y2 = [2N +n7+n8, 2N ,2N ] and Y3 = [3N +n7, 3N +n8].
This is the 5-brane web which describes the 5d uplift bTK {Y1, Y2, Y3} of the class S theory

TK {Y1, Y2, Y3}. Thus we have shown (3.2.2) using T-duality and Hanany-Witten effect.

Case with O8∗ plane. Next we consider the S 1 compactification of the 6d theory T (M9,su)∗ {ui }
whose Type I’ brane engineering uses the O8∗ plane. To begin with, let us consider the T-dual
of the O8∗ plane. As in Eq. (2.5.13), the O8∗ can be obtained by pulling two D8 branes from
O8−+D8. Noting that the T-dual of O8−+D8 is bE2, the operation corresponding to (O8−+D8 →
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n₈ n₉+n₈+n₇+6N Y₁A
n₉A

[3,-1]

X[3,1]

Figure 3.11.: The Type IIB web for the 6d theory T (M9,su)∗ {ui } on S 1 with Kaluza-Klein modes.
We have N circles of 5-brane. Outside the circles, we have a leg of 6N + n7 +
n8 + n9 5-branes terminated at 7-branes. Inside the circles, we have six 7-branes
A3X[3,−1]NX[3,1]. n7, n8 and n9 5-branes are attached to threeA 7-branes respectively.
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Figure 3.12.: The 7-brane rearrangement inside the circle of 5-branes. Extra 5-branes attached to
the three A branes create the junction of 5-branes due to the Hanany-Witten effect.
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3. Circle and torus compactifications

O8∗, 2D8) in the Type IIB frame should be

bE2 =Ab̃E1 =A2bE0. (3.2.17)

Therefore, we conclude that the T-dual of the O8∗ plane is bE0.
It is now straightforward to take T-dual of the 6d theory T (M9,su)∗ {ui }. The configuration is

illustrated in Fig 3.11. There areN circles of 5-brane and there is a leg of 6N+n7+n8+n9 5-branes
outside the circles. The six 7-branes inside the circles are now A3bE0 where bE0 =X[3,−1]NX[3,1].
The decoupling of Kaluza-Kleinmodes can be done bymovingX[3,1] toward the infinity. Again,

no additional 5-branes are created during the decoupling and we have AAAE0 where E0 =X[3,−1]N
inside the circles.
In order to obtain the 5-brane web as in Figure 3.2, we rearrange the 7-branes and pull them

out from the circles. The required rearrangement is given as

AA2X[3,−1]N=ABA2N=BNA2N=B3N2. (3.2.18)

Taking account for the fact that there are extran7,8,9 5-branes attached to the threeAs in Eq. (3.2.18),
the brane rearrangement is illustrated in Fig 3.12.
By pulling all the 7-branes out of the circles, we again have a three-pronged junction of 5-branes

where each leg has K∗ = 6N + n7 + n8 + n9 5-branes. Now we have three Young diagrams Y1,
Y ∗2 = [2N +n7,2N +n8,2N +n9] and Y ∗3 = [3N +n7+n8+n9, 3N ]. Therefore, we have shown
the result (3.2.5).

3.2.2. 4d conformal anomalies

In this section we compute the conformal and flavor central charges for the 4d theories T 4d{ui }
and TK {Y1, Y2, Y3}, and find the agreement. This provides another evidence for our claims (3.2.4)
and (3.2.6).
In this section we assume ui ≥ 1 for i = 2, · · · , N . Otherwise, the 6d theory is the higher rank

E-string theory and the agreement of the central charges was already checked in [14, 18].

3.2.2.1. Central charges of T 4d
(∗) {ui } from 6d anomaly polynomial

The conformal anomalies a , c and the flavor central charge ki for the flavor symmetry fi were
calculated in [14] for the 4dN =2 theory T 4d{ui }. They are given as

a = 24α−12β −18γ, c = 64α−12β −8γ, ki = 48σi , (3.2.19)

where α,β ,γ and σi are the coefficients of the anomaly polynomial 8-form I 6d of the 6d theory
T 6d{ui }, defined by12

I 6d ⊃αp1(T )
2+βp1(T )c2(FR )+γp2(T )+

∑
i

σi p1(T )c2(Ffi ). (3.2.20)

12Our normalizations for central charges and anomaly polynomial are those of [14, 16]
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Here, pi (T ) is the i th Pontryagin class of the tangent bundle and c2(F ) =
1
4 TrF 2 is the second

Chern class of the R - or flavor symmetry bundle, where Ffi is the background field strength for
the global symmetry fi . It is convenient to define the effective numbers nv and nh of vector and
hypermultiplets by

nv = 8a −4c =−16(4α+3β +7γ), nh = 20c −16a = 16(56α−3β +8γ). (3.2.21)

The algorithm for computing I 6d was provided in [4]. The anomaly polynomial I 6d splits into
two parts as

I 6d = I one-loop+ I GS, (3.2.22)

where I one-loop is the naive one-loop contribution from the massless matter contents at a generic
point on the tensor branch. I GS is the contribution from the 6d Green-Schwarz term given by

I GS =
1

2
ηi j Ii I j , (3.2.23)

where Ii are 4-forms topologically coupled to the self-dual two forms Bi by the action

ηi j

∫
Bi I j . (3.2.24)

Here ηi j is the kinetic matrix in the effective Lagrangian for the tensor multiplet scalars ai and
the gauge field strengths Fgi

;

2π

∫
ηi j
�

1

4
ai TrFj ∧ ⋆Fj − 1

2
dai ∧ ⋆da j

�
. (3.2.25)

For our case, ηi j is determined to be

ηi j =


1 −1
−1 2 −1
−1 2 −1

... −1
−1 2

 (3.2.26)

by the F-theory construction [11, 13] or the anomaly cancellation.

Using the formulas in [4,29], we can determine the Green-Schwarz coupling Ii and the kinetic
matrix ηi j for the 6d theory T 6d

(∗) {ui }, which is given as

I i =ηi j I j =η
i j c2(Fg j

)− 1

4
K i p1(T )+h∨(gi )c2(FR )− c2(Ffi ). (3.2.27)

In our case, K i = 2−ηi i is given as K 1 = 1, K i = 0 (i ≥ 2) and h∨(gi ) is h∨(g1) = 1, h∨(gi ) =
h∨(su(ui )) = ui (i ≥ 2).
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3. Circle and torus compactifications

Then the relevant part of the Green-Schwarz contribution I GS is

I GS ⊃ 1

32
ηi j K i K j p1(T )

2− 1

4
ηi j K i h∨(g j )p1(T )c2(FR )+

1

4
ηi j K i c2(Ff j

)

=
N

32
p1(T )

2− 1

4

�
N +

N∑
i=2

(N +1− i )ui

�
p1(T )c2(FR )

+
1

4

N∑
i=1

(N +1− i )p1(T )c2(Ffi ).

(3.2.28)

Here we have used the explicit form of the inverse ηi j of the matrix ηi j ;

ηi j =


N N −1 N −2 · · · 1

N −1 N −1 N −2 · · · 1
N −2 N −2 N −2 · · · 1
...

...
... ... ...

1 1 1 · · · 1

 . (3.2.29)

Therefore, the Green-Schwarz contribution to the 4d conformal anomalies are

δnv =−2N +12

�
N +

N∑
i=2

(N +1− i )ui

�
, (3.2.30)

δnh = 28N +12

�
N +

N∑
i=2

(N +1− i )ui

�
, (3.2.31)

δki = 12(N +1− i ). (3.2.32)

Adding the contribution from the massless multiplets, the total 4d conformal anomalies are

nv = 11N +
N∑

i=2

�
u 2

i −1+12(N +1− i )ui

�
, (3.2.33)

nh = 40N +
N∑

i=2

�
2u 2

i +12(N +1− i )ui

�−N−1∑
i=2

ui ui+1, (3.2.34)

ki = 12(N +1− i )+2ui (i = 1, · · · ,N ). (3.2.35)

Additionally, the complex dimension of the Coulomb branch of T 4d{ui } is just the sum of the
number of 6d tensors and the ranks of the gauge groups;

dimCCoulomb=
N∑

i=2

(ui −1)+N = 1+
N∑

i=2

ui . (3.2.36)
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3.2.2.2. Central charges of TK {Y1, Y2, Y3} from class S formulas

In this subsection we calculate the conformal anomalies of the class S theoryTK {Y1, Y2, Y3}. First,
we briefly recall the central charge formulas in [73, 80].

Let Y T = [ℓ1, · · · ,ℓN ] be the partition of K obtained by taking the transpose of the Young dia-
gram Y . The pole structure {pk }, k = 1, · · · , Y −m of Y is defined by

p1 = 0,

pk+1−pk = 0 if k is equal to ℓi for some i ,

pk+1−pk = 1 otherwise,

(3.2.37)

which can be summarized as

{pk }= {0,1, 2 · · · ,ℓ1−1,ℓ1−1,ℓ1, · · · ,ℓ1+ ℓ2−2, · · · , K −m}. (3.2.38)

For the class S theory TK {Y1, Y2, Y3}, the number dk of the Coulomb branch operators with
dimension k is given as 13

dk = 1−2k +
3∑

i=1

p (i )k (3.2.39)

where {p (i )k } is the pole structure of Yi . The effective number of vectors nv is

nv =
K∑

k=2

(2k −1)dk , (3.2.40)

and the formula for nh is

nh =−4

3
(K 3−K )+

3∑
n=1

f (Yn ), (3.2.41)

f (Y ) =
1

2

�
−K +
∑

i

ℓ2
i

�
+

K∑
k=2

(2k −1)pk . (3.2.42)

Let us apply the formulas (3.2.39), (3.2.40) and (3.2.41) to the class S theory TK {Y1, Y2, Y3}
where K = 6N +n7 +n8, Y1 is defined by (3.2.3), Y2 = [2N +n7 +n8,2N , 2N ] and Y3 = [3N +

13The formulas below are valid only when
∑

i p (i )k ≥ 2k − 1. When ui = 0 which corresponds to the higher rank E8

Minahan-Nemeschansky theory, the pole structure for the class S description violates this bound. That case was
studied well in [18] as already mentioned.
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3. Circle and torus compactifications

n7,3N +n8]. After some calculation, we obtain

nv = 10N +1+
N∑

i=2

(u 2
i +12(N +1− i )ui ), (3.2.43)

nh = 40N +
N∑

i=2

�
2u 2

i +12(N +1− i )ui

�−N−1∑
i=2

ui ui+1, (3.2.44)

dimCCoulomb=
K∑

k=2

dk = 1+
N∑

i=2

ui , (3.2.45)

which agree with the results (3.2.33), (3.2.34) and (3.2.36).
We can also check the agreement of flavor groups and their central charges. As explained

in [73], the theory TK {Y1, Y2, Y3} has the flavor group (up to u(1) factors)
su(ℓ1− ℓ2)2ℓ1

× su(ℓ2− ℓ3)2L2
× · · ·× su(ℓN−n6

)12N × su(2)12N , (3.2.46)

where the subscripts denote the flavor central charges and L i is defined by L i =
∑i

j=1 ℓ j . There is
an additional su(2)2K when n7 = n8, and moreover su(2)12N enhances to su(3)12N when n7 = n8 =
0. When n8 ̸= n7 ̸= 0, su(ℓN−i+1− ℓN−i+2)2LN−i+1

= su(2ui −ui+1−ui−1)12(N+1−i )+2ui
is nothing

but the flavor group fi and its central charge of T 4d{ui }, and su(2)12N should be identified with
f1. One can also match the flavor groups and central charges for other cases.
In the discussion so far, we only considered the 4d theory TK {Y1, Y2, Y3}. It is straightforward

to compute those quantities for the 4d theory TK∗{Y1, Y ∗2 , Y ∗3 } and check the agreement with the
results in Sec 3.2.2.1.

3.3. Compactification of theories higgsable to T (2,0)
G

In this section, we investigate S 1 and T 2 compactification of a 6d SCFT T higgsable to T (2,0)
G

with some A, D , E root system G . At first, we will make a claim about compactifications of a
general theory higgsable to T (2,0)

G :

When a 6d N =(1, 0) theory T is higgsable to T (2,0)
G , the circle compactification 5dT can be

decomposed as
5dT = 5dS {G }/GR6

(3.3.1)

where 5dS {G } is a 5dN =1 SCFT with G (or larger) flavor, and /GR6
denotes theN =1 gauging

with coupling 8π2

g 2 =
1

R6
with R6 being the circle radius. On the torus compactification, we have

4dT = 4dS {G }/Gτ (3.3.2)

with 4dS {G } being the circle compactification of the 5d SCFT 5dS {G }, and /Gτ denotes 4d
N =2 gauging with marginal coupling τ.
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At this stage we do not know whether 4dS is superconformal or not.
Further, for conformal matter T (g,g)

N−1 , we observe

The theory 4dS {G } can be further decomposed as
4dS {G }= (4dU{G , H }× 4dV {H })/HIRF (3.3.3)

with a certain 4d N =2 SCFTs 4dU and 4dV whose flavors are indicated in the bracket, and the
gauging /HIRF with respect to a certain IR free gauge group H .

We expect that this property is common for general theories higgsable to T (2,0)
G . An important

consequence is

The 4d theory 4dT flows to a fixed point composed of two SCFTs:

4dT flow−−→ 4dU{G ,H }/Gτ× 4dV {H } plus free matters (3.3.4)

at the most singular point of the Coulomb branch, when none of Wilson lines are introduced, if
4dV is not empty.

For the (A, A) conformal matter T (su(k ),su(k ))N−1 , the SCFTs 4dU , 4dV are identified with certain
class S SCFTs:

When the 6d theory T is the (A, A) conformal matter T (su(k ),su(k ))N−1 with k <N , the 4d SCFTs 4dU ,
4dV are

4dU =Tk {F, F, F }, 4dV =TN {[N −k ,1N ], F, F }. (3.3.5)

Therefore, the 4d theory 4dT (su(k ),su(k ))N−1 is

4dT (su(k ),su(k ))N−1 =
Tk {F, F, F }×SN 〈T 2

τ 〉{[N −k ,1N ]}
diag. of SU(k )

, (3.3.6)

where SN 〈C 〉{O } denotes the class S theory whose Gaiotto curve is C with puncture O .
Also for k =N and k >N cases, the 4d theories are determined. Further, the (D ,D ) conformal

matter case will be also studied in detail.
Closing one of the su(k ) flavors of both side of (3.3.6), one obtain

4dT (su(k ),su(k ))N−1 = SN 〈T 2
τ 〉{[N −k , 1N ]} (3.3.7)

since the class S theory T{F, F }, whose Gaiotto curve is a sphere with only two punctures, is
gapped. This result leads us to the observation:

When the endpoint tensor branch quiver contains a tensor mode (a k , B k ) which is not coupled
with any vector fields by the coupling a k TrF ∧ ⋆F , then the torus compactified theory 4dT flow
into a fixed point composed of a single 4d SCFT.
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3. Circle and torus compactifications

Actually this is shown for 6d theories higgsable to T (2,0)
G with G = A,D in [16], although the

proof will not be exposed in this thesis.

3.3.1. General structure of theories higgsable to T (2,0)
G

In this subsection, we explain the structure of 6d N =(1, 0) theories we want to compactify and
give general arguments for theS 1/T 2 compactification of these theories. The results in this section
will be checked using several examples in the following sections.

3.3.1.1. 6d SCFTs higgsable to T (2,0)
G

We have seen concrete examples of 6d SCFTs Higgsbale to T (2,0)
G with G = Ak in Section 2.4,

which was the conformal matters T (g,g)
N and their variant T (g,g)

N {OL ,OR }. Here we briefly sum-
marize general properties of a 6d SCFT T higgsable to T (2,0)

G . Most of them have already been
recognized in the concrete cases in Section 2.4.
First of all, by the term a 6d SCFT T higgsable to T (2,0)

G , we mean that at the most singular
point of the contracted subspace (where one can reach from a generic point by shrinking only the
tensor modes with ηk k = 1) of the tensor branch, which we call the endpoint according to [11],
the charge matrix ηi j in terms of the remaining (not shrunken) tensor modes is the Cartan matrix
of type G = A,D , E . For example, the endpoint configuration of the conformal matter T (g,g)

N is
(2.4.27) with N remaining tensor modes. Between two nodes of (2.4.27), a minimal conformal
matter T (g,g)

0 exists as a generalized bifundamental matter. The charge matrix is the Cartan of AN

type. We can Higgs all the flavor and gauge algebras g obtaining theN =(2,0) theory T (2,0)
AN

.

As a technical assumption, we do not consider theories like T (usp,usp)
N , which is supposed to

have a Higgs flow into T (2,0)
AN

, although the endpoint configuration is not (2.4.27).

There is also theories higgsable to N =(2, 0) theory T (2,0)
G with G = D , E [11, 12]. When all

gauge algebras are su type and the charge matrix ηi j is a Cartan matrix, the gauge anomaly
cancellation condition requires that every su(k ) gauge algebra should have 2k fundamentals. 14

Therefore, for example, there is a theory whose tensor branch structure is

su(k ) su(2k ) su(2k ) su(2k ) [su(2k )]
2 2 2 2

2
su(k )

, (3.3.8)

which is higgsable to T (2,0)
D5

. There are also E6,7,8 shaped quivers which are higgsable to T (2,0)
E6,7,8

.
If we allow ourselves to use gauge algebras other than su, one example of solutions for the

14This condition is the same as the conformality condition of 4dN =2 quiver theory with su gauge algebras. Intuitive
understanding of this coincidence seems to be absent.
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anomaly cancellation is

su(2) so(7) usp(0) so(9) usp(2) [so(11)]
2 3 1 4 1

2
su(2)

(3.3.9)

where the su(2)⊕so(7)⊕su(2) gauge subalgebra has a half-hyper with the representation (2, 8, 1)⊕
(1, 8, 2) with 8 being the spin representation of so(7). The endpoint configuration is

su(2) so(7) so(9) [so(11)]
2 2 2

2
su(2)

, (3.3.10)

which indicates the theory is higgsable to T (2,0)
D4

. Note that in this case between so(2k − 1) and
so(2k+1) gauge of flavor algebra with k = 4, 5 there are minimal conformal matters T (so(2k ),so(2k ))

0

behave as generalized bifundamentals.

In general, the endpoint configuration of a theory T which is higgsable to T (2,0)
G can be rec-

ognized as G -shaped generalized quiver with gauge groups gi with generalized bifundamental
matter Hi j charged under gi ⊕ g j and generalized matters Hi charged under gi . Since at the
endpoint the tensor modes of those generalized matters should be completely shrunk, those are
very-higgsable. The generalized matter theories can be determined using F-theory [12, 13], and
a (not necessarily complete) list of possible combinations (gi ,g j ,Hi j ) is given in Table 3.1. A
generalized singly charged matterHi can be either fundamental hypers or E-string theories.

gi g j Hi j

su(k1) su(k2) (k1, k2)
so(2k1) so(2k2) T (so(2k ),so(2k ))

0 (k = ⌊(k1+k2)/2⌋)
su(2) g2

1
2 (2, 7⊕1)

su(2) so(7) 1
2 (2, 8)

ek ek T (ek ,ek )
0

Table 3.1.: The generalized hyperHi . The boldface number means a hyper with the representa-
tion with the specified dimension, and 1

2 before the representation mean a half-hyper.
Maybe only a subalgebra of gi ⊕ g j is gauged by dynamical vector multiplets, and in
that case the commutant of the gauged subalgebra behave as a flavor algebra. Note
that the minimal conformal matters T (su(k ),su(k ))0 and T (so(2k ),so(2k ))

0 has flavor symme-
try su(2k ) and so(4k ) respectively which are larger than what is obvious from the
M-theory construction (but still obvious from the tensor branch structure at a generic
point), therefore the first two lines are possible when k1 ̸= k2.
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3. Circle and torus compactifications

3.3.1.2. Non-higgsable component and non-renormalization

If we go to the Higgs branch of the theory as far as possible from the endpoint configuration, we
get a non-higgsable theory which is the N =(2, 0) theory of the type G . The Higgs branch is the
same in any dimensions, and the Higgs moduli fields and the tensor/Coulombmoduli fields do not
mix with each other in the effective action. We can consider a subspaceCT of the tensor/Coulomb
moduli space where only the moduli which originate from the tensor multiplets of the 6d theory
get vev.15 Then, the effective action (or more specifically the kinetic terms) of moduli fields
parameterizing CT in 6d/5d/4d is the same as that of the N =(2,0) theory in 6d/5d/4d because
these two theories are smoothly connected by a Higgs deformation which does not affect the
tensor/Coulomb effective action.
The difference between the general theory we are considering and the N =(2, 0) theory is that

the general theory contains more massless degrees of freedom other than the moduli fields of
CT . However, we emphasize again that the effective action of CT moduli fields and in particular
the position of the singular loci on CT are the same as in the N = (2, 0) theory. In other words,
the moduli fields of CT are not renormalized by the existence of additional massless degrees of
freedom. Due toN =(2,0) supersymmetry of the Higgsed theory, they are not renormalized at all.
This is quite similar situation to what we saw about very-higgsable theories in Subsection 3.1.1.

3.3.1.3. S 1 compactification to five dimensions at the origin

Let us fix a 6d theory T 6d that can be Higgsed to anN =(2, 0) theory of type G , and consider its
S 1 compactification. We go to the origin of the moduli space of the 6d theory at which we get the
6d SCFT, and compactify it on a circle with radius R . We do not include any Wilson lines on S 1

which correspond to mass deformations in 5d. In this setup, our conjecture is the following:

The 5d theory 5dT obtained by the S 1 compactification at the most singular point of the moduli
and parameter space is given by anN =1 vector multiplet of gauge group G which is coupled to
a 5d SCFT we denote as 5dS {G }, whose G symmetry is gauged by the vector multiplet:

5dT = 5dS /GR . (3.3.11)

The gauge coupling of the vector multiplet is given by 8π2/g 2
G =R−1.

Here, the groups listed inside {· · · } are the flavor symmetries, and our normalization of the
gauge coupling is such that 8π2/g 2

G is the one-instanton action. We also note here that, when all
gi are su gauge algebras and all matters connecting su gauge algebras are hypers, 5dS {G } actually
has G ×G symmetry. In that case, the G flavor symmetry in the notation 5dS {G } denotes the
diagonal subgroup of the G ×G symmetry.
The main reason behind this conjecture is the following. In 6d, we can higgs the theory to

obtain the N =(2,0) theory of type G . If we compactify it on this Higgs branch, we get N =2

15 Since the 6d theory has the Higgs branch on which the theory flows to the N =(2,0) theory along CT , there is also
a subspace of the 5d/4d Coulomb branch where the corresponding branch opens. This clearly defines the subspace
CT in 5d/4d.
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super Yang-Mills in 5d with gauge group G , and in particular, we get a vector multiplet with
gauge coupling 8π2/g 2

G = R−1. Now we slowly turn off the Higgs vev. The important point is
that the Higgs moduli and Coulomb moduli do not mix with each other. Then the existence of
the vector multiplet with the gauge coupling 8π2/g 2

G = R−1 does not change in the process of
turning off the Higgs vev, and hence the vector multiplet exists even at the origin of the moduli
space. This establishes the fact that the vector multiplet with gauge group G and gauge coupling
8π2/g 2

G =R−1 exists in the 5d theory after compactification of the 6d SCFT.
The existence of the vector multiplet can be regarded as a kind of no-go theorem; the 5d theory

cannot be completely superconformal, because we always have the IR free vector multiplet. Our
conjecture is that this vector multiplet is the only non-SCFT component in 5d, and the rest of the
theory is really an SCFT which we denoted as 5dS {G }. When G is trivial, that is, when there are
no (−2)-curves in the endpoint, the 6d theory is very higgsable. In this case, our conjecture above
says that the 5d theory obtained by S 1 compactification of a 6d very higgsable theory is really a
5d SCFT. This statement has been indeed established in the previous section.16

In the case of the N =(2,0) theory, our 5d SCFT is just a hypermultiplet in the adjoint repre-
sentation of G . The story of the general case is quite similar to the case of the N =(2, 0) theory
by replacing the adjoint hypermultiplet with a strongly coupled 5d SCFT 5dS {G }. For example,
instantons of the G vector field is expected to correspond to the Kaluza-Klein modes of the S 1

compactification as in [87, 88].

Tensor branch effective action in 5d We want to discuss the consequences of our conjec-
ture. Before doing that, we mention the 5d effective action on the endpoint configuration.
In 6d, the tensors and vectors remaining in the endpoint configuration have the effective (pseudo-

)action (2.1.16) with ηi j being the Cartan matrix of G . After dimensional reduction to 5d, we
define Φi =R ai and F tens

i ,µν =R Hi ,µν5 and obtain∫
ηi j
�−4π2

2R
(dΦi ∧ ⋆dΦ j + F tens

i ∧ ⋆F tens
j )+2πΦi (

1

4
Tr Fj ∧ ⋆Fj )+2πAtens

i c2(Fj )
�
. (3.3.12)

where Atens
i is the vector potential of F test

i . Do not confuse the field strength Fi the non-abelian
gauge algebra gi which exists in 6d with the abelian field strength F tens

i coming from the 6d tensor
Hi .
The configuration of (−2)-curves defines a Dynkin diagram. Let H i be the Cartan element of

the SU(2) subalgebra of the node i normalized as tr(H i H j ) =ηi j , where tr is normalized in such a
way that it coincides with the trace in the fundamental representation in SU(2) subalgebras. Then
Φi and F tens

i can be identified as the Cartan part of the vector multiplet of the 5d gauge group G

16There, it was shown that the T 2 compactification of very higgsable theory is a 4d SCFT, and the structure of the
singularities on its Coulomb branch was also completely fixed. Taking the limit of very thin T 2, we can obtain
the singularity structure of the Coulomb branch of the 5d theory, which shows that the origin of the 5d theory is
superconformal.
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as ΦG =H iΦi and FG = 2H i F tens
i . Then the above action can be rewritten as∫ �

−4π2

g 2
G

tr(dΦG ∧ ⋆dΦG + FG ∧ ⋆FG )+2π tr(H jΦG )(
1

4
Tr Fj ∧ ⋆Fj )+2π tr(H j AG )c2(Fj )

�
,

(3.3.13)
where 8π2/g 2

G =R−1. This action is valid when the Coulomb vev of ΦG is generic. The first two
terms are the action of the vector multiplet for the gauge groupG (on the Coulomb branch), while
the last two terms are the action of the gauge groups gi exist in the endpoint configuration.

Mass deformation of 5d SCFT and 5d quiver. Now let us see the implication of our con-
jecture. On the 6d tensor branch, we have a quiver gauge theory with gauge groups gi . Bifun-
damentals and fundamentals Hi j are generalized matters which are very higgsable. If we com-
pactify this tensor branch theory to 5d, we get the same quiver theory in 5d plus U(1)rG vectors.
The gauge couplings are determined by the vev of ΦG as in (3.3.13). The bifundamentals and
fundamentals are 5d version of the very higgsable theories.
On the other hand, we conjectured that the 5d theory at the origin of the moduli space is a

system in which a 5d SCFT 5dS {G } is coupled to the G gauge field. Going to the tensor branch
in 6d corresponds to giving vev to the adjoint scalar ΦG of the vector multiplet. The adjoint vev
gives mass deformation of this 5d SCFT 5dS {G }. If we take R → 0 limit, the remaining 5d
U(1)rG vectors just decouples. Therefore, our conjecture requires that the mass deformation of
the 5dS {G } flows under RG flow to the 5d quiver,

5dS {G } mass deformation−−−−−−−−−→ the 5d quiver theory , (3.3.14)

where the quiver theory is the one obtained from the 6d tensor branch. Furthermore, (3.3.13) tells
us that the gauge coupling of the gauge field with gauge algebra gi at the quiver node i is given
by the mass deformation 〈ΦG 〉=mG as

8π2

g 2
i

= tr(H i mG ), (3.3.15)

where we have used the fact that our normalization is such that 1
4 Tr F 2 is 1 in one-instanton.

Let us state the above process in the opposite direction of RG flows. Our conjecture requires that
the 5d quiver gauge theory must have a UV fixed point. Furthermore, there must be an enhanced
global G symmetry in the UV fixed point whose Cartan part is identified with the topological
U(1) symmetries associated to instantons of gauge groups in the IR quiver.
Let us focus our attention to the case in which the gauge group gi on the i th node of the endpoint

quiver is su(Ni ) where the rank Ni can take arbitrary values as long as anomaly cancellation
condition is satisfied. In this case, the corresponding 5d quiver theory is expected to have a
UV fixed point. The enhanced global symmetry in the UV fixed point is actually two copies
of G [89, 90]. We can take the diagonal subgroup Gdiag, and deform the UV SCFT by mass
deformation ofGdiag bymG . One ofG flavor comes from instantonU(1) symmetries asmentioned
above, and the other comes from the U(1) symmetries that act on bifundamental matters between
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adjacent su gauge groups in the quiver. Then the IR gauge coupling of the quiver is really given
by the equation (3.3.15)17 Therefore, our conjecture works very well in this class of theories.
More general case involves strongly interacting generalized matters. Then, it is not straight-

forward to study their 5d quivers. Nevertheless, as we will discuss examples of T (g,g)
N in Subsec-

tion 3.3.3.3 , such a quiver theory with generalized bifundamentals is dual to more conventional
SU(N ) quiver gauge theories with ordinary hypermultiplets. Existence of such examples supports
our general conjecture.

3.3.1.4. T 2 compactification to four dimensions

Let us denote by 4dS {G } the theory which is obtained by the S 1 compactification of the 5d SCFT
5dS {G }. This 4d theory 4dS {G }may be an SCFT or may contain IR free gauge groups; we will
discuss this point in detail later. Then, by compactifying the 5d theory of the previous subsection
further on S 1, we get a theory in which the 4d vector multiplet of the gauge group G is coupled
to 4dS {G }. This is the theory we obtain by T 2 compactification. Therefore, the problem of T 2

compactification of the 6d SCFT is reduced to the problem of S 1 compactification of the 5d SCFT
5dS {G }.
Let us determine the gauge coupling of the G gauge field. For this purpose, we again use the

reasoning of the previous subsections. We can higgs the theory to obtainN =4 super Yang-Mills
in 4d. The Higgs and Coulomb moduli do not mix, so the higgsing does not affect the gauge
coupling of the G gauge field. The gauge field of N =4 super Yang-Mills is conformal with the
gauge coupling given by the complex modulus τ of the T 2. Therefore, the G gauge group before
higgsingmust also be conformal (i.e., has vanishing beta function) with the gauge coupling τ. The
SL(2,Z) of the T 2 acts on τ, so the 4d theory has a nontrivial SL(2,Z) S-duality group. The fact
that G gauge group is conformal means that the theory 4dS {G } contributes to the beta function
by the same amount as that of one adjoint hypermultiplet.

Quiver on the tensor branch. By going to the tensor branch in 6d and compactifying it
on T 2, or equivalently by giving a vev to the adjoint scalar of the G vector multiplet and mass-
deforming 4dS {G } by that vev, we get a quiver gauge theory with generalized matters. The
Cartan of the G gauge field becomes U(1)rankG free vector fields.
We now show that gauge groups of the quiver are conformal. For this purpose, it is enough

to concentrate on a single tensor mode and the gauge field coupled to it in the endpoint. A little
more generally, let g be a gauge group supported on a tenser mode (a k , B k ) with ηk k = n . The
generalized matters coupled to this gauge group is very-higgsable, and we denote the 6d anomaly
polynomial of this very-higgsable theory as I [gen. matter]. Then the part of the anomaly polyno-
mial of the total system containing the field strength of g is given as

I [gen. matter] + I [g vector] + IGS, (3.3.16)

17See the last equation in section 3.4 of [90]. The m± in that paper is taken to be mG here, and Hi there is 1
2 H i here.
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I GS is the Green-Schwarz contribution. From (A.0.3),(2.1.24),(2.1.25),(2.1.40) they contain

I [g vector]⊃−h∨g
12

p1(T )c2(Fg), (3.3.17)

IGS ⊃ 1

2n
(
2−n

4
p1(T )−n c2(Fg))

2 ⊃−2−n

4
p1(T )c2(Fg). (3.3.18)

The terms containing c2(Fg) must be cancelled in the total anomaly, so we get

I [gen. matter]⊃ 1

48
(4h∨g +12(2−n ))p1(T )c2(Fg). (3.3.19)

Using (3.1.31), 4d g flavor central charge of the compactified very-higgsable generalized matter
is kg = 4h∨g +12(2−n ). This kg is the contribution of the generalized matter theory to the 4d beta
function of the g gauge group, in the normalization that the vector multiplet contribution is −4h∨g .
Therefore, the beta function of g is proportional to kg−4h∨g = 12(2−n ).
From this we find the following fact: pick a tensor mode (ak , Bk ) with ηk k = n , supporting a

gauge multiplet g which is coupled to very-higgsable matters. In the 4d theory obtained by the
T 2 reduction, this gauge multiplet is

• IR free when n = 1,

• conformal when n = 2, and

• asymptotic free when n > 2.

The n = 1 case was already shown in Subsection 3.1.1. The n = 2 case which is relevant to us
here means the gauge groups on the endpoint tensor branch quiver are all conformal in 4d.
The gauge couplings of these conformal gauge groups are determined by the vev of the adjoint

scalar ΦG . When this vev is turned off, we get a more singular theory 4dS {G } coupled to the
non-abelian G group. We stress that the flow from 4dS {G } to the quiver is mass deformation
rather than exactly marginal deformation, and hence some information is lost in the quiver theory
because massive degrees of freedom are integrated out.

3.3.2. Conformal matters and class S theories: type A

In this subsection and the next, we give concrete examples of the general discussions of the pre-
vious section. We focus on conformal matters T (g,g)

N and their deformation T (g,g)
N {OL ,OR }. Some

properties of the circle compactified theory 5dT (g,g)
N is already mentioned in Subsection 2.4.4.

3.3.2.1. Conformal matter of A-type

As said in Subsection 2.4.4, if we compactify the conformal matter T (g,g)
N on S 1 with generic

Wilson lines in the diagonal subgroup of the flavor symmetry gL × gR , we get the quiver gauge
theory [49] whose nodes form an affine Dynkin diagram of type bg and each node k of the affine
Dynkin diagram has the gauge group SU(d g

k N ), where d g
k are the so-called marks of the Dynkin
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diagram such that the highest root is given by
∑

k d g
kαk whereαk is the k -th simple root. However,

our main focus in this paper is to study the most singular theory obtained without flavor Wilson
lines.
Here we first consider the A-type conformal matter T (su(k ),su(k ))N−1 whose tensor branch structure

is
[su(k )L ] su(k ) · · · su(k ) [su(k )R ]

2 · · · 2
. (3.3.20)

The theory is higgsable to T (2,0)
G with G = SU(N ).

Five dimensions. Following our general discussions of the previous section, we consider a 5d
version of the quiver gauge theory of the form (3.3.20). This is a 5d SU(k )N−1 quiver theory with
k flavors at each end, and the properties of this theory can be easily read off from the brane web
construction of this theory [17,83,91] as a D5-NS5 system. The theory has a UV fixed point which
we denote as 5dSk ,N . This 5d theory has global symmetry SU(k )L×SU(k )R ×SU(N )L×SU(N )R ,
where SU(N )L ×SU(N )R is the enhanced symmetry.
The theory 5dSk ,N itself is an SCFT, but by deforming it by mass term mSU(N ) in the Cartan of

the diagonal subgroup of SU(N )L ×SU(N )R , we get the IR SU(k )N−1 quiver theory

5dSk ,N
SU(N ) mass deform−−−−−−−−−−−→ [SU(k )L ]−SU(k )− · · ·−SU(k )− [SU(k )R ]. (3.3.21)

The gauge coupling is determined by the general formula (3.3.15) which in this case is given by
8π2/g 2

i =mSU(N ),i −mSU(N ),i+1 (i = 1, · · · ,N − 1), where mSU(N ) = diag(· · · , mSU(N ),i , · · · ). This
is precisely as expected from the brane construction of this theory. Furthermore, this theory has a
duality k↔N which can be readily seen from the brane construction. Therefore, if we deform
the theory by masses in the Cartan of the diagonal subgroup of SU(k )L × SU(k )R , we get the IR
SU(N )k−1 quiver theory,

5dSk ,N
SU(k ) mass deform−−−−−−−−−−→ [SU(N )L ]−SU(N )− · · ·−SU(N )− [SU(N )R ], (3.3.22)

where SU(N )L ,R are flavor symmetries, and there are k −1 SU(N ) gauge groups.
Now, our claim is that the compactification of the conformal matter T (su(k ),su(k ))N−1 on S 1 is given

by the theory 5dSk ,N with the diagonal subgroup of SU(N )L ×SU(N )R gauged,

T (su(k ),su(k ))N−1
S 1−→ 5dSk ,N {SU(k )L ,SU(k )R , SU(N )L ,SU(N )R }/SU(N )diag (3.3.23)

where the notation of the right hand side means that we are gauging the diagonal subgroup
SU(N )diag ⊂ SU(N )L ×SU(N )R by the SU(N ) vector multiplet.
Let us consider two types of deformation of this 5d theory. The first one is to go to the Coulomb

branch of the SU(N ) gauge group by giving a vev to the adjoint scalar ΦSU(N ). Then, this gives
mass deformation of the theory 5dSk ,N , and we exactly get the dimensional reduction of the 6d
quiver (3.3.20).
Next, let us considermass deformation of the diagonal subgroup of the flavor symmetry SU(k )L×
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3. Circle and torus compactifications

SU(k )R at the origin of the Coulombmoduli space. This corresponds to introducing flavorWilson
lines on S 1. In this case, the mass deformation of 5dSk ,N is given by (3.3.22), but the diagonal
subgroup of SU(N )L×SU(N )R is gauged by the gauge group SU(N ) as in (3.3.23). Therefore, we
get an SU(N )k necklace quiver theory. This is exactly the one obtained by putting N D4-branes
on the Ak−1 singularity with generic B -flux. In this way, two different 5d IR theories follow from
the single strongly interacting 5d SCFT 5dSk ,N .

Four dimensions. The T 2 compactification of the conformal matter T (su(k ),su(k ))N−1 is now given
as

T (su(k ),su(k ))N−1
T 2−→ 4dSk ,N {SU(k )L ,SU(k )R ,SU(N )L , SU(N )R }/SU(N )τdiag (3.3.24)

where 4dSk ,N is the 4d theory obtained by the S 1 compactification of 5dSk ,N , and the notation
of the right hand side means that we are gauging the diagonal subgroup SU(N )diag ⊂ SU(N )L ×
SU(N )R by the SU(N ) vector multiplet with gauge coupling τ. Thus, the problem of T 2 compact-
ification of the conformal matter T (su(k ),su(k ))N−1 is reduced to the problem of S 1 compactification of
5dSk ,N .
Because of the symmetry k ↔ N of this theory, we assume N ≥ k for the moment. For the

purpose of studying 4dSk ,N , we consider the mass deformation (3.3.21) and (3.3.22) in 4d. The
right hand side of (3.3.21) is a class S theory of Ak−1 type on a Riemann sphere with two full
punctures and N simple punctures. As discussed above, the gauge couplings are determined by
the mass deformation. Then, by tuning the SU(N )mass deformation, we can collide the N simple
punctures at a single point and obtain [6],

Tk {[1k ], [1k ], [1k ]}−SU(k )− · · ·−SU(k )−SU(k −1)− · · ·−SU(1), (N ≥ k ) (3.3.25)

where there are N − k + 1 SU(k )’s, and each gauge group is coupled to additional fundamentals
if necessary so that the gauge group becomes conformal. The SU(1) is introduced formally. The
leftmost SU(k ) is coupled to one of the full punctures of Tk {[1k ], [1k ], [1k ]}. On the other hand,
the right hand side of (3.3.22) is a class S theory of type AN−1 on a Riemann sphere with two
full punctures and k simple punctures. Then, by tuning the SU(k )masses so that colliding simple
punctures, we get (when N ≥ k ),

TN {[1N ], [1N ], [N −k , 1k ]}−SU(k )−SU(k −1)− · · ·−SU(1), (N ≥ k ) (3.3.26)

where SU(k ) is coupled to the puncture [N −k , 1k ].
From the above results, we expect that the theory 4dSk ,N contains both of the theoriesTk {[1k ], [1k ], [1k ]}

and TN {[1N ], [1N ], [N −k , 1k ]} when N ≥ k . We propose that this theory is given by

4dSk ,N =


TN {[1N ], [1N ], [N −k , 1k ]}−SU(k )−Tk {[1k ], [1k ], [1k ]} (N > k )

TN {[1N ], [1N ], [1N ]}− [SU(N )+one fund.]−TN {[1N ], [1N ], [1N ]} (N = k )

TN {[1N ], [1N ], [1N ]}−SU(N )−Tk {[1k ], [1k ], [k −N ,1N ]} (N < k )
(3.3.27)

where in the N = k case there is one fundamental representation coupled to the middle SU(N )
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gauge group.
The contribution of the TN {[1N ], [1N ], [N −k ,1k ]} theory to the beta function of the SU(k ) is

the same as that of k + 1 fundamentals when k <N . So in each case, the gauge group SU(k ) or
SU(N ) appearing in the above equation has IR free beta function. We will give other justifications
of the appearance of the IR free gauge group later in this paper.
We will give more checks of (3.3.27) below, but before doing that, let us complete our task of

determining the 4d theory obtained by compactification of the 6d conformal matter T (su(k ),su(k ))N−1 .
The 4d theory is obtained by gauging the diagonal subgroup SU(N )diag ⊂ SU(N )L×SU(N )R of the
4dSk ,N . This can be easily done in the class S theory. We just need to replace TN {[1N ], [1N ], Y }
(Y = [N −k , 1k ] or [1N ]) by the theory on a torus SN 〈T 2

τ 〉{Y }, where SN 〈T 2
τ 〉{Y }means the class

S theory of type AN−1 whose Gaiotto curve is a torus with modulous τ and a puncture labeled by
Y . Therefore, the final result is

T (su(k ),su(k ))N−1
T 2−→


SN 〈T 2
τ 〉{[N −k ,1k ]}−SU(k )−Tk {[1k ], [1k ], [1k ]} (N > k )

SN 〈T 2
τ 〉{[1N ]}− [SU(N )+one fund.]−TN {[1N ], [1N ], [1N ]} (N = k )

SN 〈T 2
τ 〉{[1N ]}−SU(N )−Tk {[1k ], [1k ], [k −N , 1N ]} (N < k )

(3.3.28)
This theory has the SL(2,Z) S-duality group acting on SN 〈T 2

τ 〉{[1N ]}, and has manifest SU(k )L ×
SU(k )R flavor symmetry from the two full punctures [1k ].
To give further checks of the above proposal, we need amass deformation of the theoryTN {[1N ], [1N ], Y }.

The following facts, which hold in both 4d and 5d versions of the theory TN {[1N ], [1N ], Y }, are
known [92, 93].
Let us give generic masses to the diagonal subgroup of SU(N )L×SU(N )R of the full punctures.

Then this theory flows in the IR to a linear quiver

TN {[1N ], [1N ], Y } SU(N )diag mass deform−−−−−−−−−−−−−→ SU(v1)−SU(v2)− · · ·−SU(vN−1) (3.3.29)

In this quiver, each gauge group is coupled to additional fundamentals if necessary so that each
gauge group becomes conformal. The vi are determined as follows. The Y is specified by a
partition of N as Y = [m1,m2, · · · , mℓ]. This partition Y defines a Young diagram. Then we can
consider the transpose of the Young diagram Y , which we denote as Y T = [n1, · · · , nk ] where
n1 ≥ · · · ≥ nk . We also define ni = 0 for i > k . Then vi is determined by

vi−1− vi = 1−ni , vN−1 = 1. (3.3.30)

If Y is given by Y = [N −k , 1k ] with N > k , then Y T = [k +1, 1N−k−1] and hence n1 = k +1,
ni = 1 for 2≤ i ≤N −k and ni = 0 for i >N −k . Then vi = k for i ≤N −k and vi =N − i for
N −k ≤ i ≤N −1, and the quiver becomes

[SU(k )]−SU(k )− · · ·−SU(k )−SU(k )− · · ·−SU(1). (3.3.31)

The [SU(k )] is a flavor symmetry coming from the fundamentals coupled to the leftmost SU(k ).
This [SU(k )] is identified with the flavor symmetry of the puncture Y = [N − k ,1k ]. There are
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N −k SU(k ) gauge groups. Similarly, if Y = [1N ] we get

[SU(N )]−SU(N −1)−SU(N −2)− · · ·−SU(1). (3.3.32)

Now we can discuss mass deformation of 4dSk ,N in (3.3.27). Let us mass-deform the diago-
nal subgroup of SU(N )L ×SU(N )R in (3.3.27). When N ≥ k , by using (3.3.31) one can see that
we precisely get the theory (3.3.25). Similarly, if we deform the SU(k )L × SU(k )R in (3.3.27),
then by using (3.3.32) with N replaced by k , we precisely get the theory (3.3.26). This gives a
strong check of our proposal (3.3.27). In particular, note that the IR free gauge group appear-
ing in (3.3.27) becomes conformal after the mass deformation of either SU(N ) or SU(k ). The
conformality of gauge groups after the deformation of SU(N ) was indeed shown in our general
discussion of the previous section from the 6d point of view.
We have seen that (3.3.25) and (3.3.26) can be obtained by mass deformation of SU(N ) and

SU(k ) in (3.3.27), respectively. By going back the duality, we can also get the 4d version of the
right hand side of (3.3.21) and (3.3.22), respectively. In the compactification of T (su(k ),su(k ))N−1 , the
diagonal subgroup of SU(N )L × SU(N )R is gauged. In this way, we get two theories; one is a
linear SU(k )N−1 quiver with the gauge coupling determined by the vev of ΦSU(N ), and the other
is a necklace SU(N )k quiver. These are the theories discussed in [72]. Now we can see that these
two theories flow from the single 4d theory (3.3.28) which has manifest SL(2,Z) S-duality and
SU(k )L ×SU(k )R flavor symmetry.

3.3.2.2. M-theory interpretation

Here we try to understand (3.3.28) in terms of M5 branes in M-theory. As mentioned above,
the A-type conformal matter is realized in M-theory by putting N coincident M5 branes on Ak−1

singularity. If we realize this Ak−1 singularity by Taub-NUT space and go to type IIA string theory,
we get a system of N coincident NS5 branes and k coincident D6 branes intersecting with each
other. The A-type conformal matter is realized on the intersection.
Now we compactify the theory on T 2 so that we get a T 2 compactification of the conformal

matter. Taking T-dual twice, we get N coincident NS5 branes and k coincident D4 branes. Up-
lifting to M-theory, we get N coincident M5 branes and k coincident M5 branes intersecting on
4-dimensional subspace.
The directions in which M5 branes are extending after the above duality chain are listed in

table 3.2. They are intersecting on the space R1,3 . Furthermore, N M5 branes are compactified
on T 2, and k M5 branes are compactified on S 1×R.
Let us focus on the N M5 branes. This is compactified on T 2, so it is a class S theory of AN−1

type on T 2. From the point of view of this N M5 branes, the k M5 branes look like a codimension
2 defect, and hence it is a kind of puncture. So it is natural to obtain a theory SN 〈T 2

τ 〉{Y }, where
Y is specified by the k M5 branes. Next, let us focus on the k M5 branes. This is compactified
on S 1 ×R, but this space can be regarded as a sphere with two full punctures in class S theory.
So this is a class S theory of type Ak−1 on a Riemann sphere with two full punctures and one
puncture Y ′ specified by the N M5 branes which look like a puncture from the point of view of
the k M5 branes. Hence, we get the theory Tk {[1k ], [1k ], Y ′}. These observations partly explain
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R1,3 T 2 (or S 1×R) S 1×R R3

N M5 branes • •
k M5 branes • •
Table 3.2.: Directions in which M5 branes extend.

the structure of (3.3.28). Conversely, our results tell us what exactly happens in this setup of M5
branes.
When N = 1, one M5 brane is a simple puncture from the point of view of the k M5 branes

[94]. This was also found in minimal conformal matters of general ADE type [14]. Our result is
consistent with this because in this case [k −N , 1N ] = [k −1,1] is a simple puncture.
It is also clear that if we replace the T 2 of table 3.2 by S 1×R, the theory we obtain from the M5

branes’ intersection should be 4dSk ,N in (3.3.27). This is a little progress in the understanding of
M-theory andN =(2, 0) theory. In general, it is very interesting to study what happens when two
bunches of M5 branes intersect with each other along 4-dimensional subspace. This is a difficult
problem to answer if the M5 branes are intersecting in flat R1,10 space, because the N =(2,0)
theory is intrinsically strongly coupled and hence there is no clear separation between the bulk
N =(2,0) theory and the 4d theory living on the intersection. However, if we compactify the M5
branes on S 1, we get 5dN =2 super Yang-Mills which is weakly coupled in the IR limit. Then it
becomes a well-defined question to ask what theory is living on the intersection. If we compactify
the system on S 1 which is common to bothN M5branes and k M5branes, the system is reduced to
a well-known situation in which D4 branes are intersecting and we just get free hypermultiplets
in 3d. Instead, if we compactify the system on two S 1’s as in table 3.2 with the replacement
T 2→ S 1 ×R, the intersection looks like a codimension-one domain wall from the point of view
of each of the 5d N =2 super Yang-Mills theories. What we found is that the theory living on
this domain wall is the 4d theory 4dSk ,N in (3.3.27). Flavor symmetries SU(N )L × SU(N )R and
SU(k )L ×SU(k )R are naturally coupled to the gauge groups of 5d SU(N ) and SU(k )N =2 super
Yang-Mills theories on the two sides of the domain walls, respectively.

3.3.2.3. Nilpotent vev

It is obvious to generalize the above result to the case ofT (su(k ),su(k ))N−1 {YL , YR } introduced in Subsec-
tion 2.4.5. The tensor branch quiver is exposed in (2.4.30) for the case where YL is full F = [1k ],
and it is straightforward to generalize it for the case with general YL and YR as mentioned below
the equation.
As already discussed in the general arguments of the previous section, the 5d version of the

quiver (2.4.30) is expected to have a UV fixed point 5dSk ,N {YL , YR } with enhanced SU(N )L ×
SU(N )R symmetry. Then the S 1 compactification of T 6d

k ,N {YL , YR } is given by this 5dSk ,N {YL , YR }
with the diagonal subgroup of SU(N )L ×SU(N )R gauged.
It is also easy to determine the 4d theory. We just need to higgs the moment maps µL and µR
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of the theory (3.3.28) by nilpotent vev. The result is

T (su(k ),su(k ))N−1 {YL , YR } T 2−→


SN 〈T 2
τ 〉{[N −k , 1k ]}−SU(k )−Tk {[1k ], YL , YR } (N > k )

SN 〈T 2
τ 〉{[1N ]}− [SU(N )+one fund.]−TN {[1N ], YL , YR } (N = k )

SN 〈T 2
τ 〉{[1N ]}−SU(N )−Tk {[k −N ,1N ], YL , YR } (N < k )

(3.3.33)

3.3.2.4. Cases without IR-free gauge group

There is actually a special subclass of theories in which the IR free gauge group does not appear.
We take k =N and YL = [N ] (Y T

L = [1
N ]). For simplicity, let us first consider the case YR = [1N ]

(Y T
R = [N ]). Then the 6d theory is given by

su(N −1) · · · su(2) su(1)
2 · · · 2 2

+one fund. of flavor su(N ), (3.3.34)

where additional free hypermultiplet can be seen from the type IIA construction. Such a non-
interacting hypermultiplet charged under the remaining flavor symmetry exists for any YR , and we
call the interacting part T 6d

N ,N {[N ], YR }int. In the 4d theory, one of the punctures YL is completely
higgsed and this puncture disappears. It is called the closing of the puncture. After this, we get a
theory TN [[1N ], [1N ]] with two full punctures, or equivalently a theory on a tube (with Dirichlet
boundary conditions at the two ends when theN =(2, 0) theory is reduced to 5dN =2 super Yang-
Mills). This theory is actually not an interacting SCFT. The SU(N )×SU(N ) symmetries associated
to the full punctures are automatically broken down to the diagonal subgroup [95]. Then, when
the SU(N ) is gauged, the gauge group is completely higgsed by this theory TN [[1N ], [1N ]] and
only the flavor SU(N )R survives by mixing with the gauge group. By applying these facts to
(3.3.33), we get

T 6d
N ,N {[N ], [1N ]} T 2−→ SN 〈T 2

τ 〉{[1N ]}+one fund. (3.3.35)

Here, one can check that there are N free decoupled hypermultiplets in 4d after the process of
nilpotent higgsing as can be checked by the method of [96], and these decoupled hypermultiplets
are identified with the additional hypermultiplets in (3.3.33) in the fundamental representation of
SU(N ) which is higgsed. Subtracting the hypermultiplets form both side, we get

su(N −1) · · · su(2) su(1)
2 · · · 2 2

conformal−−−−−→
point

T 6d
N ,N {[N ], [1N ]}int T 2−→ SN 〈T 2

τ 〉{[1N ]}. (3.3.36)

In the same way, we can also consider general YR := Y . The interacting part of the 6d theory is

su(v1) · · · su(vN−1)
2 · · · 2

(3.3.37)

where vi are defined by (3.3.30). Note that vN−1 = 1. We can simply partially close [1N ] in the
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above equation to obtain

su(v1) · · · su(vN−1)
2 · · · 2

conformal−−−−−→
point

T 6d
N ,N {[N ], Y }int T 2−→ SN 〈T 2

τ 〉{Y } (3.3.38)

for arbitrary Y . In this class of theories, the corresponding 4d theory is conformal without any IR
free gauge group.
We can also derive the above results much more directly. As already described in Sec. 3.3.2.1,

the 5d version of the quiver (3.3.37) has a fixed point which is a 5d version of the TN -like theory,
T5d

N {[1N ], [1N ], Y }. Thus, in our notation above, we find that 5dSN ,N {[N ], Y }=T5d
N {[1N ], [1N ], Y }.

The S 1 compactification of T 6d
N ,N {[N ], Y }int is thus the T5d

N {[1N ], [1N ], Y } theory with the diag-
onal subgroup of SU(N )L × SU(N )R coming from the full punctures gauged. By reducing this
theory further to 4d, we immediately get (3.3.38).

3.3.3. Conformal matters and class S theories, general type

Next, let us discuss the 6d theory T (g,g)
N−1 on the worldvolume of N M5-branes onC2/Γg singularity,

where g can be Dk or Ek . The author have not been able to obtain as full an answer for g = Ek

case, as in the case of g= Ak−1, but we can still understand quite a lot 18. Also, even for g= Ak−1,
the analysis in this section sheds some new light.

3.3.3.1. Structure of the 5d reduction

On the tensor branch in 6d, the quiver is of the form

[g] g · · · g [g]
2 · · · 2

(3.3.39)

where the bifundamental ‘matter’ of g×g is a nontrivial 6d very-higgsable SCFT.
First let us compactify on S 1 without any Wilson line. From our general discussion, its S 1

compactification is given by a 5d SU(N ) gauge theory coupled to a strongly-coupled SCFT
5dS {g,g,SU(N )}, which is the strongly-coupled SCFT limit of the 5d quiver

[gL ]−g− · · ·−g− [gR ], . (3.3.40)

where bifundamentals are nontrivial 5d conformal theories. To the knowledge of the authors, no
study has been done on such quivers with generalized matters in 5d, but our general discussion in
Sec 3.3.1 requires that there is an enhancement of the flavor symmetry of (3.3.40) from U(1)N−1

instanton symmetries to SU(N ), just as in the case when g is of type A where the matter fields are
free bifundamental hypermultiplets.
The same 5d SCFT 5dS {g,g, SU(N )} can be identified as follows. If we instead compactify

the 6d theory on S 1 with generic Wilson lines in the diagonal subgroup of the flavor symmetry
gL ×gR , we get a 5d ordinary quiver theory whose nodes form the affine Dynkin diagram of type

18The full answer for g=Dk case was obtained after publishing [16], and appears nowhere in the literature.
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3. Circle and torus compactifications

T (g,g)
N

5d ĝ quiver with su((N + 1)di )
gauge algebras

6d linear quiver with g gauge
groups and T (g,g)

0 matters
5dS {g,g, SU(N )}/SU(N )R−1

5d linear quiver with g gauge
groups and 5dT (g,g)

0 matters
5d g quiver with su((N + 1)di )
gauge algebras

S 1 reduction

Tensor branch vev in root to T (2,0)
AN

S 1 compactification
and Wilson line

S 1 reduction R6→ 0

Base-fiber duality

Figure 3.13.: Relation between T (g,g)
N and 6d and 5d gauge theories. After taking R6→ 0 limit and

decoupling the 5d G = SU(N ) vector, Wilson line and tensor vev becomes differ-
ent mass deformations (denoted by dashed lines) of the 5d SCFT 5dT (g,g)

N , and this
relation is nothing but the base-fiber duality when g= A.

g as seen in Subsection 2.4.4. The gauge group is

rankg∏
a=0

SU(da N ) (3.3.41)

where d0 = 1 corresponds to the affine node and the vector (da ) is in the kernel of the affine Cartan
matrix. There is as always the bifundamental matter fields for the edges of the Dynkin diagram.
The SU(N ) at the extended node is our G vector multiplet of the general discussion.

In summary, we have two theories. One is the theory (3.3.40) and the other is the theory

finite Dynkin quiver of type g with the gauge group
rankg∏
a=1

SU(da N ). (3.3.42)

These theories (3.3.40) and (3.3.42) should have a common UV fixed point S 5d {g,g,SU(N )},
with the flavor symmetry gL×gR ×SU(N ). Only gL×gR is manifest in (3.3.40), which is obtained
by mass deformation in SU(N ) of S 5d {g,g,SU(N )}, while only SU(N ) is manifest in (3.3.42)
which is obtained by mass deformation in the diagonal subgroup of gL × gR . In this sense, these
two IR theories (3.3.40) and (3.3.42) are dual to each other. This is the precise version of the
“novel 5d duality” of [13]. The case of N = 1 and g=Dn was studied explicitly in [14].

Summarizing, the compactification on S 1 of the 6d theoryT 6d
N {g,g} has the structure shown in

Fig. 3.13. The 5d theory becomes a generalized quiver on the part of the 5d Coulomb branch that
corresponds to the 6d tensor branch, and becomes a standard affine quiver when mass deformed.
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3.3.3.2. Structure of the 4d reduction

Now let us compactify one further dimension and identify 4dS {g,g,SU(N )}. The question can
be approached either from the point of view of the theory (3.3.40) or (3.3.42). Here we choose to
use (3.3.40).
The deformation of 4dS {g,g, SU(N )} by the mass parameter for SU(N ) is the 4d quiver

[gL ]−g− · · ·−g− [gR ]. (3.3.43)

where the generalized bifundamentalBg of g×g comes from the T 2 reduction of the very higgsable
SCFT in 6d. As studied Section 3.1, this generalized bifundamental is given by a class S theory
Bg := Tg{g, Ysimple,g}, i.e. the class S theory of type g on a sphere with two full punctures and
a simple puncture. Therefore, the quiver (3.3.43) theory itself is a class S theory of type g on a
sphere with two full punctures and N simple punctures, which we denote as

Tg{F,S , . . . ,S , F }, (3.3.44)

where F,S denote full and simple punctures. The N − 1 cross ratios are the IR remnant of the
mass parameters of the SU(N ) flavor symmetry 4dS {g,g,SU(N )}.

Tg{S , . . . ,S , F, F }, (3.3.45)

meaning the simple punctures are near to each other while the two full punctures are apart from
them. In Sec. 3.3.3.3 below, we will determine the resulting quiver for g= Ak−1, Dk , E6 using the
known data, and we will find that the outcome has the form, when N is sufficiently large,

a 4d generalized quiver−g−Tg (3.3.46)

where the 4d quiver part on the left turns out to be exactly the T 2 reduction of the quiver theory
of the 6d conformal matter with a full-closing: T (g,g)

N−1 {C , F }.
Let us denote the 6d theory as T (g,∅)

N−1 for short. Its T 2 reduction is, from the general discussion
in Sec. 3.3.1, given by a 4d theory 4dT (g,∅)

N−1 {SU(N ),g} whose SU(N ) flavor symmetry is gauged
by an SU(N ) multiplet with SL(2,Z) duality symmetry.
Therefore, we conclude that the T 2 compactification of the theory T (g,g)

N−1 , i.e. the theory on N
M5-branes probing the C2/Γg singularity, has the structure

4dT (g,g)
N−1 =

4dT (g,∅)
N−1 {SU(N ),gT }×Tg{gB ,gL ,gR }

SU(N )τ× (diag. of gT ×gB )
(3.3.47)

where SU(N ) is conformal, when N is sufficiently large.19 For smaller N , one of the punctures
and its symmetry gB of the second factor Tg become smaller.
For g = su(k ) case, the first component 4dT (su(k ),∅)N−1 was conformal and the g = su(k ) gauge

group was IR-free. In Subsection 3.3.3.4 we will see these properties also holds for g =Dk , and

19Note that we have gT = gB = gL = gR = g here. The subscripts are there to distinguish various factors.
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3. Circle and torus compactifications

therefore we expect this structure of the 4d theory

4dS {G }= (4dU{G , H }× 4dV {H })
Gτ×HIRF

(3.3.48)

with 4dU , 4dV both being 4d SCFTs and HIRF being a IR-free gauge multiplet is universal for any
6d theory T higgsable to T (2,0)

G . Actually, in the paper [16] it is shown for G = A,D case, though
the proof is not contained in this thesis. The paper [16] also provides the way of calculating the 4d
central charges of T (g,∅)

N−1 from the 6d anomaly polynomial which is similar recursive calculation
we did in Subsection 3.1.1, though much complicated.

3.3.3.3. Detailed class S analysis

Now what is left is to present a class S analysis for the (3.3.45) for g= Ak−1, Dk , and E6.

When g= Ak−1, the resulting quiver is

su(1)− su(2)− su(3)− · · ·− su(k −1)− su(k )− su(k )− · · ·−Tk (3.3.49)

where we have bifundamentals between neighboring groups and one additional fundamental at
the leftmost su(k ), as by now well-known and originally derived in [6]. This is indeed the T 2

reduction of the (∅,su(k )) matter, see (6.5) of [13].

When g=Dk , the resulting quiver can be found by the data compiled in [97]. We find

su(1)−usp(2)−g2− so(9)− so(11)− · · ·− so(2k −1)− so(2k )− so(2k )− · · ·−TDk
(3.3.50)

where the matters are, from the left,

• a half-hyper in the doublet,

• a half-hyper in 2⊗7,

• the E8 Minahan-Nemeschansky theory whose g2× so(9)⊂ g2× f4 ⊂ e8 is gauged,

• the D5 generalized bifundamental BD5
whose so(9)× so(11) ⊂ so(20) symmetry is gauged,

…,

• the Dk generalized bifundamental BDk
whose so(2k −1)×so(2k ) symmetry is gauged, etc.

This is indeed the T 2 reduction of the (∅,so(2k )) matter, see the un-numbered equation at the
top of p. 34 of [13]. Note that the theory BDk

= TDk
{so(2k ),so(2k ), Ysimple} has an enhanced

flavor symmetry so(4k ) compared to what is apparent in the class S description, and its subgroup
so(2k −1)× so(2k +1) is gauged in this construction.
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When g= E6, the resulting quiver can be found by the data compiled in [98]: we find

su(1)−usp(2)−g2− f4− e6− e6 · · · − · · · −TE6
(3.3.51)

where the matters are, from the left,

• a half-hyper in the doublet,

• a half-hyper in 2⊗7,

• the E8 Minahan-Nemeschansky theory whose g2× f4 ⊂ e8 is gauged,

• the E6 generalized bifundamental BE6
whose f4× e6 symmetry is gauged.

This is indeed the T 2 reduction of the (∅,e6) matter, see (6.7) of [13].

When g= E7 and E8, the class S data for g= E7 and E8 are not yet available. Nonetheless, we
consider the agreement we found so far is convincing enough that this correspondence works for
all g. This can also be considered as a prediction for the repeated collision of the simple punctures
in the class S theory of type E7 and E8. From the structure of (∅, En=7,8) conformal matters given
in (6.8) and (6.9), our prediction is that the class S theories of type En=7,8 with multiple simple
punctures and two full punctures have a duality frame of the form

su(1)−usp(2)−g2− f4− en − en · · · − · · · −TEn
(3.3.52)

where the matters are, from the left,

• a half-hyper in the doublet,

• a half-hyper in 2⊗7,

• the E8 Minahan-Nemeschansky theory whose g2× f4 ⊂ e8 is gauged,

• a certain SCFT with F4 × En flavor symmetry, which comes from the 6d very higgsable
theory with the structure

[f4] g2 su2 [e7]
1 3 2 1 for E7,

[f4] g2 sp1 [e8]
1 3 2 2 1 for E8,

(3.3.53)

• and the En generalized bifundamentals BEn
which is the class S theory on a sphere with

two full punctures and a simple puncture.

3.3.3.4. Determining the 4d theory for g=Dk

Here, as a final part of the body of this thesis, we determine the 4d theory 4dT (g,g)
N−1 for g=Dk . To

do this, we remind ourselves that when S 1 compactified with Wilson lines the theory becomes the
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3. Circle and torus compactifications

5d Dk -shaped Dynkin quiver

SU(N )−SU(2N )− · · · −SU(2N )−SU(N )
| |

[SU(N )] SU(N )
. (3.3.54)

The point is that the 4d version of this quiver admits a class S construction with Z2 twisted punc-
tures20 [99]:

T2N {[2N ],S , · · · ,S ,TM , TM } (3.3.55)

where TM is the twisted minimal puncture and the number of simple punctures S is k . We denote
a twisted puncture with a symbol dressed by an underline. Tuning the couplings of the SU gauge
groups to be strong corresponds to pushing simple punctures S towards one of TM . The resulting
configuration is

a 4d (generalized) quiver−T2N {Ok , [2N ],TM } (3.3.56)

where Ok is the twisted puncture obtained by colliding k simple punctures S and one twisted
minimal puncture TM 21. When k ≥ N ≥ 3, Ok is the twisted full puncture TF which have a
SO(2N +1) symmetry.
Therefore, we can identify the 4dT (g,∅)

N−1 in (3.3.47) with T2N {Ok , [2N ],TM }:

4dT (g,g)
N−1 =

T2N {Ok , [2N ], TM }×Tg{gB ,gL ,gR }
SU(N )τ× (diag. of gT ×gB )

, (3.3.57)

where gT is the symmetry of Ok and (diag. ofgT × gB ) means the diagonal of maximal common
subgroups of the two algebras. The superconformal SU(N )τ gauge field can be absorbed into the
twisted class S theory and giving

4dT (g,g)
N−1 =

T2N {Ok , TM ,TM , TM }×Tg{gB ,gL ,gR }
(diag. of gT ×gB )

. (3.3.58)

The torus modulus τ becomes the cross ratio of four twisted punctures of the class S theory
T2N {Ok ,TM 3}.

20A puncture of class S of type G theory can be twisted by a nontrivial outer-automorphism of G .
21When N = 2, since the puncture given by colliding [2, 2] and TM is [22, 1] in the notation of [99] which is smaller

than the twisted full puncture TF , Ok = [22, 1]. When N ≥ 3 the puncture arising from [2, 2] and TM is the twisted
full puncture TF , so the statement of the main text is correct.
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4. Conclusion

4.1. Recapitulation and summary

As a conclusion, we would like to summarize what we have seen.
In Chapter 3, we investigated torus compactifications of 6d SCFTs which are very-higgsable,

or higgsable to N =(2,0). When the considered 6d theory T is an N =(2, 0) theory T (2,0)
G , the 4d

theory 4dT is (in IR) the 4dN =4 SYM, and important properties are

1. 4dT (which isN =4 SYM) is conformal (and coupled), and

2. the modulus τ of compactifying torus is the marginal coupling of 4dT .
We wanted to know these properties were common in 6d SCFTs. We found that

1. is true but 2. is false for very-Higgisable theories, and 1. is false in general for higgsable to
N =(2,0) theories.

In section 3.2, the 4d theories are identifiedwith class S theories without amarginal deformation
for a large class of very-higgsable theories
However, we also observe that

When the endpoint tensor branch quiver contains a tensor mode (a k , B k ) which is not coupled
with any vector field by the coupling a k TrF ∧⋆F , then the torus compactified theory 4dT satisfies
both above properties 1. and 2.

When the 6d theory is T (su(k ),su(k ))N−1 {C , F }, whose tensor branch quiver is
su(1) su(2) · · · su(k ) · · · su(k ) [su(k )]

2 2 · · · 2 · · · 2
, (4.1.1)

the 4d theory is a class S theory:

4dT (su(k ),∅)N−1 =
TN {F, F, F }

SU(N )τ
= SN 〈T 2

τ 〉{F }. (4.1.2)

In summary, torus compactifications of 6d SCFTs do not always satisfies the conditions 1. and
2. posed above, and the behavior under the torus compactifications is more-or-less characterized
by the 6d fixed point of the flow triggered by a generic Higgs vev.
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4. Conclusion

4.2. Future directions

As emphasized in Chapter 1, our motivation to study compactifications of 6d theories is to gener-
alize the story of class S theory [6] to less supersymmetric situation. To this objective, considering
puttingT (su(k ),∅)N−1 on a general Riemann surfacemight look attracting. Nevertheless, the torus com-
pactified theory (4.1.2) is already non-Lagrangian, therefore it is hard to naively generalize the
analysis of class S theory to this case.
There is another way found by Gaiotto himself and his collaborator: [60]. Consider an (A, A)

conformal matter, and introduce Wilson lines in terms of the diagonal of flavor groups su(k )⊕2

breaking them down to u(1)⊕(2k−2). Then the torus compactified theory is the affine quiver as
we reviewed, and therefore that compactification satisfies above properties 1. and 2. Putting on
a general Riemann surface with generic su(k ) flat bundle, the theory is expected to define a 4d
N =1 theory. Pursuing this direction [62,100] is definitely interesting. In addition, what happens
when the su(k ) flat bundle tuned to be trivial might also be interesting, from the point of view of
this thesis.
In this thesis we focus on compactifications of subclasses of 6d SCFTs. Others, including
T (usp(2k ),usp(2k ))

N−1 case should also be studied. Some cases are already investigated in [72] using the
mirror symmetry technique, and recast their result into the language we have been using might be
helpful.
Aside from issues of compactifications, it is also intriguing to study 6d theories itself, in partic-

ular as a probe ofM-theory. We saw some intricateM-theory physics is encoded in the consistency
conditions of 6d SCFTs. There should be other facts about M-theory which can be observed from
relationships between M-theory and 6d SCFTs like the unknown map (2.5.8).
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A. Group theory constants and notations

In this Appendix we summarize the anomaly polynomials for multiplets of 6d N =(1,0) super-
symmetry, and other group theoretic notations. In this paper we do not concern about subtleties
arise from global structures of gauge groups and be careless about whether we are talking about
groups or algebras.
In this paper we use the notation in which the anomaly polynomials of Weyl fermions in a

representation ρ becomes

Â(T )trρeiF . (A.0.1)

where Â(T ) is the A-roof genus. In particular, F is anti-Hermitican and include a (2π)−1 factor in
its definition compared to the usual one. The anomaly polynomials for N =(1,0) multiplets are
the following:

• Hypermultiplet with representation ρ

I [ρ hyper] =
trρF 4

24
+

trρF 2p1(T )

48
+dρ

7p 2
1 (T )−4p2(T )

5760
(A.0.2)

• Vector multiplet with group G

I [G vector] =− tradjF
4+6c2(R )tradjF

2+dG c2(R )2

24
− (tradjF

2+dG c2(R ))p1(T )

48

−dG
7p 2

1 (T )−4p2(T )
5760

• Tensor multiplet

I [tensor] =
c2(R )2

24
+

c2(R )p1(T )
48

+
23p1(T )2−116p2(T )

5760
(A.0.3)

where dρ and dG are the dimensions of representation ρ and group G , respectively.
It is convenient to define the symbol TrG to be the trace in the adjoint representation divided

by the dual Coxeter number h∨G of the gauge group G , listed in Table A.1. One of the properties
of Tr is that 1

4

∫
Tr F 2 is one when there is one instanton on a four-manifold. Moreover, if we

have subgroup G ′ in a group G with Dynkin index of embedding 1, for an element f of universal
enveloping algebra of Lie algebra of G ′ , the following equation holds:

TrG ′ f = TrG f . (A.0.4)
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A. Group theory constants and notations

G SU(k ) SO(k ) USp(2k ) G2 F4 E6 E7 E8

rG k −1 ⌊k/2⌋ k 2 4 6 7 8
h∨G k k −2 k +1 4 9 12 18 30
dG k 2−1 k (k −1)/2 k (2k +1) 14 52 78 133 248

dfnd k k 2k 7 26 27 56 248
sG

1
2 1 1

2 1 3 3 6 30
tG 2k k −8 2k +8 0 0 0 0 0
uG 2 4 1 10

3 5 6 8 12

Table A.1.: Group theoretical constants defined for all G . Those constants are also listed in Ap-
pendix of [101].

G SU(2) SU(3) G2 F4 E6 E7 E8

wG
8
3 3 10

3 5 6 8 12
xG

1
6

1
6

1
3 1 1 2 12

Table A.2.: Group theoretical constants defined only for G without independent quartic Casimir.

All the embeddings we consider in this paper have the embedding index 1, so we always omit the
subscription G in TrG . Further, we define a characteristic class c2(F ) by

c2(F ) =
1

4
TrF 2, (A.0.5)

which is the second Chern class when the gauge group of the considered bundle is SU.
To convert the above anomaly polynomials to a convenient form, we define some constants

and write those values in Table A.1. We define the constant sG which relates the trace of F 2 in
the fundamental representation 1and Tr F 2 as trfund F 2 = sG Tr F 2. Then we have

tradjF
2 = h∨G Tr F 2 = 4h∨c2(F ), trfundF 2 = 4sG c2(F ), (A.0.6)

where the first equation is just the definition of Tr. For trace of F 4, we define tG and uG by

tradjF
4 = tG trfndF 4+12uG c2(F )

2 (A.0.7)

For gauge groupsG = SU(2), SU(3) and all exceptional groups, there are no independent quartic
Casimir operators, so we can relate trρF 4 and (Tr F 2)2 by

tradjF
4 = 12wG c2(F )

2, trfundF 4 = 12xG c2(F )
2 (A.0.8)

These constants are tabulated in Table A.2. Note that because tSO(8) = 0, we can also relate tradj F 4

to (Tr F 2)2 for G = SO(8).
All representations we use in this paper are fundamental or adjoint, except for the spin repre-

1Here, fundamental representation mean the defining representation for classical groups, and 7, 26, 27, 56 and 248
for G2, F4, E6, E7 and E8, respectively.
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sentation 8 of SO(7). The conversion constant for this representation is

tr8F 2 = Tr F 2 = 4c2(F ),

tr8F 4 =−1

2
trfundF 4+6c2(F )

2. (A.0.9)

Finally, let us note that the finite subgroup ΓG of SU(2) of type G = An , Dn and En has the
following order:

|ΓSU(k )|= k , |ΓSO(2k )|= 4k −8, |ΓE6
|= 24, |ΓE7

|= 48, |ΓE8
|= 120. (A.0.10)
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