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Abstract

In fusion plasma research, the study of anomalous transport induced by plasma turbulence is important for
achieving fusion relevant high temperature and high density plasmas. In magnetically confined plasmas, various
types of fluctuations are induced due to plasma instabilities. These fluctuations cause anomalous transport flux,
and the plasma confinement is deteriorated as a result. In conventional tokamak plasmas, these transports are
thought to be caused mainly by drift waves driven by pressure and temperature gradients, and the contribution of
magnetic fluctuations is believed to be negligible. A spherical tokamak (ST) can confine high pressure plasma
with a relatively weak magnetic field strength and is very attractive as a fusion reactor from an economic
point of view. However, magnetic fluctuations could be large in ST plasmas, where the high pressure, the
weak magnetic field strength (i.e. the low safety factor) and the large plasma current may enhance magnetic
fluctuations through instabilities. At the edge region, we should also consider the effect of resistivities due to
a relatively low temperature. When the magnetic fluctuations are strong, the field lines become stochastic and
the transport along the field lines deteriorates the confinement. In addition, such stochastic field would affect
the other intrinsic instabilities. Therefore, understanding not only the drift wave like fluctuations but also the
magnetic fluctuations and their effects on plasma turbulence is important.

In this thesis, the temporal and spatial structures of the edge turbulence in TST-2 ST plasmas are measured
by using Langmuir probes and magnetic pickup coils. TST-2 has a short inter-discharge time, which is neces-
sary to obtain a large number of data sets and to perform ensemble averaging in order to reveal the structure of
the plasma turbulence and higher order non-linear processes associated with the plasma turbulence.

It was found that the observed fluctuations can be classified into two types: (i) the MHD type fluctuation
characterized by a global structure and low frequencies (< 20 kHz), and (ii) the drift wave like fluctuations
characterized by a smaller spatial scale and higher frequencies (> 20 kHz). The discharges in TST-2 are
characterized by a large MHD type fluctuation. The relative fluctuation level is B̃r/BT = 10−2 inside the last
closed flux surface (LCFS), and the level is much higher than those in conventional tokamaks. It should be
noted that the phase difference between B̃r, ñe and T̃e indicates that the magnetic fluctuations are dominated by
an ideal MHD mode. Since ideal MHD modes do not induce transport, the other modes play important role in
the frequency range < 20 kHz. The parallel wavenumber k‖ of the MHD type fluctuation is less than 0.0001
mm−1, while the perpendicular wavenumber is k⊥ = −0.004 mm−1. k⊥ at 20 - 100 kHz shows a constant phase
velocity of about 4000 m/s in the electron diamagnetic drift direction inside the LCFS. These two different
types of turbulence in wavenumber spectrum have not been observed in conventional tokamaks.

The electrostatic particle flux is dominated by the MHD fluctuation component. However, the fluctuation in
the frequency range < 20 kHz is mainly an ideal MHD mode, and it does not induce transport. This fact suggests
that resistive modes and/or other non-MHD modes which induce transport are mixed with the ideal MHD mode.
The total flux is Γr = 5 × 1020 m−2s−1. The estimated radial diffusion coefficient is Dr = 10 m2s−1. This value
is comparable to DBohm, which is a theoretical reference value for turbulent lossy plasma. The correlation
length of the MHD fluctuation along a field line is about 5 m, and the Rechester-Rosenbluth type diffusion
coefficient is estimated as Dst = 10 m2s−1. While the effect of magnetic fluctuations to plasma transport has
been considered to be negligible in conventional tokamaks, the estimated diffusion coefficient suggests that the
effect of magnetic fluctuations can be significant in ST plasmas. Note that the estimated coefficient probably
represents the upper limit, since the correlation length of the MHD fluctuations is long and resultant magnetic
field structure may not be so stochastic.

The high coherence of floating potential fluctuations Ṽfs along the field line up to 100 kHz leads to the
possibility that the fluctuations are frozen to the magnetic field line and oscillate with the MHD fluctuation.
In order to clarify the possibility, the spatial structure of fluctuations is reconstructed by tracing the trajectory
of the field lines. The profile of the coherence at 50 kHz shows decay lengths of δR = 30 mm and δZ = 12
mm. The inverses of these values agree roughly with the local wavenumber spectral width σk = 0.05 mm−1.
This agreement implies that the fluctuations are frozen to a field line. While these measurements and analysis
revealed the structure perpendicular to the field lines, we also obtained parallel structure, which is characterized
by parallel wavenumbers and parallel correlation lengths. The parallel correlation lengths l‖s of both MHD (l‖ ∼
2 m) and drift wave fluctuations (l‖ ∼ 1 m) are shorter than the connection length LC ∼ 10 m, which represents
the effective system size along the parallel direction. The relationship between these lengths implies that we



should consider the parallel structure in addition to the perpendicular structure. As a result, the 3D nature of the
turbulence should be studied both experimentally and theoretically for understanding the anomalous transport
driven by turbulence.

Two dimensional turbulence measurements revealed that the radial profiles of the fluctuations in TST-2 are
also different from those in conventional tokamaks. In conventional tokamaks, potential fluctuation eṼp/kBTe

has a peak just inside the LCFS, while that in TST-2 increases monotonically with the radius at the edge. In
contrast, Ṽf of 20-150 kHz has a peak around the LCFS, which is similar to the profile in conventional tokamaks.

The Langmuir probe at the high field side (HFS) showed that Ṽf is one order of magnitude smaller than
that at the low field side (LFS), and their coherence is less than 0.2, suggesting that the long connection length
between the HFS and the LFS leads to the poor coherence.

In summary, we have experimentally revealed the detailed temporal and spatial structure of the edge tur-
bulence in ST plasmas for the first time. In the time domain, the turbulence can be classified into slow MHD
fluctuations and fast drift wave type fluctuations. The former has large amplitudes and its effect on transport
is significant. In the perpendicular directions, the drift wave type fluctuations are frozen to the slow MHD
fluctuations. The structures in the parallel direction (i.e. the parallel wavenumber and the parallel correlation
length) were measured for the first time inside the LCFS in tokamaks. The revealed structures imply that the
turbulence in STs are complicated and we should take into account the 3D effect in future ST research. Several
differences between conventional tokamak plasmas and the TST-2 plasmas are found in the features of turbu-
lence, and the differences seem to be related to the large MHD fluctuations. Because its effect on transport
is significant, further research is required to design an ST fusion reactor, where the suppression of turbulence
induced transport is inevitable.
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Chapter 1

Introduction

1.1 Plasmas

As the temperature of a material increases, its state changes from solid to liquid, and to gas. If the tem-
perature is raised further, the atoms of gas are ionized, that is, they are separated into electrons with negative
charges and ions with positive charges. These freely moving charged particles interact through Coulomb force,
and form a high temperature gaseous matter, in which the charge densities of ions and electrons are almost the
same and charge neutrality is sustained in macroscopic scale. This state is called plasma [1]. Coulomb force
is long range force, which means the force decays only in inverse square of the distance between the charged
particles. When the charged particles move collectively, they create current flow and interact through Lorentz
force due to the generated magnetic field. Thus, many charged particles interact with each other by the long
range forces and various collective phenomena occur. The typical examples are various kinds of instabilities
and waves.

When the temperature of the plasma is T [K], the average velocity of the particles can be defined by

mv2
T/2 = kBT/2 , (1.1.1)

where kB is the Boltzmann constant kB = 1.380658(12) × 10−23 J/K. A more commonly used unit of en-
ergy is one electron volt [eV], which is the energy necessary to move an electron, whose charge is e =

1.60217733(49) × 10−19 C, against a potential difference of 1V.

1 eV = 1.60217733(49) × 10−19J, (1.1.2)

which corresponds to the thermal energy of 1.16 × 104K.
One of the fundamental properties of plasma is the shielding of the external electric potential, called Debye

shielding. When positive or negative potential is externally applied, the potential attracts (or repulses) electrons
and thus the attracted electrons compensate for the electric disturbance. The potential disturbance decays with
the characteristic length called Debye length. The Debye length λD can be derived from Poisson’s equation and
is defined as

λD =

√
ε0kBTe

e2ne
, (1.1.3)

where ε0 is the permittivity of free space ε0 = 8.85 × 10−12 F/m. Furthermore, plasma has a characteristic
frequency, which is called plasma frequency,

ωpe =

√
ne2

mε
. (1.1.4)

When plasma loses its electric neutrality an electrostatic field is generated, and the electrons start to move
to preserve the neutrality. The time scale of this phenomenon is 1/ωpe.
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1.2 Nuclear fusion

Energy production at present depends on natural resources such as fossil fuels, hydroelectric generation,
nuclear fuels, and sunlight. Especially, fossil fuels are our primary energy resources. However, these are not
only the limited reserves, but they emit greenhouse gases when combusted. Currently, solar energy and other
renewable energies do not provide sufficient electricity to sustain our current lifestyle, and it is unlikely that
they will be the ultimate solution for the world’s energy problem from some fundamental reasons. Nuclear
fission can be an alternative option in the view of CO2 and other harmful emissions. However, as we can see
from the accident in Fukushima, a nuclear power plant can cause deadly disasters. Even if not so extreme, it
releases radioactive nuclear waste and affects the nature for tens of thousands years.

Nuclear fusion can be an ultimate solution for these various problems. Fusion denotes merging of light
atoms: mainly hydrogen (H) and its isotopes deuterium (D) and tritium (T). The fusion of hydrogen is the main
reaction that powers the sun. Deuterium can be extracted from ocean water and tritium is obtained by breeding
with lithium isotopes Li6 included in the fusion blanket. The nuclear fusion reaction can be written as follows
(Fig. 1.2.1).

D + T→ n (14.06MeV) + 4He (3.52MeV). (1.2.1)

Deuterium Tritium

Helium
Neutron

Figure 1.2.1: Diagram of D-T reaction.

Both deuterium and tritium have positive charges, and they repel each other due to the Coulomb force.
In order to overcome the Coulomb barrier and attain the fusion, the reaction requires a temperature of more
than 10 keV, hotter than the center of the sun. Since there is no solid material to confine this high temperature
plasma, a method to isolate the plasma from the material wall is required.

1.3 Tokamak

In this section, we introduce a tokamak, which is one of the most promising confinement schemes for
nuclear fusion. In order to achieve a reacting situation and economic feasibility, it is necessary to confine high
temperature plasma for a certain period. A well known confining method is the use of strong magnetic field.
Plasma is composed of charged particles, and is affected by Lorentz force under the presence of a magnetic
field. With Lorentz force qv×B, a charged particle has a nature to circulate around a magnetic field line called
Larmor motion.

A tokamak is a device to confine a plasma in the shape of a torus (doughnut) using the Larmor motion. In a
torus plasma, however, it is impossible to confine the plasma only with the toroidal fields along the torus (Fig.
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1.3.1). The reason is that the plasma runaways in the radial direction, because the curvature and gradient of
magnetic field lines cause vertical (Z-direction) movements, which are called curvature and ∇B drifts, and they
induce charge separation and an electric field in the Z-direction, which bring about plasma motion in the radial
direction called E ×B drift motion. In order to avoid this plasma motion and to achieve a stable plasma force
equilibrium, magnetic field lines that move around the torus with a helical perturbation are necessary. Such
helical field lines can be generated by adding a poloidal field (traveling in circles orthogonal to the toroidal
field) to the toroidal field (traveling around the torus in circles) . In a tokamak, the toroidal field is produced
externally by the coils that surround the torus, and the poloidal field is generated by a toroidal electric current
that flows inside the plasma.

R

Z

Toroidal direction

Poloidal direction

Figure 1.3.1: Schematic of toroidal coordinate system.

1.3.1 Spherical tokamak

The efficiency of confinement of plasma pressure by magnetic fields is given by the ratio

β =
p

B2/2µ0
. (1.3.1)

This represents the ratio of the plasma pressure to the magnetic pressure. If β is low, larger amount of magnetic
energy is needed to confine a plasma of the same pressure. A spherical tokamak has a small aspect ratio
(R0/a < 1.6) compared to a standard (i.e., conventional) tokamak’s aspect ratio R0/a ∼ 3 [2]. Here, R0 and a
are the major and minor radii of the torus. The maximum limit of β is given by Troyon limit [3]

βmax = βN
I

aB0
= 0.072

(
1 + κ2

2
a

R0

)
, (1.3.2)

where I is the plasma current, B0 is the toroidal field strength at the center of the plasma and κ is the ratio of the
vertical minor radius to the horizontal minor radius. Thus, STs (with small aspect ratios) can confine plasma
with a relatively small magnetic energy and are very attractive for fusion reactors from an economic point of
view.
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1.4 Importance of turbulence study

In fusion plasma research, the study of anomalous transport by turbulence is important for controlling the
transport and is also important for plasma operation [4]. Recent researches on turbulence are mainly focused
on the new paradigm of plasma turbulence, i.e., nonlinear, non-local, non-stationary properties of multi-scale
turbulence in the view of suppressing the amount of transport and obtaining optimized discharge conditions
(e.g. a high confinement mode called H-mode) [5]. On the basis of the new paradigm, many experimental
works have been performed intensively in linear plasmas, simple tori, helical, and tokamak plasmas [6].

It is pointed that the relatively low field BT for a given plasma current Ip in a spherical tokamak usually leads
to high current density, and drives strong magnetic fluctuations at the edge [7]. On the other hand, experimental
investigations of edge turbulence in the spherical tokamak (ST) over a wide range of poloidal cross sections
are not thoroughly carried out [8]. Thus, in order to elucidate the influence of this strong magnetic fluctuation
to the turbulence and transport, measurements of both the magnetic field fluctuation and the edge turbulence
are necessary. The TST-2 device is suitable for edge turbulence experiments. First, TST-2 has a short inter-
discharge time, which is necessary to obtain a large number of data sets and to perform ensemble averaging
in order to reveal the structure of plasma turbulence. In addition, TST-2 has good accessibility for Langmuir
probes. For edge turbulence measurements, Langmuir probes are very useful because they have a better spatial
resolution compared to the other diagnostics, and they can measure a wide variety of plasma quantities. Because
of these benefits, Langmuir probes are suited for basic physics experiments on edge turbulence.

In this paper, we present the results of edge turbulence experiments on TST-2. We aim to contribute to
the understanding of fusion physics by exploring the 3-dimensional structure of plasma edge turbulence. Since
measurements on edge turbulence in STs have not been performed as thoroughly as other plasma confinement
devices [9], it is important to investigate the structure of edge turbulence. Especially, measurements on the long
range correlation along a magnetic field are very limited [10].

1.5 Structure of edge plasma

The static, single fluid Magneto-HydroDynamic (MHD) equilibrium is obtained by solving the force bal-
ance equation and Ampere’s law,

∇p = j ×B , (1.5.1)

µ0j = ∇ ×B . (1.5.2)

The flux surface is defined as a surface such that magnetic fields are parallel to the surface. In the case of
tokamaks, a helical field line forms a surface on a torus as it travels toroidally. The force balance equation
implies that p is constant along any field line, since ∇p is perpendicular to the field B. The force balance
equation also implies that p is constant on the flux surface. This force balance equation is valid only on scales
greater than the gyro radius, and it is not the case in microscopic scales.

In tokamak research, it is convenient to introduce the poloidal flux function ψ. This function is determined
so that the poloidal flux lying within each magnetic surface is constant on the surface. Thus,

B · ∇ψ = 0 . (1.5.3)

The Last Closed Flux Surface (LCFS) is the boundary between the closed flux surface region and the open field
line region, separating the toroidally confined region from the region where field lines are connected to material
surfaces (Fig. 1.5.1).

The Scrape off Layer (SOL) is the plasma region characterized by open field lines (beginning or ending
on a material surface) and is located outside the LCFS. Transport in the SOL is very different from that in the
confined region due to the open field lines. The transport in the SOL is predominantly convective rather than
diffusive. Usually, the density decays exponentially away from the LCFS in the SOL, and radial convections
of coherent plasma structures called ’blobs’ are often observed. Blobs enhance the plasma interaction with the
surrounding material boundaries [11].
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Figure 1.5.1: Schematic poloidal cross-section of a limiter configurations.

Inside the LCFS, plasma is confined with closed magnetic field lines. This confined plasma region is
referred to as the core region, where the confinement is good, and usually the temperature, the density and the
pressure profiles show peaks at the center of the core region. The profiles of the core plasma are determined
by the interaction between the core and the edge plasmas, and suppression of transport in the edge leads to an
improvement of the confinement in the core region [12].

1.6 Equations for plasmas

1.6.1 MHD equation

Plasma dynamics can have various characteristic time scales and spatial scales. Therefore, the choice of
the equation is not unique for plasma turbulence. Instead, characteristic scales are chosen to simplify the
complicated plasma dynamics.

Magnetohydrodynamics, or MHD, is the name usually given to a single fluid description of plasma. In this
model, the different identities of ions and electrons do not appear.

The equation of mass conservation is

∂

∂t
ρ + ∇ · (ρV ) = 0 , (1.6.1)

where ρ is the mass density, V is the fluid velocity. The equation of motion is given by

ρ

(
∂V

∂t
+ V · ∇V

)
= j ×B − ∇p . (1.6.2)

In order to calculate the pressure gradient force, an equation for pressure is required. The simple, non-
dissipative and adiabatic model gives the equation,

d
dt

(pρ−γ) = 0 , (1.6.3)

where γ is the adiabatic index. If the density is eliminated using Eq. (1.6.1), then Eq. (1.6.3) becomes

∂p
∂t

+ V · ∇p = −γp∇ · V . (1.6.4)

In the MHD model, the displacement current is neglected, The set of Maxwell equations is as follows,

∇ ×B = µ0j , (1.6.5)
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∂

∂t
B = −∇ ×E . (1.6.6)

In the model of ideal MHD, the plasma is assumed to be perfectly conductive,

E + V ×B = 0 . (1.6.7)

1.7 Background for the research of plasma turbulence

1.7.1 Transport

In the absence of instabilities, confinement of magnetically confined plasma is determined by Coulomb
collisions and the orbits of charged particle motion. This is called classical transport, or neoclassical transport,
when the magnetic mirror effect is considered. In reality, the actual transport does not agree well with the
theoretical prediction, and the transport of particles can be up to two orders of magnitude higher than the
predicted one. Such enhanced transport is called anomalous transport [1]. This is due to instabilities in plasma,
and the transport is caused either by the perturbations which allow transport across the magnetic surfaces, or
by break-up of the magnetic structure, followed by stochastization of particle trajectories. Although various
sorts of instabilities are observed in tokamaks, the relationships between these are not yet clear [13]. Thus, we
often use some empirical scaling laws, which are obtained by fitting functions to various data under various
conditions, and we extrapolate the laws to the target conditions of plasma. Major part of anomalous transport is
caused by electric field fluctuation Ẽ. The electric field results in E×B drift, and the induced particle transport
is expressed as

Γ⊥ =
〈
ñeṼ⊥

〉
=

〈
ñe

Ẽθ

B

〉
≡ D⊥

∂n0

∂r
, (1.7.1)

where Ṽ⊥, D⊥, ñe and Ẽθ are the velocity perpendicular to the magnetic surface, perpendicular diffusion coeffi-
cient, density fluctuation and poloidal electric field fluctuation, respectively. Here we express the transport as a
diffusion, because we believe the gradients in field quantities induce the instabilities and the transport. It should
be noted that such an expression may not be true in the actual plasma where various non-linear interactions and
collective phenomena play important roles. However, there is no other convenient form, and we often calculate
the diffusion coefficient to express the amount of normalized transport.

Electrostatic fluctuation also induces a heat flux

q⊥ =
〈
p̃eṼ⊥

〉
=

〈
p̃e

Ẽθ

B

〉
≡ χ⊥

∂Te

∂r
, (1.7.2)

where q⊥ is the heat flux perpendicular to the magnetic field, p̃e is the pressure fluctuation, χ⊥ is the perpen-
dicular heat conductivity.

Random magnetic fluctuations also contribute to the net heat flux as described in Sec. 1.8.4.

1.7.2 Drift turbulence and flow

A drift wave is a phenomenon driven by the universal instability, where plasma pressure pe = ne(Te + Ti)
contributes to expand the plasma, and the expansion is slowed by the magnetic pressure B2/µ0. The wave has
finite wave lengths in both the poloidal and parallel directions. The wave propagates in the direction perpen-
dicular to both ∇n and B, which almost corresponds to the poloidal direction. The past decades of research in
plasma confinement have shown that the plasma transport across magnetic surfaces is dominated by drift-wave
fluctuations [14]. It should be noted that when a plasma flow exists, the effect of Doppler shift should be added
to the intrinsic dispersion relation between k and ω, and the observed frequency can be different from the the
prediction [15]. Strong modulations in plasma potential and other parameters appear [16]. In the presence of
MHD turbulence and drift wave, which is the same situation in TST-2, a comparison of turbulence measure-
ments and numerical turbulence simulations has been conducted[17]. However, satisfactory reproduction of the
wavenumber spectra and the cross phases at the edge is not established yet.
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1.8 Types of diffusion

In this section, several transport processes are described. Since collision between charged particles is a
basic process in plasma, the particles always suffer from random walk due to the collision. The diffusion
due to collision is referred to as classical or neoclassical diffusion, and their expression and features are well
known. These diffusions are believed to set the lower limit to the transport perpendicular to magnetic flux
surfaces. In actual plasmas, however, the contribution of turbulence is often much larger than the classical or
neoclassical diffusions. Bohm diffusion is a semi-empirical expression for the turbulent transport, and is often
used to compare with experimental results. While these three types of transport are used to express the transport
across the magnetic surface, transport along field lines could be significant when the magnetic surfaces become
stochastic, because the transport along field lines is usually much faster than the perpendicular transport and it
can induce a net perpendicular transport. Rechester and Rosenbluth obtained an expression for the transport in
such cases.

1.8.1 Classical diffusion

Classical diffusion is the type of diffusion determined only by the collision between electrons and ions.
In order to realize such an ideal state, where the collisional diffusion is dominant, particles must collide each
other before hitting the wall and move freely along a magnetic field line. Thus, the connection length 2πRq,
which is the length of a field line to make a poloidal turn must be longer than the mean free path for this type
of diffusion. Here, q = (r/R)(BT/Bθ) is the safety factor, and Bθ and BT are the poloidal and toroidal field
components respectively. Thus, the particle diffusion coefficient Dclassical is

Dclassical =
(
ρΩe

)2 νei =
nTe

σ⊥B2 =
βeη‖

µ0
, (1.8.1)

where σ⊥ = nee2/(meνei), η‖ = 1/2σ⊥. νei is electron to ion collision frequency, ρΩe is a radius of the electron
orbit of Larmor motion.

In the case of toroidal plasma, the step length of diffusion becomes

∆ ≈ ρΩe

2π
ι
, (1.8.2)

where ι is the rotational transform angle given by

ι

2π
=

R
r

Bθ
BT

=
1
q
. (1.8.3)

Consequently, the diffusion coefficient becomes

DP.S =

(
2π
ι

)2

(ρΩe)2 νei . (1.8.4)

This diffusion coefficient is called Pfirsch-Schlüter diffusion coefficient.

1.8.2 Neoclassical diffusion

Larmor motion is a periodic motion, and it has an adiabatic invariance called magnetic moment µm = IS ,
where I is the current, S is the area encircled by the current. If magnetic field strength B increases along the
field line and a charged particle is traveling along the field line, mv2

⊥ = µmB also increases. Since its total kinetic
energy mv2/2 = mv2

‖
/2 + mv2

⊥/2 is also a constant of motion, mv2
‖
/2 should decrease. Eventually, the parallel

movement of the particle is reversed as a mirror reflects light. The ratio of the maximum field strength to the
minimum is called the ”mirror ratio”

In a uniform magnetic field, charged particles gyrate around a magnetic field line with a constant velocity.
However, the magnetic field strength in a tokamak is not uniform, and leads to drifts of the guiding centers.
The outboard side of the torus forms a weak field region, while the inboard side forms a strong field region.
Therefore, a helical field line in a tokamak connects both regions, and it make a magnetic mirror configuration.
As a result, some particles are trapped in the outboard side region, where the magnetic field strength is weak.
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Such an orbit is called a banana orbit. Since the fraction of such trapped particles is ε1/2
t , where εt is the inverse

aspect ratio r/R0, the trapped particles heavily contribute to the diffusion due to their wide orbit widths (i.e.,
banana widths), and the diffusion coefficient is written as

Db = ε1/2
t ∆2

bνe f f = ε−3/2
t

(
2π
ι

)2

(ρΩe)
2νei , (1.8.5)

where Db is the diffusion coefficient for neoclassical diffusion with banana orbit and ∆b is the banana width.
This diffusion coefficient is ε−3/2

t times larger than that of Pfirsch-Schlüter diffusion case in Eq. (1.8.4).
Whether diffusion process follows the above neoclassical theory or the Pfirsch-Schlüter diffusion is deter-

mined by collision frequency. If the electron-ion collision frequency is larger than the frequency νP.S given by

νei > νP.S =
1
R

2π
ι
vTe , (1.8.6)

the connection length becomes longer than the mean free path, and MHD treatment, but Pfirsch-Schlüter diffu-
sion is applicable. When the electron to ion collision frequency νei is smaller then the frequency

νb = ε3/2
t νP.S , (1.8.7)

the electron can complete a banana orbit, and the neoclassical diffusion with banana orbit can be applied.
In summary, the diffusion coefficient for collisional plasma is

DP.S . =

(
2π
ι

)2 (
ρΩe

)2 νei, νei > νP.S , (1.8.8)

where ρΩe is the Lamor radius of electron. When the mean free paths of the electrons and ions are long enough
to complete a banana orbit, the diffusion coefficient is

Db = ε−3/2
(
2π
ι

)2 (
ρΩe

)2 νei, νei < νb = ε3/2
t νP.S . (1.8.9)

In the intermediate region of these two collisionalities, the diffusion coefficient is written as

Dp =

(
2π
ι

)2 (
ρΩe

)2 νP.S , νP.S > νei > νb = ε3/2
t νP.S . (1.8.10)

If νei is in the intermediate range (νb < νei < νP.S ), drift approximation of Vlasov’s equation can be applied.
This region is called the ”plateau region”. In this case, the diffusion coefficient is not sensitive to the collision
frequency [18]. The region νei > νp is called the ”collisional region”, and the region νei < νb is called the
”banana region”. The combination of these three types of diffusion is called neoclassical diffusion (Fig. 1.8.1)
[18].

1.8.3 Bohm diffusion

The neoclassical diffusion we mentioned above is derived from collision of charged particles. In reality,
plasma has various types of instabilities. The resultant fluctuations drive collective motions and they lead to
anomalous losses. These fluctuations can couple with density and pressure gradient, and excite electrostatic
waves. The excited wave is expressed as

ñk

n0
=
ω∗k
ωk

eΦ̃p,k

kBTe
, (1.8.11)

where ñk, Φ̃p,k and ωk are the density and the potential fluctuation with wavenumber k and frequency ωk. The
drift frequency ω∗k satisfies the dispersion relation of the drift wave and can be expressed as

ω∗k = kθ
kBTe

eBn0

dn0

dr
. (1.8.12)
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Figure 1.8.1: Dependence of the diffusion coefficient on collision frequency in a tokamak [13].

When ωk is complex and can be written as ωk = ωr,k + iγ = ω∗kAk exp(iαk), the electrostatic wave expressed by
Eq. (1.8.11) causes particle transport (Ak is a positive constant and αk is the phase difference). The diffusion
coefficient due to this wave is [1]

D⊥ =

∑
k

kθ
n0

dn0/dr
Ak sinαk

∣∣∣∣∣ ñk

n0

∣∣∣∣∣2 exp 2γkt

 kBTe

eB
. (1.8.13)

The term inside the parenthesis is taken as 1/16 empirically and the diffusion coefficient becomes

DB =
1
16

kBTe

eB
. (1.8.14)

This type of the transport derived by D. Bohm is called Bohm diffusion [19]. Bohm diffusion coefficient is
much greater than those from neoclassical theories, and it was often used to evaluate low temperature plasmas.
However, this value is not valid in modern high temperature tokamak plasma [20]. Even though it cannot be
applied to the core, it is still useful to compare the experimental diffusion coefficient and the Bohm diffusion at
the edge, where the temperature is low and fluctuations are large.

1.8.4 Rechester Rosenbluth diffusion

Rechester-Rosenbluth type diffusion (RR diffusion) is the type of diffusion caused by stochastization of
magnetic fields [21]. In this case, the static magnetic perturbation is assumed, and the condition ω < vTe/R
should be satisfied, where ω is the frequency of the magnetic field fluctuation. When there are various harmon-
ics in magnetic perturbations, each of the harmonics destroys or deforms the flux surfaces around the corre-
sponding rational surface. They often generate magnetic islands on the rational surfaces. With the increase in
the perturbation amplitudes, the affected regions (e.g. magnetic islands) grow in size, and the perturbed regions
of neighboring rational surfaces overlap. Then the magnetic surfaces are destroyed and stochastization occurs.
Since particles move almost freely along a field line, such stochastic magnetic field line structure induces a net
(radial) diffusion even though the stochastic structure is static. Let us think the situation where a magnetic field
moves radially by ∆r when we trace the magnetic field by a distance of L. When we adopt a correlation length
Lc for the distance L, the movement of the magnetic field can be considered as a random walk process, where
radial step size is ∆r.

According to the random walk theory, the diffusion coefficient is given by

〈(∆r)2〉 = 2Dstτ , (1.8.15)

where τ is the time interval of movement of particles before the stochastization of the magnetic field line. In
the case of RR diffusion, we introduce the correlation length, which corresponds to the time step of the random
walk. The correlation length is written as

lcorr =

〈∫ ∞
−∞

B̃r(l)B̃r(0)dl
〉〈

B̃2
r (0)

〉 . (1.8.16)
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where l is the distance along the direction of correlation.
This diffusion by the stochastization of magnetic fields occurs even in collisionless plasma. RR diffusion

has not been considered to be significant in tokamak plasmas, while in reversed field pinch (RFP) plasmas, and
in the edge of helical plasmas RR diffusion is significant [22]. In the case of RFP plasmas, it is inferred that the
condition of stochastization of magnetic field is |Bst|

2/B2
z ∼ 10−8 [21].

1.9 Review of edge plasma measurements

Edge plasma turbulence is widely studied because it determines the radial transport and affects the global
confinement. In addition, heat and particle fluxes from plasma to a material wall are crucial topics in the
ITER device [12]. Thus, research of edge turbulence has been the key element in plasma fusion research.
Radial particle flux is determined by the product of density and radial velocity. It is usually evaluated as
Γr = ñṽr = ñẼpol/B, assuming the radial velocity is given by vr = Epol/B. The radial profile of particle flux
driven by turbulence is roughly consistent with the particle loss rate inside the LCFS. However, the discrepancy
between turbulent flux and particle loss becomes large in the SOL, because the effects of intermittent particle
transport and poloidal asymmetry become significant [23].

In magnetically confined plasmas, the plasma turbulence at the edge is known to have a quasi two-dimensional
structure. The correlation length and the scale length of turbulence perpendicular to the magnetic field are in
the order of millimeters, while the correlation length parallel to the magnetic field is in the order of meters.
Spectrum-averaged poloidal correlation length in tokamaks was lpol ∼ 0.5 − 5 cm and radial correlation length
was lr ∼ (0.5−1) lpol [23]. Direct measurement of the parallel correlation length l‖ is limited, but several exper-
iments showed l‖ is very long. In the Joint European Torus experiment, l‖ longer than 100 m was reported [24].
Since l‖ � lpol, it is often assumed that the turbulent structure along the field line is completely uniform, but
this is not appropriate since there is a poloidal asymmetry in the edge density fluctuation on the same magnetic
flux surface [25]. There is also difference in wavenumbers perpendicular and parallel to the magnetic field line.
In all experiments, k‖/kpol < 10−2 is observed. In a TEXT experiment for example, k‖ = 0.08 ± 0.04 m−1 is
measured with two Langmuir probes separated by 12 m fixed at the limiter location [26]. In addition, finite
k‖ has been found when there are two Langmuir probes on the same magnetic field line, and bias voltage is
imposed on the Langmuir probe at the downstream side [27]. These data are consistent with an Alfven-type
wave propagating along the magnetic flux tube.

Radial profiles of edge turbulence show fairly universal characteristics among conventional tokamaks. The
density and temperature fluctuation levels at the edge increase smoothly with radius across the LCFS [28].
Figure 1.9.1 shows the radial profiles of relative fluctuation levels of various parameters in TEXT. The relative
electron density fluctuations at the outboard midplane are ñ/n ∼ 0.05 inside the LCFS and ñ/n ∼ 1 in the far
SOL in the D III-D experiments [23]. If sufficient electrons are supplied along the field line and if polarization
drift and finite Larmor radius effects are neglected, electrons reach thermal equilibrium and exactly follow the
Boltzmann relation φ̃/kTe = ñe/ne, and the density and potential perturbations are in phase [29]. However, in
various experiments, the Boltzmann relation is not satisfied in the plasma edge, neither in the amplitudes nor
in the phase between ñe and φ̃. In ohmically heated plasmas in TEXT, the electrostatic potential fluctuations
φ decrease with the radius while both density and temperature fluctuations increase. The magnetic fluctuation
level in conventional tokamaks is typically B̃r/BT ∼ 10−5 at the edge, and increase to ∼ 10−4 inside the LCFS.

The power spectrum of the edge turbulence is often flat in the range of 10-100 kHz, and the dominant
component in this frequency range is considered to be a drift wave. It is widely known that electrostatic
drift wave turbulence is responsible for the anomalous transport at the plasma edge [14]. However, there
is no conclusive theory to explain the whole turbulence and edge transport until now. Some simulations and
experiments suggest that the radial electron pressure gradient can destabilize drift waves [30], and also magnetic
fluctuations could be an ingredient of the destabilization mechanism of drift waves [31] [19].

Another motivation of the research of plasma turbulence is to understand the origin of the H-mode. In
tokamaks, there is two types of confinement modes, called the low confinement mode (L-mode) and the high
confinement mode (H-mode). The H-mode is characterized by a presence of steep gradients of temperature
and density at the edge, called a transport barrier. The transition from an L-mode to an H-mode was found
in a divertor configuration with a sufficiently high heating power [13]. This transition is correlated with the
presence of edge E × B flows. Various experiments suggest strong edge flow inhibits the plasma transport
[23]. In TST-2, there is no H-mode since it has neither a divertor nor additional heating, but there is still
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importance in elucidating the relation between E ×B flow and edge turbulence.
The characteristics of edge turbulence and transport in STs are not intrinsically different from that of con-

ventional tokamaks [32]. However, high β plasma of STs can lead to larger Lamor radius and greater electro-
magnetic fluctuations like kinetic ballooning mode and micro tearing mode [33]. Furthermore, it is also pointed
out that high pressure gradient and current density at the edge can lead to strong MHD fluctuations like a peel-
ing ballooning mode [34]. Previous researches in ohmically heated plasmas of MAST and TST-2 suggest the
presence of a large MHD fluctuation, which is considered to be an internal reconnection event (IRE) [35]. IREs
in MAST are accompanied by m = 2/n = 1 and m = 5/n = 2 tearing modes at q = 2 rational surface, here m
and n are poloidal and toroidal mode numbers, respectively. A similar structure is observed in TST-2. IREs in
TST-2 are followed by n = 1 mode which propagates from ρ = 0.3 (ρ = r/a is the normalized plasma radius).
The information of radial fluctuation profile in STs is limited compared to that of conventional tokamaks. In
spite of the large amplitude magnetic fluctuations in STs, information on the radial distribution of magnetic
fluctuations has been scarce.

Figure 1.9.1: Relative fluctuation levels of density, plasma potential, temperature and radial magnetic field in
TEXT [29].

The fluctuation levels in the edge of STs are summarized in table 1.9.1. Most STs have magnetic fluctuation
measurement systems fixed at the wall, but they usually do not measure the radial distribution of magnetic
fluctuations directly. For example, MAST has an extensive set of magnetic diagnostics installed inside the
vacuum vessel [36]. However, the radial distribution of magnetic fluctuations and their amplitudes have not
been reported [37]. PEGASUS installed a hall probe system to measure poloidal magnetic field inside the
LCFS, however the radial magnetic fluctuation profile has not been measured [38]. SUNIST measured the
radial distribution of T̃e, ñe, φ̃ and B̃r [39], but B̃r is not measured simultaneously with the other parameters,
and the magnetic fluctuation amplitude level is relatively low compared to other STs [40]. TST-M has also
measured B̃r inside the LCFS with insertable pick-up coils. However, simultaneous measurements with φ̃, ñe,
B̃r and T̃e have not been conducted. A strong magnetic fluctuation is observed in HIST, but the discharge
duration is too short to achieve a steady state turbulence, thus it may be inappropriate to compare the result
to those of other STs. The radial correlation length lr and the poloidal correlation length lpol are measured by
beam emission spectroscopy in MAST and NSTX, and Langmuir probes in SUNIST. However, the parallel
correlation length l‖ has not been measured in STs until now. The radial positions of measurements in each
machine is presented by the normalized radius r/a in table 1.9.1.

1.10 Objective of the thesis

In order to elucidate the characteristics of plasmas in TST-2, it is necessary to know the edge turbulent
structure and its contribution to transport. Comparison between the turbulent structures in TST-2 and those
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Ṽp/eTe ñe/n̄e B̃r/BT T̃e/T̄e lr lpol l‖ r/a
PEGASUS[41] – 10-30 % 1% 1 10-30 % – – – 0.5-1.0
MAST[42] – 20-60 % – – 4-8 cm 10-20 cm – 0.6-1.0
HIST [43] – – 1.5 % 1 – – – – 0-1.3
NSTX[44][45][46] – 1-5 % 0.2% 2 – 3-6 cm 15 cm – 0.85-0.95
SUNIST [47] 20-80 % 20-60 % 0.02-0.05 % 10-30 % 1.5 cm 2-2.5 cm – 0.85-1.2
Globus-M[48] – – 0.5 % 2 – – – – –
TST-M [49] 5-20 % – 0.01-0.05 % – – – – 0.5-1.5
1 poloidal magnetic field
2 signals from coil fixed at the wall

Table 1.9.1: The fluctuation levels at the edge and correlation length in spherical tokamaks.

in conventional tokamaks is also needed. These are possible only by high spatial and temporal resolution
measurements by Langmuir probes and magnetic coils. Our objectives in this thesis can be divided into the
following four major parts.

1. Comparison of the structures of edge turbulence in conventional tokamaks and STs: Structure of edge
turbulence in conventional tokamaks is dominated by drift waves, characterized by the presence of plasma
potential and electron density fluctuations. However, this is not necessarily the case in high β and high
edge current density ST plasmas like TST-2.

2. Clarification of the spatial dependence of turbulence characteristics in the low field side region : Strong
magnetic field fluctuation is observed in ohmic discharges in TST-2. Thus we try to clarify the structure
of magnetic fluctuation, wavenumber and correlation length, and compare the structure with ballooning
mode fluctuations observed in other tokamaks.

3. Evaluation of the particle transports due to electrostatic fluctuation and magnetic fluctuation.

4. Investigation of the structures of MHD fluctuation and drift wave along a magnetic field line : Structures
along a field line, including the parallel wavelength and the parallel correlation length, are investigated
for various frequencies.

Furthermore, since the wavelength and frequency of MHD fluctuation and drift wave are much different,
interplay between them can happen. Thus, we investigate the effects on the drift wave like turbulence, including
nonlinear effects.
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Chapter 2

Principles of measurement and analysis

2.1 Langmuir probe

A Langmuir probe is one of the simplest ways to diagnose plasma. Using a small electrode inserted into
plasmas, we can measure electron density, electron temperature, space potential, and energy distribution func-
tion from its voltage-current characteristics. Since the probe is immersed in harsh environment, this method is
applicable only for low temperature edge plasmas to protect the electrodes.

The problem in using a Langmuir probe is that they can significantly perturb the plasma or vice versa.
The main issue affecting the Langmuir probe measurement is the influx at the probe surface. Measurements
of the plasmas with and without Langmuir probes suggest that the level of fluxes is unchanged even when a
Langmuir probe was inserted into the SOL region [50]. Similar observation is reported in TEXT, HL-1 and ATF
[51]. However, some clear differences are observed; that is, the radial outward fluxes increase when probes are
inserted inside the LCFS [52] [53]. Even if the global parameters of the plasmas are unchanged, the fluctuation
induced flux appears to be much larger inside the LCFS than the actual value without probe insertion. Thus,
radial fluxes show discrepancy between the particle continuity equation and the fluctuation induced flux. It
is pointed that the plasma region shadowed by the probe body becomes a presheath region, and the plasma
shows different characteristics in that region [54]. B. LaBombard suggested that the flux Γ⊥probe caused by the
presence of the probe itself is written as [52]

Γ⊥probe ≈
D⊥psn

2a
, (2.1.1)

where a is the size of the probe, D⊥ps is particle diffusivity at the presheath. If D⊥ps is comparable to that of
SOL, Γ⊥probe becomes comparable to the actual particle flux. The actual value of D⊥ps in presheath is unknown,
but experiments in C-Mod suggest that Γ⊥probe is comparable to the actual particle flux. On the other hand,
experiments in TJ-II stellarator showed the particle flux measured in and out of the probe sheath is consistent,
even when the mean values of ion saturation current and the floating potential are different [55] .

In typical parameters in TST-2, electron density is one order smaller than that of TJ-II. Because Γ⊥probe is
proportional to the density (Eq. (2.1.1)), it is considered that the disturbance of the probe is also comparable
or smaller than that of TJ-II. This implies that the effect of shadowing by the probe body can be negligible in
TST-2, as long as the global parameters of the plasmas are unchanged.

Figure 2.1.1 shows the basic configuration of the probe circuit. The Langmuir probe collects ion or elec-
tron current that flows to it in response to the applied voltages. The current vs. voltage trace, called the V-I
characteristic, can be analyzed to reveal the information on the plasma. The probe electrodes are connected to
a variable voltage source through a vacuum feedthrough and then terminated to the ground by a resistor R. To
measure the probe current, the voltage across R is recorded by a digitizer.
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Figure 2.1.1: Basic configuration of the probe circuit.

2.1.1 V-I characteristic of probes

Figure 2.1.2 shows a schematic probe characteristics (i.e., V-I curve) that how the probe current Iprobe varies
with probe voltage Vprobe. Iprobe is positive in the direction of electron current for the sake of convenience. The
V-I curve has three distinct parts. In the region where Vprobe is sufficiently negative , Iprobe is comprised of
a constant value called ion saturation current Iis. As Vprobe increases, Iprobe becomes zero due to the electron
current. This voltage is called floating potential Vf . As Vprobe increases further, the electron current increases
rapidly, and V-I curve shows an exponential behavior, because the lowered Coulomb barrier allows slower
electrons in the Maxwellian distribution to penetrate the barrier. As Vprobe approaches to the space potential Vp,
the curve shows a bend, and saturates at the electron saturation current Ies. Actual V-I curves in magnetized
plasmas are distorted by various fluctuations, as shown in Fig. 2.1.3.

The exponential part of the V-I curve can be expressed as

Iprobe = Ies exp
[
e(Vprobe − Vp)

kBTe

]
− Iis . (2.1.2)

When Iprobe is plotted in logarithm scale, the V-dependence appears as a straight line. Since the slope in the
ln Iprobe − Vprobe plane is 1/Te, we can measure the electron temperature. Ion saturation current Iis and electron
saturation current Ies can be obtained as

Iis =
1
2

eniA

√
kBTe

mi
, (2.1.3)

Ies =
eAnev

4
= eneA

√
kBTe

2πme
, (2.1.4)

where A is the area of the electrode surface. The measurement of Iis is the simplest way to determine the plasma
ion density ni.

The factor 1
2 in Eq. (2.1.3) varies due to the secondary electron emission from the probe and the plasma

sheath thickness and the shape of the probe. The space potential satisfies

Vp − Vf = (kBTe/2e) · ln
(
εMi

2πme

)
, (2.1.5)

where ε is the base of natural logarithm. Thus, the floating potential Vf is strongly influenced by electron
temperature.

When a probe is inserted into a plasma, the potential near the electrode drops sharply. This is called the
sheath, of which thickness is the order of the Debye length, and the probe potential is shielded from the plasma.
When the applied voltage to the probe is too high (in the negative or in the positive directions), the large sheath
voltage difference may invoke a spark, and V-I curves would be distorted.
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Figure 2.1.2: Schematic V-I curve.
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Figure 2.1.3: An example of a V-I curve in a TST-2 plasma.

2.1.2 Electronic circuit for Langmuir probes

In order to acquire V-I curves, we can apply a voltage Vprobe to the probe to measure the current Iprobe in
two basic ways, and each has its disadvantages [56]. In Fig. 2.1.1, the probe is connected through a vacuum
feedthrough to a voltage source (bias supply) and then to the ground through a termination resistor R. The
voltage across R is recorded by a digitizer to measure the probe current. This arrangement has the advantage
that the resistor and the digitizer are grounded, and therefore the method is not subject to suspicious pickup of
noises. The disadvantage is that the bias supply is floating. When the capacitance between the probe and the
ground is so large that the AC signals would be short-circuited to the ground, and the measurement would have
a poor frequency response. Furthermore, the voltage source can act as an antenna and become susceptible to
RF noises.

Second way is to terminate the bias supply to the ground and insert the resistor between the probe and the
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bias supply. This method can avoid RF noises, but the voltage across the resistor has to be measured by a
differential amplifier or some other floating device. In order to measure the plasma potential with a Langmuir
probe, we often terminate the probe with a high impedance, such as the 1 MΩ input resistance of the digitizer.
This is called a floating probe. The value of R has to be high enough so that the current I drawn from the
plasma is small and the effect on the plasma is negligible. The value of R is chosen so that IisR should be much
greater than Te [V], or R � Te/Iis. The large value of R leads to a poor frequency response, because the RC
time constant due to R and the stray capacitance C deteriorates high frequency signals [57].

2.2 Spectral analysis

Spectral analysis is a basic way to analyze time series data. To examine the presence of periodicity of
data, Fast Fourier Transform (FFT) is often used [58]. In plasma research, spectral analysis is one of the
most effective methods to quantify the statistical properties of fluctuations and the resultant transport. Here,
we will describe the spectral analysis method. In addition, the methods to determine the wavenumber k‖ and
k⊥ distributions and the correlation lengths are described. FFT decomposes a data array into corresponding
sinusoidal waves by Fourier transform.

X( f ) =

∫ ∞

−∞

x(t)e−i2π f tdt , (2.2.1)

where X( f ) is the Fourier series coefficient, (i.e., the amplitude of the sinusoidal wave) for frequency f . The
power spectrum defined in the equation below, indicates energies (as a function of f ) distributed to the waves.
The power spectrum is written as

P( f ) = lim
T→∞

〈
1
T

X( f )X∗( f )
〉
. (2.2.2)

Here, angle brackets 〈〉 indicate an ensemble average and T is the time window of the sampled data.
In order to quantify correlation of two data sets, a cross spectrum is often used. This is defined as

S xy(ω) =

〈
2π
T

X∗(ω)Y(ω)
〉
. (2.2.3)

From the cross spectrum, coherence and cross phase can be calculated. The coherence is a value that can be
used to examine the relationship between two signals x(t) and y(t), and it is defined as

Cxy(ω) =
|S xy(ω)2|

S xx(ω)S yy(ω)
. (2.2.4)

The values of coherence Cxy are always in the range 0 < Cxy < 1, and if x(t) and y(t) are completely correlated,
Cxy = 1. Using the real and imaginary components of the cross spectrum, cross phase, the phase difference
between X and Y can be calculated from

θxy = tan−1
(
=S xy(ω)
<S xy(ω)

)
. (2.2.5)

2.2.1 Spatio-temporal statistics

When fluctuations are invoked by a mechanism described by a linear partial differential equation, each of
its independent solution has a certain wavenumber and a frequency. Therefore, the wavenumber becomes a
function of frequency, that is the dispersion relation k(ω). In plasma turbulence, however, the power spectrum
of fluctuations tends to become broad, and the power should be expressed by a spectral distribution S (k, ω).
For a given angular frequency ω and a given wavenumber range k to k + ∆k, S (k, ω)∆k represents the fractional
power of the turbulence. It should be noted that, in this paper, the angular frequency ω is discretized, and the
frequency resolution (or range) ∆ω does not appear in our formulation. When some fluctuating value φ(x, t) in
plasma satisfies a dispersion relation k(ω), the spectral density takes the form

S (k, ω) = S (ω)δ[k − k(ω)] . (2.2.6)
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When the wavenumber spectrum is normalized by the total power S (ω) for a given (discretized) ω, this
corresponds to the probability function s(k, ω) defined as

s(k, ω)∆k = S (k, ω)∆k/S (ω) . (2.2.7)

For the given ω, s(k, ω)∆k represents the probability being in the range k to k + ∆k. The average wavenumber
k̄ is written as

k(ω) =

∫
dk k s(k, ω) . (2.2.8)

Let us take an (ensemble averaged) cross phase S j
xy(ω) indexed by j. Here x and y are signals obtained at

different locations separated by distance ∆x. Then we can calculate a nominal wavenumber k j
f written by

k j
f = θ

j
XY/∆x = tan−1

<S j
xy(ω)

=S j
xy(ω)

 /∆x , (2.2.9)

and the calculated k j
f is a sample local wavenumber for the cross spectrum indexed by j. When we perform

the measurements and the calculations many times, we may obtain different wavenumbers. Here we assume
that obtained each wavenumber is a sample of the parent population described by a probability distribution
function s(k, f ). By accumulating the sample wavenumbers k j

f , we can speculate the parent population s(k, ω).
A speculated probability distribution (i.e., power spectrum) S L(k, f ), is computed by depositing the two point
averaged power at the wavenumber k j

f calculated by Eq. (2.2.9). Then S L(k, f ) is calculated as

S L(k, f ) =
∑

j

1
2

(X∗, jf X j
f + Y∗, jf Y j

f )δ(k
j
f − k) . (2.2.10)

Hereafter, we use frequency f instead of the angular frequency ω (= 2π f ). The actual S (k, ω) can be ap-
proximated by S L(k, f ) when the spatial scale of amplitude and wavenumber variation is much longer than the
local wavelength (2π/k̄), and the maximum wavenumber must be smaller than the maximum phase difference
kmax < 2π/∆x [59].

Since the particles can move almost freely along a magnetic field line, the spatial perturbations tend to be
perpendicular to the field line. As a result, fluctuations would normally have a very long wavelength and a very
long correlation length along the field line, while the perpendicular lengths are short. Therefore, we must deal
with the parallel wavenumber k‖, the perpendicular wavenumber k⊥ and the radial wavenumber kr differently.
Hereafter, the perpendicular wavenumber is split into kr, which is perpendicular to a flux surface, and k⊥, which
lies on the surface.

The parallel wavenumber k‖ of plasma along a field line is much smaller than the perpendicular wavenumber
k⊥. Thus, we have to know the magnetic field lines accurately to obtain the correct k‖. When the two probe
electrodes are placed on the same field line, k‖ is calculated by,

k j
‖

= ∆θ
j
XY/∆x , (2.2.11)

k̄‖( f ) =

∫
dk k‖ s(k, ω) =

∑
j

(X∗, jf X j
f + Y∗, jf Y j

f ) k j
f /

∑
l

(X∗,lf Xl
f + Y∗,lf Y l

f ) (2.2.12)

where θ j
XY denotes the cross phase of the signals for the two electrodes separated by ∆x along the field line.

Another method of obtaining k‖ is to find the position where the correlation becomes maximal by moving
the position of one of the electrodes, using the fact that the correlation length parallel to the magnetic field line
is much longer than perpendicular one.

The estimated variance of wavenumber (i.e., spectral width) σk can be derived from cross coherence [60],

σ(ω) =
〈
(k̄ − k)2s(k, ω)

〉1/2
=

{
2(1 −Cxy(ω))

}1/2
/∆x . (2.2.13)

The fundamental angular frequency (i.e., frequency resolution) is expressed as ∆ω = π/T , for a given time
window of T . The number of time sample of the fluctuations for the time window is N, and the sampling
interval δt = T/N must be short enough so that the Nyquist frequency ωN = π/δt becomes greater than the
highest frequency of interest. Similarly, the probe separation ∆x must be small enough so that π∆x becomes
greater than the highest wavenumber of interest.
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Chapter 3

Experimental device

3.1 TST-2 spherical tokamak

The Tokyo Spherical Tokamak -2 (TST-2) device [61] was constructed at the University of Tokyo. TST-2 is
now located at the Kashiwa Campus. The photograph of TST-2 is shown in Fig. 3.1.1. TST-2 has the following
typical parameters for Ohmic discharges: major radius R ≤ 0.38 m, minor radius a ≤ 0.25 m and aspect ratio
A = R/a ≥ 1.5. The aspect ratio is low enough, and the TST-2 device is classified as a spherical tokamak. 24
toroidal field (TF) coils, a 239 turn Ohmic (OH) heating center solenoid (CS) and 5 pairs of poloidal field (PF)
coils are installed in TST-2 (Fig. 3.1.2). The TF coils generate a toroidal magnetic field BT ≤ 0.3 T. The PF
coils are used to control the position and shape of plasma. For pre-ionization of gas, we use a magnetron (2.45
GHz / 5 kW). The discharges can be classified into the following four types: Ohmic discharges, the electron
cyclotron heating (ECH) discharges, ECH + radio frequency (RF) heating and OH + RF heating discharges.
In Ohmic discharges, plasma is heated by joule heating using the inductive electric field from the CS. Plasma
current Ip of about 100 kA and discharge duration tpulse of about 30 ms are typical values. In ECH discharges, a
plasma is generated and sustained noninductively by ECH alone. Plasma current Ip of about 1 kA and discharge
duration tpulse of about 100 ms are typical. In ECH + RF discharges, a lower hybrid wave (200MHz) with the
maximum power of 100kW is injected to ECH discharges and Ip reaches about 20 kA. In this study, Ohmic
discharges are studied, because of the high plasma currents.

Figure 3.1.1: Photograph of TST-2.
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Figure 3.1.2: Schematic diagram of the coils on TST-2.

3.2 Heating

3.2.1 Electron cyclotron heating

The electrons follow a spiral path along a magnetic field line. The electron gyration frequency around
the field line is called (electron) cyclotron frequency. When the electron cyclotron wave, which has the same
frequency as the cyclotron frequency, is injected to the plasma, the energy of the wave is resonantly absorbed
by the electrons. This process is called electron cyclotron heating (ECH). On TST-2, a magnetron (2.45 GHz /

5 kW) is used to inject the EC wave.

3.2.2 Radio frequency heating

Waves can propagate in plasma when they satisfy one of the dispersion relations. Energy absorption by
plasma particles occurs when such waves reach a resonance layer. This process is called Radio Frequency (RF)
heating. On TST-2, lower hybrid waves (200 MHz/400 kW) is available.

3.3 Diagnostics

3.3.1 Composite probe system

Figure 3.3.1 shows the head of the composite probe system and the typical assignments of the electrode
usage in this experiment. This system is composed of Langmuir probe arrays and a 3 axis magnetic pickup coil.
The Langmuir probe arrays consist of 8 electrodes made of molybdenum. Four of them are located at the front of
the probe head, and can be used to measure the wavenumber of fluctuations. The diameters of these electrodes
are 1 mm, and the heights are 1 ∼ 1.5 mm. The four electrodes are separated by about 10 mm. The detailed
design drawing of this probe is shown in Appendix. These electrodes were used to measure the floating potential
fluctuation Ṽf when they are unbiased. The applied bias voltage for each electrode can be swept to obtain the V-
I characteristics, and the electron density, the electron temperature and the plasma potential are calculated from
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it. When we assume that the electron temperature fluctuation is negligible, the fluctuating floating potential Ṽf
represents the fluctuation of the plasma potential. One of the front four electrodes protrudes from the others by
10 mm and its foot is covered with a ceramic tube, and it is used to measure radial wavenumber. The usage
of the four electrodes varies according to experiments. When the objective of the experiment is to measure the
plasma flow, the other four electrodes located at the side of the probe are used to measure the ion saturation
current, and the plasma flow is obtained by using the mach probe method, as described in Sec. 4.5. These
electrodes can also be used for the measurement of floating potential and plasma potential fluctuations.

A 3-axis magnetic pickup coil is located inside the composite probe. The size of the pickup coil is 10 mm×
6 mm× 6 mm. We can measure poloidal, toroidal, and radial magnetic field fluctuations simultaneously. Figure
3.3.2 shows the photograph of the 3-axis pickup coil. The composite probe is covered with boron nitride sheath,
which can endure the high heat flux and the bombardment of high energy plasma particles. The calibration of
each coil is conducted using a helmholtz coil outside the vacuum vessel, and using a reference discharge without
plasma. Cross talk among the pickup coil signals is up to ∼ 2%, which is negligibly small. If there is some
obstacle neighboring the electrodes, the measured floating potential could be affected significantly due to the
shadowing effect of plasma flow [62]. To avoid the effect of the protruded electrodes on the other electrodes, the
composite probe system is rotated using a rotary stage. By choosing the angle carefully, the arrangement of the
electrodes is adjusted so that the protruded ceramic tube is not in the upstream side of the other electrodes. The
probe system can also be moved poloidally using a bellows joint up to ±15◦, so that we can scan the poloidal
location of the probe system on shot by shot basis.

Figure 3.3.3 shows the probe tip geometry and the usage of the electrodes of the composite probe (probe
2) and the definitions of coordinates in the radial scanning experiments. Eθ, Er were derived from the phase
difference between Vf1, Vf2 and Vf3.

Figure 3.3.1: Photograph of the composite probe head and the electrode used to measure V-I curves.

3.3.2 Measurement of electron temperature fluctuation by fast sweep voltage method

As mentioned in Sec. 2.1.1, plasma potential Vp is often evaluated by Vf , neglecting the effect of temper-
ature fluctuation. Thus, the local electric field fluctuation is usually evaluated by the difference between Vfs at
two adjacent points separated by 10 mm [63], and more accurate estimation using V-I curves is limited so far
[64]. The floating potential Vf is a function of the plasma potential Vp and the electron temperature Te via

Vf = Vp − αTe, α ≡ log Ies/Iis. (3.3.1)

Here, Ies is the electron saturation current and Iis is the ion saturation current. Electron temperature fluctuations
are usually considered to be negligible compared to the plasma potential fluctuation in a toroidally confined low
temperature plasmas [65]. However, in high-beta plasmas like spherical tokamak (ST) plasmas, this assumption
is not guaranteed, and may lead to an erroneous result. Therefore, we measured electron temperature fluctuation
in the TST-2 edge plasma to investigate its influence on the potential fluctuation measurement by using the fast
sweeping method developed in a preceding work [66][67]. In addition, we have tested the validity of the Te

measurement by comparing the Vf fluctuations measured by the fast sweeping method and that obtained by the
standard method.
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Figure 3.3.2: Photograph of the 3-axis pickup coil.
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Figure 3.3.3: The probe geometry and the usage of electrodes of the composite probe (probe 2) and the defini-
tions of coordinates. Head-on view of the probe head from the high field side to the low field side (a), and the
sideview (b) are shown.

3.3.3 Distortion of characteristic curve by contamination

After a vacuum opening of TST-2, the V-I characteristic curve becomes distorted as shown in Fig. 3.3.4 (a).
The slope of the ion saturation becomes negative, and the ion saturation current has a maximum at Vf − 20 ∼
Vf − 50 V. Iis is fitted with light blue lines, and the exponential part of the V-I curve is fitted with red curves in
Fig. 3.3.4, and the negative slope deteriorates the accuracy of measurements. There are two main possibilities
to distort the V-I curve. One is the effect of contaminated surface adding a stray capacitance on the electrodes.
The other is the effect of secondary electron emission from the electrode surface. Since the distortion in the V-I
curve does not depend on the sweep frequency of the bias voltage, the former possibility is excluded, and the
latter seems to be the dominant mechanism. Figure 3.3.4 (b) shows the data after about 100 discharges from
the vacuum opening and the V-I characteristic curve becomes normal.

Since the sweeping frequency is relatively high, the effect of capacitive current due to the coaxial cables of
the signal transmission line cannot be neglected. Therefore, the capacitive current is subtracted from the raw
probe current. We estimate the capacitive current from the derivatives of the voltage data, and the estimated
current is subtracted from the raw probe current. Due to the subtraction, the hysteresis of the V-I curves
disappeared. Figure 3.3.5 (a) shows the comparison between the estimated capacitive current (red) and the raw
probe current (black) without plasma production. Good agreement between the two waveforms is observed,
and validity of the estimation and subtraction is confirmed. The subtraction with plasma is demonstrated in
Fig. 3.3.5 (b), where the raw probe current (blue curve) and corrected current (red curve) are overplotted. The
V-I curve shows almost no hysteresis after the subtraction, and the error in temperature due to the hysteresis
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Figure 3.3.4: V-I characteristic curve acquired by a contaminated electrode after a vacuum opening of TST-2
(a) and that after about 100 discharges (b). Iis is fitted with light blue lines, and the exponential part of the
V-I curves are fitted with red curves. The vertical light blue lines represent Vp, and the red lines represent Vf
derived from fitted V-I characteristic.

becomes much smaller than those introduced by the discrete sampling (5 µsec in this case). The validity of the
data is confirmed by comparing the time evolution of floating potential Vfs and that calculated from V-I curve
(Fig. 3.3.6 (a)). A good agreement is observed and the difference between them is within the error bars. From
the fitted curve on a V-I curve, electron temperature and its fluctuation are evaluated. The data used in the fitting
are the region in the vicinity of the floating potential where the electron current collected from the plasma is
smallest. Fluctuation amplitudes of Te are about 10 eV, whereas the averaged Te is 20 eV, and fitting errors of
the electron temperature are less than 3%. The fluctuation level of Te is about 50 %. On the contrary, the Vf
fluctuation amplitude is 50 V, and if the value of α in Eq. (3.3.1) is taken to be 3, the fluctuation level of Vf due
to T̃e becomes about 30 V. Thus, Te fluctuation level can be more than half of that of Vf . This indicated that
the plasma potential fluctuation should not be calculated only by the floating potential fluctuation. However,
if the temperature fluctuations do not have wavenumbers comparable to those of space potential, their effect
to electric field fluctuation is cancelled. Furthermore, if the fluctuations are not correlated the effect becomes
smaller due to the square summation effect. Thus, the actual effect of the temperature fluctuation on the electric
field measurements by using floating potentials is probably much smaller than 50 %.

The plasma potential is also evaluated from the inflection point of the V-I curve at the electron saturation
current side. Figure 3.3.7 shows an example of V-I characteristic curve with a linear and a logarithmic scales.
The inflection point is evaluated from the extrapolations of the electron saturation and the maxwellian electron
retarding curve.

The coefficient α (used in Eq. (3.3.1) ) was estimated to be 3.26. This does not contradict the recent study
where α = 2.94 [67] [68]. These experimental and analysis results indicate that full V-I curve can be used even
when the bias voltage is swept very quickly.

Electron temperature fluctuations were measured by using the fast voltage sweeping method in the edge of
the TST-2 spherical tokamak plasmas. The validity of fitting is evaluated by comparing Vfs acquired by V-I
curve fitting and by high impedance resistor independently. The fluctuation level of Te may not be negligible in
evaluating the plasma potential fluctuation. The plasma potential fluctuation is also evaluated by the inflection
point in the V-I curve. The coefficient α in Vp = Vf + αTe derived from the V-I curve agrees with the values in
the previous experimental and theoretical studies.
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Figure 3.3.7: Example of V-I curve with a linear vertical scale (a) and with a logarithm vertical scale (b).
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3.3.4 Upper and lower side probe systems

In order to cover a wide area in the outboard (weak field) side region, two additional Langmuir probe
systems have been installed at the location 90◦ apart in toroidal angle from the composite probe (probe 2) as
shown in Fig. 3.3.8. By choosing appropriate positions of the probes we can measure two spatial points on a
same field line simultaneously. This is quite useful to study the features of turbulence along a field line.

HF probe

(a)

probe2

probe3

probe1

B

electron 

diamagnetic 

ion 

diamagnetic 

Ip

Δ=90˚
(b)

Figure 3.3.8: Locations of the probe systems in TST-2. Probe 1, probe 2 and probe 3 are movable radially and
poloidally to measure two-dimensional profiles. The high field side probe (HF probe) is fixed at the inboard
wall of the vacuum vessel. The arrangement of the probes projected on a poloidal cross section (a) and a
schematic 3-D view of the probes (b) are shown. In this figure, probe 2 and probe 3 measure the points on a
same field line. The composite probe is denoted as probe 2.

Figure 3.3.9 shows the Langmuir probe located at the upper side of the outboard of TST-2. Each of these
probes has four cylindrical electrodes made of tungsten with diameters of 0.5-1.0 mm and heights of 1.5-2.0
mm. Three of the electrodes are devoted to floating potential and the remaining one is devoted to ion saturation
current measurements. Each of these systems is used to confirm the reproducibility of discharges. They are
also used to measure the (long range) correlation between the signals of these probes and the composite probe
signal. The probe system at the upper side is called probe 1, and the other probe system at the lower side is
called probe 3 in this experiment (Fig. 3.3.8).
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 20 mm

Figure 3.3.9: Enlarged photograph of probe1.

3.3.5 High field side probe

Figure 3.3.10 shows the Langmuir probe located at the midplane of the inboard (i.e., high field) side wall.
It has one molybdenum electrode with a diameter of 2 mm, and the height is 5 mm. By comparing the sig-
nals measured by this probe and those measured by the outboard probes, we can study the inboard outboard
asymmetry, which may be significant in ST plasmas.

18 mm

18 mm

Figure 3.3.10: Enlarged photograph of the high field side probe.
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Chapter 4

Experimental result

4.1 Device setup

Mainly three probe systems described in Chap. 3 were used in the experiments. The composite probe
(probe 2) is located on the midplane, and can be moved in the radial and poloidal directions. Two other probe
systems (probe 1 and probe 3) are used to check discharge reproducibility, and to see long distance correlation
along a magnetic field line. There are 4 electrodes on the front surface. One electrode is used to obtain V-I
characteristics by applying a sinusoidal voltage of -150 to +150 V at 100 kHz. We measure the probe current at
the shunt resister and the voltage at the exit of the vacuum feedthrough by using an Analog-Digital Converter
(ADC) (8861-50 manufactured by HIOKI E.E. corporation, Japan). The length of the cable is 1 m for both,
and the noise is reduced by a cable drive technique. The ADC unit has 16 channels, and can measure a voltage
up to 400 V. The maximum sampling rate is 20 MHz. The other electrodes are used to measure floating
potentials (Vfs). Each Vf signal is terminated by a 1 M Ω input impedance of the ADC. The current and voltage
waveforms of the V-I characteristic are directly sampled by isolated ADCs with a sampling rate of 20 MHz .
The measurement timing delay between the current and the voltage signals is negligible.

We set the radial location of the composite probe at R = 550 − 650 mm, while the outboard limiter is
located at R = 585 mm. We analyzed only the data when the plasma was bound by the outboard limiter, so that
the ambiguity of the LCFS position (∼ 585 mm) is minimized.

4.2 Discharge evolution

We selected the Ohmic discharges with high Ips and long plasma durations to acquire stable fluctuations of
various parameters.

Figure 4.2.1 shows typical waveforms of a discharge. Ip, line integral density neL, Hα emission, radiation
signals measured by a photodiode (IRD, Absolute X-Ray Photodiode AXUV), soft X-ray emission measured
by a surface barrier diode (SBD). Right figures show information on the shape and position of the plasma.
Rmaxis and Zmaxis are the radial and vertical positions of the magnetic axis. Lgap is the distance between the
inboard limiter and the LCFS, and Rgap is the distance between the outboard limiter and the LCFS. Rout is
the outboard radial position of the LCFS. BT is ∼ 0.2 T in the clockwise direction. Ip is 70 kA at 30 ms. At
around 32 ms, strong spikes in the signals are observed and the plasma disrupted accompanying large bursts in
Hα, AXUV and SBD signals. This event is called Internal Reconnection Event (IRE) relaxation phenomenon
characterized by a collapse of the pressure and plasma current profiles.

Figure 4.2.2 shows the equilibrium configuration calculated by EFIT [69] for this discharge. The analysis
timing is 30 msec, when Ip has a maximum value of 70 kA. We analyzed the time window around 27 ms ∼ 31
ms, in which the line integrated density, Rout and Zmaxis are roughly constant. At this timing, the LCFS was
determined by the outboard limiter located at R = 585 mm. The red contour shows the shape of the LCFS.
Profiles of pressure, diamagnetic term (FF′ term), q and current density are also plotted.

Figure 4.2.3 shows the radial profiles of Te, ne, Vf and Vp in the edge region measured by the composite
probe. Error bars in the figures indicate the rms fluctuation amplitude of each parameter. Te shows roughly
constant value of ∼ 20 eV inside the LCFS to R ∼ 620 mm, 35 mm outside the limiter, and decreases in the
outer edge region. The fluctuation amplitude of Te is also constant at R < 620 mm. On the other hand, ne
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monotonically decreases with R across the LCFS, and the fluctuation amplitude also decreases. Vf and Vp show
constant values inside the LCFS, and increase almost monotonically toward R = 640 mm. This suggests the
presence of radial electric field outside the LCFS. For Vf and Vp, we plotted data obtained by different methods.
The good agreement in Vfs indicates the correctness of the measurements. The systematic deviation between
Vps is probably due to the large error in the determination of inflection point in V-I characteristics.

Figure 4.2.4 shows the time evolution of the power spectrum of Ṽf at R = 550 mm. Two types of coherent
fluctuation are observed during 27 ms ∼ 31 ms. One is the peaked power at about 10 kHz and the other
is that around 70 kHz. The former is accompanied by magnetic fluctuations and seems to be generated by
MHD instabilities. It can be seen that the fluctuation levels do not change significantly during 27 ms ∼ 31 ms,
indicating that the time window is appropriate. Figure 4.2.5 shows the contour of the time derivative of poloidal
magnetic signals dBθ/dt measured by poloidal coil arrays fixed at the wall of the vacuum vessel. This shows
that the MHD fluctuations of 10 kHz are large at the low field side, and the poloidal mode number is ∼ 2. On
the other hand, the sinusoidal pattern is not evident in the high field side, showing the characteristics of the
ballooning type fluctuation [70], where the fluctuation amplitudes are large at the outboard region and small at
the inboard region.

Figures 4.2.6 (a), (b) show the contour of power spectrum of Vf and Iis. An MHD peak at 10 kHz and a peak
around ∼ 70 kHz are observed around 590 mm, which is close to the LCFS position. Well outside of the LCFS,
the power spectrum does not show distinct frequency other than the 10 kHz peak, and decays smoothly (Figs.
4.2.6 (c), (d)). The ion saturation current Iis also shows a similar profile. The power of the MHD fluctuation of
Vf was distributed uniformly along R, while at the frequencies higher than 70 kHz the power outside the LCFS
is one order of magnitude smaller than that inside the LCFS.

In TST-2, the magnetic fluctuation level is significant in Ohmic discharges. Figures 4.2.7 (a), (b) show the
contour of power spectrum of Br and Bp. Br and Bp show similar spectra, and there is no specific peak other
than 10 kHz in the magnetic fluctuations. Figure 4.2.7 (c) compares the spectra of Vf and Br at R = 590 mm.
The absence of the peak at ∼ 70 kHz in Br agrees with the characteristic of drift wave. Figure 4.2.8 shows the
radial profile of the rms fluctuation levels of B̃r/BT , B̃p/BT and B̃t/BT at 10 kHz. Error bars in the figures
indicate the shot by shot scatter of each parameters. The fluctuation levels are B̃r/BT ∼ 10−2, B̃T/BT ∼ 10−3,
and these levels are one order greater than those of conventional tokamaks [71]. These levels are similar to
those observed in RFP plasmas [72]. The fluctuation levels are distributed relatively uniformly across the
LCFS, while those in conventional tokamaks decay outside the LCFS.
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Figure 4.2.1: Waveforms of an Ohmic discharge. Ip (a), loop voltage Vloop (b), neL measured by interferometers
(c) (d), Hα emission (e), AXUV signal (f), SBD signal (g), radial and vertical coordinates of the magnetic axis
Rmaxis (h) Zmaxis (i), radial distance between Rout and the outboard limiter Rgap, and radial distance between the
LCFS and the inboard limiter (dashed curve) (j) and Rout (k) are plotted.
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Figure 4.2.4: Time evolution of power spectrum of Ṽf measured by the Langmuir probe located at R = 550
mm. Spectrum is calculated using FFT with a time window of 0.5 msec.
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Figure 4.2.5: Locations of the magnetic pickup coils to measure the poloidal structures (a) and time evolution
of the inboard (b) and the outboard (c) magnetic fluctuations.
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Figure 4.2.6: Color contour plot of the power spectra of Iis (a) and Vf (b). MHD components at around 10 kHz
can be seen in the whole region, and a peak around 70 kHz is observed around R = 590 mm. Power spectra for
Iis (c) and Vf (d) at R = 590 mm (black) and R = 620 mm (red) are also plotted.
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4.3 Two dimensional turbulence measurement

Since the parallel correlation length is very long (as shown later), the spatial structure of the turbulence
can be approximated by a 2D structure with coordinates poloidal and radial. The electric field, which is an
important quantity in the electrostatic transport, is the gradient of the plasma potential. Since the distances
between the probe electrodes are sufficiently short, the gradient can be approximated by the difference of
measured potentials at different positions. Figure 4.3.1 shows an example of the phase difference between
Vf2 and Vf3 when the composite probe is rotated in the poloidal-toroidal plane. The phase difference at 100
kHz shows a clear sinusoidal curve. This result implies that there is no systematic time delay peculiar to each
electrode. When the probe is inserted to the plasma with the angle perpendicular to the flux surface, the poloidal
electric field fluctuation can be obtained as

Ẽθ = −(Vf2 − Vf3)/dθ23 , (4.3.1)

and the radial electric field as

Ẽr = −(Vf1 − (Vf2 + Vf3)/2))/dr − Ẽθ
dθ12 + dθ13

2dr
, (4.3.2)

where Vf1 is the Vf signal from radially protruding electrode 1 (see Fig. 3.3.3), dθ12 is poloidal distance between
the electrodes 1 and 2, dr is radial distance between electrode 1 and 2. The effect of temperature fluctuation to
Ṽf is neglected here. When the composite probe system is tilted against the plasma flux surface, Eqs. (4.3.1)
and (4.3.2) are not accurate because the tip locations are not orthogonal with respect to the the flux surface, and
some correction is needed.

As described in Sec. 2.2, the temporal and spatial structure of the turbulence can be represented by local
S (k, ω). For a given k, the gradient can be obtained by multiplying k. When we want to obtain k-space averaged
electric field for a given ω, we should calculate the average k for the ω. The relationship between the calculated
cross phase and the wavenumbers kr and k⊥ are given by the equation.

k · (r1 − r2) = s12 , k · (r2 − r3) = s23 , (4.3.3)

where s12 is the cross phase difference between Vf1 and Vf2, s23 is that of Vf2 and Vf3, and r is the location of
each electrode. When k‖ � kr, k⊥, these equations are expressed as

(
s12
s23

)
=

(
r1 − r2 x1 − x2 θ1 − θ2
r2 − r3 x2 − x3 θ2 − θ3

)  1 0
0 − sin p
0 cos p


(

kr

k⊥

)
, (4.3.4)

where p is the pitch angle of the magnetic field in x − θ plane in Fig. 4.3.2.
The wavenumbers kr, k⊥ can be calculated by applying inverse matrix of the right hand side of the equation.

The magnetic field pitch angle is p ∼ 20◦ around the LCFS at R ∼ 590 mm. Figure 4.3.3 shows the wavenumber
spectra of radial wavenumber kr and poloidal wavenumber kθ derived from the cross phase of Vfs. Here 200
ensembles are averaged. The dispersion relation clearly changes at 20 kHz. Phase velocity of kθ is ∼ 1000 m/s
at the frequency less than 20 kHz, and ∼ 4000 m/s at the frequencies higher than 20 kHz and both directions
are in the electron diamagnetic direction. Blue lines are drawn to pass the phase velocity of ω/k̄ at 100 kHz,
and red lines at 20 kHz, where k̄ is the mean wavenumber. The linear dispersion relation is obscured at the
frequencies higher than 150 kHz. The correlation length deduced from the broadening of kθ spectrum at 100
kHz is lcor ∼ 1/σk ∼ 5 cm. Figure 4.3.3 (a) and (c) show the radial wavenumber kr spectrum. The average kr

polarity (i.e., direction) at R = 560 mm is the opposite of that at R = 600 mm at the frequencies higher than 20
kHz, while the change is not so clear at the frequencies less than 20 kHz. We define the MHD fluctuations as
the fluctuations with frequencies less than 20 kHz, since the dispersion relation is clearly changed at 20 kHz as
shown in Fig. 4.3.3.

Figure 4.3.4 shows the reconstructed wavenumber profile of the floating potential at 20 kHz and 100 kHz.
The contour map is poloidally symmetric. This means that k̄θ is constant along the flux surface. Figure 4.3.5
shows the radial profiles of k̄⊥, k̄‖ and k̄r at 10 kHz and 100 kHz. Here, k̄‖ is derived using signals of Iis,
assuming structure of k is similar to those of Vf . k̄⊥ = −0.004 ± 0.004 mm−1, k̄‖ = 0 ± 0.04 mm−1 and
k̄r = 0.005± 0.005 mm−1 at 10 kHz regardless of R. On the other hand, at 100 kHz, k̄⊥ = −0.04± 0.01 mm−1 at
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R < 620 mm, while k̄⊥ = 0.03±0.01 mm−1 at R > 620 mm. k̄‖ is much smaller than k̄⊥, k̄‖ = 0.01±0.01 mm−1.
k̄r varies continuously with R, decreasing from k̄r = 0.01 ± 0.01 mm−1 at R = 580 mm to k̄r = −0.02 ± 0.01 at
R = 620 mm. These wavenumbers are calculated from the data Vf measured by the composite probe system.
The ± ranges represent the widths of the wavenumber spectrum, which are derived from the coherence of each
signal using the relation σ(ω) =

〈
(k̄ − k)2s(k, ω)

〉1/2
=

{
2(1 −Cxy(ω))

}1/2
/∆x in Eq. (2.2.13).
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Figure 4.3.1: Cross phase between Vf2 and Vf3. Different color curves in (a) represent the phases with different
rotation angle of the composite probe. (b) shows the cross phase at 100 kHz as a function of the rotation angle.
The red line shows the pitch angle of the magnetic field line.
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Figure 4.3.2: Schematic view of the coordinate and the locations of each electrode.
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Figure 4.3.3: Wavenumber spectrum of kr (a) and kθ (b) at R = 560 mm and kr (c) and kθ (d) at R = 600 mm.
These are derived from Vfs of the composite probe system. A clear difference between the dispersion relations
up to 20 kHz and that above 20 kHz can be seen. Blue lines show the average phase velocity at 100 kHz and
red lines show that at 20 kHz.
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Figure 4.3.5: Radial profiles of wavenumber k̄‖ (a), k̄⊥ (b) and k̄r (c) at 10 kHz calculated by the two point
correlation, and k̄‖ (d), k̄⊥ (e) and k̄r (f) at 100 kHz. In (c) and (f), the black symbols represent k̄r derived from
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scatter of k̄.
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4.4 Turbulent transport

In this section, we calculate the radial electrostatic particle flux, which is believed to be the dominant
particle transport route in conventional tokamaks. In evaluating the radial electrostatic particle transport due to
edge turbulence, we need to estimate the local radial velocity given by vr = Eθ/B, where Eθ is given by the
gradient of the static potential. In such a situation, the electrostatic particle flux is written as

Γr = 〈ñṽr〉 = 〈ñẼθ〉/B . (4.4.1)

Thus, in order to evaluate the flux, the coherence and phase angle between the measured ñ and Ẽθ must be
accurate, in addition to the amplitudes |ñ|, |Ẽθ|. Generally, these quantities are calculated from the data measured
by three nearby electrodes, but the phase calculated from nearby electrodes are affected by the wavenumber
structure. Thus, we need to compensate this effect.

Signals of Iis are used to evaluate ñ, ñ = (Ĩis1 + Ĩis2 + Ĩis3 + Ĩis4)/2eA × ( kBTe
mi

)−1/2 using Eq. (2.1.3). Since
the locations of Iis measurements are radially different from Eθ measurements, the phase difference of kr∆r is
compensated, where ∆r is the radial distance between the measurement points for Iiss and those for Vfs.

The Fourier transformed flux can be computed from the cross power between the density and electric
fluctuations, using〈

ñẼθ

〉
=

〈
ñikθṼ∗f

〉
δω = 〈ñ〉

〈
Ṽf

〉
k̄θ sin θñṼf

CñṼf
δω , (4.4.2)

where θñṼf
is the phase difference between ñ and Ṽf , CñṼf

is the cross coherence, δω is the resolution of the
frequency in Fourier transform. Figure 4.4.1 shows the profile of the particle flux Γr and each parameter in
the equation. Error bars are derived from the shot by shot scatter of k̄θ. The particle flux is outward over the
entire frequency range, and dominated by the low frequency components less than 20 kHz due to the larger
fluctuation amplitudes. The large cross phase between ñ and Ṽf also contributes to the large outward flux at the
low frequencies, as shown in sin θñṼf

in Figs. 4.4.1 (a), (b) and (c). However, around R = 580 mm , transport at
∼ 80 kHz increases. This corresponds to the power spectrum peak at 80 kHz around R = 580 mm, observed in
Fig. 4.2.6. The total particle flux shows a decreasing trend with radius, as shown in Fig. 4.4.2. This is because
the ñ and Ṽf fluctuation amplitudes also decrease with increasing radius.

We can estimate the radial diffusion coefficient from the particle flux and the density profile. The diffusion
coefficient is defined as

Dr = −Γr
1

dn/dx
. (4.4.3)

Using the obtained values, the coefficient is Dr = 5 × 1020/(1018/(2 × 10−2)) = 10 m2s−1 at R = 560 mm. On
the other hand, DBohm = kTe/16 eB = 10 m2 s−1, where Te = 20 eV and B = 0.12 T, and Dcl =

mekTe
e2B2 νei =

3.7 × 10−3 m2 s−1. Since Te is roughly constant in the region 560 mm < R < 620 mm, DBohm should be
proportional to R, while experimental Dr (Eq. (4.4.3)) is decreasing monotonically against R, unlike DBohm.
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4.5 Measurement of plasma flow

As mentioned in Sec. 3.3.1, we can measure the flow of plasma by using the signals of ion saturation
current Iis measured by the electrodes located at the side of the composite probe. When the plasma flow is
divided by material into the upstream and downstream regions, the upstream Iis becomes greater than that in
the downstream side. The following shows the relationship between the ion saturation current and the plasma
flow velocity [73].

Mi =
ud

Cs
=

ud
√

kB(ZiTe/mi)
,

jup

jdown
= exp(Mi/Mc) , (4.5.1)

where Mi is ion mach number, the ratio between plasma flow velocity ud and ion sound speed Cs. jup and jdown

represent the ion saturation currents measured by the electrodes at the upstream and downstream sides of the
plasma flow. Figure 4.5.1 shows the time averaged profile of the poloidal flow and the toroidal flow.

Because the electrodes of the mach probe are separated by 20 mm, each electrode measures slightly different
location from the center of the probe head. When the radial gradient of the density at the plasma edge is large,
this difference cannot be ignored. We corrected this effect by interpolating the density at the location of the
center of the front surface of the composite probe system.
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Figure 4.5.1: 2D profile of the toroidal flow (a) and the poloidal flow (b) measured by the mach probes of the
composite probe.

4.6 Results from the high field side probe

As we mentioned in Sec.3.3.5, we installed a Langmuir probe at the high field side wall, as shown in Fig.
3.3.10. Figure 4.6.1 shows Vf of the composite probe system (located at the low field side) and that of the high
field side (HFS) probe. At ∼ 30 ms, we moved the plasma inward so that the electrode of HFS probe becomes
located on the same flux surface as the electrodes of the composite probe system. The power spectrum of
the data obtained by the HFS is about one order of magnitude smaller than that obtained by the composite
probe located at the low field side (LFS) (Fig. 4.6.1 (b)). The cross coherence is less than 0.2 (Fig. 4.6.1
(c)). The smaller HFS amplitude seems to be consistent with the nature of HFS good curvature region, where
instabilities tend to be suppressed [74]. Since the magnetic field line connection length between the HFS and
the LFS regions is very long, the poor coherence is reasonable. The finite phase difference between the HFS and
the LFS indicates the time delay due to the propagation of the fluctuation (FIg. 4.6.1 (d)). This also supports
the assumption that the magnetic field line connecting the HFS and the LFS is very long.
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Figure 4.6.1: Time evolutions of Vfs of the composite probe system (black) and the high field side probe (red)
(a), power spectra of each signal (b), coherence (c) and cross phase (d) of the two signals.

4.7 Magnetic field fluctuation

Plasmas in the Ohmic discharges show coherent oscillation at 10 kHz in spatially wide region. Magnetic
pickup coils at the wall (Fig. 4.2.5) show coherent structure at the low field side, and the poloidal mode number
is approximately 2. The magnetic fluctuations have a long correlation length along the field line.

Figure 4.7.1 shows the correlation between the signals of the poloidal pickup coil array and the center
pickup coil of the array. We calculated the poloidal correlation lengths by fitting a correlation profile with
exponential dependences and gaussian dependences (Fig. 4.7.1 and Figs. 4.7.2 (b), (c)). The poloidal and
toroidal correlation lengths lpol lt are defined by fitting the following functions

exp
(
−

√
(r−r0)2+(z−z0)2

lpol

)
(exponential fitting)

exp
(
−

(r−r0)2+(z−z0)2

l2pol

)
(gaussian fitting) ,

(4.7.1)

exp
(
−
δlt
lt

)
(exponential fitting)

exp
(
−
δlt
lt

)2
(gaussian fitting) ,

(4.7.2)

where r0, z0 represent the location of the reference pick up coil and δlt is the toroidal distance between the
central pickup coil and each pickup coil. At 10 kHz, the toroidal correlation length lt has the maximum of
about 5 m, which is about 20 times longer than that at 100 kHz. Poloidal correlation length lpol is 3.5 m at
10 kHz, and less than 0.05 m at 100 kHz (Fig. 4.7.3). RR diffusion coefficient Dst can be estimated by using
the correlation length and B̃r/Bt shown in Fig. 4.2.8. The step size is ∆r = B̃r/BT × l‖ = 6 × 10−2 m, and
the time interval is τ ∼ 10−4 sec (Eq.(1.8.15)). Here, τ is taken as τ = l‖/vTi , considering particle flux is
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determined by movements of ion. The calculated diffusion coefficient is Dst = 10 m2s−1. This is comparable
to the electrostatic diffusion coefficient Dr and DBohm evaluated in Sec. 4.4. It should be noted that Dst is
estimated on the assumption that magnetic fluctuations are fully stochastic, thus the actual value can be smaller.
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Figure 4.7.1: Coherence of poloidal pickup coil array signals as a function of poloidal angle distance. Coher-
ences at 10 - 70 kHz are shown. Black and blue curves represent fittings to exponential and gaussian functions,
respectively.
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Figure 4.7.2: Toroidal correlation length of magnetic fluctuation signals vs frequency derived from the toroidal
magnetic pickup array (a), and the correlation profile at 10 kHz (b) and 30 kHz (c). Black and red curves in
(a) represent the results obtained by fitting to exponential and gaussian dependences, respectively. Black and
purple curves in (b) and (c) represent the results obtained by fitting to exponential and gaussian dependences,
respectively.
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Figure 4.7.3: Poloidal correlation length of magnetic fluctuation signals vs frequency derived from the poloidal
magnetic pickup coil array by using gaussian fitting.
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4.8 Parallel correlation length

Since particles move freely and quickly along a magnetic field line, fluctuations along a field line tend to
have a long correlation length and a long wavelength. Therefore, it is useful to take coordinates with respect to
the local magnetic field direction. Furthermore, it is expected that the parallel correlation length is much longer
than the perpendicular ones and parallel wavenumber is much smaller than the perpendicular ones. Figure 4.8.1
shows a camera image of the plasma when the composite probe system (probe 2) and probe 3 lie on the same
magnetic field line. The bright spots near the center and the bottom represent the emissions from the composite
probe system and probe 3. The bright curve passing the two spots represents the magnetic field line. When
the bright curve is connecting the two probes, the correlation between the two probes becomes high. Figure
4.8.2 shows that Vfs are strongly correlated when the two probes are on the same magnetic field line. The cross
spectrum of Ṽfs of the toroidally and poloidally separated two probes (probe 2 and probe 3) were calculated.
In this experiment, the location of probe 2 was fixed at R=550 mm and Z=0 mm, and the location of probe 3 is
scanned to find the location of maximum correlation. Figures 4.8.3 (a), (b) show the squared cross-coherence
and cross-phase between the floating potential fluctuations. At other various locations of probe 3, the coherence
is high (∼ 0.7) at 10 kHz, but less than 0.2 in other frequencies. Figure 4.8.3 (c) shows the poloidal profile of
squared cross-coherence of Ṽfs at 60 kHz measured with probe 2 and probe 3. The peaked profile of the
squared cross-coherence suggests that these two probes are connected by the same magnetic field line when the
coherence shows a maximum.

Figure 4.8.1: Visible CCD camera image of the plasma. The bright spots near the center and the bottom
represent the emissions from the composite probe system and the probe 3. The bright curve passing the two
spots represents the magnetic field line.

4.8.1 Reconstruction of the spatial structure of parallel correlation

Figure 4.8.4 (a) shows the magnetic field line in R − Z plane reconstructed from the signals measured by
the 3 axis magnetic pickup coil. Equations

dR = dBr/Bφ × dφ, dZ = dBz/Bφ × dφ , (4.8.1)

are solved for the reconstruction. Figure 4.8.4 (b) shows the trace (Poincare plot) of the line starting from probe
2 during the time period of 28 - 28.1 ms. As shown in Fig. 4.8.4 (b), the trajectory of the field line makes a
circular motion with a diameter of ∼ 3 cm in the plane (i.e., poloidal cross section). This motion would induce
the same motion of the spatial structure of the turbulence which is elongated along the magnetic field line.

Here, we formulate the trajectory of the field line and prove that the linear relationship dR = dBr/Bφ ×
dφ, dZ = dBz/Bφ × dφ are satisfied under a certain condition. In the following we adopt coordinates perpen-
dicular (denoted by subscript ⊥) and radial (denoted by subscript r) instead of Z and R. The perpendicular and
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Figure 4.8.2: Time evolutions of Vfs measured by probe 2 (black) and probe 3 (red) (a). Expanded view (27.2
- 27.6 ms) of (a) is shown in (b).
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frequency [kHz]

Figure 4.8.3: Squared coherence (a) and phase (b) of Ṽfs measured with probe2 and probe3, and 2-D profile of
the squared cross-coherence in R − Z plane at 60 kHz (c). The profile was obtained by scanning the locations
of probe 3 under the condition that the location of probe 2 is fixed at R = 550 mm.
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the radial displacements of the field line trajectory are expressed by(
δl⊥
δlr

)
=


∫ l‖

0
δB⊥
B0

dl‖∫ l‖
0

δBr
B0

dl‖

 . (4.8.2)

Assuming that the magnetic fluctuations are represented by a single mode with a poloidal and a toroidal mode
numbers m and n, magnetic fluctuations (i.e., δB⊥ δBr) are proportional to ei(mθ−nφ). Then Eq. (4.8.2) is
rewritten as(

δl⊥
δlr

)
=


∫ l‖

0
B̃⊥
B0

ei(mθ−nφ)dl‖∫ l‖
0

B̃r
B0

ei(mθ−nφ)dl‖

 , (4.8.3)

where δB⊥, δBr are B̃⊥ei(mθ−nφ) and B̃rei(mθ−nφ). The integral part of the equation becomes∫ l‖

0
ei(mθ−nφ)dl‖ =

∫ l‖

0
ei~k·~ldl =

∫ l‖

0
eik‖l‖dl‖ = ei(mθ0−nφ0) eik‖l‖ − 1

k‖
. (4.8.4)

Here we assume that δB� B0 and the integral path is taken along the non-perturbed path. When k‖l‖ � 1,(
δl⊥
δlr

)
≈

 B⊥
B0

l‖
Br
B0

l‖

 . (4.8.5)

Thus, the condition k‖l‖ � 1 must be satisfied to use the linear relationship.
Before analyzing the data of probe 2 and 3, here, we derive k‖ using only the signals of probe 2 to show that

the above condition is well satisfied. In order to derive k‖ more accurately than using a single shot with fixed
electrodes, we used the data with multiple shots with different angles of the electrodes against the magnetic
field line. Figure 4.8.5 shows the phase difference between the two electrodes at the MHD frequency of 10 kHz
as a function of the rotation angle of the composite probe system. This figure shows that the phase difference
between the two electrodes is almost 0 at 10 kHz, when the electrodes are aligned along the field line. This
indicates k̄ of MHD fluctuation is almost perpendicular to the magnetic field at ∼ 10 kHz, and these data imply
k̄‖ = 0.2 ± 0.6 m−1 at R = 580 mm, and k‖ = 0.1 ± 0.1 m−1 at R = 570 mm. This satisfies the condition of
k‖l‖ � 1 for the present combination (probe 2 and probe 3 with l‖ ∼ 1 m). Figure 4.8.6 shows the frequency
dependences of k̄⊥ and k̄‖, which are obtained by the above mentioned method.

If the wave structure is completely frozen to the magnetic field line, it can be considered that the correlation
distribution in R − Z plane is oscillating with a magnetic field line. As shown in Fig. 4.8.7, this oscillation is
observed as the oscillation of the phase and coherence. Figure 4.8.8 illustrates the situation, where the structure
of the correlation C(ω, dR, dZ, l‖) is oscillating along with the magnetic field line.

When the wavenumber spectrum of the turbulence S (ω,k) is independent in each direction of k, it can be
decomposed as

S (k) = Sω(k‖) × Sω(k⊥) × Sω(kr) . (4.8.6)

In addition, we assume that each component is expressed with a gaussian distribution,

Sω ∝ exp
(
−

(k − k̄)2

∆k2

)
. (4.8.7)

Then cross spectrum can be expressed by the spectrum using Wiener-Khinchin theorem, and in the present
case, it becomes

Cω(x) =

∫ ∞

−∞

exp
(
−

(k − k̄)2

∆k2

)
eikxdk ∝ exp

(
−

∆k2x2

4

)
eik̄x . (4.8.8)

Thus, the two dimensional cross spectrum in R − Z plane is

Cω(dR, dZ) ∝ exp
(
−

∆k2
r dR2

4

)
× exp

(
−

∆k2
⊥dZ2

4

)
. (4.8.9)

55



Z 
[m

]

0.1   0.2   0.3   0.4   0.5   0.6
R [m]

0.4  

0.2  

0.0  

-0.2  

-0.4  

(a)

dR [m]

dZ

 [m
]

0.01  

0.00  

-0.01  

-0.02  

-0.03  

-0.01   0.00   0.01   0.02   0.03   0.04
-0.04  

(b)

Figure 4.8.4: Magnetic field line reconstructed from dR = dBr/Bφ × dφ, dZ = dBz/Bφ × dφ. (a) shows the field
line projected on R−Z plane, and (b) shows the trace (Poincare plot) of the line on the plane of probe 3 starting
from probe 2 during the time period of 28 - 28.1 ms.

Thus, the correlation length in R − Z plane becomes lr = 2
∆kr

, l⊥ = 2
∆k⊥

. When the structure fluctuates along
with the magnetic field line, this fluctuation can be detected as the fluctuation of coherence. When we take a
sufficiently short time window and calculate the coherence, we will obtain a single point of Eq. 4.8.9 for the
corresponding set of (dR, dZ). Thus, the 2D structure Cω(dR, dZ) can be reconstructed by mapping the time
evolution of coherence into corresponding magnetic field location in R-Z plane.

Figure 4.8.9 shows the time evolution of poloidal and radial magnetic fluctuations expressed by dR and
dZ and the mapping to the R-Z plane. In the reconstruction, we divided the signals of Vfs into 0.02 ms time
windows during 26 ms to 30 ms, and mapped the coherence into the reconstructed magnetic field location. Then
the R-Z plane is gridded by 5 mm, and the signals (i.e., cross spectra) in the same gridded area are ensemble
averaged. Figure 4.8.10 shows the schematic illustration of the coherence reconstruction procedures. Each
circle in Fig. 4.8.10 (a) corresponds to each divided signal in Fig. 4.8.10 (b), and signals in the same grid are
used for ensemble averaging to derive a cross spectrum in Eq. 2.2.3. Thus, the cross spectrum of each grid
becomes

S i j(ω) =
1

Ni j

∑
xi<x<xi+1

y j<y<y j+1

Ṽf2,x,y(ω)Ṽ∗f3,x,y(ω) , (4.8.10)

where Ṽf,x,y is the Fourier transformed floating potential when the reconstructed field line is located at x and y
in the R-Z plane. Ni j is the number of the ensembles in each grid. Ni j can be different, so that the statistical
errors can also be different, but depends on the grid. Note that the we adopt frequency domain-space domain
expression with coordinates (ω, dR, dZ) instead of fully Fourier transformed coordinates. Therefore S in Eq.
(4.8.10) is a complex number (i.e., cross spectrum) having amplitude (i.e., cross coherence) and phase (i.e.,
cross phase) information, which are shown in later.

The maps were made for five discharges, and the maps are merged so that the peaks of the maps have the
same relative coordinate (i.e., dR = 0, dZ = 0) with respect to the field line. Figure 4.8.11 shows the number of
ensembles for each location, and the errors get greater when the ensemble number is small. The grids with less
than 10 ensembles are excluded as unreliable. Figure 4.8.12 shows the reconstructed map of cross coherence.

Assuming that the turbulence with the frequency above that of the MHD fluctuation is frozen to the magnetic
field line, the reconstructed profile of coherence between probe 2 and probe 3 is fitted with a Gaussian function
as shown in Fig. 4.8.13. Decay lengths at 50 kHz are δR = 30 mm and δZ = 12 mm. These lengths agree
roughly with the correlation length derived from the dispersion relation of 1/σkθ ∼ 50 mm in Fig. 4.3.3. This
supports the assumption that the turbulent structure is frozen on a magnetic field line, and the (parallel) axis of
its spatial structure is tilted when the field line is tilted by the MHD fluctuation. At the peak, the coherence has
the maximum of 0.7, and the phase difference is less than 0.1π rad up to 100 kHz.
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Figure 4.8.5: Phase differences between the two electrodes in the composite probe (probe 2) at the MHD
frequency of 10 kHz (black asterisks) as a function of the angle between the field line and (the line passing
through) the two electrodes at R = 580 mm (a), 570 mm (b). Fitted curves are shown in blue and the red vertical
lines indicate the pitch angle, where the two electrodes are aligned along the field line.

Figure 4.8.14 shows the reconstructed maps of phase differences of Vf s between probe 2 and probe 3. From
these measurements, we can estimate the parallel wavenumber k‖ and correlation length lcor‖ in addition to the
two point correlation method used in Sec 4.3. The location of the maximum coherence is considered to be
the closest location to the magnetic field line, because the location has the smallest phase difference as shown
in Fig. 4.8.14. The phase difference ∆θpeak < 0.1π rad at 100 kHz corresponds to |k‖100| < 10−4 mm−1 and
parallel velocity |v‖| > 106 m/s . Note that the Alfven speed is approximately vA ∼ 108 m/s, the electron
thermal speed is vth,e ∼ 2 × 106 m/s, and ion thermal speed is vth,i ∼ 4 × 104 m/s. When k‖l‖ is negligible, the
structure of the phase reflects k⊥ (see Fig. 4.8.14). A velocity much slower than the Alfven velocity and much
faster than the ion thermal velocity is consistent with the standard drift wave picture, where the electrostatic
charge separation due to the different behaviors of electrons and ions is important. A velocity comparable to
the electron thermal velocity is consistent with that the Maxwell’s relation (i.e., strong in-phase correlation
between density and potential fluctuations) is not satisfied. These comparisons imply that the observed parallel
velocity |v‖| > 106 m/s is consistent with the drift wave picture.

The correlation drop along the field line has the information on the parallel correlation length. At 50

kHz, correlation peak has 0.7 and drops below 0.1 at 200 kHz. At 50 kHz, σk =

√
〈(k − k)2S (k, ω)〉 =

0.9 m−1 and the correlation length becomes1 1/σk = 1.1 m. Here, σk is derived from the the relation σ(ω) =〈
(k̄ − k)2s(k, ω)

〉1/2
=

{
2(1 −Cxy(ω))

}1/2
/∆x (Eq. (2.2.13)).

Figure 4.8.15 (a) shows the enlarged view of the phase difference at 50 kHz shown in Fig. 4.8.14 (a). In
Fig. 4.8.15 (b) we used this phase difference to calculate the wavenumbers kr ∼ 0.01 mm−1 and k⊥ ∼ −0.01
mm−1. Figures 4.8.15 (c) and (d) show kr and k⊥ spectra derived from Vfs in probe 2. The peak wavenumbers
in Figs. 4.8.15 (c) and (d) are kr ∼ 0.01 mm−1, k⊥ ∼ −0.01 mm−1, which agree with those shown in Fig. 4.8.15
(b). Figures 4.8.15 (c) and (d) show the widths σkr ∼ σk⊥ ∼ 0.05 mm−1. This leads to the correlation lengths
of 1/σkr = 1/σk⊥ = 20 mm. These lengths roughly agree with the decay lengths shown in Fig. 4.8.13.
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Figure 4.8.6: The frequency dependence of wavenumbers k⊥ and k‖ at R = 570 mm. Here wavenumbers are
derived from the fitting curves in Fig. 4.8.5.
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Figure 4.8.7: Time evolutions of cross-coherence (a) and cross-phase (b) of Ṽfs measured by probe 2 and probe
3 at 80 kHz. Black curves show the case when an electrode in probe 2 and probe 3 is analyzed and the red
curves show the case when another electrode, which is poloidally 5 mm apart from the first electrode in probe
2, is analyzed.
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Figure 4.8.8: Schematic view of the contours of correlation C(dR, dZ) at two poloidal cross sections.
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Figure 4.8.9: Time evolutions of poloidal (black) and radial (purple) magnetic fluctuations measured by the
composite probe system (a) and the trajectory in R-Z plane (b). Here, R and Z is calculated by Eq. (4.8.1).
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Figure 4.8.10: Schematic view of the mapping of the long range correlation of probe 2 and probe3. The
reconstructed magnetic field line is shown in a solid curve in (a). Each open circle has an analysis results derived
from the 0.02 ms time window shown in (b). The same colors in both figures represent the correspondence
between the data. The data in the same grid are ensemble averaged to calculate the correlation.
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Figure 4.8.11: 2D-map (in dR-dZ plane) of the number of ensemble Ni j for each location.
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Figure 4.8.12: 2D-map (in dR-dZ plane) of the cross-coherence of Vf s measured by probe 2 and probe 3. Maps
for 50 kHz (a), 100 kHz (b), 150 kHz (c) are plotted.
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widths of the Gaussian functions are δR = 30 mm and δZ = 12 mm.
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Figure 4.8.14: Comparison of phase differences of Vf s measured by probe 2 and probe 3. 2D maps for 50 kHz
(a), 100 kHz (b), 150 kHz (c) are plotted. Red asterisks indicate the location of the highest correlation.
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from linear fitting of the long distance correlation (b) and wavenumber spectra of kr (c) and k⊥ (d) derived from
the two point correlation of electrodes in probe 2. k⊥s and krs calculated by both methods roughly agreed.
Each symbol in (b) represents the linear fitting of each coordinate in (a), and each error bar corresponds to the
standard deviation of each linear fitting. The black, red and blue curves in (c) represent krs derived from Vf1
and Vf2, from Vf1 and Vf3, from Vf1 and Vf at the side electrode. The black and red curves represent k⊥s derived
from Vf2 and Vf3, and from Vfs at the side electrodes.
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4.9 Summary of the analysis results

In this section, we summarize the analysis results. We have investigated the structure of edge plasma
turbulence of TST-2 using Langmuir probes, and magnetic coils. The large amplitude fluctuations of Vf , Te, ne

and B are observed at 10 kHz. The amplitude of magnetic field fluctuation is B̃r/BT = 10−2. The fluctuation up
to 20 kHz shows a dispersion relation clearly different from that at higher frequencies, and we call this MHD
type fluctuation. Figures 4.3.5, 4.8.6 show k‖ of MHD type fluctuation is very small compared to k⊥, showing
|k‖| < 10−4 mm−1 and k⊥ = −0.004 ± 0.001 mm−1. The following table (Table 4.9.1) shows the obtained
parameters of k⊥, k‖, kr, σk⊥ , σk‖ and σkr at 10 kHz and 100 kHz at R = 560 mm.

k⊥ k‖ kr σk⊥ σk‖ σkr

10 kHz -0.004 mm−1 0 mm−1 0.005 mm−1 0.004 mm−1 0.004 mm−1 0.005 mm−1

100 kHz -0.04 mm−1 0.01 mm−1 0.01mm−1 0.01mm−1 0.01mm−1 0.01mm−1

Table 4.9.1: k⊥, k‖, kr, σk⊥ , σk‖ and σkr at 10 kHz and 100 kHz at R = 560 mm.

Electrostatic particle flux Γr is evaluated from 〈δnδEθ〉/B. Γr is dominated by MHD type fluctuation, and
the calculated diffusion coefficient is 10 m2s−1 at R = 560 mm. This value is comparable to DBohm.

The toroidal correlation length of MHD fluctuation is about 5 m and the poloidal correlation length is 3.5 m.
RR diffusion coefficient is evaluated as Dst = 10 m2s−1.

The cross coherence of Ṽfs of the two probes separated by about 1 m along a field line shows a high
correlation of 0.7. Both correlation and cross phase oscillate at 10 kHz, and amplitude modulation of Ṽf
indicates that turbulence structure is frozen to the magnetic field line and oscillates in the poloidal cross section
with the MHD fluctuation. We reconstructed the spatial structure of turbulence by tracing the trajectory of the
field line. The profile of the coherence at 50 kHz shows decay lengths δR = 30 mm and δZ = 12 mm. These
roughly agree with the result of σk⊥ ∼ σkr ∼ 0.05 mm−1, which are the spectral widths of wavenumber at 50
kHz estimated by two point correlation analysis.
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4.10 Discussion

In order to understand the characteristics of edge turbulence in TST-2, we will discuss the following five
issues.

Section 4.10.1. Comparison between TST-2 and other devices : Since TST-2 has a strong MHD fluctuation
at 0-20 kHz, edge turbulence characteristics are different from those in conventional tokamaks. However, it
also has similarities in the fluctuation at the frequency range of 20-150 kHz. We will compare the structures of
turbulence in different devices.

Section 4.10.2. Radial profile of fluctuation : The radial profile of edge turbulence in TST-2 is summarized
here. The reason why the turbulence levels of T̃e/Te, ñe/ne, eṼp/kBTe and B̃r/BT are different from those in
conventional tokamaks is discussed.

Section 4.10.3. Particle flux : The radial particle transport due to edge turbulence is evaluated here.
Section 4.10.4. Derivation of k‖, l‖ and v‖ : k‖, l‖ and v‖ are obtained by three different ways in TST-2.

Advantages and disadvantages of each method are presented.
Section 4.10.5. Mode structure of MHD fluctuation : A global MHD fluctuation with poloidal mode number

m ∼ 2 and toroidal mode number n ∼ 1 is observed in TST-2. The peeling ballooning mode is the most probable
candidate for the fluctuation, and the reason is presented here.

Here, sections 4.10.1. -4.10.4. are related to the four objectives presented in section 1.10. The second
objective: clarification of the spatial dependence of turbulence, is separated into several parts, that is radial
profile (section 4.10.2) and mode structure (section 4.10.4).

4.10.1 Comparison between TST-2 and other devices

In this section, we will compare the difference of the edge turbulence characteristics between conventional
tokamaks, STs, and RFP devices. In conventional tokamaks, drift waves play major part in density and potential
fluctuations at the plasma edge [14]. Typical radial profiles of edge turbulence are shown in Fig. 1.9.1. In TST-
2, the relative plasma potential fluctuation, density and magnetic fluctuation levels inside the LCFS are much
greater than those in conventional tokamaks.

Several experiments in conventional tokamaks show that there are clear differences in the features of turbu-
lence between those inside the LCFS and those in far SOL region. One of the clear differences is the poloidal
phase velocity of fluctuation. In conventional tokamaks, the phase velocity generally changes its sign from
the electron diamagnetic drift direction inside the LCFS to the ion diamagnetic drift direction in the SOL [28].
This trend is also observed in RFP plasmas, which have larger magnetic fluctuations at the edge [75]. This
change reflects the Doppler shift profile affected by the velocity shear layer just inside the LCFS [29]. In linear
theories, drift waves can be divided into two different modes. One is the ion temperature gradient mode (ITG),
which propagates in the ion diamagnetic direction with drift velocity vdi = Ti/eBT Ln, and the other is electron
temperature gradient mode (ETG), which propagates in the electron diamagnetic direction with drift velocity
vde = Te/eBT Ln, where Ln is the density gradient at the plasma edge. Unfortunately, it is not obvious which
mode is dominant in tokamak plasmas, since fluctuation does not necessarily follow the dispersion relation of
each mode. Some simulations suggest the ion temperature gradient mode plays major role in turbulent transport
inside the LCFS [4].

In TST-2, the experimental dispersion relation of potential fluctuation can be divided in two parts as shown
in Fig. 4.3.3. One is the fluctuation at the frequency range of 0 ∼ 20 kHz, and the other is the fluctuation at 20
∼ 150 kHz. The low frequency part can be considered as MHD type fluctuation, since the coherence between
magnetic fluctuation and floating potential is high, and the poloidal wavenumber is small.

The fluctuation at 20 ∼ 150 kHz shows a phase velocity of about 4000 m/s inside the LCFS in the electron
diamagnetic direction, and propagates in the ion diamagnetic direction in the far SOL region as shown in
Fig. 4.3.5 (e). This profile is consistent with the drift wave profile in conventional tokamaks. Thus, the
fluctuations at 20 ∼ 150 kHz are probably the drift wave turbulence. The flow velocity derived from E × B
flow is Er

BT
∼ 6000 m/s inside the LCFS. The phase velocity of Ṽf is 4000 m/s, and the electron drift velocity is

vde ∼ −1500 m/s. These values satisfy the condition of

Er

BT
+ vde ∼ vph, (4.10.1)
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where vph is the phase velocity of the fluctuation in the laboratory frame. Thus, Doppler shift of the ETG mode
by the flow shear can account for the phase velocity inside the LCFS.

The parameters of edge plasma inside the LCFS in TST-2 is summarized as follows.

Magnetic field 0.12 T
Electron temperature 20 eV

Electron density 6 × 1019m−3

Gradient scale length 0.1 m
Drift velocity vde in static frame -1500 m/s

Wavenumber k⊥ 2-20 m−1

Er/BT 6000 m/s
Vp from mach probe 10000 m/s
Vt from mach probe -10000 m/s

Phase velocity at 0-20 kHz 1000 m/s
Phase velocity at 20-100 kHz 4000 m/s

Table 4.10.1: The parameters of edge plasma inside the LCFS in TST-2.

When we assume that the plasma mean flow driven by E ×B causes Doppler shift of the fluctuation, the
relation between the frequency of fluctuation in laboratory frame ωL, the frequency of fluctuation in stationary
frame ω0 and the mean flow becomes as follows using the variables in Table 4.10.1.

(ωL − ω0)/k⊥ = Vp cosα + Vt sinα , (4.10.2)

where the toroidal rotational velocity Vt is the order of ∼ −10000 m/s as shown in Fig. 4.5.1 (a), the poloidal
phase velocity is also Vp ∼ 10000 m/s and α is the magnetic field angle of ∼ 20◦. k‖ is approximated as 0. The
right hand side becomes ∼ 6000 m/s here, and this is consistent with E ×B velocity of Er/BT . When ω0 is
taken as the ETG mode drift wave, ω0/k⊥ = vde and ωL/k⊥ becomes the phase velocity at 20-100 kHz, and the
left hand side becomes ∼ 5500 m/s. Therefore, the Doppler shift is considered to be caused by perpendicular
flow measured by the mach probe.

In TST-2, the edge turbulence at 0-20 kHz does not change the propagation direction. Since the MHD
fluctuation has a long correlation lengths, it is a global mode. Therefore, it is reasonable that the global structure
(i.e., large scale structure) tends to show a rigid body rotation.

4.10.2 Radial profile of fluctuation

Figure 4.10.1 shows the radial distribution of the relative rms fluctuation levels for electron temperature
T̃e/Te, density ñe/ne, potential eṼp/kTe and radial magnetic field B̃r/BT in TST-2. Solid curves are the fitted
cubic functions obtained by a least square method. In the calculation we include only the frequency components
from 0.5 kHz (which is limited by the time window of 2 ms) to 200 kHz (which is the upper limit in the T̃e

and ñe measurements using V-I curves). eṼp/kTe is huge at the far SOL region (∼ 650 mm). The Boltzmann
relationship is roughly satisfied inside the LCFS (ñe/ne = eṼp/kBTe ). However, the fluctuation levels of
potential rise significantly in the far edge region (R > 600 mm). The profile of ñe/ne has a similar radial shape
as that of of B̃r/BT , but its level is much smaller than ñe/ne. T̃e/Te profile shows smaller values than ñe/ne and
eṼp/kTe inside the LCFS, and its fluctuation level becomes comparable to ñe/ne outside the LCFS. The radial
distribution of each parameter is quite different from that of conventional tokamaks (Fig. 1.9.1). ñe/ne increases
from about 0.05 inside the LCFS to about 0.6 in the far SOL region in conventional tokamaks, whereas in TST-
2, ñe/ne ∼ 0.5 inside the LCFS is observed. The large differences in the profiles and levels between those in
TST-2 and conventional tokamaks can probably be attributed to the large MHD fluctuation in TST-2. Therefore,
we should discuss the MHD fluctuations and the high frequency fluctuations (i.e., drift waves) separately. In
the following firstly, we discuss the high frequency fluctuations. Secondly we discuss the MHD fluctuations.

In conventional tokamaks, eṼp/kBTe has a peak just inside the LCFS, while ñe/ne and T̃e/Te are constantly
increasing across LCFS as shown in Fig. 1.9.1. This peak of Ṽp in conventional tokamaks indicates that energy
flux due to electrostatic fluctuation has a peak just inside the LCFS and decreases towards the plasma core. The
fluctuation peak inside the LCFS arises from the steep gradient of pressure profile. The resultant large diffusion
coefficient is due to small electron-ion mean free path which comes from the low edge temperature [76].
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Figure 4.10.1: Relative fluctuation levels of density (red), potential (blue), temperature (black) and magnetic
field (sky blue) in TST-2.

In TST-2, Ṽf of 20-150 kHz has a peak around the LCFS, as shown in Fig. 4.10.2. Figure 4.10.2 shows
the two dimensional power spectrum of Ṽf and Ĩis at the frequency of 20 kHz and 100 kHz. Both Vf and Iis
monotonically decrease in radial direction at 20 kHz. However, the amplitude of Ṽf at 100 kHz has its peak
around the LCFS at R = 585 mm.

This peak is seen only in Ṽf profile, and not observed in ñe and B̃r profile. These features in TST-2 are
similar to those in conventional tokamaks. The result supports the previous speculation that the fluctuation of
20-150 kHz in TST-2 is the drift wave type (Sec. 4.10.1).

In conventional tokamaks, T̃e/Te and ñe/ne increase monotonically with the radius at the edge. In the far
SOL region, density and temperature fluctuation levels increase due to the presence of a bursty phenomenon
called a plasma blob [76]. A blob is an intermittent structure, spatially separated from the core plasma. It
propagates across the SOL toward the outer wall, causing energy and particle fluxes. The plasma blob is
considered to be one of the main causes of the density fluctuation outside the LCFS [77]. The increase of
T̃e/Te and ñe/ne is also observed in RFP devices, which has larger magnetic fluctuation levels than those of
tokamaks. Difference is seen in the relative fluctuation levels. In RFP plasma, temperature fluctuation shows
T̃e/Te ∼ 0.5ñe/ne, while T̃e/Te ∼ (0.3 − 0.4)ñe/ne is satisfied in conventional tokamaks [78].

In TST-2, profile of T̃e/Te increases monotonically like conventional tokamaks and RFPs. However, ñe/ne

does not show an increasing trend. The reason can be interpreted as follows. In far SOL region at ∼ 650 mm,
the wall of the vacuum vessel is very close to the Langmuir probes. Thus, the structure of the vacuum vessel
like limbs can block the plasma blob, and this effect reduces the amplitude of density fluctuation.

The relative amplitude of the magnetic field B̃r/BT decreases monotonically in conventional tokamaks, and
also in RFP plasmas, the relative amplitude of the magnetic field decreases constantly at the edge [72]. RFP
plasmas have strong magnetic field fluctuations of B̃r/BT ∼ 10−2, and the power spectra of B̃r are concentrated
in the frequency range below 20 kHz, indicating the presence of global fluctuation. This feature is similar to
that of TST-2 , and consistent to the fact that the fluctuation of B̃r/BT mainly consists of global MHD modes.
Global MHD modes often form a region called a magnetic island, a closed field line region located around
the corresponding resonant rational surface, where the safety factor becomes resonant (i.e., q = m/n) to the
mode numbers m, n of the mode [79]. Figure 4.10.3 shows the phase differences between B̃r and ñe, B̃r and
T̃e and B̃r and B̃θ at R = 560 mm. When the fluctuation is an ideal MHD mode, the fluctuation is caused by
(a rotation of) a deformed flux surface and the parameters which are constant on a flux surface should show
in-phase fluctuations. Note that Br is a derivative (i.e. inclination) of the flux surface, and it should show a 90◦
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Figure 4.10.2: Two dimensional power spectra of Vf (a) and Iis (b) at 20 kHz (top) and 100 kHz (bottom).

degree phase difference from other parameters. As shown in Fig. 4.10.3, B̃θ, T̃e and ñe are shifted by almost
90◦, respectively. These results suggest that the MHD fluctuations are dominated by ideal MHD modes. Above
20 kHz, the phase of ñe and T̃e starts to decrease, suggesting that the fluctuations are different from the ideal
MHD mode. In contrast, B̃θ and B̃r shows the same phase relation up to 60 kHz, indicating that the magnetic
fluctuations are mainly due to the ideal MHD mode. It should be noted that a pure ideal MHD mode does not
induce transport, thus the other modes or waves, such as resistive MHD mode and drift waves, are mixed and
play important roles even in the frequency range < 20 kHz (see Sec. 4.10.3).

4.10.3 Particle flux

The radial electrostatic particle transport due to edge turbulence is usually evaluated from edge turbulence
measurements by assuming that the local radial drift velocity is given by vr = Eθ/BT , so that

Γr = 〈ñṽr〉 = 〈ñẼθ〉/BT . (4.10.3)

Normally, the particle transport has a peak just inside the LCFS and decreases radially like potential fluctua-
tion. In conventional tokamaks, it is confirmed that electrostatic turbulent flux could explain the whole radial
transport [80]. In the far SOL region, some experiments suggest that intermittent plasma blob propagation is
responsible for some part of the particle transport, but this effect is negligible inside the LCFS [29]. Despite
the large amplitude magnetic field fluctuations in RFP plasmas, the radial energy and particle transports are
mainly caused by electrostatic fluctuations [78]. This leads to the expectation that the electrostatic fluctuations
dominate the radial particle transport in TST-2.

In TST-2, the radial particle transport derived from electrostatic fluctuation is 6 × 1020 m−2s−1, and it de-
creases constantly with the radius as shown in Fig. 4.4.2. This profile is similar to that of conventional toka-
maks.
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560 mm.

The diffusion coefficient estimated from Γr is 10 m2s−1 at R = 560 mm. This value is comparative to DBohm.
However, the total flux shows a decreasing trend with the radius. This is not consistent with DBohm = kTe/16eB,
because Te is roughly constant in 560 mm < R < 620 mm.

Figure 4.4.1 shows that the particle flux is dominated by the low frequency components less than 20 kHz.
However, Fig 4.10.3 suggests that the fluctuation in the frequency range < 20 kHz is mainly composed of an
ideal MHD mode, which does not induce transport by itself alone. This indicates that the other modes or waves,
such as resistive MHD modes and drift waves, which induce transport are mixed with the ideal MHD mode.
Here we would like to point out the possibility that the transport due to the other modes may be enhanced by
the background large amplitude ideal MHD modes.

DBohm is a semi-empirical diffusion coefficient observed in the early plasma experiments [4]. This value
is used as an indicator of diffusion for historical reason. Decrease of Dr compared to DBohm suggests that the
radial transport caused by plasma turbulence is relatively suppressed with the increase of radius.

RR diffusion coefficient Dst is negligible in conventional tokamaks. Magnetic fluctuation levels in conven-
tional tokamaks is B̃r/BT ∼ 10−4 − 10−5 inside the LCFS, and has only negligible effect on edge transport [71]
[81]. However, it is confirmed that the amplitude of magnetic fluctuation becomes large with small safety factor
q(a) in the Tokapole II [82]. This is consistent with the strong magnetic fluctuation at the edge in TST-2, where
q(a)(∼ 2.5) is small at the edge. In TST-2, the diffusion coefficient derived from Rechester-Rosenbluth theory is
the same order as the diffusion coefficient derived from the electrostatic radial transport. This is due to the large
correlation length of the MHD fluctuation l‖. The magnetic fluctuations in STs are not always large compared
to those in conventional tokamaks. The strong magnetic field fluctuation of B̃r/BT > 10−3 is only observed in
PEGASUS in Table 1.9.1. The low edge temperatures in TST-2 and PEGASUS imply a high resistivity, which
leads to resistive MHD instabilities [13]. As we will discuss in Sec. 4.10.5, peeling ballooning mode driven by
J‖/B can be unstable in TST-2. Thus, the low edge temperature, the small safety factor and the high J‖/B are
the candidate origins of the strong magnetic fluctuations in these STs.

4.10.4 Derivation of k‖, l‖ and v‖
In this experiment, k‖, l‖ and v‖ are derived in three different ways. One is from the two point correlation of

electrodes at the same composite probe inserted at the low field side midplane. Another is from the correlation
between two separate probes along a field line. The third one is the method using the correlation between the
magnetic coil array fixed at the vacuum vessel wall and the magnetic coil inside the composite probe. The first
method is highly reproducible in the experiments, since we don’t need to place the multiple probes at proper
locations, unlike other methods. However, this leads to larger errors in evaluating k‖ and l‖, since the distance
between two electrodes in the composite probe is much smaller than l‖. While l‖ is thought to be the order of
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meters, the distance between the electrodes of the composite probe is just ∼ 10 mm. Thus, it is more preferable
to use the correlation between the two probes separated by ∼ 1 m.

The third method is also reproducible, but this method cannot measure k‖ and l‖ directly, since the magnetic
coil array fixed at the vacuum vessel wall is far from the plasma, and we cannot put other probes and the
magnetic coil array on the same field line.

The values obtained by each method are consistent. Both k‖ obtained by the first and the second method
show 0.01 mm−1 at 100 kHz. k‖ cannot be obtained by the third method, since it is impossible to put two
different coils on the same magnetic field line, and the phase difference between probes is highly sensitive to
the location of the probe.

The parallel correlation length l‖ obtained by the correlation between the two separate probes (probe 2 and
probe 3) is ∼ 2 m at 10 kHz, while l‖ obtained by the magnetic coil array is ∼ 5 m. This discrepancy is
reasonable since the magnetic coil array is not placed on the same magnetic field line, and the magnetic field
fluctuations are sensitive to the currents far from the coils.

At 100 kHz, l‖ ∼ 1 m is calculated from the correlation between the two separate probes, while l‖ obtained
by the electrodes at the same probe is ∼ 0.1 m and 0.2 m by the magnetic coil array. The latter short lengths can
be interpreted by the contamination of the perpendicular components with short correlation length l⊥ ∼ 0.01 m.
The value obtained from the two separate probes is more reliable, since the contamination can be ruled out in
the 2D-map of the coherence. Unlike MHD fluctuation where l⊥ and l‖ are comparable, small deviation from
the magnetic field line leads to large errors of l‖.

Connection length inside the LCFS, which is the length of a magnetic field to complete a poloidal turn, is
Lc = 2πRq. In TST-2, Lc ∼ 10 m just inside the LCFS. Thus, Lc is greater than l‖s of both MHD and drift
wave fluctuations. This implies that both fluctuations should not be expressed by a two-dimensional model,
since fluctuations lost the information before magnetic field lines complete a poloidal turn. This fact indicates
that the effect of the 3D turbulence structure needs to be included in the edge turbulence theories or numerical
simulations.

The phase velocity along the field line v‖ can only be evaluated by the two separate probes along the field
line. This is because v‖ > 106 m/s is very large, and the phase difference of fluctuations between adjacent
electrodes in the composite probe is too small to be detected. This value is obtained from the phase difference
∆θ < 0.1π rad at 100 kHz between the two probes. Note that the Alfven speed is approximately vA ∼ 108 m/s,
the electron thermal speed is vth,e ∼ 2 × 106 m/s, and the ion thermal speed is vth,i ∼ 4 × 104 m/s. Thus, there is
a possibility that fluctuations propagate with Alfven wave speed or electron thermal speed along the field line.

Figure 4.8.13 shows that the radial decay length of the coherence map is δR = 30 mm and the poloidal
decay length is δZ = 12 mm. Furthermore, Fig. 4.8.15 (c) and (d) show σkr ∼ σk⊥ ∼ 0.05 mm−1. This leads
to the correlation lengths of 1/σkr = 1/σk⊥ = 20 mm. These values are different from the correlation lengths
in conventional tokamaks: Lpol ∼ 0.5 − 5 cm and a radial correlation length Lrad ∼ (0.5 − 1)Lpol. However,
the obtained poloidal decay length may be underestimated, because the whole profile of the coherence was not
measured (Fig. 4.8.13 (c)), resulting a factor of 1-3 times shorter decay length. Thus, we should conclude that
the perpendicular correlation lengths are not inconsistent with the previous results in conventional tokamaks.

The results in Sec. 4.8 indicate that k‖ ∼ 0, and the drift wave structure oscillates with the MHD fluctuation,
without changing the correlation length l⊥ and lr so much. Thus, the fluctuation of the drift wave is considered
to be frozen to the MHD fluctuation, and the direct nonlinear contribution of the magnetic fluctuation to the
turbulence seems to be small. If the fluctuations are completely frozen to the MHD fluctuation, the magnetic
field fluctuation just deforms the geometry of the flux surface, and it does not generate additional (i.e., non
linear) particle flux. Even if the fluctuations are frozen to the magnetic field lines, particles can diffuse through
the RR diffusion process derived in Sec. 4.7. The actual particle transport due to RR diffusion can be smaller
than the estimated value, when the magnetic structures are not fully stochastic. On the other hand, the phase
difference between ñ and Ṽf shows finite values of −0.5π ∼ −0.3π at the MHD frequencies. As a result,
the electrostatic transport Γ =

〈
ñẼθ

〉
/B is dominated by the MHD fluctuations rather than the drift wave

fluctuations.

4.10.5 Mode structure of MHD fluctuation

The small poloidal mode number m ∼ 2 and toroidal mode number n ∼ 1 suggest that large MHD activities
observed at the edge in TST-2 are caused by a peeling ballooning mode.
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A peeling ballooning mode is a type of instability localized in the edge, driven by pressure gradient ∇p
and current density in the edge region and characterized by low toroidal mode number n [34]. Owing to its
low toroidal field strength for a given plasma current Ip, a spherical tokamak naturally leads to high values
of J‖/B, which is the driving force of the instability [70]. The MHD fluctuation observed in PEGASUS, the
spherical tokamak which has similar parameters to TST-2, is identified as a peeling ballooning mode [7]. The
peeling ballooning mode becomes unstable at the edge of limited plasmas in a low aspect ratio tokamak under
the conditions of high edge current density (Jedge ∼ 0.1 MA/m2), steep pressure gradient (∇p ∼ 600 Pa/m) and
low magnetic field (BT ∼ 0.1 T) [7]. This condition is satisfied in TST-2 where Jedge ∼ 0.3 MA/m2, BT ∼ 0.1 T
and ∇p ∼ 500 Pa/m at the plasma edge [83]. Thus, it is quite natural to observe the same mode in TST-2. Since
the peeling ballooning mode has a nature of ideal MHD mode and the observed mode is mainly an ideal MHD
mode (Sec. 4.10.3), the large magnetic fluctuations in TST-2 is probably the peeling ballooning mode.
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Chapter 5

Conclusion

In fusion plasma research, the study of anomalous transport induced by plasma turbulence is important for
achieving fusion relevant high temperature and high density plasmas. Recent research on turbulence is mainly
focused on the new paradigm of plasma turbulence in the view of suppressing the transport flux and obtaining
optimized discharge conditions (e.g. high confinement mode called H-mode). In magnetically confined plas-
mas, various types of fluctuations are induced due to plasma instabilities. These fluctuations cause anomalous
transport, and the plasma confinement is deteriorated as a result. In previous research of conventional toka-
maks, these transports are thought to be caused mainly by drift waves driven by the pressure and temperature
gradients, and the contribution of magnetic fluctuations is believed to be negligible. A spherical tokamak (ST)
can confine high pressure plasma with a relatively weak magnetic field strength and is very attractive as a fusion
reactor from an economic point of view. However, magnetic fluctuations could be large in ST plasmas, where
the high pressure, the weak magnetic field strength (i.e. the low safety factor) and the large plasma current
may enhance magnetic fluctuations through instabilities. At the edge region, we should also consider the ef-
fect of resistivities due to a relatively low temperature. When the magnetic fluctuations are strong, the field
lines become stochastic and the transport along the field lines deteriorates the confinement. In addition, such
stochastic field would affect the other intrinsic instabilities. Therefore, understanding the structure of magnetic
fluctuations and their effects on plasma turbulence in an ST is important.

For edge turbulence measurements, Langmuir probes are very useful because it has a better spatial resolu-
tion compared with the other diagnostics, and they can measure a wide variety of plasma quantities. In order to
measure the temporal and spatial structures of edge turbulence in TST-2, we have developed two types of probe.
The composite probe system consists of four electrodes on the front surface, the other four electrodes on the
side and a 3-axis magnetic pickup coil. The electrodes are used as Langmuir probes, and floating potential Vf ,
ion saturation current Iis, electron temperature Te, electron density ne and plasma flows Vt, Vθ can be measured.
Several electrodes are used simultaneously to obtain wavenumbers and correlation lengths. In addition to the
composite probe system, we also installed two sets of four-electrode Langmuir probe at a different toroidal
location separated by about 1 m from the composite probe system. These are used mainly to obtain parallel
wavenumbers and parallel correlation lengths along a field line.

The observed fluctuations can be classified into two types: (i) the MHD type fluctuation characterized by
a global structure and low frequencies (< 20 kHz), and (ii) the drift wave like fluctuations characterized by a
smaller spatial scale and higher frequencies (> 20 kHz). In the following we list the major results obtained for
the two types of fluctuations.

The major analysis results for the MHD type fluctuations are as follows.

1. The discharges are characterized by large MHD type fluctuations with the levels of B̃r/BT = 10−2 inside
the LCFS, and the level is much larger than those in conventional tokamaks.

2. Large amplitude oscillations in Te, ne, Vp are observed at the MHD frequency.

3. The phase difference of B̃r, ñe and T̃e indicates that the magnetic fluctuations are mainly due to the ideal
MHD mode. Comparison of plasma parameters of TST-2 and PEGASUS indicates that the mode is
probably a peeling ballooning mode. An ideal MHD mode does not induce transport by itself, thus the
other modes play important role in the frequency range < 20 kHz.
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4. k‖ is almost 0, while k⊥ = −0.004 mm−1 , kr = 0.005 mm−1. These are evaluated for the fluctuations of
Vf .

The drift wave like fluctuations show the following characteristics.

1. k‖ at 100 kHz is 0.01 mm−1, while k⊥ = −0.04 mm−1 and kr = 0.01 mm−1. Although these values are
evaluated for Vf , the same values are expected for ne, because the coherence between Vf and ne is high.

2. k⊥ shows constant phase velocity of about 4000 m/s in the electron diamagnetic drift direction inside the
LCFS, and it changes its sign in the far SOL.

3. The high coherence of Ṽfs along a field line up to 100 kHz indicates that this high frequency turbulence
is frozen to the magnetic field line and oscillates with the slow MHD fluctuation.

4. The spatial structure of long range fluctuation is reconstructed by tracing the trajectory of the field line.
The profile of the coherence at 50 kHz shows decay lengths δR = 30 mm and δZ = 12 mm. These values
roughly agree with the result of the wavenumber spectral width σkr ∼ σk⊥ ∼ 0.05 mm−1 at 50 kHz.

The following shows the similarities and differences between the turbulence in TST-2 and that in conventional
tokamak.

1. The features such as frequencies, amplitudes and the poloidal propagation direction of drift wave type
fluctuations are quite similar to those in conventional tokamaks. In conventional tokamaks, the phase
velocity generally changes its sign from the electron diamagnetic drift direction inside the LCFS to
the ion diamagnetic drift direction in the SOL. This trend is also observed in TST-2 plasmas, which is
considered to reflect the Doppler shift of the drift wave caused by the velocity shear layer.

2. Magnetic turbulence in conventional tokamaks is typically B̃r/BT ∼ 10−5 − 10−4, and has a negligible
direct effect on edge transport. Unlike the conventional tokamaks, TST-2 (and PEGASUS) shows quite
a large fluctuation level B̃r/BT ∼ 10−2. On the other hand, the level in NSTX seems to be B̃r/BT ∼ 10−3

and the confinement is comparable to conventional tokamaks. Further studies are required to identify the
origin of the large MHD fluctuation level, and its effect on confinement. The low edge safety factor, the
high resistivity and the large current density, which induces a peeling ballooning mode, may be related
to the large MHD fluctuation level.

The diffusion coefficients estimated from the fluctuations show the following values.

1. The electrostatic particle flux is dominated by the MHD fluctuation components. However, the fluctuation
in the frequency range < 20 kHz is mainly an ideal MHD mode, and it does not induce transport by itself.
This indicates that the other modes and/or waves which induce transport are mixed with the ideal MHD
mode. The total flux is Γr = 5 × 1020 m−2s−1. The estimated radial diffusion coefficient Dr = 10 m2s−1.
This value is factor of 2 higher than that of NSTX.

2. The correlation length of MHD fluctuation along the field line is about 5 m, and the RR diffusion co-
efficient is also estimated as Dst = 10 m2s−1. This coefficient and the radial diffusion coefficient due
to the electrostatic fluctuation are the same in order, owing to the long correlation length of the MHD
fluctuations. However, actual value of particle transport due to the RR diffusion can be smaller than the
estimated value, since the correlation length of the MHD fluctuations is long and resultant magnetic field
may not be so stochastic.

We have revealed the following detailed structure of turbulence in ST plasmas for the first time.

1. The parallel correlation length for the MHD type fluctuations is l‖ ∼ 2 m, the average parallel wavenum-
ber k‖ is less than 0.0001 mm−1.

2. The parallel correlation length for the drift wave type fluctuations is l‖ ∼ 1 m at 100 kHz and the length
decreases with frequency. The average parallel wavenumber is 0.01 mm−1, and parallel phase velocity is
|v‖| > 106 m/s.
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3. The drift wave type fluctuations are frozen to the magnetic field line and oscillate with the MHD fluctu-
ation.

In summary, we have revealed the temporal and spatial structure of the edge turbulence in ST plasmas.
There are similarities and differences between the structures in TST-2 (and the other ST) plasmas and those
in conventional tokamak plasmas. The most prominent difference is that the level of MHD type fluctuations.
The two dimensional turbulence measurement revealed that at the fluctuation can be divided in two parts,
MHD fluctuation at 0-20 kHz and drift wave like fluctuation (> 20 kHz). The potential fluctuation frozen to
the magnetic field line is also observed. The parallel wavelength and correlation length inside the LCFS are
measured for the first time in STs and the results would be useful to benchmark theoretical models on the edge
turbulence. For example, the correlation lengths shorter than the connection length imply that we should taken
into account 3D effect in addition to the toroidal effect. The results acquired in this thesis will be the first step
towards the understanding of edge turbulence in ST plasmas.
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