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Chapter 1 

Introduction 

1.1 What is Single -Electron Effect ? 

Tunneling is quantum-mechanical transmission of an electron across a potential barrier. 

In tunnel junctions, tunneling becomes more frequent as an overlap of the electron wave­

functions in both electrodes gets larger. This shows that the wave properties of electrons 

cause the tunneling. On the other hand, because of the particle properties of electrons, 

i.e. because electrons tunnel one by one, single-electron tunneling changes the electrostatic 

energy of the system by the amount of 

(1.1) 

where Q is the charge of the junction before the tunneling and C is the capacitance of 

the junction. In ordinary macroscopic tunnel junctions, this quantity is much smaller than 

the thermal energy k8 T, and hence the influence of the change of the charging energy can 

be ignored. On the other hand, in small tunnel junctions with capacitance below 10-15 F, 

6.Ec becomes larger than 1K and the charging energy affects the transport properties of the 

junction at low temperatUies. The effects of charging energy on the transport properties 

of tunnel junctions are called the "charging effects" or the "single-electron effects". 
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There are three elementary phenomena in the single-electron effects : 

o '1\mneling which increases the electrostatic energy of the system is suppressed (the 

Coulomb blockade). 

o When the junction is current (I) biased, the voltage oscillates at the frequency !sET = 
I fe (Single-Electron '1\mneling oscillation (SETO) ). 

• In current-biased Josephson junctions, the voltage oscillates at the frequency fB 

I / 2e due to the Cooper-pair tunneling (Bloch oscillation) . 

In this thesis, we are devoted to the single-electron effects in artificial small tunnel­

junction arrays. The following three subjects are studied: 

1. Single-electron tunneling in one-dimensional arrays of small tunnel junctions, 

2. Influence of dissipation in one-dimensional arrays of small Josephson junctions, 

3. Electrical transport in two-dimensional arrays of small Josephson junctions. 

1.2 Organization 

This thesis is organized as follows : In chapter 2, we describe the sample fabrication tech­

Iuque and the measurement methods. Chapters 3, 4 and 5 correspond to the subjects 1,2 

and 3, respec tively. In chapter 6, we give conclusion. 

Chapter 2 

Experiments 

2.1 Sample Fabrication 

For the fabrication of the tunnel junctions, we employed the shadow deposition technique 

proposed by Dolan et al.[1] combined with the electron beam lithography. Since all of the 

depositions are achieved in one single vacuum cycle, we can expect that the tunnel barrier 

contains relatively little contanlination and we can control its thickness easily. Moreover, in 

principle, we can make junctions with very small area by adjusting the angle of evaporation. 

Small tunnel junctions used in this experiment consist of alunlinum and its oxide. Alu­

minum is suitable material for tunnel junctions partly because it forms not grains but 

continuous film after several 10nm vacuum deposition at room temperature and partly 

because its oxide film has no pinhole. 

Below we describe the fabrication process of small tunnel junctions in detail. 

Preparation of Substrates We used 10mm x Smm silicon wafers with Au contact pads 

as the substrates. They were spin-coated with two-layer electron-beam resist.(Fig.2.1.1(a)) 

The fust resist (the bottom layer) was PMMA/ PMAA (90:10) copolymer dissolved in 1-

acetoxy-2-ethoxyethane(ECA) . This was spun on the substrates at 3000r.p .m. for 60sec. 
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and then baked at 190"C for 20min. The second resist (the top layer) was OEBRlOOO 

(Tokyo Ouka) dissolved in ECA, which was spun at 3000r.p.m. for 60sec. Then the 

substrates were baked at 170"C for 20min. The resulted thickness of the resists was about 

450nm. 

Electron-Beam Lithography The electron-beam lithography system was ELIONIX 

ELS3300LB(I). For the exposure of small areas, bias voltage was 20kV, beam current 14-

20pA and a dose 110-150J.LC/cm2
• 

After the exposure, the substrates were developed in two developers. Firstly it was 

developed in OEBRlOOO developer at 23"C for 5-20 sec. and then rinsed in 2-propanol for 

60sec. Secondly it was developed in etylalchole dissolved by 2-propanol at 23"C for 20-

90sec. and then rinsed for 60sec. Finally the chip was washed in water. The first developer 

develops both resists, whereas the second only the bottom resist. 

By the use of these selective developers, the "suspended bridge"structures shown in 

Fig.2.1.1(b) were fabricated between the patterns with short distances. 

Vacuum Deposition Aluminum was thermally evaporated in a diffusion-pumped vac­

uum chamber at a pressure of 2 - 4 x 10- 7 torr. After the first evaporation, oxygen at 

the pressure of 10-2
- 10- 1torr was introduced into the vacuum chamber for 5-60 sec. to 

form the tunnel barrier. Then we evaporated Aluminum from different direction by tilting 

the substrates. After these procedures, tunnel junctions were made below the suspended 

bridges. The thickness of the electrodes was 300 nm. The redundant metal was lifted off 

in acetone. (Fig.2.1.1(c)(d)) 
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2.2 Measurement 

2.2.1 Cryostats 

The samples were cooled down to 30mK in dilution refrigerators. The substrates were fixed 

in the mixing chamber made from Stycast 1266 epoxy. We attached the four current- and 

voltage-leads to the contact pads on the substrates by the silver paste or by the solder made 

from InSn, which has low melting temperature. Temperature was measured by a carbon 

resistor placed near the substrates in the mixing chamber. The microwave was fed via a 

coaxial cable to a rod antenna placed close to the samples. In the experiments described 

in chapters 3 and 5, the magnetic field up to 4T was applied parallel to the junctions by a 

superconducting solenoid. In experiments described in chapter 4, magnetic field up to 1 T 

was applied by an electromagnet placed outside the dewar. 

2.2.2 Measuring Circuits 

One-Dimensional Arrays The measuring circuit used for the experiments described 

in chapters 3 and 4 is shown in Fig.2.2.1. To minimize the pick-up of external noise, 

the biasing circuit and the preamplifiers were battery-powered and set in a shielded box. 

When measuring the current-voltage characteristics, we swept the current by charging the 

capacitor b. The sweep rate was controlled by the resistance a. When measuring the 

differential resistance, we superimposed a modulation signal from a lock-in amplifier via a 

transformer c. The modulation frequency was 5Hz in the experiments described in chapter 

3 and 34Hz in chapter 4. The current was determined by the voltage of the resistor d. Each 

of the preamplifiers used for the current and voltage measurements was composed of three 

low noise operational amplifiers. The outputs of the preamplifiers were recorded by a X-Y 

chart recorder and they were digitized after the experiments. In the experiments described 

in chapter 3, the RC low-pass filters with the cutoff frequency of 16kHz were inserted into 
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the measuring wires. They were attached to a cold plate of 100mK. Metal-film resistors 

and film capacitors were used as the components of these filters to prevent the change of 

the properties at low temperatures. In the experiments described in chapter 4, we inserted 

the metal-film chip resistors of 22k!1 into the leads in the mixing chamber, which formed 

low-pass filters with the stray capacitance of the leads. 

Two-Dimensional Arrays In the experiments of twcrdirnensional arrays described in 

chapter 5, we collected data by a personal computer optically connected to the instru­

ments. The measuring circuit is shown in Fig.2.2.2. The preamplifier used for the voltage 

measurement was composed of three low noise operational amplifiers. In order to measure 

the current of the order of 1pA flowing through the samples with very high resistance 

correctly, we minimize the leak current by the following treatments: 1) we inserted an 

operational amplifier in the current leads between the sample and the ammeter to make 

the potential of this lead zero. 2)Each of the operational amplifiers connected to the sam­

ple had a high input impedance and a very low input bias current. Between the samples 

and the instruments such as the current source, the ammeter and the digital voltmeter , 

we inserted low-pass filters and electromagnetic interference (EMI) filters. Moreover, we 

inserted metal-film chip resistors of 22k!1 into the leads in the mixing chamber. 

Chapter 3 

Single-Electron Tunneling in 

One-Dimensional Arrays of Small 

Tunnel Junctions 

3.1 Introduction 

3.1.1 Single-Electron Tunneling in Nor mal Single Junctions 

We consider an electrically-isolated tunnel junction with the tunnel resistance R and the 

capacitance C. We assume that following conditions are satisfied: 

(3.1) 

(3.2) 

The condition (3.1) holds if the elementary charging energy for a single electron tunneling 

Ec = e2 f2C is larger than the thermal energy kaT so as to suppress tunneling due to 

thermal excitation. The condition (3.2) holds if the characteristic energy for quantum 
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fluctuation of the charge is much smaller than Ec. Here the characteristic energy for 

quantum fluctuation of the charge is related to the decay time of virtual state 6.t ~ C R 

by the Heisenberg uncertainty relationship. 

Under these conditions, tunneling can be treated as classical stochastic process . From 

the Fermi's golden rule, the tunneling rate at T=O is given as follows:' 

6.Ec 
rsET = ---. 

e2 R 

Here 6.Ec is the change of the electrostatic energy by a tunneling event: 

(Q±e)' Q2 
6.Ec = ----zG- 2C. 

If 6.Ec is positive, i.e ., 
e e 

-2 < Q < 2' 

(3.3) 

(3.4) 

(3.5) 

any tunneling is suppressed. This suppression is called the "Coulomb blockade "of tunneling.[2] 

Next, let us consider the junction biased by a constant external current I at T = 0. 

Because Q is the electrode's surface charge resulting from deviation of the electron dis­

tribution from the ion (crystal lattice) distribution, it does not takes discrete values ne 

(n:integer) but continuous value. When the external charge is inserted into the junction at 

a small rate I, the tunneling of electron is prohibited due to the Coulomb blockade until Q 

reaches e/2. As soon as Q exceeds e/2, the tunneling probability increases and an electron 

tunnels. After the tunneling, Q becomes less than e/2 and the junction is recharged as 

shown in Fig.3.1.1. Th.is charging-tunneling process repeats with the average frequency 

fsET = I je. (3.6) 

1The relation between the tunnel resistance R, the density of states of the left (right) electrode DL 

(DR) and the tunneling matrix of the electron transfer IT I is given by 

R- 1 = he' DLDR IT I' . 
li 

Here we assume that DR, DL and J T I are indepedent of the energy near the Fermi surface. 
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Here, although the tunneling at V > e/2 is fully stochastic, the tunneling becomes "pseu­

doperiodic"due to the Coulomb blockade. Consequently, the voltage of the junction os­

cillates at a considerably large amplitude in the same frequency. This is called "Single­

Electron Tunneling Oscillations (SETO)". 

The SETO affects the de current-voltage (I-V) characteristic considerably. At a low bias 

current where tunneling is influenced by the Coulomb blockade, it is shown that Vex VI. 
When the time-average of the voltage exceeds e/C, the Coulomb blockade does not occur 

and the I-V characteristic approaches the linear asymptotes, V = RI + ej2C as shown in 

Fig 3.1.2. 

When we impose de current plus ac current of frequency !ext, the SETO is phase-locked. 

Because of a frequency pulling effect between the SETO and the ac current, there appear 

voltage spikes at current 

(3.7) 

where n and m are integer.' 

It is difficult to observe the SETO in single junctions. The reason is that both the 

large capacitance of the measurement leads and the high resistance of the junction make 

the junction voltage-biased. In a voltage-biased junction, the Coulomb blockade and the 

SETO should not occur and hence the I-V characteristic should become ohmic, because 

tunneling does not changes the electrostatic energy of the junction. In order to prevent the 

junction being voltage-biased, resistors with very high resistance must be inserted in the 

measurement leads very close to the junction. One way is to deposit resistive alloy such 

as NiCr or AuCu.[3] But it seems difficult to obtain sufficiently large resistance because 

the resistivity of such alloy is much smaller than Rq. An easier way is to connect multiple 

junctions one-dimensionally. In one-dimensional arrays, every junction can be effectively 

lTh.is is similar to the Shapiro steps in Josephson junctions.[4] For a review on the frequency pulling 

effects in Josephson junctions, see for instance ref.[SJ. 
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current-biased by the high resistance of the other junctions. 

3.1.2 Single-Electron Tunneling in One-Dimensional Arrays of 

Small Tunnel Junctions (Soliton Model) 

Let us consider N(~ 1) junctions connected in series.(6](7) We take into account not 

only the capacitance C but also the self capacitance C0 of an electrode between junctions 

(island-electrode) as shown in Fig.3.1.3. When conditions (3.1) and (3.2) are satisfied, we 

can interpret the properties of electron transport as the dynamics of single-electron solitons 

and antisolitons. 

The single-electron soliton whose center is on k -th island electrode is expressed as follows : 

e ( fi-kf) q,, =- c,f£ exp ---),- . (3.8) 

Here 1/>; is the potential of i-th island-electrode and 

C,f£ = ( cg + 4CC0)
112, (3.9) 

>. - 1 = arc cosh ( 1 + ~~) . (3.10) 

These equations express polarization of neighboring island-electrodes by an excess charge 

on k-th island-electrode. The range of polarization is characterized by >.. Because the 

functional dependence of equation (3.8) is unchanged by the tunneling and by the presence 

of other electrons, the name "single-electron soliton "is used. 

Next, we connect the each end of the array to a constant voltage source. When the 

potentials of the end-electrodes are equally increased, solitons are injected from both ends 

of the array. Because solitons are mutually repulsive, they tend to distribute at nearly 

equal distance and form one-dimensional Wigner lattice, whose periodicity is distorted by 

the discreteness of the junctions. The current induced by the difference of the potentials 
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is interpreted as the parallel movement of this Wigner lattice. Therefore, the soliton mo­

tion exhibits considerable degree of space and time correlation, resulting in the voltage 

oscillation at low current and at low temperatures with the average frequency, 

!sET= Ife. (3.11) 

According to the numerical simulation by Likharev et a/.[6](7), when de voltage plus ac 

voltage with frequency f ""' is imposed, there appear voltage plateaus in I-V characteristic 

at current 

I = ne f ""', n:integer. (3.12) 

This is attributed to the frequency pulling effect. 

The shape of the de I-V characteristic at T = 0 is different from that of single junctions. 

Because solitons have the positive energy 

e2 

E=--, 
2C,tr (3.13) 

non-zero voltage is needed for injection of a soliton into the array. The threshold voltage 

v;m depends on the average potential of the left and the right ends of the array and its 

maximum value, V.~11 , is given as 

v:m - e 
10 

- C(exp.X- 1 - 1}" (3.14) 

Below v;m current does not flow . 

At high voltages, the I-V curve approaches linear asymptotes. 

V = NRI + V.\f, (3.15) 

vm = !:_N( >. _, + 1) - 1 
off C exp . (3.16) 
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3.2 Results and Discussion 

One-dimensional arrays of small tunnel junctions with junction area 0.1 x 0.08(JLm) 2 were 

fabricated. The tunneling resistance of each junction was of the order of 105 -106!1, which 

is so large that the effect of dissipation can be ignored.' The island-electrodes were 0.2JLm 

long, 0.1JLm wide and 30nm thick. Because of the RC cut-off frequencies determined by 

the capacitance of the measuring leads and the resistance of the arrays, the biasing modes 

of constant-current and constant-voltage selected at the external circuit can be meaningful 

only below ""100Hz. The current which corresponds to the SETO of 100Hz is much smaller 

than the noise level of current. Thus the measurement have been always done in the voltage­

biased mode irrespective of the external biasing modes. 

3.2.1 Effects of Array Length on the Coulomb Blockade and 

the SETO 

The broken curve in Fig.3.2.1 is the de I-V characteristic of the array of 31 junctions 

(sample A) in zero magnetic field. The temperature was 0.04K . Here the Al electrodes 

were superconducting. The absence of zero-voltage Josephson supercurrent is due to the 

small capacitance and the large tunnel resistance of the junctions; in these conditions 

the fluctuation of the charge is decreased and then the fluctuation of the phase difference 

increases because of the Heisenberg uncertainty relationship between the phase difference 

and the charge.[8] 

In order to break the superconductivity, we applied the magnetic field of 3T parallel to 

the junctions. This value is sufficiently larger than the expected highest critical field due 

to the paramagnetic depairing ("" 2T). [9] In Fig.3.2.1, the I-V characteristic is shown 

with the solid curve in which a Coulomb blockade structure appeared. Two characteristic 

3In other words, the quantum fluctuation of the charge is much smaller than e. 
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voltages, Voff and V. were observed in this curve where V.ff is an offset voltage defined in 

the large voltages as V = V.ff + RI and V. is a threshold voltage for the current flow. The 

current is zero below Vi within the noise level of our measurement. Voff and V. correspond 

to Vo\P and Vim in the soliton picture respectively. In the experiment, Voff = 5.7mV. The 

value of V. varied between 0.5m V and 1.5m Vas shown in Fig.3.2.2. According to the soliton 

picture, this threshold voltage depends on the average potential of the left and right ends of 

the array. In the experiment, switching in the external circuit may vary the distribution of 

offset charges in the circuit,4 which change the average potential of the array. Substituting 

V
0
\P = 5.7 mV and Vit0 = 1.5 mV into (3.14) and (3.16), we obtain C = 3.8 x 10-16 F and 

Co = 2.4 x 10-17 F. 5 From these parameters, >. is estimated to be 4 junctions, which is 

well below the array length. 

The I-V characteristic of the array of 5 junctions (sample B) in the magnetic field of 3T 

is shown in Fig.3.2.3. Here the threshold voltage V. is absent, while the offset voltage V.ff 

is seen. Using C0 of sample A, we obtain).= 3 junctions, which is of the order of N. 

Applying a microwave of frequency f, we observed the peaks in differential resistance at 

I= nef (n:integer). This is the consequence of the coupling between the SETO and the 

microwave electromagnetic field. Figure 3.2.4 shows the differential resistance of sample 

A as a function of current under microwave irradiation. The excellent agreement of the 

positions of peaks with nef confirms the existence of coherent SETO in the array. 

Figure 3.2.5 shows the result of sample B. The ratios of peaks to the background re­

sistance were less than 2% which were much smaller than those observed in sample A 

(15-25%). 

iDue to the twice deposition of Al, the leads on the substrate compose large capacitors . It is one 

possible reason for the variation of the offset charge that the electrical shock of the switching changes the 

charge of these capacitors. 
5The obtained C0 agrees with the value geometrically estimated. Regarding the island-electrode as the 

conducting sphere with the same surface area, we obtain C0 = 1.8 X 10- 17 F. 
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These results are explained pretty well within the soliton picture as follows. The potential 

of the edge electrode polarizes the island-electrodes in the range of >.. When the array is 

much longer than >., the effect of environment through the end-electrodes on the soliton 

motion is small. Thus the solitons keep high space- and time-correlation which lead to 

coherent SETO of the island-electrodes. The energy for creation of a soliton results in the 

threshold voltage V.. In the array with length nearly equal to >., the voltage-biased end­

electrodes tend to fix the potential of all the island-electrodes and reduces the amplitude 

of the voltage oscillation. The creation energy of a soliton is also diminished because an 

electron in one end-electrode is attracted by the other more strongly as the array becomes 

shorter. 

3.2.2 Effect of Superconductivity on the SETO 

Figure 3.2.6 shows the dV/dl- I curves of sample A at low magnetic field with the nli­

crowave irradiation. Figure 3.2.7 is the magnetic field dependence of differential resistance 

at I =40pA. The peaks of differential resistance due to the SETO faded out as the voltage 

gap in I-V was enhanced by the superconductivity. 

At present we cannot explain this phenomenon, although it is clearly related to the 

superconductivity. As noted before, our junctions do not keep the superconductive phase 

coherence because of the large charging energy. In very short time, however, they can be 

treated as nearly coherent and may have AC Josephson oscillation which will be randomized 

in phase in long periods. The coexistence of a classical SETO and a quantum AC Josephson 

oscillation will bring a very complicated situation which, at present, we do not know how 

to cope with. 

Delsing et al. (10] reported that they observed the peaks of differential resistance due to 

the SETO in AI/ AI-oxide tunnel-junction arrays even without a magnetic field application. 

In their junctions, I-V characteristics did not change under magnetic field. Probably, for 
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some reasons, the electrodes of their junctions were not superconducting at H = 0. 

3.3 Conclusion 

In this chapter, we studied the effects of the array length and the superconductivity on 

the SETO in one-dimensional arrays of small tunnel junctions. We obtained the following 

results : 

1. With microwave irradiation, peaks of differential resistance due to the SETO were 

observed in the normal-state arrays. This implies that the motion of single-electron 

solitons have space- and time-correlation. 

2. The peaks of the differential resistance in the array of N = 31 were higher than those 

in the array of N = 5. This shows that in arrays with length nearly equal to the 

soliton length >. the potential of all the island-electrodes tends to be fixed, which 

results in weak correlation of solitons. 

3. I-V curves of the array of N = 31 showed zero current region, while those of the 

array of N = 5 did not. This implies that soliton motion in N = 5 array was strongly 

affected by the end-electrodes. 

Thus, the results are well explained in the context of the soliton picture. 

4. The SETO structure was purged away by the superconductivity. 

This phenomenon is very interesting because it may be related to the coexistence of 

a classical SETO and a quantum AC Josephson effect. At present, clear explanation 

for this phenomenon is not obtained. 
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Chapter 4 

Influence of Dissipation in 

One-Dimensional Arrays of Sm all 

Josephson Junctions 

4 .1 Introduction 

In chapter 3, we have investigated the single-electron effects in junctions with weak dissi­

pation. In this chapter, we study the influence of dissipation in small Josephson junctions, 

where the commutation relation between the junction charge and the phase difference will 

cause various interesting behavior . 

In ordinary macroscopic Josephson junctions, the normal state resistance RN is much 

smaller than the quantum resistance RQ and the Josephson coupling energy EJ is much 

larger than the elementary charging energy Ec and the thermal energy k8 T. In these 

junctions, the usual Josephson effect is observed and a supercurrent with zero voltage can 

flow. On the other hand, in very small Josephson junctions where the conditions Ec ~ EJ 

and RN ~ RQ are satisfied, single-electron effects make the zero-bias resistance infinite as 
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we have seen in chapter 3. It is interesting to study the boundary of these two effects and 

the behavior of junctions near the boundary. 

Many experiments on the influence of dissipation have been performed in connection 

with the superconductor-insulator(SI) transition in two-dimensional arrays of Josephson 

junctions. It is known that the critical normal sheet resistance for SI transition is about 

RQ ;:::, 6.45k0 in random systems such as granular fihns and amorphous fihns.[ll] As for 

the regular arrays, Geerligs et al. [38] reported that the critical normal sheet resistance is 

about 15k0. In these two-dimensional systems, not only charges (Cooper-pairs) but also 

vortices play an important role. On the other hand, in single junctions and one-dimensional 

arrays, vortices do not exist, and hence, influence of dissipation is expected to be different 

from that in two-dimensional arrays. 

In this section, we introduce theoretically expected I-V characteristics of small Josephson 

junctions. 

4.1.1 Single-Electron Effects in Single Josephson Junctions with­

out Dissipation 

First, we consider single Josephson junctions without dissipation.[13] We assume that the 

charging energy cannot be ignored. The Hamiltonian of the junction is, 

Q2 
H = 

2
C- EJ cosO. (4.1) 

Here Q is the charge stored in the junction, C the capacitance, t1 the phase difference 

between the electrodes. EJ denotes the Josephson coupling energy. Since t1 and Q satisfy 

the commutation relation [11, Q] = 2ei, we can write 

2e 8 
Q = iao· (4.2) 

-
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After all, the Hamiltonian becomes 

(4.3) 

where Ec = e2 /2C is the elementary charging energy. This Hamiltonian is equivalent to 

that of a particle with mass (li./2e)2C moving in the sinusoidal potential with height of 

2EJ. The eigenstates are the Bloch states: 

..Pn,q,(t1 + 271') = exp(i27rQ./2e)..fn,Q,(t1). (4.4) 

Here we define the "quasicharge"Q. corresponding to the quasimomentum in a periodic 

lattice, which is interpreted as the total charge supplied by the external circuit . The 

energy level in nearly free electron approximation Ec :::P EJ are shown in Fig 4.1.1. The 

first Brillouin zone extends over the range -e ::; Q. ::; e. 

Below, we assume that the temperature is so low that the system stays in the ground 

state. A current I = dQ./dt causes a voltage variation V = 8E0 j8Q., where Eo is 

the energy of the ground state. When Q. reaches e, Cooper-pair tunneling occurs which 

corresponds to the Bragg reflection in a crystal. This tunneling does not have dissipation 

since the voltage at Q. = e is zero. If the junction is biased by a constant current, the 

voltage oscillates with the frequency, 

fa= I/2e. (4.5) 

This oscillation is analogue to the Bloch oscillation of an electron in a crystal and, therefore, 

nicknamed accordingly. The Bloch oscillation does not generate de voltage because the 

voltage oscillation is symmetric with respect to V = 0. 

Next let us consider the de I-V characteristic . We assume that the quasiparticle tunneling 

is weak, but not zero. At a low current, a quasiparticle tunneling at Q. :;:: e/2 causes 

the SETO and generates a nonvanishing de voltage. As the current becomes large, the 

probability that the Bloch oscillation sets in increases. Because the Bloch oscillation does 
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not accompany the de voltage, it sometimes causes the negative differential resistance. The 

structure in the I-V curve due to the SETO and the Bloch oscillation is often called the 

"Bloch nose". 

When the current gets large, tunneling at Qx = e to the upper band (the Zener tunneling) 

sets in, which causes the sharp increase of voltage. The overall shape of I-V curve is shown 

in Fig.4.1.2 . 

Within this theory, supercurrent with zero voltage seems not to flow as long as Ec is 

not zero. The supercurrent observed in the experiments is explained as follows : we use 

the analogy to the particle moving in one-dimensional potential. The ratio of E1 to Ec 

corresponds to the ratio of the potential energy to the kinetic energy. Therefore, as E1 / Ec 

gets smaller, the phase difference 0 tends to delocalize . When the characteristic time for 

the delocalization of the phase difference is much longer than the measuring time, the 

non-equilibrium supercurrent will be observed. Thus, the classical Josephson effect are 

interpreted as a non-equilibrium effect in this theory.[14] 

4.1.2 Influence of Dissipation in Single Josephson Junctions 

Let us consider a Josephson junction with dissipation. There are two kinds of dissipation: 

dissipation due to ohmic resistor shunting the junction and dissipation due to quasiparticle 

twmeling. Generally, quantum-mechanical tunneling itself does not accompany energy 

dissipation. But in real systems, electrons after tunneling are inelastically scattered and 

dissipates the energy e V in the electrodes. Hereafter we include this energy dissipation in 

the tunneling process . 

As for the dissipation due to the ohmic shunt resistance, Caldeira and Leggett( CL) 

proposed to express it by the linear interactions of the junction with the heat bath com­

posed of harmonic oscillators of an infinite number. [15] According to their results , ohmic 

dissipation reduces the tunneling probability. In the case of Josephson junctions , ohmic 
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dissipation suppresses the fluctuation of the phase difference. When the dissipation ex­

ceeds the critical value, a phase transition of the phase difference occurs and the Josephson 

supercurrent flows . The critical resistance is universal and equal to the quantum resistance 

RQ = h/(2e)2 
>::::: 6.45k0. [14] [16] 

For the dissipation due to quasiparticle tunneling, Ambegaokar, Eckern and Schon (AES) 

have obtained the following action from the microscopic Hamiltonian including the charging 

energy [17]: 

5(0]= fh fJdTCc (!::._BO )' 
lo 2 2e 8T 

{h{J d fh {J d I ( ( ') 0( T) - 0( T
1

) (3( ') ::..lO( T:...!._) ...:.._+ O::..l( T"_1_
1
)) - lo 'T lo T Q T - 'T COS 2 - T - 'T COS 2 I (4.6) 

where Cc is the geometric capacitance. The a term is related to the dissipation and 

the (3 term represents the Josephson coupling term E1 cos 0 and so-called cos 0 term of 

quasiparticle current.[18] Here, we ignore cos 0 term of quasi-particle current for simplicity. 

Next we consider a term in several cases. 

1f the junction consists of ideal BCS superconductors, the a term (we write a 0 ) can be 

rewritten in the form of kinetic energy, which leads to the renormalization of the capacitance 

[19] 

Here RN is the tunnel resistance in normal state. 

In the case of a normal junction (t:. = 0), 

1r2 1/nf3' 
a,(T) = a,4 sin2(1rT jn(3)' 

4 RQ 2.6k0 
a,= 7rzR,""' ~· 

where R1 is the tunnel resistance. 

(4.7) 

(4.8) 

(4.9) 

Next we consider a non-ideal tunnel junction. The term "non-ideal"means that because, 

for example, of paramagnetic impurities, the density of states below the superconducting 
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energy gap is not zero at T = 0, and hence, the subgap resistance Rqp becomes finite. In 

this case, we assume that a= a0 +a,. Here R, = Rqp. The action is 

5(0] = dT - -- - EJ cosO l hf3 ( c ( 1i 81}) 2 

) 

o 2 2e 8T 

(4.10) 

Guinea and Schon ( GS)(20] showed that the partition function for this action is equivalent 

to that of one-dimensional X -Y model of magnetism and that phase transition of the band 

structure takes place at the critical a,. According to the GS theory, quasiparticle tunneling 

makes the energy band e-periodic and divides the band En into Eno and En1.(Fig. 4.1.3) 

As dissipation a, becomes larger, the band width and the difference between Eno and En1 

get smaller. After the phase transition Eno and En1 are degenerate. The critical dissipation 

a,c depends on Qx and EJ I Ec. Phase diagram is shown in Fig.4.1.4. In region (I) bands 

degenerate only at Qx = ±el2, while in region (III) the bands degenerte for all Qx. In 

region (II) bands degenerate in the finite range near Qx = ±el2. 

The I-V characteristic is influenced by this phase transition. At T = 0, the probability 

of quasiparticle tunneling is 

f (Q ) = 2~SET(Qx) 
SET x e2 Rqp , (4.11) 

where 

~SET(Qx) = Eo,(Qx) - Eoo(Qx)· (4.12) 

As dissipation a, gets larger, ~SET and fsET become smaller and the probability of Bloch 

oscillations becomes larger. Consequently, de voltage becomes small. Especially in region 

(III), de voltage is infinitesimal. 

Their results are summed up as follows.(14] 

In the limit EJ ~ Ec, the de voltage is infinite for a, > 1 while Bloch nose structure 

appears for a, < 1. According to detailed calculation, for larger currents a negative differ­

ential resistance appears for a, < 0.5 and positive differential resistance for 0.5 < a, < 1. 
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In the limit EJ ~ Ec, for a, < 2 quasiparticle tunneling causes a nonvanishing de 

voltage. Detailed calculation shows that at a, < 1 frequent Zener tunneling at low current 

makes I-V curve similar to that of normal junctions. 

The shapes of I-V curves are summarized in Fig.4.1.5. 

4.1.3 Dissipative Phase Transition in One-Dimensional Arrays 

of Small Josephson Junctions 

Korshunov(21] considered the AES action for one-dimensional arrays of Josephson junctions 

and showed that a phase transition between coherent and non-coherent states takes place. 

The action is 

~ (lhfl ( C0 
( 1i 8cp;) 

2 

c ( n_ ) 
2 

( 8cp; 8cp;_ 1 ) 

2 

) ) 5 = L..J dT - -- +- - ---- - EJcos(cp · - cp ·_1 ) 
j 0 2 2e 8T 2 2e 8T 8T 1 

J 

+ L 5n['P;- 'P;-d, ( 4.13) 

(4.14) 

Here Co is the self-capacitance of the island-electrode and 'Pi the phase of j-th electrode. 

Dissipation is introduced by the subgap resistance Rqp. 

The phase diagram in the limit EJ I Ec ~ 1 is shown in Fig.4.1.6. In this figure, 5 1 , 52 and 

5, are superconducting phase at T = 0. Temperature dependence of resistance is different 

in 5,, 52 and 5,. In I phase, arrays are insulator where Cooper-pair and quasiparticle 

cannot tunnel, while resistance is finite due to virtual tunneling in N phase. 



4.2 Results and Discussion 

4.2.1 Samples 

Arrays of tunnel junctions with the same area and the same island-electrodes as those 

in chapter 3 were fabricated. The number of junctions, N, are 29 or 31. The junction 

resistance was controlled by changing the pressure of oxygen introduced into the vacuum 

chamber to form the tunnel barrier. In Table 4.1 we list some important parameters of the 

samples. Here we estimated the capacitance C and the normal-state resistance RN by fitting 

the asymptotic I -V curve in normal state to V = N(RNI + ej2C) . From these parame­

ters, we calculated the elementary charging energy Ec = e2 /2C, the Ambegaokar-Baratoff 

critical current[22J Ic = 1rt.j2eRN and the Josephson coupling energy E; = lil c/2e, where 

zero-temperature superconducting energy gap t. is estimated using the BCS theory.[23] 

The critical temperature for superconductivity, Tc, is "" 2K. The self capacitance of the 

island electrode is C0 = 2.4 x 10-17 F as estimated in chapter 3. 

4 .2.2 Temp erature Dependence of Zero-Bias Resistance 

A typical temperature dependence of zero-bias resistance is shown in Fig.4.2.1. We can 

divide the samples into three groups A-C with respect to the temperature-dep endence of 

the zero-bias resistance, though the change from A to C is indeed continuous. Above Tc, 

zero-bias resistance of all samples weakly increased with lowering temperature, presumably 

due to the Coulomb blockade. 

Below Tc, the zero-bias resistance of samples 1-5 (group A) increased steeply, while 

zero-bias resistance of samples 9-12 (group C) stayed at a finite value after monotonic 

decrease. It is probable that in group C the external noise make the zero-bias resistance 

finite although ideally the voltage should disappear. The zero-bias resistance of samples 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Group N RN c E; Ec E;/Ec 

[kOJ [fF] X 10-23 [J] X 10-23 [J] 

A 31 348 0.22 0.045 5.8 0.008 

A 31 165 0.22 0.095 5.8 0.016 

A 31 15.3 0.73 1.0 1.8 0.56 

A 31 7.2 1.4 2.2 0.91 2.4 

A 29 4.4 1.1 3.6 1.2 3.0 

B 29 3.1 2.5 5.0 0.51 9.8 

B 31 3.0 2.7 5.2 0.47 11 

B 31 2.8 2.7 5.6 0.47 12 

c 29 2.7 6.4 5.8 0.20 29 

c 29 2.7 9.0 5.8 0.14 41 

c 31 1.4 3.0 11 0.42 26 

c 29 0.49 24 32 0.052 620 

Table 4.1: Parameters for the measured samples. 
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6-8 (group B) exhibited the re-entrant behavior with a minimum around 1K.1 Figure 4.2.2 

shows EJ / Ec vs. RN for measured junctions. 2 

4.2.3 Current- Voltage Characteristics 

Figure 4.2.3 shows the I-V characteristics of samples in group A. Under a perpendicular 

magnetic field (0.3T) strong enough to destroy the superconductivity, a high-resistance 

region between sharp current-rising edges appeared around I = 0 which is attributed to the 

Coulomb blockade. The high-resistance region broadened as the magnetic field was lowered 

toward zero. Both the magnetic-field dependence and the temperature dependence of this 

broadening indicate that it is due to the superconducting energy gap, though its magnitude 

is much smaller than the value expected for bulk junctions. (0 .4mV x 31=12.4mV.) 

The I-V characteristic of the samples in group B is shown in Fig.4.2.4. There are three 

features as follows: 

1. At the voltage Vm the current rapidly increases. Since differential resistance ap­

proaches to RN above Vm, vm is attributed to the superconducting gap. 

2. There is a current Im above which the voltage steeply increases. Im is interpreted as 

the Zener current where Zener tunneling sets in. 

3. There is a high resistance region around the origin. It is attributed to the Coulomb 

blockade of the single-electron tunneling because of its magnetic field dependence. 

1 The temperature dependence with the re-entrant behavior is si.m.ilar to that obtained in the films of 

oxidized tin particles by Kobayashi et a/.[24] The particle size is 30nm in diameter. 
4 Generally speaking, the tunnel resistance RN depends on the thickness of the tunnel barrier exponen-

tially and the capacitance C is inversely proportional to it. Then RN and C satisfy the relation 

where a and b are constants. Therefore the relation between E; / Ec and RN are also on one curve as shown 

in Fig.4.2.2. 
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As the magnetic field was increased, this region became wider as shown in Fig.4.2.5 

while Vm and Im decreased monotonically. This is understood by a band picture. 

With increase of the magnetic field, EJ decreases and the band width of the ground 

state increases. Accordingly, the energy gain due to single-electron tunneling, ~SET, 

and hence the tunnel probability of quasiparticles increase. Therefore, the high­

resistance region broadened as the magnetic field became strong. The Zener current 

Im decreases because magnetic field makes the band gap narrow. By tlus magnetic­

field dependence, we can conclude that the structure around the origin is the Bloch 

nose. 

I-V curve of samples in group C (Fig.4.2.6) is similar to that in group B except for the 

absence of the Bloch nose structure. The resistance near the origin is not zero as mentioned 

in the previous subsection. 

Figure 4.2.7 shows the magnetic-field dependence of I-V characteristics. Under weak 

magnetic fields, the Bloch nose structure did not appeared. When Vm is near zero under 

strong magnetic field, the zero-bias resistance becomes high. It is attributed not to the 

Coulomb blockade but the superconducting energy gap. 

4.2.4 Comparison with Theories 

Just below T" EJ/ Ec ~ 1 and Rqp ~ RN hold. The boundary between the superconductive 

phase where the zero-bias resistance decreases with lowering T and the insulating phase 

where zero-bias resistance increases is 3-4k0. 

We consider the origin of the re-entrance observed in the samples of group B. The tem­

perature dependent parameters are EJ and Rqp. 

The Josephson coupling energy, EJ, equals zero at T = T, and it approaches to the 

zero-temperature value EJ = h~/8e2 RN as the temperature decreases. The increase of EJ 

make the phase difference of the order parameter localize and consequently, the junctions 
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becomes more superconductive. Therefore, the temperature dependence of E1 does not 

cause the re-entrance in group B. 

On the other hand, the increase of Rqp brings the decrease of the influence of dissipation 

since the strength of dissipation is inversely proportional to Rqp. At present, there is no 

theory which treats the influence of dissipation in tunnel junctions at finite temperatures. 

For zero temperature, Korshunov have investigated the influence of dissipation due to finite 

quasiparticle tunneling.(21} We try to compare the experimental results to the Korshunov 

theory, taking into account the temperature dependence of Rqp. 

In phase I of the Korshunov theory, both Cooper-pair tunneling and quasiparticle tun­

neling are blocked. Therefore, the zero-bias resistance will increase with lowering T. InN 

phase, the zero-bias resistance will decrease for the reason mentioned below. 

Figure 4.3.1(a) shows samples' parameters plotted on the Korshunov's phase diagram. 

Here Rqp is replaced with RN. Just below T" E1 is much smaller than the zero-temperature 

value and Rqp is almost same as RN· As lowering temperature, the point of 7r.jC0 E1(T)/4e 2 

vs. a 1(T) sweeps the trajectory as shown in Fig.4.3.1(b). 

If the temperature dependence of Rqp obeys the BCS theory, Rqp increases steeply as 

(4.15) 

and the influence of dissipation will not be different between samples in groups A-C at low 

temperatures . 

When we assume that the boundary between N and I lies between group A and B in 

Fig.4.3.1(a) and that as lowering T points of group B go across the boundary at ~1K while 

those of group C do not, the experimental results are consistent with the Korshunov theory. 

Here the critical resistance is 3-4kfl, which is higher than the expected value of 2.7kfl. 

In Fig.4.3.1(a), regions N and I include the limit C0 -> 0. According to the Korshunov 

theory, the phase diagram in this limit is the same as that of single junctions. The phases 

N and I correspond to the phase (I) and (III) in Fig.4.1.4 respectively and the results of 
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the GS theory are applicable to these phases. In the Korshunov theory for the arrays 

without external leads, zero-bias resistance of phase N remains finite because virtual tun­

neling of quasiparticles exists. If arrays are connected to the current source, the Bloch 

oscillation 
3
occurs and zero-bias resistance becomes infinitesimal. This is the case of phase 

(III) of the GS theory. Thus, the GS theory and the Korshunov theory are consistent in 

the limit Co -> 0. Zero-bias resistance of phase N decreases as lowering T because the 

quasiparticle tunneling due to thermal excitation diminishes. 

Now we apply the GS theory to the shape of I-V curves. The I-V curves of group A 

correspond to 6) in the limit of Ec ~ E1 in Fig.4.1.5. For samples 4 and 5, although E1 is 

larger than Ec, the small Zener current may makes I-V curves like 6). I-V curves of group 

B and C correspond to 2) and 1) in the limit E1 ~ Ec, respectively. Thus the obtained 

I-V characteristics are qualitatively explained by the GS theory. 

4.3 Conclusion 

We studied electrical transport properties of one-dimensional arrays of small Josephson 

junctions with various RN and EJ / Ec. We obtained the following results: 

1. Just below Tc where EJ/ Ec ~ 1 and Rqp ~ RN hold, the boundary between the 

superconductive phase where the zero-bias resistance decreases with lowering T and 

the insulating phase where the zero-bias resistance increases is 3-4kfl. 

2. The temperature dependence of zero-bias resistance of samples with 2.8kfl ::; RN ::; 

3.1kfl and 9.8::; E1/Ec::; 12 shows re-entrant behavior. When we assume that there 

exists the subgap resistance with nonideal temperature dependence, the results are 

qualitatively explained by the Korshunov and GS theories. 

'Numerical calculations in re£.125] show that the Bloch oscillation takes place and that the Bloch nose 

structure appears in arrays of Josephson junctions. 
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3. The Bloch nose structure was found in I-V curves of samples with 2.8k0 ::; RN :S 

3.1k0 and 9.4 ::; E1 / Ec ::; 11. This is an evidence for the existence of the Bloch 

oscillation in one-dimensional arrays of Josephson junctions. 

Chapter 5 

Electrical Transport in 

Two-Dimensional Arrays of Small 

Tunnel Junctions 

5.1 Introduction 

ln two-dimensional arrays of small tunnel junctions, the charge Kosterlits-Thouless (KT) 

transition and the vortex KT transition (in Josephson junction arrays) are expected. The 

former takes place in normal junction arrays and in Josephson junction arrays with Ec ;;p 

EJ, and the latter in arrays with E1 ;;p Ec. The vortex KT transition are observed 

in many experiments(26], while there is no experiment of artificially-fabricated junctions 

which supports the charge KT transition. 

Possible reasons for the absence of the charge KT transition are i) it is difficult to 

separate the charge KT transition from the other single-electron effects, ii) because of 

the finite screening length within which charges interact logarithmically, the charge KT 

transition is washed out. The purpose of this experiment is to study the properties of 

33 
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electrical transport in arrays larger than those studied so far . 

5.1.1 Single-Electron Effects in Two-Dimensional Arrays 

Let us consider a regular square array of tunnel junctions with junction capacitance C and 

self capacitance C0 of island electrode as shown in Fig.5.1.1. We assume that the tunnel 

resistance R is so large that the effects of dissipation are negligible . 

The charge Q( :z:, y) and the potential ¢( :z:, y) on the island-electrode at ( :z:, y) satisfy the 

Poisson equation, 

Q(:z:, y) = C0¢(:z:, y)+C( 4¢(:z:, y)-¢(:z:-1, y)-¢(:z:+1, y)-¢(:z:, y-1)-¢(:z:, y+1)). (5.1) 

We assume that an excess charge exists only on the island-electrode at (0, 0) . In continuum 

approximation for island-electrodes far from the origin r = ~ ~ 1, equation(5.1) 

becomes 

(5.2) 

where A = JcfC0 is the screening length. The solution is 

¢(r) = 2:CKo G). (5.3) 

Here K 0 is the zero-order modified Bessel function. If r ~ A, ¢(r) decays exponentially. 

For r «: A, 

¢(r) = __ e_ln 2:.. 
21rC A 

(5.4) 

Thus an excess charge induces logarithmic potential within the range of A. 

The I -V characteristic of this array shows two features like that of one-dimensional 

arrays.[27J First is the threshold voltage for electron injection. Because electrons are re­

pulsed from the lateral edges, it takes minimum value V.20 for the middle rows: 

(5.5) V.20 = { ~ ( 1 - ~)(f. f 12 
, for Co «: C, 

2c,, for C0 ~ C. 

Second is the offset voltage of I-V curve at large current: 

v.~ = { N ef4C (global rule), 

N e/2C (local rule), 
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(5.6) 

where N is the number of junction in current direction. Here global rule is the limit where 

the time for charge redistribution after tunneling is much shorter than the time electron 

is allowed to spend in the forbidden state by the uncertainty relationship. This time is 

estimated to be h/ Ec because the energy difference between the states before and after the 

tunneling is of the order of Ec. In this limit electron motion far from the edge electrodes 

does not increase the electrostatic energy of the array. Local rule is the opposite limit.[28] 

5. 1.2 C ha r ge K T Transition 

Let us consider the limit C0 = 0. Interaction between charges depends on the mutual 

distance logarithmically. In this case, the system is regarded as two-dimensional Coulomb 

gas of charge and anticharge, which leads to KT transition . 

The KT transition is characterized as the breakdown of the topological order.[29J[30J 

Below a critical temperature TKT, the correlation function of the order parameter is pro­

portional to the power of the distance and "quasi"long range order exists. Here, all of the 

topological excitations, vortices, bind into vortex-antivortex pairs. Above TKT, the corre­

lation of the order parameter is broken by single vortices and anti vortices, and disordered 

state emerges. 

In the case of the charge KT transition, vortices correspond to charges. Below TKT, all 

charges and anticharges bind in pairs. Because the pairs are not pulled or repelled by an 

electric field , the zero-bias resistance of the array becomes infinite. Above TKT the number 

of free charges increases and the resistance becomes finite. 

The transition temperature Tj(T for normal junctions and TicT for Josephson junctions 
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are(31) 

where ec ~ 1.16 for square lattice. 

Tj{T = Ec / 47rec, (5.7) 

(5.8) 

The density of free charges close to the transition (0 ::; (T- TKT )/TKT ~ 1) is square­

root-cusp type and given by 

nr(T) = K exp , ( 
-2b ) 

Jr;r, - 1 
(5.9) 

where K and b are constants of order 1. The resistance is inversely proportional to nr and 

given by 

R(T) = (wN) K exp ( 
2
b ) , (5.10) 

Jr;r,- 1 

where N (W) are the number of junctions parallel (perpendicular) to the current. 

As the voltage becomes larger below TKT> the charge and the anticharge are pulled in 

opposite directions stronger and finally, the pair separates into a free charge and a free 

anticharge. This mechanism makes the I-V characteristic nonlinear as is expected in the 

vortex KT transition.(32) If we write I ex: v•(T), the exponent a(T) is proportional to 1/T 

below TKT and jumps from 3 to 1 at TKT, which corresponds to the "universal jump of the 

superfluid density". Above TKT> a(T) = 1.(33) 

5.1.3 Effects of Dissipation and Josephson Coupling Energy 

We summarize the effects of dissipation and finite Josephson coupling energy on the charge 

KT transition. 

Fazio et al. calculated the effect of dissipation on Tj(T using AES-type action. (34)[35) 

As the dissipation becomes strong, electrons tunnel frequently and the fluctuation of 

charges in the island-electrodes gets large , which reduces the critical temperature. 
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The results are 

Tj(T 7f2 
,no = 1 - 0.1 x -a, for very small dissipation, 
-'KT 4 (5.11) 

-a, ~ 0.45 1- --7f
2 

( 1rTj(T) 
4 4Tj(~ 

for strong dissipation. (5.12) 

Here T~T denotes the transition temperature without the correction. Equation(5.12) im­

plies that the charge KT transition does not occur in arrays with the tunnel resistance 

R, < 15k0. 

Josephson coupling energy EJ also increases the fluctuation of the charges in the island­

electrodes because of the uncertainty relationship between the phase and the charge. When 

EJ is small, the decrease of the critical temperature is expressed as(34) 

T~; = 1 - 0.98 ( EJ )
2 

TKT Ec 
(5.13) 

5.1.4 Experiments on the Charge KT Transition 

Mooij et al.(31) measured the temperature dependence of the resistance of 190 x 60 junction 

array. They showed that the temperature where the resistance diverged in superconducting 

state was almost 4 times larger than that in normal state, which agrees with the prediction 

for the charge KT transition. But because the temperature dependence was the activation 

type 

E 
Rex: exp(- T"), (E.: activation energy), (5.14) 

rather than the predicted square-root-cusp type(eq.(5.10)), it is doubtful whether it is 

the evidence of the charge KT transition. Tighe et al. also measured the temperature 

dependence of the resistance of 70 x 50 junction arrays.(36) They concluded that it was 

complete activation type and that there was no sign of the charge KT transition. 
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5.2 Results and Discussion 

5.2.1 Sample Design and Characteristics 

For the observation of the charge KT transition, the screening length A= V(C/Co) must 

be as large as possible. There are three ways for this purpose: i) To enlarge the junction 

area. ii) To thin the oxide film. iii) To make small island-electrodes. The methods i) and 

ii) are not applicable, since they decrease the tunnel resistance, and consequently suppress 

the charge KT transition as expected in the previous section. Therefore, we make the area 

of the island-electrode as small as possible.(Fig.5.2.1(a)) 

In the experiment, we fabricated a regular square lattice with 400 junctions long and 331 

junctions wide. Leads for voltage measurement are attached to island-electrodes which is 50 

junctions apart from the end-electrode.(Fig.5.2.1(b)) The junction area is about 0.01(J.Lm)2 

and the normal-state resistance per one junction is 60k0. This value is so large that 

we can neglect the effects of the dissipation. By fitting the I-V curve at high voltage to 

V = N RI + N ej2C, we estimated the capacitance C to be 1.7 x 10- 15 F. From these values , 

we obtain the Josephson coupling energy EJ=0.18K and the elementary charging energy 

Ec=0.56K. The self capacitance is estimated to be 5 x 10-17F 1 and the screening length 

A to be 6 junctions. 

5.2.2 Temperature Dependence of Resistance 

Figure 5.2.2 shows the temperature dependence of resistance at V=0.2mV. The electrodes 

were superconducting. As will be mentioned in the next subsection, the I-V characteristic 

was ohmic around and below this voltage. In this figure, the resistance was proportional to 

the inverse of temperature except within the range of 1/ T = 1 - 5. We fit the R-T curve 

within the range of 1/ T = 1 - 5 to the square-root-cusp type temperature dependence 

1 '..Ve estimated C0 by regarding the island-electrode as the metal disk with the same surface area. 
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(5.10). The result is TicT = (0.13 ± 0.01)K , which agrees with the theoretical value 0.14K 

obtained from EJ and Ec . (Eq.(5.8)(5.13)) 

The deviation from the square-root-cusp behavior at 1/ T > 5(T < 0.2K) comes from 

the finite-A effect. As the distance between charges becomes larger than A, the interaction 

falls off exponentially. Therefore, the temperature dependence of resistance deviates from 

the square-root-cusp type ( 5.10) which is obtained in the limit A _, oo . The temperature 

Tdov where the deviation appears is estimated as 

(5.15) 

From this equation, we obtain Td .. /TKT ::::! 1.6, which agrees with the experimental value 

Td .. /TKT = 1.5. Detailed calculation by Minnhagen(37) gives Tdov/TKT::::! 1.4. 

Thus, the temperature dependence ofresistance is attributed to the charge KT transition 

mechanism with finite screening length. 

The activation energy at low temperatures where the temperature dependence of the 

resistance is activation type is 0.63K. This corresponds to the creation energy of single 

Cooper-pairs. According to Tighe et al.[36), the energy for creating a Cooper-pair and an 

anti-Cooper-pair by a Cooper-pair tunneling is (2e) 2/2(2C) = 2Ec in the limit C0 = 0. 

Therefore, the activation energy is Ec = 0.55K. In real junctions, the effective capacitance 

deviates from 2C because of the non vanishing C0 , and consequently the activation energy 

also deviates from Ec. In the experiment by Tighe et a/.(36), the activation energy above 

0.3K is the sum of the creation energy of single electrons and the superconducting energy 

gap. This result does not agree with ours. In their arrays , the Zener tunneling due to a 

small value of EJ / Ec may suppress the Cooper-pair tunneling, and in addition, the motion 

of electron may be strongly affected by the end-electrodes because the array length is only 

about 4 times larger than the screening length. 
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5.2.3 Current-Voltage Characteristics 

The I-V characteristic at 0.055K in zero magnetic field is shown in Fig.5.2.3. The voltage 

corresponding to the superconducting energy gap is estimated from the BCS theory as 

(5.16) 

Using Tc = 1.9K and N=300, we obtain V.o. = 170mV. In Fig5.2.2 we find the structure 

corresponding to V.o.. 

The theory tells that the probability of the Zener tunneling at current i is[38) 

( 
1rE

2 e) r • = exp - B E~ h; . 

The Zener tunneling b ecomes significant near a current 

I N Xi 

Nx~EJ:_ 
8 Ec 1i 

160nA. 

Therefore we attribute the steep increase of voltage above 75nA to Zener tunneling. 

(5.17) 

Around the origin, the high resistance region due to the Coulomb blockade and the Bloch 

nose structure are noticeable. 

This high resistance region shows a large temperature dependence as shown in Fig.5.2.4. 

At the voltage of the order of 1mV, I-V curves are nonlinear while below 1mV they 

approach the ohmic behavior. The results of fitting of this nonlinear part to I ex v• 

are shown in Fig.5.2.5. The temperature where a(T) = 3 is ~0 . 14K. This agrees with TjCT 

obtained above. 

In the ideal KT transition, the relation I ex v• is satisfied at all voltages and a jumps 

from 3 to 1 at the critical temperature. This is not the case in ours. This is to be attributed 

to the effect of finite screening length. In the ideal KT transition where the screening length 
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is infinite, free charges are produced at the critical temperature by the breaking of pairs 

with an infinite distance, which needs infinitesimal energy. When the screening length is 

finite, there exists no pair with an infinite distance and free charges will be produced at 

higher temperatures than in the ideal case. Therefore, above the critical temperature I-V 

curve will deviate from that of ideal case. 

Above Tdc., the free charges can interact with each other logaritlunically. In the experi­

ment, a(T) ~ 1 above Tdc., which agrees with the prediction for the ideal case. Thus the 

temperature range where I -V curves deviate from those in the ideal case can be attributed 

to the effect of finite screening length. But the reasons why a(T) takes values between 1 

and 3 at TKT < T < Td .. and why I-V curves are nonlinear only in finite voltage range are 

still unknown. 

5.2.4 Experiments on the Normal Arrays 

A piece of experimental evidence for the charge KT transition is that the transition tem­

perature in zero magnetic field where the electrodes are superconducting is about 4 times 

larger than that in a magnetic fi eld strong enough to break the superconductivity. Unfor­

tunately, we failed to obtain clear results of the normal junction array in this experiment, 

partly because the expected transition temperature was too low. 

5.3 Conclusion 

We studied the electrical transport properties in a two-dimensional array of small Josephson 

junctions with high resistance. The results are 

1. The square-root-cusp behavior of temperature dependence of resistance was observed 

in finite temperature range. The obtaind critical temperature agrees with the theoret­

ical value. The temperature at which deviation from the square-root-cusp behavior 
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occured also agrees with the theoretical value which takes account of the effect of 

finite screening length. 

2. The overall shape of I-V characteristic is attributed to the single electron effects in 

Josephson junctions. Nonlinear I-V characteristics are seen in finite voltage range. 

The results of fitting of this nonlinear region to I ex: V" are explained as the KT-like 

behavior with finite screening length. 

Chapter 6 

Conclusion 

In this thesis, we studied on three subjects concerning the single-electron effects in small 

tunnel junction arrays. 

In chapter 3, we studied the effects of the array length and the superconductivity on 

the SETO in one-dimensional arrays of small tunnel junctions. We obtained the following 

results: 

1. With microwave irradiation, peaks of differential resistance due to the SETO were 

observed in the normal-state arrays. This implies that the motion of single-electron 

solitons have space- and time-correlation. 

2. The peaks of the differential resistance in the array of N = 31 were higher than those 

in the array of N = 5. This shows that in arrays with length nearly equal to the 

soliton length ). the potential of all the island-electrodes tends to be fixed, resulting 

in weak correlation of solitons. 

3. I-V curves of the array of N = 31 showed zero current region, while those of the 

array of N = 5 did not. This implies that soliton motion in the N = 5 array was 

strongly affected by the end-electrodes. 
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Thus, the results are well explained in the context of the soliton picture. 

4. The SETO structure was purged away by the superconductivity. 

This phenomenon is very interesting because it may be related to the coexistence of 

a classical SETO and a quantum AC Josephson effect. At present, clear explanation 

for this phenomenon is not obtained. 

In chapter 4, we studied electrical transport of small Josephson junction array with 

various RN and E1 I Ec. We obtained the following results : 

1. Just below Tc where E1 I Ec ~ 1 and Rqp ~ RN hold, the boundary between the 

superconductive phase where the zero-bias resistance decreases with lowering T and 

the insulating phase where the zero-bias resistance increases is 3-4k0 . 

2. The temperature dependence of zero-bias resistance of samples with 2.8k0 :S: RN :::; 

3.1k0 and 9.8 :S: E11 Ec :S: 12 shows reentrant behavior. A possible reason is that 

there exists nonideal subgap resistance. The results are qualitatively explained by 

the Korshunov and GS theories . 

3. The Bloch nose structure was found in I-V curves of samples with 2.8k0 :S: RN :S: 

3.1k0 and 9.4 :S: E1 I Ec :S: 11. This is an evidence for the existence of the Bloch 

oscillation in one-dimensional arrays of small Josephson junctions. 

In chapter 5, we studied the electrical transport properties in a two-dimensional array 

of small Josephson junctions with high resistance . The results are 

1. The square-root-cusp behavior of temperature dependence of resistance was observed 

in finite temperature range. The obtaind critical temperature agrees with the theo­

retical value. The temperature at which deviation from the square-root-cusp behavior 

took place also agrees with the theoretical value which takes account of the effect of 

finite screening length. 
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2. The overall shape of I-V characteristic is attributed to the single electron effects in 

Josephson junctions. Nonlinear I-V characteristics are seen in a finite voltage range. 

The results of fitting of this nonlinear region to I ex V" are explained as the KT-like 

behavior with finite screening length. 
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Fig.2.1 .1 Junction fabrication method . (a) Two-layer resists are 
exposed to the electron beam. (b) After the developments, suspended 
bridge structure is fabricated. (c) AI is evaporated from two different 
directions. (d) After the lift-off process, junctions are fabricated where 
the two AI films are overlapped. The hatched areas in the top view 
and the arrows in the sectional view indicate the positions of the 
tunnel junctions. 
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Fig.2.2.1 Measuring ci rcuit for the experiments of the one-dimensional arrays. 

Fig.2.2.2 Measuring circuit for the experiments of the two-dimensional arrays. 
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Fig.3.1 .2 A schematic view of the /- V characteristic of a normal 
single junction. 
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Fig.3.1.3 A schematic equivalent circuit of a one-dimensional junction 
array. 
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Fig.3.1.4 A schematic view of the 1-V characteristic for a one-dimensional 
junction array. 
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(solid curve) and in zero field (broken curve). 
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Fig.3.2.3 I-V characteristic of sample B (N=5) at 40mK in 3 Tesla. 
The inset is the enlargement near the origin. 
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Fig.3.2.4 Differential resistance vs. I of sample A for microwave 
frequencies f= (a) O.SGHz, (b) 1 GHz, (c) 1.5GHz, (d) 2GHz. The 
allows indicate the positions of l=±ef. Curves (a),(b) and (c) are 
offset by 3, 2, and 1 in d V/d/-1 axis for clarity. 
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Fig.3.2.5 Differential resistance vs. I of sample B for f=1 GHz. The 
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Fig.3.2.6 Magnetic field dependence of d V/dl vs . I for sample A 
with the microwave irradiation of f-=1 GHz. The magnetic fields are 
(a) 0.5 T, (b) 0.8 T, (c) 0.9 T, {d) 1 T, (e) 1.2 T, (f) 1.5 T. The allows 
indicate the positions of I= ±ef. The peaks at I= ±ef vanish below 1 
T. The voltage gap in 1- V curve was enhanced by superconductivity 
below 1.2 T. The curves are offset in dV/dl axis for clarity. 
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Fig.4.1 .1 The energy bands of a Josephson junction in the limit of 
Ec >>EJ. 

0 v 
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there is no dissipation, the bands cross at the boundary. (c) When 
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Fig.4.1.4 The phase diagram for the phase transition due to 
quasiparticle tunneling. After (11 ]. 
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Fig.4.1.5 Schematic view of the /- V characteristics of single 
Josephson junctions with various Rqp in the limit of EJ >> Ec and Ec 
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Fig.5.1.1 A schematic equivalent circuit for a two-dimensional junction 

array. 

. ... 
(a) 

v 

(b) 

Fig.5.2.1 (a) An scanning electron microscope picture of Au/Au orototype of the 
two-dimensional array. (b) A schematic view of the arrangement of electrooes in 
two-dimensional array. 
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Fig.5.2.2 (a)Temperature dependence of resistance at V=0.2mV in 
zero magnetic field. Solid line shows the result of the fitting to the 
square-root-cusp temperature dependence. 
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