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（要約）



 

 

 

 

 

“…… Ende dat steekt in het glas te slypen, ende in het ontdekken van de saaken, die voor onse oogen 

verborgen syn, niet. En het staat ook by my vast, dat van duysent menschen geen een bequaam is om 

sig over te geven tot zoodanige studie; om dat 'er veel tydts toe vereyst wert, veel gelt gespilt wert; 

ende men geduyrig met syne gedagten moet besig wesen, sal men wat uytvoeren. Ende daar en boven 

syn de meeste menschen niet weet gierig; ja eenigen, daar men het niet van behoorde te wagten, 

seggen, wat is 'er aangelegen of wy het weten? ……” 

 

 

 

 

 

“…… But in lens-grinding, and discovering things hidden from our sight, these count for nought. And 

I'm satisfied too that not one man in a thousand is capable of such study, because it needs much time, 

and spending much money; and you must always keep on thinking about these things, if you are to get 

any results. And over and above all, most men are not curious to know: nay, some even make no bones 

about saying. What does it matter whether we know this or not? ……” 

 

 

Antoni van Leeuwenhoek, Sept. 28
th
, 1715, letter to Gottfried Leibniz 
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Abstract 

 

Unifacial leaves are unique among angiosperm leaves in that the adaxial/abaxial (ad/abaxial) polarity 

along the longitudinal axis of leaves is different. The proximal leaf sheath is bifacial, including both 

the adaxial and the abaxial polarities. The distal leaf blade, however, is unifacial, including only the 

abaxial polarity. The evolutionary origin and developmental processes of unifacial leaves, and the 

degree of abaxilization in the distal leaf blade, were much debated in the history. The “adaxial 

meristem hypothesis” states that unifacial leaves are formed postgenitally by the activity of the 

adaxial meristem in certain part of the leaf blade. The “sympodial hypothesis” states that unifacial 

leaves are formed by the leaf meristem succession from the bifacial leaf apex to the unifacial leaf apex. 

The “subunifacial hypothesis” states that unifacial leaves are formed postgenitally by marginal fusion 

and a small adaxial sector is retained in the distal blade. These hypotheses were proposed more than 

40 years ago, based on comparative morphological, anatomical, developmental, and histogenetic 

analyses. These approaches are quite outdated and modern ones such as examining DNA synthesis 

activity and gene expression should be applied instead. In addition, in the past there is no efficient 

method to analyze the direction of cell division, making it hard to evaluate these hypotheses. 

Therefore, in my dissertation, I aim to develop an efficient method to quantify the direction of cell 

division, and use this method and another modern approach (in situ hybridization) to check these 

hypotheses regarding unifacial leaves. 

 

In Chapter I, I reviewed historical and recent molecular studies regarding unifacial leaves and leaf 

ad/abaxial polarity. In Chapter II, I developed a pulse-chase 5-ethynyl-2’-deoxyuridine (EdU) method 

and demonstrated its efficiency and usefulness in the model plant Arabidopsis (Arabidopsis thaliana). 

In Chapter III, I applied this method to an ensiform unifacial leaf species Juncus prismatocarpus 

(Juncaceae) and analyzed the location and direction of cell division to evaluate the “adaxial meristem 

hypothesis” and the “sympodial hypothesis”. I also compared cell division pattern with expression 

patterns of various genes known to be important in its leaf development. In Chapter IV, I cloned and 

checked the expression pattern of KNOTTED1 (KN1) ortholog in J. torreyi, to examine the likely 

cause of “subunifacial hypothesis”. I found that while the “sympodial hypothesis” should be rejected, 

the “adaxial meristem hypothesis” and the “subunifacial hypothesis” should be modified substantially. 
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Chapter I: General Introduction 

 

1. Historical studies on unifacial leaves 

 

Angiosperm leaves have a wide range of morphological diversity (Tsukaya, 2014). The so called 

“unifacial leaf” is the most controversial one among various angiosperm leaf forms (Kaplan, 1975). 

Its proximal sheath has distinct adaxial and abaxial surfaces. As it moves toward the distal leaf blade, 

morphologically it appears that the two margins roll inward adaxially and ultimately fused together 

along the midline and the adaxial surface is progressively lost, hence being “unifacial”. This adaxially 

marginal fusion is termed “cross zone” (Hagemann and Gleissberg, 1996) and could be diagnostic of 

unifacial leaves from gross morphology (Gleissberg et al., 2000). Thus, in general, unifacial leaves 

are only partially unifacial along the proximal-distal leaf axis (Hagemann, 1970; Kaplan, 1975; 

Gleissberg et al., 2000; Eberwein, 2007). In the bifacial leaf sheath, vascular bundles are arranged 

with their xylem poles toward the adaxial surface and their phloem poles toward the abaxial surface 

(collateral); whereas in the unifacial leaf blade, vascular bundles are arranged like a ring structure 

with their xylem poles toward inside and phloem poles toward outside (amphicribral) (Fig. 1.1. cf. 

Kaplan, 1975. Text-Fig. 1, p3). In addition to the form where the leaf sheath is relatively short and the 

leaf blade is relatively long, the opposite form also exists. In this form, the relatively short leaf blade 

is often termed “vorläusferspitze” (“precursor tip” or “forerunner tip”) (Troll, 1939) (Fig. 1.1. cf. 

Kaplan, 1975. Text-Fig. 1, p3). Goebel (1928) used the term “exotrophie” to describe leaves with an 

expanded abaxial surface. Troll (1939) used the term “unifacial” to describe leaves that their distal 

part is derived from only one surface, the abaxial surface. In the classical literatures concerning 

unifacial leaves, the terms “dorsal” and “ventral” are commonly and interchangeably used for 

“abaxial” and “adaxial”, respectively (e.g., Kaplan, 1970a, 1970b, 1973a, 1973b, 1975), making 

considerable confusion. In my dissertation, I will only use the terms “abaxial” and “adaxial”, to refer 

to the surface away from the shoot apical meristem (SAM) and the surface facing to the SAM, 

respectively. 

 

Because the shape of unifacial leaves is typically oblong and terete, historically efforts have been 

made to compare various parts of unifacial leaves with morphologically similar eudicotyledonous 
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leaves and to attempt to find homology with clearly defined leaf parts such as leaf petiole and leaf 

lamina, from morphological (de Candolle, 1827), anatomical (Henslow, 1911; Arber, 1918, 1925) and 

developmental and histogenetic approaches (Troll 1939; Troll and Meyer, 1955; Hagemann, 1970; 

Kaplan, 1970a, 1970b, 1973a, 1973b, 1975). de Candolle (1827) proposed the “phyllode hypothesis”, 

based on the morphological similarity between unifacial leaves and petiolar phyllodes of certain 

species of Acacia (Fabaceae) and Oxalis (Oxalidaceae). The “phyllode hypothesis” was later 

supported by Henslow (1911) and Arber (1918, 1925), based on the then popular concept of leaf zonal 

division of “unterblatt” (“lower zone”) and “oberblatt” (“upper zone”) (Eichler, 1861). Arber (1918, 

1925), for example, considered unifacial leaves are derived from “unterblatt” of leaves and unifacial 

leaves are “debladed, transformed, and expanded” petioles or phyllodes. She emphasized the 

homology between unifacial leaves and petioles of eudicotyledonous leaves. 

 

Goebel (1884, 1905) proposed the “sympodial hypothesis”, in reference to the sympodial mode of 

stem growth. This hypothesis was supported by Thielke (1948), Roth (1949, 1957, 1961), and 

Ravololomaniraka (1972). These authors believed that development of unifacial leaves has two phases. 

In the first phase, leaf primordia arch over (acrovergent curvature) the SAM by the activity of the 

“primary leaf apex”. In the second phase, the “primary leaf apex” ceases activity and the “secondary 

leaf apex” is activated on the abaxial surface and makes leaf primordia to grow in a different direction, 

the longitudinal direction. Because there is a succession from the “primary leaf apex” to the 

“secondary leaf apex”, hence the term “sympodial” is applied. According to these authors, it is the 

activity of the “secondary leaf apex” that gives rise to the elongated form of ensiform unifacial leaves 

such as Iris (Iridaceae) (Fig. 1.2. cf. Kaplan, 1975. Text-Fig. 9, p51). In addition, Ravololomaniraka 

(1972) further recognized a “tertiary leaf apex” at the adaxial side of the leaf sheath in certain plants 

such as Juncus species (Juncaceae). 

 

The “phyllode hypothesis” and the “sympodial hypothesis” were rejected by Troll (1932, 1939), Troll 

and Meyer (1955), Hagemann (1970), and Kaplan (1970a, 1970b, 1973a, 1973b, 1975), based on 

comparative leaf development and histogenetic features such as leaf meristem activity. However, 

disagreement exists as whether the development of unifacial leaves is postgenital (Hagemann, 1970; 

Kaplan, 1970a, 1970b, 1973a, 1973b, 1975) or congenital (Troll, 1932, 1939; Troll and Meyer, 1955). 
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According to Hagemann (1970) and Kaplan (1970a, 1970b, 1973a, 1973b, 1975), unifacial leaf 

primordia are bifacial in origin and “becoming” unifacial postgenitally as a result of the activity of 

“adaxial meristem”. This process was also documented in phyllodes of Acacia longifolia and Acacia 

melanoxylon (Boke, 1940). Kaplan (1970a, 1975) demonstrated that the development of phyllodes of 

Acacia cyclops; bipinnate leaf form, transitional form, and phyllodic form of Acacia melanoxylon; 

rachis leaves of Oxypolis greenmanii (Apiaceae); and unifacial leaves of Acorus calamus (Araceae), 

Allium cepa (Amaryllidaceae), Dracaena fragrans (Agavaceae), Ornithogalum caudatum (Liliaceae), 

Sansevieria suffruticosa (Agavaceae), and Sansevieria trifasciata are all due to the activity of adaxial 

meristem, thus inferring homology among these organs. However, it should be noted that this 

homology is between above unifacial organs and blades of eudicotyledonous leaves. Kaplan (1975) 

considered the leaf sheath is derived from “unterblatt” and the part which has the “adaxial meristem” 

is derived from “oberblatt”. Therefore, while Arber (1918, 1925) inferred homology from “suppressed 

leaf blade”; Kaplan (1975), on the other hand, inferred homology from “alternative course of leaf 

blade morphogenesis” (Rudall and Buzgo, 2002). 

 

As pointed out by Kaplan (1975), the central problem (historically) in interpretation of unifacial 

leaves is the boundaries of longitudinal subunits. Contrary to the historical “unterblatt” and “oberblatt” 

division of leaves (Eichler, 1861), a transitional zone, characterized by adaxial meristem activity, is 

recognized by some authors (Troll, 1939; Roth, 1949) (Fig. 1.3. cf. Rudall and Buzgo, 2002. Fig. 

23.10, p450). According to Kaplan (1970a, 1970b, 1973a, 1973b, 1975), the unifacial part of the leaf 

is made by postgenital growth of adaxial meristem. Leaf primordia are initiated as a dorsiventrally 

flattened, bifacial structure. Where adaxial meristem is active (the transition zone), the flat leaf 

primordia would grow in the direction that is perpendicular to the original flat plane and thus become 

rounded or elongated. The vascular bundles are first differentiated in the abaxial side as a manner 

typical to bifacial leaves (collateral); but later on, vascular bundles at the adaxial side differentiate 

from adaxial meristem. As a result they face oppositely to those first differentiated, thus forming the 

overall ring structure of vascular bundles (amphicribral) and complete the postgenital conversion from 

bifacial to unifacial (Fig. 1.4. cf. Kaplan, 1975. Text-Fig. 14, p98). Where adaxial meristem is not 

active, such as the tip of unifacial leaves, it “never completely loses its dorsiventrality”. Although he 

recognized the ring arrangement of vascular bundles in the tip of unifacial leaves, he failed to give a 
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plausible explanation of such arrangement. In addition, Roth (1957) and Kaplan (1970a, 1975) also 

recognized “abaxial meristem” in certain species such as Acorus calamus, Sansevieria cylindrica and 

Sansevieria suffruticosa. Contrary to Hagemann’s (1970) and Kaplan’s (1970a, 1970b, 1973a, 1973b, 

1975) postgenital view, according to Troll (1932, 1939) and Troll and Meyer (1955), the development 

of unifacial leaves is congenital. Although they also recognized “adaxial growth activity” in very early 

leaf development, they considered it as a special type and different from the adaxial meristem sensu 

Kaplan (1970a, 1970b, 1973a, 1973b, 1975). In their view, since the unifacial part of leaves has only 

abaxial surface, the term “adaxial meristem” is invalid. Instead, they used the term 

“rundungsmeristem” (“rounding meristem”) to describe such early “adaxial” growth activity. In 

addition, Kaplan (1970a, 1975) demonstrated that the presumed “leaf primordia arch over the SAM” 

of the “sympodial hypothesis” is merely strong “adaxial meristem” activity to give such an “arch over” 

impression in Acorus calamus, Sansevieria trifasciata and D. fragrans and rejected the “sympodial 

hypothesis”. 

 

Hagemann’s (1970) postgenital view is different from Kaplan’s (1970a, 1970b, 1973a, 1973b, 1975) 

and he proposed the “subunifacial hypothesis”. He argued that the unifacial part is formed by 

postgenital fusion of leaf margins along the leaf proximal-distal axis. In bifacial leaves, this fusion is 

only seen at the leaf apex, thus separating the abaxial and adaxial surfaces. In unifacial leaves, 

however, this fusion gradually occurs at the adaxial side as two marginal meristems gradually “grow” 

toward each other and ultimately become fused adaxially, forming the so called “cross zone” 

(Hagemann and Gleissberg, 1996). Morphologically it appears that along the proximal-distal axis the 

adaxial surface does not grow and being furrowed in between the much expanded abaxial surface. 

Because the adaxial surface still accounts for a small portion of the morphologically radial leaf, hence 

it is not truly unifacial but “subunifacial”. It must be pointed out that Troll and Meyer (1955) argued 

that only the bifacial part has marginal meristems and marginal meristems are lost in the unifacial part. 

Hagemann (1970), in contrast, believed that marginal meristems are extended from the bifacial part 

and ultimately fused adaxially in the “subunifacial” part. While Kaplan (1975) agreed that a leaf is 

always dorsiventral more or less, he rejected the idea that fusion of marginal meristems being the 

reason of this. 
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2. Molecular studies on leaf development and leaf adaxial/abaxial polarities 

 

All angiosperm leaves are initiated from the SAM, a group of self-renewing pluripotent cells. The 

pluripotency of cells in the SAM is maintained by class I KNOTTED1-LIKE HOMEOBOX (KNOX1) 

genes (Hake et al., 2004; Hay and Tsiantis, 2009, 2010). KNOTTED1 (KN1) gene was the first 

homeobox gene found from plants (Vollbrecht et al., 1991). Subsequently, other related genes, 

KNOTTED1-LIKE HOMEOBOX (KNOX) genes, were identified as transcription factors that 

regulate various aspects in plant development (Hake et al., 2004; Hay and Tsiantis, 2009, 2010). 

KNOX1 genes are most similar to KN1 among KNOX genes on the basis of sequence similarity of the 

homeodomain and expression patterns (Kerstetter et al., 1994). In plants with simple leaves such as 

maize, KNOX1 genes expression is confined to the SAM (except leaf founder cells) and some parts of 

the stem (Jackson et al., 1994); whereas in plants with compound leaves, KNOX1 genes expression is 

also seen at where leaflets will form (Bharathan et al., 2002; Hake et al., 2004; Hay and Tsiantis, 2006, 

2009, 2010), with the exception of garden pea (Pisum sativum, Hofer et al., 1997) and palm 

(Chamaedorea elegans, Nowak et al., 2011). To initiate leaf primordia, KNOX1 genes must be 

downregulated in the leaf founder cells. This is achieved by a MYB transcription factor ASSYMETRIC 

LEAVES1 (AS1) in Arabidopsis (Arabidopsis thaliana, Byrne et al., 2000); ROUGH SHEATH2 (RS2) 

in maize (Timmermans et al., 1999; Tsiantis et al., 1999); and PHANTASTICA (PHAN) in snapdragon 

(Antirrhinum majus, Waites et al., 1998) (collectively, ARP genes). Consistently, ARP genes are 

expressed in leaf primordia, restricting KNOX1 genes (Byrne et al., 2000; Timmermans et al., 1999; 

Tsiantis et al., 1999; Waites et al., 1998). 

 

Gain-of-function mutants for knox1 result from the ectopic expression of KNOX1 genes outside the 

SAM, i.e., in leaf primordia. In maize, there are five known gain-of-function mutants for knox1: KN1 

(Vollbrecht et al., 1991), RS1 (Schneeberger et al., 1995), LIGULELESS3 (LG3) (Fowler and Freeling, 

1996; Muehlbauer et al., 1999), LG4 (Fowler and Freeling, 1996), and GNARLEY1 (GN1) (Foster et 

al., 1999). All these mutants have disrupted organization along the proximal-distal axis of the leaf, 

having distal tissues to adopt proximal identities (Hake et al., 2004). For example, leaves of kn1, the 

first characterized knox1 mutant, have their blade adopting sheath, auricle, and ligule tissues, all of 

which are proximal to the blade in the wild type (Vollbrecht et al., 1991). Initially, roles of KNOX1 
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genes had been discussed mainly on the proximal-distal organization of leaves (Freeling and Hake, 

1985; Vollbrecht et al., 1991; Freeling, 1992; Sinha and Hake, 1994; Schneeberger et al., 1995; 

Fowler and Freeling, 1996; Foster et al., 1999; Muehlbauer et al., 1999). However, the focus of the 

research has moved to their roles on maintaining the meristematic activity and downstream 

developmental pathways in this decade (Hake et al., 2004; Hay and Tsiantis, 2009, 2010), although 

the role on proximal-distal organization of leaves has been recently revisited (Ramirez et al., 2009). 

 

As leaf primordia are being initiated, adaxial/abaxial (ad/abaxial) polarities are established. PHAN is 

the first polarity gene recognized (Waites and Hudson, 1995). In phan mutants, the leaf is rod-shaped 

and has only abaxial characters and adaxial characters are lost (Waites and Hudson, 1995). In addition, 

it was noticed that novel axes of growth were formed at ectopic boundaries between the adaxial cell 

fate and the abaxial cell fate. It was therefore concluded that the adaxial cell fate and the abaxial cell 

fate are mutually exclusive and the juxtaposition of both is required for leaf blade lateral growth 

(Waites and Hudson, 1995). Besides PHAN, the class III homeodomain leucine zipper (HD-ZIPIII) 

transcription factor subfamily, including PHABULOSA (PHB), PHAVOLUTA (PHV), and REVOLUTA 

(REV), also plays an important role in specifying the adaxial cell fate (McConnell et al., 2001; Emery 

et al., 2003; Juarez et al., 2004; Itoh et al., 2008a). Complementary to PHAN and HD-ZIPIII, other 

transcription factors, including AUXIN RESPONSE FACTOR3/4 (ARF3/4) and KANADI (KAN), play 

important roles in specifying the abaxial cell fate (Kerstetter et al., 2001; Eshed et al., 2001, 2004; 

Pekker et al., 2005; Candela et al., 2008; Itoh et al., 2008b; Zhang et al., 2009). In addition, small 

RNAs are also of great importance in regulating leaf ad/abaxial polarities. microRNA390/trans-acting 

small interfering RNA-ARF (miR390/tasiR-ARF) is produced at the adaxial side of leaf primordia 

and then travels to the abaxial side and regulates the expression of ARF3/4 (Nogueira et al., 2007; 

Chitwood et al., 2009); whereas miR166 is expressed in a gradient with its maximum at the abaxial 

side of leaf primordia and regulates the expression of HD-ZIPIII (Juarez et al., 2004). In addition, the 

marginal outgrowth is regulated by PRESSED FLOWER (PRS) in the WUSCHEL-RELATED 

HOMEOBOX (WOX) transcription factor family (Matsumoto and Okada, 2001). 

 

The study by Yamaguchi et al. (2010) was the first and only study of the development of ensiform 

unifacial leaves of J. prismatocarpus using molecular and genetical approaches. In this study, it was 
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demonstrated that the leaf sheath has PHB expression at the adaxial side and ARF3 expression at the 

abaxial side. In addition, J. prismatocarpus has two subclasses of PRS, PRSa and PRSb. PRSa is 

expressed at the margins of the leaf sheath. The expression patterns of these genes indicate the leaf 

sheath of J. prismatocarpus is the same as bifacial leaves. However, in the leaf blade, only ARF3 is 

expressed and there is no PHB expression (except in xylem cells). This indicates that the leaf blade of 

J. prismatocarpus is abaxial at the molecular level. It was further demonstrated that DROOPING 

LEAF (DL), a transcription factor in the CRABS CLAW (CRC)/DL subfamily of the YABBY (YAB) 

transcription factor family, is expressed at the central adaxial region of the leaf blade from P1 to P2 

stages but only at vascular bundles from the P3 stage. In J. wallichianus, a closely related terete 

unifacial leaf species, DL is expressed only at vascular bundles throughout. Interspecific hybridization 

study between these two species indicated DL from J. prismatocarpus is responsible for the ensiform 

unifacial leaf development. This was further confirmed by mutant analyses. In J. prismatocarpus 

mutants which develop terete leaf shape, the expression of DL in the central adaxial region is lost. In 

addition, it was found that PRSb is expressed at reorganized leaf margins (or pseudo margins) of the 

unifacial leaf blade from the P3 stage in J. prismatocarpus. Since true leaf margins are absent in the 

unifacial leaf blade, this reveals an alternative mode of leaf flatness growth. In bifacial leaves of rice 

(Oryza sativa), DL is expressed in the central part of leaf primordia and promotes cell proliferation 

and thickening of the midrib (Yamaguchi et al., 2004). Based on above findings, a model of ensiform 

unifacial leaf blade development in J. prismatocarpus was proposed (Fig. 1.5): initially the leaf blade 

is terete due to abaxialization, as in the bifacial leaf mutants which lack adaxial regulators; then DL 

promotes cell proliferation towards the SAM and the shape of the leaf blade becomes ensiform; finally, 

after the leaf blade growth direction is changed and leaf margins are reorganized, the leaf blade is 

further modified to assume its final shape by the activities of DL in vascular bundles and PRSb in 

reorganized leaf margins (Yamaguchi et al., 2010). 
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3. Questions to be addressed and the outline of the dissertation 

 

From two preceding sections, it is very obvious to conclude that there exist some major discrepancies 

between historical studies on unifacial leaves and more recent molecular studies on leaf ad/abaxial 

polarities in terms of the understanding of developmental processes of unifacial leaves. For example, 

it was demonstrated that the leaf blade of J. prismatocarpus is abaxial at the molecular level 

(Yamaguchi et al., 2010). This finding is clearly inconsistent with Hagemann’s (1970) “subunifacial 

hypothesis” and Kaplan’s (1970a, 1970b, 1973a, 1973b, 1975) “adaxial meristem hypothesis”. 

Another example is that it was demonstrated that only the leaf sheath of J. prismatocarpus has true 

leaf margins (defined as the presence of juxtaposition of both adaxial and abaxial surfaces) whereas in 

the leaf blade they are absent (Yamaguchi et al., 2010). This is also inconsistent with Hagemann’s 

(1970) “subunifacial hypothesis” that leaf margins are gradually fused adaxially in the upper part of 

unifacial leaves. In addition, Kaplan’s (1970a, 1970b, 1973a, 1973b, 1975) analyses of “adaxial 

meristem” in various species is purely based on examining the density of nuclear staining, size of cells, 

and the degree of vacuolation, criteria used to define “meristem” in the past and are already outdated. 

It lacks direct evidence of whether meristem activity is indeed present in the modern sense. 

 

In my opinion, the terms “adaxial meristem” and “abaxial meristem” are vague and should be 

clarified for the following reasons. First, these two terms only imply positional instead of molecular 

information. According to Kaplan (1970a, 1970b, 1973a, 1973b, 1975), “adaxial meristem” is located 

at the most adaxial region to the major vascular bundle and “abaxial meristem” is located at the most 

abaxial region to the major vascular bundle (Fig. 1.3). However, molecularly, as demonstrated by 

Yamaguchi et al. (2010), both parts are abaxial in J. prismatocarpus. In this sense, “rounding 

meristem” proposed by Troll and Meyer (1955) is more appropriate. Second, these two terms do not 

imply the direction of growth. Examining the density of nuclear staining, size of cells, and the degree 

of vacuolation are neither accurate nor sufficient to judge the direction of growth. Although 

examining the mitotic figures (Kaplan, 1970a) can provide limited clue, it is far from enough to draw 

a firm conclusion about the direction of growth. This is largely due to in the past the lack of an 

efficient method to analyze the direction of cell division. Therefore, I aim to develop such a method 

and apply it to J. prismatocarpus to analyze both the location and direction of cell division to evaluate 
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the validity of “adaxial meristem” (to be more appropriate, “rounding meristem”) and compare with 

known genes’ expression patterns. 

 

Although Hagemann’s (1970) “subunifacial hypothesis” is not supported by molecular studies in J. 

prismatocarpus, there do exist some exceptions that morphologically support the “subunifacial 

hypothesis”, such as seen in Luisia teres (Orchidaceae) and Senecio radicans (Asteraceae) (personal 

observation). In addition, Ozerova and Timonin (2009) provided anatomical and developmental 

evidences of Senecio acaulis, Senecio crassissimus, Senecio hallianus, Senecio herreianus, and 

Senecio rowleyanus being subunifacial. This strongly suggests that both unifacial and subunifacial 

forms exist and they may represent two different types of leaf. In truly unifacial leaves such as J. 

prismatocarpus, the proximal leaf sheath has adaxial and abaxial surfaces; whereas the distal leaf 

blade has only abaxial surface. In subunifacial leaves, the proximal leaf sheath has adaxial and abaxial 

surfaces, same as truly unifacial leaves; whereas the distal leaf blade also has adaxial and abaxial 

surfaces, different from truly unifacial leaves. Therefore, it appears that subunifacial leaves have a 

small portion of adaxial tissues from the proximal sheath extends into the distal blade. Superficially, 

this resembles gain-of-function mutants for knox1 (Vollbrecht et al., 1991; Freeling, 1992; 

Schneeberger et al., 1995; Fowler and Freeling, 1996; Foster et al., 1999; Muehlbauer et al., 1999). 

Gain-of-function mutants for knox1 have disrupted organization along the proximal-distal axis, 

having distal tissues that adopt proximal identities (Hake et al., 2004). It is therefore interesting and 

bold to hypothesize that the symptom seen in subunifacial leaves is due to the ectopic expression of 

KNOX1 in leaves. To check this hypothesis, I aim to study the expression pattern of KN1 ortholog in J. 

torreyi, a species in a unifacial clade but morphologically appears to be subunifacial. 

 

In Chapter II, I developed a pulse-chase 5-ethynyl-2’-deoxyuridine (EdU) method that can rapidly 

quantify the direction of cell division and demonstrated its efficiency and usefulness in the model 

plant Arabidopsis (Yin and Tsukaya, 2016). In Chapter III, I applied this method to J. prismatocarpus 

and analyze not only the location but also the direction of cell division, to evaluate the validity of 

previously proposed hypotheses about unifacial leaves and compare with known genes’ expression 

patterns. In Chapter IV, I cloned and checked the expression pattern of KN1 ortholog in J. torreyi, to 

examine the hypothesis that the ectopic expression of KNOX1 in leaves results in subunifacial. 
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Chapter V: General Discussion and Conclusion 

 

The morphogenesis of unifacial organs (including unifacial leaves, phyllodes of Acacia, and rachis 

leaves of Oxypolis) is one unresolved question in classic botany. It is also one typical example of how 

people’s view on a particular question has been changed and advanced when newer approaches and 

tools become available. When only plant morphology and plant anatomy were considered, the 

“phyllode hypothesis” (de Candolle, 1827; Henslow, 1911; Arber, 1918, 1925) was the accepted 

hypothesis about unifacial organs. However, when comparative developmental approaches were 

available and became popular, it was soon rejected. Arber (1950), later in her career, had rejected her 

original “phyllode hypothesis” (Arber, 1918, 1925). “New” hypotheses such as the “sympodial 

hypothesis” (Thielke, 1948; Roth, 1949, 1957, 1961; Ravololomaniraka, 1972), the “adaxial meristem 

hypothesis” (Kaplan, 1970a, 1970b, 1973a, 1973b, 1975), and the “subunifacial hypothesis” 

(Hagemann, 1970) were formed based on comparative developmental and anatomical evidences. 

Although the details are very much different, these hypotheses have one feature in common. They all 

attempt to use the “meristematic activity” to explain the morphogenesis of unifacial organs. However, 

the criteria used to judge the “meristematic activity” include the density of nuclear staining, size of 

cells, the degree of vacuolation, and occasionally, mitotic figures (Kaplan, 1970a), all of which are 

already outdated. Lacking a direct and powerful method to judge “meristematic activity” is probably 

the reason why these authors could not reach a definitive conclusion on the morphogenesis of 

unifacial organs. Surprisingly, it seems that almost nobody has followed this unresolved classic 

question raised since the 19
th
 century and it has almost been lost in history, even though nowadays we 

know quite a lot about leaf development and leaf ad/abaxial polarities at the molecular level. 

Therefore, I take one step forward, attempting to evaluate these hypotheses using modern molecular 

approaches and using Juncus (Juncaceae) as a model system. 

 

The “sympodial hypothesis” focuses on the spatial change of leaf “meristematic activity”. It asserts 

that there is a succession of leaf meristem from the leaf tip to the leaf abaxial side (Fig. 1.2). Kaplan 

(1970a, 1975) already demonstrated that the presumed “leaf primordia arch over the SAM” is merely 

strong “adaxial meristem” activity to give such an “arch over” impression in various species. 

Regardless whether “adaxial meristem” is present or not (details see next paragraph), my EdU study 
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showed that there is no such spatial succession between various developmental stages of the leaf blade 

of J. prismatocarpus. Therefore, the “sympodial hypothesis” should be rejected, although studies in 

other unifacial species are needed. 

 

The “adaxial meristem hypothesis” asserts that the “adaxial meristem” causes the thickening growth. 

This presumed “adaxial meristem” is considered to be located at the most adaxial region of the 

“transition zone” (Fig. 1.3). Although it is useful in explaining the development of unifacial leaves, it 

obviously contradicts to some molecular evidences. First, historically, the ad/abaxial polarity was not 

known at the molecular level. Yamaguchi et al. (2010) recently showed that there is no adaxial 

identity in the leaf blade of J. prismatocarpus at the molecular level. Therefore, the term “adaxial 

meristem” itself is incorrect. Although “rounding meristem” proposed by Troll and Meyer (1955) has 

no such defect, it seems that this term is only applicable to those terete species. The shape of the leaf 

blade of ensiform species is not “round”. Second, the impression of “adaxial meristem” is based on 

anatomical and histogenetic evidences, as cells located at that geographical region are very small, 

easily stained, and have no vacuolation. EdU, instead, offers a direct visualization of cell division. 

Here I demonstrated that in cross sections, there are some cells already expanded and vacuolated in 

the central region of the leaf blade also have the EdU signal (Fig. 3.7). Therefore, those outdated 

criteria are not accurate. If we define cells are able to divide belong to the leaf meristem, then the leaf 

meristem as detected by EdU signals would include across the entire leaf blade. Third, as revealed by 

my pulse-chase EdU analysis, while the thickening growth is primarily contributed by the 

geographical “inner” region (corresponds to the “adaxial meristem” sensu Kaplan), other regions 

together do contribute to ~40% of the thickening growth. Therefore, thickening growth is not 

restricted to a certain region. Instead, it occurs across the entire leaf blade. Based on above reasons, 

the “adaxial meristem hypothesis” must be modified substantially. 

 

The “subunifacial hypothesis” asserts that marginal meristems fusion results in a small adaxial sector 

being wedged by the abaxial surface. Although such presumed marginal fusion is unlikely, 

morphologically subunifacial species do exist. Because the ectopic expression of knox1 alters the leaf 

sheath and blade patterning in maize (Z. mays), such unique case of modified organogenesis of 

subunifacial leaves might be also caused by ectopic expression of KN1 homolog in the leaf. I 
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demonstrated that indeed, JtKN1, the ortholog of KN1 of maize, is expressed in leaf primordia from 

the P1 to the P4 stage. Therefore, while the “subunifacial hypothesis” should be retained, its likely 

cause is different from initially proposed by Hagemann (1970). Its detailed organogenesis 

mechanisms are to be elucidated in the future. 

 

In addition to these hypotheses, Yamaguchi et al. (2010) proposed a model of ensiform unifacial leaf 

development in J. prismatocarpus. In this model (Fig. 1.5), DL promotes cell proliferation towards the 

SAM and the shape of the leaf blade is changed from the initially terete to ensiform; after the leaf 

blade growth direction is changed and leaf margins are reorganized, the leaf blade is further modified 

to assume its final shape by the activities of DL in vascular bundles and PRSb in reorganized leaf 

margins. This model is based on various genes expression patterns and genetical evidences, and uses 

these information to infer cell proliferation. I checked directly the cell division pattern using EdU, and 

compared with DL, PRSa, and PRSb expression patterns. I found that DL-expressing cells are able to 

influence the cell division activity of non-DL-expressing cells, not only spatially but also temporally, 

although it is also possible that thickening growth is not controlled by DL alone. In addition, PRSa has 

a more direct local influence on the cell division activity in leaf margins in the leaf sheath than PRSb 

does in reorganized leaf margins in the leaf blade. This comparison approach provides invaluable 

insights into how key genes influence the cell division activity spatially and temporally during the 

development of unifacial leaves. 

 

In my dissertation, I examined various hypotheses of unifacial leaf development. I developed a 

pulse-chase EdU method to quantify the direction of cell division. I first demonstrated its usefulness 

in Arabidopsis, and then applied it to an ensiform unifacial leaf species J. prismatocarpus. I found 

there is no succession of EdU signals, thus rejecting the “sympodial hypothesis”. I also found 

thickening growth is not restricted to the “adaxial meristem” (sensu Kaplan), thus providing evidences 

to modify the “adaxial meristem hypothesis”. I found JtKN1 is ectopically expressed in J. torreyi leaf 

primordia, thus providing evidence to the likely cause of the “subunifacial hypothesis”. I also 

compared the cell division pattern with known genes expression patterns in J. prismatocarpus, 

making it possible to modify the existing model about ensiform unifacial leaf development. The new 

method I developed (pulse-chase EdU method) and the new approach I used (compare the cell 
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division pattern and the key genes expression patterns) could also be utilized in other plant species to 

answer important questions. My dissertation study is an example of how modern methods and 

approaches can provide new insights into old and unresolved issues. 
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