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Chapter 1 

Introduction 

Modern cosmology has been trying to unveil various enigmas concerning our universe. It, 

however, is the only universe that we can observe. Nor can we create any universe artificially 

to make useful and ambitious experiments which are indispensable to the understanding of 

nature. Thus it is impossible for us to compare our universe with those in other evolutionary 

stages or those born under different initial conditions. The only thing that we can do is to 

collect the information from the sky passively. It is a rather irritating situation. Nevertheless 

the universe has an abundance of possibility as an exhibition of high energy physics world. 

It is widely believed that the universe was once in extremely hot and dense state that cannot 

be reproduced in laboratories. 

In the thesis, one of the outcomes is reported when the particle physics is applied to 

the early universe. The main subject is the generation and the evolution of topological 

defects. In the rest of this chapter, basic concepts and terms which will be used hereafter 

are introduced. In the chapter 2, the dynamics of a quantum phase transition during the 

inflation is st udied. Such a transition is associated with the natural production mechanism 

of topological defects. The properties of the concrete examples of topological defects, domain 

walls surrounded by global stri ngs and global textures, are investigated in the chapters 3 

and 4 respectively. Finally the chapter 5 is devoted to the conclusion. 

Throughout the thesis, we set c = h = ka = I, that is, we employ the unit where the light 

velocity, the Planck constant divided by 211" and the Boltzmann constant are normalized to 

unity. 



1.1 The Standard Cosmology 

The fi rst successful physical view of the universe is based on the Big Bang model[!, 2]. This 

model is constructed from general relativity, the most reliable classical gravitational theory 

and the cosmological principle, the assumption that t he universe is globally homogeneous 

and isotropic. In t he scheme of the general relativity, space and time are not given a priori. 

They should be called a spacetime which evolves dynamically. Under the cosmological 

principle, the universe is described as a Riemannian spacetime manifold whose metric is the 

Fried mann-Robertson- Walker one : 

ds2 = g".dx"dx" = dt'- a2 (t) [ 
1 
~r;r2 + r2 (d0 2 + sin2 0 d<p2

)] , (1.1) 

a2 (T) [dT 2
-

1 
~r~r2 + r2 (d02 + sin2 0 d<p2

)], (1.2) 

where T is the conformal time which is defined by dT = dt/a(t). This metric leaves two 

degrees of freedom. One is the sign of the spatial curvature, k, which represents whether the 

universe is closed, flat or open depending on k = 1, 0 or -1. The other is the scale-factor, 

a, which describes the t ime evolution of the size of the universe. The dynamics of the scale· 

factor is determined by the Einstein equation. In favor of the cosmological principle, the 

form of the energy-momentum tensor is written by that of the perfect fluid : 

T';, = diag(-p,p,p,p) , (1.3) 

where p is the energy density of the universe and p is the pressure. Both of them depend 

only on the time not on the spatial coord inates. As a result, the behavior of a, p and pare 

determined by two independent Einstein equations : 

(a) 2 
k - +-

a a2 

81rG A 
- 3-p+3, (1.4) 

d da (pa3) + 3pa2 0, (1.5) 

and the equation of state for the ingred ients that fill the universe: 

p = l>(p). (1.6) 

In the equation (1.4), the dot denotes the derivative by t; G is the gravitational constant; 

and A is the cosmological constant, which is the energy density of vacuum .. 

According to the conventional classification, the components of our universe are divided 

to the non-relativistic dust matter and the radiation. They obey the equations of state : 

p(p) = { ~ Matter, 

Radiation. 
(1.7) 

Hence the energy density of the matter, Pm, and that of the radiation, p., are related to the 

scale- factor as 

Pm (
a0)3 

Pmo -
a 

(ao) 4 

Pro -; 

(!.8) 

(1.9) 

where ao is the scale.factor at present, and Pmo and Pro are Pm and Pr at a == ao. Thus 

with a decrease in the scale·factor, the energy density increases. At the very early stage, 

the universe must have experienced an extreme high energy state, which is the So·called Big 

Bang. 

There are three pieces of observational ev idence for the Big Bang; the fact that our 

universe is expanding, that is, the Hubble law; the cosmic microwave background radi· 

ation(CMBR) which is the relic of the era when the universe was once in the thermal 

equilibrium; and the amount of the light elements in the universe. In addition the very 

small anisotropy of the CMBR on various scales[3] confirms the cosmological principle. 

Moreover the cosmic background explorer( CO BE) has recently detected finite amplitude of 

fluctuations[4] in the CMBR: 

8T 

T 
Qr 
r 

I. I ± 0.2 X 10-5 
, at angular separation = I o· , 

5 x 10-6 
, quadrupole moment . 

(1.10) 

(1.11) 

This is the definite evidence for the fact that t he un iverse is not perfectly homogeneous at 

the time of the last scattering. 

The standard Big Bang model is impressively successful. However, it contains some 

serious difficulties which cannot be solved without any resort to other paradigms. Now 

we show some examples of the faults. Various observations tell us that the universe is 

almost flat . Besides the cosmological constant is comparable with or much smaller than the 

ordinary matter energy density. This is unnatural since the terms in the equation (1.4) have 



so different dependence on time that in the very first stage of the Big Bang their magnitudes 

should have been balanced with an extreme fine tuning in order to be consistent with the 

present observations. These are the flatness problem and the cosmological constant problem. 

Next we introduce the horizon problem. The equation (1.10) says that the temperature 

of the CMBR is very isotropic. This means that the universe was hornogeneous at least in 

the scale that would grow into the particle horizon today. On the other hand , the horizon 

scale when the radiation and matter at the last scattering corresponds to 0 ~ 3°. Thus we 

have to conclude that the light rays that were emitted from causally separated regions at 

that era have the identical temperature. 

Moreover, the cosmological structures such as stars, galaxies , clusters of galaxies and 

superclusters should evolve from the primordial flu ctuations whose origin is unaccountable 

in the standard Big Bang model. Since the CMBR is the redshifted photons that were in the 

thermal equilibrium with matter, the isotropy of the CM BR puts a stringent constraint on 

the amplitude of fluctuations in matter. Th is is one of the most fundamental and important 

problems in the cosmology. In the chapter 3, the possibility of the st ructure formation by 

global textures is referred. 

There are some other difficulties in ~ddition to ones we have stated above though we do 

not mention them anymore here. In the most innocent and indifferent view, the responsi

bility can be taken by the initial state of the universe; we should regard the universe was 

born as it was anyway. It can be resorted to the anthropologic principle[5] in part. llere 

we, however, stand the point that the problems which the standard cosmology could not 

solve can be explained in the frame of the inflationary cosmology[6, 7, 8], which is briefly 

introduced in the next section. The reasons are that the potenti al theoret ical development 

seems to be the richest and with this model people probably content their esthetics, which 

is often essential to the construction of the first principle. 

Of course, these problems are rather philosophical ones. In fact, there is a practical prob

lem in the standard cosmology we must confront seriously. There is no final answer of the set 

of the cosmological parameters which satisfies all the currently available observations[2, 9]; 

the age of the universe[! OJ, the total amount of mass in the universe[9], the rate of the 

expansion of the universe[ II] , so on. Some people still believe the steady state universe[12] 

instead of the Big Bang model. Although we have to be careful in deciding which is right, 

6 

we emp loy the conventional point of view, the universe has evo lved from the hot fireball 

throughout the present thesis. 

Before we close this section , we present some useful formulas. In the chapter 3 and 4, 

we set A = 0 for simplicity. Under this assumption the parameters which determines the 

properties of the universe are the Hubble parameter, H , and the density parameter, !l: 

H(t) 
a(t) 

(1.12) - ;;('i)' 

fl(t) 
p(t) ()- 3JJ' (t) (1.13) - P~ (t)' P~ t = 81fG . 

When p >( <) p,, the universe is close( open) and in the flat universe fl =I. At the equality 

tin1e, i.e., when Pm is equal to Pr the scale-factor is given by 

a,, = 4 x 10-'(floh')-', 
ao 

(1.14) 

where flo is the present value of fl and his the Hubble constant in units of 100 km s- • Mpc 1
. 

The observational estimates of these parameters range[9, 11 J : 

0.1 ;S flo ;S I , 

0.4 ;S h ;S 1.1 . 

(1.15) 

(1.16) 

The above uncertainty is rather unsatisfactory. However, even if the parameters in the 

standard picture are not determined, it is a valuable trial to develop more refined framework 

of cosmology since it may fortunately predict the values of such parameters theoretically. 

Actually the flatness of the universe is demanded in the inflation scheme. 

1.2 The Inflationary Cosmology 

The union of the high energy physics and the cosmology has brought many interesting ideas . 

One of them is the inflation[S], which has opened a new paradigm in the physical study of 

the early universe. Its main idea is the domination of the universe by positive vacuum 

energy. Then the universe expands exponentially and then it is reheated with the released 

vacuum energy. When this vacuum energy density equals Pv, then the scale-factor evolves 

as 
l 

a(t) ex ell<, H = clf;P•)' , (1.17) 



where the curvature term is neglected . Such a flat cosmological constant dominant universe 

without matter is called a de Sitter universe. If this rapid expansion lasts long enough, 

the curvature radius of the universe increase also exponentially so that the flatness problem 

should be solved. Moreover, since the causally connected region also expands exponentially 

we do not have to suffer from the horizon problem. Although there is a doubt whether an 

initially inhomogeneous or anisotropic universe, which is quite natural, could be inflated 

to a homogeneous and isotropic one, the generality of the inflation is plausible since the 

cosmic no hair conjecture[l3) seems to be widely applicable .. In fact, the universe after 

the inflation should not be strictly homogeneous due to the extended quantum fluctuations. 

These inhomogeneity can provide the initial seeds for the cosmological structure formation. 

Thus after the reheating, the universe undergoes the standard Big Bang history without 

serious difficulties in the standard picture. 

The origin of the vacuum energy which is necessary for the inflation differs depending 

on various models. The scalar field which is the source of this zero-point energy is called a 

inflaton. The first inflation model is proposed from the first-order phase transition in the 

grand unified theory{ GUT) of the elementary interactions[6, 7). In such a transition, Pv is 

supplied by the false vacuum energy of the Higgs field which is left in the symmetric state 

during the over-cooling of the universe. This model, however, possesses an important fault, 

the eternal inflation[6, 14). The termination of the phase transition should occur through 

the percolation of the true vacuum bubbles. However, the volume where the inflaton, that 

is, the Higgs field is in the false vacuum state increases continuously so that the universe 

inflates for ever. The original inflation model have some other additional difficulties. For 

example, there should be too much inhomogeneities by the formation of black holes and 

worm holes[l4) and magnetic monopoles should be overproduced[l5) . 

Hence a lot of alternatives have been considered unt il now. The new inflation model[16) 

gains the vacuum energy from the Coleman- Weinberg type potential in the SU{5) GUT[l7). 

In this model, the exponential evolution is realized while the inflaton is rolling down along 

the gentle slope of the potential slowly. Although the new inflation model does not suffer 

from the problems which the original model has, there exist other difficulties such as the 

lack of the inflationary era[16) and the excessive amplitude of the density fluctuations[l8). 

The extended inflation model[l9) is one of the power-law inflation models. It does not 
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cause the exponential expansion but the power of the scale-factor to time is large enough 

to solve the horizon or flatness problem. This model consists of the old inflation model plus 

the Jordan-Brans-Dicke gravitational theory[!). However, the experimental limit against 

the time variation of the gravitational parameter is incompatible with the constraint to the 

remaining density fluctuations predicted in the model[20). 

Besides these two models, there are many versions of the inflation in which the inflaton 

potential is deformed and/or the non-Einstein gravitational theory is included[21). Never

theless , we do not have the definite model of the inflation which is consistent with all the 

existing observations and physical theories. Although the inflationary model has lost a part 

of appealing features, it is definitely the most fascinating idea to improve the Big Bang 

model. 

Among diverse models the most natural and successful one so far is the chaotic inflation 

model[22). This model is unrelated to the phase transition. The vacuum energy, Pv is earned 

by the displacement of the inflaton field from the potential minimum. Such a condition is 

realized by the quantum fluctuations in the Planck era due to the uncertainty principle. In 

order to remove the difficulties in the standard model, the potential gradient should be shal

low enough for the universe to expand rapidly. Although the observational constraint to the 

density fluctuations demands that the model parameter should be a very small number[23), 

the chaotic inflation model has no essential difficulty. It can be also generalized by the non

Einstein gravity theories[24). The realistic model of the inflaton certainly exists; sneutrino 

in the super-symmetry(SUSY) model is one of the candidates[25). In addition, the idea that 

the universe starts with the very chaotic state is quite natural. Thus we employ the chaotic 

inflation model in the next chapter. 

1.3 Topo logical D e fect s 

Topological defects are peculiar structures in the spacetime[26, 27). They are created when 

the phase transitions accompanied by some kinds of spontaneous symmetry breakings{SSB) 

occur. SSB is a fairly common phenomena in the unified theory of elementary particle 

physics . Such a recovery of the today broken symmetry is believed to be achieved in the 
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very early universe. For example, consider a real scalar field with the Lagrangian : 

I ' c.= 2(a,.x) - V(x), (118) 

When the effective mass, M~, turns from positive to negative, the ground states of the 

potential change. 

Ground State 

x=O 

X= ±v (ex JiMJi} 

Symmetry Group 

G 

II 

The Lagrangian itself is symmetric under the reflective transformation of X· On the other 

hand, x settles in +v or -v, which is a symmetry broken state. At the phase transition 

from the higher symmetric vacuum to the lower symmetric vacuum the value of A becomes 

inhomogeneous at each domain in the universe. Then the false vacuum energy is preserved 

in the boundaries between different vacuum states. These left-behind symmetric vacuum 

structures are called topological defects. They are stable sin ce the defect disposition cannot 

be erased through conti nuous variation of X· An exception is a texture which is an unstable 

topological defect. What kind of defects will be formed depends on the structure of the true 

vacuum manifold, M=G/11. 

When the discrete symmetry breaks spontaneously, a domain wall, a plain-like defect is 

produced. In general, IT0 (M) 'f 1 is the condition of domain wall production. When the 

potential is 
1 

V(x) = 4-X(x'- v2
)

2 
, X : real scalar field , (1.19) 

the field equation is reduced to 

ox+ -Xx(x'- v') = o . (1.20) 

Then the field configuration which expresses one static infinite domain wall in xy-plane is 

x(z) = vtanh (iJ , (1.21) 

where li,. is the characteristic length of the wall corresponding to a wall thickness. Since the 

false vacuum energy equals Av4 , the su rface energy density of the wall, u, is 

(1.22) 
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However, if only one horizon-size wall exists, the ratio of the energy density of the wall to 

the critical energy density, flw : 

(1.23) 

exceeds overwhelmingly one when v is approximately given by the GUT energy scale. The 

anisotropy of CMBR should also become too large[28]. lienee the wall producing phase 

transition cannot happen at the natural unification scale. Domain walls must be formed 

at the very late time in the cosmic history. Such a phase transition after the decoupling of 

matter and photon may be responsible for the large-scale structure formation[29]. 

When IT 1(M) 'f 1 a cosmic string is generated. For example, a complex scalar field , x, 
obeying the potential : 

V(x) =~-'([xi'- v')' , 
4 

y : complex scalar field , (1.24) 

enables the string formation since M=S 1
• If the value of the phase of X changes after the 

travel around a closed curve, then at somewhere inside the curve there should be a singular 

place where the phase cannot be a smooth function. This line-like defect is a string. The 

phase change around a string must be 27rn, where n is an integer called winding number. 

Even when M is simply connected, a stable string solution is possible[30] . It can be applied 

to the electroweak phase transition[31]. When the broken symmetry is global, strings are 

called global strings. On the other hand, when the gauged symmetry concerns, they are 

called local or gauged strings. In both cases, the characteristic length that corresponds to 

the core radius of a string, li, is expressed by the Compton wavelength of X : 

(1.25) 

which is similar to the equation (1.21). The line energy density of a string,'"'' is 

(1.26) 

Cosmic strings are considered to produce scale-invariant density perturbations. If the initial 

seeds for the cosmological structures are given by strings, the symmetry breaking scale 

shou ld be 

v"' 1016 GeV , (1.27) 
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which is in the range of the grand unification scale. The detailed mechanism depends on 

how strings evolve and numerical simulations have been used in order to investigate it[32]. 

Roughly speaking collapsing string loops or wakes of long strings attract matter and the self

gravitational instability follows[9]. The observational constraints on the existence of strings 

can be obtained by gravitational waves[33] or radiated particles[34] from collapsing loops, 

lensing effects of strings[35], CMBR distortion[36], black hole formation[37] and others. 

Although some of them might exclude the possibility of the structure formation scenario by 

cosmic strings, parameters in the theory has not been perfectly determined so far. We have 

to be cautious in concluding there is a reliable observation that contradicts the value of the 

equation (1.27} . 

At a phase transition whose ll 2 (M) # 1, a monopole configuration is attained. It is also 

classified to a global monopole and a local or gauged monopole similar to the string case. The 

formation of magnetic monopoles is expected in almost all grand unified theories including 

the electro-magnetic interaction[27, 38]. Thus the detection of magnetic monopoles is an 

important clue to verify unified theories . However, the mass of them, mm, is estimated as 

mm -
2"v - 1016 GeV 

9 
(1.28} 

where v is the symmetry breaking energy scale and 9 is the gauge coupling constant[39]. 

If the number density of monopoles is the same order as that of nucleons, they should 

be catastrophic to the standard evolution of the universe. This is the so-called monopole 

problem. This another trouble in the standard Big Bang model will be solved by the inflation 

model in which dilutes the number density of monopoles. 

A texture comes into existence when the SSB in which a vacuum manifold has a non

shrinkable three-sphere, that is, 113 (M} #1 is realized. In the texture configuration, there 

is no remnant false vacuum where the symmetric state is left. For this reason, the energy of 

textures would be canceled if a gauge field participates in the model. Thus a term, a local 

texture is nonsense. There exists only a global texture. Global textures can provide density 

fluctuations for the cosmological structure formation[40, 41, 42, 43], which will be described 

in the chapter 4 more extensively. 

Moreover, multiple phase transitions give birth to complex topological defects. For 

instance, when two scales of transitions symbolized by 

12 

G...2....HxU(1)...2....H 

are accomplished, pairs of a monopole and an anti-monopole connected by strings are 

formed[44]. Another example, a wall surrounded by a string[45] is investigated in the chap

ter 3 with relation to an axion model[46]. Such a defect is produced by a symmetry breaking 

From what has been stated above, we can see that in the cosmological context topological 

defects are noticeable from two distinct aspects: how to get rid of them without destroying 

the successful description of the standard cosmology and the possibility of the solution for 

the initial density fluctuation problem in the universe. 

1.4 Relations between Cosmological Observations and 

Particle Physics 

The application of the particle physics theory to the early universe brings numerous ob

servational predictions. One of them by the inflation is that (!0 = 1 if A = 0. Various 

observations have been made but the value of the density parameter ranges broadly as in 

the equation (1.15}. They claim that the value close to the flat universe is unprobable so 

that the cosmological constant should be finite in order to make the inflationary model 

survive. Part of observations including the age of the universe[lO] suggest the existence 

of /\[47]. This fact casts another fine tuning problem to the cosmology, which is strongly 

linked with the extreme high energy scale physics. Some people refer to a decaying cosmo

logical constant[48], which cannot be a final answer to the question since the drastic energy 

liberation of it should have happened someday during the cosmic past life. Anyway when 

we investigate the cosmological evolution, a flat model with or without the cosmological 

constant and an open model is generally adopted. 

From the calculation of the light elements abundance by primordial nucleosynthesis the 

constraint on the cosmological parameters is gaincd[2, 49) : 

(1.29) 
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where nb is the portion of the baryon contribution to no. Baryonic matter corresponds to 

only a part of the energy density in the universe in the equation {1.15) Thus the existence 

of non-baryonic dark matter is necessary. Although the identification of dark matter is still 

obscure, there are numerous candidates in particle physics models[2). Non-baryonic dark 

matter is roughly classified to cold dark matter(CDM) and hot dark matter{IIDM). CDM 

is named after the property that it is non-relativistic at the getting out from the thermal 

equilibrium. Axions or some SUSY particles are examples of CDM. On the other hand, 

HDM is called hot since it was relativistic at the time of running out from the equilibrium. 

Massive neutrino belongs to this class of dark matter. 

Using the above arguments scenarios for the large-scale structure formation in the uni

verse can be constructed. There are many versions including various cosmological parame

ters, different type of ingredients but most of them are based on the clustering of matter by 

the gravitational instability and the initial seeds for mass accretion are supplied by particle 

physics; inflation and/or topological defects. Both of them provide the primordial density 

perturbations of scale- invariant power spectrum. 

In the inflationary era, quantum fluctuations are extended to those on classical scales, 

which have cosmological importance[18, 23, 50). The scales of fluctuations spread over the 

Hubble length, H- 1• Thus various scales of fluctuations appear. After the end of the in

flation, the universe is filled with the ordinary matter and the Ilubble length evolves as 

H- 1 ex a2 (t) in the radiation dominated era and H-' ex a~{t) in the matter dominated 

era. On the other hand, the fluctuations which go beyond the Hubble length during the 

inflationary expansion grow in proportion to the scale-factor. As a result, over-horizon fluc

tuations again enter into the region where we can observe. In these processes, fluctuations 

of the power spectrum : 

{1.30) 

i.e., the Harrison-Zel'dovich spectrum[51) are obtained. Their amplitude is identical at the 

horizon crossing epoch. Such mechanisms create scale-invariant density perturbations for 

the structure formation in the universe. 

In many aspects particle theory compensates for the shortcomings of the Big Bang model. 

Such considerations associate astronomical observations with physics in very high energy 

scales. In particular, the observations of the cosmological structures are immensely valu-
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able. One of the observations which reveal the properties of the density perturbations in the 

universe is acquired by the direct investigation of the matter, that is, galaxy distribution. 

Another important observation is the CMBR anisotropy in the equation {1.10). lienee the 

scenario must explain these two observations without any contradiction. Theoretically, de

tailed properties of various scenarios are elucidated by numerical simulations[52). However, 

even the most standard one, in which the flat universe, CDM , and the Gaussian scale

invariant initial fluctuations are assumed is perfectly satisfactory[53). Roughly speaking it 

is difficult to reconcile the amazing smallness of CMBR anisotropy with the wide variety of 

the way of galaxy distribution[54). 

The very large-scale structure such as voids[55) , the Great Wa11[56), periodic structure[57) 

imply intensive correlations of matter on scales ~ 100 Mpc. Observationally, it can be said 

that galaxies are distributed in a highly non-Gaussian manner[58). It might have resulted 

from the non-Gaussian initial fluctuations. Furthermore, the suppression of the CMBR 

anisotropy can be attained by a possible reionization of the universe[59) . Such process oc

curs, for instance, by the reheating due to the early star formation. Non-Gaussian initial 

fluctuations might also have been necessary for the prompt matter collapse. Most of the in

flationary model predict the Gaussian density perturbations[23, 50, 60). There are attempts 

to produce non-Gaussian peaks by the inflation[61) but most of such renovation request a 

complicated model so that the generality and naturality, the advantages of the inflation 

are lost. Even in the case that the innaton is combined non-linearly with matter fields, 

averaging effect should smooth out prominent density peaks[62). On the other band, topo

logical defects generate non-Gaussian seeds inevitably and they may cause non-gravitational 

clustering of matter by string wakes[63) or texture knot collapses[40). The progress of the 

CMBR observation will make the statistical property of the temperature fluctuations clear 

and determine which initial model of density perturbations is appropriate[64). Thus SSB, 

an indispensable concept to the modern particle physics theory also has strong association 

with cosmology. 
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Chapter 2 

Creation of Topological Defects 

In this chapter, the dynamics of a second-order phase transition during the inflation, which 

is induced by time-variation of space-time curvature, is studied as a natural mechanism 

to produce topological defects of typical grand unification scales such as cosmic strings or 

global textures. It is shown that their energy distribution is almost scale-invariant with 

small- and large-scale cutoffs. Also discussed is how these cutoffs are given. 

2.1 Kibble Mechanism and its Problem 

Many people applied unification theories of elementary interactions to the early universe 

whose temperature, according to the conventional Big Bang cosmology, was once so high 

as the unification energy scale. One of the ir natural consequences is that the universe has 

presumably undergone a number of thermal phase transitions in the course of its early 

evolution, in some of which topological defects may have been produced through the so

called Kibble mechanism[26[. 

In this mechanism , at ultra-high temperatures presently broken symmet ries are restored 

due to high-temperature correction to the potential of the Higgs fields which determines the 

symmetry of the system. The standard Big Bang cosmology enables such a high-energy

density condition in the early universe. For example, a real scalar field , y, obeying the 

Lagrangian : 

1 1 
2(D,.x)'- ;;;F,,J""- V(x), 

-\ 
V(x) = ;;;(x' - v')' , (2.1) 
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acquires the correction term[65] : 

Vr(x) = "' V(x)- 00N(T)T' + B(x)T' + O(T') , (2.2) 

B(x) = ~(x'- v') + ~x' + ~g'x' 12 12 4 , 

where N(T) is the sum of freedom for all particle species. It can be estimated to be 

N(T) ~ 0(100) at the energy scale ofT~ 1015 GcV. Then the critical temperature for the 

phase transi lion is 

(2.3) 

In the course of cosmic evolution, symmetries have been broken and various types of phase 

transitions should have been actualized. If cosmic strings or global textures may help 

large-scale structure formation, their energy scale of phase transitions should be around 

At such a thermal phase transition, the correlation distance of the fluctuations for X 

should be similar to the horizon length. Thus the number density of produced topological 

defects can be estimated to be the order of one defect per horizon scale. 

In discussing these phase transitions, it has been implicitly assumed that the universe was 

in thermal equilibrium state at least by the GUT era. However, in order to attain thermal 

equilibrium from an arbitrary initial state of the universe, it is necessary that particle 

interaction rates, r, exceed the cosmic expansion rate, JJ , which is not always possible in 

such an early stage of cosmic evolution[67] . To see this explicitly, we demonstrate a simple 

comparison of rand H. When x can be regarded as relativistic particles, its number density, 

(2.4) 

where Nx is the number of modes that are interacting with X· The scattering cross section 

of x, ux, is 
a' 
~ 
T', (2.5) 

where Ox is a coupling strength. Using above formulas, the reaction rate of x, r, is written 

by 

(2.6) 
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On the other hand, the Hubble parameter is expressed as 

(
Srr3 CN ) t II= -

9
-
0
-T' (2.7) 

Thus for the condition r ::» H to hold, it is necessary that 

(2.8) 

Hence the formation of topological defects with typical GUT scale may not be described 

by the Kibble mechanism correctly unless the universe started its evolution in a thermal 

equilibrium state. 

It is more natural to expect that our universe started its classical evolution out of a 

chaotic state governed by quantum and thermal fluctuations[22) and that it underwent in

flation to be globally homogeneous and isotropic as observed today[7). Then it turns out that 

after the reheating epoch the universe was first filled with radiation in thermal equilibrium. 

Unfortunately, the maximum temperature it experienced, or the reheating temperature, 

may not be so high as the GUT scale generally in order to avoid too much gravitational 

waves or density fluctuations[68) and/or too many gravitinos[69) to be produced after the 

inflation. On the other hand, models with high enough reheating temperature may not solve 

the monopole problem, even if they may keep large enough density of strings or textures. 

Thus it is very difficult to obtain a sensible scenario of the early universe which provides an 

appropriate initial condition of galaxy formation through topological defects in the grand 

unification scale. 

In order to resolve this difficulty several mechanisms of non-thermal phase transitions 

have been proposed in which the Higgs field is coupled either with spacetime curvature 

'R.[70), the inflaton field ¢[71, 72) or both of them[73). The first mechanism is especially 

plausible since the effective potential naturally has a finite-curvature correction in the in

flating spacetime just as it would have a finite-temperature correction in the hot Big Bang 

universe[74). In these scenarios phase transition takes place during the inflationary stage 

due to time variation of 'R or </> and it is triggered by quantum fluctuations rather than 

thermal fluctuations. 

While the properties of thermal phase transitions have been extensively studied, those of 

the above non-thermal phase transitions have not been fully investigated. The purpose of the 
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rest of this chapter is to clarify the dynamics of a second·order phase transition during the 

inflation as well as the spectrum of the defects produced. Complementary to our work[75) , 

Linde and Lyth have studied formation of axionic domain walls through quantum fluctua

tions during the inflation[76). The case where topological defects are produced through a 

first-order phase transition has been considered by Copeland, Kolb, and Liddle[77) in the 

context of the extended inflation scenario. Jn addition, quantum creation of defects through 

tunneling during the inflation has been investigated by Basu, Guth, and Vilenkin[78) . 

2.2 Quantum Phase Transition during the Inflation 

In this section, the model we consider in this chapter is introduced. The metric is that 

in the spatially flat Friedmann- Robertson-Walker spacetime, i.e., the case of k = 0 in the 

equation {1.1) : 

ds 2 = dt 2
- a2(t)dx2 = a2(r)(dr 2

- dx2
) . (2.9) 

As the inflationary model the chaotic inflation scenario realized by a massive scalar field ¢ 

with mass m is chosen. Hence the inflaton potential is 

(2.10) 

In order for the density fluctuations to be small enough on this scale, m should satisfy the 

constraint m ;S 1013 GeV[79, 80). In the inflationary stage when the energy density of the 

universe is dominated by Vt(¢), the classical evolution of ¢(t), the scale-factor a(t), and the 

Hubble parameter 1/(t), is given by 

¢(t) 
mMpt 

¢;- 2v'3if(t- l;) , (2.11) 

JJ(t) 
4rrm2 m 2 

3M2 ¢(t) = H;- 3(t- t;) , 
pi 

(2.12) 

a(t) = [ 
2rr 2 2 l [ 3 ( 2 2 )] a;exp u;

1
(¢;-¢(t)) =a;exp 

2
m 2 H;-H(t) (2.13) 

respectively, where Afp1 = Jnc/C is the Planck mass and t, is an arbitrary epoch when 

a= ai , 4> = 4>i and H = Il1 • The above expression is a good approximation when 4> satisfies 

the following inequality : 

.J. Mp, .1.( ) (...:!_) t (MP') t Mp, = .... 
'1'/ = J4; ;s 'I' t ;S 32rr m 'I' (2.14) 
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for ,P > .Pu the evolution of ,P is dominated by quantum ftuctuations[81] and at ,P = d>t 

the time variation rate of ,P or ¢f<P becomes as large as the expansion rate H so that 

inflationary expansion terminates. The present horizon scale left the Hubble radius when 

,p "" 3M,1 corresponding to the e-folding number of inflation after this epoch to be about 

""60, which is sufficient for solving the flatness problem and the horizon problem. 

As is seen in (2.12), for H ( t) ;:::. m/ J3 or ,P ;:::. M,,j .J4; time variation rate of the Hubble 

parameter is so small that the evolution of the scale-factor is indistinguishable from that 

in de Sitter spacetime during each span of several expansion times. Hence we may utilize 

various results of quantum field theory in de Sitter spacetime. 

In the inflationary stage the scalar curvature R is given by 

2 : ~ 1671'" 2 2 2 n = 12Il + 611 = ----,m d> - 2m . M,, 
And we consider the evolution of a scalar field X with the Lagrangian : 

I , ) 
Lx = 2(8x) - V(x , 

.\ 2 ')' 1 2 V(x) = 4(x - u + 2~nx , 

with a positive coupling parameter~ to the scalar curvature 'R. 

The effective mass for x is written as 

M' 
' 

-.\u2 +~R 

-.Au2 + 12~H2(t)- 2~m2 
• 

(2.15) 

(2. 16) 

(2. 17) 

In proportion as the inftaton field rolls down to the potential minimum, the Hubble param

eter decreases. Then the symmetry of x is restored if ~R > .\u2 and a second-order phase 

transition takes place as 'R decreases gradually. For the symmetry restoration to occur, the 

condition M~ > 0 must hold at least when t = t, . It means : 

(2.18) 

Depending on the number of components of x, j, this system allows a domain wall 

(j = 1), a string (j = 2), a monopole (j = 3), or a texture (j = 4) solution if ~R « .Au'. 

In discussing the phase transition, however, we concentrate on the single-component case, 

a real scalar field. Generalization to multi-components cases will be discussed in the final 

section. 
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In the case of the quantum phase transition during the inflation, various scales of fluc

tuations even beyond the Hubble horizon scale are produced. Thus the distribution of 

topological defects and the mean distance between them are quite different from those in 

the thermal phase transitions. These properties should be known by considering how the 

fluctuations of X behave and what value it takes at each place in the universe when the 

phase transition completes. For this purpose, we examine when evolution of the scalar field 

becomes deterministic and estimate the power spectrum of quantum fluctuations . Finally, 

the result of numerical simulations on the spectrum of defects thus produced is presented 

and its analytic interpretation is given. 

2.3 Evolution of the Scalar Fields 

In this section, we trace the evolution of x to discuss when its sign in each domain becomes 

fixed so that we may predict where topological defects will appear after completion of 

the phase transition. The symmetric state x = 0 becomes classically unstable when ~R 

becomes smaller than .Au 2
. Evolution of the scalar field after this epoch can be divided to 

two stages. In the first stage, when its potential at the origin is still nearly fiat, quantum 

fluctuations govern its evolution and its amplitude grows gradually. In the second stage 

typical amplitudes of \ become so large that its dynamics may be determined classically 

and its fate in each domain becomes predictable. We may regard the sign of X as fixed in 

most domains at this epoch and follow its evolution classically thereafter. 

In terms of the mean square value of a scalar field <I> with a constant mass M[82], 

for /11 2 > 0 , 

for /11 2 = 0, (2.19) 

for M 2 < 0, 

it has been naively concluded in earlier literature[72] that the first stage lasts while IM~I.:S l/2
, 

where M~ is the mass squared at the origin in the e<juation (2.17), because the linear growth 

of the mean square field with time is characteristic of the era dominated by long-wave quan

tum flu ctuations. However, this criterion is not valid in the present case in which M; is 

time-dependent. 
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In order to find a more appropriate way to est imate when the evolution of X becomes 

deterministic, let us focus on its long-wavelength part which is responsible for the symmetry 

breaking and satisfies the Langevin equation : 

dx V'(x) J(u) 
du = -311 2{u) + H(u)' (2.20) 

under the assumption of slow rolling, which is justified if 1M; I <t: 9II2[83I. We have used a 

new time variable u = In a(t)- In a(t;) which is thee-folding number of cosmic expansion 

from t; tot. The Hubble parameter squared is given by Jf2(u) = JJ2 (0)-~m2u = J/,2 -~m2u . 

In the right-hand-side of the equation {2.20), the first term represents classical potential 

force, while the second term stands for random quantum noise with the correlation : 

(2.21) 

From the symmetry, the mean value of the fi eld equals zero, i.e., (x) = 0. Hence x represents 

the fluctuation of x itself. 

The most explicit treatment of the dynamical evolution of x is to consider the time evo

lution of the probability density function of x at t, P(x, t), which satisfy the normalization 

condition : 

1
+~ 

-~ P(x,t)dx = 1. (2.22) 

The Fokker-Pianck equation for P(x, t) is derived using the stochastic inflation method[83, 

84, 851 from the equation (2 .20) such as 

{2.23) 

where we write down h explicitly to point out a quantum effect term. We can say that the 

phase transition ends when P(x ,t) shows two peaks of x distribution at the true vacuums. 

However, it is difficult to solve the eq uation {2.23), we instead deal the behavior of the mean 

square of x defined by 

1
+~ 

(x2{u)) = -~ x' P(x, t )dx {2.24) 

since it is proper measure for the characteristic amplitude of X· The above Langevin equation 

(2.20) yields the subsequent equation of motion for (x2{u)) : 

d 2 ~ 2M; 2 J/2(u) 
-;fu(X {u)) =- 3112(u) (X (u)) + 4;;:2 , {2.25) 
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where the term proportional to (y4 (u)) has been neglected, which is shown to be a good 

approximation at the end of this section. Again the first term of the right-hand-side is a 

classical potential force and the second term represents quantum diffusion without which 

the equation (2.25) would be the same as the classical equation of motion for x2. Thus by 

comparing magnitudes of the two terms, one may conclude whether the evolution of X is 

dominated by the potential force or fluctuations in typical domains. 

The equation {2.25) may readily be solved : 

[ 

l/ 2 u ( 2m2u') ~+2(+! ] ( 2m'u) -~+2( 
(\ 2(u)) = (x2(0)) + 

4
; 2 k e81"' 1-

311
,2 du' e-8(• 1 - 3H? 

(2 26) 

If 2m2u <t: 3H,' and m2 <t: Av2
, 

and (2.26) reads 

(x2 (u)) 

( 
2 2 ) 5+

2
(+

1 
( 2-' 2 ) 

1 - ;~,~ - "'exp - 31;1 u , 

2(12Uf[- -'v') u]} 
3H[ 

(2.27) 

(2.28) 

Since 12e H.' -Av2 is equal to the mass squared of\, M;( u = 0), the above result is equivalent 

to that with a constant mass M,(u = 0) calculated by the one-loop field theoretic method 

in de Sitter spacetime (2.19). The equivalence between the stochastic inflation method and 

the field theoretic method has been discussed in [85l. With approximation (2.27), (x2(u)) 

may increase or decrease depending on the sign of 12U11 - Av2 or the choice oft;. 

We should hence consider higher-order terms in order to discuss transition to the second 

stage. Let us first consider the last exponent of the equation (2.26), 

( 
2m2u)-~+2( 

e-8(u I - --
2 

= G(u) . 
3fl; 

(2.29) 

We can expand In G(u) as 

lnG(u) = -8eu+-'v2 :;em2 [~~;u +~C~;;u)' +~G~;u)'+ ... J 
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(2.30) 

The approximation (2 .27) corresponds to adopting only the first term of (2 .30). However, 

in the case where M;(u = 0) = 12~H'!- 2<m2
- .\v1 is small, in which we are interested, 

the second term may dominate the first one and G(u) grows. For simplicity, let us choose 

l; so that M; = 0 or 

H' = (-'v' + 2(m
2

) 

, 12( (2.31) 

at that time. Then for small u, G(u) is given by 

(2.32) 

Thus G( u) starts to grow exponentially at u ~ u f with 

(2.33) 

Similarly the integrand of (2.26), which is denoted F(u'), may be approximated as 

lnF(u') = 

where in the last expression we have used our assumption .\v2 > m 2 . Thus the integral 

yields 

{ F(u')du'"' { u 
0 Uj 

(2.35) 

The next task is to estimate (x'(O)), which may depend on the initial state of the universe 

in general. One may expect, however, that the amplitude of (x') is 0(( H (2rr) 2 ) at the epoch 

when M; = H 2
, independent of the initial condition, if the inflationary expansion lasts long 

enough by that time. We have numerically calculated (x'(O)) using (2.26) starting with 

this condition for various values of C = -'v' (m 2 ranging from 5 to 200 and ( = 3/16. (The 
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reason why we adopted 3/16 for (is that it simplifies the calculations. The concrete formula 

will become evident in the next section.) As a result the inequality: 

(2.36) 

was always satisfied. lienee (x2(0)) is unimportant in (2.26) for u 2: "I and we may conclude 

H
2 

Av
2 

(32('m
2 

) 
(x'(u))"' 4;, 32('m' exp ~u' . (2.37) 

Inserting this into the equation (2.25), we find that classical potential force begins to dam-

inate quantum fluctuation at u ~ u, . 

The cond ition u = u 1 is realized at 

t = t · + ~ (c + 2(-
' m 12( 

(2.38) 

when the Hubble parameter, 

c , 1 rc 
11 = m 12( + 6- 6f.Vz = H,' (2.39) 

is related with M; as 

~~~~ = 12~( ( v'c- h + Jc() (2.40) 

One can estimate thee-folding number of inflation after t = t, as 

(2.41) 

ln order that topological defects, which are thus produced, may leave observable traces, n1e 

should be smaller than "' 60, otherwise they are inflated away from the present horizon. 

Hence this sets an upper bound on C. On the other hand, it should be at least larger than 

zero for the above arguments to be valid. Thus C should satisfy the following inequality for 

( = 3/16. 

3 .s c .s 90 . (2.42) 

So far we have entirely neglected contribution of (x'(u)) toM; and the term proportional 

to (x4 (u)) = O((x'(u))') in (2.25). It is justified if 

(2.43) 
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which we may regard as a constraint on ). : 

(2.44) 

It is easy to satisfy the above inequality. Even if we take a rather large value of C, say 

C = 90, it only requires that.\ ;s· 10-2 when~= 3/16. 

2.4 Power Spectrum of Fluctuations 

llere we deduce the formula for the spectrum of the mode function of X at arbitrary time. 

Had there been no correlation beyond the Hubble horizon, we could have identified the 

correlation length of the phase transition with the Hubble length at the time when the 

phase transition finishes. However, the scalar field is correlated on various scales due to 

the inflationary expansion, which is characterized by the power spectrum 1Xkl 2 of long-wave 

quantum fluctuations given in terms of mode function x•(t). Here we are going to calculate 

it. 

The equation of motion for X is 

ox+.!!._ V[x) = o 
dx 

- +3/f- - - x(x,t)+V[x)=O. [( a)' a 'V'] , ot ot a2(t) 
(2.45) 

At first we decompose the operator X as 

) J d"k [ ( ) ikx + "(t) -ikx) x(x, t = (2rr)3 GkXk t e + akxk e ' (2.46) 

where ak and at are annih ilation and creation operators, respectively. The mode function 

satisfies the following equation of motion : 

( 
k )' i•(t) + 311)/,(t) + a(t) X•(t) + M~Xk(t) = 0 . (2.47) 

Using a new variable Xk = a~(t)x, the above equation is rewritten as 

- + - + M - -H- -H Xk = 0. 
[
8

2 
( k ) 

2 

2 3 . 9 ' ] • 
Ot2 a(t) X 2 4 

(2.48) 

In the inflationary stage, when the slow rolling condition [H[ «: H2 is applicable, we may 

regard the Hubble parameter to be constant over several expansion time scales during which 
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the physical wave number k/a(l) decreases exponentially. Moreover since we are interested 

in the regime IM;I ;s /J 2 where quantum fluctuations are important, equation (2.48) can be 

approximately solved by the llankel function of rank 3/2 and the positive frequency mode 

corresponding to that in the Minkowski vacuum fork~ Ha(t) reads 

\k(t) ~ f!ilJ~I) (u:(tJ , (2.49) 

where the mode function \,(t) is appropriately normalized according to 

x.<tJx~UJ- x><tJx.<tJ =;. (2.50) 

While the above expression (2.49) is a good approximation, the comoving mode k can shift 

from short-wavelength regime to long-wavelength regime. In the latter phase, in which 

(kfa(t))' is negligible in (2.48) , one may solve it by means of the WKB method[86) : 

y,(t) ~ A,a~(t,) ( ~(1'1) t exp [l:S(t')dt'] + B,a~(t,) ( ~((1'1) t exp [-l:S(t')dt'] , 

(2.51) 

where 

3 ( 4M~ 2il)! ~ 3 S(t) = -JJ 1--+- =-H. 
2 9/f 2 3/f 2 2 

(2.52) 

The WKB approximation is valid provided [S[ «:52
. In the present model S(t) is explicitly 

written as 

S() =~If() ( 1 - ~~ (8~ -2)m
2 +4.\v')t 

t 2 t 3 + 9II2(t) (2.53) 

In the case~ = 3/16 = 0.1875, which is slightly larger than the conformally coupled case 

~ = 1/6 = 0.166 .. , S(t) is time-independent : 

S = J'.\-v'---~::-m-2 • (2 .54) 

We will mainly study this case in the following for simplicity and this is why we have taken 

~ = 3/16 in the previous section. 

The coefficients A, and B, may be determined by the initial condition at t = t, and the 

normalization condition. One may determine the coefficient of the leading term Ak with the 

help of (2.49), which is explicitly written as 

X.(t) ~ -i ( [H2a~(t)- _,_· a!(t)) e-·~ Vw .f2k 
[H2. 

~ -iv 20a,(tJ, (2.55) 
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where the last expression is the approximate solution for the case the physical wavelength of 

the k-mode is larger than the horizon scale (k ;s all). With the approximation S(t) ~ ~H(t), 

the equation (2.51) reads 

(2 .56) 

Thus from (2.55) and (2.56) we can determine Ak as 

(2.57) 

where the unimportant phase factor has been omitted. Thus the mode function in the 

long-wavelength regime is given as 

x.(t) ~ H'(t•) ( 5 (t•)) ~ (a(t,)) ~ex [j's(t')dt'] 
2k' S(t) a(t) p ,, (2.58) 

One may get this result independently of the choice of the connecting time tk as far as both 

(2.49) and (2.51) are reasonable approximations at t = t,. Hereafter' we take t, to be the 

epoch the k- mode leaves the de Sitter horizon, that is, 

(2.59) 

Depending on the value of(, the equation (2.58) reads 

0 ( = ft 
X•(t) = exp [-..!,( lit- H')+ ..!,[P (H,-H)] ~ , (2.60) 

4m 2m v2k3 

X>( t ) exp [ - 4 ~, 2 ( lit- H')-~~ ( HJ H'+{Ja-If.JJft+ ~)] 
9{J 

x ( aHZ + {J)t (II+~) - 4v'Qm' Jh 
a li'+ (J H.+ J H'f + ~ ../2f'i , (2.61) 

[ 
9 (fJ-Iai H' ) t H 

Xk(t) = exp - 4m 2 (HZ- H')] {J -lai H~ ~ x (2.62) 

exp 
[ 
9~ ( ('73-----:::, {J H ~ {J H ) ] 

- 4m 2 Hyj;i- H'+j;~si n-
1 

JfJJiai- II.yj;i- H'f-j;i'sin-
1 JfJJ~al 
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where II= ll(t) and the parameters are defined as 

{J 4 2 
m' = g-C- g(l - 4() . (2.63) 

For the case ( = 3/16, the mode function begins growing at 

2~ 
H(t) = '3V>.v2

- S = H, (2.64) 

at which epoch M~ = -rf. Decause of the gradual decrease of the Hubble parameter, it is 

slightly after X= 0 becomes unstable that X> starts to grow. 

The amplitude of (2.60) in the case ( = 3/16 and C = 5 is shown in Figure 2.1, which 

depicts relative amplitude to that of a massless minimally-coupled scalar field in the exact 

de Sitter spacetime given by (ll}J2k')L 

2.5 Distribution of the Topological D efects 

2.5.1 Numerical Simulations 

!laving estimated when evolution of x becomes dominated by the potential force in the 

section 2.3 and calcu lated the power spectrum of its fluctuations at an arbitrary time in 

the section 2.4, we are now in a position to apply them to find the spectrum of topological 

defects produced . Following our two step approximation described in the section 2.3, this 

is accomplished by calculating spatial distribution of the scalar field at t = t1 . Thanks to 

the properties of the vacuum state realized as a result of inflationary expansion, x(x, t1 ) is 

classically given by summing up its Fourier modes as 

y(x,t,) = L:tn(x,t,)+C.C. ;8\k(x,t,) = 18y,(t,)le'kx+i~k , (2.65) 
k 

where lt>. k(lt )I is a random value which has a Gaussian distribution with dispersion lx•(tt )I' 
and f.Pk is a random phase-factor. 

If we find the sign of '( positive (negative) at a certain point at t = t1, it will fall down to 

the minimum of y = +v ( -v) as the phase transition proceeds, since its dynamics has been 

deterministic by this time in typical domains. Thus we may consider that domain walls are 

produced between two regions with opposite signs of\' at this time. 
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relative amplitude 

1 o1 

103 
wavelength 

Figure 2.1: Magnitude of the mode function lx•(t1 )I for ( = -&and C = 5 as expressed in the 

equation (2.60). Plotted values are relative amplitude to (H}/2k3 )!. Abscissa corresponds 

to the wavelength 21ra(t1 )/kin unit of 11!'· 
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We have first done three-dimensional simulations as illustrated in Figure 2.2, in which 

we have calculated the value of x(x,t1 ) through the equation (2.65) at each point of 323 

lattices using the power spectrum of X> with ( = 3/16 and C = 5. We adopted the fast 

Fourier-transform(FFT) method to speed up the calculation[87] and summed up 323 modes 

of OXk with k ranging from 2Jr!i1f32 to 21r111, where If/' is the separation of neighboring 

lattice-points taken to be the Hubble length at t = t1 . In the figure marked points will fall 

in the plus minimum or x = v and unmarked points in the minus minimum after the phase 

transition so that domain walls will be present between them. As is seen there, there are 

structures on various scales. This is in contrast to Figure 2.3, in which the sign of X has 

been randomly assigned to each lattice-point corresponding to the case of a thermal phase 

transition with the correlation length HJ'. 
In both cases, however, simulation boxes are dominated by walls with infinitely large 

surface area. This is simply because both states of\ = ±v are realized with equal probability 

and hence it is unlikely that walls are so distributed that islands of plus minimum exist in 

the sea of minus minimum or vice versa. Thus it is not appropriate to examine the area

distribution of walls in order to discuss the character of phase transitions. 

Hence we instead focus on distribution of separation of each wall. For this purpose we 

do not have to calculate the value of the equation (2.65) at all points in three dimensional 

space. But all we should find is its value along a line, which enables us to employ a much 

larger simulation box. In fact we have used a box with (2 13 ) 3 lattice points and examined 

the distribution of domains along a line with 213 points. We have done simulations for the 

following two cases : 

• A. Power spectrum is given by the equation (2 .60) with ( = 3/16 and C = 5. 

• B. A scale-invariant power spectrum, 

is assigned corresponding to the case with a massless scalar field in de Sitter spacetime. 

In both cases we have summed 213 x 100 = 819200 independent mode functions in the 

equation (2.65) with k ranging from 21rHJf2 13 to 21rflJ· Simulations have also been done 

in the case a box with (2 12 )3 points. As a result no artificial boundary effect was observed. 
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Figure 2.2: Distribution of domains in plus vacuum. Marked points depict regions with 

x = +v. Values of the field are determined by giving correlations specified by the spectrum 

in the equation (2.60). The box size is 323 and lattice separation is equal to H't. 

Figure 2.3: Same as Figure 2.2 but the sign of x at each point is given randomly. 
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In addition simulations in which the upper bound of k is taken to be trH/ have been carried 

out and no effect of small-scale cutoff emerged. For comparison we have also studied the 

case: 

• C. Sign of x is assigned at random at each point. 

We have done simulations for 500 times for each case and their results are depicted in 

Figure 2.4. We can obtain various consequences from the graph. As is seen there domain

size distribution in phase transition during the inflation (A and B) is again very different 

from that in thermal phase transition (C). In the latter case we can fit the distribution with 

an exponential function : 

n(s, t1 )ds ex exp( -0.67 s )ds , (2.66) 

where n(s , t1) is the number density of domains with separation s ~ s + ds. This is simply 

because the number of domains with size sHj 1 is proportional to the probability of having 

the same sign of x for s times in succession : 

n(s,t1)ds ex G)' ds ex exp(-ln2·s)ds ex exp(-0.69s)ds. 

Thus our numerical simulation agrees with the analytic estimate. 

On the other hand, in the case B we may fit the distribution with a power-law : 

n(s,t,)ds ex s-•ds, with p = 3.0. (2.67) 

We can extend the above one-dimensional result into three dimension as follows. First let 

us define the effective correlation volume of a domain between two walls with separation s 

by V = sa Then, since the probability to find a structure with this correlation volume by 

our simu lation is proportional to its effect ive surface area or s 2 , number density of domains 

with correlation volume V, n(V, t1 ), is related to n(s, t1) by 

n(s,t1)ds ex n(V,t1)s2ds ex n(V,t1)dV ex v-'13dV. (2.68) 

Thus the surface area density of walls, CT(V, t1 ), is given by 

CT(V,t1)dV ex n(V,t1)V213dV ex v-'dV. (2.69) 
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number 

[] B 
c 

domain size 
Figure 2.4: Distribution of the separation of domain walls. This figure shows the sum of 500 

times simulations of the length 213 . Plotted values are integrated one in each logarithmic 

interval. 

A{Q): x(x, t1) is calculated using the power spectrum given by the equation (2.60). 

B( X): x(x, t1) is calcu lated using the scale-invariant power spectrum. Solid line is the 

power-law fitting whose power index becomes -2.0 due to integration by s . 

C(L'.): The sign of x{x, t1 ) is assigned randomly with equal probability correspond ing to the 

thermal phase transition with correlation length Hi'· The plot fits an exponential function 

depicted by the dashed line. 
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Therefore in the case that a scale-invariant fluctuation is assigned, we find that the energy 

spect rum of the resu ltant topological defects is also scale-invariant. Analytic arguments to 

derive this distribution wi ll be given in the next subsection. 

Fina lly t he open circles A in Figure 2.4, for which the more realistic spectrum has been 

assigned, shows almost the same profile as the crosses B for s :S 80 but larger domains are 

suppressed because amplitudes of fluctuations with larger wavelength are smaller. From 

Figures 2.1 a nd 2.4 we may conclude the flu ctuation mode with jk'Jx•(t1 )] 2 smaller than 

~ 10% of its maximum is unimportant and the spectrum of topological defects on such a 

large scale should approach that predicted by white-noise fluctuations. 

2.5.2 Analytical Interpretaion 

Here let us consider how the above scale-invariant feature of topological defects is explained 

analytically. To make the following discussion simple and clear let us focus on a patch of 

space which was homogeneous with x = 0 at l = 0. Let us further assume that the space 

may be divided into many domains of horizon volume ]{-3 with different values of X at each 

time. Then the probability distribution function of X is given by 

1 [ x' ] 
P[x(x, t) = >.] = j2trG(O , t) exp - 2G{O, t) ; 

H' 
G(O, t) = (x'(x , t )) = 4tr' Ht . {2.70) 

Furthermore joint probabili ty distribution reads 

1 { x? + x]- 2p(r, t )x•Xi } 
P[x(x,t) = \,; >.(x,, t) = >.,] = 2trG(O,t)j1- p'(r,t) exp - 2G{O, 1)[1- p'{r, t)] ' 

(2.71) 

where p(r·, t) = G(r· , t)fG(O, t) = (\(x;, t)x(xj, t))/G(O, t) with ]x;- x1 ] = r·. The condition 

for ex istence of a wall at a certain point is that x changes its sign there, whose probability, 

F(t), is given by 

F(t) = j o l +oo 
d,~., dxi2P[x(x,, t) = x ;; x(x,, t) = d; -oo 0 

~arccos [G(H-',t) l "" ~ arccos (1- __!__) ""~ {2 
7r G(O,l) - 7r Ill - trVHi.' {2.72) 

where the last approxi mation is just ified if II l » 1. Thus F( t) depends on t only weakly 

even though the background space is expanding exponentially. 
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Thanks to the assumption of homogeneity at t = 0, the largest possible wall at time t 

has a physical size of V = u-3 e3"' , so that F(t) is related with a(V, t) as 

F(t)"' W 1 ju-','"' a(V, t)dV , 
Jl-3 

(2.73) 

where the t-dependence of a(V, t) reflects the fact that quantum fluctuations are generated 

continuously to produce and destroy topological defects successively in the course of cosmic 

expansion. Since this is a rather stationary process without any exponential instability, 

a(V,t) should not depend on t exponentially just as F(t) does not. Furthermore the fact 

that our numerical results were insensitive to the upper bound of k implies that F(t) should 

not strongly depend on the lower bound of the integral in (2.73). Thus we expect from 

(2.73) that a(V, t) should be proportional to v-' to eliminate the exponential dependence 

on t of the upper bound of the integral and to avoid strong dependence on the lower bound. 

In this way we conclude that distribution of walls is scale-invariant and given by 

for Ht ::1> I. 

2 .6 Discussion 

li dV 
a(V, t)dV"' --, -V , 

(/It)> 
(2.74) 

We have studied generic features of a second-order phase transition during the inflation 

which is a more natural and attractive scenario to produce topological defects at GUT scale 

than the Kibble mechanism. We have considered a specific model in which X is coupled 

with spacetime curvature n and a phase transition occurs due to gradual decrease of the 

Hubble parameter. In this model we have clarified the nature of long-wavelength quantum 

fluctuations by explicitly calculating the power spectrum and (x2
). 

In terms of the latter quantity we determined when the classical potential force surpasses 

quantum fluctuations in typical domains and invest igated the distribution of the field at that 

epoch through numerical calcu lations, by which we examined distribution of topological 

defects. 

As a result we have found that they have an almost scale-invariant distribution with 

small- and large-scale cutoffs. The former is naturally given by the comoving scale corre

sponding to the Hubble radius at the epoch time evolution of x becomes dominated by the 
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classical potential force, while our simulations have shown that the latter corresponds to 

the scale on which the amplitude Jk3 f>..•(t1 )I' of fluctuations becomes smaller than~ 10% 

of its maximum value as is seen in Figures 2.1 and 2.4. On the larger scale the fluctuation 

amplitude becomes so small that the distribution should approach white-noise spectrum. 

Note that though Hodges and Primack[80] reported similar results, i.e., scale-invariant 

distribution of topological defects produced during the inflation, their treatment is not 

adequate in two aspects. First they have assumed that topological defects with a certain 

comoving scale are produced only when that scale leaves the Hubble radius during the 

inflation. Contrary to their approximation, however, significant amount of defects could 

be produced and destroyed on various scales continuously through successive generation 

of fluctuations as discussed in the section 2.5. Second they have not given cutoffs of the 

distribution explicitly. As is seen above we have significantly improved these points through 

our analyses . 

Finally we stress that our basic results are also appl icable to other topological defects 

such as strings or textures in which we are more interested[SO]. For example, strings are 

loci on which both real and imaginary parts of string-forming complex scalar field changes 

sign. Hence if the self-coupling A of the field is small enough we can identify strings with 

intersections of two different kinds of independent "domain walls." Thus with the same 

reasoning as the subsection 2.5.2 they also have a scale-invariant distribution with cutoffs. 

Furthermore, since the model parameters must satisfy 

Av2 

- < 90 
7112 ~ 

(2.75) 

in order that strings thus produced are not diluted too much by subsequent inflation, we 

have 

(2.76) 

so that the co ndition of A being small is automatically satisfied for cosmologically important 

strings. 
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Chapter 3 

Wall-String Systems 

The dynamical evolution of a wall-string system is investigated in this chapter. Walls 

intersect each other and collapse approximately at the speed of the light velocity. Such 

moving walls attract matter as positive gravitational sources in contrast to static walls. 

They annihilate with few oscillation so that the lost energy radiates as a scalar mode. Thus 

although the decays are non-spherical, the production of gravitational waves is expected to 

be rare. As for the N = 1 axion domain wall model, walls prove to be harmless in the 

standard cosmology since they do not dominate the universe. 

3.1 The Axion Model 

The axion is a pseudo-Nambu-Goldstone boson that is postu lated in order to solve the 

CP invariance problem in the strong interaction[46, 88]. The strong CP problem[89] is a 

theoretical problem, which arises from the fact that there are degenerate multiple vacu

ums in the quantum chromodynamics(QCD). On account of this non-perturbative effect, 

a parameter representing the CP-violation enters the theory. The experimental constraint 

by an electric dipole moment for the neutron suggests that this parameter must be an ex

tremely small number or zero. The most natural and popular solution to this problem is 

the Peccei-Quinn mechanism in which the Lagrangian is invariant under a global unitary 

transformation of degree one. This symmetry is called the Peccei-Quinn symmetry and we 

express it as U(1)pq. The U(l)rq symmetry breaks spontaneously at the energy scale, J •. 

The associated Nambu-Goldstone boson is the axion. Actually the axion gets its mass, ma, 
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at the QCD scale from the ins tan ton effect . The value of m. is related to j. as 

9 ( 10
7
GeV) 

"'• "'0.6-eV J./N , (3.1) 

where an integer N is the color anomaly of the U(1)pq symmetry. 

The axion of arbitrary value of J. can similarly resolve the strong CP problem. The 

amplitude of j. must be determined by experiments although part of them depends on 

how the axion interacts with ordinary matter. The main constraints are from high energy 

accelerators, from astrophysical observations, especially the cooling effect of the ax ion emis

sion on stellar evolution like red giants or supernovae explosion, and from the cosmological 

limit , not to dominate the energy density of the universe by axions from the thermal or 

non-thermal production including string decay. Hence the value of the axion mass, ma, is 

strictly limited to a narrow window[2] : 

10-6 eV ;S m. ;S 10-3 eV . (3 .2) 

Particularly the lower limit is acquired from the constraint that the axions should not make 

the value of 0 0 much greater than one. Thus if the axion mass takes the critical value, 

the universe can be flat. The axion is one of the most realistic candidates of the cold dark 

matter[90J. 

In addition to the role as a possible non-luminous matter, domain walls are produced in 

the axion model. Since the essence of the axion model is the additional global symmetry 

which breaks spontaneously, it will produce topological defects. They are complex defects 

in the sense that walls are bounded by strings. Two transitions of different energy scales 

are involved in the model. First, the U(1)rq symmetry is broken to a circular vacuum and 

global strings are produced. Then through the second phase transition at QCD energy scale, 

the previous circular vacuun1 gains discrete N potential minima. Thus the strings come to 

be surrounded by N walls that spring out from each string. Besides the axion model may 

produce non-Gaussian fluctuations by global strings and domain walls[91] or the inflaton 

coupled to the ax ion field[92]. Thus the cosmological importance of the axion is profound . 

For the axion model to work successfully, generated domain walls should vanish not to 

dominate the universe with their energy[93]. It is believed that in the cases of N > 1 the 

network of walls survives too long so that the model does not work, although the N = 
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walls rapidly disappear, which means the postulation of axions does not conflict with the 

cosmological observations. Ryden et a!. obtained such results by counting the wall area 

evolution using the numerical data but they adopted a modified equation[94]. Moreover, 

in contrast to their simulation in which the box contains a great amount of walls, we have 

investigated the dynamics of an individual string-wall system by considering the detailed 

procedure of wall collapses[95] in section 3.3. 

3.2 Mod el Lagrangian and Numerical Method 

In the present chapter, we concentrate on walls bounded by strings motivated by the axion 

model. These hybrid topological defects are examined from two viewpoints for cosmological 

walls. One is concerning the property which makes the standard cosmology fail. We will 

try to justify the hypothesis that theN= I walls should be erased harmlessly. The other is 

about the advantage of walls which contributes the cosmological structure formation. It is 

checked how walls can give initial fluctuations for the matter accretion. With the purpose 

of clarifying above properties the fate of collapsing walls is simulated numerically. 

We employ a complex scalar field of a single component that obeys a following Lagrangian 

with a U(l) breaking term : 

£ = ~lo"xl2 - V.(x)- Vw(x), V,(x) = ~(lxl2 - v
2)2 , Vw(x) = V.(J- cosO.), (3.3) 

where 0. signifies the phase of X· The first term of the potential, V., gives rise to strings 

and domain walls (N = 1) at 0. = 1r are originated from the second term, Vw. The line 

energy density of strings, I' ' and the core radius of them, 5j, are 

(3.4) 

respectively. The surface energy density of walls,"' and the thickness scale of them, Sun are 

<7 ~ v/V. , Ow ~ ~ · 
vV. 

(3.5) 

We have formu lated these quantities already in the section 1.3. 

In the case of theN = I axion model, v and V. are related to the Peccei-Quinn symmetry 

breaking scale and the ax ion mass as 

(3.6) 
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lienee the wall thickness is the axion mass scale liw .-v m;; 1 and the surface energy density 

of the wall is in proportion to fa· 

After the first phase transition, the amplitude of the field should be the vacuum expec

tation value, u, in the region where no string exists. We can derive the exact static solution 

for an infinite plane wall when lxl = v is satisfied. In the case that the wall spreads on the 

yz-plane, the equation for 00 is written as 

(3.7) 

whose non-trivial solution is expressed as 

O.(x) = rr + 2sin-
1 

(tanh v/lv.-) (3.8) 

Such a configuration is used as an initial distribution of x in numerical simulations performed 

in the section 3.3. 

To follow the time evolution of walls numerically, we have to solve the field evolution 

under a certain spacetime. As the most simple hypothesis, we assume that the background 

is a flat Robertson- \•Valker universe. Then the field equation is written as 

o
2
\ +~~ox -V'2x=-a2oV. 

or2 a dr OT ox 
(3.9) 

\>Vhen we pay attention to a single string-wall system well inside the cosmological horizon , 

the effect of the cosmic expansion can be neglected. Thus we can make use of the Minkowski 

metric. Then the evolution equation is approximated as 

o2>.. _ \72 __ ov 
{)t' X- ox . (3.10) 

In numerically solving processes, the calculations are interrupted by the factor, a 2
, on 

the right-hand-side term of the equation (3 .9). The physical meaning of this breakdown 

is that the resolution becomes lower with the increase of the expansion factor , a, since the 

lattice separation of the simu lation box is constant in comoving size although the wall width 

is constant in physical length. To escape from this restriction, Ryden et al.[94] dropped the 

a2 factor and replaced the coefficient, 2, in the second term of the left-hand-side in the 

equation (3.9) with 3. We are confident that this modification should alter the dynamics of 

walls fatally so we have used two equat ions (3.9) and (3.10) without any reformation. 
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Numerical simulations have been performed in two-dimensional and three-dimensional 

boxes. In both cases, the equation has been solved by a staggered leapfrog algorithm in a 

second-order accuracy[87]. Detailed formulas for solving these equations are the same as 

those in the case of global textures introduced in the next chapter. The parameters are set 

such that 53 ~ 2 meshes and Ow """' 10 meshes. As a result, the ratio of the string vacuum 

energy to the wall vacuum energy, >.v'/V., becomes ~ 100. This value should be large 

enough since we have found that the wall dynamics has not been affected even when I' was 

multiplied by ten. This is because there is extremely small region where the field stays in 

the false vacuum of V,. 

We have executed the computations under the periodic boundary in the section 3.4 and 

the free boundary, in which the gradient of the field is fixed, in the section 3.3. Other 

boundary cond itions do not modify our conclusions since the box size is so large that the 

influence of the boundaries cannot reach where defects interact. VVhen the cosmic expansion 

is taken into account, the scale-factor grows as a ex: r like the law in the radiation dominated 

stage or a ex: r 2 like that in the matter dominated stage. 

Since we have followed the evolution of the field itself, the viewpoint that walls are rigid 

thickless sheet is not necessary. We can follow the motion of walls using the distribution 

of the potential energy of domain walls, Vw, in the simulation box. The subsequent section 

treats walls of finite thickness and its behavior when walls collapse and disappear is examined 

in detail. 

3.3 Dynamics of the Walls 

3.3.1 Intersection of the Walls 

In this section, we consider the interaction between two walls. First we can ignore the 

cosmic expansion and the equation (3.10) is adopted since defects fairly inside the horizon 

are considered. The initial condition is set so that one wall and one string-wall exist in the 

simulation box. Here "one wall" means the wall that has no end in the simu lation box. And 

"one string-wall" means the wall that has only one end in the simulation box. They are 

arranged such that the edge of the string-wall faces one side of another wall. The distance 
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so so 

Figure 3.1: Two-d imensional distribution of the potential energy, Vw, in 50 x 50 xy-slice 

of a 1002 simulation is shown. This is the initial configuration for the crash of a wall and a 

string-wall. The verti cal axis is normalized as Va = 0.01. 

0. 02 
-015 

. 01 
-oos 

Figure 3.2: The value of Vw when the time, t = 10/',.fc, has passed from the initial configu

ration is depicted. 
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so so 

Figure 3.3: The value of Vw when the time, t = 20!::./ c, has passed from the initial configu

ration is depicted. 

Figure 3.4: Spatial distribution of Vw when the scale-factor grows thirty times as much 

as the initial one is drawn. The calculation begins from the same configuration as the 

non-expanding case. 
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between them is 10 meshes. The translational symmetry in the z-direction is imposed 

on the configuration in the 1002 box. For the spatial distribution of the phase of x, o., 
on both sides of each wall , we substitute a solution for an infinite planar wall under the 

approximation lxl = v on the yz-plane in the equation (3.8). The initial distribution of 

Vw at the (x,y)-slice is shown in Figure 3.l. This figure picks up the 50 X 50 meshes in 

the central principal part. The initial configuration of x does not satisfy the static equation 

for the field at the border where two walls meet since we deal with the drastic encounter of 

sub-horizon scale walls which have no causal contact each other in advance. In such cases, 

they should move drastically. Thus walls in simulations have an initial relative velocity 

whose magnitude is equal to the light velocity, c. Figure 3.2 shows the same quantity at 

the same slice as Figure 3.1 after the period of lOt::.xjc, where t::.x represents the lattice 

separation. In this figure, the wall is cut by the string-wall and a kind of intercommutation 

of the walls is proceeding in the similar way as strings. The intercommutation of strings is 

calculated numerically both in a global string[96] and in a local one[97]. When t = 20t::.xfc, 

the reconnect ion of walls makes further progress, which we can see in Figure 3.3. The speed 

of wall motion is estimated from the displacement of the string false vacuum to be about 

0.5c. 

We have also checked how the behavior of the walls is altered when the cosmological 

expansion is included using the equation (3.9). The initial horizon equals to the grid length 

so that extreme super-horizon walls are assigned. It corresponds to the phase transition after 

or during the inflation in which the correlations of much larger scales than the Hubble length 

exist due to the exponential expansion of the universe which we have described in the chapter 

2. The value of Vw after the scale-factor grows 30 times as large as the initial one is shown 

in f'igure 3.4. The calculation in the radiation dominant era starts from the same initial 

setup as the non-expanding one. Since noisy modes arc damped by the cosmic expansion, 

the intercommutation process can be seen more distinctly than Figure 3.3. However, the 

configuration of x is practically unchanged from the onset of the simulation and the collapse 

of wall s is st ill on the way at this time. The walls move at almost the speed of light but the 

introduction of the expansion decelerates the disintegration process. it takes a few decades 

of expansion times for the process to be accomplished. \Ve have confirmed that more rapid 

expansion in the matter era decelerates such procedure more considerably. 
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3.3.2 Collapse of the Walls 

After repeated intercommutations, walls are divided to multiple small pieces. To examine 

the fate of such a wall piece, we have simulated the motion of a disk wall, a wall that is 

surrounded by a string loop, whose thickness is comparable to the size . A collision of a 

wall and a string-wall which we have surveyed in the previous section is practically a two

dimensional simulation. On the other hand , a full three-dimensional simulation becomes 

possible in this case. When the computations start, the wall whose radius equals 30 meshes 

is placed in the xz-plane centered on the 1283 box. Therefore the coordinate of the ci rcular 

string that encloses the wall is expressed by 

y = 64 , (x- 64)2 + (z- 64)2 = 302 
. (3.11) 

The time derivative of X is zero everywhere in the box. The distribution of Vw at y = 64 

and z = 64 when t = 0 is shown in Figures 3.5. At t = 206.xfc it evolves to Figures 

3.6. Apparently the size of the wall becomes smaller. It means the energy of the wall has 

diffused at the periphery and the division to multiple wall pieces is proceeding almost at the 

light velocity. Such destruction proceeds still more and about 75% of the initial Vw energy 

has been converted to the x energy in Figures 3.7 at t = 406.xfc. From the viewpoint of 

the field configuration evolution, it can be said that the false vacuum energy is gradually 

transferred to the kinetic energy in the course of time. 

When string loops decay, it is supposed that they oscillate many times and may radiate 

gravitational waves[33]. In a spherical collapse, walls actually oscillate a few times[98]. Our 

simulations, however, do not show any clear oscillation. The reasons are that the initial 

configuration of previous simulations assumes unreasonable high symmetry which enables 

bounces; since the spherical wall has no edge, the string tension is ignored; and the wall 

thickness is much larger than the wall size. The intercommutations and collapses of the walls 

is so frequent and rapid that there is no enough time for them to make a global motion like 

fluttering or wriggling. 
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Figure 3.5: Initial Vw potential energy distribution of the disk wall simulation is shown. The 

upper graph corresponds to the slice y = 64, (x, z) = (I, I)- (128, 128) and the lower one 

is at z = 64, (x,y) = (1, I) - (128, 128) slice. In this and the subsequent figures, V, = 0.01 

and the left-hand-side of the numbered axes is x-one in both figures. 
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Figure 3.6: After 20!3./c from the init ial configuration is plotted. 
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Figure 3.7: After 40!3./c from the initial configuration is plotted. 
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3.4 Evolution of Wall Area 

Next we look over the time evolution of the wall size in the expanding universe. For this 

purpose, we have to find a way to determine the total amount of wall area in the simulation 

box. This can be carried out by counting the number of cells in which the phase of the field, 

Oa, takes 7r 1 that is, where the false vacuum of Vw remains. However, we can get the value of 

0, only at grid points. Thus it is rather difficult to find out the place at which 0, equals " 

exactly. Instead, we have identified sides where the sign of sin Oa changes from plus to minus 

and yet cos Oa < 0 at the same time as the position where walls cross. Using this method, 

we have calculated the evolution of domain walls numerically in a box who has I 003 cells. 

Initially the amplitude of the field equals vat every cell and the phase is chosen randomly. 

This corresponds to the thermal phase transition case. The practical change in the initial 

condition has no effect on the field evolution sufficiently after the stabilizing era. This is 

because the random motion of the field fluctuation cancels out the initial difference. or 
course our following results are deduced from the analysis in this post-stabilization period. 

Figure 3.8 shows the result in the radiation dominated universe. Evidently the amount of 

walls has a tendency to decrease with time promptly. Figure 3.9 depicts the case that the 

expansion law is that in the matter universe. The same trend as the previous figure is also 

observed here. 

Since the resolution of the wall thickness becomes worse with the growth of the scale

factor as we have mentioned these simulations are executed for a few expansion time. Thus 

the quantitative analysis is limi ted. llowever, we can supplement the loss with the qualitative 

discussion in the previous section. li enee the prediction that the N = l axion domain wall 

should not bother the cosmological framework seems to be right. 

3.5 Walls as Gravitational Sources 

Here we consider one of the cosmic structure formation models. Soft domain walls produced 

at the late-time phase transition[29] can contribute the cosmological large-scale structures 

that recent observations have revealed[56, 57]. The term "late-time" means its formation 

is sufficiently long after the decoupling of matter not to disturb the CMBR and its surface 
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Figure 3.8: This figure shows the evolution of the volu me ratio of the cells that contain walls 

to 1003 , i.e., the number of the total cells in the comoving simulation box. The scale-factor 

evolves a ex r and is normalized to one at the initial time. 
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Figure 3.9: The same quantity as Figure 3.1 is plotted but in the matter dominated era. 
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energy density is small enough not to dominate the universe. For example, the schizon 

model[99] is one of the actual possibilities. It is a kind of pseudo-Nambu-Coldstone boson, 

which can be understood as a generalization of the axion. The axion acquires its mass 

at the QCD scale. In the schizon model, the soft breaking scale of the continuous global 

symmetry is regarded to be a free parameter. If we suppose this quantity should be a mass 

scale of a hypothetical fermion, m1 , then the mass of the schizon, m., associates with the 

spontaneously U(1) breaking scale,/., as 

m ""m} . - T., (3.12) 

similarly to the case of the axion in which m 1 ~the QCD scale. If we substitute the CUT 

scale~ 1016 CeV for f, and m 1 is assumed to be 0.01 eV which is the mass of, for example, 

a massive neutrino, then the corresponding schizon Compton wavelength is derived as 

m_;- 1 ""1 Mpc, (3.13) 

which is a cosmologically interesting distance scale. In the model of these parameter, the 

phase transition occurs at a very low energy scale ~ 0.01 eV. Thus the CMBR is not 

disturbed significantly by the walls[100]. Moreover, the energy density of the walls is that 

of the order of the critical density. The schizon wall can be dark matter. 

There are several other models of structure formation by domain walls. Cell structure 

formation may be possible by domain wall networks through the model with an approximate 

O(N) symmetry[101]. However, in considering these wall models, it is not argued how the 

Walls interact with ordinally matter. The actual mechanism of mass accretion remains to 

be an unresolved problem. 

When we suppose that walls may be seeds of the cosmological large-scale structure, it is 

important how decaying walls work as gravitational sources. Although it is also argued that 

walls can sweep up matter with non-gravitational interactions[l02], we focus ourselves on the 

metric perturbations by walls themselves. It is widely believed that a static infinite planar 

wall acts as a repulsive sheet[l03]. The corresponding solution of the Einstein equation is 

obtained under the approximation that the wall thickness is neglected . Using the energy 

momentum tensor of the infinitely thin wall pararell to xy-plane : 

T"" = a8(z)diag(l,-l,-l,O), (3.14) 
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the solution of the Einstein equation is found to be : 

ds 2 =(I- ~z)2 dt 2 - dz 2
- (!- ~z)2 e2 ' 1 (dx 2 + dy 2

) , "= 2>rGa. (3.15) 

This is a time-dependent solution. Matter put in this spacetime will be accelerated uniformly 

to the direction away from the wall, whose magnitude is equal to" · lienee it can be regarded 

that the force by the wall is repulsive. 

Even in the case that the scalar field is solved exactly, the same argument holds[l04]. 

This can be seen naively considering that the energy-momentum tensor of a scalar field is 

written as 

(3.16) 

We can define the energy density, Pw , and the mean pressure, Pw, of the field , x, in the same 

way as a perfect fluid : 

Pw 

Pw 

I 2 I 2 
2a2 \ + 2a2 (Vy) + V (\) 

~;\2 - ~(Vx)2 - V(y) 
2a2 6a2 

(3.17) 

(3.18) 

F'or a static wall, the time-derivative of '( equals zero and the potential energy should be 

positive where the false vacuum is left behind. Thus when the wall is not moving, it acts as 

matter of negative pressure analogous to the cosmological constant. 

In general, the amplitude of the gravitational effect by a scalar field is evaluated by the 

sum of the diagonal elements of the energy-momentum tensor which plays a role of the 

source for the growth of the linear matter perturbation[I05]. In order to evaluate the linear 

metric perturbation, we decompose the spacetime metric as 

(3.19) 

under the synchronous gauge; hov = 0. Here we substitute diag(l,-1,-1,-1) for''"". 

lienee the unperturbed background spacetime is Minkowskian. Then one of the Einstein 

equations reads 
.. a. a? 

- h- -h = 3--,8 + Srr L T"" , 
a a ~~ 

(3.20) 

where 8 is the density perturbation in pressureless matter which is related to h = h11 + 

h22 + h33 as 
. h 
8 = --. 

2 
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Figure 3.10: Distribution of the gravitational source density, Sx, at the same time and space 

as Figure 3.2 is demonstrated. Here V. = 0.01 and .Xv4 = I. 

Therefore we can identify the second term in the right-hand-side of the equation (3.20) as 

an effective mass density for the metric perturbations. Using the Minkowski metric as 9~Jv 

in the equation (3.16), the gravitational source density, Sx, can be defined as 

Sx = 2x'- 2V (x) . (3.22) 

When the field configuration is static, X = 0. Thus in the region of the false vacuum 

where the potential term is nonzero, Sx is negative and the repulsive force is expected for a 

motionless wall. 

Since we have the original field configuration, we can calculate the gravitational source 

density, Sx, for the interacting walls directly. This quantity is plotted in Figure 3.10 at the 

same time and slice in Figure 3.2. The peak of S, approximately indicates the place of the 

string that is moving at high velocity(~ 0.5c). On the whole Sx is positive in the region 

where the phase of the field changes greatly. Also in the situation in the subsection 3.3.2, 

we have calcu lated the distribution of the gravitational source. The fact that the source 

density is positive in the wall interacting region where the wall is shrinking into is verified 
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as well. Thus the intercornmuting or contracting wall operates as a seed of attractive force. 

Unlike a simple static wall whose gravitational force is repulsive, moving walls arc quite 

normal gravitational sources. 

3.6 Summary 

We have investigated the dynamics of the scalar field that obeys a potential in the equation 

(3.3). When the field settles into a true vacuum, a connected string-wall system develops. 

The subsequent motion of the hybrid topological defects has been understood. The simula

tion scheme is different from those by Press et ai.[I06), Kawano[l07] and Ryden et ai.[94J in 

the fact that we have treated an isolated system well within the horiwn scale although they 

followed the evolution of super-horizon walls whose shape is complex and irregular. Our 

simulations have been performed in two-dimensional or three-dimensional space, thereby 

they are much more realistic than those by \Vidrow[98J in which the walls has no string 

edge. 

When the number of wall joined to the string is only one, such walls dissipate the energy 

at the speed of several tens of percent of the light velocity and finally are annihilated, 

although this process is slowed down by the expansion of the universe. Thus the N = I 

domain wall does not contradict the observation of our universe. It gives a unique valid 

axion model, which confirms the previous view. 

It is remarkable that the interactions between walls are very violent. The oscillations of 

the wall pieces are hardly observed in contrast to the simple string loop without a wall[33]. 

It indicates that the false vacuum energy of domain walls is released mainly by a scalar field 

mode rather than by gravitational waves, although there exists a possibility that the walls 

lose their energy through t he non-gravitational interactions[! OS]. Such a situation may be 

also appeared in the case of pure strings. The conventional analysis is rough estimation; the 

energy loss rate by gravitational radiation ""'J GJt2
, the frequency of them is a reciprocal o£ 

loop size. Whether they arc true or not shou ld be committed to further study. 

The gravitational source density has been calculated from the field configuration in two 

cases, intercommuting walls and a small wall piece. Both results show that the interacting 

walls generate positive gra\·itational energy and produce attractive gravitational force. Such 
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non-Gaussian seeds may help the scenario of the large-scale structure formation by the 

domain walls. It is an important disagreement against an in finite static wall[l03, 104]. 
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Chapter 4 

Global Textures 

T he dynamical evolu tion of global textures is studied in the present chapter. The evolution 

equat ion of a texture field is solved numerically and the effects of cosmic expansion and 

radial motion are explicitly incorporated . The process of knot collapse is t raced and the 

density perturbations by textures are investigated by a cluster analysis. High density clus

ters posses large-scale correlation and extend widely, which may be useful for the formation 

of large-scale structure. However, it is shown that, although they obey non-Gaussian statis

t ics and a hierarchical behavior is achieved in the linear regime, galactic-scale fluctuations 

are practica lly Gaussian ini tially. li enee the texture model should be no better than the 

standard Gaussian model. 

4.1 One Texture in the Whole Universe 

Global textures are topological defects which are produced at phase transitions accompanied 

by a certain class of symmet ry breaking through the so-called Kibble mechanism or some 

kinds of non-thermal phase transitions. They come into existence when the third homotopy 

group of the true vacuum manifold is non-trivial. For example, the family symmetry model 

has a global SU(2) symmetry[l09] and global textures arise when this symmetry becomes 

broken. 

Textures are essentially different from other defects, such as domai n walls or cosmic 

strings, in that they are topologically unstable. After the phase transition, each point in the 

universe sett les down in some true vacuum state. They hold their energy as a field grad ient 
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not as a false vacuum energy. 

As a demonstrative example of the cosmological importance of a texture, here we briefly 

introduce the case that one global texture exists in a closed universe[IIO]. When the 

global symmetry breaking such as 0(4)-+0(3) occurs, the vacuum structure is written by 

rr3 (0(4)/0(3)) = Z, which enables the ex istence of textures. 

In the first place, we rewrite the metric of the closed spacetime, the equation (!.I) when 

k = 1, as 

ds 2 dt2 - a2(t) [d1) 2 + sin2 7}(d02 + sin 2 Od<p2)] 

(0 :':: '7 :':: 1r, 0 :':: 0 :':: 1r, 0 :':: 'I' :':: 2rr) . 

(4.1) 

After the phase transition, when the condi t ion lxl = v holds, a stable texture exists due to 

the positive curvature of the spacetime. The solution whose winding number equals one is 

written by 

x= 
v sin<psinOsin (;) 

( 

coscpsinOsin (;) l 
cosOsin(;) 

cos(;) 

m 

0 < '7::; err, 

or<TJ:57r, 

where 0 :':: c :':: I. The total gradient energy, E,, which this texture solution has is 

E, ~ j (o,x)2d'x 

2rrv2a(t) [2.- __!_
2 

sin 2crr +err] 
2<: 4<: 

In two limits of opposite directions, Et approaches the values : 

E, ex <: ; e:--+ 0 ' 

ex [I+ (I - <:2 )
2 + ···] ; e:--+ I 

(4.2) 

(4.3) 

(4.4) 

When c -+ 0, E, takes the minimum energy at c = 0. On the other hand, E, decreases 

also in the limit £ --+ 1. lienee somewhere in the region 0 :5 c; :5 1, there should exist an 
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maximum energy point. In favor of this energy barrier, a stable global texture configuration 

is realized at c: = 1. The corresponding energy momentum tensor is 

v2 

T"" = 
2

a 2 (t)diag(-3,-I,-1 , -I). (4.5) 

Then the energy density of this texture, p, : 

3v2 

p, = 2a2(t)' 
(4.6) 

and its pressure, P! : 
I 

Pt = -JPt, (4.7) 

are deduced. Including the texture energy density, the Einstein equation (1.4) is rewriten 

as 

I - -y = (0- I )1/2 
a2 (t) ' 

(4 .8) 

Thus even when the density parameter of the actual universe surpasses 1, the apparent 

energy density of the ordinary matter can be estimated to be less than p". That is, a closed 

universe can be observed by the dynamical estimation of the amount of matter as a flat or 

open one owing to the existence of a texture. For the universe to be flat, it is necessary 

v ~ MP, i.e., the texture producing phase transition should take place at the Planck scale. 

Another interesting implication of the stable texture is that it may resolve the horizon 

problem [Ill]. Since the universe is closed, the photons of CMBR we observe today could 

be released within the horizon at the decoupling time. For instance, in the case that"'{= 1 

and 0 0 = 1, the constraint to the present scale of the universe is 

5.9 < a0 < 6.2 
h ~ 3 x 102 Mpc ~ h ' 

(4.9) 

where a
0 

is defined by the normalization, k = I. The isotropy of CMBR keeps on during 

the time: 
0.4 X 109 

D.t "' --h-- year . (4.10) 

The duration time, !:it, and the permitted range of a0 are not much affected unless the 

parameters(r or 0 0 ) are not unreasonably altered. 
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4.2 Overview of the Cosmological Textures 

The global texture model has been considered to provide a potentially favorable scenario 

for large-scale structure formation among many candidates, since textures in typical grand

unification scales produce density nuctuations having a reasonable amplitude with a scale

invariant spectrum[40, 112, 43] . The statistics of the fluctuations in this model have been 

shown to obey a positively skewed non-Gaussian distribution[ll3, 43], and it has been 

advocated that, thanks to this property, the texture model predicts early star- and galaxy

formation compared with the standard Gaussian CDM model[ll4]. After Albrecht and 

Stebbins[115] have proposed that cosmic strings result in more Gaussian perturbations than 

was previously supposed, textures become increasingly appealing as origin of conspicuous 

inhomogeneities. 

As unstable topological defects, textures vanish by liberating their energy. When the 

event horizon extends enough along with the cosmic evolution, the configuration of the Higgs 

field becomes homogeneous and the spatial differential energy of textures concentrates and 

the gradient energy is confined to a smaller region at the speed of light. This energy 

concentration is called a knot. In succession, when the gradient of the field comes to be 

larger than a potential barrier, knots disappear with a phase jump and a topologically 

trivial configuration is realized. As a result, the field sits on the same point in the vacuum 

manifold everywhere. Th is process is called unwinding of knots[116]. Knots are something 

like cores of textures and their dynamical evolution perturbs the metric of the universe[ll7] 

so that matter is re-distributed to form galaxies or clusters of galaxies. Knots act on the 

matter like point seeds. Then the induced fluctuations should yield a non-Gaussian form. 

If the unwinding rate of knots is constant in time, the spectrum of their distribution is 

scale-invariant . The matter density fluctuat ions caused by knot collapse should also be 

scale-invariant and can be useful sou rces of the large-scale structures of the universe. In 

addition to the such point-like seeds, a pancake-like accretion pattern can be formed by 

toroidal symmetric global textures[l18]. 

To investigate the evolution of a texture field, Spergel et a/.[119] solved the evolution 

equation numerically and showed that the texture obeys the scaling solution. They also 

calculated the knot unwinding rate per horizon volume per horizon time; their result shows 
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that this rate is constant. They, however, modified the equation so that the effect of cosmic 

expansion on the potential term was neglected. In the subsequent sections, we use an original 

and unmodified equation to see how this scaling of potential affects the knot unwinding rate. 

With the intention of sketching a typical knot collapse we employ a real scalar field x' 
that cons ists of four components (j = 1, ... ,4) with the following Lagrangian: 

(4 .11 ) 

where repeated indices implicitly denote a summation. Since there is no false vacuum region 

in the texture configuration, the field strength can be restricted to the symmetry breaking 

scale. Under the assumption that \ 1 X1 = v2
, the field equation is derived as 

(4.12) 

where '\l!J represents a derivative operator. Assuming a spherically symmetric configuration 

[ 

:~~~:sin 0 cos~ 
\:') = v 

sin Yo sin 0 sin 1,.? 

sin \o cos 0 

(4.13) 

where 0 and tp are the coordinate components of polar angles, the degree of freedom is 

reduced to only one valuable, y0 . Then the evolution equation (4.12) reads 

_ 2 dy0 c£'xo sin (2xo) 
Yo-;--;& - --;pi" = ---r-,- , 

in a nat Minkowski spacetime. 

For the textu re of unit unwinding number, the collapsing solution exists : 

1

2tan- 1 
( -T) , t < 0 , 

\o = 2 tan- 1 (f + 11") , t > 0; r < t , 

2 tan -t (;: + 11") , t > 0; r > t , 

(4.14) 

(4.15) 

in which Xo changes from 0 at 1· = 0 to 1r at r = +oo when t --+ -oo and is always equal to 1r 

when t __, +oo. Thus the unwinding of a texture knot is realized. With equation (3.16) the 

energy momentum tensor for this solution can be calculated and the metric perturbation 
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can also be expressed using the Einstein equation . As a result, under the approximation 

that the photon emission occurs at infinite past and it is received at infinite future, the 

temperature distortion by the Sachs-Wolfe effect results in : 

(4.16) 

where rc is the impact parameter for the photon path to the knot center and tc denotes 

time measured from the texture collapse. The maximum temperature fluctuation is realized 

when r, = 0 but its sign depends on whether t, is positive or negative. When the light 

ray goes through the nearest access point after the knot collapse, i.e., tc > 0, the travelling 

photon is blueshifted and a hot spot will be observed on the sky. In the contrary case, a 

redshifted cold spot should be discovered. With the aid of numerical results, Spergel et 

a/.[119] predicted that about 10 spots of angular radius~ 8" should be contained in the 

CMBR assuming the universe has been fully reionized. In the section 4.4, it is shown that 

this is an overestimated number. 

The recent COBE observation detected the root-mean-square temperature fluctuations 

at 10" cited in the equation (1.10). This scale corresponds to the horizon of the last scattering 

surface in the reionized universe. If we apply the above scenario, the result of COBE may 

put a stringent restriction on textures by counting hot and cold spots, which is difficult due 

to the lack of resolution. Moreover, the COBE result indicates that the reionization model, 

which itself is realized in limited situations, is less preferable than the standard one[120]. 

Although as for the absolute temperature fluctuations, the exact value which the texture 

model predicts depends on the details of the model, it turns out to be consistent with the 

COBE observation by taking the bias parameter to be b ;:; 2- 3[121, 122]. In addition 

to the CM BR bumps by simple spots model, the anisotropy from scalar field gradient also 

predicts the grand unified scale texture[l23]. Thus global textures cannot be fully excluded 

by the CMBR observation. 

Gooding et a/.[41] and Cen et a/.[42] investigated the plausibility of texture-seeded uni

verse scenarios, both textures with CDM and those with HDM. They made use of hydrody

namical simulations. Their main conclusions are that galaxies and clusters of galaxies have 

correlations of significantly larger scales than those in the models without textures, and that 

the early formation of these objects are highly promoted. Above favorable features of the 
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texture cosmology must originate from the non-Gaussian nature of them. Abundant stick

ing density peaks will enhance matter accretion . These simulations, however, are based on 

the initial texture fluctuations calculated by Spergel et a/.[119], in which the basic equation 

was improperly deformed. Thus we pay careful attention to how strong the texture model 

exhibits a non-Gaussian disturbance in the section 4.6 using the correct equation . 

4.3 Numerical Scheme 

In simulations we consider the simplest global texture model, G=0(4) and H=0(3), in 

which the production of global textures is possible. We use the Lagrangian given by equa

tion (4.11). The spatially-flat Friedmann-Robertson-Walker metric (2.9) is assigned to the 

unperturbed background. In this background spacetime, we solved numerically the field 

equations for ;x:1 : 

(4.17) 

in a three-dimensional comoving cubic box, which is identical to the equation (3.9) in the 

wall-string situation. The values of four components for X are allocated to each lattice point. 

In the process of solving the equation (4.17) numerically, a discretization method has 

been employed . The equations are expressed by 

x:+l.y,t - 2\:.y,t + A;-l,y,: 

t:.x' 
2' n (I " I' ') -a "'Xav \av - V 1 

'\':.y+l,z- 2A:.y,t + \:,y-l.t 

t:.y' 

(4.18) 

x:.y,t+l- 2x:,y,t + x:,JI,t-1 

C.z' 

n-1(" n +" +" +" +") -\av = 6 Xr+l,y,t + \r-l,y,: \x,y+l,t \x,JI-l,z Xr,y,z+l Xx,v,:-1 I 
(4.19) 

where an upper suffix denotes the number of time steps and a lower suffix shows a spatial 

coordinate in a simulation box. \Ve set the lattice spacing equal to J, that is, 6.x = D.y = 
l:lz = 1 in simulations. A conformal time step is selected so as to satisfy the Courant 

condi Lion [87]. 

Numerical calculations arc performed in the cube of~ 1003 mesh points with a periodic 

boundary condition. The initial condition is designed as follows. The initial comoving 

lattice interval was chosen so as to coincide with the initial horizon length. Thus x at each 
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point should have a random value since there is no causal relation over a. unit cell under 

the thermal phase transition. Initial values of x',x', y3 and y4 are determined randomly 

under the restriction xJ xi = v2 and :(i = 0. In the quantum phase transition case, the 

phase correlations according to the equation (2.65) should be included , which would reduce 

the number density of defects. Finally, we took A = 0.04 or 0.01 as reasonable values of 

coupling constant, and v = 1; all the scales are normalized by the value of v. 

We have performed several test runs in which other values of parameters are adopted or 

the initial condition is altered. The results of these simulations give no essential discrepancy 

to our conclusion . Particularly the simulations of the false vacuum initial condition, i.e., 

x = 0 differ only in the initial temporary behavior of the stabilizing process from those of 

the true vacuum initial condition we have employed. We have also confirmed that there is 

no finite volume effect by comparing the results of the different box sizes. 

In the sections 4.4 and 4.5, we have done calculations using two expansion laws of the 

extreme cases. One is that in the radiation dominated universe. l-Ienee the scaJe.fador 

depends on the conformal time such as a(r) exT. The other is for the matter dominated 

universe, that is, a(r) ex r2 . On the other hand, the era in the vicinity of the equality time 

is treated in the section 4.6. Hence more realistic formula is adopted; T and a(r) are related 

to each other as r ex ~ - ,;a;;. Then we followed the evolution until the horizon 

scale became larger than about forty meshes. The system relaxed into the scaling solution 

before five expansion times when the behavior of the field became independent of the details 

of the initial condition, and we start collecting data to analyze the statistical properties. 

To investigate the evolution of a texture field, a modified equation in which the effect of 

cosmic expansion was completely taken into account has been used in the paper by Spergel et 

a/.[119] . Furthermore, Pen et a/.[122] fixed xi xi = v' throughout the calculations, neglecting 

the radial-mode fluctuations. However, the field oscillates around the true vacuum, not only 

along the massless Goldstone mode, but also along the radial direction; the perturbations 

due to these processes are also important in the texture model. We thus used the precise 

equation (4.17), in which both cosmic expansion and radial fluctuations are fully considered. 
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4.4 Knot Collapses 

In this section, we estimate the knot unwinding rate numerically and verify the scale

invariance of knot collapses. \Ve define the knot number per horizon volume at the moment 

of the phase transition, Nk. As the horizon expands, knots are formed continuously. Thus 

if knots were stable, the knot number per horizon volume would be Nkr 3
. However, knot 

collapses at the speed of light. On the other hand, the horizon scale evolves also at the 

speed of light. By naive consideration, we can presume that the knot number per horizon 

volume should Lake the constant value, Nk. The knot number per comoving volume, nk, is 

written by 

(4.20) 

To determine the value of Nk, we searched for a knot point in the simulation box. For 

the purpose of the direct determination of a texture's position, the phases of X are evaluated 

at the central point of each cell. At all sides of each cell, it is checked if the sign of the x field 

changes. The cells which have the side where all the components of X changes their signs are 

counted for topological singu larity, since the field should sit on the false vacuum somewhere 

in this cell. The time evolution of the number of these cells is shown in Figure 4.1 and 4.2, 

where we set A as 0.04. Then the enough resolution for knots counting is ensured. In Figure 

4.1, the expansion law is that in the radiation dominated universe. Figure 4.2 is for the 

matter dominated universe. In both cases, the estimation of N. starts well after the field 

settles in the true vacuum and stops well before the computation fails. The former figure 

shows N. ~ 0.0 I and the latter shows N, ~ 0.02. These results demonstrate the constancy 

of the knot unwinding rate per horizon scale. 

Using geometrical considerations, Prokopec[\24] calculated the probability for the forma

tion of texture per correlation volume, which equals the horizon volume in our simulations, 

to be 0.01 ~ 0.21. llis method of estimation is based on the Kibble mechanism. Space is 

divided to simplexes and five tetrahedra, the central one and the four adjacents ones which 

own single face in common with the first one are imagined. Then the probability of the 

events that the winding number around them exceeds critical value, nc, can be computed 

by geometrical estimation. The biggest value, 0.21, is gained when n, = 0.5 and the smallest 

one, 0.01, corresponds to the case nc = 1. The numerical value is consistent with that of 
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Figure 4.1: The time evolution of the knot number per horizon volume is shown. A = 0.04 

and the scale· factor grows with a( T) ex T. The knot unwinding rate is almost constant in 

l ime. N, in the equation (4.23) is about 0.01. 

0.04 

0.03 

0.02 

0.01 

11 
scale-factor 

Figure 4.2: The same as the previous figure is shown 111 the case where A 

a(T) ex T2. N, ~ 0.02 in the matter dominated universe. 
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13 

0.04 and 

Monte Carlo simulations[l25]. Our results agree with this value. The result implies that 

the field configuration which enables topological defects is rarely realized; its probability is 

much smaller than unity. 

Thus we can say that the value of N, is 0.01 ~ 0.02, which is smaller than that obtained 

by Spergel et a/.[119]. They identified grid points where the magnitude of xis large enough 

as texture unwinding points . Probably this is one of the reasons why they overestimated 

the knot unwinding rate. Our definition of knots picks up only the point where the winding 

number exceeds"""' 1. Their criterion, lxl < v/2, is too crude. 

4.5 Distribution of D ensity P eaks 

It is important to investigate the distribution of an effective mass density produced by the 

texture field, x, for the purpose of studying the structure formation of the un iverse. The 

fact that N, «:: I indicates that the kool unwinding does not happen so frequently. Global 

textures, however, always give perturbations to the mass density of the universe throughout 

their dynamical evolution. There is also an differential energy concentration where a knot 

collapse does not occur, since the process of the x configuration developing into a uniform 

phase state within the horizon scale proceeds continually. We can get the information 

about how textures disturb the matter density by examining the spatial distribution of the 

gravitational source density. 

In this section, we concentrate on the case where A= 0.01 and a(T) exT as a typical one. 

Simulations under any other reasonable parameters also show the common conclusions with 

the above case. Figure 4.3 shows the time evolution of the gravitational source density, S, 

defined in the equation (3.22). After the initial stabilizing era, the averaged gravitational 

source density over the simulation box decreases with an oscillation. The rate of decrease 

is ex: a-3 , which is consistent with the behavior of the scalar field in an expanding universe. 

The oscillation is caused by the wandering of the Higgs field around the potential minimum 

in a radial mode. lienee the frequency is ""'"' v>::;;i in proper time. This time evolution 

indicates the importance of the mass of \. Thus the approximation by Pen et a/.[122] that 

the height of V(x) has no influence on the evolution of X is inadequate. 

To investigate the perturbations by textures, we should pay attention to high S, peaks 
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Figure 4.3: The gravitational source density, Sx , evolution is depicted. The unit of the 

vertical axis is normalized by v 4
. The parameter, A, equals 0.01. The scale-factor evolves 

in the same manner as that in a radiation dominated universe. The dashed line is the 

power-law fitting line of the peak of Sx· The index of this line equals -3. 

Figure 4.4: The statistical distribution of the gravitational source density, Sx, at a= 14.12 

of the simulation in which.\= O.Ol and a(r) <X Tis shown. The horizontal axis is rescaled 

so that the dispersion is equal to un ity. The vertical axis is the probability. The value of 

us is 0.0015. 
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Figure 4.5: This figure exhibits the high density cluster distribution at a = 14.12. The 

parameters in the simulation are common with that of Figure 4.4. The horizontal axis 

shows the cluster size and the vertical axis shows its number. The threshold equals Sx + (jS· 

and its spatial distribution rather than the property of an averaged quantity. First, we 

calculate the statistical distribution of Sx at a certain time slice. Figure 4.4 shows that the 

density distribution by textures is highly non-Gaussian and has a long high density tail. 

This suggests that the mass irregularities are formed promptly, which should be completely 

different from the density fluctuation growth in a Gaussian model. The moment that the 

distribution skews negatively, however, also exists in the texture evolution. Hence the 

statistics of perturbations by textures are not so simple and need to be studied further. 

To express the spatial density distribution more qualitatively, we have used a clustering 

analysis. First the threshold density is defined; if the gravitational source density at a 

certain cell is larger than the value of the threshold, we regard it as a high density cell. 

Then all t he linked neighboring high density cells are assumed to be members of "cluster". 

Then the spatial distribut ion of the gravitational source is exhibited by examining the size

number distribution in a three-dimens ional box. Figure 4.5 describes the result when the 

threshold equals Sx +us , where S, is the mean of Sx over the simulat ion box and us is 

the dispersion of Sx· For comparison, the result of the same analysis in the case where the 
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Figure 4.6: This is calculated from the configuration where the high S, points whose number 

is equal to that in the previous figure are distributed randomly. 

high density cells are distributed at random is shown in Figure 4.6, whose profile differs 

from that of the texture simulation. Evidently high density peaks by global textures are 

strongly correlated since the former distribution has much larger clusters than the random 

simulation . Particularly the existence of the cluster whose size is ext remely large indicates 

the wall-like or string-like structure by the texture perturbations. To see the correlation of 

Sx explicitly, the three-dimensional distribution is demonstrated in Figure 4.7. A dotted 

point corresponds to the cell where the gravitational source density exceeds Sx +as. It 

is obvious that large-scale clusters exist, which is quite different from Figure 4.8 in which 

dotted cells are randomly distributed. 

We have calculated Sx cluster distribution at various time slices. The profile is time 

independent and the following statement always holds even when the scale-factor is greater 

than 20. Since the horizon scale T equals 20 at a= 20, there is only one or no knot in a 703 

box at this time if Nk ~ 0.01. In spite of the scarcity of knots, the spatial distribution of 

high density peaks looks very si milar. lienee the texture evolution is scale-invariant in the 

sense that the size distribution of density peaks holds unchanged. This is in good agreement 

with the scale-invarianceof knot collapses. Of course we must follow the evolution of density 
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Figure 4.7: The three-dimensional distribution of the high density cells in a 503 box at 

a= 13 is shown. Dotted cells correspond to the cell where S, :2: S, +as. 

Figure 4.8: Dotted cells are randomly distributed such that the total dotted volume is 

identical to that of the previous figure. 
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fluctuations to compare the texture density distribution with the observed structure in our 

universe. However, the stat istical property of the perturbations by global texture itself 

is noteworthy. Global textures may offer a mechan ism of producing the correlated mass 

distribution in the universe. 

4.6 Analysis of the Statistical Properties 

4 .6 .1 Formulation of the M ethod 

In the present section, we analyze the statistical properties of density perturbations by global 

textures making use of the results of numerical simulations in the previous sections[l26]. 

Observationally, the existence of highly non-Gaussian distribution of galaxies is known at 

present[58]. The observed reduced th ree- and four-point correlation functions have been 

shown to satisfy a hierarchical form[127, 128] which can be expressed in terms of their 

volume average as 

((V) = St(V) , q(V) = f{"['(V) , (4.21) 

where ~(V), ((V), and q(V) are two-, three-, and four-point reduced correlation functions 

averaged over volume V, respectively, with S and 1\ being constants which are indepen

dent of V. Although there have been some attempts to explain its origin in some limited 

situations[l29 , 130), it is yet unclear how this hierarchy is realized on various scales. It may 

be explained by a non li near gravitational interaction[l31) and/or by a non-Gaussian initial 

condition. We furthermore discuss the prediction of texture-seeded perturbations in relation 

to these higher-order correlation funct ions. 

In the section 4.3, we have calculated the knot distribution aspect. However, the point

like view of the fl uctuations is too simple to be applied to a statistical analysis. We have 

evaluated the knot number per horizon volume to be 0.0 I - 0.02 with the aid of numerical 

calculations. Although knot collapse is such a very rare process, textures can perturb the 

matter distri but ion, even outside of the region where the knots unwind. This is because 

the unwinding occurs only when the winding number becomes close to unity, whereas a 

phase rearrangement always occurs everyw here in the universe, since the horizon spreads 

continuous ly. We thus employ the spatial distr ibution of the texture field in order to check 
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the statistics of perturbations by textures. 

In the same manner as the equation (3.22), the quantity corresponding to the gravi

tational source of the scalar field is expressed by the sum of diagonal parts in the energy 

momentum tensor, namely : 

(4 .22) 

where a dot denotes a derivative with respect to time t. Then the normalized density 

perturbation of matter , 6(t,x) = (Pm(t,x)- Pm(t))fpm(t), evolves with time in the linear 

regime when there is no drag force between matter and radiation, follow ing the linear 

perturbat ion equation[127): 

(4.23) 

where ~S,(t, x) = S,(t, x)- S,(t) . p .. (t, x) is the matter energy density at (t, x); Pm(t) and 

S,(t) are the spatial average of Pm(t,x) and S,(t,x). Since we know the two independent 

solutions for the equation without the /'j,S. ..... term[127], we can write the solution of equation 

(4.23) for the growing mode as 

6rrG ( 3 ) j' a'
3 

[ ( 3 ) ,;r:t:ll' + 1 ] 6=-- 1+-
2

a da'~S,--, 1+?a' ~log,;r:t:a' -3(1+a') , p,, ,, I + a - 1 + a - 1 
(4.24) 

where Peq is the n1a.tter density at a = aeq, and we have set 6 = 8 = 0 at a = ai. The 

amplitude of fluctuations was properly normalized according to the observation by taking 

the biasing parameter to be 2[121). 

When we evaluated Sand 1\, we calculated the evolution of 6, with aeq = 1 and ai = 0.2, 

starting the simulation at a= 0.02 and confirming that the system had already settled into 

the scali ng regime by the ti me a = ai. Si nce our primary purpose is to investigate the 

statistical properties of the initial condition before the nonlinear gravitational interaction 

deforms them, we shou ld analyze the distribution of 6(t, x) at some early epoch. It would 

be most appropriate to do so at the equality time, since the largest structures observed 

today are supposed to have been seeded by a texture collapsing around this time[ll2], and 

clustering of matter shou ld have become effect ive at that time. 
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4.6.2 Numerical Results 

Hereafter we consider the statistical properties of the density nuctuations produced by the 

texture field. First, we examine the non-Gaussian nature of the source density, Sx(t,x), at 

each time in terms of the normalized third moment : 

rs(t) = (C.Sx(t,x)') 
(C.Sx(t, x)2)> ' 

(4.25) 

where brackets imply averaging over the spatial configuration. Figure 4.9 shows the time 

evolution of rs(t). It is confirmed that the energy of the texture field has a positively skewed 

distribution. However, fs(t) shows the statistical properties of the source term only at each 

time slice. By integrating (4.24) to find the matter perturbation, 6(t,x) , we can determine 

the properties of the observable quantity. 

In order to determine the scale-dependence of the statistical properties, let us consider 

the normalized skewness, S(V), and the normalized kurtosis, I<(V) : 

S(V) 

I<(V) = 

(6(V)3) 

(6(V)')'' 
(6(V)')- 3(6(V)2 ) 2 

(6(V) 2) 3 

(4.26) 

(4.27) 

where 6(V) is the value of the matter perturbation averaged over the cubic volume V. They 

are so defined that both quantities should be constant in the hierarchical distribution (4.21). 

Figure 4.10 and 4.11 show the scale-dependence of S(V) and I<(V) at the equality time, 

when the horizon scale corresponds to V o: 423 in the simulation box. The plotted error is 

a statistical one which was estimated from 10 different simulations . We can say that the 

skewness and the kurtosis are nearly constant, S -:::::= 3 and /( -:::::= 15, within a scale much 

smaller than the horizon. We performed many simulations in boxes having various physical 

lengths and this hierarchical behavior has been found to be a general tendency. 

In the standard CDM model, the initial distribution of fluctuations is assumed to be 

Gaussian, and nonlinear evolution produces higher moments of the matter perturbation. 

The hierarchical behavior of the skewness and kurtosis can be derived from higher order 

perturbation theory in the matter dominated era[127, 130[. We have shown that the texture 

model predicts that the hierarchy of the skewness and the kurtosis already exists at the 

equality time before the onset of mass accretion due to its self-gravity. One can confirm 
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Figure 4.9: Time evolution of r,(t) in the 703 box. The horizontal axis represents the 

scale-factor a, with a= 1 corresponding to the equality time. 

that the observed non-Gaussian nature of the density fluctuations at the equality time 

is entirely due to the property of texture field, with no effect of nonlinear gravitational 

interaction, using the second-order perturbation equation(l27) : 

M a. 
6, + 2-6, 

a 

v = 

G( '( ') S) G ' njd3x'~ 4rr p,.o 1 + u + /j. X - Pm 'lu. v [x'- x[ 

+~000~ ( V0V~) , 

..'!.._f (Jd'x'6(x',t) lx'- xi) 
4Jrut x'-x 

(4.28) 

(4.29) 

where 62 is the amplitude of nuctuation evaluated up to the second order. At the equality 

time, ae
9 

= 1, we measured the amplitude of the four terms of the right-hand side of the 

equation (4.28) in a 303 box. We found that the second term is only 10-• of the first term, 

and that the third term is J0-2 at the scale ~ 1 Mpc. We can thus safely say that the 

second-order effect is much smaller than that of the texture field at the equality time. 

However, to show that the effect of non-Gaussian initial fluctuations is significant, they 

must be compared with the nonlinear effect in the matter-dominated era. We can also 
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Figure 4.10: Normali zed skewness, S(V), as a function of the averaging.volume, V. They 

are the average of 10 si mulations calculated from the spatial distribution of 8 in a 1003 box 

integrated from a = 0.2 to a = Geq = 1. The statistical errors are also shown. n is the 

density parameter today and hso is the Hubble constant in units of 50 km s-• Mpc-l The 

horizon volume at this time corresponds to V ~ 403(l1hi0 J-3Mpc3 = 423 meshes in the 

simulat ion box. The scale, which contains one knot on the average, is then sti ll 100-times 

larger than this volume. 
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Figure 4.11: Normal ized kurtosis , }{(V ), under the same condition as in Figure 4.!0 . 
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Figure 4.12: Normalized third moment, f(V), under the same cond ition as in Figure 4.10. 

estimate the effect of the initial skewness and kurtosis to the evolution of fluctuations using 

the second-order matter perturbation b2 . The moments of b2 arc exp ressed by[l32] 

(bil = Wl + Wl , {4.30) 

(b~l = Wl + ~Wl, {4.3 1) 

(b~) = (b') ' {4.32) 

where the moments higher than 5 are neglected. With (P) = S(62
)

2 
"' 3{b2

)
2 and (b') -

3(b2 ) 2 = [{ (b2 ) 3 "' 15(b2)\ the skewness S2 and the kurtosis 1<2 est imated up to the second 

order are given by 

S, = S+ '¥ + *1<(6
2

) 

{1+ S{b')) 2 

K - 6S- 3S'{b') 
(1+S{b'))3 K, = 

~ 8 ' {4 .33) 

~ -3' {4.34) 

respectively. Although the normalized skewness is more enhanced {S2 ~ 8) than in the 

case of the Gaussian initial condition (51 "" 5) , the degree of enhan cement is not very 

extreme. As for the normalized kurtosis, /{2 = 0 in the initial Gaussian model. The 

nonzero kurtosis appears in the th ird-order perturbation and its amplitude is estimated to 

be ~ 46 by Fry[l30]. This is much larger than IK -6SI ~ 3. We thus concl ude that even if 

there exist nonzero higher moments with the hierarchical property, they wi ll be concealed 
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Figure 4.13: Smoothed probability distributions of {j at a = 1.0 in the case of a 703 box 

simulation. The averaging-scale is V = 13(!1h;0 }-3 Mpc3. The horizontal axis is normalized 

by the variances of o, which equals 1.5 x I o-6 The vertical axis is rescaled so that the total 

area of the distribution is unity. The dashed li nes correspond to the Gaussian distribution 

with the same variance. 

by the effect of nonlinear evolution. Since such effect is present in the Gaussian models as 

well, texture-induced skewness and kurtosis are not necessary for the hierarchical clustering. 

In order to estimate how much the non-Gaussian feature is useful for early structure 

formation, it is important to know to what extent the probability distribution of {j spreads 

to the side of the high density in the unit of (o2
). For this purpose, the normalized third 

moment, r(V) = (o(V)3)/(o(V)2
)
3i 2

, is depicted in Figure 4.12. It drops rapidly before the 

averaging scale reaches the horizon scale beyond which the field has no correlation. Although 

the relation (o(V)3
) ex (o(V) 2

)
3i' is generally expected in non-Gaussian models from an 

intuitive analysis[l33], the third moment of texture-induced fluctuations decreases much 

more steeply. To see this tendency explicitly, the probability distributions at three different 

averaging-scales are plotted in Figure 4.13, 4.14 and 4.15 . In the scale of I(nh;
0
)- 1Mpc 

(today shown by Figure 4.13), mass concentrations that have a large deviation from the 

average to the higher side exist. For example, the portion where 8 is larger than three 

standard deviations (a; ) reaches about 1% of the total box volume, while in the Gaussian 
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Figure 4.14: The same distribution as Figure 4.13 in the case that the averaging-scale is 

V = 33(nh;
0
)-3 Mpc3 and the variance equals 9.7 x 10-8 
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Figure 4.15: The same distribution as Figure 4.13 in the case that the averaging-scale is 

V = 63(nh;
0
J-3 Mpc3 and the variance equals 1.6 x 10-•. 
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Table 4.1: Percentage of the volume where 8 is larger than some a,(%) 

118 ~ +2a; 18 ~ +3a6 I 
Figure 4.13 4.0 0.98 

Figure 4.14 3.0 0.29 

Figure 4.15 2.8 0.21 

Gauss ian distribution 2.3 0.13 

case it amounts to only 0.13%, as can be seen in Table 4.6.2. This result agrees with the 

fact that r"""' 1, which can be seen from Figure 4.12 . Thus, in the star-formation scale, 

which is much smaller than I {flh;0 t 1 Alpc, density peaks of large amplitude can cause quick 

matter accretion and a prompt shift to non-linear evolution, compared with the Gaussian 

model. On the other hand, the distribution becomes practically Gaussian at V ::o< 63 , which 

is much smaller than the mean volume containing one knot. lt corresponds to a length 

scale of I ::o< 6{flh~0)- 1 Mpc today. Since the texture model docs not generate the prominent 

density peaks in the large-scale structure, the distinction between it and the Gaussian model 

is practically negligible on galactic scales. This volume dependence comes from a loss of 

the high ly non-Gaussian feature by summi ng up many small scale fluctuations which are 

produced by the rad ial-mode oscillation of the field. Not only the knot unwinding process, 

but the field oscillation is also indispensable to reproduce the correct statistical properties in 

the texture model. The importance of the variation in the field ampl itude can also be seen 

from the fact that Pen et al.[l22] in which they fixed the field strength x'y' = v2 offered the 

perturbation which has more power on large scales than that calculated in our simulations. 

Above results are consistent with the calculation[l34] which advocates that linear velocity 

fields in the large-scale for the non-Gaussian perturbation model are smeared out and look 

like nearly Gaussian. 
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4. 7 Summary 

We have calculated the time evolution of global textures in an expanding universe. The 

scale. factor has been taken into account precisely. A wide area of the parameter space has 

been surveyed and the texture evolution shows the scale-invariant behavior in both knot 

collapses and density peaks distribution. 

We have identified topological singularities, i.e, the cells in false vacuum as knots. The 

number of knots per horizon volume is constant. If knots unwind at the speed of light, the 

rate of knot collapses per comoving density per conformal time interval, dnk/dr, is written 

by 
dn; N, 
Tr = ?"' (4.35) 

Our simulations show Nk- 0.01 in the radiation-dominated universe and Nk- 0.02 in the 

matter dominated universe. However, knots exhibit only high winding number collapses 

and the number density of them is not enough to describe all the properties of textures. 

The spatial distribution of the gravitational source density, p + 3P, reveals that the high 

density peaks are strongly correlated. If a large high density cluster forms a large mass 

concentration and a small cluster forms a small mass clump, which is a natural assumption, 

the perturbations by global textures form structures of various sizes within the horizon scale. 

Moreover, the size distribution profile is constant even in the course of the texture evolution. 

These two scale-in variances arise from the property of the dynamical evolution of x, that 

is, the continuous phase arranging process. By increasing the horizon, the configuration of 

the Higgs field comes to be uniform over a larger scale. In particular, not only the Coldstone

mode but also the mass-mode oscillation of the field play an important role in this process . 

Such fluctuations of the field perturb the metric of the universe on the scales of wide range. 

li enee global textures generate matter density perturbations in various scales. 

However, although t he texture model may predict positively skewed non-Gaussian fluc

tuations on scales relevant to early star formation to reion ize the universe, the initial distri

bution of the perturbations becomes practically Gaussian at ~ 6(flh~ot' Mpc. The extent 

of the non-Gaussian feature in t his model is at most comparable to that of the hierarchical 

model. In terms of the normalized skewness and kurtosis, the initial deviation from the 

Gaussian distribution by textures has less efficiency of matter accretion than does the sub-
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sequent nonlinear perturbation growth . 'We therefore conclude that this model is 110 better 

than the standard Gaussian COM model with regard to the formation epoch of galaxies. 

For all that, analyses of the statistical and clustering properties of fluctuations might 

be useful for comparing the theoretical model with the observed universe. The inflationary 

model or other topological defects model would be discriminated from the !13 nontrivial 

defects model if we could observe how the primordial fluctuations distribute at or before the 

equality time. Topological instability of the dynamical evolution causes the distinct features 

of global textures. 
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Chapter 5 

Conclusion 

In this thesis, various aspects of the creation of topological defects during the cosmological 

phase transitions and the evolution of them in the early universe are reported. Such defects 

are inevitable products of spontaneous symmetry breakings(SSB) which are the indispens

able concept in the unification of elementary interactions. The most successful model in 

which the SSB plays a central role is the Glashow-Weinberg-Salam theory[l35]. It unifies 

the electromagnetic interaction and the weak interaction, and explains many high energy 

experiments. Although the Higgs field, a scalar field which causes SSB, has not been found 

in accelerators on earth, not a little physicists hope that the discovery of it would be a 

question of time or energy. Even if the Higgs mechanism is wrong, our universe must have 

experienced some symmetry breaking as long as we believe that the interactions should 

be consolidated into the sole one in extremely high energy ages. Therefore the topological 

defects are destined to be recorded on the cosmic chronological table for the most cases .. 

In the chapter 2, the creation mechanism of topological defects is argued. The conven

tional scenario is based on the Kibble mechanism in which the thermal correction to the 

effective potential of the Higgs field causes the symmetry restoration. Although this mech

anism is valid only under the thermal equilibrium, the universe might fail to be thermalized 

in the grand unification era. In the very early universe, the reaction rate of particles is less 

rapid than the cosmic expansion rate. Thus we have to assume either that the universe 

started with the thermal equilibrium state as an initial condition or that it was in a chaotic 

state. As stated in the chapter 2, even in the latter case the production of topological de

fects is possible in the inflationary universe. The chaotic inflation occurs when the universe 
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is in a non-equilibrium stale and quantum fluctuations push up the field strength so that 

the effective cosmological constant is acquired. The inflation solves problems which the 

standard Big Bang model cannot explain. Moreover it can save topological defects from the 

failure of the production even in a chaotic universe. 

1n the quantum phase transition mechanism there are two novel problems compared 

with the original Kibble mechanism. One is that the extended fluctuations by the inflation 

generate the correlation of the defect field on the scale beyond the Hubble horizon. Hence 

the distribution of the field value at the time of defect creation differs from the thermal 

phase transition case. The other problem is related to " the time of defect creation". To 

determine when the phase transition terminates is not a simple issue. \Ve have considered 

the dynamical evolution of a scalar field in the chaotic inflationary background. The value 

of the field can be regarded to be definite when the classical potential force overcomes the 

random force by quantum fluctuations. From the results of such considerations, we have 

deduced the spectrum of domain sizes. In contrast to the thermal creation in which only 

the horizon scale domain exists, various sizes of domains are produced 50 that various sizes 

of topological defects come into existence. It is shown that their energy distribution is 

almost scale-invariant with small- and large-scale cutoffs. Such cutoffs are originated from 

the causality of the field correlation. 

Thus the inflation can be a relief for the Kibble mechanism if it does not dilute the 

number density of topological defects. We can say that the production of topological defects 

in the cosmic history is a quite universal phenomenon whether the early universe is chaotic 

or in equilibrium. After the creation mechanism is investigated, we have payed attention 

to the evolution of an individual topological defect. At first , in the chapter 3, composite 

systems of domain walls and cosmic strings are taken up. Such a defect appears in the axion 

model, which is proposed to give a solution to the strong CP problem. In order to prevent 

the setback of the standard view of the cosmological evolution, axionic domain walls must 

be annihilated away otherwise they overdose the universe by their energy density. We have 

followed the evolution of the ax ion field and showed that the above catastrophic scenario can 

be avoided. Moreover, the collapse of a wall-string system is so rapid that enough motion 

for gravitational radiation does not happen. It indicates that the energy of axionic domain 

walls is released as field oscillations and another mechanism of axion production is needed 
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to be considered in detail. 

The assertions that axion domain walls disappear efficiently enough or that the do

main wall collapse does not provide an experimental constraint by terrestrial gravitational 

wave observatories are rather passive. As a constructive property of domain walls, we have 

examined the possibility if they can contribute the large-scale structure formation in the 

universe. The exact general relativistic solution for the infinite static domain wall shows 

that the sheet-like false vacuum energy exercises the repulsive force to matter. However, 

realistic domain walls that appear in cosmological phase transitions must have been moving 

to a certain degree. Such walls act as attractive sources. Thus the cosmological structure 

formation scenario by repuls ive plates should be rewritten. Domain walls are exotic gravita

tional seeds of structure formation and provide non-Gaussian fluctuations. This is the most 

distinctive characteristic to the standard cold dark matter model, which can be confirmed 

by observations. The recent discovery of the finite amplitude of the cosmic background 

radiation by COBE had a great impact. It assures us of the properness of our standard 

cosmological view. The progress of the CMBR observation will supply the information for 

the determination which model is the most reasonable one. The statistical analysis of the 

temperature fluctuations on the sky is the most promising evidence of the non-Gaussian 

initial perturbations. 

Another candidate of the non-Gaussian sources of matter perturbations is a global tex

ture. Textures are topologically unstable. They are formed and destroyed continuously 

during the cosmic evolution and disturb the metric of the universe producing the matter 

perturbations. The fluctuation spectrum by textures is scale-invariant. From the intuitive 

analysis, it is demonstrated that the fluctuations by textures obey the non-Gaussian statis

tics. We have integrated the evolution equation of the texture field and show that it is true. 

llowcver, the superposition of various scales of fluctuations erases its non-Gaussian property 

on large-scales. Thus the insufficiency of the fluctuation amplitude on very large-scales in the 

standard model cannot be compensated by global textures. Anyway they can contribute the 

prompt star formation which might reheat the content of the universe. Thus global textures 

may supply the sources for the reionization. The statistical behavior of the texture field is 

analyzed by the exact formulation of the evolution equation in the expanding universe. The 

inclusion of the full degree of freedom concerning the field oscillation modes is essential. 
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The works before us utilized incorrect coding and overestimated the non-Gaussian feature 

of textures . Thus the prediction concerning the CM BR statistics must be reconsidered. 

There are other topological defects that are interesting ingredients of the cosmology. 

Cosm.jc strings and magnetic monopoloes are also of cosmological interest. We have studied 

only domain walls and global textures since they are two extreme examples of topological 

defects; the smallest dimensional defect by discrete symmetry and the unstable topological 

defect . Their evolution is traced by solving the non-linear equations in which numerical 

simulations play an important role. The study of cosmic string evolution is also done by the 

numerical methods. The progress of electric computers in their power will be very helpful in 

specifying unknown parts or parameters in the scenarios of topological defects formation and 

evolution. Observationally the increasing resolution of the CMBR observation will enable 

us the statistical analysis. Then, as we stated above, the non-Gaussianity by strings and/or 

textures would be proved or denied. The theoretical calculations of fluctuations in CMBR 

should be invaluable. Another example of observational evidence of or at least constraint 

on topological defects is the gravitational radiation from string loops and/or domain walls. 

Although the establishment of experimental devices for gravitational wave(GW) detection 

is yet on the way, we will possess a new type of astronomical observatory in the near future. 

Thus it is terribly important to explore the possibility of GW emission by topological defects. 

Both observational and theoretical advance will bring glorious knowledge to both particle 

physics and cosmology. 

In cosmological context topological defects have two distinctive meanings. One is that 

some kinds of them should be found somewhere since the phase transitions accompanied by 

some spontaneous symmetry breakings must have occurred in the early stage of the cosmic 

history. The other is that they may assist conventional models in building the variety of 

cosmological structures . In order to utilize the early universe as a high energy physics 

laboratory, it is desirable that some evidence of the existence of defects is established. 

However, even if any observation in future fails to show that topological defects exist, we 

might have to explain why they are not permitted to be born. In any case, it is interesting 

and exciting that our attempt to imagine how was the ancient universe, which is a rather 

metaphysical consideration since the universe can never been created again often contributes 

to physics as an experimental or observational science. 
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