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ABSTRACT 

Modeling the water cycle has become a more comprehensive procedure due to the 

developments in computer capability and the scientific understanding of the involved 

processes. However, because hydrological models and numerical weather prediction models 

are mostly mathematical solutions of nonlinear equations, the simulations are sensitive to 

spatial and temporal variations of the input data, being rainfall intensity one that causes 

considerable impact (Bell and Moore, 2000; Beven, 2001; Arnaud et al, 2002, 2011; Smith 

et al., 2004; Schuurmans and Bierkens, 2007; Younger et al., 2009; Liu et al., 2012; Song et 

al., 2015; Weijian et al., 2015). Despite the scientific contribution of physically-based 

models, there still remains the problem of spatial distribution of field measurements and the 

consequent sub-grid parameterization of land properties and atmospheric forcing data at 

small scales (high resolutions). Therefore, the use of this kind of models becomes futile in 

regions without the resources to afford the installation and operation of weather radars or 

dense meteorological stations. 

Satellite-based products are an alternative source of estimations of rainfall intensity. The 

validation of these products is mostly done by comparing them with rain gauge 

measurements and, if available, with weather radars at various temporal and spatial scales. 

As a result, systematic errors, which generally show regional and seasonal trends, were 

identified by many researchers. The number of validation studies is probably immensurable 

considering the many available satellite-based products, and that only a fair number of rain 

gauge stations are needed to conduct such study (Ebert et al., 2007; Tian et al., 2007; Hossain 

and Huffman, Tian et al., 2009; Pombo et al., 2015; Rudlosky et al., 2016; and Maggioni et 

al., 2016). Motivated by how important it is to have accurate rainfall fields at high-

resolutions, even in poorly gauged regions, this research aimed to conduct a stochastic 

analysis of the spatial structure of rainfall before establishing a strategy for the combination 

of the rain gauge measurements and satellite products. In this sense, Chapter 1 introduces 

the methodology and establishes the specific objectives of the research. 

Rainfall intensity portrays distinctive spatial features which include intermittency, abrupt 

discontinuities, parallel bands and high-intensity clusters surrounded by consecutive larger 

areas of each time lower-intensity. One way of studying this extreme variability is to perform 

a multiscale stochastic characterization of the rainfall process. The hypothesis is that certain 

statistical aspects have a scale-invariant behavior. A particular kind of scale-invariance is 

called self-similarity or simple-scaling, which implies that a single parameter can describe 

the inter-scale relationship of the probability distributions. If a process is qualified as self-

similar in distribution, it means that the type of distribution does not change in spite of 

scaling transformations. Early stochastic models representing multiscale variability of 

rainfall were based on empirical evidence (radar-based estimations of intensity) that self-

similarity was present in certain statistical properties of the rainfall process. 
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Kumar and Foufoula-Georgiou (1993a, 1993b) proposed to conduct the multiscale analysis 

by decomposing the rainfall process into large- and small- scale components, where the 

small-scale components represent the details (fluctuations of intensity) that differentiate a 

process at high-resolution from the same process at lower resolutions. For this purpose, 

Chapter 2 makes a description of the filters used for the decomposition, which have been 

largely used in computer sciences for image processing and edge detection. A benefit of 

using these filters is that the algorithm can be easily inverted, which means that rainfall at 

high resolutions can be reproduced from low-resolution rainfall and information about the 

fluctuations. 

Rainfall intensity fields are normally discretized into two-dimensional grids for 

representation purposes. The filters described in Chapter 2 are used in Chapter 3 with the 

purpose of characterizing the components of the rainfall field and prove the presence of self-

similarity.  

Specifically, the two–dimensional Discrete Wavelet Transform extracts directional wavelet 

coefficients using orthonormal bases constructed from wavelet functions. The probability 

distributions of the wavelet coefficients depict a large amount of values around zero (as a 

result of adjacent boxes with similar intensity) and positive and negative outliers 

representing the abrupt jumps of intensity. Because of these two conditions, distributions 

with non-Gaussian behavior (thick tails), like symmetric 𝛼-stable distributions, have proved 

to be a better fit (Perica and Foufoula-Georgiou, 1996; Ebtehaj and Foufoula-Georgiou, 

2011). Perica and Foufoula-Georgiou (1996), however, demonstrated the presence of self-

similarity in the distributions of standardized wavelet coefficients. Standardization was 

defined as the wavelet coefficients divided by their corresponding low-pass coefficients 

(local means). The standardization of wavelet coefficients, which flattened the tails making 

the distributions quasi-Gaussian, allowed to qualify the fluctuation processes as self-similar. 

In this study, we revise the adjustment of the distributions of wavelet coefficients to 

symmetric 𝛼-stable distributions, which are described by two parameters: the characteristic 

exponent 𝛼 , and the scale parameter 𝛾 . The characteristic exponent 𝛼  determines the 

frequency of extreme values, and hence, it is an indicator of the degree of variability. We 

handle the hypothesis that this parameter can be an indicator of the degree of spatial 

variability of rainfall fields. Two conditions are necessary to demonstrate the existence of 

self-similarity when considering symmetric 𝛼-stable distributions. First, the characteristic 

exponent 𝛼 should be the same at all scales, meaning that the type of distribution is invariant 

under these transformations. Second, the scale parameter 𝛾 should have exponential growth 

with a constant rate (power-law behavior) as the scale becomes larger (lower resolutions).  

The estimation of the parameters of 𝛼-stable distributions is hampered by the absence of 

closed-formed expressions for the probability density function, which means that it can only 

be expressed as an infinite series or using improper integrals. Consequently, common 

methods of estimation (e.g., method of moments or maximum likelihood) cannot be applied 
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and alternative techniques have been developed. These techniques usually require large 

samples with values of frequency evenly located along the real line. Unfortunately, samples 

of wavelet coefficients usually show a large amount of near-zero values at small scales, and 

(the samples) are greatly reduced at large-scales as a result of the scaling transformations. 

These two unfavorable situations happen to affect the existing estimation techniques, as they 

either fail to give a result or generate very different values of 𝛼 between scales. 

A thorough study of the properties of symmetric stable distributions lead to the theoretical 

development of a new technique of estimation, presented in Chapter 3. Nolan (2013) defined 

the “amplitude” of multivariate 𝛼-stable distributions in such way that for the univariate case 

the amplitude becomes a distribution of absolute values. An expression for the Fractional 

Absolute Moments (FAM) were presented previously by several authors (e.g., Nikias and 

Shao, 1995). This expression relates the fractional absolute moments to the parameters 𝛼 

and 𝛾. During this study, an expression that represents the evaluation of the FAM in the 

cumulative distribution function of the “amplitude” (of a univariate stable distribution) was 

derived. This expression happened to be a function of the parameter 𝛼 and independent of 

the scale parameter 𝛾. Therefore, the parameter 𝛼 could be estimated using the empirical 

FAM evaluated at the empirical cumulative distribution function. Then, the estimation of the 

parameter 𝛾 can be done using the FAM expression and the estimated parameter 𝛼. This 

technique of estimation and the existing ones were compared through a Monte Carlo 

simulation. The results showed that the new technique can be even more accurate than the 

existing ones with reduced times of computation. The performance when applied to samples 

of wavelet coefficients is detailed.  

This research examined the possibility of retaining the degree of variability expressed by the 

characteristic exponent 𝛼 , by demonstrating that self-similarity can be revealed in the 

marginal distributions of wavelet coefficients without the need to standardize them. For this 

purpose, wavelet coefficients were adjusted to symmetric 𝛼-stable distributions with the new 

technique described above. With the purpose of encompassing different types of rainfall, 

five analysis sites in Japan were identified for the multiscale spatial analysis of fluctuations: 

Kanto (KAN), South Tohoku (STO), Hokkaido (HOK), Kyushu (KYU), and Shikoku (SHI). 

Each domain covers a 256 km × 256 km surface. The period of analysis is between the 2006 

and 2009.  

During the analyzed period, Radar-AMeDAS data was produced with a 1-km resolution. 

The multiscale two-dimensional discrete wavelet transform was applied to these datasets. 

Three sets of directional wavelet coefficients are extracted at each scale representing the 

fluctuations of intensity that are more prominent in the longitudinal, latitudinal and diagonal 

direction, respectively.  

The empirical probability distribution of each set of wavelet coefficients can be adjusted to 

a symmetric 𝛼-stable distribution. Common techniques of estimation failed to estimate the 



 

iv 
 

parameters at small-scales because of the large number of near-zero fluctuations, which are 

generated as a result of vast areas with the same value of rainfall intensity.  

Throughout the analyzed scale range, which is between 1-km to 64-km resolution, two 

conditions need to be fulfilled in order to qualify the rainfall fluctuation processes as self-

similar. First, the estimated values of the characteristic exponent 𝛼  need to be almost 

invariant. Second, the scale parameter 𝛾  must have a power-law behavior. The second 

condition can be verified by adjusting the values of 𝛾 to a log-linear curve with logarithmic 

slope 𝐻, which is often called the self-similarity index (Samorodnitsky and Taqqu, 1994; 

Embrechts and Maejima, 2000). Only adjusted curves that showed a coefficient of 

determination, 𝑅2, greater than 0.75 in all three directions were accepted. He results of this 

analysis is presented in Chapter 3. 

The multiscale two-dimensional discrete wavelet transform can be inverted with relative 

simplicity, allowing to construct an algorithm that is able to generate high-resolution rainfall 

with a spatial distribution consistent with that of the true event. The input of this algorithm 

is (i) the rainfall-intensity measurement of only one rain gauge, (ii) a large-scale gridded 

dataset containing the location of high- and low- intensity areas, and (iii) the parameters of 

the probability distribution of wavelet coefficients. The structure of the algorithm has two 

main processes: estimation of the mean rainfall intensity and disaggregation. Chapter 4 is a 

complete description of such algorithm and presents the validation of its structure by 

computing fidelity metrics. 
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1. INTRODUCTION 

1.1 MOTIVATION 

Precipitation is regarded as a key driving force of the water cycle, and for that reason, not 

only it is a controlling factor of the hydrological response of catchments, but also plays an 

important role in the prediction of weather at all scales of atmospheric motion. Because 

hydrological models and numerical weather prediction models are mostly mathematical 

solutions of nonlinear equations, the simulations are most sensitive to spatial and temporal 

variations of the input (e.g., rainfall, soil moisture), causing significant uncertainties in the 

results (Bell and Moore, 2000; Beven, 2001; Arnaud et al, 2002, 2011; Smith et al., 2004; 

Younger et al., 2009; Liu et al., 2012; Song et al., 2015; Weijian et al., 2015). A “realistic” 

representation of rainfall is such that at high resolutions is capable of depicting accurately 

the characteristic small-scale sudden variations of intensity. Considering that the output of 

these models is used by an increasingly number of scientists from a wide-range of fields, as 

well as decision-makers and local stakeholders, developing “realistic” precipitation fields, 

therefore, has become a major concern among geophysicists and hydrologists. 

Historical precipitation observations are limited to in-situ measurements where the rain 

gauges can be monitored on a regular basis. These measurements are considered the true 

value of intensity over a point location and even valid for the nearby surroundings. 

Consequently, dense networks of rain gauge stations are necessary to adequately portray the 

spatial variability of precipitation fields. Dense networks are usually available in populated 

areas of developed countries. Conversely, the deployment of stations in developing regions 

or in vast unpopulated regions, some of which are rather important for the simulation of 

weather conditions (e.g., deserts and rainforests), is unfortunately sparse. Continuous two-

dimensional fields can be obtained using different methods of spatial interpolation (e.g., 

Haberlandt, 2007; Ruelland et al., 2008), however, “realistic” representations will depend 

on the existence of a large number of closely-located stations. 

Nowadays, satellite-based products are an alternative source of rainfall intensity as a result 

of algorithms that combine the soundings of different kind of sensors. Even though it would 

be possible to estimate rainfall with only one kind of sensor, the search for more coverage, 

accuracy and resolution encouraged the development of multi-sensor algorithms. The 

validation of satellite-based products is mostly done by comparing the estimates with rain 

gauge measurements and, if available, with weather radars at various temporal and spatial 

scales. As a result, systematic errors, which generally show regional and seasonal trends, are 

identified. The number of validation studies is probably immensurable considering the many 

available satellite-based products, and that only a fair number of rain gauge stations are 

needed to conduct such study. Being able to identify the bias of satellite products lead to the 

development of bias-correction schemes aimed to produce the most “realistic” 

representations of rainfall fields. These schemes, which try to take advantage of the fact that 
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rain gauge measurements provide “true-value” measurements while satellite products 

provide wide coverage, stand merely as local solutions since they are usually based on 

specific local characteristics like quantity and relative location of the rain gauge stations. 

Examples of the assessment of satellite products can be found in the works by Ebert et al. 

(2007), Tian et al. (2007, 2009, 2013), Hossain and Huffman (2008), Sapiano and Arkin 

(2009), Tian et al (2009), Anagnostou et al. (2010), Gebregiorgis and Hossain (2012, 2013), 

Pombo et al. (2015), Rudlosky et al. (2016), and Maggioni et al. (2016). Under this 

framework of analysis/comparison it becomes difficult to apply the same scheme in a 

different location. Tang and Hossain (2010) showed an interesting analysis of how the bias 

assessment can be transferred from a gauged region to an ungauged region, however, it relies 

on a large number of observations in the gauged region and on the ungauged region having 

the same precipitation regime as the one of the gauged region. 

Motivated by how important it is to have accurate rainfall fields at high-resolutions even in 

poorly gauged regions, this research tried to tackle the issue with a different approach. Ebert 

et al. (2007) recognized that the reproduction of precipitation fields at hydrologically 

relevant scales should first involve thorough analyses of rainfall patterns. With that 

consideration, before combining the merits of rain gauge measurements (true value of 

intensity) and satellite products (wide-range coverage and relative location of storms), it was 

considered imperative to first study the spatial structure of the different rainfall patterns. 

1.2 MULTISCALE STOCHASTIC ANALYSIS OF RAINFALL  

One way to study the spatial structure of rainfall patterns is to search for a mathematical 

dependence from one scale of representation to another. Patterns with such behavior are 

usually found in fractal objects. Mandelbrot (1982) stated that the degree of variability 

and/or fragmentation of fractals tends to be independent of scale, and proposed to use this 

property to describe the variability exhibited by numerous natural formations.  

Empirical evidence of Mandelbrot’s conjectures were presented in a study of the area-

perimeter relation of clouds and rain fields, which revealed how fractal mechanisms could 

be potentially used to characterize the formation processes (Lovejoy, 1982). Encouraged by 

this exciting realization and the technological advance of ground and space-borne remote 

sensors in the subsequent 30 years, geophysicists devised a few multiscale-analysis 

techniques that could help unravel the hidden structures and erratic behavior of rainfall. The 

results exposed a kind of symmetry, often called scale-invariance, in which certain aspects 

of the process remained invariant despite the transformations of scale. Consequently, various 

stochastic approaches were proposed relying mainly on the scale-invariance of the 

exponents/generators, and accomplishing exceptional representations of the characteristic 

variability of rainfall (Lovejoy and Mandelbrot 1985; Lovejoy and Schertzer, 1986; 

Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990; Lovejoy and Schertzer, 1990; 

Kumar and Foufoula-Georgiou, 1993a, 1993b; Tessier et al., 1993; Over and Gupta, 1996; 

Veneziano et al., 1996; Menabde et al., 1997; Deidda et al., 2006; Lovejoy and Schertzer, 
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2006; Lovejoy et al, 2008; Ebtejah and Foufoula-Georgiou, 2011; Lovejoy and Schertzer, 

2013).  

 

Figure 1.1 Spatial features/patterns of rainfall  

Rainfall intensity extracted from the Radar-AMeDAS datasets over the Kanto region 

(See Section 3.4.1 for a complete description of the datasets). 

Remotely-sensed estimations of rain-rate fields consistently portray distinctive spatial 

features that encompass intermittency, abrupt discontinuities, parallel bands and high-

intensity clusters surrounded by consecutive larger areas of each time lower-intensity (Figure 

1.1). The term intermittency refers to the probability of no-rain areas existing inside rain 

areas and becoming observable as the scale of representation becomes smaller.  

Simple scaling or self-similarity is established if a single exponent can characterize the inter-

scale relationship of the statistical properties of a given process. Models based on simple 

scaling, which simulate rainfall intensity as scaling sums of random increments 

(linear/additive structure), could not entirely reproduce the characteristic spatial features and 

extreme variability. Instead, it was empirically recognized that the statistical moments scale 

differently (i.e., there cannot be only one exponent). Another argument for ruling out trivial, 

self-similar processes is the fact that it seems incongruous to use a linear model to simulate 

a natural formation produced by non-linear physical processes (e.g., advection). In the light 

of these considerations, researchers discarded self-similar models and developed a few 

stochastic models exploring the properties of multifractals and random multiplicative 

cascades, which generalize the single scaling exponent to a continuous spectrum of 
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exponents. A more detailed description of the basic structure of multifractal models can be 

found in the works by Schertzer and Lovejoy (1987), Lovejoy and Schertzer (1990), and 

Gupta and Waymire (1990, 1993).  

Alternatively, rather than focusing on the actual rain-rate, the characterization of the extreme 

variability of rainfall was accomplished by studying the scale-to-scale dependence of the 

probability distributions of local fluctuations. For this purpose, orthogonal wavelet 

decomposition has been utilized to capture the sudden directional fluctuations of rain rate 

fields (Kumar and Foufoula-Georgiou, 1993a, 1993b; Perica and Foufoula-Georgiou 1996a; 

Ebtehaj and Foufoula-Georgiou, 2011). The multiscale application of this decomposition, 

successfully revealed the presence of simple scaling in the marginal distributions of wavelet 

coefficients. The advantage of using this kind of filtering scheme is the possibility of 

inverting the decomposition with a relative computational simplicity in order to recover the 

original field.   

Subsequent studies have put emphasis on relating the aforementioned stochastic models to 

atmospheric processes involved in the formation and development of rainfall (Over and 

Gupta, 1994; Perica and Foufoula-Georgiou, 1996b; Harris and Foufoula-Georgiou, 2001; 

Nykanen and Harris, 2003; Nykanen, 2008; Parodi et al., 2011). One hypothesis is that the 

frequency of extreme values generated by the models should be linked to the degree of 

variability of the different types of precipitation systems. For example, convective 

precipitation with rapidly changing intensity noticeably may exhibit more extreme 

fluctuations than stratiform precipitation, which usually portrays extensive rainfall with 

steady intensity. 

1.3 PROBLEM STATEMENT  

Radar-based estimations of rainfall intensity are often given as a two-dimensional arrange 

of cells. The probability distributions of fluctuations regularly depict a large amount of 

almost-zero values around the center (as a result of adjacent cells with similar intensity) and 

positive and negative outliers representing the abrupt jumps of intensity. Commonly-used 

symmetric, finite-moment distributions failed to capture these particular characteristics, in 

part, because the frequency of the outliers in the probability distribution of fluctuations 

makes the tails appear thicker than the tails of Gaussian distributions. 

As it was mentioned previously, one of the objectives of this kind of stochastic analysis is to 

find scale-to-scale dependence of certain aspects of the rainfall field (self-similarity). In this 

case, it is necessary to show self-similarity in the distribution of fluctuations. Perica and 

Foufoula-Georgiou (1996a) identified that 𝛼 -stable distributions (also known as Lévy 

distributions) can be adequately adjusted to rainfall fluctuations extracted from different 

types of rainfall. However, the adjusted distributions did not convincingly reveal self-

similarity unless the wavelet coefficients were standardized. In that study, “standardized 

rainfall fluctuations” were defined as the wavelet coefficients (obtained with the oriented 
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band-pass filters) divided by their corresponding low-pass coefficients (local means). The 

standardization of wavelets flattened the tails making the distributions adjustable to Gaussian 

distributions regardless of the type of precipitation (degree of variability).  

The characteristic exponent 𝛼 of 𝛼-stable distributions determines the frequency of extreme 

values, and hence, it could be an optimal indicator of the degree of variability. Despite the 

fact that the findings in the study of Perica and Foufoula-Georgiou (1996a) are remarkable 

by showing self-similarity in the Gaussian distributions of the standardized fluctuations of 

rainfall, it is difficult not to contemplate the possibility of characterizing the degree of 

variability with 𝛼-stable distributions. If it were possible to demonstrate the presence of self-

similarity in the 𝛼-stable distributions of rainfall fluctuations, it would open the possibility 

of relating the characteristic exponent 𝛼 to the underlying physics that induce the formation 

and variability of rainfall. Moreover, accomplishing this challenge would allow to build a 

stochastic model that utilizes the characteristic exponent 𝛼 for appropriately representing 

small-scale extreme variability. 

1.4 OBJECTIVES 

The overall objective of this research is to develop a stochastic methodology that allows to 

reproduce small-scale extreme variability of rainfall by combining the kind of rainfall data 

that is worldwide accessible. Linking in-situ measurements and satellite-based products to a 

multi-scale analysis of rainfall patterns (degree of variability) implies that the same 

framework might be fit for universal application if certain validations are undertaken 

beforehand. Therefore, this research is structured so as to fulfill the following specific 

objectives: 

 Conduct a theoretical study of 𝛼 -stable distributions, and parameter-estimation 

methods of symmetric 𝛼-stable distributions. 

 Identify the method that is better suited for estimating the stable parameters given 

the particular difficulties of the empirical distributions of rainfall fluctuations.  

 Apply the selected parameter-estimation method to samples extracted from rainfall 

data of ground-based weather radars over the Japanese Islands trying to contemplate 

different types of precipitation systems. 

 Document and analyze the range of the stable parameters and evaluate the possibility 

of linking them to indicators of atmospheric instability, cloud formation and rainfall 

types 

 Build and algorithm that combines a minimum amount of rain gauge stations and 

wide-coverage satellite products in order to reproduce accurate rainfall fields at high 

resolutions with the capacity of controlling extreme variability using the stable 

parameters of the distribution of fluctuations. 



 

6 
 

 Validate the performance of the algorithm by evaluating its applicability to different 

types of rainfall, its capacity for reproducing extremes using common statistical 

metrics.   
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2. DECOMPOSITION OF RAINFALL FIELDS 

2.1 BACKGROUND 

In the fields of computer vision and image processing, filtering is defined as the convolution 

of a mask with an image. Generally, the masks are either smoothing filters or frequency 

domain filters. Smoothing filters, also known as low-pass filters, are intended to reduce noise 

or remove the sudden changes of intensity producing smoother transitions. Frequency 

domain filters, also known as high-pass filters or derivative filters, are often used for 

sharpening images or for edge detection. Edge detection filters/operators are mostly 

classified in two categories, gradient and Laplacian. Figure 2.1 shows the effects of the 

convolution of an image with a smoothing mask (low-pass filter) and a sharpening mask. 

Figure 2.1 Effects on images of the convolution with masks  

(a) This image is entitled “boat” and is part of the open source image library of the 

University of Southern California Signal and Image Processing Institute (USC-SIPI). 

(b) Convolution of the original image with a blurring mask (low-pass filter). (c)  

Convolution of the original image with a sharpening mask. 

 

Figure 2.2 Edge detection with the Sobel operator.  

(a) Original image. (b) Convolution of the original image with the horizontal Sobel 

operator. (c) Convolution of the original image with a vertical Sobel operator. 

(a) 

 
 

(b) 

 

(c) 

 

(a) 

 
 

(b) 

 

(c) 
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In this study, we are particularly interested in edge detection operators which are a collection 

of masks aimed to allocate the discontinuities and sharp changes of image intensity. Gradient 

operators look for extreme values in the first-order derivative space (e.g., Roberts, Prewitt, 

and Sobel operators). Laplacian operators look for zero-crossings in the second-order 

derivative space (e.g., Marrs-Hildreth operator). The Prewitt and Sobel operators are very 

similar 3 × 3 kernels that can be used to identify horizontal and vertical edges separately 

just by rotating the kernel, as shown in Figure 2.2. 

A third way to detect edges in images is using two-dimensional discrete wavelets, which 

have been widely used in image processing for developing statistical prior models and image 

compression algorithms. The main advantages of this kind of filter are its multiscale 

applicability and the relative simplicity with which it can be inverted in order to get the 

original image. 

2.2 THE ORTHONORMAL WAVELET TRANSFORM 

In the field of signal processing Fourier transforms and wavelet transforms have been 

designed with the purpose of measuring the time-frequency variations of spectral 

components. By extending the concept of wavelet transforms into two-dimensions, they have 

been utilized to allocate discontinuities and study the statistical properties of the spatial 

patterns of digital images. 

Since discretized representations of the continuous rainfall fields are similar to digital images, 

Kumar and Foufoula-Georgiou (1993a, 1993b) proposed to decompose rainfall intensity 

fields into large- and small-scale components utilizing wavelet transforms. The large-scale 

components hold information related to the mean behavior of the process while the small-

scale components, named rainfall “local fluctuations” by Perica and Foufoula-Georgiou 

(1996a), represent the abrupt changes of intensity (sharp edges). The multiscale 

decomposition employed an orthonormal wavelet transform. The following is an explanation 

of the wavelet transform in a two-dimensional multiscale framework. For basic details about 

wavelets the reader is referred to the works of Mallat (1989, 2009), Daubechies (1992), and 

Kumar and Foufoula-Georgiou (1993a). 

2.2.1 Multiscale approximation and wavelet transforms 

Let 𝑓(𝑥) ∈ L2(ℝ2) be a one-dimensional function, 𝑚 the scale index, and L2(ℝ2) a vector 

space of measurable, square-integrable one-dimensional functions. The multiscale 

approximation of 𝑓 at any scale 𝑚 can be accomplished using an orthogonal projection onto 

a sequence of subspaces {𝑉𝑚
1}𝑚∈ℤ of L2(ℝ2). The projections are undertaken using a scaling 

function 𝜙. Denoting 𝜙𝑚,𝑛(𝑥) = 𝑎0
𝑚 2⁄

𝜙(𝑎0
𝑚𝑥 − 𝑛𝑏0) as the integer translates of 𝜙 at scale 

𝑚, the family {𝜙𝑚,𝑛}
𝑛∈ℤ

 is an orthonormal basis of 𝑉𝑚
1 if  𝑎0 = 2 and 𝑏0 = 1, where 𝑛 are 

all the possible integer translates that can be “covered” at scale 𝑚  (Daubechies, 1992). 

Therefore, an orthonormal basis of 𝑉𝑚
1 is 
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  {𝜙𝑚,𝑛(𝑥) = 2𝑚 2⁄ 𝜙(2𝑚𝑥 − 𝑛)}
𝑛∈ℤ

.  (2.1) 

The inner products 𝑎𝑚(𝑛) = {〈𝑓(𝑥), 𝜙𝑚𝑛〉}𝑛∈ℤ are the approximations (low-pass filtering) 

of 𝑓(𝑥) at intervals 2𝑚.  

The approximation of 𝑓(𝑥)  in 𝑉𝑚−1
1  has all the required information to obtain the 

approximation of 𝑓(𝑥) in the subspace 𝑉𝑚
1, which approximates 𝑓(𝑥) at a lower resolution. 

From this assertion, 𝑉𝑚
1 ⊂ 𝑉𝑚−1

1 . In transforming into a lower resolution, the detail or 

difference of information between the approximations of 𝑓(𝑥) in the subspaces 𝑉𝑚
1  and 

𝑉𝑚−1
1  is lost. However, this detail-information can be recovered utilizing wavelet transforms. 

Let 𝑊𝑚
1 be the detail subspace which is the orthogonal complement of 𝑉𝑚

1 in 𝑉𝑚−1
1 : 

  𝑉𝑚−1
1 = 𝑉𝑚

1 ⊕ 𝑊𝑚
1.  (2.2) 

Based on 𝜙(𝑥), it is possible to construct a wavelet transform, 𝜓(𝑥), that supports integer 

translates and dyadic dilates: 

  𝜓𝑚,𝑛(𝑥) = 2𝑚 2⁄ 𝜓(2𝑚𝑥 − 𝑛).  (2.3) 

Then, the family of integer translates, {𝜓𝑚,𝑛}
𝑛∈ℤ

, form an orthonormal basis of 𝑊𝑚
1, and the 

family of integer translates and dyadic dilations, {𝜓𝑚,𝑛}
𝑚,𝑛∈ℤ

, form an orthonormal basis of 

L2(ℝ2). Dilating or contracting the wavelet transform allows to identify the behavior of the 

function 𝑓 in different frequency bands, making it a band-pass filter.  

The orthogonal projection of the function 𝑓(𝑥) onto 𝑊𝑚
1 is obtained with a partial expansion 

in its wavelet basis 

  𝑃𝑊𝑚
1 𝑓 = ∑ 𝑑𝑚(𝑛)+∞

𝑛=−∞ 𝜓𝑚,𝑛,  (2.4) 

where the wavelet coefficients 𝑑𝑚(𝑛) are the inner products 𝑑𝑚(𝑛) = {〈𝑓(𝑥), 𝜓𝑚𝑛〉}𝑛∈ℤ . 

The wavelet coefficients 𝑑𝑚(𝑛)  contain the necessary details to reconstruct the 

approximation 𝑎𝑚−1(𝑛) from the approximation of 𝑓(𝑥) in 𝑉𝑚
1, i.e., 𝑎𝑚(𝑛). 

The expansion of the function 𝑓 in a wavelet orthogonal basis is thus an aggregation of the 

details at all scales 

  𝑓 = ∑ 𝑃𝑊𝑚
1 𝑓+∞

𝑚=−∞ = ∑ ∑ 𝑑𝑚(𝑛)𝜓𝑚,𝑛
+∞
𝑛=−∞

+∞
𝑚=−∞ .  (2.5) 

2.2.2 Two-dimensional multiscale approximation and two-dimensional wavelet 

transform 

Let 𝑓(𝑥1, 𝑥2) ∈ L2(ℝ2)  be a two-dimensional field, and L2(ℝ2)  a vector space of 

measurable, square-integrable two-dimensional fields. The multiscale approximation of 𝑓 at 
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any scale 𝑚  can be accomplished using an orthogonal projection onto a sequence of 

subspaces {𝑉𝑚
2}𝑚∈ℤ of L2(ℝ2).  

A separable two-dimensional subspace is composed of the tensor product 

  𝑉𝑚
2 = 𝑉𝑚

1 ⊗ 𝑉𝑚
1.  (2.6) 

Then, an orthonormal basis in 𝑉𝑚
2 can be constructed by 

  {Φ𝑚,𝑛1,𝑛2
= 𝜙𝑚,𝑛1

(𝑥1)𝜙𝑚,𝑛2
(𝑥2) = 2𝑚𝜙(2𝑚𝑥1 − 𝑛1)𝜙(2𝑚𝑥2 − 𝑛2)}

𝑛1,𝑛2∈ℤ
,  (2.7) 

where Φ𝑚,𝑛1,𝑛2
 is a two dimensional low-pass filter, and 𝑛1, 𝑛2 are the coordinates of a two-

dimensional square grid that translates covering the field 𝑓 . The inner products 

𝐴𝑚(𝑛1, 𝑛2) = {〈𝑓(𝑥1, 𝑥2), Φ𝑚,𝑛1,𝑛2
〉}

𝑛1,𝑛2∈ℤ
 are the approximations (low-pass filtering) of 

𝑓(𝑥, 𝑥2) at scale 𝑚. 

In order to construct a separable wavelet orthonormal basis, let 𝑊𝑚
2 be the detail subspace 

equal to the orthogonal complement of 𝑉𝑚
2 in 𝑉𝑚−1

2 : 

  𝑉𝑚−1
2 = 𝑉𝑚

2 ⊕ 𝑊𝑚
2.  (2.8) 

Expanding Eq. 2.7 using the equality in Eq. 2.6 yields 𝑉𝑚−1
1 ⊗ 𝑉𝑚−1

1 = (𝑉𝑚
1 ⊗ 𝑉𝑚

1) ⊕ 𝑊𝑚
2. 

Considering the decomposition of 𝑉𝑚−1
1  as in Eq. 2.2 and the distributivity of the tensor 

product over direct sums, it can be proven that   

  𝑊𝑚
2 = (𝑉𝑚

1 ⊗ 𝑊𝑚
1) ⊕ (𝑊𝑚

1 ⊗ 𝑉𝑚
1) ⊕ (𝑊𝑚

1 ⊗ 𝑊𝑚
1).  (2.9) 

Because {𝜙𝑚,𝑛}
𝑛∈ℤ

 and {𝜓𝑚,𝑛}
𝑛∈ℤ

 are respectively orthonormal bases of 𝑉𝑚
1  and 𝑊𝑚

1 , an 

orthonormal basis of 𝑊𝑚
2 is given by the wavelet family 

  {Ψ𝑚,𝑛1,𝑛2
1 , Ψ𝑚,𝑛1,𝑛2

2 , Ψ𝑚,𝑛1,𝑛2
3 }

𝑛1,𝑛2∈ℤ
,  (2.10) 

where 

 Ψ𝑚,𝑛1,𝑛2
𝑖 = 2𝑚Ψ𝑖(2𝑚𝑥1 − 𝑛1, 2𝑚𝑥2 − 𝑛2), 

 Ψ1(𝑥1, 𝑥2) =  𝜙(𝑥1)𝜓(𝑥2), 

 Ψ2(𝑥1, 𝑥2) =  𝜓(𝑥1)𝜙(𝑥2),  

Ψ3(𝑥1, 𝑥2) =  𝜓(𝑥1)𝜓(𝑥2),  

and 1 ≤ 𝑖 ≤ 3. 
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Similarly to the one-dimensional case,  L2(ℝ2) can be decomposed as the orthogonal sum 

of all the detail spaces {𝑊𝑚
2}𝑚∈ℤ, therefore, an orthonormal basis of L2(ℝ2) is given by 

  {Ψ𝑚,𝑛1,𝑛2
1 , Ψ𝑚,𝑛1,𝑛2

2 , Ψ𝑚,𝑛1,𝑛2
3 }

𝑚,𝑛1,𝑛2∈ℤ
. (2.11) 

Consequently, and considering a two-dimensional field 𝑓(𝑥1, 𝑥2)  with 1 ≤ 𝑥1 ≤ 𝐿1  and 

1 ≤ 𝑥2 ≤ 𝐿2, the two dimensional field 𝑓 can be expanded in an orthogonal wavelet basis 

as an aggregation of all the two-dimensional details at all scales: 

  𝑓(𝑥1, 𝑥2) =
1

√𝐿1𝐿2
∑ ∑ ∑ ∑ 𝐷𝑚

𝑖 (𝑛1, 𝑛2)𝐿1−1
𝑛2=0

𝐿1−1
𝑛1=0

∞
𝑚=−∞𝑖=1,2,3 Ψ𝑚,𝑛1,𝑛2

𝑖 (𝑥1, 𝑥2).  (2.12) 

The wavelet coefficients in Eq. 2.12 are the inner products 

  𝐷𝑚
𝑖 (𝑛1, 𝑛2) = {〈𝑓(𝑥1, 𝑥2), Ψ𝑚,𝑛1,𝑛2

𝑖 〉}
𝑛1,𝑛2∈ℤ

.  (2.13) 

Since the scaling function Φ(𝑥1, 𝑥2) and the three wavelets Ψ1(𝑥1, 𝑥2), Ψ2(𝑥1, 𝑥2), and  

Ψ3(𝑥1, 𝑥2) are defined as separable products of the functions 𝜙 and 𝜓, the orthonormal 

wavelet decomposition can be understood as a decomposition of the field 𝑓(𝑥1, 𝑥2) in a set 

of independent spatially oriented sub-bands.  

By using the two-dimensional wavelet transform, the detail information between the 

approximation 𝐴𝑚−1 and the discrete approximation 𝐴𝑚 is divided into three sets of wavelet 

coefficients: 𝐷𝑚
1  (high horizontal correlation), 𝐷𝑚

2  (high vertical correlation), and 𝐷𝑚
3  (high 

horizontal and vertical correlation).  

2.2.3 Haar wavelet transform 

The multiscale decomposition framework and the pair of functions 𝜙 and 𝜓 are designed so 

as to allow the discrete approximations to be non-redundant at all scales due to the linear 

independence of the translates, and to span completely the space in which the field is defined.  

Given a scaling function (Figure 2.1a) of the form 

  
𝜙(𝑥) = 1     0 ≤ 𝑥 < 1

𝜙(𝑥) = 0    otherwise,
  (2.14) 

the corresponding wavelet transform, known as the Haar wavelet (Figure 2.1b), has the form 

  

𝜓(𝑥) = 1         0 ≤ 𝑥 < 1 2⁄

𝜓(𝑥) = −1     1 2⁄ ≤ 𝑥 < 1

𝜓(𝑥) = 0         otherwise.    

  (2.15) 
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Figure 2.1. Scaling function and the corresponding Haar wavelet. 

Note that the integration of 𝜙 is equal to 1 and the integration of 𝜓 is equal to zero, while 

the norm of both functions in L2(ℝ2) is equal to 1. The simplicity of this pair of functions 

and the interpretation that can be given to the sets of wavelet coefficients in a two-

dimensional framework has made them useful in several image-processing and image-

compression applications. 

2.3 DISCRETE WAVELET TRANSFORM AND ITS APPLICATION TO 

RAINFALL FIELDS 

Even though rainfall is a process constantly changing in time and continuous in the three 

spatial dimensions, in this study we analyze rainfall intensity as an idealized two-

dimensional field sampled at surface-level and aggregated at fixed time steps. The 

representation of this two-dimensional field is done by using a two-dimensional vector (grid) 

comprising values of mean intensity. 

Let 𝑋 be the two-dimensional rainfall field containing a finite number of samples 𝐿1 × 𝐿2. 

The highest resolution of representation, which corresponds to the scale of sampling, is 

denoted with the scale index 𝑚 = 0. Traversing 𝑋 through all the integer translates of the 

two-dimensional low-pass filter Φ𝑚  (orthonormal basis of 𝑉𝑚
2) , built with the scaling 

function in Eq. 2.14, yields the discrete approximation 𝑋̅𝑚 of the rainfall field. The discrete 

approximation of 𝑋 at scale 𝑚 = 0 is 𝑋̅0, i.e., 𝑋̅0 ≡ 𝑋. 

The discrete approximation is thus a decrease in resolution or a spatial averaging of the 

rainfall field, in which the set of values 𝑋̅𝑚 can be considered “local means” of the rainfall 

field at the scale 𝑚. The detail information lost during the averaging can be recovered using 

the integer translates of the three oriented sub-band filters Ψ𝑚
1 , Ψ𝑚

2 , and Ψ𝑚
3  (orthonormal 

basis of 𝑊𝑚
2), yielding the three sets of wavelet coefficients 𝑋′𝑚,1, 𝑋′𝑚,2, and 𝑋′𝑚,3. Due to 

the definition of the wavelet transform in Eq. 2.15, the resulting wavelet coefficients can be 

interpreted as local variations of the rainfall field with respect to the local mean, hereafter 

denominated “local rainfall fluctuations” as in Kumar and Foufoula-Georgiou (1996a). 
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Large values of wavelet coefficients contained in 𝑋′𝑚,1 represent local fluctuations at scale 

𝑚  that are more sensitive in the east-west direction. Similarly, large values of wavelet 

coefficients contained in 𝑋′𝑚,2 represent local fluctuations at scale 𝑚 that are more sensitive 

in the north-south direction, and large values of wavelet coefficients contained in 𝑋′𝑚,3 

represent local fluctuations at scale 𝑚 that are more sensitive in both directions (diagonal).  

This discrete wavelet transform applied to rainfall-intensity representations is a 

multidimensional decomposition into “local means” and “local fluctuations” by using the 

dyadic dilates of the low-pass filter and the dyadic dilates of the three oriented sub-band 

filters. In the case of the Haar wavelet, the transformation into a lower resolution between 

any two adjacent scales 𝑚 − 1 and 𝑚 is given by 

 𝑋̅𝑚(𝑛′1, 𝑛′2) = 1/4{𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2)+ 

                                                      𝑋̅𝑚−1(𝑛1, 𝑛2 + 1) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1)}.  (2.16) 

In Eq. 2.16, the discrete approximation 𝑋̅𝑚−1 at scale 𝑚 − 1 with dimensions 𝐿1/2𝑚−1 ×

𝐿2/2𝑚−1 is rescaled into the process 𝑋̅𝑚 at scale 𝑚 with dimensions 𝐿1/2𝑚 × 𝐿2/2𝑚. The 

location indexes 𝑛1 and 𝑛2 can take only odd integer values between 1 and 𝐿2/2𝑚−1 − 1 at 

scale 𝑚 − 1. The location indexes 𝑛′1 and 𝑛′2 can take integer values between 1 and 𝐿/2𝑚 

at scale 𝑚. 

Similar expressions can be derived for computing the three sets of directional wavelet 

fluctuations at scale 𝑚 as a function of the discrete approximation of the rainfall field at 

scale 𝑚 − 1: 

 𝑋′𝑚,1(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2)] − 

                                               [𝑋̅𝑚−1(𝑛1, 𝑛2 + 1) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1)]}, 

 𝑋′𝑚,2(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1, 𝑛2 + 1)] − 

                                               [𝑋̅𝑚−1(𝑛1 + 1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1)]}, 

𝑋′𝑚,3(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1)] − 

                                            [𝑋̅𝑚−1(𝑛1 + 1, 𝑛2) + 𝑋̅𝑚−1(𝑛1, 𝑛2 + 1)]}.  (2.17) 

Note that the sets of directional wavelet fluctuations 𝑋′𝑚,𝑖 represent the local variations of 

intensity at scale 𝑚 − 1. The combination of the expressions in Eq. 2.16 and Eq. 2.17 allows 

to construct the inverse discrete wavelet transform in order to obtain discrete approximations 

at higher resolutions. 

A diagram of the iterative multiscale application of the discrete wavelet transform for 

computing local means and local fluctuations is shown in Figure 2.2. 
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Figure 2.2 Two-dimensional discrete wavelet transform 

2.4 UNDECIMATED DISCRETE WAVELET TRANSFORM 

In Eq. 2.16 and Eq. 2.17, because the location indexes 𝑛1 and 𝑛2 can take only odd integer 

values for the sampling of wavelet coefficients, the discrete wavelet transform is space-

variant. This decimated method of sampling implies that if the location indexes take even 

integer numbers, the statistical properties of the sample might be different, causing aliasing 

in each of the resulting sets. 

The undecimated discrete wavelet transform, also called the stationary wavelet transform 

(Nason and Silvermann, 1995), is a redundant, over-complete representation of the original 

dataset. The projection of the original process onto the subspaces 𝑉𝑚
2 and 𝑊𝑚

2 in order to 

obtain the discrete approximation of the process and the directional sets of detail-information 

at scale 𝑚 can be accomplished by using shifted versions of the bases presented in Section 

2.2. 
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The undecimated discrete wavelet transform is a multiscale application of Eq. 2.18 and Eq. 

2.19. Imposing periodic boundary conditions, the location indexes 𝑛1 and 𝑛2 can take odd 

and even integer values, and therefore, “fill the gaps” caused by the discrete wavelet 

transform. Consequently, the dimensions of the discrete approximations 𝑋̅𝑚 and directional 

sets of wavelet coefficients at resolutions 𝑋′𝑚,𝑖 at lower resolutions are exactly the same as 

the dimensions of 𝑋̅𝑚 , i.e., 𝐿1 × 𝐿2 . Having over-complete information can benefit the 

statistical parameterization of the directional sets, which is usually hindered by the limited 

information of the small samples generated with the discrete wavelet transform (Ebtehaj and 

Foufoula-Georgiou, 2011). A discussion about the use of decimated or undecimated 

samplings and the consequences of imposing periodic boundary conditions in the case of 

rainfall data is presented in the next Chapter. 

 𝑋̅𝑚(𝑛′1, 𝑛′2) = 1/4{𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2)+ 

                                 𝑋̅𝑚−1(𝑛1, 𝑛2 + 2𝑚−1) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2 + 2𝑚−1)}.  (2.18) 

 𝑋′𝑚,1(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2)] − 

                             [𝑋̅𝑚−1(𝑛1, 𝑛2 + 2𝑚−1) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2 + 2𝑚−1)]}, 

 𝑋′𝑚,2(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1, 𝑛2 + 2𝑚−1)] − 

                             [𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2 + 2𝑚−1)]}, 

𝑋′𝑚,3(𝑛′1, 𝑛′2) = 1/4{[𝑋̅𝑚−1(𝑛1, 𝑛2) + 𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2 + 2𝑚−1)] − 

                                [𝑋̅𝑚−1(𝑛1 + 2𝑚−1, 𝑛2) + 𝑋̅𝑚−1(𝑛1, 𝑛2 + 2𝑚−1)]}.  (2.19) 
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3. SELF-SIMILARITY IN LOCAL FLUCTUATIONS OF 

RAINFALL 

3.1 BACKGROUND 

As it was introduced in Chapter 1, the stochastic analysis of the spatial structure of rainfall 

with the purpose of characterizing the characteristic irregular patterns has been undertaken 

for the past 30 years. Consequently the proposed stochastic models, aimed to reproduce the 

extreme spatial patterns of rainfall at high-resolutions, are mostly based on the scale 

invariance of the exponents/generators of some statistical aspect of the rainfall field 

(Lovejoy and Mandelbrot 1985; Lovejoy and Schertzer, 1986; Schertzer and Lovejoy, 1987; 

Gupta and Waymire, 1990; Lovejoy and Schertzer, 1990; Kumar and Foufoula-Georgiou, 

1993a, 1993b; Tessier et al., 1993; Veneziano et al., 1996; Menabde et al., 1997; Deidda et 

al., 2006; Lovejoy and Schertzer, 2006; Lovejoy et al, 2008; Ebtejah and Foufoula-Georgiou, 

2011; Lovejoy and Schertzer, 2013). 

In this study, the scale-to-scale dependence of the probability distributions of rainfall local 

fluctuations is analyzed. Figure 3.1 shows an example of the histogram of the values of 

wavelet coefficients that is generated from a rainfall field at a specific orientation at a 

specific scale 𝑚 . The histogram shows a large mass of values around the center as a 

consequence of large areas with similar values of intensity, which naturally do not generate 

significant local fluctuations. It also shows a large number of positive and negative outliers 

produced by the sudden jumps of intensity that are characteristic of the clustered and band-

type spatial structure of rainfall. 

 

Figure 3.1 Example of the typical histogram of wavelet coefficients from rainfall fields 

Kumar and Foufoula-Georgiou (1993b) proposed to adjust the empirical distributions to 𝛼-

stable distributions. The characteristics of the probability density function of 𝛼 -stable 

distributions agrees with the aforementioned features of the empirical distribution. 

Particularly, the tail of 𝛼-stable distributions decays at a lower rate than the tails of Gaussian 



 

17 
 

distributions, which is a condition that produces heavier tails and consequently a higher 

frequency of extreme values. Perica and Foufoula-Georgiou (1996a) were effectively able 

to fit the empirical distributions of wavelet coefficients to 𝛼-stable distributions. However, 

the scale-to-scale dependence of the stable parameters did not show a clear scale-invariance 

behavior. In that same study, “standardized rainfall fluctuations” were defined as the wavelet 

coefficients divided by their corresponding local means. The empirical distribution of the 

standardized rainfall fluctuations proved to be Gaussian and a power-law behavior of the 

standard deviations across scales was revealed. Moreover, the exponent characterizing the 

power-law behavior was found to be somewhat dependent on the convective instability of 

the pre-storm environment measured by the convective available potential energy (CAPE). 

Several subsequent studies were based on this remarkable finding about the gaussianity and 

scale-invariance of the distributions of standardized rainfall fluctuations. Examples include 

a rainfall disaggregation model (Perica and Foufoula-Georgiou, 1996b), the coupling of a 

mesoscale dynamical model with the previously-mentioned statistical disaggregation model 

(Zhang and Foufoula-Georgiou, 1997), stochastic assessment of the space-time dependence 

of rainfall processes (Venugopal et al., 1999a; Joseph et al., 2000), disaggregation of a 

numerical weather prediction model using a stochastic space-time disaggregation model 

(Venugopal et al., 1999b), analysis of the multiscale variability of observed microwave 

radiances and outputs of a cloud model (Harris and Foufoula-Georgiou, 2001), and the 

impact of the small-scale variability of rainfall on the atmospheric variables of a land-

atmospheric scheme coupled with a mesoscale model (Nykanen and Foufoula-Georgiou, 

2001). 

Another interesting multiscale stochastic analysis of rainfall fluctuations was presented by 

Ebtehaj and Foufoula-Georgiou (2011). In that study, Gaussian Scale Mixtures are 

introduced as a model that can simultaneously, but separately, control the scale-to scale 

dependence of the probability distributions and the heavy-tail features. 

In this study, we initially revise the adjustment of the distributions of wavelet coefficients to 

𝛼-stable distributions. Because the characteristic exponent 𝛼 defines the thickness of the 

tails (frequency of extreme values), the hypothesis is that this parameter can be an indicator 

of the degree of spatial variability of rainfall fields. For this purpose, the performance of a 

few parameter-estimation methods are evaluated with samples of wavelet coefficients. It was 

found that (i) at low-resolutions the size of the samples is small, and (ii) at high-resolutions 

an unusual large number of values equal to zero are comprised in the samples of wavelet 

coefficients since the source datasets usually store equal values of intensity in large areas 

that should at least have small fluctuations. These two conditions impact the estimation of 

stable parameters hampering the multiscale analysis of scale-to-scale dependence of the 

distributions. 

Based on a theoretical review of 𝛼-stable distributions, this study proposes a new parameter-

estimation method that diminishes the effect of the natural adverse conditions of the samples 

of wavelet coefficients, improving the multiscale analysis of scale-to-scale dependence of 
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the distributions. This chapter also shows the results of applying the proposed method to 

samples extracted from rainfall intensity datasets available in Japan, and how it was revealed 

the presence of self-similarity on the distributions of rainfall local fluctuations. 

3.2 𝜶-STABLE DISTRIBUTIONS AND ESTIMATION OF PARAMETERS 

The generalized central limit theorem states that stable laws define the family of distributions 

that are the only possible limit of a normalized sum of independent, identically distributed 

random variables (rvs). Stability under addition and other mathematical properties allow 

stable distributions to model empirical data displaying skewness and heavy tails, which 

noticeably cannot be described by traditional Gaussian distributions. Stable distributions 

have been shown to demonstrate usefulness in many applied areas, such as physics, 

astronomy, telecommunications, acoustics, remote sensing, computer science, finance, and 

biology (Zolotarev, 1986; Uchaikin and Zolotarev, 1999). 

Conventional methods used to adjust data to probability distributions (e.g., maximum 

likelihood, least squares, and sample moments) cannot be applied to stable distributions 

because the probability density function (pdf) and the cumulative distribution function (cdf) 

lack closed-form expressions. The estimation of parameters using quantile-based relative 

measures (McCulloch, 1986) and the regression of the empirical characteristic function 

(Koutrouvelis, 1980) are the two estimation methods regarded as most efficient in terms of 

accuracy and time consumption. Maximum likelihood estimation using non-closed-form 

expressions of the pdf is also considered reasonably accurate, although its computational 

effort was found to be unjustified. These different techniques tend to estimate different 

parameters when dealing with small samples that naturally fail to provide detailed 

information about the empirical distribution. Because parameter-estimation techniques aim 

to match different characteristics of the sample, assessing goodness of fit has to be performed 

using alternative procedures based on qualitative observations rather than quantitative 

evaluations (Nolan, 1999). Borak et al. (2011) sustained that there are no standard tests for 

assessing goodness of fit of stable distributions despite the development of new procedures, 

which are often conditioned to the availability of large samples (e.g., the stability test by 

Brcich et al., 2005; the minimization of the difference between the empirical and the 

estimated characteristic function by Matsui and Takemura, 2008). In this study, the 

estimation methods are firstly evaluated with Monte Carlo simulations, and then, by 

comparing how much the multiscale analysis of the scale-to-scale dependence of the 

distributions is improved. 

Because the pdf of wavelet coefficients is bound to be symmetrical this analysis covered 

parameter-estimation methods restricted to symmetric stable distributions, which are defined 

by two parameters only: one that describes the heaviness of the tails and the other that is a 

parameter of scale. Aside from the McCulloch’s (1986) quantile-type approximation and the 

regression-type method, four other estimation techniques were considered for evaluation. 

These additional techniques were postulated developing the concept and mathematical 
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properties of the absolute value of a rv following a stable distribution. Let X be a centered 

radially symmetric stable random vector, for which Nolan (2013) defined the amplitude as 

a univariate rv, R, that is equal to |X|. If X is a univariate rv X, the pdf of R is the result of 

adding the negative side of the pdf of X to its positive side. In the case of small samples, 

interpreting R as a distribution of absolute values happened to be beneficial to the estimation 

of parameters because insufficient data in one tail was complemented with data from the 

other. This realization improved the performance of simple techniques of estimation, i.e., 

those that rely on distribution quantiles. Additionally, it was found that the cdf evaluated at 

the fractional moments of R is a good estimator of the characteristic exponent of stable 

distributions. 

3.2.1 Description of 𝜶-stable distributions 

The Generalized Central Limit Theorem (Definition 1.1.4 in Samorodnitsky and Taqqu, 

1994; Theorem 1 Section 2.5 in Nikias and Shao, 1995; Section 2.5 in Uchaikin and 

Zolotarev, 1999) states that a rv X is said to be stable if, for 𝑁 >  1, there is a positive 

norming constant 𝑐𝑁  and a real number 𝑑𝑁  such that 𝑋1 +∙∙∙ +𝑋𝑁  𝑐𝑁𝑋=
𝑑 + 𝑑𝑁 . In this 

expression, 𝑋1,∙∙∙, 𝑋𝑁 are independent copies of 𝑋, the norming constant 𝑐𝑁 is of the form 

𝑁1/𝛼 , and  = 
𝑑  stands for equality in the distribution (i.e., both sides follow the same 

probability law). Variable X is said to be stable in the strict sense if the previous expression 

holds for 𝑑𝑁 = 0 . Parameter 0 < 𝛼 ≤ 2 , called the characteristic exponent of stable 

distributions, determines the rate of decrease of the tails. When 𝛼 = 2, the stable distribution 

becomes a Gaussian distribution. A rv that follows a stable distribution is usually expressed 

in terms of its characteristic function (cf) 

 𝜑(𝑡) = E[exp(𝑖𝑡𝑥)] = {
exp{−𝛾𝛼|𝑡|𝛼[1 − 𝑖𝛽tan(𝜋𝛼/2)sgn(𝑡)] + 𝑖𝛿𝑡}        𝛼 ≠ 1

 exp{−𝛾|𝑡|[1 + 𝑖𝛽(2/𝜋)sgn(𝑡)ln|𝑡|] + 𝑖𝛿𝑡}              𝛼 = 1,
  (3.1) 

where sgn (·) is the signum function, −1 ≤ 𝛽 ≤ 1 is the skewness parameter, 𝛾 > 0 is the 

scale parameter, and 𝛿 𝜖 ℝ is the location parameter (Definition 1.1.6 in Samorodnitsky and 

Taqqu, 1994). The parameterization of the cf of stable distributions might vary from one 

author to another. To simplify some numerical manipulations and, at the same time, to make 

the cf jointly continuous for all four parameters, Nolan (1999) proposed the parameterization 

 𝜑(𝑡) = E[exp(𝑖𝑡𝑥)] = {
exp{−𝛾𝛼|𝑡|𝛼[1 + 𝑖𝛽tan(𝜋𝛼/2)sgn(𝑡)((𝛾|𝑡|)1−𝛼 − 1)] + 𝑖𝛿0𝑡}     𝛼 ≠ 1

 exp{−𝛾|𝑡|[1 + 𝑖𝛽(2/𝜋)sgn(𝑡)(ln|𝑡| + ln𝛾)] + 𝑖𝛿0𝑡}                        𝛼 = 1.
 

 (3.2) 

In both parameterizations, 𝛼 , 𝛽 , and 𝛾  have the same meaning, whereas the location 

parameter is related by δ = δ0 − γ β tan (πα/2) for 𝛼 ≠ 1 and by 𝛿 = 𝛿0 − 𝛾𝛽(2/𝜋)ln(𝛾) for 

𝛼 = 1 . Parameterization as in Eq. 3.2 allows the continuity of 𝛼  and 𝛽  in all of their 

parameter ranges, giving them clearer significance in characterizing the heaviness of tails 

and skewness, respectively. Henceforth, unless otherwise noted, the rv denoted by X ∼ S(α, 

β, γ , δ) has parameterization as in Eq. 3.1. 
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With the exception of the Gaussian ~𝑁(𝜇, 𝜎)  or ~𝑆(2,0, 2−1/2𝜎, 𝜇) , the 

Cauchy~𝑆(1,0, 𝛾, 𝛿), and the Lévy ~𝑆(1/2,1, 𝛾, 𝛿) distributions, closed-form expressions 

for stable pdfs and cdfs do not exist. However, the pdf 𝑓𝑋(𝑥) can be expressed as the Fourier 

transform of its cf: 

 𝑓𝑋(𝑥) =  ℱ(𝜑)(𝑥) = ∫ 𝜑(𝑡) exp(−2𝜋𝑖𝑥𝑡) 𝑑𝑡
∞

−∞
, 

where symbol ℱ denotes the Fourier transform. The pdf and the distribution function are 

considered continuous in the real line even though they lack closed-form expressions. 

Conversely, because 𝑓𝑋 meets suitable conditions, employing the Fourier inversion theorem 

the cf can be obtained as the inverse Fourier transform of 𝑓𝑋 , i.e., 𝜑(𝑡) = ℱ−1(𝑓𝑋)(𝑡). 

Nolan (1997) proposed several numerical algorithms based on direct integration that 

compute the pdf and the cdf of stable distributions. These algorithms cover the entire range 

of the parameters and give accurate results except for very extreme values (𝑥 → ∞) and 

particular boundary cases of the parameters. Matsui and Takemura (2006) reviewed the 

numerical difficulties in extreme cases and presented, as a solution, alternative expressions 

for symmetric distributions based on asymptotic expansions. Fast Fourier transforms (FFT) 

can also be used to compute the pdf with accuracy that depends on the sample size (Mittnik 

et al., 1999a; Menn and Rachev, 2006). For large samples, FFT methods can be 

computationally more efficient than direct integration; however, the accuracy is practically 

the same. 

One important characteristic of stable distributions is the inverse-power decay of the tails 

that makes them thicker than the tails of Gaussian distributions. A consequence of this 

condition is the nonexistence of variance. In fact, the 𝑝 th-order fractional absolute moments 

E|𝑋|𝑝 are infinite for all 𝑝 ≥ 𝛼 , and E|𝑋|𝑝 < ∞  for 0 ≤ 𝑝 < 𝛼  (Property 1.2.16 in 

Samorodnitsky and Taqqu, 1994; Theorem 2 Section 2.5 Nikias and Shao, 1995). Only for 

the Gaussian distribution is E|𝑋|𝑝 < ∞ for all 𝑝 ≥ 0. 

The pdf of stable distributions is unimodal, and the location of the mode is a function of the 

skewness parameter 𝛽  (Fofack and Nolan, 1999). For a fixed value of scale 𝛾  and 

characteristic exponent 𝛼 ≥  1, the mode is equal to the location parameter 𝛿 when 𝛽 =  0, 

smaller than 𝛿 when 𝛽 >  0, and greater than 𝛿 when 𝛽 <  0. The opposite occurs for 𝛼 <

 1; i.e., the mode is shifted toward the positive side when 𝛽 >  0, and vice versa. Another 

particularity of distributions with the same characteristic exponent 𝛼 <  1 is that they are 

stochastically ordered in the interval −1 ≤  𝛽 ≤  1 , which is not the case for 𝛼 ≥  1 

(Property 1.2.14 of Samorodnitsky and Taqqu, 1994). The skewness parameter 𝛽 also affects 

the asymptotic behavior of the tails. 

For a stable rv 𝑋~𝑆(𝛼, 𝛽, 𝛾, 𝛿), the standardized form 𝑌 = (𝑋 − 𝛿)/𝛾 has a distribution of 

the form 𝑌~𝑆(𝛼, 𝛽, 1,0). 
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3.2.2 Symmetric 𝜶-stable distributions 

The particular case of 𝛽 = 0 results in symmetric stable distributions, often abbreviated as 

𝑆𝛼𝑆. Gaussian distributions are similar to 𝑆𝛼𝑆 distributions; i.e., they both show a bell-

shaped smooth pdf and symmetry with respect to the location parameter 𝛿. However, there 

are three principal differences: (i) 𝑆𝛼𝑆 distributions are more leptokurtic, showing higher 

density for values around 𝛿. (ii) The pdf of Gaussian distributions is higher than that of 𝑆𝛼𝑆 

distributions in an intermediate range, as a consequence of the slenderness around 𝛿. (iii) 

The rate of decay of 𝑆𝛼𝑆 distributions (inverse-power) makes the tails heavier than those of 

Gaussian distributions whose decay is exponential. For 𝛼 = {2.0; 1.5; 1.0; 0.5}, Fig. 3.2 

illustrates the pdf of standard 𝑆𝛼𝑆(𝛼, 0,1,0) distributions. 

 

Figure 3.2 Pdfs for 𝑺𝜶𝑺 distributions 

The pdfs are computed with direct-integral algorithms (Nolan, 1997). Vertical axis 

corresponds to (a) 𝑓𝑋 and (b) log(𝑓𝑋) for clearer appreciation of the tails. 

If location parameter 𝛿 (equivalent to the mode in 𝑆𝛼𝑆 distributions) is equal to zero, the cf 

of the rv 𝑋~𝑆𝛼𝑆(𝛼, 0, 𝛾, 0) becomes 

  𝜑(𝑡) = exp(−𝛾𝛼|𝑡|𝛼).  (3.3) 

The 𝑝th-order fractional absolute moments for 𝑋~𝑆(𝛼, 0, 𝛾, 0) are given by 

  E|𝑋|𝑝 = 𝐶𝑝,𝛼𝛾𝑝,  (3.4) 

where 

 𝐶𝑝,𝛼 =
2𝑝+1Γ[(𝑝+1)/2]Γ(−𝑝/𝛼)

𝛼√𝜋Γ(−𝑝/2)
,  
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Γ(∙) is the gamma function and 0 < 𝑝 < 𝛼. Eq. 3.4 has been demonstrated in different ways 

(Nikias and Shao, 1995), although it can be simplified from the general expression for −1 ≤

𝛽 ≤ 1 (Property 1.2.17 in Samorodnitsky and Taqqu, 1994). Moreover, for 𝛼 > 1, −1 ≤

𝛽 ≤ 1 , 𝛿 ∈ ℝ , and 1 < 𝑝 < 𝛼 , expressions for 𝛿 -centered fractional absolute moments 

E|𝑋 − 𝛿|𝑝 were derived using derivatives of cfs by Matsui and Pawlaz (2014). Even though 

those expressions are not in a closed form, they can be simplified to obtain Eq. 3.4 if 𝛼 > 1, 

𝛽 = 0, and 𝛿 = 0. 

Symmetric stable rvs are all considered conditionally Gaussian (Proposition 1.3.1 in 

Samorodnitsky and Taqqu, 1994). For 0 < 𝛼 < 2, a normal rv 𝑍~𝑁(0, √2𝛾), and a stable 

rv 𝐵~𝑆(𝛼/2,1, (cos𝜋𝛼/4)2/𝛼, 0), the rv 𝑋~𝑆𝛼𝑆(𝛼, 0, 𝛾, 0) with cf as in Eq. 3.2 can be 

expressed as 

  𝑋=
𝑑𝐵1/2𝑍  (3.5) 

with 𝐵 and 𝑍 independent. Note that 𝐵 is totally skewed to the positive side (i.e., the pdf is 

equal to 0 for all 𝑥 ≤ 0) because 𝛼/2 < 1and 𝛽 = 1. If a standard normal rv 𝑍~𝑁(0,1) is 

considered, the scale parameter of 𝐵  must then be changed to 𝐵~𝑆(𝛼/2,1,2𝛾2(cos𝜋𝛼/

4)2/𝛼, 0) such that the cf of 𝑋 remains as in Eq. 3.2. 

3.2.3 Amplitude of univariate 𝜶-stable distributions 

Nolan (2013) defined the amplitude of a 𝑑-dimensional centered radially symmetric random 

vector 𝐗 that follows a stable distribution as a univariate rv 𝑅 = |𝐗| = √𝑋1
2 +∙∙∙ +𝑋𝑑

2. The 

same study proposed a few expressions for the pdf and the cdf of 𝑅 when 𝑑 ≥ 2, deriving 

from the multivariate expression of Eq. 3.5. The inference for 𝑑 = 1 is that univariate rv 

𝑋~𝑆𝛼𝑆(𝛼, 0, 𝛾, 0) with pdf 𝑓𝑋(𝑥) has an amplitude 𝑅 such that the pdf 𝑓𝑅(𝑥) = 𝑓𝑋(𝑥) +

𝑓𝑋(−𝑥)  for 𝑥 ≥ 0 , and 𝑓𝑅(𝑥) = 0  for 𝑥 < 0 . If 𝛿 = 0 , 𝑓𝑋(𝑥) = 𝑓𝑋(−𝑥) . Consequently, 

𝑓𝑅(𝑥)  is two times 𝑓𝑋(𝑥)  for 𝑥 ≥ 0 , as shown in Fig. 3.3a. Under this circumstance, 

𝑃(𝑋 ≥ 𝑥) = 𝑃(−𝑋 ≤ 𝑥) ; thus, the cdf of the amplitude is 𝐹𝑅(𝑥) = 𝐹𝑋(𝑥) − 𝐹𝑋(−𝑥) =

2𝐹𝑋(𝑥) − 1 for 𝑥 ≥ 0, as shown in Figure 3.3b. It is important to mention that 𝑅 cannot be 

considered stable, but the consequences of its definition can be beneficial to the estimation 

of the parameters of symmetric stable distributions. 

Related to the objective of this study is the analysis of the fractional moments of 𝑅. Because 

the univariate case is considered, expressions for E|𝑋|𝑝 do not differ from that presented in 

the previous section. Rearranging Eq. 3.4 gives the expression  

  E|𝑋|𝑝 = E(𝑅𝑝) = 𝐶𝑝Γ(1 − 𝑝 𝛼⁄ )𝛾𝑝,  (3.6) 

where 𝐶𝑝 is a constant dependent only on 𝑝: 
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𝐶𝑝 =
2𝑝Γ(

𝑝+1

2
)

√𝜋Γ(1−𝑝/2)
. 

 

Figure 3.3 Illustration of the pdf and the cdf of the amplitude 𝑹 

The rv 𝑅 corresponds to a rv 𝑋~𝑆𝛼𝑆(1.1,0,1,0), where 𝑓𝑅(𝑥) = 2𝑓𝑋(𝑥) and 𝐹𝑅(𝑥) =

2𝐹𝑋(𝑥) − 1 for 𝑥 ≥ 0. 

It is worth noting that the two stable parameters that define the distribution of 𝑋 appear in 

Eq. 3.6. Analysis of probability 𝑃{[E(𝑅𝑝)]1/𝑝 ≥ 𝑅} = 𝐹𝑅{[E(𝑅𝑝)]1/𝑝} revealed that it is 

independent of scale parameter 𝛾: 

  𝐹𝑅{[E(𝑅𝑝)]1/𝑝} = 2 𝜋⁄ ∫ 𝑠−1sin (s)exp {−
𝑠𝛼

[𝐶𝑝Γ(1−𝑝 𝛼⁄ )]
𝛼/𝑝}

∞

0
𝑑𝑠  (3.7) 

Proof 

Let 𝑎 and 𝑎 + ℎ (with ℎ > 0) be continuity points of 𝐹𝑋(𝑥). The inversion theorem of cfs 

states that 

  𝐹𝑋(𝑎 + ℎ) − 𝐹𝑋(𝑎) = lim
𝑇→∞

(1/2𝜋) ∫ (𝑖𝑡)−1(1 − 𝑒−𝑖𝑡ℎ)𝑒−𝑖𝑡𝑎𝜑(𝑡)d𝑡
𝑇

−𝑇
.  (3.7.1) 

Replacing 𝑎 = 0 results in 𝐹𝑋(𝑎 + ℎ) − 𝐹𝑋(𝑎) = 𝐹𝑋(ℎ) − 𝐹𝑋(0). The right-hand side of Eq. 

3.7.1 can be rearranged into 

 𝐹𝑋(𝑎 + ℎ) − 𝐹𝑋(𝑎) = lim
𝑇→∞

[−(𝑖/2𝜋) ∫ 𝑡−1𝜑(𝑡)𝑑𝑡
𝑇

−𝑇
+ (𝑖/2𝜋) ∫ 𝑡−1𝑒−𝑖𝑡ℎ𝑇

−𝑇
𝜑(𝑡)d𝑡].  (3.7.2) 

For 𝑎 < 𝑐 < 𝑏, the Cauchy principal value (𝑃𝑉) of ∫ 𝜔(𝑡)d𝑡
𝑏

𝑎
 is denoted by  

𝑃𝑉 ∫ 𝜔(𝑡)d𝑡
𝑏

𝑎
= lim

𝜀→0+
[∫ 𝜔(𝑡)𝑑𝑡

𝑐−𝜀

𝑎
+ ∫ 𝜔(𝑡)d𝑡

𝑏

𝑐+𝜀
], 

where ∫ 𝜔(𝑡)d𝑡
𝑐

𝑎
 and ∫ 𝜔(𝑡)d𝑡

𝑏

𝑐
 are divergent integrals. If the interval of integration is 

[𝑎 = −𝑇, 𝑏 = 𝑇] , 𝜔(𝑡)  is an odd function with a pole at 𝑐 , and 𝑐 = 0 , the limit of 
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∫ 𝜔(𝑡)d𝑡
𝑇

−𝑇
 exists in the sense of the Cauchy 𝑃𝑉  and it is equal to 0 , even for 𝑇 → ∞ 

(Chapter 7 of Ponnusamy, 2012). 

Because the function 𝑡−1𝜑(𝑡) is odd with a pole at 0, Eq. 3.7.2 should be written as 

𝐹𝑋(ℎ) − 𝐹𝑋(0) = lim
𝑇→∞

[−(𝑖/2𝜋)𝑃𝑉 ∫ 𝑡−1𝜑(𝑡)d𝑡
𝑇

−𝑇
+ (𝑖/2𝜋) ∫ 𝑡−1𝑒−𝑖𝑡ℎ𝑇

−𝑇
𝜑(𝑡)d𝑡]. 

The limit of the first integral in the sense of the Cauchy 𝑃𝑉 is equal to 0. The second integral 

can be solved by applying the change of variable 𝑠 = 𝑡ℎ, yielding 

𝐹𝑋(ℎ) − 𝐹𝑋(0) = lim
𝑇→∞

(𝑖/2𝜋) ∫ 𝑠−1𝑒−𝑖𝑠𝜑(𝑠/ℎ)
𝑇/ℎ

−𝑇/ℎ
d𝑠, 

and applying Euler’s formula 𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥 , 

= lim
𝑇→∞

[(1/2𝜋) ∫ 𝑠−1𝑇/ℎ

−𝑇/ℎ
sin (𝑠)𝜑(𝑠/ℎ)d𝑠 + (𝑖/2𝜋) ∫ 𝑠−1cos (𝑠)𝜑(𝑠/ℎ)

𝑇/ℎ

−𝑇/ℎ
d𝑠].  

Because the function 𝑠−1cos (𝑠)𝜑(𝑠/ℎ) is odd with a pole at 0, the previous expression 

should be written as 

= lim
𝑇→∞

[(1/2𝜋) ∫ 𝑠−1𝑇/ℎ

−𝑇/ℎ
sin (𝑠)𝜑(𝑠/ℎ)d𝑠 + (𝑖/2𝜋)𝑃𝑉 ∫ 𝑠−1cos (𝑠)𝜑(𝑠/ℎ)

𝑇/ℎ

−𝑇/ℎ
d𝑠]. 

The limit of the second integral in the sense of the Cauchy 𝑃𝑉 is equal to 0. The first integral 

contains an even function 𝜒(𝑡) , such that ∫ 𝜒(𝑡)d𝑡
0

−𝑇
= ∫ 𝜒(𝑡)d𝑡

𝑇

0
, and therefore 

∫ 𝜒(𝑡)d𝑡 =
𝑇

−𝑇
2 ∫ 𝜒(𝑡)d𝑡

𝑇

0
. Changing the interval of integration and replacing it with the cf 

𝜑(𝑡) = exp(−𝛾𝛼|𝑡|𝛼) results in 

  𝐹𝑋(ℎ) − 𝐹𝑋(0) = (1/𝜋) ∫ 𝑠−1 sin(𝑠) 𝑒−𝛾𝛼[𝑠/ℎ]𝛼∞

0
d𝑠.   

Considering that 𝐹𝑅(ℎ) = 2[𝐹𝑋(ℎ) − 𝐹𝑋(0)],  

  𝐹𝑅(h) = 2/𝜋 ∫ 𝑠−1 sin(𝑠) 𝑒−𝛾𝛼[𝑠/ℎ]𝛼∞

0
𝑑𝑠.  (3.7.3) 

It is easy to see that values of ℎ = [E(𝑅𝑝)]1/𝑝 eliminate the scale parameter 𝛾 in Eq. 3.7.3. 

Equation 3.7 can be obtained by replacing Eq. 3.6 in 3.7.3. □ 

Using the Cauchy 𝑃𝑉  is not necessarily the most elegant solution because it deals with 

improper integrals. However, it should be noted: (i) the interval of integration defined in the 

inversion theorem is symmetric with respect to 𝑡 = 0; and (ii) the integrals contain odd 

functions that are integrable at lim
𝑇→∞

𝑡 = ±𝑇 and that have the same rate of approximation to 

infinity at both sides of 𝑡 = 0. These conditions make it possible to assume that the limits of 

the integrals in the sense of the Cauchy 𝑃𝑉 exist and are equal to 0. 
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3.2.4 Simulation of 𝜶-stable rvs 

An efficient algorithm for simulating sequences of stable rvs has been presented by 

Chambers et al. (1976), hereafter denoted as the CMS algorithm. A detailed proof as well as 

some notes about the change of parameterization is presented by Weron (1996). Eqs. 3.8 and 

3.9 correspond to the parameterization given by Weron (1996). For a rv 𝑈  uniformly 

distributed on (−𝜋/2, 𝜋/2)  and an independent exponential rv 𝑊  with mean 1, the 

algorithm for simulating the rv 𝑌~𝑆(𝛼, 𝛽, 1,0) is:  

  𝑌 = (1 + 𝜁2)1/2𝛼 sin{𝛼(𝑈+𝜉)}

{cos(𝑈)}1/𝛼 [
cos{𝑈−𝛼(𝑈+𝜉)}

𝑊
]

1−𝛼

𝛼
    for 𝛼 ≠ 1, and  (3.8) 

  𝑌 =
1

𝜉
{(

𝜋

2
+ 𝛽𝑈) tan𝑈 − 𝛽ln (

𝜋

2
𝑊cos𝑈
𝜋

2
+𝛽𝑈

)}        for 𝛼 = 1,  (3.9) 

where 𝜁 = −𝛽tan(𝜋𝛼/2) , 𝜉 = 𝜋/2  for 𝛼 = 1 , and 𝜉 = (1/𝛼)arctan(−𝜁)  for 𝛼 ≠ 1 . 

Because Eqs. (8) and (9) are given for a standard stable rv, the simulation of 𝑋~𝑆(𝛼, 𝛽, 𝛾, 𝛿) 

as a function of 𝑌 is 𝑋 = 𝛾𝑌 + 𝛿 for 𝛼 ≠ 1, and 𝑋 = 𝛾𝑌 + (2/𝜋)𝛽𝛾ln𝛾 + 𝛿 for 𝛼 = 1. If 

𝑋~𝑆(𝛼, 𝛽, 𝛾, 𝛿)  has parameterization (2), then the simulation of 𝑋  is given by 𝑋 =

𝛾[𝑌 − 𝛽tan (𝜋𝛼/2)] + 𝛿 for 𝛼 ≠ 1, and 𝑋 = 𝛾𝑌 + 𝛿 for 𝛼 = 1. 

The CMS algorithm is regarded as the most accurate and it is currently implemented in the 

latest statistical computing environments (e.g., Veillette, 2012; Liang and Chen, 2013). 

3.2.5 Estimation of stable parameters 

Techniques commonly used to estimate the parameters of probability distributions are not 

suitable for stable distributions because they rely on pdfs with closed-form expressions and 

on the existence of finite moments. Alternatively, the fitting of samples has been done 

through numerical methods using quantile relative measures (Fama and Roll, 1971; 

McCulloch, 1986; Dominicy and Veredas, 2013), regression of the empirical cf (Arad, 1980; 

Koutrouvelis, 1980; Kogon and Williams, 1998; Besbeas and Morgan, 2008), and 

approximate maximum-likelihood estimation (Mittnik et al., 1999b; Nolan, 2001). The 

evaluation and comparison of the different techniques is often undertaken using statistical 

metrics computed from Monte Carlo simulations. The results have shown acceptable 

performances of all these methods, especially when large samples were considered. Even 

though the maximum-likelihood method performs with slightly better accuracy, quantile-

type and regression-type methods are usually preferred because of the lesser computational 

effort (Besbeas and Morgan, 2008; Weron, 2011). In this section, we review the basic 

descriptions of two existing methods and detail the procedures of a few others based on the 

concept of the amplitude of 𝑆𝛼𝑆 distributions. 
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3.2.5.1 Regression of the empirical cf (RCF) 

Consider a random sample 𝑥1 , 𝑥2 , . . . 𝑥𝑛  from a population with a stable distribution 

𝑆(𝛼, 𝛽, 𝛾, 𝛿). The empirical cf, 𝜑̂(𝑡), is defined as the expected value of exp(𝑖𝑡𝑘𝑥𝑗), i.e., 

𝜑̂(𝑡) = 𝑛−1 ∑ exp(𝑖𝑡𝑘𝑥𝑗)𝑛
𝑗=1 . This expression implies that the empirical cf is bounded by 

unity, making all its moments finite. Because of these conditions, and by the law of large 

numbers, 𝜑̂(𝑡) is considered a consistent estimator of 𝜑(𝑡). The selection of the real-valued 

set of evaluation points, {𝑡𝑘, 𝑘 ∈ ℤ}, often differs from one author to another. Besbeas and 

Morgan (2008) presented a literature review and compared the performance of the different 

ways in which 𝑡𝑘 was defined. 

The RCF method, introduced by Koutrouvelis (1980), is often regarded as the estimation 

method that best balances complexity of programming and computation time. Manipulations 

of the cf, as shown in Eq. 3.1, give 

  log(−log|𝜑(𝑡)|2) = log(2𝛾𝛼) + 𝛼log|𝑡|,  (3.10) 

and, considerations of principal values apart, the real ℜ[𝜑(𝑡)] and imaginary ℑ[𝜑(𝑡)] parts 

of the cf can lead to the expression: 

  arctan (
ℑ[𝜑(𝑡)]

ℜ[𝜑(𝑡)]
) = 𝛿𝑡 + 𝛽𝛾𝛼tan(𝜋𝛼/2)sgn(𝑡)|𝑡|𝛼.  (3.11) 

Expression 3.10 depends only on parameters 𝛼 and 𝛾, suggesting that both estimators 𝛼̂ and 

𝛾 could be found by computing the regression of 𝑦 = log(−log|𝜑𝑛(𝑡)|2) on 𝑤 = log|𝑡| in 

the model: 𝑦𝑘 = 𝜇0 + 𝛼𝑤𝑘 + 𝜖𝑘, where 𝜇0 = log(2𝛾𝛼) and 𝜖𝑘 denotes an error term. If it is 

known a priori that the random sample is from a population with a 𝑆𝛼𝑆(𝛼, 0, 𝛾, 0 ) 

distribution, Eq. 3.11 is unnecessary. Moreover, note that an expression equivalent to Eq. 

3.10 could be found by rearranging the cf in Eq. 3.3. Nevertheless, the method for estimating 

all four parameters is explained next for completeness. 

Once 𝛼̂  and 𝛾  are estimated and set equal to 𝛼  and 𝛾 , Eq. 3.11 may be used to obtain 

estimators 𝛽̂ and 𝛿 through a second regression. The procedure, explained by Koutrouvelis 

(1980), involves an initial estimate of 𝛾, which is computed using Fama and Roll’s (1971) 

formula, and an initial estimate of 𝛿, which is found by computing the 25% truncated mean. 

After the computation of estimators 𝛼̂, 𝛽̂ , 𝛾, and 𝛿 , these values are fixed as the initial 

condition of the subsequent iteration. The procedure is repeated iteratively until some 

criterion of convergence is satisfied. The evaluation points 𝑡𝑘 are uniformly spaced, where 

𝑘 is a positive integer between 9 and 134, depending on the initial value of 𝛼 and the sample 

size. 

Kogon and Williams (1998) resolved the discontinuity of the cf near 𝛼 = 1 by deriving the 

linear regression model from Eq. 3.2, which is the continuous expression of the cf. 

Additional improvements of the model proposed by Kogon and Williams (1998) include the 
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elimination of the iteration process and the use of only 10 uniformly spaced evaluation points. 

Furthermore, the study proposed the use of McCulloch’s (1986) expressions for obtaining 

the initial estimators. The model developed by Kogon and Williams (1998) is slightly faster 

than the RCF method, which renders an improved performance for distributions with 

parameters near 𝛼 = 1 and 𝛽 ≠ 0. However, the RCF method remains more accurate for 

other values of 𝛼 (Weron, 2011; Borak et al., 2011). 

In this study, a MATLAB toolbox (Alpha–Stable distributions by Veillette, 2012), which 

uses McCulloch’s (1986) expressions for the initial estimates of the parameters, was used to 

generate the results of the RCF method presented in later sections.  

3.2.5.2 Quantile-based relative measures (QRM) 

Improving an earlier work on the estimation of parameters via quantiles conducted by Fama 

and Roll (1971), McCulloch (1986) proposed estimators for all four parameters, which 

eliminated the previous asymptotic bias and covered a broader range of the characteristic 

exponent ( 𝛼 ≥ 0.6 ). Let us denote by 𝑥𝑟  the 𝑟 -th population quantile such that the 

probability of the rv being less than or equal to 𝑥𝑟 is 𝑟. McCulloch defined  

 𝜐𝛼 = (𝑥0.95 − 𝑥0.05)/(𝑥0.75 − 𝑥0.25), and 𝜐𝛽 = (𝑥0.95 + 𝑥0.05 − 2𝑥0.50)/(𝑥0.95 − 𝑥0.05),  (3.12) 

where 𝜐𝛼 is a relative measure of the heaviness of the tails with respect to the body of the 

distribution, and 𝜐𝛽 is a relative measure of the skewness. If 𝜐𝛼 and 𝜐𝛽 are the corresponding 

sample values, then 𝜐̂𝛼  and 𝜐̂𝛽  are considered consistent estimators of 𝜐𝛼  and 𝜐𝛽 , 

respectively. As these expressions were found to be independent of 𝛾 and 𝛿, the estimators 

𝛼̂ and 𝛽̂ can be obtained by linearly interpolating the values of 𝜐̂𝛼 and 𝜐𝛽 using lookup tables 

computed for different values of 𝛼 and 𝛽.  

Because of the proportionality between 𝛾 and the difference between any two quantiles for 

fixed values of 𝛼 and 𝛽, the following relative measure of scale was defined:  

   𝜐𝛾 = (𝑥0.75 − 𝑥0.25)/𝛾.  (3.13) 

If 𝜐̂𝛾  is the corresponding sample value, the consistent estimator 𝛾  can also be linearly 

interpolated using lookup tables. A similar expression for the location parameter was also 

presented. However, the discontinuity of the cf for distributions near 𝛼 = 1  and 𝛽 ≠ 0 

produces singularities that make interpolation futile. The solution to overcome this pitfall, 

which also assures the continuity of the cf, involves a change of variable using the median 

of the shifted data. All the aforementioned lookup tables are presented in McCulloch (1986). 

3.2.5.3 Modified quantile-based relative measures (MQM) 

In the case of zero-mode 𝑆𝛼𝑆  distributions, 𝑥𝑟  is equal to −𝑥1−𝑟 . Let |𝑥|𝑟∗  be the 𝑟∗-th 

population quantile of a univariate rv 𝑅 = |𝑋|  with 𝑋~𝑆𝛼𝑆(𝛼, 0, 𝛾, 0) , where 𝑟∗ =
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2(𝑟 − 0.5) for 𝑟 ≥ 0.5. Derived directly from Eq. 3.12, the relative measure 𝜐𝛼  can be 

expressed as  

  𝜐𝛼 = |𝑥|0.90 |𝑥|0.50⁄ .  (3.14) 

Similarly, derived from Eq. 3.13, the relative measure of scale results in  

  𝜐𝛾 = 2|𝑥|0.50 𝛾⁄ .  (3.15) 

The MQM method estimates 𝛼̂  and 𝛾  using Eqs. 3.14 and 3.15 and the tabulated data 

computed by McCulloch (1986). As only 𝑆𝛼𝑆 distributions are considered, only the columns 

corresponding to 𝛽 = 0 in those tables are relevant to this method. In order to compare this 

method with the QRM method, the estimation of parameters with the QRM method was 

done by fixing the parameter 𝛽 = 0. 

3.2.5.4 Fractional absolute moments (FAM) method 

Equations 3.6 and 3.7 relate 𝛼  and 𝛾  with the 𝑝 th fractional absolute moment of the 

amplitude 𝑅. This condition suggests the possibility of computing the estimators 𝛼̂ and 𝛾 

from a random sample using only a predefined value of 𝑝.  

Given a random sample 𝑥1, 𝑥2,..., 𝑥𝑛 from a population with distribution 𝑆𝛼𝑆(𝛼, 0, 𝛾, 0), the 

empirical 𝑝th fractional absolute moment is 𝑚𝑝 = 𝑛−1 ∑ |𝑥𝑗|
𝑝𝑛

𝑗=1 , which may be considered 

an unbiased estimator of E(𝑅𝑝). The absolute values of the random sample are then arranged 

in ascending order for the purpose of computing values of the empirical cdf, 𝑞(𝑗) =

(𝑗 − 0.5)/𝑛 for 𝑗 = 1, 2, . . ., 𝑛. The empirical cdf at 𝑚𝑝
1/𝑝 can be calculated by applying 

linear interpolation between two corresponding adjacent values of 𝑞(𝑗). We denote this 

value by 𝑞̂𝑝 , which may be considered a consistent estimator of the cdf evaluated at 

[E(𝑅𝑝)]1/𝑝. 

Because of the monotonically decreasing relationship observed in Eq. 3.7 between 

𝐹𝑅{[E(𝑅𝑝)]1/𝑝} and 𝛼 in the interval 𝑝 < 𝛼 ≤ 2 (see Fig. 3.4a), it is possible to numerically 

interpolate estimator 𝛼̂ for a given value of 𝑞̂𝑝. Because Eq. 3.7 is valid only if 𝛼 > 𝑝, the 

use of small random samples might cause the following issue. If a sample comes from a 

population with 𝑆𝛼𝑆 distribution, 0 < 𝑝 < 𝛼, and 𝑝 is assigned a value almost equal to the 

parameter 𝛼 of the distribution, the empirical fractional absolute moment 𝑚𝑝 should be a 

large number tending to infinity in order to be a good estimator of E(𝑅𝑝). However, infinite 

empirical moments can only be obtained from samples with an infinite number of drawings, 

which is practically impossible. Considering an alternative case in which 𝑝 is assigned a 

value close to 𝛼, such that E(𝑅𝑝) is still a large number (but not infinity), it would require a 

sample with a large number of evenly distributed outliers to represent adequately the heavy 

tails, which is a condition that cannot be fulfilled by small or even moderately large samples. 
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For this reason, the value of 𝑝 should be such that 𝑝/𝛼 ≤ 𝜏′𝑚𝑎𝑥 < 1, where 𝜏′𝑚𝑎𝑥  is an 

upper bound that assures the computation of representative values of 𝑚𝑝.  

  

Figure 3.4 𝜶 vs. 𝑭𝑹{[𝐄(𝑹𝒑)]𝟏/𝒑} and 𝒑𝜶 for different values of 𝜶 

(a) Curves obtained by evaluating Eq. 3.7 with values of 𝑝 = {0.3,0.6,0.9,1.2}. When 

the fractional absolute moments tend to infinity, as 𝛼 approaches 𝑝, note that the values 

of 𝐹𝑅{[E(𝑅𝑝)]1/𝑝} tend toward 1. (b) Average results of multiple simulation runs to 

determine the behavior of the estimator 𝛼̂  for different values of 𝑝 . Black points 

correspond to 𝑝𝛼. 

Another restriction needs to be established following careful observation of Eq. 3.7, which 

contains an oscillatory integral with asymptotic decay at infinity. The value of 𝑝 should be 

such that 0 < 𝜏𝑚𝑖𝑛 ≤ 𝑝/𝛼 ≤ 𝜏𝑚𝑎𝑥 < 1 . If 𝑝/𝛼  is outside the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥 ] , the 

asymptotic decay might become slower, producing large errors in the numerical 

approximation of the integral. The value of 𝜏𝑚𝑎𝑥 may not be equal to 𝜏′𝑚𝑎𝑥 because 𝜏′𝑚𝑎𝑥 

depends on the characteristics of the sample. On the other hand, the values of 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 

depend on the tolerances established in the integral-approximation algorithms of the utilized 

computing environment.  

Choosing a value of 𝑝 is complicated because the value of 𝛼 cannot be known a priori nor is 

it known whether it approximates 𝑝. Simulation runs were undertaken to determine the 

accuracy of the estimation of 𝛼̂ using Eq. 3.7 and several values of 𝑝. Figure 3.4b shows the 

results of the simulations, which represent the average behavior of 500 replications and 

sample sizes 𝑛 = {50,100,150,200}. A value of 𝑝 that returned the most accurate estimate 

of 𝛼̂ was identified, which is denoted as 𝑝𝛼. This analysis indicates that the estimation of 

parameter 𝛼  of 𝑆𝛼𝑆  distributions using fractional absolute moments is statistically more 

accurate if the 𝑝𝛼th-order absolute moment is used. In fact, the performance in estimating 𝛼̂ 

and 𝛾 with Eqs. 3.6 and 3.7 was found to match the simulation results of the RCF method 

while being approximately five times faster.  
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Table 3.1 Values of 𝒑𝜶 for different values of the characteristic exponent 𝜶  

α 2.00 1.95 1.90 1.85 1.80 1.70 1.60 1.50 1.40 ≤1.30 

pα 1.70 1.45 1.19 1.00 0.84 0.69 0.56 0.42 0.36 0.35 

The FAM method is structured as follows. First, a value of 𝑝𝛼 is interpolated in Table 3.1 

using an initial estimation of 𝛼̂ obtained with the truncated sample mean (TSM) method 

(next section). Second, by replacing 𝑝𝛼 in Eq. 3.7, an estimate of 𝛼̂ is obtained. Finally, the 

estimator 𝛾 is computed by making 𝛼 = 𝛼̂ in Eq. 3.6 and solving for 𝛾. The range in which 

the FAM method can be applied depends on the adjustment of the tolerances of the integral-

approximation algorithm of the utilized computing environment. These adjustments may 

also affect the time of computation. The observations and results presented in this study 

correspond to the default tolerances set for the “integral” algorithm of MATLAB R2014a. 

Acceptable results of simulations of this method were obtained for 0.8 ≤ 𝛼 ≤ 2.0.  

3.2.5.5 Truncated sample mean (TSM) method 

During the development of the FAM method, it was identified that small samples cannot 

generate representative empirical fractional absolute moments. The TSM method is 

proposed to overcome this shortcoming, given the assumptions below.  

If a given sample is truncated at the quantile |𝑥|𝑟∗, all the drawings less than or equal to |𝑥|𝑟∗ 

are considered to contain sufficient information with which to estimate the parameters of the 

distribution. The expected value of the amplitude 𝑅 truncated at the quantile |𝑥|𝑟∗ can be 

expressed as E(𝑅|𝑅 ≤ |𝑥|𝑟∗); for simplicity, hereafter, this is denoted as just E(𝑅)T𝑝∗ . For 

different values of 𝛼, this expected value can be estimated by means of numerical integration 

of the pdf using Nolan’s (1997) algorithms. Similarly, the probability of E(𝑅)T𝑝∗ ≥ 𝑅 , 

denoted as 𝐹𝑅(E(𝑅)T𝑝∗ ), can also be computed using Nolan’s (1997) algorithms. The value 

of 𝐹𝑅(E(𝑅)T𝑝∗ ) represents the cdf evaluated at the expected value of the truncated pdf. 

Table 2  shows the two described parameters computed for 𝑝∗ = 0.99  and 𝛾 = 1 . Even 

though the expected value of the amplitude 𝑅 exists for 𝛼 > 1 only, values of E(𝑅)T𝑝∗  and 

𝐹𝑅(E(𝑅)T𝑝∗ ) can be computed for values of 𝛼 ≤ 1 by truncating the distribution. 

The TSM method estimates the parameters of 𝑆𝛼𝑆 distributions as follows. Given a random 

sample 𝑥1, 𝑥2, . . . 𝑥𝑛 from a population with distribution 𝑆𝛼𝑆(𝛼, 0, 𝛾, 0), |𝑥|̅̅ ̅̅
T0.99 denotes 

the mean of the absolute values of all drawings that are less than or equal to the 0.99th 

quantile. |𝑥|̅̅ ̅̅
T0.99 is then considered an unbiased estimator of E(𝑅)T0.99 . The absolute values 

of the random sample are then arranged in ascending order with the purpose of computing 

values of the empirical cdf, 𝑞(𝑗) = (𝑗 − 0.5)/𝑛  for 𝑗 = 1, 2, . ., 𝑛 . The empirical cdf at 

|𝑥|̅̅ ̅̅
T0.99  can be calculated by applying linear interpolation between two corresponding 

adjacent values of 𝑞(𝑗). This value is denoted 𝑞̂𝑇0.99 and it may be considered a consistent 

estimator of the distribution function evaluated at the expected value of the truncated pdf 

𝐹𝑅(E(𝑅)T0.99 ). Using Table 3.2, the estimator 𝛼̂ and a value of E|𝑋|𝑇0.99
𝛾=1

 can be obtained 
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by linearly interpolating with 𝑞̂𝑇0.99 . Then, the estimator 𝛾  can be computed using the 

expression shown in Eq. 3.16, because E(𝑅)T0.99  is the product of 𝛾 and E|𝑋|T0.99
𝛾=1

.  

  𝛾 = |𝑥|̅̅ ̅̅
T0.99/E|𝑋|T0.99

𝛾=1
.  (3.16) 

Different values of the 𝑝∗-th quantiles were tested for these analysis; however, the value of 

𝑝∗ = 0.99 returned the most satisfying results. 

Table 3.2 Expected value of the truncated pdf and its corresponding value in the distribution 

function  

α    E|𝑋|T0.99
𝛾=1

 𝐹|𝑋|(E|𝑋|T0.99 )  α    E|𝑋|T0.99
𝛾=1  𝐹|𝑋|(E|𝑋|T0.99 ) 

2.00 1.0985 0.5627  1.20 1.8533 0.7210 

1.95 1.1108 0.5668  1.15 1.9967 0.7340 

1.90 1.1254 0.5716  1.10 2.1726 0.7468 

1.85 1.1426 0.5773  1.05 2.3921 0.7595 

1.80 1.1630 0.5841  1.00 2.6710 0.7719 

1.75 1.1866 0.5917  0.95 3.0329 0.7844 

1.70 1.2138 0.6003  0.90 3.5145 0.7969 

1.65 1.2448 0.6097  0.85 4.1747 0.8096 

1.60 1.2801 0.6199  0.80 5.1120 0.8224 

1.55 1.3204 0.6309  0.75 6.5002 0.8355 

1.50 1.3666 0.6426  0.70 8.6647 0.8488 

1.45 1.4196 0.6549  0.65 12.2602 0.8623 

1.40 1.4809 0.6678  0.60 18.7248 0.8759 

1.35 1.5522 0.6810  0.55 31.5797 0.8894 

1.30 1.6359 0.6943  0.50 60.7098 0.9027 

1.25 1.7349 0.7077     

3.2.5.6 Logarithmic moments (LMO) method 

Other techniques for estimating the parameters of 𝑆𝛼𝑆  distributions employ fractional 

lower-order moments and LMO (Section 5.7 of Nikias and Shao, 1995). A Monte Carlo 

simulation showed that a method based on fractional (absolute and signed) lower-order 

moments and the method of Kogon and Williams (1998) estimated parameter 𝛼  with a 

similar performance, while the LMO estimators returned poorer statistics (Dance and 

Kuruoğlu, 1999). Since Weron (2011) demonstrated that the RCF method is slightly more 

accurate than the method of Kogon and Williams (1998), we assume that the RCF method 

is also better than the method of moments proposed by Dance and Kuruoğlu (1999) for 𝛽 =

0 and 𝛼 > 1. However, in order to have an idea of the range in which parameter 𝛼 can be 

estimated using different techniques, the LMO method is detailed in this section and it will 

be included in the simulation undertaken in Section 3.2.6. 

Even though the rv 𝑅  has finite 𝑝th fractional lower-order moments for 𝑝 < 𝛼  only, its 

logarithm has moments of all orders (Section 5.8 in Uchaikin and Zolotarev, 1999). Based 
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on this definition, the parameters 𝛼 and 𝛾 can be estimated using the first two logarithmic 

moments of the rv 𝑅 (Nikias and Shao, 1995), as shown in Eqs. 3.17 and 3.18. 

  E(ln𝑅) = 𝛾𝐸𝑢𝑙𝑒𝑟 (
1

𝛼
− 1) + ln𝛾.  (3.17) 

  Var(ln𝑅) =
𝜋2

6
(

1

𝛼2 +
1

2
).  (3.18) 

The application of the LMO method to real data is hindered in some cases where the samples 

have values equal to zero, which makes it impossible to compute the mean and variance of 

the logarithms. 

3.2.6 Simulation of the parameter-estimation methods 

This section presents the results of a simulation using the parameter-estimation methods 

previously detailed. The objective is to evaluate the level of accuracy obtained using the 

various techniques. 

The procedure is as follows. A vector of stable random variates is generated with the CMS 

algorithm. The vector is subdivided into 𝐾 = 500 samples of size 𝑛. The total number of 

simulation runs, 𝐾 , determines the quantity of estimator points used for the statistical 

evaluation of the methods. This simulation was performed for several sample sizes that 

ranged from 𝑛 = 50 to 20,000. As we are interested in the evaluation of the performance of 

small samples, the results for values of 𝑛 equal to 50, 100, and 200 are presented below. 

However, the results for 𝑛 = 1000 are also presented to show the performance of large 

samples. The MQM, FAM, TSM, and LMO methods use the absolute values of the random 

variates. The simulation was implemented for input values of 𝛼 = {0.8, 0.9, … ,1.9, 2.0}, and 

constant input values for the other three parameters fixed at 𝛽 = 0, 𝛾 = 1, and 𝛿 = 0.  

The estimator point obtained from the 𝑘-th simulated sample with input true parameter 𝜃∗ is 

denoted 𝜃𝑘  (𝑘 = 1, 2, . . . , 𝐾). The results of this analysis are then expressed in terms of 

commonly used descriptive statistics, which include the mean 

  𝜃̅ = 𝐾−1 ∑ 𝜃𝑘
𝐾
𝑘=1 ,  (3.19) 

root mean square error 

  RMSE = [𝐾−1 ∑ (𝜃𝑘 − 𝜃∗)
2𝐾

𝑘=1 ]
1/2

,  (3.20) 

and standard error of the mean  

  SEM = 𝐾−1/2 [𝐾−1 ∑ (𝜃𝑘 − 𝜃̅)
2𝐾

𝑘=1 ]
1/2

.  (3.21) 



 

33 
 

It was observed that the mean value for all methods rapidly converged and stabilized after 

approximately 𝑘 = 250  simulation runs. However, 𝐾 = 500  was maintained in this 

analysis such that the results could be compared with those of previous evaluations of fitting 

models, e.g., the studies of Akgiray and Lamoureux (1989) and Besbeas and Morgan (2008). 

Table 3.3 Simulation results for estimator 𝜶̂ 
α Statistics(a) RCF QRM MQM FAM TSM LMO 

  n = 50           

1.90 Mean 1.864 1.847 1.825 1.833 1.839 1.773 

 RMSE 0.169 0.226 0.225 0.197 0.190 0.332 

 SEM 74.0 98.1 94.7 83.0 80.5 137.3 

1.70 Mean 1.682 1.689 1.704 1.665 1.718 1.732 

 RMSE 0.234 0.295 0.251 0.263 0.221 0.313 

 SEM 104.2 131.7 112.2 116.8 98.4 139.2 

1.50 Mean 1.502 1.503 1.542 1.505 1.554 1.605 

 RMSE 0.257 0.345 0.265 0.291 0.270 0.377 

 SEM 114.8 154.4 117.2 130.2 118.3 162.1 

1.30 Mean 1.277 1.360 1.336 1.315 1.390 1.425 

 RMSE 0.262 0.352 0.249 0.302 0.276 0.363 

 SEM 116.6 154.9 110.2 134.7 117.0 152.4 

1.10 Mean 1.039 1.151 1.118 1.097 1.199 1.210 

 RMSE 0.245 0.327 0.218 0.271 0.269 0.322 

 SEM 106.1 144.6 97.1 121.4 111.8 135.4 

0.90 Mean 0.835 0.994 0.930 0.939 1.040 0.970 

 RMSE 0.210 0.299 0.188 0.254 0.274 0.221 

 SEM 89.2 126.8 83.0 112.2 105.3 93.9 

  
n = 100           

1.90 Mean 1.888 1.889 1.838 1.853 1.832 1.816 

 RMSE 0.117 0.163 0.188 0.157 0.167 0.269 

 SEM 52.2 72.8 79.2 67.0 68.4 114.2 

1.70 Mean 1.700 1.705 1.719 1.704 1.673 1.728 

 RMSE 0.166 0.243 0.204 0.194 0.202 0.286 

 SEM 74.2 108.4 90.6 86.6 89.3 127.1 

1.50 Mean 1.491 1.500 1.521 1.509 1.472 1.558 

 RMSE 0.174 0.264 0.205 0.213 0.204 0.307 

 SEM 77.8 118.2 91.4 95.3 90.5 135.1 

1.30 Mean 1.289 1.292 1.316 1.302 1.259 1.409 

 RMSE 0.168 0.235 0.178 0.204 0.220 0.304 

 SEM 75.1 105.1 79.1 91.1 96.7 126.8 

1.10 Mean 1.065 1.109 1.110 1.099 1.069 1.140 

 RMSE 0.165 0.211 0.154 0.192 0.213 0.209 

 SEM 72.1 94.4 68.6 85.8 94.3 91.9 

0.90 Mean 0.876 0.951 0.925 0.924 0.898 0.934 

 RMSE 0.118 0.186 0.132 0.184 0.184 0.139 

 SEM 51.9 79.9 57.9 81.4 82.4 60.3 
(a) The values of SEM are multiplied by a factor of 104 

The overall analysis of the results, presented in Table 3.3, suggests that parameter 𝛼 can be 

estimated with any of the methods and that similar satisfactory outcomes could be expected 

when dealing with large samples. For small samples, the main observations are outlined as 

follows: 

 The MQM method uses the Eqs. 3.14 and 3.15, which are modifications of Eqs. 3.12 

and 3.13 of the QRM method. The hypothesis was that these modifications could 

improve the accuracy of the estimation in small samples. However, the improvement 
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can be seen in the values of RMSE and SEM for 𝛼∗ < 1.7, while the mean of the 

estimators is slightly better for a few cases only. 

Table 3.3 (Continuation) Simulation results for estimator 𝜶̂ 

α Statistics(a) RCF QRM MQM FAM TSM LMO 

  n = 200           

1.90 Mean 1.902 1.926 1.877 1.886 1.876 1.816 

 RMSE 0.077 0.124 0.141 0.110 0.123 0.237 

 SEM 34.4 54.3 62.4 48.6 53.9 99.2 

1.70 Mean 1.704 1.730 1.730 1.708 1.686 1.706 

 RMSE 0.113 0.204 0.163 0.136 0.144 0.246 

 SEM 50.4 90.3 71.7 60.9 63.9 110.0 

1.50 Mean 1.499 1.487 1.524 1.511 1.486 1.562 

 RMSE 0.119 0.189 0.148 0.151 0.139 0.252 

 SEM 53.1 84.1 65.5 67.4 62.0 109.3 

1.30 Mean 1.293 1.263 1.310 1.296 1.278 1.348 

 RMSE 0.106 0.154 0.118 0.136 0.139 0.197 

 SEM 47.4 66.9 52.5 61.0 61.2 85.5 

1.10 Mean 1.092 1.098 1.113 1.107 1.084 1.130 

 RMSE 0.108 0.144 0.109 0.144 0.154 0.142 

 SEM 48.3 64.6 48.5 64.3 68.7 61.9 

0.90 Mean 0.896 0.939 0.916 0.927 0.899 0.922 

 RMSE 0.078 0.140 0.095 0.140 0.150 0.094 

 SEM 34.9 60.0 41.9 61.6 67.2 40.9 

  n = 1000           

1.90 Mean 1.901 1.978 1.900 1.900 1.900 1.882 

 RMSE 0.038 0.092 0.087 0.071 0.073 0.131 

 SEM 17.2 21.8 38.8 31.7 32.8 58.2 

1.70 Mean 1.702 1.741 1.709 1.701 1.699 1.717 

 RMSE 0.051 0.120 0.085 0.072 0.064 0.147 

 SEM 22.7 50.6 38.0 32.0 28.6 65.4 

1.50 Mean 1.497 1.459 1.501 1.497 1.492 1.508 

 RMSE 0.051 0.092 0.061 0.068 0.059 0.110 

 SEM 22.8 36.9 27.1 30.3 26.0 49.3 

1.30 Mean 1.296 1.251 1.302 1.294 1.289 1.295 

 RMSE 0.048 0.085 0.054 0.069 0.064 0.082 

 SEM 21.4 30.9 24.3 30.9 28.1 36.8 

1.10 Mean 1.098 1.086 1.100 1.100 1.091 1.104 

 RMSE 0.041 0.068 0.044 0.065 0.072 0.055 

 SEM 18.1 29.6 19.8 29.2 31.8 24.4 

0.90 Mean 0.900 0.923 0.905 0.901 0.898 0.903 

 RMSE 0.037 0.065 0.042 0.072 0.073 0.040 

  SEM 16.7 27.3 18.6 32.3 32.4 17.8 
(a) The values of SEM are multiplied by a factor of 104 

 With some exceptions, the LMO method often shows the poorest results. This 

observation does not mean that the descriptive statistics are always unacceptable. For 

example, although the results of all methods return similar values of RMSE and SEM 

for 𝑛 = 200  and 𝛼∗ = 1.1, the LMO method shows only a slightly worse mean 

estimator. 

 The RCF method shows exceptional statistics for values of 𝛼∗  approaching 2.0; 

however, the results tend to be less accurate for 𝛼∗ < 1.5. The discontinuity of the 

characteristic function at 𝛼 = 1 could be the cause of this deterioration. 
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 For values of 𝛼∗ < 1.6, the performance of the FAM method shows, in most cases, 

the most accurate mean estimate of 𝛼. Its statistics are slightly surpassed by the 

results of the other methods for values of 𝛼 approaching 2. 

 The TSM method, along with the LMO method, showed the worst mean estimators 

for sample sizes of 𝑛 = 50 and 𝑛 = 100. However, its values of RMSE and SEM 

are usually better than the average of all methods. 

For the estimators 𝛾 , the general observation from the results shows outstanding 

performance by the MQM method, while the RCF, FAM, TSM and LMO methods show 

fairly acceptable results. The method that returns the poorest statistics is the QRM method. 

3.3 CONDITIONS FOR SELF-SIMILARITY IN 𝜶-STABLE 

DISTRIBUTIONS 

A process 𝑋(∙) is called self-similar in distribution if for every 𝑎 > 0, there exists some 

unique 𝐻 > 0 such that 𝑋(𝑎 ∙) =
𝑑  𝑎𝐻𝑋(∙) (Chapter 7 in Samorodnitsky and Taqqu, 1994; 

Embrechts et al., 1997). The scaling exponent 𝐻 is called the self-similarity index. This 

expression implies that if the process 𝑋(∙)  goes through a transformation of scale, the 

distribution of the transformed process will be equal to the distribution of the original process 

multiplied by 𝑎𝐻.  

The discrete wavelet transform uses two-dimensional dyadic dilates of the scaling function 

(low-pass filter) in order to obtain discrete approximations at multiple resolutions. The finite 

number of samples comprised in 𝑋̅𝑚 is one fourth the of the samples comprised in 𝑋̅𝑚−1. 

The same conclusion can be drawn for the number of samples in the sets of wavelet 

coefficients 𝑋′𝑚,𝑖  (for 𝑖 = 1,2,3) at each scale. Considering that the highest resolution of 

representation is 𝑚 = 0  (scale of sampling) and that discrete representations at lower 

resolutions correspond to positive integer values of 𝑚, it is not difficult to imply that the 

coefficient 𝑎𝐻 should be equal to 4(𝑚−1)𝐻 in a wavelet transform framework. Even though 

the undecimated discrete wavelet transform generates samples with the same dimensions as 

the original data, the redundant information comprises similar copies of the samples 

generated with the discrete wavelet transform. Thus, it is not wrong to assume 𝑎𝐻 = 4(𝑚−1)𝐻 

for undecimated samplings as well. 

It can be deduced from the previous definition, for symmetric 𝛼-stable distributions, the 

process 𝑋~𝑆𝛼𝑆(𝛼, 0, 𝛾, 0)  is self-similar in distribution if the transformed process has 

distribution 𝑆𝛼𝑆(𝛼, 0,  𝑎𝐻𝛾, 0), or 𝑆𝛼𝑆(𝛼, 0,  4(𝑚−1)𝐻𝛾, 0) . Therefore, two conditions are 

necessary to demonstrate the existence of self-similarity when considering 𝑆𝛼𝑆 distributions. 

First, the characteristic exponent 𝛼  should be the same, meaning that the frequency of 

extreme values is invariant under these transformations. Second, the scale parameter 𝛾 

should have exponential growth with rate 𝐻 (power-law behavior) as the resolution becomes 
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lower. The self-similarity index 𝐻 can be found by making a logarithmic regression of the 

estimated scale parameters at all scales. 

3.4 RESULTS 

This Section presents the results of the procedures necessary to determine the presence of 

self-similarity in the distributions of local fluctuations of rainfall, represented by the sets of 

wavelet coefficients at different scales. The datasets used for this analysis are the rainfall 

intensity composites denominated Radar-AMeDAS, which are available across the Japanese 

Islands. The extraordinary characteristics of the datasets and the possibility to stochastically 

analyze the spatial patterns of different precipitation systems are conditions that probably 

could not be matched in other locations of the world.  

3.4.1 Area of study and characteristics of the rainfall intensity datasets 

Japan, consisting of four main islands and thousands of smaller surrounding ones, forms an 

elongated arc covering a range of latitude of about 22 degrees. The Sea of Japan separates 

the Japanese archipelago from the Pacific coast of the Asian continent. The four main islands 

(Honshu, Hokkaido, Kyushu and Shikoku), shown in Figure 3.5, have vast mountainous 

regions that are about three-fourths of Japan’s total land surface. The particular geographical 

features, combined with the ocean currents, happen to have a direct influence on the weather 

of the diverse climatic zones that range from subarctic in the north to subtropical in the south. 

Furthermore, the climatic conditions and the annual precipitation patterns can also be quite 

different between the Pacific side and the Sea of Japan side.  

Mainly three types of precipitation systems take place annually over Japan and the 

surrounding ocean waters: cold fronts, the baiu front, and tropical cyclones. Heavy 

precipitation is also generated by local convective updraft over the plains during summer 

(e.g., Kanto region) and by orographic lift; however, the extent is much smaller than the ones 

of the three aforementioned precipitation systems.  

Extratropical cyclones, picking up moisture as they pass over the Sea of Japan, cause cold 

frontal precipitations during spring, autumn and early winter. If a well-developed cyclone 

reaches the coasts of the Sea of Japan, bands of high-intensity rainfall or snowfall precipitate 

over the Main Island (Honshu). However, if the cyclone is not strong enough, it might 

precipitate only over the Hokuriku region, or move upward the mountain range and 

precipitate over the northwest areas of the Chubu mountains without approaching the plains 

of the Kanto region (Yoshida and Asuma, 2004; Kusaka and Kitahata, 2009).  

The baiu front is part of the East Asian Summer Monsoon. This phenomenon, which is a 

long quasi-stationary precipitation belt, is the result of a high-pressure mass of cold air above 

the Sea of Okhotsk encountering a high-pressure mass of moist warm air developed over the 

Pacific Ocean (Ohba et al., 2014). Southwesterly flow along the western rim of the North 



 

37 
 

Pacific subtropical high introduces warm moist air into the front. Consequently, damp 

weather and prolonged periods of high-intensity rainfall are characteristic of the baiu front 

season.  

 

Figure 3.5 Geographic location of the main islands of Japan and the weather radars of the 

JMA 

Additionally, Japan is regularly struck by tropical cyclones, which originate from large 

masses of low-pressure air in the North Pacific Ocean. There is no specific season for the 

occurrence of tropical cyclones since the trajectory and intensity are quite different from 

each other. However, when a tropical cyclone approaches Japan, it often heads towards the 

Nansei islands, Kyushu or Shikoku. The classification, which is not the same for all regions 

of the world, depends on the intensity defined by the wind velocity in the storm. The Japan 

Meteorological Agency (JMA) classifies the most severe tropical cyclone in the North 

Western Pacific region as a typhoon. Classifications of less intense tropical cyclones include 

different degrees of tropical depression and tropical storm. Besides the strong winds, tropical 

cyclones often cause heavy rainfall. The interaction of an existing midlatitude front and a 

tropical cyclone may cause the transition of the storm into an extratropical front (Klein et al., 
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2000). Kamahori (2012) reviewed previous studies about the relation between rainfall and 

tropical cyclones, showing that these storms cause between 5 and 7 percent of the seasonal 

rainfall in the northwest Pacific region. Moreover, the same research concluded that rainfall 

rate increases with storm intensity and that it precipitates concentrically to the center within 

a 5-degree radius. Figure 3.6 portrays schematic trajectories and location of these three 

precipitation systems. 

   

Figure 3.6 Examples of precipitation systems over Japan and the surrounding waters.  

The Baiu front is considered quasi-stationary, however, it moves slowly northward as 

the warm air of the Pacific Ocean becomes predominant, marking the beginning of the 

hot summer season. The blue dashed line is an example of the trajectory that follow the 

extratropical cyclones generating cold fronts. Two tropical cyclones, which stroke Japan 

causing damage and torrential rains, are shown in this figure: typhoon Shanshan in 

September 2006, and typhoon Sinlaku in September 2008. 

The structure of precipitation systems is often a combination of stratiform and convective 

components (Houze, 1993). Stratiform precipitation is generated by stably stratified clouds, 



 

39 
 

e.g., nimbostratus. The formation of this type of clouds is usually a consequence of the slow 

ascent of unsaturated air ahead of warm fronts. Stratiform precipitation tends to be 

widespread, to have a steady intensity, and to last for several hours. On the other hand, 

convective clouds (e.g., cumulus congestus and cumulonimbus) are formed by atmospheric 

instability, which leads to the strong updraft of warm moist air through either thermal 

convection or frontal lifting. High intensity, short duration and limited extent are typical 

features of convective rainfall. Thus, the different types of rainfall events can be classified 

as stratiform, localized convective cells generated by strong local updrafts (this classification 

encompasses single-cell storms, multicellular storms, supercells and squall lines), and 

convective cells embedded in large convective or stratiform rain zones. Having accurate, 

high-resolution observations of intensity for these different types of events is undoubtedly 

essential for the assessment of the link between multiscale statistical features and the degree 

of variability. 

With the purpose of encompassing the different types of rainfall, five analysis sites in Japan 

were identified for the multiscale analysis of fluctuations conducted in this study: Kanto 

(KAN), South Tohoku (STO), Hokkaido (HOK), Kyushu (KYU), and Shikoku (SHI). Each 

site, shown in Figure 3.6, covers a squared area with a 256-km side. 

The JMA is the institution responsible for monitoring several weather-observation networks 

across the Japanese Islands. The weather information is collected via geostationary satellites 

(Himawari series), ground-based radars, radiosonde, wind profilers, and a network of 1300 

surface-observation stations commonly known as AMeDAS (Automated Meteorological 

Data Acquisition System). The stations, which form one of the densest networks in the world, 

are laid out at average intervals of approximately 17 km throughout Japan. The surface data 

measured and monitored by AMeDAS encompasses rainfall intensity, snow depth, wind, 

surface pressure, temperature, humidity, visibility and sunshine duration. The JMA also 

produces and distributes the so-called Radar-AMeDAS datasets, covering the Japanese 

islands and surrounding ocean waters. These datasets are a composite of rainfall/snowfall 

intensity estimated using the soundings of 20 C-Band Doppler weather radars and calibrated 

with the measurements of the AMeDAS network. The location of the radars is shown in 

Figure 3.5. There have been improvements in the spatial and temporal resolution of Radar-

AMeDAS since its release in 1988. The spatial resolution changed from 5 km to 2.5 km in 

2001, and then to 1 km in 2006; the temporal resolution changed from hourly to every thirty 

minutes in 2003. These two-dimensional, gridded datasets comprise values of rainfall rate 

in millimeters per hour (mm/hr) rounded to positive integers. Additionally, the real value 0.4 

is used for drizzle and zero is used to represent no-rain. The value of 0.4 was set as threshold 

because rainfall with lower intensities and echoes from non-weather targets are not easily 

distinguished in the radar soundings. 
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3.4.2 Criteria for selection of the events 

In order to clarify the use of certain words in the subsequent sections, let us make the 

following definitions: 

 “grid”: two-dimensional, equally-spaced arrange of elements. 

 “cell”: a single element of a grid. 

 “rainfall event” or simply “event”: a grid of rainfall intensity data accumulated over 

a specified period of time. 

 “rain area”: for a single event, the area of a single cell in km2 multiplied by the 

number of cells in which the comprised value of rainfall intensity is greater than zero. 

 “no-rain area”: for a single event, the area of a single cell in km2 multiplied by the 

number of cells in which the comprised value of rainfall intensity is equal to zero. 

The analysis was done to events that happened between February 2006 and December 2009. 

Since the area of the analysis sites is 256 × 256 km2 and the Radar-AMeDAS data has a 1-

km resolution in the period of analysis, the rainfall intensity data for each event is stored as 

a grid of 256×256 cells. Even though the data is available every thirty minutes between 2006 

and 2009, the events considered in this study are hourly accumulations. The accumulation 

period was set in order to match the hourly measurements of the rain gauges of the AMeDAS 

network. Hereafter, if an event is referred to as KAN_2006.05.20.15, for example, it means 

that the data corresponds to the intensity in mm/hr of the rainfall precipitated over the Kanto 

site on May 20th 2006 between 14:01 and 15:00 hours.  

The samples of events considered for analysis were selected establishing two conditions:  

 The rain area mean intensity has to be greater than or equal to 1 mm/hr.  

 The rain area has to be greater than or equal to 25% of the total surface of the analysis 

site. In other words, the number of cells that belong to the rain area has to be greater 

than or equal to 0.25 × 256 × 256. 

The first condition excludes those events in which drizzle is dominant. The analysis of spatial 

fluctuations is practically futile in the case of drizzle because the grid cells comprise mostly 

values of 0.4, showing no apparent variability. The second condition excludes small rain 

areas which may not depict scale-to-scale dependence across all the considered scales. A 

more comprehensive explanation of the reason for excluding events with small rain areas is 

given later. Table 3.4 shows the sample size or number of events that satisfy these two 

conditions in each analysis site. 
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Table 3.4 Characteristics of the analysis sites and sample size (number of events) 

Region Code 

UTM coordinates of 

the Southwest corner  

UTM 

Zone 

Nº of 

events 

Kanto KAN 232500E 3858000N 54N 3210 

South Tohoku STO 295000E 4085500N 54N 3824 

Hokkaido HOK 468500E 4731000N 54N 1900 

Kyushu KYU 520000E 3476000N 52N 3895 

Shikoku SHI 223000E 3623000N 53N 3536 

3.4.3 Conditional sampling based on rain or no-rain areas 

Figure 3.7 shows Radar-AMeDAS data for the event KAN_2008.09.22.00 and its 

approximation at scale 𝑚 = 4, 𝑋̅4, corresponding to a 16-km resolution. Comparing the no-

rain areas in both representations, it can be appreciated that the rain-area becomes larger as 

the resolution becomes lower, which is partly the definition of intermittency of rainfall. 

Regarding this observation, an additional consideration for the selection of the sample is 

established. 

 

Figure 3.7 Radar-AMeDAS data for the event KAN_2008.09.22.00 

(a) Rainfall intensity at scale 𝑚 = 0  correspondent to 1-km resolution,𝑋̅0 , and (b) 

approximation at scale 𝑚 = 4 correspondent to 16-km resolution, 𝑋̅4. 

In Eq. 2.16, each value contained in the set 𝑋̅𝑚(𝑛′
1, 𝑛′

2) is a function of the four values 

𝑋̅𝑚−1(𝑛1, 𝑛2) , 𝑋̅𝑚−1(𝑛1, 𝑛2 + 1) , 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2)  and 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1) , which 

form a 2 × 2 sub-grid of cells that belong to the approximation of the rainfall field at scale 

𝑚 − 1  (See Figure 3.8). If these four values are equal to zero, the resulting value of 

𝑋̅𝑚(𝑛′
1, 𝑛′

2) is also equal to zero. In the same manner, by analyzing Eq. 2.17 one can arrive 

to the same conclusion, i.e., zero-values will be generated in the sets of wavelet coefficients 

𝑋′𝑚,𝑖  in the locations correspondent to no-rain areas. With the purpose of avoiding the 

inclusion of these non-relevant zero-values, the following condition is established: “the 

values generated in Eq. 2.17 are considered part of the sample of wavelet coefficients only 

if at least one of the four values 𝑋̅𝑚−1(𝑛1, 𝑛2), 𝑋̅𝑚−1(𝑛1, 𝑛2 + 1), 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2) and 

               

(a) (b) 
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𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 + 1) is greater than zero. The following examples are given according to 

the schematic in Figure 3.8: 

 Because 𝑋̅𝑚−1(𝑛1, 𝑛2 + 1)  is greater than zero, the correspondent value of 

𝑋′𝑚,𝑖(𝑛′1, 𝑛′2) is included in the sample. 

 Because 𝑋̅𝑚−1(𝑛1 − 2, 𝑛2 − 1) , 𝑋̅𝑚−1(𝑛1 − 2, 𝑛2 − 2)  and 𝑋̅𝑚−1(𝑛1 − 1, 𝑛2 − 2) 

are greater than zero, the correspondent value of 𝑋′𝑚,𝑖(𝑛′
1 − 1, 𝑛′

2 − 1) is included 

in the sample. 

 Because 𝑋̅𝑚−1(𝑛1, 𝑛2 − 2) , 𝑋̅𝑚−1(𝑛1, 𝑛2 − 1) , 𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 − 2)  and 

𝑋̅𝑚−1(𝑛1 + 1, 𝑛2 − 1)  are all equal to zero, the correspondent value of 

𝑋′𝑚,𝑖(𝑛′
1, 𝑛′

2 − 1) is not included in the sample. 

 

Figure 3.8 Schematic of the discrete approximation of the rainfall field.  

The cells separated by dash-dot lines correspond to the approximation at scale 𝑚 with 

location indexes (𝑛′1, 𝑛′2) . The cells separated by dotted lines correspond to the 

approximation at scale 𝑚 − 1  with location indexes (𝑛1, 𝑛2) . The cells with grey 

background comprise values of intensity greater than 0 while the cells with white 

background comprise values of intensity equal to zero. 

3.4.4 The effect of zero-values on the estimation methods of stable parameters 

In spite of the rule established in the previous section for filtering non-relevant zeros 

generated in no-rain areas, the samples of wavelet coefficients are still prone to have a large 

number of zero-values at high resolutions. Because Radar-AMeDAS datasets only comprise 

integer values, at high resolutions it is likely to find large areas (a large number of adjacent 

cells) with the same value of intensity. Hence, the sets of wavelet coefficients, which are 

meant to capture local variations of intensity, may contain an unusual number of zero-values.  
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Most of the parameter-estimation methods presented in Section 3.2.5 have a poor 

performance when the samples have a large number of zeros. A brief explanation of the 

effect of this situation is given for each method: 

 QRM method: In Eq. 3.12, if 𝑥0.75 and 𝑥0.25 are equal to zero due to a large number 

of zero-values in the sample, 𝜐𝛼 becomes undefined. For this reason, neither 𝛼̂ nor 𝛾 

can be determined. 

 MQM method: Likewise, in Eq. 3.14, if |𝑥|0.50 is equal to zero due to the large 

number of zero-values, 𝜐𝛼 becomes undefined. For this reason, neither 𝛼̂ nor 𝛾 can 

be determined. 

 RCF method: The large number of zero values produces an ill-conditioned linear 

system of equations in the regression of the cfs (Eq. 3.10 and Eq. 3.11), which is 

commonly known as a rank-deficient problem. This implies that one or more rows in 

the coefficient matrix are nearly linear combinations of some or the remaining rows. 

Consequently, the system has more than one possible solution. As the regression is 

done iteratively until some level of convergence is reached, the different solutions 

that are obtained in each iteration preclude the estimators to converge. Therefore, in 

some cases this method does not return reasonable values. 

 FAM method: A large number of zero values causes the empirical 𝑝th fractional 

absolute moment, 𝑚𝑝 , to be close to zero. Then, the evaluation of 𝑚𝑝
1/𝑝  at the 

empirical cdf yields a value approaching 1.0. This situation, combined with the 

boundary conditions at which the oscillatory integral of Eq. 3.7 is evaluated, causes 

the numerical interpolation of the estimator 𝛼̂  to diverge with each iteration. 

Consequently, in some cases this method does not return reasonable values. 

 TSM method: The QRM and MQM methods compute relative measures of the 

distribution as a function of fixed quantiles. For example, in Eq. 3.12, computing 

𝑥0.75  gives the value of the variable that is greater than or equal to 95% of the 

elements in the distribution. However, this value is not able to inform about how 

extreme the remaining 5% of the distribution is. Differently from those methods, the 

TSM method uses the mean of the absolute values of the truncated distribution, 

therefore, not only representing a relative measure of the distribution, but also having 

a weighted impact of all the values of the distribution. This feature allowed to 

estimate values of 𝛼̂  and 𝛾  when the sample has a large number of zero-values. 

Nevertheless, the estimator 𝛼̂  in some cases is considerably smaller than the 

estimators at lower resolutions. 

 LMO method: Since the logarithm of zero is undefined, this method cannot be 

utilized for samples comprising zero-values. 

From the six methods, only the TSM method is able to return estimates of the stable 

parameters of samples with a large amount of zero-values, with no exceptions. For a good 
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portion of the selected rainfall events, the issues of the five other methods listed above are 

evident when trying to estimate the stable parameters of the sets of wavelet coefficients 𝑋′1,𝑖, 

i.e., the variations of intensity at the highest resolution. Depending on the method and on the 

event, the inability to estimate the stable parameters of the sets of wavelet coefficients 𝑋′2,𝑖, 

and even 𝑋′3,𝑖, was also observed.  

3.4.5 Procedure and methods for the computation of results 

In Section 3.2.1, it was mentioned that the lack of closed-form expressions of the pdf and 

cdf hinders not only the estimation of the parameters, but also resolving which of the existing 

estimation methods performs better than the others. Even though there are tests based on 

qualitative comparisons (e.g., q-q plots and p-p plots) and some new procedures aimed to 

assess goodness of fit of 𝛼-stable distributions (e.g., Brcich et al., 2005 and Matsui and 

Takemura, 2008), they usually rely on the existence of large samples and do not contemplate 

samples with an unusual number of zeros. Therefore, choosing the most suited parameter-

estimation method should consider the characteristics of the samples and the purpose of such 

characterization. 

As an initial step, the characteristics of the samples that signify setbacks in the estimation of 

their stable-parameters are clearly identified: 

4. At high resolutions, in most events, the samples of wavelet coefficients comprise 

a large number of zero-values. Apart from the TSM method, in the previous 

section it was determined that a large amount of zero-values hinders the 

estimation of the parameters. 

5. At low resolutions, the estimation of the parameters of the distribution might be 

precluded by the limited information that fails to represent the “shape” of the 

distribution.  

Since the main objective of this Chapter is to show the presence of self-similarity in the 

distributions of rainfall local fluctuations, the methods of estimation are going to be 

evaluated by how well they overcome the two setbacks enumerated above and how well they 

contribute to the achievement of said objective. 

Considering the conditional sampling explained in Section 3.4.3 that rules out zero-values 

coming from no-rain areas, wavelet coefficients from rain areas can be sampled applying on 

of three variations of the discrete wavelet transform: (1) the Discrete Wavelet Transform 

(DWT), (2) The Undecimated Discrete Wavelet Transform (UDWT), and (3) a combination 

of both. Each variation generates samples with different sizes. The details are listed below. 

1. DWT: The multiscale sampling of wavelet coefficients is carried out according 

to Eq. 2.16 and Eq. 2.17. Let 𝐿1 × 𝐿2 be the number of samples in the original 



 

45 
 

datasets. Then, the sample size of the sets 𝑿̅𝑚  and 𝑋′𝑚,𝑖  are reduced to 

(𝐿1 × 𝐿2)/4𝑚. 

2. UDWT: The multiscale sampling of wavelet coefficients is carried out according 

to Eq. 2.18 and Eq. 2.19. Since periodic boundary conditions are imposed (Nason 

and Silverman, 1995), the number of samples in the sets 𝑿̅𝑚 and 𝑋′𝑚,𝑖 should be 

equal to 𝐿1 × 𝐿2 at all scales. This kind of imposition is useful when analyzing 

continuous signals or digital images with repeating patterns. However, periodic 

boundary conditions should not be applied in rainfall datasets. The probability of 

the existence of no-rain areas and the different patterns that can be found at 

opposite ends of the data grids might generate additional information that should 

not be considered in the characterization of wavelet coefficients. Thus, the 

UDWT sampling in this study considers finite boundaries, reducing sample size 

of the sets 𝑿̅𝑚 and 𝑋′𝑚,𝑖 to (𝐿1 − 2𝑚 + 1) × (𝐿2 − 2𝑚 + 1).  

3. A combination of both: Compared to the DWT method, the UDWT comes at 

the cost of a larger number of arithmetic operations, which implies a larger 

storage of digital data and a longer time of computation. For this reason, it was 

considered to sample the wavelet coefficients by obtaining the discrete 

approximation of the rainfall field at all possible scales of representation using 

the DWT method (Eq. 2.16), and then, obtaining the wavelet coefficients at each 

scale using the UDWT method (Eq. 2.19). The sample size of the sets 𝑋′𝑚,𝑖 are 

reduced to (21−𝑚𝐿1 − 1) × (21−𝑚𝐿2 − 1). 

Table 3.5 Maximum sample sizes of the directional sets of wavelet coefficients at all possible 

scales of representation 

  Sample size 

Scale 𝒎 Resolution DWT UDWT Combination 

0 1-km -- -- -- 

1 2-km 16384 65025 65025 

2 4-km 4096 64009 16129 

3 8-km 1024 62001 3969 

4 16-km 256 58081 961 

5 32-km 64 50625 225 

6 64-km 16 37249 49 

7 128-km 4 16641 9 

8 256-km 1 1 1 

 

Table 3.5 shows the maximum sample size that can be obtained at each scale with the 

different sampling methods. Recall that the sample sizes can be reduced even more if the 

event has no-rain areas. Note that because the dimensions of the original data at each site is 

𝐿1 = 256 × 𝐿2 = 256, the lowest resolution of representation is at scale 𝑚 = 8. If periodic 

boundary conditions are considered in the UDWT sampling method, the variations of 

information in the samples cause adverse, significant differences in the estimation of the 
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stable parameters, especially when the no-rain areas are large. Curiously, even though the 

samples generated by the UDWT and by the combined method are quite different in size, 

the estimation of the parameters does not show significant variations, even at scales 𝑚 = 6 

and 𝑚 = 7 . Consequently, the results presented in this study are obtained using the 

combined method of sampling. 

At scale 𝑚 = 1  the samples comprise a large number of zero-values, hampering the 

performance of the parameter-estimation methods. Therefore, the scale range in which all 

methods can be compared is 𝑚min = 2 ≤ 𝑚 ≤ 𝑚max = 7. For a set of directional wavelet 

coefficients 𝑋′𝑚,𝑖, let 𝛼𝑚,𝑖 and 𝛾𝑚,𝑖 be respectively the characteristic exponent and the scale 

parameter of the symmetric 𝛼-stable distribution at scale 𝑚. Recalling the definition of self-

similarity in distribution given in Section 3.3, if the relations 

  𝛼𝑚min,𝑖 = 𝛼𝑚min+1,𝑖 =∙∙∙= 𝛼𝑚max ,𝑖, and (3.22) 

  𝛾𝑚,𝑖 = 𝛾𝑚min,𝑖4
(𝑚−1)𝐻𝑖  (3.23) 

hold independently and simultaneously in the 3 directions ( 𝑖 = {1,2,3}) , the 

multidimensional process of local fluctuations of that rainfall event is said to be self-similar 

in distribution in the scale range 𝑚min ≤ 𝑚 ≤ 𝑚max.  

Because some bias is expected in the estimation of the parameters, apart from the LMO 

method, which cannot be applied at any scale, the rest of the methods are going to be 

evaluated by the degree of variation between scales of the estimated characteristic exponent 

of the 𝛼-stable distributions. Thus, when samples of rainfall fluctuations are considered, the 

method that is most suitable for the estimation of stable-parameters is going to be the one 

that can hold expression 3.22 with the least variation between scales. For that purpose, let us 

define 

 𝜎𝑖 = [(𝑚max − 𝑚min + 1)−1 ∑ (𝛼̂𝑚,𝑖 − 𝛼̅𝑖)
2𝑚max

𝑚min
]

1/2

 and 

  𝛼̅𝑖 = (𝑚max − 𝑚min + 1)−1 ∑ 𝛼̂𝑚,i
𝑚max
𝑚min

,  (3.24) 

where 𝛼̅𝑖 is the arithmetic mean of the estimators 𝛼̂𝑚,𝑖, and 𝜎𝑖 is a measure of the invariance 

of the estimators 𝛼̂𝑚,𝑖 between scales. As an example, Figure 3.9 shows a comparison of the 

results for the rainfall event KAN_2009.11.11.16. The correspondent values of 𝜎𝑖  are 

presented in Table 3.6., which denote that the TSM method shows an overall better 

performance. 
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Table 3.6 Values of 𝝈𝒊 for the event KAN_2009.11.11.16 in the scale range 𝟐 ≤ 𝒎 ≤ 𝟔 

𝒊 RCF QRM TSM FAM MQM 

1 0.178 0.050 0.013 0.059 0.060 

2 0.209 0.035 0.059 0.084 0.084 

3 0.121 0.075 0.030 0.095 0.032 

Table 3.7 shows the mean values of 𝜎𝑖 correspondent to all the analyzed rainfall events in 

the Kanto analysis site. At scale 𝑚 = 7, which has a sample size equals to 9, the estimators 

of  𝛼̂𝑚,𝑖 approximate 2.0, which corresponds to the Gaussian distribution. Although with less 

frequency, the estimators at scale 𝑚 = 6 have similar outcome. Such results can be an 

indication that the rainfall fluctuations of the event can be qualified as self-similar only in 

the scale ranges 2 ≤ 𝑚 ≤ 5 or 2 ≤ 𝑚 ≤ 6. However, if the analyzed event is part of a storm 

developing at a larger atmospheric scale, the results depicted in Figure 3.9 make evident that 

the information of extreme variations that can be obtained at scales 𝑚 = 6 or 𝑚 = 7 is quite 

limited for an analysis site of 256 km × 256 km. In which case, it would be difficult to rule 

out the possibility that self-similarity holds in a wider scale range. The TSM method was 

found to yield the smallest mean values of 𝜎𝑖, followed by the MQM method. The RCF 

method and the FAM method, regarded as the most accurate methods according to the Monte 

Carlo simulation in Section 3.2.6, yielded the worst results. The reason for the failure of 

these two methods is the deficient estimation at high-resolutions, in which the amount of 

zero-values is not large enough to prevent the methods from working, but enough to produce 

unexpected results.  

Table 3.7 Mean values of 𝝈𝒊 for the Kanto analysis site 

𝒊 RCF QRM TSM FAM MQM 

 2 ≤ 𝑚 ≤ 5 

1 0.081 0.050 0.032 0.071 0.040 

2 0.083 0.050 0.032 0.071 0.042 

3 0.078 0.054 0.033 0.090 0.043 

 2 ≤ 𝑚 ≤ 6 

1 0.097 0.071 0.052 0.077 0.058 

2 0.098 0.072 0.053 0.076 0.060 

3 0.090 0.073 0.050 0.089 0.057 

Based on the previous analysis of the inter-scale variation of the estimators of the 

characteristic exponent, the TSM method proves to be the method that is most suitable for 

the estimation of stable-parameters when samples of rainfall fluctuations are considered. 

Moreover, note that the TSM method is the only method that is able to return estimates of 

the stable-parameters at scale 𝑚 = 1. Therefore, the results presented in this study (next 

section) are computed with the TSM method in the scale range 1≤ 𝑚 ≤ 7. 
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Figure 3.9 Estimators 𝜶̂𝒎,𝒊 for the event KAN_2009.11.11.16 with different estimation-

methods 

The results are divided in three graphs representing the estimators of the characteristic 

exponent of the 𝛼-stable distributions of the wavelet coefficients (a) in the horizontal 

direction (𝑖 = 1), (b) in the vertical direction (𝑖 = 2), and (c) in the diagonal direction 

(𝑖 = 3).  
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With regard to the scale parameter, applying base-4-logarithm to both sides of Eq. 3.23 

yields 

 log4(𝛾𝑚,𝑖) = log4(𝛾𝑚min,𝑖) + (𝑚 − 1)𝐻𝑖. 

This linear expression implies that 𝛾𝑖,𝑚min
 and 𝐻𝑖 can be determined by means of regression. 

Let 𝜌𝑖
2 be the coefficient of determination of the regression. The results are accepted only if 

𝜌2
𝑖
 is greater than 0.75 in all three directions. If this condition is not fulfilled, the regression 

is applied to the estimators in a narrower scale range, i.e., 𝑚min ≤ 𝑚 ≤ 𝑚max − 1.  

As an example, Figure 3.10 shows the logarithmic regression of the estimated scale 

parameters for the event KAN_2009.11.11.16.  

 

Figure 3.10 logarithmic regression of the estimated scale parameters for the event 

KAN_2009.11.11.16 

The colored circles represent the values of log4(𝛾𝑚,𝑖) correspondent to each 𝑚 − 1 in 

the three directions. The self-similarity index 𝐻𝑖 is the slope of the dotted lines, which 

represent the best fit of the logarithmic regression. Considering that the sets of wavelet 

coefficients 𝑋′1,𝑖 represent the variations of intensity at scale 𝑚 = 0, the point in which 

the dotted lines cross the vertical axis correspond to 𝛾1,𝑖 . The coefficients of 

determination are 𝜌2
𝑖=1,2,3 = {0.98,0.99,0.98}. 

3.4.6 Presentation of the Results 

The procedure detailed in the previous section was applied for computing the estimators  

𝛼𝑚,𝑖  and 𝛾𝑚,𝑖  of the probability distribution of rainfall fluctuations (wavelet coefficients) 

contained in the sets 𝑋′𝑚,𝑖 . The events selected for analysis in each site was previously 

detailed in Table 3.4. 
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3.4.6.1 Estimation of the characteristic exponent 

The TSM method proved to overcome the setbacks produced by the nature of the samples 

better than the other parameter-estimation methods. Even though this method is the only that, 

with no exceptions, returns estimators 𝛼̂1,𝑖, it does not mean that the large amount of zeros 

does not impact the estimated values. In some cases, like the one shown in Figure 3.9, the 

values of  𝛼̂1,𝑖 are similar to the ones obtained at lower resolutions. However, in other cases 

the values of 𝛼̂1,𝑖 are much smaller than the ones at lower resolutions, which may affect the 

computation of the mean 𝛼̅𝑖 (Figure 3.11). The events in which this adversity is observed 

happen to have a large number of contiguous cells comprising the same value of low 

intensity and vast no-rain areas. Figure 3.12 shows the Radar-AMeDAS data correspondent 

to the event KAN_2009.02.25.09 in which no-rain areas occupy 27% of the total surface, 

cells comprising 0.4 mm/hr occupy 42% of the total surface, and cells comprising 1 mm/hr 

occupy 14% of the total surface. In order to avoid this bias, the computation of the mean 𝛼̅𝑖 

considers only the estimators 𝛼̂𝑚,𝑖 in the scale range 2 ≤ 𝑚 ≤ 5 for all events. 

 

Figure 3.11 Estimators 𝜶̂𝒎,𝒊 for 𝟏 ≤ 𝒎 ≤ 𝟕 and 𝒊 = {𝟏, 𝟐, 𝟑} corresponding to the event 

KAN_2009.02.25.09 

The dashed lines represent the values of 𝛼̅𝑖 in the scale range 2 ≤ 𝑚 ≤ 5. Note that the 

values corresponding to 𝛼̂1,𝑖 are noticeably smaller than at lower resolutions. If these 

values are included in the computation of 𝛼̅𝑖, it creates a biased mean value. 
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Figure 3.12 Radar-AMeDAS data for the event KAN_2009.02.25.09  

The image depicts vast no-rain areas and a large number of contiguous cells with the 

same value of intensity. 

 

Figure 3.13 Normalized frequencies of 𝜶̅𝟏 (horizontal direction)  

The values encompass all selected events in each of the analysis sites. 
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Figure 3.14 Normalized frequencies of 𝜶̅𝟐 (vertical direction).  

The values encompass all selected events in each of the analysis sites. 

 

Figure 3.15 Normalized frequencies of 𝜶̅𝟑 (diagonal direction). 

The values encompass all selected events in each of the analysis sites. 

Figures 3.13, 3.14 and 3.15 show the normalized frequencies of 𝛼̅𝑖 encompassing the results 

obtained for all the selected events. Recall that the number of events in each analysis site is 

3210 (KANto), 3824 (South TOhoku), 1900 (HOKkaido), 3895 (KYUshu), and 3536 

(SHIkoku). These Figures are intended to show the parameter-range of 𝛼̅𝑖. The following 

notes can be extracted from the analysis of the frequencies: 

 The highest frequencies of the South Tohoku and Hokkaido sites, which correspond 

to events with 𝛼̅𝑖 approximately equal to 1.4, are just above 0.25. When compared to 

the other three sites, the curves are leptokurtic depicting lower frequencies of events 

with 0.9 ≤ 𝛼̅𝑖 ≤ 1.2. The possible explanation for these characteristics can be the 
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fact that in the South Tohoku and Hokkaido sites the occurrence of rainfall with 

steady intensity and gradual changes is more frequent than rainfall with sudden 

variations. These regions are mostly hit by cold fronts and warm fronts. 

 The frequencies of the Kanto site show a pick that coincides with the peak of the 

South Tohoku and Hokkaido sites. However, the curves show a symmetric 

distribution of frequencies in the parameter-range. Even though the Kanto region is 

frequently struck by cold fronts, there are occasional tropical cyclones causing heavy 

rainfall just before their dissipation stage and local convective activity over the planes 

and by the Pacific side of the mountain ranges. 

 The highest frequencies of the Kyushu and Shikoku sites, which correspond to events 

with 𝛼̅𝑖 approximately equal to 1.3, are just above 0.20. When compared to the other 

three sites, the curves depict higher frequencies of events with  0.9 ≤ 𝛼̅𝑖 ≤ 1.3. The 

possible explanation for these characteristics can be the fact that in the Kyushu and 

Shikoku sites the occurrence of rainfall with sudden variations is more frequent than 

rainfall with steady intensity. These regions are often hit by strong tropical cyclones 

(e.g., typhoons). 

Figures 3.16 to 3.21 are events with similar values of 𝛼̅𝑖 in the three directions. These events 

are shown with the purpose of visually appreciating the degree of spatial variation of 

intensity for different values of 𝛼̅𝑖 within its paremeter-range. As it was expected, the figures 

showing events with values of 𝛼̅𝑖  approaching 1.0 depict intermittency and changes of 

intensity within short-distances with more frequency than the events with larger values of 

𝛼̅𝑖. 
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Figure 3.16 Radar-AMeDAS data for the event KAN_2006.10.06.08 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟕𝟓, 𝟏. 𝟕𝟏, 𝟏. 𝟕𝟒} 

 

Figure 3.17 Radar-AMeDAS data for the event KAN_2009.01.23.04 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟔𝟎, 𝟏. 𝟔𝟏, 𝟏. 𝟔𝟑} 
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Figure 3.18 Radar-AMeDAS data for the event KAN_2008.12.05.15 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟓𝟏, 𝟏. 𝟓𝟎, 𝟏. 𝟒𝟕} 

 

Figure 3.19 Radar-AMeDAS data for the event KAN_2006.10.29.03 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟒𝟏, 𝟏. 𝟒𝟎, 𝟏. 𝟒𝟎} 
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Figure 3.20 Radar-AMeDAS data for the event KAN_2007.09.10.06 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟐𝟏, 𝟏. 𝟏𝟗, 𝟏. 𝟐𝟎} 

 

Figure 3.21 Radar-AMeDAS data for the event KAN_2009.08.07.07 with 𝜶̅𝒊=𝟏,𝟐,𝟑 =

{𝟏. 𝟎𝟎, 𝟏. 𝟎𝟏, 𝟏. 𝟎𝟒} 
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3.4.6.2 Estimation of the scale parameter 

In the TSM method, the computation of the estimators 𝛾𝑚,𝑖 is dependent on the computation 

of the estimators 𝛼̂𝑚,𝑖, which seemingly could imply that bad estimators of the characteristic 

exponent generate bad estimators of the scale parameter. Even though the values 𝛼̅𝑖 

correspond to the arithmetic mean of the estimators 𝛼̂𝑚,𝑖 in the scale range 2 ≤ 𝑚 ≤ 5, the 

logarithmic regression of the estimators 𝛾𝑚,𝑖 was carried out in the scale range 1≤ 𝑚 ≤ 7 

with the purpose of  observing how different would the resulting self-similarity index 𝐻𝑖 be 

if the estimators 𝛾𝑚,𝑖 of the lowest resolutions were also considered.  

Table 3.8 shows the percentage of events that showed power-law behavior of 𝛾1,𝑖 within 

different scale-ranges. In the previous section it was established that the estimation of 𝐻𝑖 

would be accepted only if the logarithmic regression of 𝛾𝑚,𝑖  showed a coefficient of 

determination 𝜌2
𝑖
 greater than or equal to 0.75 in the three directions. If this condition was 

not fulfilled, the regression was applied at narrower scale-ranges. Figures 3.22 to 3.25 show 

examples of events from the different columns in Table 3.8. The Figures also show a graph 

in which dashed lines represent the best-fit computed by the regression. Tables 3.9 to 3.12 

show the values of 𝛾1,𝑖 , 𝐻𝑖  and 𝜌2
𝑖
 correspondent to those events. The parameter 𝛾1,𝑖 

corresponds to the point where the dashed lines cross the vertical axis in the graphs and the 

parameter 𝐻𝑖 corresponds to the slope of the dashed lines. Additionally, Figure 3.26 shows 

an example of an event that falls in the category correspondent to the fifth column of Table 

3.8. 

Table 3.8 Percentage of events in which power law behavior of the scale parameter was 

observed within different scale ranges 

 Range of scales  

 2 ≤ 𝑚 ≤ 7 2 ≤ 𝑚 ≤ 6 2 ≤ 𝑚 ≤ 5 2 ≤ 𝑚 ≤ 4   

 Range of resolutions  

Site 1-km to 64-km 1-km to 32-km 1-km to 16-km 1-km to 8-km (a) Total 

KAN 81 6 3 2 8 100 

STO 84 6 2 2 6 100 

HOK 85 6 3 2 4 100 

KYU 84 7 3 2 4 100 

SHI 84 5 2 2 7 100 
(a) Percentage of events showing self-similarity between 1-km resolution and 4-km resolution, or failing 

to have the values of  𝜌2
𝑖
 greater than or equal to 0.75 
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Figure 3.22 Examples of power-law behavior (1) 

(a) Radar-AMeDAS data for the event KAN_2009.10.26.11. The grid at 64-km 

resolution, correspondent to scale 𝑚 = 7, is shown for reference. (b) Graph showing 

the logarithmic regression of 𝛾𝑚,𝑖 on 𝑚 − 1 showing acceptable correlation in the scale 

range 1 ≤ 𝑚 ≤ 7. 

Table 3.9 Results of the logarithmic regression of 𝛄𝐦,𝐢 on 𝐦 − 𝟏 for the event 

KAN_2009.10.26.11 

 i     

  1 2 3 

𝛾1,𝑖 0.053 0.063 0.026 

𝐻𝑖 0.226 0.198 0.247 

 𝜌2
𝑖
 0.998 0.991 0.970 
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Figure 3.23 Examples of power-law behavior (2) 

(a) Radar-AMeDAS data for the event KAN_2009.05.05.15. The grid at 32-km 

resolution, correspondent to scale 𝑚 = 6, is shown for reference. (b) Graph showing 

the logarithmic regression of 𝛾𝑚,𝑖 on 𝑚 − 1 showing acceptable correlation in the scale 

range 1 ≤ 𝑚 ≤ 6. 

Table 3.10 Results of the logarithmic regression of 𝛄𝐦,𝐢 on 𝐦 − 𝟏 for the event 

KAN_2009.05.05.15 

 i     

  1 2 3 

𝛾1,𝑖 0.034 0.031 0.013 

𝐻𝑖 0.140 0.221 0.230 

 𝜌2
𝑖
 0.848 0.984 0.909 
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Figure 3.24 Examples of power-law behavior (3) 

(a) Radar-AMeDAS data for the event KAN_2009.12.05.21. The grid at 16-km 

resolution, correspondent to scale 𝑚 = 5, is shown for reference. (b) Graph showing 

the logarithmic regression of 𝛾𝑚,𝑖 on 𝑚 − 1 showing acceptable correlation in the scale 

range 1 ≤ 𝑚 ≤ 5. 

Table 3.11 Results of the logarithmic regression of 𝛄𝐦,𝐢 on 𝐦 − 𝟏 for the event 

KAN_2009.12.05.21 

 i     

  1 2 3 

𝛾1,𝑖 0.057 0.077 0.032 

𝐻𝑖 0.206 0.056 0.114 

 𝜌2
𝑖
 0.997 0.947 0.963 
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Figure 3.25 Examples of power-law behavior (4) 

(a) Radar-AMeDAS data for the event KAN_2009.08.10.17. The grid at 8-km 

resolution, correspondent to scale 𝑚 = 4, is shown for reference. (b) Graph showing 

the logarithmic regression of 𝛾𝑚,𝑖 on 𝑚 − 1 showing acceptable correlation in the scale 

range 1 ≤ 𝑚 ≤ 4. 

Table 3.12 Results of the logarithmic regression of 𝛄𝐦,𝐢 on 𝐦 − 𝟏 for the event 

KAN_2009.08.10.17 

 i     

  1 2 3 

𝛾1,𝑖 0.079 0.106 0.035 

𝐻𝑖 0.123 0.096 0.162 

 𝜌2
𝑖
 0.941 0.920 0.978 
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Figure 3.26 Examples of power-law behavior (5) 

(a) Radar-AMeDAS data for the event KAN_2009.05.17.20. The grid at 8-km 

resolution, correspondent to scale 𝑚 = 4, is shown for reference. (b) Graph showing 

the logarithmic regression of 𝛾𝑚,𝑖 on 𝑚 − 1 showing acceptable correlation in the scale 

range 1 ≤ 𝑚 ≤ 3. 

In order to have an idea of the parameter-range of the parameters  

estimated via logarithmic regression, Figure 3.27 shows the normalized frequencies of 𝛾1,𝑖 

and Figure 3.28 shows the normalized frequencies of 𝐻𝑖 for all selected events in each of the 

analysis sites. 
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Figure 3.27 Normalized frequencies of 𝜸𝟏,𝟏, 𝜸𝟏,𝟐, and 𝜸𝟏,𝟑  

The graphs include the results of the all selected events in each of the analysis sites for 

the (a) horizontal direction, (b) the vertical direction, and (c) the diagonal direction. 
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Figure 3.28 Normalized frequencies of 𝑯𝟏, 𝑯𝟐, and 𝑯𝟑  

The graphs include the results of the all selected events in each of the analysis sites for 

the (a) horizontal direction, (b) the vertical direction, and (c) the diagonal direction. 
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Figure 3.27 denotes that the majority of the events have values of 𝛾1,𝑖 between 0.00 and 0.09 

in the east-west and north-south directions, and between 0.00 and 0.05 in the diagonal 

direction. The analysis sites that have more annual accumulated rainfall (Kyushu and 

Shikoku) seem to have a slightly higher frequency of extreme values. 

On the other hand, Figure 3.28 shows that the frequencies are well-distributed in the 

parameter-range 0.00 ≤ 𝐻𝑖 ≤ 0.50 in all three directions for all analysis sites.    

3.4.6.3 Inter-directional dependence of the parameters  

The purpose of this section is to make a statistical description of the estimators of the 

parameters of 𝛼 -stable distributions of rainfall fluctuations and the correspondent self-

similarity indexes computed for the five analysis sites. 

Despite the fact there is no a priori reason for the values of 𝛼̅𝑖  to be equal in all three 

directions, in a large percentage of the events similar values of 𝛼̅1, 𝛼̅2 and 𝛼̅3 were found. 

For all the analysis sites, Figures 3.29 to 3.33 show the scatterplots of 𝛼̅1 - 𝛼̅2, and 𝛼̅1 - 𝛼̅3. 

In these Figures are included only those events in which the estimators 𝛾𝑚,𝑖 proved to have 

power-law behavior in the scale-ranges 1 ≤ 𝑚 ≤ 4, 1 ≤ 𝑚 ≤ 5, 1 ≤ 𝑚 ≤ 6, and 1 ≤ 𝑚 ≤

7 (corresponding to the events in the percentages shown in the first four columns of Table 

3.8). Each graph presents the equation of a red dotted line that indicates the best fit for the 

pairs of values. Additionally, the graphs depict an error term, 𝜀, marked by red dashed lines 

corresponding to the 5th and 95th percentiles of the differences of the pairs of values. 

Generally, the pairs of values in all analysis sites show good correlation to the best-fit lines. 

Therefore, it can be concluded that the characteristic exponent tends to be equal in all three 

directions, although, a slight difference of approximately ±0.10 between 𝛼̅1  and 𝛼̅2  and 

between 𝛼̅1 and 𝛼̅3 is expected regardless of the type of rainfall. 

 

Figure 3.29 Scatterplots of (a) 𝜶̅𝟏 - 𝜶̅𝟐, and (b) 𝜶̅𝟏 - 𝜶̅𝟑 for the Kanto site. 
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Figure 3.30 Scatterplots of (a) 𝜶̅𝟏 - 𝜶̅𝟐, and (b) 𝜶̅𝟏 - 𝜶̅𝟑 for the South Tohoku site. 

 

Figure 3.31 Scatterplots of (a) 𝜶̅𝟏 - 𝜶̅𝟐, and (b) 𝜶̅𝟏 - 𝜶̅𝟑 for the Hokkaido site. 

 

Figure 3.32 Scatterplots of (a) 𝜶̅𝟏 - 𝜶̅𝟐, and (b) 𝜶̅𝟏 - 𝜶̅𝟑 for the Kyushu site. 



 

67 
 

 

Figure 3.33 Scatterplots of (a) 𝜶̅𝟏 - 𝜶̅𝟐, and (b) 𝜶̅𝟏 - 𝜶̅𝟑 for the Shikoku site. 

 

Figure 3.34 Scatterplots of (a) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟐, and (b) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟑 for the Kanto site. 

 

Figure 3.35 Scatterplots of (a) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟐, and (b) 𝛄𝟕,𝟏 - 𝛄𝟔,𝟑 for the Kanto site. 
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Figures 3.34, 3.36, 3.38, 3.40 and 3.42 show the scatterplots of γ1,1 - γ1,2 and γ1,1 - γ1,3 for 

all the analysis sites. In these Figures are included only those events in which the estimators 

𝛾𝑚,𝑖 proved to have power-law behavior in the scale-ranges 1 ≤ 𝑚 ≤ 4, 1 ≤ 𝑚 ≤ 5, 1 ≤

𝑚 ≤ 6, and 1 ≤ 𝑚 ≤ 7 (corresponding to the events in the percentages shown in the first 

four columns of Table 3.8). Similarly, Figures 3.35, 3.37, 3.39, 3.41 and 3.43 show the 

scatterplots of γ7,1 - γ7,2 and γ7,1 - γ7,3 for all the analysis sites. In these Figures are included 

only those events in which the estimators 𝛾𝑚,𝑖 proved to have power-law behavior in the 

scale-range 1 ≤ 𝑚 ≤ 7 (corresponding to the events in the percentages shown in the first 

column of Table 3.8). Each graph presents the equation of a red dotted line that indicates the 

best fit for the pairs of values. Additionally, the graphs depict two red dashed lines 

corresponding to the 5th and 95th percentiles of the ratios of the pairs of values.  

 

Figure 3.36 Scatterplots of (a) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟐, and (b) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟑 for the South Tohoku site. 

 

Figure 3.37 Scatterplots of (a) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟐, and (b) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟑 for the South Tohoku site. 
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In all the five analysis sites, the pairs of values of γ1,1 - γ1,2, and γ1,1 - γ1,3 show good 

correlation to the best-fit lines. However, due to a larger dispersion, the correlation of the 

pairs of values γ7,1 - γ7,2 and γ7,1 - γ7,3 is noticeably lower. It can be concluded that the 

scale parameter tends to have a mean trend with respect to other directions, although, the 

value of this trend happens to differ from one analysis site to another. This condition suggests 

that the parameter γ𝑚,𝑖 should be somewhat dependent to the spatial structure of rainfall 

intensity. A difference between γ𝑚,1 and γ𝑚,2 and between γ𝑚,1 and γ𝑚,3 is expected, which 

happens to be larger as the magnitude of the parameters become larger and as the resolution 

becomes lower. 

 

Figure 3.38 Scatterplots of (a) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟐, and (b) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟑 for the Hokkaido site. 

 

Figure 3.39 Scatterplots of (a) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟐, and (b) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟑 for the Hokkaido site. 
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Figure 3.40 Scatterplots of (a) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟐, and (b) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟑 for the Kyushu site. 

 

Figure 3.41 Scatterplots of (a) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟐, and (b) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟑 for the Kyushu site. 

 

Figure 3.42 Scatterplots of (a) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟐, and (b) 𝛄𝟏,𝟏 - 𝛄𝟏,𝟑 for the Shikoku site. 
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Figure 3.43 Scatterplots of (a) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟐, and (b) 𝛄𝟕,𝟏 - 𝛄𝟕,𝟑 for the Shikoku site. 

Figures 3.44 to 3.48 show the scatterplots of H1 - H2 and H1 - H3 for all the analysis sites. 

In these Figures are included only those events in which the estimators 𝛾𝑚,𝑖 proved to have 

power-law behavior in the scale-ranges 1 ≤ 𝑚 ≤ 4, 1 ≤ 𝑚 ≤ 5, 1 ≤ 𝑚 ≤ 6, and 1 ≤ 𝑚 ≤

7 (corresponding to the events in the percentages shown in the first four columns of Table 

3.8). Each graph presents the equation of a blue dotted line that indicates the best fit for the 

pairs of values. Additionally, the graphs depict an error term, 𝜀, marked by blue dashed lines 

corresponding to the 5th and 95th percentiles of the differences of the pairs of values. 

Generally, the best-fit lines show bad correlations due to the large differences between the 

pairs of values. It is difficult to affirm that the self-similarity index has some kind of inter-

directional dependency. Nevertheless, the values of the 5th and 95th percentiles given in blue 

numbers in each graph might be helpful to establish a threshold if estimation is needed.  

 

Figure 3.44 Scatterplots of (a) 𝐇𝟏 - 𝐇𝟐, and (b) 𝐇𝟏 - 𝐇𝟑 for the Kanto site. 
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Figure 3.45 Scatterplots of (a) 𝐇𝟏 - 𝐇𝟐, and (b) 𝐇𝟏 - 𝐇𝟑 for the South Tohoku site. 

 

Figure 3.46 Scatterplots of (a) 𝐇𝟏 - 𝐇𝟐, and (b) 𝐇𝟏 - 𝐇𝟑 for the Hokkaido site. 

 

Figure 3.47 Scatterplots of (a) 𝐇𝟏 - 𝐇𝟐, and (b) 𝐇𝟏 - 𝐇𝟑 for the Kyushu site. 
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Figure 3.48 Scatterplots of (a) 𝐇𝟏 - 𝐇𝟐, and (b) 𝐇𝟏 - 𝐇𝟑 for the Shikoku site. 

3.4.7 Summary of the results 

The two-dimensional discrete wavelet transform using a decimated sampling method 

generates three sets of directional fluctuations (wavelets coefficients) that contain 

insufficient information for adequately estimating the stable parameters of the marginal 

distributions. On the other hand, the undecimated method of sampling generates samples of 

equal size at all scales creating over-complete, redundant samples that cause large 

computational effort. A combined method of sampling was used in this study that samples 

wavelet coefficients in an undecimated manner from the discrete approximation of the 

original field at each scale. The sampling considers wavelet coefficients (rainfall 

fluctuations) that correspond to the rain area only (conditional sampling).  

In five analysis sites located in Japan with dimensions 256 km × 256 km , multiscale 

sampling was carried out with the purpose of stochastically characterizing the fluctuation 

processes and the possible scale-to-scale dependence of their statistical properties. The 

empirical pdf of the wavelet coefficients portray a large mass of values around the center 

and heavy tails. The latter feature is a direct consequence of the high frequency of extreme 

variations. These characteristics can be modeled by symmetric 𝛼-stable distributions, which 

are function of a characteristic exponent ( 𝛼 ) and a scale parameter ( 𝛾 ). Because the 

characteristic exponent defines the rate of decay of the tails of the pdf, it has the potential to 

characterize the degree of variability of rainfall fields.   

The properties of the symmetric 𝛼-stable distributions were revised with the purpose of 

designing a method of estimation that is able to overcome the difficulties that come naturally 

in the samples of rainfall fluctuations. Two methods were proposed: the FAM method and 

TSM method. Through Montecarlo simulations, the FAM method showed an accuracy that 

is comparable to the RCF method while employing less computational time. This and the 

other existing methods normally present problems when trying to estimate the parameters of 
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samples that contain large number of zeros at high resolutions. The TSM method, on the 

other hand, proved to have the capacity to overcome this issue.  

The scale-to-scale dependence of the estimated parameters were analyzed. Independently at 

each direction, the estimators of the characteristic exponent 𝛼 showed an almost invariant 

behavior between the 1-km and the 16-km resolutions (reaching the 32-km resolution in 

several cases). At the 32-km and 64-km resolutions, the estimated characteristic exponent 𝛼 

tends to have larger values than the ones estimated at higher resolutions. This situation can 

be caused by the insufficient information of the small samples at these scales or simply 

because self-similarity does not hold up to these scales. The former claim might be more 

probable since the samples come from events that develop at larger atmospheric scales. The 

scale parameter showed a power-law behavior in the scale range between 1-km and 64-km 

for a large portion of the considered events. These two conditions suggest that the processes 

of rainfall fluctuations can be qualified as self-similar in distribution. This finding is one 

of the most remarkable results of this research since it implies that the probability distribution 

of fluctuations at any scale of representation can be estimated if the distribution at a specific 

scale is known. Additionally, the fact that the process used to decompose the rainfall field 

into multiscale fluctuation fields is reversible allows to devise a model for downscaling 

rainfall fields with low resolutions in order to obtain rainfall fields at high resolutions 

(Chapter 4).  

3.4.8 Link between the statistical model and the storm environment 

Even though the samples of wavelet coefficients are obtained using independent orthonormal 

bases, the parameters of the distributions showed some degree of dependence with the 

parameters of the distributions at other directions, as shown in Section 3.4.6. This finding 

may reduce the number of unknown variables, which is important for the construction of 

stochastic disaggregation models. This comparison, additionally, helped drawing the 

following conclusions: 

 Since the characteristic exponent 𝛼̅𝑖 appears to be quite similar in the three directions, 

the degree of variability (characterized by this parameter) does not seem to depend 

on factors that impose directionality in the storm (e.g., orography, wind speed or 

wind direction). It should be highlighted that this observation holds for all types of 

rainfall. 

 The self-similarity index 𝐻𝑖 characterizes the rate with which the magnitude of the 

fluctuations increase from one scale to larger scales. The results shown in Figures 

3.44 to 3.48 depict a considerable difference between the values obtained at different 

directions suggesting that this parameter may be affected by factors that impose 

directionality in the storm. 

 The scale parameter 𝛾1,𝑖 gives an idea of the mean value of the fluctuations since it 

is linearly related to the mean of the absolute value of the fluctuations, as 
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demonstrated in sections 3.2.5.4 and 3.2.5.5. The values of these parameters appear 

to be somewhat related to the mean intensity of the conditional rainfall. This assertion, 

though, may not always be true. Naturally, extreme values of intensity in an event 

with a high degree of variability would cause large values of fluctuations. However, 

if the degree of spatial variability is low, large values of intensity don’t necessary 

cause large values of fluctuations. The results shown in Figures 3.34 to 3.43 depict a 

trend between the scale parameters of different directions. This trend, however, is 

different from one analysis site to another. This condition suggests that the magnitude 

of the scale parameter is influenced by factors that impose directionality in the storm, 

that at the same time are caused by local conditions, i.e., orography. 

From the observations made above, it can be concluded that the characteristic exponent and 

the self-similarity index can be dependent on the degree of variability of the storm. The 

following analysis is aimed to support or discard this claim. 

 

 

Figure 3.49 Time evolution of parameters 𝜶̿ and 𝑯̿ (1) 

The consecutive events correspond to a storm that happened on the Kanto analysis site on 

December 5th, 2009. 
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Let 𝛼̿ and 𝐻̿ be the arithmetic mean of the values correspondent to the three directions for 

the characteristic exponent and the self-similarity index, respectively. Figures 3.49, 3.50 and 

3.51 show the time-evolution of 𝛼̿ and 𝐻̿ for three storms that happened over the Kanto 

analysis site. 

 

 

Figure 3.50 Time evolution of parameters 𝜶̿ and 𝑯̿ (2) 

The consecutive events correspond to a storm that happened on the Kanto analysis site 

on December 11th, 2009. 
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Figure 3.51 Time evolution of parameters 𝜶̿ and 𝑯̿ (3) 

The consecutive events correspond to a storm that happened on the Kanto analysis site 

on July 27th and July 28th, 2009. 
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The observation of the time-evolution of parameter 𝐻̿ does not show a direct relationship 

between the value of this parameter and the appearance of sudden changes of intensity 

(clustering of rainfall intensity or formation of bands). One reason for this condition can be 

the fact that the values in the three directions can be quite different. Therefore, even though 

it would seem logical that this parameter is related to the degree of variability, its value is 

also influenced by factors that impose directionality in the storm, as mentioned before. 

The storms shown in Figures 3.49 and 3.50 depict initially events with mild spatial changes 

of intensity, which yield values of 𝛼̿ greater than 1.4. However, the values of 𝛼̿ tend to 

decrease below 1.4 when clusters or bands of high intensity form, producing sudden changes 

of intensity in short distances (extreme values of fluctuations). The storm shown in Figure 

3.51 reveals the formation and rapid dissipation of multiple rainfall intensity clusters inside 

the analysis site. In this situation, the time-evolution of parameter 𝛼̿ depicts values always 

below 1.4. It can be concluded that the higher the intensity of the appearing clusters (bands), 

the smaller the value of 𝛼̿. The hypothesis that the characteristic exponent 𝜶 is related 

to the degree of variability is supported by this analysis. 

The estimation of the characteristic exponent 𝛼 of the 𝛼-stable distribution of multiscale 

fluctuations for a given rainfall event, therefore, should be done by making some physical 

quantification of the degree of variability. As it was pointed out in Section 3.4.1, the two 

types of rainfall are generated by either stratiform clouds or clouds formed by convective 

activity. Stratiform rainfall is a consequence of the slow ascent of unsaturated air, it is 

widespread, shows steady intensity (mild spatial fluctuations) and has long duration. The 

trait that differentiates convective formation of clouds from the formation of stratiform 

clouds is atmospheric instability. As a consequence, convective rainfall has short duration, 

limited extent, and may have much higher intensity than stratiform rainfall. Intuitively, it 

can be said that values of 𝛼 greater than 1.3 or 1.4 correspond to stratiform rainfall, while 

lower values of 𝛼 are caused by convective activity. This conclusion leads to believe that 

measurements of the instability of the environment during the formation and precipitation of 

the rainfall event could be linked to the magnitude of parameter 𝛼.  

Physical models (e.g., general circulation models, regional climate models) allow to handle 

atmospheric variables like temperature and relative humidity. Knowing these variables at 

several pressure levels allows to estimate parameters that give an idea of the atmospheric 

instability that causes the ascent of moist air, leading eventually to convective rainfall. 

Convective Available Potential Energy (CAPE) is a measure of atmospheric instability 

(stability) based on the potential energy that is transformed into kinetic energy and 

eventually develops into cumulus clouds. This energy is computed by integrating the 

difference of virtual temperature of the idealized rising air parcel and the surrounding 

atmosphere between the level of free convection and the level of neutral buoyancy. Larger 

values of CAPE would imply a more extreme rainfall event in terms of sudden changes of 

intensity both in spatial and temporal scales. Consequently, rainfall intensity (rainfall 

extremes) can be roughly related in a log-linear manner to CAPE (Lepore et al., 2015). 
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However, large values of CAPE are not necessarily always caused by convective activity. 

The ascent of a moist air parcel may be inhibited by a stable boundary layer, in which case 

another parameter, called Convective Inhibition (CIN), describes the energy needed by the 

rising parcel to overcome the boundary layer, and eventually reach the level of free 

convection. Alfieri et al. (2008) proposed a way to filter the large values of CAPE using a 

threshold of CIN in order to differentiate convective and stratiform rainfall. In that study, 

convective events are identified if CAPE ≥ 400 kJ/kg and CIN≥ −5 kJ/kg. Thus, future 

work related to the stochastic multiscale behavior of rainfall fluctuations using 𝛼-stable 

distributions could analyze the possible relationship between the characteristic exponent 𝛼 

and the classification-method by Alfieri et al. (2008) using CAPE and CIN. Being able to 

estimate this key parameter from physical models may be quite beneficial for the stochastic 

disaggregation of rainfall field using schemes based on discrete wavelet transforms. 

Another way to differentiate stratiform and convective rainfall can be accomplished by 

analyzing the measurements from the multiple sensors on board of the Tropical Rainfall 

Measuring Mission (TRMM) satellite. This satellite carries the Precipitation Radar (PR), 

which provides detailed vertical distribution precipitation-sized particles inside systems, the 

TRMM Microwave Imager (TMI), which provides information on the vertical integrated ice 

and water path, the Visible and Infrared Scanner (VIRS), which provides information on 

cloud-top temperature and reflectance, and the Lightning Imaging Sensor (LIS), which 

estimates lightning-flash rates. Liu et al. (2008) devised an event-based methodology to 

define Precipitation Features (PFs) by grouping contiguous pixels with the PR 2A25 near-

surface rain greater than 0 mm/hr, and classifying according to fixed thresholds set for  

different products (versions, levels of processing) of the other aforementioned sensors. This 

analysis was applied to TRMM measurements, which started in 1998, and the results are 

stored as a database administrated by the University of Utah. The identification of PFs 

through this methodology allows to define area coverage, volumetric rain rate, fraction of 

raining area, fraction of convective rain area, fraction of convective rain volume, and 

maximum height of the feature. This kind of information lead to the analysis of rain types 

inside different precipitation systems at different atmospheric scales located in different 

longitudes and latitudes. Examples include the studies of Liu and Zipser (2009), Jiang and 

Zipser (2010), Liu (2011), Thatcher et al. (2012), Yokoyama and Takayabu (2012), and 

Zhou et al. (2013), among others. In this manner, being able to identify the type of 

precipitation system and the consequent type of rainfall (type of convective formations or 

stratiform rainfall) from satellite observations could be used to estimate the characteristic 

exponent 𝛼 if a fair relationship between this parameter and characteristics of the PFs (e.g., 

stratiform rain ratio, SRR) can be found. 



 

80 
 

4. STATISTICAL SPATIAL DISAGGREGATION OF 

RAINFALL 

4.1  BACKGROUND 

Different kinds of numerical schemes have been proposed for the disaggregation of low-

resolution datasets into realistic high-resolution rainfall fields, which should be able to 

preserve the large-scale components of the storm while at the same time depict the small-

scale details and distinctive spatial structure of rainfall. Examples include models based on 

inverse wavelet transforms (Perica and Foufoula-Georgiou, 1996b), multifractal processes 

(Menabde et al., 1997, 1999; Deidda, 2000), autoregressive processes (Guillot and Lebel, 

1999; Bouchaud et al., 2000; Rebora et al., 2006), fractal interpolations (Tao and Barros, 

2010; Nogueira and Barros, 2016), exponential Langevin-type models (Sapozhnikov and 

Foufoula-Georgiou, 2007), dictionary-learning for sparse representation using high-

resolution rainfall patches (Ebtehaj et al., 2012) and variational downscaling via ℓ1-norm 

regularization (Foufoula-Georgiou et al., 2014). The development of such schemes is 

triggered by the need to reduce the uncertainty in hydro-meteorological modeling that is 

typically caused by low resolution data and/or small scale variations of the rainfall fields, as 

reported in the studies of Smith et al. (2004), Schuurmans and Bierkens (2007), Younger et 

al. (2009), Arnaud et al. (2011), Liu et al. (2012), Song et al. (2015), and Weijian et al. 

(2015), among others. 

Ferraris et al. (2003) compared three types of stochastic models based on multifractal 

processes, autoregressive processes, and point processes. The aim was to compare the ability 

of each of those models to reproduce various statistical properties of the rainfall fields. The 

results of that study showed that even though all methods yielded similar acceptable 

statistical results, they all had problems to reproduce specific spatial characteristics at high-

resolutions. Since then, the developing of stochastic downscaling schemes has focused on 

enhancing the ability to reproduce the particular small-scale variability of rainfall while 

maintaining a small number of parameters (Nogueira and Barros et al., 2016, present a 

review on the developments of the last 15 years in statistical downscaling).  

Another challenging issue that comes when trying to reproduce rainfall fields is 

intermittency. Because it is known that the presence of a large number of zeroes influences 

the scaling behavior of the parameters/generators (Harris et al., 1996; Verrier et al., 2010), 

most studies showing the performance of downscaling schemes focused on events with 

limited non-zero areas. In this study, however, we have demonstrated that the analysis of the 

fractality of rainfall fluctuations is not affected by the positive probability of the rainfall field 

being zero as it focuses on variations of intensity instead of rainfall intensity itself. Also, 

even though the presence of a large number of zeroes is a problem when trying to 

characterize the scaling behavior (Ebtehaj and Foufoula-Georgiou, 2011), the TSM method 

introduced in this study proved to successfully overcome this issue.  
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It was highlighted by Tao and Barros (2010) that one of the aims of statistical downscaling 

of rainfall fields should be devising a scheme without case-specific constraints and/or 

calibration requirements. Nevertheless, there has been an on-going discussion on whether 

the parameters of these schemes can be universal or dependent on physical quantities of the 

storm environment (Over and Gupta, 1994; Schertzer and Lovejoy, 2007). Undoubtedly, the 

marked differences in the results of the analyses of different types of rainfall with different 

stochastic models encourages the avid interest of linking the stochastic parameters to 

underlying atmospheric properties like atmospheric stability, wind speed and orography 

(Perica and Foufoula-Georgiou, 1996b; Nogueira et al., 2013; Nykanen, 2008). In this 

chapter, we intend to test the applicability of using the characteristic exponent of 𝛼-stable 

distributions to characterize the degree of variability of rainfall fluctuations. The approach 

is to construct an algorithm, which disaggregates low-resolution rainfall data, based on the 

inverse operation that was used to extract rainfall fluctuations at multiple scales. In this study, 

the high-resolution rainfall fields were decomposed into low-resolution fields (via a low-

pass filter) and overcomplete fluctuation-fields (via a high-pass filter), which is the two-

dimensional multiscale Discrete Wavelet Transform (DWT). 

In a two-dimensional framework, the rainfall fluctuations, expressed by the wavelet 

coefficients, are separated in three directional sets that capture the variations of the field in 

the east-west direction, the north-west direction and simultaneously in both directions 

(diagonal direction). At a certain scale 𝑚, the combination of the low-resolution field 𝑋̅𝑚 

and the three directional sets of wavelet coefficients 𝑋′𝑚,𝑖 can be combined to reconstruct 

the field at scale 𝑚 − 1. This operation is known as the Inverse Discrete Wavelet Transform 

(IDWT), as shown in Figure 4.1 (Mallat, 2009). The reconstruction can also be expressed as 

the sum of four Kronecker products: 

𝑋̅𝑚−1 = 𝑋̅𝑚 ⊗ [
1 1
1 1

] + 𝑋′
𝑚,1 ⊗ [

1 −1
1 −1

] + 𝑋′
𝑚,2 ⊗ [

1 1
−1 −1

] + 𝑋′
𝑚,3 ⊗ [

1 −1
−1 1

]  

  (4.1) 

In Eq. 4.1, the elements in the two-dimensional vectors 𝑋̅𝑚 and 𝑋′
𝑚,i are increased by a 

factor of 2 × 2 = 4, and then, added to yield the field 𝑋̅𝑚 at a higher resolution.  

The algorithm of spatial disaggregation of rainfall detailed in this chapter uses iteratively the 

IDWT for obtaining rainfall fields at high resolutions. Even though the exact values of the 

directional sets 𝑋′𝑚,𝑖 are not known, in the previous chapter the statistical characterization 

of these sets showed that symmetric 𝛼 -stable distributions are a good fit. A multiscale 

analysis of the distributions determined that the characteristic exponents ( 𝛼𝑖)  show a 

somewhat steadiness within a defined scale-range. Additionally, the same analysis revealed 

that in each of the three directions the scale parameter (𝛾𝑚,𝑖) obeys a power-law behavior 

defined by a single parameter known as the self-similarity index (𝐻𝑖). This kind of scale-to-

scale dependence, known as self-similarity, implies that if the stable-parameters 
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{𝛼𝑖, 𝛾1,𝑖, 𝐻𝑖}
𝑖=1,2,3

 are known, the distribution of local fluctuations can be determined at all 

scales for which the power-law behavior holds. The following sections detail not only the 

structure of the disaggregation algorithm, but also the way in which the values of the 

distribution of wavelet coefficients are spatially distributed in order to reproduce the 

characteristic spatial features of the rainfall field. 

 

Figure 4.1 Filter bank for the IDWT 

Reconstruction of 𝑋̅𝑚−1 by inserting zeros between the rows and columns of 𝑋̅𝑚 and 

𝑋′𝑚,𝑖 and convolving the outputs with the one-dimensional scaling function 𝜙 and the 

wavelet transform 𝜓. 

4.2 MAIN STRUCTURE OF THE ALGORITHM 

The disaggregation algorithm has as main inputs a low-resolution rainfall-intensity (LR) 

field, with a resolution correspondent to the scale 𝑚𝑖𝑛 , and the stable parameters 
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{𝛼𝑖, 𝛾1,𝑖, 𝐻𝑖}
𝑖=1,2,3

. The flow chart of the main structure of the algorithm is presented in 

Figure 4.2. 

 

Figure 4.2 Main structure of the disaggregation algorithm  

The algorithm checks initially if the LR field is biased or not. For this purpose, a subroutine 

(SR1) is used to estimate the mean rainfall intensity of the analysis site at the lowest 

resolution of representation. A second subroutine (SR2) is used to spatially distribute the 

rainfall fluctuations 𝑋′𝑚,𝑖  at each scale before applying the IDWT. SR1 and SR2 are 

separately detailed in the next sections. 

Because the typical resolution used in hydrological models is 1 km × 1 km , the final 

disaggregation scale 𝑚 = 0 is the correspondent to that resolution. This assumption will also 

allow to verify the algorithm by comparing the algorithm’s output to Radar-AMeDAS data.  
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4.2.1 Subroutine SR1 

Since the LR field is usually an estimated product of rainfall intensity, it may be associated 

to some degree of bias. Consequently, it is necessary to devise a methodology for correction 

of that bias. Two situations are contemplated: 

1. A previous bias-correction scheme for the LR field is not available. 

2. A statistical analysis of the bias is available for LR field’s historical data. 

It is necessary to clarify that the bias correction scheme is not applied to each cell of the 

original LR field at scale 𝑚𝑖𝑛. Instead, the mean rainfall intensity 𝑅̿ of the analysis site is 

estimated/corrected. Note that if the dimensions of the analysis site are 𝐿 × 𝐿,  

  𝑅̿ = (4𝑚/𝐿2) ∑ ∑ 𝑋̅𝑚(𝑛1, 𝑛2)𝐿/2𝑚

𝑛2=0
𝐿/2𝑚

𝑛1=0   (4.2) 

for all possible scales 𝑚 of representation. Therefore, 𝑅̿ should be equal at all scales. 

4.2.1.1 Case 1: A previous bias-correction scheme is not available 

Ebert et al. (2007) presented an analysis of accuracy (probability of detection and false alarm 

ratio) and bias assessment of several rainfall datasets derived from satellite-borne sensors 

and numerical weather prediction models. In that study, the rainfall products were compared 

to local weather radars and dense rain gauge networks in the U.S.A, North-Western Europe 

and Australia. Numerous studies compare satellite-derived products to local rain gauge 

networks and the mathematical solutions for spatially distributing the bias are quite diverse, 

some of which rely on geographic and orographic characteristics. Nevertheless, this section 

intends to assume that no information about the bias of the LR field is available, and proposes 

to estimate 𝑅̿ as a function of one rain gauge measurement, its relative position in the storm 

and the degree of variability expressed by the characteristic exponent of the distribution of 

rainfall fluctuations.
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Figure 4.3 Flowchart for the estimation of 𝑹̿ (SR1 case 1) 

This flowchart uses as input the rainfall intensity measurement (𝒓𝑹𝑮) of one rain gauge. 



 

86 
 

SR1 case 1 starts by assuming that the rainfall intensity measurement, 𝑟𝑅𝐺, of one rain gauge 

station located inside the analysis site is equal to the intensity of the cell containing it at a 

scale 𝑚 = −1, which corresponds to a 0.5-km resolution. This assumption is supported by 

the fact that the spatial variation of intensity within a 0.5 km × 0.5 km area (cell) may be 

negligible. Utilizing the expressions in Eq. 2.17, if the values of 𝑋′0,1, 𝑋′0,2, and 𝑋′0,3 are 

known, and if one of the four values of 𝑋̅−1 that form a 2 × 2 sub-grid at scale 𝑚 = −1 is 

assumed to be equal to 𝑟𝑅𝐺, then, the other three values of 𝑋̅−1 can be obtained. Subsequently, 

the four values of intensity 𝑋̅−1 are averaged as in Eq. 2.16 to obtain the rainfall intensity 𝑋̅0 

at scale 𝑚 = 0. The cell containing the computed value of 𝑋̅0 is part of a 2 × 2 sub-grid at 

scale 𝑚 = 0, and the unknown values of the other three cells can be estimated if the values 

of 𝑋′1,1, 𝑋′1,2, and 𝑋′1,3 are known (Eq. 2.17). This procedure can be repeated iteratively 

until reaching the largest scale, which for the size of the analysis sites is the scale 𝑚 = 8. 

The flowchart of SR1 for the estimation of 𝑅̿  is shown in Figure 4.3. An additional 

subroutine (SR3) is needed for verifying the correct spatial distribution of the four estimated 

values of the cells in the 2 × 2 subgrids. 

A rain gauge station of the AMeDAS network was selected in each of the analysis sites. 

Then, between 2006 and 2009, all the events in which the rain gauge stations measured an 

hourly-accumulated intensity larger than a predetermined threshold were selected for 

carrying out the estimation of 𝑅̿ according to the process detailed above. The name of the 

rain gauge station, the value of threshold and the number of selected events are shown in 

Table 4.1. By comparing the estimated values of 𝑅̿ and the actual values aggregated from 

the Radar-AMeDAS data, it was found that in a considerable number of events the values of 

𝑅̿ were overestimated. For this reason, for all scales 𝑚 < 𝑚𝑚𝑖𝑛 it was considered necessary 

to apply a correction factor (𝜆) that was found to be function of the relative position of the 

rain gauge in terms of intensity (𝑠𝐿𝑅), the magnitude of the rain gauge measurement (𝑟𝑅𝐺), 

and the mean of the three characteristic exponents of the marginal 𝛼-stable distributions of 

directional rainfall fluctuations, simply computed as 𝛼̿ = (1/3)[𝛼1 + 𝛼2 + 𝛼3] . The 

correction factor 𝜆 has to be applied applied while computing the average of the 2 × 2 

subgrid as shown in Figure 4.3. 

Table 4.1 Number of events selected for estimating 𝑹̿  

Site Rain Gauge Station Threshold (mm/hr) Sample size 

Kanto Maebashi 4 347 

South Tohoku Niigata 4 379 

Hokkaido Sapporo 4 201 

Kyushu Miyazaki 8 552 

Shikoku Kochi 7 357 

The values of 𝜆 can be obtained from a look-up table presented in Table 4.2.  
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Table 4.2 Values of 𝝀 as a function of 𝒔𝑳𝑹, 𝒓𝑹𝑮, and 𝜶̿ 

𝑠𝐿𝑅 ≤ 0.27 

 𝑟𝑅𝐺 < 5 5 ≤ 𝑟𝑅𝐺 < 15 𝑟𝑅𝐺 ≥ 15 

𝛼̿ < 1.22 0.88 0.88 0.88 

1.22 ≤ 𝛼̿ < 1.50 1.00 0.74 0.68 

1.50 ≤ 𝛼̿ < 1.68 0.87 0.87 0.76 

𝛼̿ ≥ 1.68 1.00 1.00 1.00 

0.27 < 𝑠𝐿𝑅 ≤ 0.60 

 𝑟𝑅𝐺 < 12 12 ≤ 𝑟𝑅𝐺 < 15 𝑟𝑅𝐺 ≥ 15 

𝛼̿ < 1.30 0.84 0.84 0.82 

1.30 ≤ 𝛼̿ < 1.55 0.95 0.95 0.74 

1.55 ≤ 𝛼̿ < 1.68 0.92 0.92 0.80 

𝛼̿ ≥ 1.68 0.95 0.88 0.88 

0.60 < 𝑠𝐿𝑅 ≤ 0.90    

 𝑟𝑅𝐺 < 15 15 ≤ 𝑟𝑅𝐺 < 21 𝑟𝑅𝐺 ≥ 21 

𝛼̿ < 1.00 0.62 0.62 0.62 

1.00 ≤ 𝛼̿ < 1.20 1.00 1.00 0.80 

1.20 ≤ 𝛼̿ < 1.40 0.88 0.88 0.88 

1.40 ≤ 𝛼̿ < 1.68 0.89 0.89 0.89 

𝛼̿ ≥ 1.68 0.94 0.94 0.94 

𝑠𝐿𝑅 > 0.90    

 𝑟𝑅𝐺 < 15 15 ≤ 𝑟𝑅𝐺 < 30 𝑟𝑅𝐺 ≥ 30 

𝛼̿ < 1.20 0.82 0.56 0.56 

1.20 ≤ 𝛼̿ < 1.40 0.84 0.84 0.84 

1.40 ≤ 𝛼̿ < 1.68 0.94 0.94 0.80 

𝛼̿ ≥ 1.68 0.96 0.88 0.88 

 

Figure 4.4 Radar-AMeDAS data for the event KAN_2009.07.24.03 

(a) Original scale. (b) LR field computed from the original data after a transformation 

(aggregation) into scale 𝑚 = 4. The green star represents the location of the Maebashi 

station. The largest value of the LR field is equal to 19.7 mm/hr, and the value of the 

cell in which the Maebashi station is located is equal to 3.2, yielding a value of 𝑠𝐿𝑅 =

0.162. 

For each event, the parameter 𝑠𝐿𝑅 can be computed by dividing the rainfall intensity of the 

cell of the LR field that contains the rain gauge station by the largest value of intensity 

comprised in the LR field data. For example, consider the Radar-AMeDAS dataset of a 

particular event aggregated to the scale 𝑚 = 4 (16-km resolution) to be the LR field. Figures 
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4.4 and 4.5 present respectively the values of 𝑠𝐿𝑅  for the KAN_2009.07.24.03 and 

KAN_2009.03.06.13 events considering the relative location of the Maebashi rain gauge 

station. 

 

Figure 4.5 Radar-AMeDAS data for the event KAN_2009.03.06.13 

(a) Original scale.  (b) LR field computed from the original data after a transformation 

(aggregation) into scale 𝑚 = 4. The green star represents the location of the Maebashi 

station. The largest value of the LR field is equal to 9.3 mm/hr, and the value of the cell 

in which the Maebashi station is located is equal to 6.9, yielding a value of 𝑠𝐿𝑅 = 0.742. 

4.2.1.2 Case 2: A previous bias-correction scheme is available 

The estimation of 𝑅̿ might be more accurate if a previous stochastic analysis of the LR field 

data was undertaken. In this study, we consider the use of rainfall estimates from the Tropical 

Rainfall Measuring Mission (TRMM) satellite. The TRMM project is a joint project between 

the National Aeronautics and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA), which provides different products through a combination of 

different satellites. The TRMM 3B42 real time product (RT), for example, uses the 

microwave rainfall estimates from the TRMM Microwave Imager (TMI) adjusted by the 

cloud vertical structure obtained from the Precipitation Radar (PR), as well as 

geosynchronous infrared data. Another product, the TRMM 3B42 research product (RP), 

includes a monthly rain gauge analysis which is used to calibrate the real time product. The 

TRMM 3B42 RP version 7.0 is used throughout this study, which are 3-hourly estimates of 

rainfall intensity with a 0.25° × 0.25° resolution and a latitude coverage of 50°S - 50°N. 

For more details about the sensors and the algorithm of these rainfall products, refer to 

Huffman (2007, 2010). 

The mean rainfall intensity in each analysis site was computed for the TRMM product and 

the Radar-AMeDAS datasets. Let us denote this values as 𝑅̿TR and 𝑅̿RA, respectively. In 

order to make a fair comparison of both values, a clarification of the Radar-AMeDAS data 

is needed. For example, for a value of 𝑅̿TR  computed from the TRMM product 
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correspondent to 2009 December 2nd 3:00 GTM, the value of 𝑅̿RA is computed from the 

Radar-AMeDAS data correspondent to 2009 December 2nd 3:30 GTM, which comprises 

hourly accumulated rainfall intensity between 2:30 and 3:30 GTM. 

The values of 𝑅̿TR and 𝑅̿RA were compared with the purpose of observing the tendencies for 

overestimation or underestimation. The bias of 𝑅̿TR with respect to 𝑅̿RA is defined as  

  𝑏𝑇𝑅 = 𝑅̿TR − 𝑅̿RA,  (4.3) 

where positive values of 𝑏𝑇𝑅  imply overestimation of the TRMM product and negative 

values imply underestimation. The determination of bias was carried out in the five analysis 

sites between 2006 and 2009 for all those events in which the conditional mean rainfall 

intensity (mean rainfall intensity of the rain area), computed from the Radar-AMeDAS data, 

was larger than 1 mm/hr. The results were separated in intervals of the values of 𝑅̿TR (Figure 

4.6). The average value of 𝑏𝑇𝑅  in each interval is denoted by 𝑏̿𝑇𝑅 . For example, for the 

interval 0.3 ≤ 𝑅̿TR < 0.5, the value of 𝑏̿𝑇𝑅 computed for the ensemble is equal to −0.35. 

Despite the fact that this number implies a tendency for underestimation, there is a number 

of events that returned positive values of 𝑏𝑇𝑅 in the interval 0.3 ≤ 𝑅̿TR < 0.5. Therefore, in 

addition to the values of 𝑏̿𝑇𝑅 , Figure 4.6 shows the probability of underestimation 

(𝑃(𝑏𝑇𝑅 < 0))  for each interval of 𝑅̿TR.  

Generally, it was observed that regardless of the type of rainfall or location, the average 

tendency of the TRMM product is to underestimate if 𝑅̿TR < 1.8; and if 𝑅̿TR ≥ 1.8, the 

average tendency of the TRMM product is to overestimate. 

With the purpose of establishing. Therefore, denoting the standard deviation by  

SR1 case 2 starts by estimating 𝑅̿ using the SR1 case 1 procedure without applying the 

correction factor 𝜆 . Let us denote this value by 𝑅̿𝐶1 . Other parameters needed in this 

subroutine, which were already established in the bias assessment of TRMM products 

detailed above, are the average bias for each interval of 𝑅̿TR (denoted 𝑏𝑇𝑅), and the standard 

deviation for each interval of 𝑅̿TR  (denoted 𝜎TR ). Then, the estimation of 𝑅̿  is done 

according to the flowchart presented in Figure 4.7. The value of 𝑅̿TR  returns a value of 

𝑃(𝑏𝑇𝑅 < 0), a value of 𝑏𝑇𝑅 and value of 𝜎𝑇𝑅. Depending on the value of 𝑃(𝑏𝑇𝑅 < 0), 𝑅̿𝐶1 

is compared with the bias-corrected value of 𝑅̿TR  plus/minus the standard deviation if 

applicable. For better comprehension, we give the following examples: 

 If 𝑃(𝑏𝑇𝑅 < 0) ≥ 0.7, the minimum value that 𝑅̿ can take is the largest value between  

𝑅̿C1  and the bias-corrected 𝑅̿TR , and the maximum value that 𝑅̿  can take is the 

smallest between  𝑅̿C1 and the bias-corrected 𝑅̿TR plus a tolerance value equal to 𝜎TR. 
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The value of 𝜎TR is not subtracted from the bias-corrected 𝑅̿TR for establishing the 

minimum because of the large probability of underestimation. 

 If 𝑃(𝑏𝑇𝑅 < 0) < 0.3, the minimum value that 𝑅̿ can take is the largest value between  

𝑅̿C1  and the bias-corrected 𝑅̿TR  minus a tolerance value equal to 𝜎TR , and the 

maximum value that 𝑅̿ can take is the smallest between  𝑅̿C1 and the bias-corrected 

𝑅̿TR. The value of 𝜎TR is not added to the bias-corrected 𝑅̿TR for establishing the 

maximum because of the large probability of overestimation. 

 

Figure 4.6 Analysis of TMM bias 

Vertical left axis: Values of 𝒃̿𝑻𝑹 (colored dashed lines for each analysis site, and black 

line for the ensemble) corresponding to intervals of 𝑹̿𝐓𝐑. Vertical right axis: Probability 

of underestimation of the TRMM product. 

4.2.2 Subroutine SR2 

SR2 consists in the generation of the fluctuation fields at each scale during the disaggregation 

process. The main input of this subroutine are the stable parameters that define the marginal 

distributions of directional fluctuations. The flowchart of SR2 is detailed in Figure 4.8. Using 

the description of self-similarity, the value of the scale parameter corresponding to the scale 

𝑚 for which the disaggregation is being made (𝛾𝑚,𝑖) can be calculated using 𝛾1,𝑖 and 𝐻𝑖 (Eq. 

3.23). Then, by using the values of 𝛼𝑖 and 𝛾𝑚,𝑖 in the CMS algorithm, random samples from 

a population with 𝑆𝛼𝑆(𝛼𝑖, 0, 𝛾𝑚,𝑖, 0)  distribution are generated for each direction 𝑖 . 

Subsequently, for all cells of the rainfall field at scale 𝑚 (i.e., for all combinations of the pair 
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of location indexes 𝑛′1, 𝑛′2), values of |𝑋′𝑚,𝑖| are randomly selected from the samples (in 

absolute value). 

 

Figure 4.7 Flowchart for the estimation of 𝑹̿ (SR1 case 2) 

The selection of the random samples, however, is within a defined interval that depends on 

the relative position of the cell in terms of intensity ( 𝑠𝑚 ), the scale 𝑚  and 𝛼𝑖 . This 

dependence was found after an analysis of the relationship between 𝑋̅𝑚  and the 

corresponding values of |𝑋′𝑚,𝑖|. For an event that occurred at the Kanto site, Figure 4.9 

shows the representation of the rainfall field at scale 𝑚 = 1 (𝑋̅1) computed from the Radar-

AMeDAS data. The same figure shows the corresponding directional sets of wavelet 

coefficients 𝑋′1,𝑖  (fluctuation fields). The three-dimensional representation of the rainfall 

field 𝑋̅1 shows high-intensity values in dark blue and low-intensity values in light blue. The 

three-dimensional representations of the fluctuation fields show the absolute values of 

wavelet coefficients in the east-west direction ( 𝑖 = 1)  in shades of red, the wavelet 

coefficients in the north-south direction ( 𝑖 = 2)  in shades of green, and the wavelet 

coefficients in the diagonal direction (𝑖 = 3) in shades of purple. Dark colors denote large 

absolute values of wavelet coefficients, and light colors denote values of wavelet coefficients 

approximating zero. Because areas depicting high-intensity rainfall may cause sudden 

variations of intensity, values of high-intensity in the rainfall field may share the same 

location as large absolute values of wavelet coefficients in the fluctuation fields. 

Given the Radar-AMeDAS dataset of some event, the rainfall field is decomposed at all 

possible scales of representation into the sets 𝑋̅𝑚 and 𝑋′𝑚,𝑖. Then, for each value of intensity 
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(cell) of the representation of the rainfall field at scale 𝑚 (𝑋̅𝑚(𝑛′
1, 𝑛′

2)), the corresponding 

relative position in terms of intensity ca be computed as 

 

Figure 4.8 Flowchart for the generation of directional fluctuation fields (SR2 subroutine)  

 

Figure 4.9 Example of a rainfall field represented at scale 𝒎 = 𝟏 and the corresponding 

directional fluctuation fields.  

The dark shades in the fluctuation fields represent large absolute values of wavelet 

coefficients. 
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   𝑠𝑚(𝑛′
1, 𝑛′

2) = 𝑋̅𝑚(𝑛′
1, 𝑛′

2)/max (𝑋̅𝑚).  (4.4) 

Separately, the parameters of the 𝛼 -stable distributions {𝛼𝑖, 𝛾𝑚,𝑖}𝑖=1,2,3
 of the wavelet 

coefficients comprised in the fluctuation fields 𝑋′𝑚,𝑖 can be estimated at all possible scales 

of representation (1 ≤ 𝑚 ≤ 7) using the TSM estimation-method. The cdf of the absolute 

values of the 𝛼 -stable distribution ( 𝐹𝑅𝑚,𝑖
) evaluated at each |𝑋′𝑚,𝑖(𝑛′

1, 𝑛′
2)|  can be 

computed using the integral-based algorithms of Nolan (1997), which are function of the 

corresponding 𝛼𝑖  and 𝛾𝑚,𝑖 . The values of 𝑠𝑚(𝑛′
1, 𝑛′

2)  and the correspondent values of 

𝐹𝑅𝑚,𝑖
|𝑋′𝑚,𝑖(𝑛′

1, 𝑛′
2)|  can be plotted for all values of 𝑛′

1  and 𝑛′
2  with the purpose of 

observing the kind of relationship existing between the rainfall field 𝑋̅𝑚 and the fluctuation 

fields 𝑋′𝑚,𝑖.  

Figures 4.10, 4.11 and 4.12 show respectively examples of the procedure explained above 

for events in which 𝛼𝑖  was estimated equal to 1.0, 1.3 and 1.5 in some direction 𝑖 . The 

figures show that for a given value of 𝑠𝑚  the correspondent absolute value of rainfall 

fluctuation |𝑋′𝑚,𝑖| is within a defined interval of the pdf. For example, for 𝑠𝑚 = 0.01, the 

lower limit of the pdf is equal to 0 at all scales for all values of 𝛼. For the same value of 

𝑠𝑚 = 0.01, the upper limit approximates 1.0 as 𝛼 becomes smaller, and approximates 0.0 as 

𝑚 becomes larger. The lower limit appears to be 0.0 for almost all cases, yet, it shows values 

larger than 0.0 for 𝛼 approximating 1.0. 

The lower and upper limit of the pdf of the absolute value of an 𝛼-stable distribution, from 

which the rainfall fluctuations |𝑋′𝑚,𝑖| can be selected, have been documented in a lookup 

table for 1 ≤ 𝑚 ≤ 6, 0.9 ≤ 𝛼 ≤ 1.70, and 1.0 × 10−4 ≤ 𝑠𝑚 ≤ 1.0. For events with 𝛼 <

0.9, the limits correspondent to 𝛼 = 0.9 are used. For events with 𝛼 > 1.70, the limits 

correspondent to 𝛼 = 1.7 are used. Therefore, in the flowchart of SR2 shown in Figure 4.8, 

this lookup table is used to define the interval of selection. 
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Figure 4.10 Relationship between rainfall intensity and fluctuations (1) 

Plot of the values of 𝐹𝑅𝑚,𝑖|𝑋′𝑚,𝑖(𝑛′
1, 𝑛′

2)|  (horizontal axis) for the corresponding 

values of 𝑠𝑚(𝑛′
1, 𝑛′

2) (vertical axis). The data in this figure was computed from the 

event KAN_2009.08.07.07 in the north-south direction (𝑖 = 2), for which the estimated 

value of 𝛼2 = 1.007.  
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Figure 4.11 Relationship between rainfall intensity and fluctuations (2) 

Figure 4.11 Plot of the values of 𝐹𝑅𝑚,𝑖|𝑋′𝑚,𝑖(𝑛′
1, 𝑛′

2)|  (horizontal axis) for the 

corresponding values of 𝑠𝑚(𝑛′
1, 𝑛′

2)  (vertical axis). The data in this figure was 

computed from the event KAN_2009.08.30.23 in the east-west direction (𝑖 = 1), for 

which the estimated value of 𝛼2 = 1.299. 
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Figure 4.12 Relationship between rainfall intensity and fluctuations (3) 

Figure 4.12 Plot of the values of 𝐹𝑅𝑚,𝑖|𝑋′𝑚,𝑖(𝑛′
1, 𝑛′

2)|  (horizontal axis) for the 

corresponding values of 𝑠𝑚(𝑛′
1, 𝑛′

2)  (vertical axis). The data in this figure was 

computed from the event KAN_2008.06.21.23 in the east-west direction (𝑖 = 1), for 

which the estimated value of 𝛼1 = 1.500.  
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4.2.3 Subroutine SR3 

In the flowchart of SR1 case 1 (Figure 4.3) and in the flowchart of SR2 (Figure 4.8) the SR3 

is used to verify the “most appropriate” random selection of values of wavelet coefficients 

( 𝑋′𝑚,𝑖 ). The appropriateness of the selection is based on a verification of the spatial 

configuration of the 2 × 2 sub-grid of values 𝑋̅𝑚−1 obtained from various combinations of 

three randomly selected values of: |𝑋′𝑚,1|, |𝑋′𝑚,2| and |𝑋′𝑚,3|. The flowchart of SR3 is 

shown in Figure 4.13. 

 

Figure 4.13 Flowchart for the verification of spatial distribution (SR3) 

The four cells of a 2 × 2 sub-grid are labeled: NW, NE, SW and SE, as shown in Figure 4.14. 

Determining the spatial configuration means to order the four labels according to their 

respective values of intensity (see Figure 4.13). The spatial configuration (ordered vector) 

determined for a 2 × 2 sub-grid belonging to a two-dimensional input field becomes the 

“configuration of reference”. 

4.2.3.1 Application of SR3 in SR1 

For the use of SR3 in the SR1 case 1, the two-dimensional input field is the LR field with a 

resolution correspondent to the scale 𝑚𝑖𝑛.  
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Figure 4.14 Labels of the cells in a 𝟐 × 𝟐 sub-grid and the determination of the spatial 

configuration. 

For 𝑚 < 𝑚𝑖𝑛, the starting step is to identify the 2 × 2 sub-grid at scale 𝑚𝑖𝑛 that shares the 

same location as the 2 × 2 sub-grid at scale 𝑚 for which verification of spatial configuration 

is needed. For a better understanding, Figure 4.15 shows an example of this identification. 

The spatial configuration of the 2 × 2 sub-grid at scale 𝑚𝑖𝑛 is determined with the purpose 

of establishing the “configuration of reference”. 

 

Figure 4.15 Identification of the 𝟐 × 𝟐 sub-grid of reference when 𝒎 ≤ 𝒎𝒊𝒏. 

The thick grey lines show the grid at scale 𝑚𝑖𝑛 while the thin grey lines show the grid 

at scale 𝑚 . The blue polygon delineates the 2 × 2  sub-grid at scale 𝑚  for which 

verification is needed. The green polygon delineates the 2 × 2 sub-grid at scale 𝑚𝑖𝑛 that 

shares location with the one at scale 𝑚. 

The SR1 tries to estimate three of the four values of 𝑋̅𝑚−1 in a 2 × 2 sub-grid at scale 𝑚 

assuming that one of them is known. In order to be able to apply Eq. 2.17, this subroutine 

also assumes that the three values of wavelet coefficients are known. The three absolute 

values of wavelet coefficients |𝑋′𝑚,𝑖| can be randomly selected from a sample generated 
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with the CMS algorithm. Because the three |𝑋′𝑚,𝑖| are absolute values, the arithmetic signs 

are determined by verifying the spatial configuration. There are eight possible combinations 

of arithmetic signs. For each combination, the spatial configuration of the 2 × 2 sub-grid at 

scale 𝑚 is obtained, and then compared to the “configuration of reference”. From the eight 

combinations, the one that returns the most appropriate spatial configuration is selected. This 

procedure is repeated 100 times with the purpose of assuring that the most appropiate 

combination of signs are obtained. 

If 𝑚 ≥ 𝑚𝑖𝑛, the “configuration of reference” is obtained from a 2 × 2 sub-grid of reference 

at scale 𝑚 aggregated from the LR field.  

4.2.3.2 Application of SR3 in SR2 

The SR2 is used for generating the directional fluctuation fields (𝑋′𝑚,𝑖) that are needed for 

applying the IDWT in the disaggregation process. 

Similarly to what was explained in the previous section, the SR3 algorithm needs a 2 × 2 

sub-grid of a two-dimensional input field to generate the “configuration of reference”. If 

𝑚 ≥ 𝑚𝑖𝑛, the “configuration of reference” is obtained from a 2 × 2 sub-grid of reference at 

scale 𝑚  aggregated from the LR field. If 𝑚 < 𝑚𝑖𝑛 , the “configuration of reference” is 

determined using the rainfall field 𝑋̅𝑚 that is being disaggregated. 

4.2.4 Check for blockiness 

In the Figure 4.2, the structure of the algorithm shows a process called “check for blockiness” 

before starting the disaggregation at the next smaller scale. An example of the output of the 

algorithm with blocky representation is shown in Figure 4.16a, which depicts a kind of 

pixelated rainfall field without smooth transitions. This issue was reported as a disadvantage 

of most stochastic downscaling models (Ferraris et al., 2003; Ebtehaj et al., 2012). 

Unfortunately, the IDWT has the same effect as it does not consider the relationship of cells 

between two contiguous 2 × 2 sub-grids, resulting in very large differences of intensity 

between contiguous cells.  

The “check for blockiness” process was designed with the purpose of lessening this 

deteriorating effect. For a representation of the rainfall field 𝑋̅𝑚(𝑛′1, 𝑛′2), using Eq. 2.17, 

the wavelet coefficients 𝑋′𝑚,𝑖(𝑛′1, 𝑛′2)  are computed only for those 2 × 2  sub-grids in 

which the location indexes 𝑛1 and 𝑛2 are even integer numbers. If the wavelet coefficients 

are 1.85 times larger than the expected value of the distribution of absolute values, a 

weighted correction factor is applied to all four cells in the 2 × 2 sub-grid. In order to 

preserve the degree of variability, the correction factor was defined as a function of the 

characteristic exponent of the 𝛼-stable distribution of wavelet coefficients. As the value of 

𝛼 becomes smaller (larger variability), the correction factor also becomes small. The value 

of 1.85 mentioned above and the correction factor were calibrated with the purpose of having 
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the minimum impact on the statistical metrics of the output of the algorithm and on the 

distribution of rainfall fluctuations. Figure 4.16b shows an example of the application of this 

procedure. 

 

Figure 4.16 Effect of the check for blockiness 

(a) Output of the disaggregation algorithm without applying the “checking for 

blockiness” procedure. (b) Output of the disaggregation algorithm applying the 

“checking for blockiness” procedure 

4.3 VALIDATION OF THE ALGORITHM OF DISAGGREGATION 

Because this algorithm uses random samples for the generation of wavelet coefficients, the 

results presented in this section are the average of an ensemble. No considerable differences 

were found in the results if an ensemble of 1000 repetitions are considered for the estimation 

of 𝑅̿ (SR1 case 1), and ensemble of 500 repetitions are considered in the disaggregating 

process. 

4.3.1 Analysis sites  

The validation of the algorithm was firstly applied to sites with dimensions 128 km ×

128 km located as shown in Figure 4.17. Each of these sites is named according to the rain 

gauge station of the AMeDAS network from which rainfall measurements are used as input 

of the algorithm. 

Table 4.3 Characteristics of the analysis sites and number of analyzed events  

Site Code 

UTM coordinates of 

the Southwest corner  

UTM 

Zone 

Nº of 

events 

Maebashi MAE 264500E 3976500N 54N 191 

Niigata NII 311000E 4083500N 54N 181 

Sapporo SAP 481000E 4718000N 54N 209 

Miyazaki MIY 612500E 3482500N 52N 223 

Nagasaki NAG 531000E 3574000N 52N 150 
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For each selected rain gauge station, in the period 2006 – 2009, rainfall events in which the 

hourly intensity measurement was above some predetermined threshold were selected for 

the validation of the algorithm. During storms of long duration, only the events in which the 

rain gauge measured peaks of intensity were considered. The number of events for each 

station as well as characteristics of the sites are presented in Table 4.3. 

 

Figure 4.17 Location of the sites with dimensions 𝟏𝟐𝟖 𝐤𝐦 × 𝟏𝟐𝟖 𝐤𝐦 

4.3.2 Fidelity measures for statistical evaluation 

The validation of the algorithm should evaluate how well the subroutine (SR1) for the 

estimation of 𝑅̿ works and how well the spatial structure of the rainfall field is reproduced 

after the disaggregation. For this purpose, fidelity measures that take into account the first 

and second order statistics of the error are considered. Let us denote the error matrix ℰ =

 𝒳̂ − 𝒳 , where 𝒳  is the grid (matrix) of intensity values corresponding to the Radar-

AMeDAS data of a rainfall event and 𝒳̂ is the matrix of intensity values corresponding to 

the output of the algorithm for the same event. Then, expressions for the Normalized Bias 

Ratio (𝑁𝐵𝑅), the Root Mean Square Error (𝑅𝑀𝑆𝐸), the Coefficient of Variation (𝐶𝑉) and 

the Mean Absolute Error (𝑀𝐴𝐸) are given respectively in Eq. 4.5, 4.6, 4.7 and 4.8, where 

(∙)̅̅ ̅ is the entry-wise mean and | ∙ | is the entry-wise absolute value. 

  𝑁𝐵𝑅 = ℰ̅ 𝒳̅⁄   (4.5) 

  𝑅𝑀𝑆𝐸 = √ℰ2̅̅ ̅  (4.6) 
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  𝐶𝑉 = 𝑅𝑀𝑆𝐸 𝒳̅⁄   (4.7) 

  𝑀𝐴𝐸 = |ℰ|̅̅ ̅̅   (4.8) 

Excellent results should yield values of  𝑁𝐵𝑅 approximating zero, however, it is necessary 

to establish an interval for which the bias of the output can be considered acceptable. Since 

the value of 𝑁𝐵𝑅 depends on 𝒳̅, and since 𝒳̅ may range from 0.1 mm/hr to 15 mm/hr, it is 

difficult to establish an interval of 𝑁𝐵𝑅  that can be assumed acceptable for all events. 

Regardless, the interval of acceptance established herein is 0.5 ≤ 𝑁𝐵𝑅 ≤ 0.5 and it should 

be evaluated alongside the value of 𝑀𝐴𝐸.  

Regarding the evaluation of the reproduction of the characteristic spatial structure of the 

rainfall field, an acceptable output should yield fidelity measures such that 

 𝒳̅̂ =  𝒳̅ ± 1.0 × 𝑅𝑀𝑆𝐸. 

This expression and the definition of 𝐶𝑉 imply that an acceptable output should yield values 

of 𝐶𝑉 ≤ 1.0. 

4.3.3 Results 

4.3.3.1 Performance of the disaggregation process 

The disaggregation process is evaluated under the following assumptions/considerations: 

 The parameters {𝛼𝑖, 𝛾1,𝑖, 𝐻𝑖}𝑖=1,2,3
 are known, which were estimated using the DWT 

with a combined sampling of wavelet coefficients according to the description given 

in Section 3.4.5. 

 The input LR field is obtained as an aggregation of the Radar-AMeDAS data into a 

16-km resolution grid. Therefore, the disaggregation process is applied from scale 

𝑚 = 4 (input) to scale 𝑚 = 0 (output). 

 The resolution of the output is the same as the resolution of the Radar-AMeDAS data 

for statistical evaluation purposes. 

Examples of the performance are shown in Figures 4.18 and 4.20, which show respectively 

the output rainfall field for the events MAE_2006.07.18.13 and MAE_2009.06.23.02. 

Additionally, Figures 4.19 and 4.21 show the scatterplots of the output rainfall field 𝒳̂ on 

the Radar-AMeDAS data 𝒳 and the computed metrics, respectively for the same events. 

Note that the values of 𝒳̅ and 𝒳̅̂ should be equal because of the invariance of the mean that 

implies the IDWT algorithm. However, because of the “checking for blockiness” process, in 

events with no-rain areas, 𝒳̅̂ was found to differ in the second or third decimal point with 

respect to 𝒳̅. 
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Figure 4.18 Performance of the disaggregation process for the event MAE_2006.07.18.13 

(a) Input LR field with 16-km resolution. (b) Output of the algorithm with 1-km 

resolution. (c) Radar-AMeDAS data. 

 

Figure 4.19 Scatterplot of 𝓧̂ on 𝓧 and fidelity measures for the event MAE_2006.07.18.13 

 

Figure 4.20 Performance of the disaggregation process for the event MAE_2009.06.23.02 

(a) Input LR field with 16-km resolution. (b) Output of the algorithm with 1-km 

resolution. (c) Radar-AMeDAS data. 
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Figure 4.21 Scatterplot of 𝓧̂ on 𝓧 and fidelity measures for the event MAE_2009.06.23.02 

The results for all the events considered in the five 128 𝑘𝑚 × 128 𝑘𝑚 sites are presented in 

Table 4.4. Since Radar-AMeDAS data aggregated into a 16-km resolution grid is used as the 

input LR field, all events returned values of 𝑁𝐵𝑅 within the range −0.5 ≤ 𝑁𝐵𝑅 ≤ 0.5. On 

the other hand, reproducing the characteristic spatial configuration of rainfall and small-scale 

variation, which is measured by the 𝐶𝑉, was not accomplished for all events. The lowest 

percentage of success is shown by the events of the Maebashi site, where convective rainfall 

events depicting sudden changes of intensity over short distances are more frequent than in 

the other sites, and happen to be more difficult to reproduce. An example of an event that 

returned a value of 𝐶𝑉 larger than 1.0 is shown in Figure 4.22, and its respective scatterplot 

and metrics are presented in Figure 4.23. The characteristic exponents of the 𝛼 -stable 

distributions of rainfall fluctuations of this event were estimated as 𝛼𝑖=1,2,3 =

{1.09,1.05,1.08}, denoting a quite high degree of variability. Therefore, the events most 

difficult to reproduce are the ones showing values of  𝛼𝑖 approximating 1.0. 

Table 4.4 Percentage of events in each site that returned fidelity measures within the 

acceptable ranges 

Site Nº Events |𝑁𝐵𝑅| ≤ 0.5 𝐶𝑉 ≤ 1.0 

Maebashi 191 100 77 

Niigata 181 100 86 

Miyazaki 223 100 83 

Nagasaki 209 100 91 

Sapporo 150 100 90 
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Figure 4.22 Performance of the disaggregation process for the event MAE_2009.07.16.22 

(a) Input LR field with 16-km resolution. (b) Output of the algorithm with 1-km 

resolution. (c) Radar-AMeDAS data. 

 

Figure 4.23 Scatterplot of 𝓧̂ on 𝓧 and fidelity measures for the event MAE_2009.07.16.22 

4.3.3.2 Performance of the algorithm using SR1 case 1 

The SR1 case 1 estimates the mean rainfall intensity of the analysis site (𝑅̿) by stochastically 

expanding into larger scales the measurement of only 1 rain gauge station. Aside from 

evaluating the performance of this subroutine, the effects of having a biased value of 𝑅̿ may 

also be evaluated by running the whole algorithm and computing the fidelity metrics of the 

output. The following considerations are in order: 

 The measurement of the selected rain gauge station at each site will be used as input 

in the SR1. 

 The parameters {𝛼𝑖, 𝛾1,𝑖, 𝐻𝑖}𝑖=1,2,3
 are known, which were estimated using the DWT 

with a combined sampling of wavelet coefficients according to the description given 

in Section 3.4.5. 
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 The input LR field is obtained as an aggregation of the Radar-AMeDAS data into a 

16-km resolution grid.  

 The resolution of the output is the same as the resolution of the Radar-AMeDAS data 

for statistical evaluation purposes. 

Examples of the performance are shown in Figures 4.24 and 4.26, which show respectively 

the output rainfall field for the events MAE_2006.07.18.13 and MAE_2009.06.23.02. 

Additionally, Figures 4.25 and 4.27 show the scatterplots of the output rainfall field 𝒳̂ on 

the Radar-AMeDAS data 𝒳 and the computed metrics, respectively for the same events. The 

scatterplots are shown at 16-km resolution and at 1-km resolution, which allows to 

appreciate the functioning of the algorithm while disaggregating the estimated 𝑅̿ from scale 

𝑚 = 7 (128-km resolution) into smaller scales (higher resolutions). 

 

Figure 4.24 Performance of the whole algorithm for the event MAE_2006.07.18.13 

(a) Input LR field with 16-km resolution. The green star represents the location of the 

Maebashi station. (b) Output of the algorithm with 1-km resolution. (c) Radar-AMeDAS 

data. 

 

Figure 4.25 Scatterplot of 𝓧̂ on 𝓧 and fidelity measures for the event MAE_2006.07.18.13 

(a) Comparison at 16-km resolution. (b) Comparison at 1-km resolution. 
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Figure 4.26 Performance of the whole algorithm for the event MAE_2009.06.23.02 

(a) Input LR field with 16-km resolution. The green star represents the location of the 

Maebashi station. (b) Output of the algorithm with 1-km resolution. (c) Radar-AMeDAS 

data. 

 

Figure 4.27 Scatterplot of 𝓧̂ on 𝓧 and fidelity measures for the event MAE_2009.06.23.02 

(a) Comparison at 16-km resolution. (b) Comparison at 1-km resolution. 

Table 4.5 Percentage of events in each site that returned fidelity measures within the 

acceptable ranges 

   𝐶𝑉 ≤ 1.0 

Site Nº Events |𝑁𝐵𝑅| ≤ 0.5 16-km res. 1-km res. 

Maebashi 191 78 82 66 

Niigata 181 85 90 73 

Miyazaki 223 71 82 64 

Nagasaki 209 83 92 78 

Sapporo 150 73 81 73 

The results for all the events considered in the five 128 𝑘𝑚 × 128 𝑘𝑚 sites are presented in 

Table 4.5. From a total of 954 events (considering all five sites), in 78% of them the SR1 

case 1 was able to estimate the mean intensity 𝑅̿ yielding values of 𝑁𝐵𝑅 within the range of 

acceptance. However, the bias carried in the estimation of 𝑅̿ produced a reduction of the 
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percentage of events in which the small-scale variability and characteristic spatial 

configuration of rainfall can be reproduced.  

4.4 TRMM RAINFALL PRODUCTS AS INPUT OF THE ALGORITHM 

The TRMM 3B42 version 7.0 product has a 0.25° × 0.25° resolution and produces 3 hourly 

estimates between the latitudes 50°S to 50°N. Using this rainfall estimates as the input LR 

field, the following results are intended to verify the functioning of the subroutine detailed 

in Section 4.2.1.2 and to evaluate the conditions in which the input generates acceptable 

outcomes. 

The results presented herein correspond to events that happened over the Kanto analysis site, 

which has dimensions 256 km × 256 km. The following considerations are in order: 

 Since we have been studying the datasets over sites with dimensions equal to powers 

of 2, the TRMM products were first resampled to a grid with 0.5-km resolution via 

the Nearest Neighbors method, and then aggregated to a grid with 16-km resolution. 

Figure 4.28a shows the original data and Figure 4.29b shows the resampled data for 

the event KAN_2009.11.13.21. 

 The parameters {𝛼𝑖, 𝛾1,𝑖, 𝐻𝑖}𝑖=1,2,3
 are known, which were estimated using the DWT 

with a combined sampling of wavelet coefficients according to the description given 

in Section 3.4.5. 

 Let us define the error matrix of the TRMM products with respect to the Radar-

AMeDAS datasets as ℰ𝒴 = 𝒴 − 𝒳 , where 𝒴  is the matrix of intensity values 

correspondent to the TRMM products. Replacing ℰ by ℰ𝒴 in Eq. 4.5 to 4.8, the same 

fidelity measures are used for determining the bias between these two datasets. 

Because of how the algorithm was constructed, an acceptable performance can be expected 

if the input LR field is able to identify correctly the location of high and low intensity areas. 

The spatial correlation of TRMM products and Radar-AMeDAS datasets at 16-km resolution 

was analyzed in events with a mean intensity of conditional rainfall greater than 1 mm/hr. 

Only 11% of the events between 2006 and 2009 showed a coefficient of determination 

greater than 0.5, and only 6% showed a coefficient of determination greater than 0.6. The 

results for some events that showed different degrees of spatial correlation is shown below. 

Figure 4.29 shows the input LR field, the resampled input LR field, the output of the 

algorithm and the Radar-AMeDAS data for the event KAN_2007.07.17.06, which yielded a 

coefficient of determination equal to 0.78 for the spatial correlation with Radar-AMeDAS 

data. Figure 4.30 shows the scatterplot of the TRMM product on the Radar-AMeDAS data, 

and the scatterplot of the output of the algorithm on the Radar-AMeDAS data. 
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Figure 4.29 Input and Output data for the event KAN_2007.07.17.06.  

(a) TRMM data. (b) TRMM data resampled to 16-km resolution. (c) Output of the 

algorithm. (d) Radar-AMeDAS data. 

 

Figure 4.30 Scatterplots for the event KAN_2007.07.17.06 

(a) 𝒴 on 𝒳 and (b) 𝒳̂ on 𝒳. 
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Figure 4.31 Input and Output data for the event KAN_2009.11.13.21  

(a) TRMM data. (b) TRMM data resampled to 16-km resolution. (c) Output of the 

algorithm. (d) Radar-AMeDAS data. 

 

Figure 4.32 Scatterplots for the event KAN_2009.11.13.21 

(a) 𝒴 on 𝒳 and (b) 𝒳̂ on 𝒳. 
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Figure 4.31 shows the input LR field, the resampled input LR field, the output of the 

algorithm and the Radar-AMeDAS data for the event KAN_2009.11.13.21, which yielded a 

coefficient of determination equal to 0.57 for the spatial correlation with Radar-AMeDAS 

data. Figure 4.32 shows the scatterplot of the TRMM product on the Radar-AMeDAS data, 

and the scatterplot of the output of the algorithm on the Radar-AMeDAS data. 
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5. CONCLUSIONS 

High-resolution rainfall fields are only available in regions that can afford the operation of 

weather radars and/or dense rain gauge networks. Most developing regions lack this kind of 

equipment and, for hydro-meteorological simulations, the main source of rainfall intensity 

is sparse rain gauge measurements or satellite-based estimations of rainfall. Normally, 

schemes for the bias-correction of satellite-based products try to find ways of distributing 

the error with respect to the few in-situ measurements. However, it was recognized that the 

best approach should focus on studying the types of rainfall and their differences in structure 

rather than trying to impose a numerical schemes based on local conditions (Ebert et al., 

2007). This research aimed to make a stochastic analysis of the spatial structure of rainfall 

fields with the purpose of characterizing the scale-to scale dependence of some statistical 

property. A direct consequence of accomplishing such characterization is the construction 

of algorithms that link the spatial structure of fields at low and high resolutions with the least 

possible number of parameters. Stochastic disaggregation models should be able to transmit 

the structure of low-resolution fields to high-resolution fields while adding the details that 

are characteristic of spatial rainfall. The detail information can be seen as variations of the 

field with respect to local averages. In this sense, previous studies proposed the 

decomposition of rainfall fields into large-scale components and small-scale components 

using discrete orthonormal wavelet transformations (Kumar and Foufoula-Georgiou, 1993). 

Datasets of Radar-AMeDAS were extensively studied for five analysis sites located in Japan 

with different precipitation regimes and weather conditions. The two-dimensional 

orthonormal wavelet transformation allows to separate three sets of wavelet coefficients 

from the rainfall field. Each set represents the local fluctuations of the field in the east-west, 

north-south and diagonal directions. These sets contain the necessary detail-information to 

transform low-resolution fields into the original high-resolution fields. Previous stochastic 

analysis of the sets of wavelet coefficients evidenced dependence between scales of the 

distribution parameters (Perica and Foufoula-Georgiou, 1996; Ebtehaj and Foufoula-

Gerogiou, 2011). If these parameters can be related to physical measures of the storm 

environment, it would imply that the small-scale structure of rainfall fields can be 

statistically derived from physical models that provide large-scale information of the 

variables controlling the formation of storms.  

In this study, we proposed to adjust the sets of wavelet coefficients to symmetric 𝛼-stable 

(𝑆𝛼𝑆) distributions, which are able to model the high frequencies of extremes found in the 

pdfs better than Gaussian models. The setback of working with 𝛼 -stable distributions, 

however, is the lack of closed-form expressions of the pdf and cdf, which hinders the 

estimation of the parameters. Non-conventional methods of estimation tend to adjust 

different “features” of the sample, yielding different results. Moreover, the large amount of 

zeros and limited amount of data has shown to deteriorate the performance of the estimation-

methods. The characteristic exponent of 𝑆𝛼𝑆 distributions defines the rate of decay of the 
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tails towards infinity, defining as well the frequency of extreme values. Since extreme 

variations are usually observed in the rainfall field, we set the hypothesis that 𝛼 could be a 

measure of the degree of variability of the rainfall event. 

The properties of the 𝑆𝛼𝑆 distributions were revised with the purpose of designing a method 

of estimation that is able to overcome the difficulties that come naturally in the samples of 

rainfall fluctuations. Two methods were proposed: the FAM method and TSM method. 

Through Montecarlo simulations, the FAM method showed a performance that is 

comparable to methods regarded as most accurate while employing less computational time. 

This and the other existing methods normally present problems when trying to estimate the 

parameters of samples that contain large number of zeros at high resolutions. The TSM 

method, on the other hand, proved to have the capacity to overcome this issue.  

The scale-to-scale dependence of the estimated parameters were analyzed. Independently at 

each direction, the estimators of the characteristic exponent 𝛼 showed an almost invariant 

behavior between the 1-km and the 16-km resolutions (reaching the 32-km resolution in 

several cases). At the 32-km and 64-km resolutions, the estimated characteristic exponent 𝛼 

tends to have smaller values than the ones estimated at higher resolutions. This situation can 

be caused by the insufficient information of the small samples at these scales or simply 

because self-similarity does not hold up to these scales. The former claim might be more 

probable since the samples come from events that develop at larger atmospheric scales. The 

scale parameter showed a power-law behavior in the scale range between 1-km and 64-km 

for a large portion of the considered events. These two conditions suggest that the processes 

of rainfall fluctuations can be qualified as self-similar and the distribution at any scale of 

representation can be estimated if the distribution at a specific scale is known. 

The hypothesis that the characteristic exponent 𝛼 is related to the degree of variability is 

supported by the results presented in this chapter. Events that depict short-range changes of 

intensity, clustered structure and intermittency tend to have values of 𝛼 smaller than 1.3. The 

parameter 𝛾, on the other hand, is directly related to the magnitude of the fluctuations at each 

scale. Different values of 𝛾  at different directions might suggest anisotropy in the 

fluctuations, and therefore related to external forces that induce the movement and formation 

of the precipitating clouds. The self-similarity index 𝐻, which is the logarithmic slope of the 

power-law behavior of the scale parameter 𝛾, denotes the rate of growth of the magnitude of 

the fluctuations. Large values of 𝐻  were found in events that show small rain areas, 

intermittency and vast areas with drizzle. This observation suggests that 𝐻 could be related 

to the degree of variability of the event, but also to some additional fractal measure of the 

areal intermittency. 

Based on the inverse of the operation that was used to separate the wavelet coefficients from 

the rainfall field, a disaggregation algorithm was proposed that has as main input only one 

rain gauge measurement, a Low-resolution Rainfall (LR) field and the parameters that the 

define the scale-to scale dependence of the distributions of rainfall fluctuations.  
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The algorithm initiates by estimating the mean rainfall intensity for the analyzed area by 

expanding the rain gauge measurement into larger scales. The growth of intensity during the 

expansion, however does not have a boundary since the mean behavior at larger scales is 

unknown. This issue produces overestimations of the mean intensity under certain 

circumstances. An analysis of the variation of intensity between scales for several different 

rainfall patterns, showed that the growth is caused mainly by the degree of variability, the 

relative location of the station within the storm and the magnitude of the measurement. If a 

correction factor depending on these variables is applied between the scale at which the 

expansion starts and the scale of the LR field, the estimation of the mean intensity improves 

for a large percentage of the rainfall events. 

A comparison of the mean intensity computed from the TRMM-LR field and the mean 

intensity computed from the Radar-AMeDAS showed that there is a tendency for 

overestimation if the mean intensity computed from TRMM is approximately larger than 1.8 

mm/hr. This finding allows to fix a set of rules that help controlling the estimation of the 

mean intensity more accurately. 

Once the mean intensity is estimated, the algorithm proceeds to disaggregate this value scale 

by scale until reaching the desired high-resolution. This procedure includes an analysis of 

the relationship between the local average and the local fluctuations of the rainfall field. It 

was found that extreme values of intensity produce extreme fluctuations, and lower values 

of intensity do not produce extreme fluctuations. This conditions help to limit the access to 

random samples at the time of choosing the right combination of wavelet coefficients that 

are used in the Inverse Discrete Wavelet Transform. 

The results of validation was done using simple fidelity metrics to measure the first and 

second order moments of the matricial error. Acceptable metrics were observed in 78% of 

954 events that encompass different rainfall patterns from different locations. The events in 

the remaining 22 % are mostly events in which the 𝑆𝛼𝑆 distribution of wavelet coefficients 

have a characteristic exponent smaller than 1.30. These results demonstrate that the 

algorithm, as it is currently devised, is not able to entirely reproduce the sudden changes of 

intensity in events with characteristic exponent smaller than 1.30. 

When using TRMM rainfall data as the LR input field, the results showed that the rain gauge 

station and the analysis of section 4.2.1.2 contribute to correct the existing bias. However, 

the reproduction of the actual rainfall event depends on how well the areas of high and low 

intensity are detected by the TRMM product. 

The proposed procedure, in which the field is decomposed, is a first attempt to take 

advantage of the self-similarity in the distribution of rainfall fluctuations and the degree of 

variability expressed by the parameter 𝛼. Nevertheless, we consider that the framework has 

the potential for improvement if the inter-scale dependence of the rainfall fluctuations are 

analyzed differently (e.g., the work of Huang and Mumford, 1999).  
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Being able to estimate the mean intensity for a 256km × 256km site from only one rain 

gauge is a remarkable accomplishment, and contributes to the correction of the bias of the 

LR field to some degree. Undoubtedly, including one or two more stations (which is a 

situation normally found in most regions of the world) may improve the performance of the 

algorithm. 
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