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Abstract 
(論文の内容の要旨)	 

Spatio-temporal analysis of flooding on global scale 

using microwave remote sensing 

(マイクロ波リモートセンシングを用いた	 

グローバルな洪水の時空間解析）	 

 

李曦  

Global warming combined with human activities has caused flooding to become the 

most frequent and devastating natural disaster. The total number of floods worldwide 

has more than tripled over the last 15 years. Moreover, for the issue of global 

warming, it is documented that the average temperatures worldwide has risen since 

the end of the 19th century. In order to discuss and learn about flooding issue, at least 

30 years of data should be traced back based on scientific view of global warming. 

Additionally, in order to meet the needs of government and enterprises, making use of 

large historical database of Land Surface Water Coverage (LSWC) will be a valuable, 

economical and necessary way to obtain accurate information and estimate flooding. 

Among different kinds of sensors, AMSR-E, which belongs to passive microwave 

remote sensing, can provide long time series of daily global coverage data. PALSAR, 

which belongs to active microwave remote sensing, has high spatial resolution 

without cloud interruption. They are in trade off relationship. 

In order to better understand the flooding from this large historical database, land 

cover change and precipitation are incorporated and analyzed. Land cover change is 

known to influence both surface water hydrology and soil properties. Rainfall also 
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seriously influences open water and soil moisture and thus plays an important role in 

flooding researches. Making clear the relationship among LSWC, precipitation and 

land cover change not only for a certain watershed or a single region but also for the 

global range is of great significance. 

The purpose of this study is to conduct more precise calibration of AMSR-E by 

PALSAR. Secondly, to build nearly 30 years of LSWC database by SSMI, AMSR-E, 

WindSAT and AMSR2 and to estimate the historical tendency of land surface water 

coverage of each river basin. Thirdly, to analysis the effects of land cover change and 

rainfall on the global LSWC during 1987-2015 derived from passive microwave 

remote sensing. 

Firstly, the incidence angle effect to the backscattering for PALSAR ScanSAR mode 

was investigated. It was found that the change of incidence angle brought 

backscattering variation in PALSAR ScanSAR images. However, the standard 

deviation of σ0 (dB) against incidence angle of ascending and descending scenes in 

Australia and Colombia were0.36 and 0.56, smaller than 1dB.Within small range of 

incidence angle, the effect of incidence angle is within the acceptableσ0 (dB) variation 

of PALSAR in this study. Then, spatial correspondence was discussed between 

AMER-E NDFI/NDPI LSWC and PALSAR LSWC. There was a good agreement 

among them. At the same time, it was also found in AMSR-E image, there is some 

blur at the edge of inundated area because of the different spatial resolution and 

mechanism of PALSAR and AMSR-E. By applying the least squares method. It was 

found that the determination coefficient reached more than 0.8, the exponential 

regression curve could precisely represent the scatter points and the RMSE of NDFI 

is smaller than that of NDPI. AMSR-E NDFI showed a better performance than 

AMSR-E NDPI on land surface water coverage estimation. Using more precise 

AMSR-E calibration by PALSAR, the availability and potential of AMSR-E LSWC for 

large scale flooding detection was indicated. 

Secondly, taking into account population density of the world, 68 major river basins 
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were delineated continent wise all over the world using HYDRO1k data. LSWC 

derived from SSMI, AMSR-E, WindSAT, AMSR2 was mapped and cross calibration 

among them in the alternate process of sensors was conducted for all the 68 river 

basins by making a linear regression model. Based on 68 calibration equations, the 

original database was modified so that getting the cross-calibrated LSWC database. 

By conducting temporal analysis using cross-calibrated database. It was found that 

the LSWC during the flooding in specific year significantly exceeds the average and 

the LSWC value of latest 15 years was found greater than the value of latest 30 years. 

It was indicated a growth trend in LSWC during last 30 years. Finally, the histogram 

and cumulative distribution function of each pixel was made by integrating nearly 30 

years of LSWC database. It was found that from wetland, forest, agriculture, to 

barren land, with the increase of aridity, the probability with high LSWC in one year 

decreases. Moreover, cumulative distribution functions (CDF) of all pixels in global 

area were created to estimate the cumulative distribution of each LSWC value in 

global scale. 

Thirdly, after integrating nearly 30 years of global LSWC daily data, the daily change 

of water area corresponding to monthly change of precipitation from the year 1981 to 

2014 in each river basin was computed and plotted. It was found the surface water 

area change pattern basically coincided with rainfall pattern, showing a seasonal 

variation characteristic in each year. What’s more, based on the least squares fitting 

the annual average change of water area in each river basin was computed which 

showed an increasing trend. In all 68 basins, most of them showed obvious growth 

trend. In general, river basins of almost no water area change accounted for only 18%, 

the small growth trend basin accounted for 34%, the large growth trend basin 

accounted for 48%. 

  Moreover, STL time series analysis was carried out to make clear the long-term 

trend relationship between precipitation and LSWC, it was found that the seasonal 

trend between each other was very coincide but the long-term trend of them was not 

identical, LSWC almost presented increasing trend whereas precipitation had no 
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significant trend. In addition, the interactive correlation coefficients of long-term 

trend between precipitation and LSWC in Mekong river was smaller than 0.6. There 

is no significant correlation between long-term trend in LSWC and precipitation. 

Rainfall was indicated not the only factor that brings about the change in LSWC.  

In addition, by calculating 4 kinds of land cover change including cropland, forest, 

urban and water body in each river basin, it was found that the change in urban area 

was very strong in many river basin, especially in Yangtze basin and Huang he basin 

in China from 2000 to 2012, changed from 0.08% to 0.83% and from 0.17% to 2.21%. 

Due to global warming, the Himalayan snowmelt increased year by year, causing 

water in Brahmaputra river increased significantly. Besides, there was no clear trend 

feature in forest cover change. In addition, the proportion of cropland increased 

significantly, especially Ganges basin increased by 40%, grew to nearly 70%. 

Meanwhile, it was found the cropland presented consistent growth situation along 

with LSWC. The correlation coefficients between cropland and LSWC change was 

more than 0.85. It is expected that the widespread expansion of cropland might bring 

about LSWC increasing.  

Finally, by detecting the anomaly of LSWC the potential floods can be detected. 

Anomaly map of each year was made and the monthly flooding development was 

extracted during nearly last 30 years in global scale, which showed a great increasing 

trend on frequency since last 15 years especially in nearly 5 years. 
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Chapter1. Introduction 
1.1 Background 

In recent years, climate changes and human activities have influenced the 

water cycle and caused increasing of natural disasters (Milly et al., 2002; Mori, 

S., Takeuchi, 2009; Pall et al., 2011). Among all kinds of natural hazards in the 

worldwide flood is probably most devastating, widespread and frequent. It was 

not only a threat to human life, but also resulted in enormous economic losses 

(Singh et al., 2013). According to statistics by WHO, nowadays, the global loss 

caused by the floods accounted for 40% among all of the natural disasters, the 

deaths caused by the floods accounted for 55%. And, floods are increasing in 

number, especially over the last 15 years. The total number of floods globally 

has more than tripled in the last 15 years (Land Commodities Research, 

Slayback et al., 2012). Recent decades have brought more heavy summer 

rainfall events along with increased likelihood of devastating floods. While no 

single storm or flood can be attributed directly to global warming, changing 

climate conditions are at least partly responsible for past trends because 

warmer air can hold more moisture. The most pessimistic global climate 

projections predict an increase in the frequency of high-impact floods over the 

coming decades as a result of climate change (Kleinen and Petschel-Held, 2007). 

Huang et al., (2012) conducted study about hydrological response to climate 

warming in the upper feather river watershed which showed hydrologic 

sensitivity to climate warming includes small changes in annual stream flow 

and actual evapotranspiration, significant changes in stream flow timing and 

increased frequency and magnitude in extreme flows. For California at the end 

of the twenty-first century was projected to experience warming by 1.5–4.5 

degrees (Cayan et al., 2008). Das et al., (2013)(Das et al., 2013) analyzed 
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increases in flood magnitudes in California under warming climates. They 

found by end of century, discharges from the Northern Sierra Nevada with 

50-year return periods increase by 30–90% depending on climate model, 

compared to historical values. Corresponding flood flows from the Southern 

Sierra increase by 50–100%. Madsen et al., (2014) made review of trend 

analysis and climate change projections of extreme precipitation and floods in 

Europe from which we could know that climate projections indicated a general 

increase in extreme precipitation under a future climate, which was consistent 

with the observed trends. The review also showed that only few countries have 

developed guidelines that incorporate a consideration of climate change impacts. 

Apurv et al., (2015)(Apurv et al., 2015) have discussed impact of climate change 

on floods in the Brahmaputra basin using CMIP5 decadal predictions and 

derived the flood behavior in the future based on changes in the characteristics 

of wet rainfall spells in 2010–2020, which suggested an increase in the number 

of spells with higher rainfall and longer duration which can lead to increase in 

peak flood and the total flood volume.  

For the issue of global warming, it has documented the rise in average 

temperatures worldwide since the late 1800s, instrumental temperature 

records had also shown a robust multi-decadal long-term trend of global 

warming since the end of the 19th century. NASA Earth Observatory 

documented the anomaly of temperature kept growing since 1980 (NASA Earth 

Observatory). It was considered that in order to discuss and learn about 

flooding change, it should be traced back at least 30 years ago based on 

scientific view of global warming. Moreover, in order to meet the needs of 

government for appropriate land use planning and enterprises for business 

continuity planning (BCP) making use of large historical database and learning 

from data will be an available, economic and necessary way to master the 

accurate information and development trend of flooding in the global scale 
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which based on viewpoint of retrieval of historical similar patterns to perform 

instance-based flood analysis and forecasting.  

Schmocker-Fackel and Naef, (2010) carried out analysis about changes in 

flood frequency in Switzerland since 1850 in order to answer have flood 

frequencies changed over the last 150 years in Switzerland and is the high 

frequency observed recently a nation-wide phenomenon. They suggested that 

since 1900 periods with many floods in northern Switzerland have corresponded 

to periods with few floods in southern Switzerland and vice versa. The 

differences also suggested that changes in large-scale atmospheric circulation 

might be responsible for the fluctuations in flood frequency. Sippel et al. (1998) 

developed a predictive relationship and reconstruct regional inundation 

patterns in the floodplain of the Amazon River main stem over the past 94 years 

of stage records. Hallegatte et al. (2013) provided a quantification of present 

and future flood losses in the 136 largest coastal cities. They put forward that 

average global flood losses in 2005 are estimated to be approximately US$6 

billion per year, increasing to US$52 billion by 2050 with projected 

socio-economic change alone. Mallakpour and Villarini (2015) examined the 

changing nature of flooding from 1962 to 2011 happened in the central United 

States using observational records of 774 stream gauge stations. They found 

that these changes in flood hydrology result from changes in both seasonal 

rainfall and temperature across this region. Gizaw and Gan, (2016) developed 

RFFA model based on SVR to estimate regional flood frequency for two study 

areas located in Canada under historical and future climate. Toonen (2015) 

carried out flood frequency analysis and discussion of non-stationarity of the 

Lower Rhine flooding regime from 1350 to 2011 by using discharge data, water 

level measurements and historical records. 
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Land cover change is known to influence both surface water hydrology and 

soil hydraulic properties by altering the hydrological characteristics of the land 

surface and modifying the patterns and rates of water flow (Savary et al., 2009). 

In addition, rainfall also seriously influences open water and soil moisture and 

thus plays an important role in flooding researches. Climate change has the 

potential to intensify the hydrological cycle, leading to more intense 

precipitation with associated changes in the intensity, frequency and severity of 

flood (Apurv et al., 2015)(Apurv et al., 2015). Ohana-Levi et al. (2015) had 

modeled the effects of land cover change on rainfall runoff relationships in a 

Semiarid, Eastern Mediterranean watershed, which was found a strong 

relationship between vegetation cover and the runoff volume. Moreover, the 

land cover changes with most pronounced effects on runoff volumes were 

related to urbanization and vegetation removal. Panahi et al. (2010) discussed 

the effect of land use/cover changes on the floods of the Madarsu basin of 

northeastern Iran, which was found that the discharge rate of 2003 flood was 

about 10 times larger than that of the 1964 flood, since the direct effect of the 

land use/cover change from the stable forests and rangelands to the unstable 

agricultural lands on the both soil moisture retention capacity and run off rate. 

Ferrazzoli et al. (2010) carried out analysis of the effect of rain and flooding 

events on AMSR-E Signatures of La Plata Basin, Argentina, which has been 

found that the amount of the effect and the correlation between variables are 

dependent on the properties of the areas surrounding the stations. Hydrological 

response to land cover change and human activities in arid regions using a 

geographic information system and remote sensing has been discussed by 

Mahmoud and Alazba (2015) which has been indicated that changes in land 

cover are predicted to result in an annual increase in irrigated cropland and 

dramatic decline in forest area in the study area over the next few decades. 
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1.2 Microwave remote sensing 

Microwave remote sensing had been largely used to detect and monitor 

extreme flooding because of the capability of the microwave signal to penetrate 

through clouds (Temimi et al., 2007). Large-scale flood patterns can be quickly 

revealed  (Zheng et al., 2008). However, since flood events are dynamic 

processes, the daily and long time series of data are required. The International 

charter, which plays an important role in flooding research because of its quick 

response to flood event only provides basic information and satellite images at a 

certain time detected by satellite like Landsat, SPOT, SAR etc. as data of 

Charter Activation. Among different kinds of sensors, passive microwave 

remote sensing like AMSR-E can provide daily global cover data for its high 

temporal resolution (Temimi et al., 2007) which has been successfully utilized 

for flood monitoring and soil moisture estimation (Chakraborty et al., 2011) . A 

multi-temporal analysis of AMSR-E data for flood and discharge monitoring 

during the 2008 flood in Iowa was conducted by Temimi et al. (2011), 

demonstrating the importance passive microwave can play in monitoring 

flooding and wetness conditions and estimating key hydrological parameters. 

However, the AMSR-E instrument has been successfully accumulating the data 

from May 4, 2002 to Oct 4, 2011. AMSR2, which was launched in May 18, 2012 

designed to continue the AMSR-E observations (Imaoka et al., 2010). Moreover, 

SSMI, WindSAT, with the same high temporal resolution like AMSR-E and 

AMSR2, can be used to connect AMSR-E and AMSR2 in building long-term 

database for flooding detection. Many studies on passive microwave remote 

sensing for flooding and soil wetness monitoring in a certain river basin have 

been carried out. Singh et al. (2013) used microwave passive remote sensing to 

monitor flooding in Brahmaputra basin, India. The performance of different 

parameters such as PI, FWS and WL was investigated at different bands of the 
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AMSR-Echannel. Determination of inundation area in the amazon river 

floodplain using the SMMR 37CHz Polarization Difference was conducted by 

Sippel et al. (1994), which was found the seasonal changes in inundation area 

over a 7-year period determined using line mixing models correlate well with 

changes in river stage. Temimi et al. (2011) carried out a multi-temporal 

analysis of AMSR-E data for flood and discharge monitoring during the 2008 

flood in Iowa. It is demonstrated that passive microwave can play in monitoring 

flooding and wetness conditions and estimating key hydrologic parameters. 

Paloscia et al. (2006) conducted soil moisture estimates from AMSR-E 

brightness temperatures by using a dual-frequency algorithm. The soil moisture 

estimated by the algorithm from AMSR-E data and the SMC measured on the 

ground were in good agreement with each other in two sites, Italy and Iowa. In 

addition, the effect of rain and flooding events on AMSR-E signatures of La 

Plata basin, Argentina was done by Ferrazzoli et al. (2010). Chakraborty et al. 

(2011) used passive microwave signatures to detect and monitor flooding events 

in the Sundarban Delta. Watts et al. (2012) conducted a study of surface water 

inundation changes within the Arctic-Boreal Region and concluded that the 

AMSR-E fractional open water record corresponds strongly with regional 

wet/dry cycles inferred from basin discharge records. Watts (2012) used satellite 

microwave remote sensing to contrast surface water inundation changes within 

the Arctic–Boreal region. Moreover, Njoku et al. (2003), Njoku and Chan (2006) 

discussed vegetation and surface roughness effects on AMSR-E land 

observation which was found global signals of time-varying vegetation water 

content derived from AMSR-E are consistent with time-varying biomass 

estimates obtained by optical/infrared remote sensing techniques.  

Takeuchi and Gonzalez (2009) predicted daily land surface water coverage 

by blending MODIS and AMSR-E and found that the algorithm accurately 

predicted daily LSWC of AMSR-E. Moreover, studies on LSWC estimation with 
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AMSR-E combined with MODIS have already been carried out (Takeuchi, W., 

Komori, D., Oki, T. and Yasuoka, 2006; Mori, S. and Takeuchi, 2009), however 

MODIS can be affected by clouds and cannot detect large scale flooding (Evans 

et al., 2010)(Evans et al., 2010) because it conducts optical remote sensing. 

PALSAR, an active microwave sensor influenced by incidence angle, surface 

roughness and electrical conduction, provides high spatial resolution and is 

suitable to correspond to large scale flooding without cloud interruption 

(Alexakis et al., 2012 ; Arnesen et al., 2013) can be used to compensate with 

passive microwave sensor. Anh and Dinh (2008) monitored flooding using 

ALOS/PALSAR imagery, which had shown the possibility to apply 

ALOS/PALSAR data for flood mapping and monitoring. An evaluation of the 

PALSAR backscatter was carried out by Lucas et al. (2010), which was about 

above ground biomass relationship in Queensland, Australia in order to make 

clear impacts of surface moisture condition and vegetation structure. It was 

concluded that PALSAR data acquired when surface moisture and rainfall are 

minimal allow better estimation of the AGB of woody vegetation and that 

retrieval algorithms ideally need to consider differences in surface moisture 

conditions and vegetation structure. Moreover, Mishra et al. (2011) conducted 

land cover classification of PALSAR images by knowledge based decision tree 

classifier and supervised classifiers based on SAR observables. Hoan et al. 

(2013) made tropical forest mapping using a combination of optical and 

microwave data of ALOS, it was found that when the ALOS/PALSAR masks 

were used in combination with the ALOS/AVNIR-2 classification, the overall 

accuracy increased to 88% with higher than 90% accuracy for the main forest 

classes. Zhang et al. (2014) also used ALOS/PALSAR to map paddy rice in 

southeast China, which showed a relatively high rice mapping accuracy. 

Therefore, to overcome the weakness of MODIS, which was commonly used, 

PALSAR was an outstanding tool to conduct more precise calibration to 
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compensate passive microwave remote sensing for flooding detection. In recent 

decades, there are few studies on flooding detection on global scale by combing a 

plurality of passive microwave radiometer using daily long-term historical 

database and utilized active microwave remote sensing to compensate with 

passive microwave remote sensing. What’s more, most of flooding studies 

focused on one region or one watershed, there were few studies covering a global 

range and providing macroscopic understanding and grasp of the development 

trend of flooding on global scale in a macroscopic view. 

1.3 Objective of this study 

Ø To conduct more precise calibration of AMSR-E by PALSAR 

Ø To build nearly 30 years of LSWC database by SSMI, AMSR-E, WindSAT and 

AMSR2. 

Ø To estimate the probability and trend of land surface water coverage on global 

scale in order to understand historical tendency of land surface water coverage in 

each river basin. 

Ø To analysis the effects of land cover change and rainfall on the global LSWC 

during 1987-2015 derived from passive microwave remote sensing. 

The framework was showed in Figure 1.1. 
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Figure 1.1Framework in this study 

1.4 Originality of this study 

² Making clear of incidence angle effect to the backscattering of PALSAR 
in this study. 

² Conducting more precise calibration of AMSR-E with PALSAR by 
making a function of index NDPI and NDFI with physical 
quantity-LSWC derived from PALSAR. 

² Using SSMI, AMSR-E, WindSAT and AMSR2 to create a nearly 30 years 
of LSWC database and conduct cross calibration of every two sensors in 
the alternate process of sensors. 

² Combining river basin dataset, precipitation and land cover change 
dataset to explore the relationship with water area in each river basin 
study units on global scale and making trend of global water area map 
in order to understand historical tendency of land surface water 
coverage in each river basin. 
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Chapter2. Flood event detection using 
AMSR-E data with International charter 

2.1 Datasets and methods 

2.1.1 Flood events selected from International charter 

AMSR-E data, with spatial resolution of 10 kilometers and temporal 

resolution of 0.5 day were used to map NDFI/NDPI LSWC for flooding detection. 

12 flood events happened in worldwide (Figure 2.1) were selected as research 

object from the International charter. Resource of base map is a global land 

surface water coverage distribution map derived from AMSR-E. Table 2.1 shows 

the basic information of them.  

 
Figure 2.1Distribution of 12 flood events occurred in the worldwide selected from International 

charter 
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Table 2.1Basic information of 12 selected flood events 

Country Location of Event 
Date of Charter 

Activation 

Representative position 

Latitude Longitude 

Argentina Santa Fe and Entre Rios provinces 2007-03-30 31.2S 60.6W 

China Anhui province (Huai River basin) 2007-07-13 32.5N 115.8E 

Senegal Kaolack 2007-09-15 16.1N 13.8W 

Mexico Tabasco 2007-11-02 18.2N 92.5W 

Bolivia Moxos, Beni and Marban provinces 2008-01-25 14.6S 65.1W 

USA Iowa 2008-06-12 42.5N 93.2W 

Vietnam 
North and Central provinces (Red 

River Delta Region) 
2008-11-05 20.9N 105.8E 

Pakistan North West Pakistan 2010-08-02 28.2N 69.4E 

Australia Queensland 2011-01-03 27.3S 151.3E 

Namibia Northern Namibia 2011-04-01 18.2S 15.7E 

Colombia Bolivar province 2011-05-22 8.3N 73.9W 

Thailand Central Thailand 2011-10-17 14.9N 100.3E 

 

2.1.2 Land surface water coverage (LSWC) distribution mapping of AMSR-E 

After carrying out a series of pre-processing including radiance calibration, 

geometric correction and spatial mosaic, AMSR-E daily mosaics are used to 

compute normalized difference frequent index (NDFI) and normalized 

difference polarization index (NDPI). When atmospheric transmission is near to 

1, we can obtain NDFI, NDPI as follows ((Mori, S., Takeuchi, 2009, Takeuchi 

and Gonzalez, 2009).  

    𝑁𝐷𝐹𝐼＝ !"!".!!!!"!".!!
!"!".!!!!"!".!!

 (3) 

where TB18.7V and TB23.8V are the brightness temperature of vertical (V) 

polarization at 18.7GHz and 23.8GHz.  
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                                NDPI＝ !"!!!"!
!"!!!"!

(4) 

where TBV is the brightness temperature of vertical polarization at 36.5 

GHz. TBh is the brightness temperature of horizontal polarization at 36.5 GHz. 

2.1.3 Anomaly detection 

The anomaly was extracted by debugging the absolute and relative errors 

in two steps using MATLAB. The formula is as follows: 

LSWCi–LSWCAveragei>criteria1            (1)                                 

(LSWCi–LSWCAveragei)/LSWCAveragei>criteria2   (2) 

 where i=1~366 

If result satisfied the formula (1), then went into the second step followed 

the formula (2). 

2.1.4 Image similarity calculation 

Histogram  

A histogram is a graphical representation of the distribution of data. It is 

an estimate of the probability distribution of a continuous variable. Histograms 

are used to plot the density of data, and often for density estimation. 

In discrete form, on behalf of discrete gray levels by 𝑟! , there is the 

following formula (Pearson 1895)  

𝑃! 𝑟! = !!
!
          0 ≤ 𝑟! ≤ 1    𝑘 = 0,1,2,… 𝑙 − 1        (2) 

where: 𝑛! is number of pixels in the image appears as a gray level 𝑟!, 𝑛  is 

the total number of image pixels, and 𝑛! 𝑛 is the frequency.  

Bhattacharyya distance 
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The Bhattacharyya distance measures the similarity of two discrete or 

continuous probability distributions. It is often used to determine the relative 

closeness of the two samples or separability between classes in classification 

being considered (Bhattacharyya, A. 1943). For histogram similarity calculation, 

BD obtained the best effect.  

For discrete probability distributions p and q over the same domain X, it is 

defined as: 

𝐷! 𝑝, 𝑞 =   − ln 𝐵𝐶 𝑝, 𝑞           (3) 

where:        BC p, q =    p(x)q(x)!∈!         (4)     is the 

Bhattacharyya coefficient. 

where: D! p, q  is the Bhattacharyya distance between p and q distributions, 

p, q are two different distributions. 

2.2 Flood events detection by AMSR-E 

According to the principle that the higher AMSR-E LSWC values will be 

associated to a relative increase of both water area and soil moisture, I have 

calculated the LSWC to indicate the water level. I calculated the average of 

LSWC from 2002 to 2011 in the flood area and did the comparison with the 

selected specific year by drawing a dotted line figure. Figure 2.3 shows daily 

changes of LSWC in Anhui province in China (32.5N, 115.8E). The blue line 

represents the average value of LSWC in 2002-2011. The red line represents the 

LSWC in 2007. According to the result in 2007, we can find from 0 to 180 days of 

year LSWC were basically consistent with the average value of LSWC. Besides, 

LSWC value in 2007 started to increase significantly from 190 days of year, 

greatly exceeded the average, then decreased significantly after 213 days of 

year and maintaining a consistent with average value again after.  
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Figure 2.2 shows monthly changes of LSWC at flood areas in China in 2007. 

Brighter area indicates high abundance of water coverage at that pixel. We can 

see that it showed the same trend as the red line in Figure 2.3.With the idea 

and method above, the same study was conducted for the other flood events, 

which were selected from International Charter. The daily changes of LSWC 

were shown as Figure 2.4. 

 
    (a) Jan           (b) Feb          (c) Mar          (d) Apr         (e) May          (f) Jun 

 
    (g) Jul           (h) Aug          (i) Sep           (j) Oct         (k) Nov          (l) Dec 

Figure 2.2 Monthly changes of LSWC in Anhui province in China  (32.5N, 115.8E) in 2007. 
Brighter area indicates high abundance of water coverage at that pixel 

 

 
Figure 2.3 Daily changes of LSWC in China (32.5N, 115.8E) in 2007 
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Figure 2.4Comparison of daily changes of mean LSWC with LSWC in certain year 

 

2.3 Anomaly detection compared with International charter 

We compared between the anomaly extracted by AMSR-E and actual flood 

period by International Charter by debugging the absolute and relative error. 

Table 2.2 shows the anomaly detected under the criterion of the absolute error 
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of 20, the relative error of 100 percent. According to the Table 2.2 we could find 

that the detected anomalies by debugging basically coincided with the actual 

period of flooding. Combined with Figure 2.4we can better visually compare the 

detected anomalies with the actual flood period. The floods in Pakistan as an 

example for analysis, the anomaly is 210-260 (DOY), which were calculated 

from the LSWC data, on the other hand, the actual period of flood is around Aug. 

19, 2010. It showed a good identity with each other. 

 

Table 2.2 Comparison of the period of real flood events and anomaly detection from AMSR-E 

Country Actual flood period by 

International Charter 

Anomaly extracted by AMSR-E 

China ~2007/07/19~ 07/10-07/17,07/19-08/1 

Pakistan ~2010/08/19~ 07/29-09/17 

Vietnam ~2008/11/5~ 03/30,07/1,10/26-11/5 

Thailand ~2011/09/30~ 05/17-06/4,09/17-09/30 

Mexico ~2007/11/3~ 01/24,10/27-12/6 

USA ~2008/06/13~ 06/5-06/13 

Australia ~2011/01/9~ 01/6-01/14,03/18-03/21 

Namibia ~2011/04/5~ 03/20-05/1 

Senegal ~2007/09/18~ 08/31-09/23 

Bolivia ~2008/02/9~ 02/8-05/3 

Argentina ~2007/03/30~ 03/28-03/31 

Colombia ~2011/05/23~ 03/29-03/31,04/14-07/5,07/26-07/28 

(absolute error: 20%; relative error: 100%) 

2.4 Image similarity calculation 

In order to visually see the daily change of land surface water coverage, I 

built a LSWC database of one pixel in Huai River in China and mapped the 
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continuous daily LSWC from 2002 to 2011. Among a total 3330 images, I used 

images in January in 2007, which belong to dry season and images in July, 

which belong to rainy season to show the result. The result is showed as Figure 

2.5 and Figure 2.6 respectively. In which we could clearly see the big 

difference of LSWC between dry season and rainy season. Moreover, in addition 

to the specific water area such as rivers and lakes, the water area expanded 

significantly in July, the amount of water in rivers and lakes also increased 

significantly. According to the research results above, there was indeed a flood 

happening around July 19 in 2007. 
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Figure 2.5 Daily LSWC map in Dry season (Jan. 2007) in Huai River Basin 
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Figure 2.6 Daily LSWC map in Rainy season (Jul. 2007) in Huai River Basin 

Firstly, the LSWC image of an objective day in peak of flooding was treat as 

a reference the other days were threat as a target. After calculating the 

Bhattacharyya distance between the reference and each target, the value can be 

ranked out and all the historical images from highest to lowest of LSWC can be 

lined up. The smaller the distance the better they match. 

The flooding happened in Huai river, China in 2007 was used as a case to 

analysis. The LSWC image in 2007/07/19 was threat as a reference. After 

calculating the distance between reference and task, we can get the ranking 

result as Table 2.3 shows. From which we knew that the image of 2003/07/18 
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was the most similar with the reference, 2007/07/19. We could also see from 

Figure 2.7, two images were very similar. So we could conclude that the flooding 

happened around 2007/07/19 might be the same pattern with the flooding 

happened around 2003/07/18. We could get some useful knowledge and 

regularities according to the historical information and development of flooding 

happened in July 2003.  

Table 2.3Ranking result of image similarity calculation 

Date list Similarity Rank Date list Similarity Rank Date list Similarity Rank 

20030718 0.986173 1 20110720 0.980722 11 20050609 0.977885 21 

20070716 0.985977 2 20050712 0.980637 12 20100418 0.977743 22 

20030715 0.98325 3 20070713 0.980468 13 20030722 0.977543 23 

20090616 0.983151 4 20110719 0.980265 14 20100613 0.977541 24 

20030717 0.982222 5 20030721 0.979767 15 20090617 0.977408 25 

20070715 0.981469 6 20050707 0.979642 16 20050930 0.977162 26 

20070710 0.981099 7 20030421 0.979502 17 20060710 0.977039 27 

20050711 0.981075 8 20020630 0.978822 18 20070629 0.97702 28 

20030720 0.980838 9 20020704 0.978149 19 20090613 0.976988 29 

20030331 0.980794 10 20050928 0.977937 20 … … … 

 

  
Figure 2.7 Comparison of LSWC map between standard (2007/07/19) and target (2003/07/18) in 

Huai River Basin 
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2.5 Discussion and Conclusion 

In this part, we demonstrated the potential of AMSR-E for flood detection 

on global scale. The LSWC was mapped and the daily LSWC database derived 

from AMSR-E in time series from 2002 to 2011was built. What’s more, 

International charter was utilized as an information platform to get flooding 

information. The anomaly was extracted which showed a good identity with the 

actual flood events. Finally, image similarity calculation was proved to be an 

effective method to dig up regularities and information of flooding from large 

collection of LSWC images. Therefore, it is indicated the potential and 

superiority of long-term global LSWC database to make clear the flooding 

pattern and trend. 
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Chapter3. Estimation of land surface 
water coverage with PALSAR and 
AMSR-E for large scale flooding detection 

3.1 Datasets and methods 

3.1.1 PALSAR ScanSAR mode data 

PALSAR ScanSAR mode data, with a spatial resolution of 100 meters, were 

used to map LSWC and conduct calibration to AMSR-E. The detailed 

description of 4 scenes of PALSAR ScanSAR used in this study is showed in  

Table 3.2 is detailed description of 4 scenes of PALSAR ScanSAR.  

After carrying out Lee filter for the PALSAR ScanSAR image, we calculated 

backscattering coefficient of digital number as formula (1) shown.  

𝜎!.!! = 10×𝑙𝑜𝑔!"(𝐷𝑁!)+ 𝐶𝐹  (1) 

where：DN: digital number of the amplitude image, CF: calibration factor 

Firstly, a vector of an arbitrary polyline in ascending, descending PALSAR 

scene was created respectively. Then, the incidence angle corresponding to 

location of each pixel of polyline in the scene was calculated by altitude, 

observation swath and range of incidence angle of PALSAR. So the spatial 

profile of polyline with incidence angle against σ0 (dB) was drawn. The 

technical specification of PALSAR data used in this study was shown in Table 

3.1. Finally, only water area was extracted to calculate Min, Max, average and 

standard deviation of σ0 (dB) corresponding to different incidence angles in 

order to find the relationship between incidence angle and backscattering. 
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Table 3.1Technical specification of PALSAR ScanSAR mode 

PALSAR 

Mode Polarization Altitude Incident angle 

ScanSAR HH 691.65km 18.0 to 43.3 deg. 

Range Resolution Recurrent cycle Observation Swath 
Radiometric 

accuracy 

100m 46 days 250 to 350km 1dB (within scene) 

 

Table 3.2 Detailed description of 4 scenes of PALSAR ScanSAR 

Location 
Observation 

data 
Polarization Orbit 

Spatial 

resolution 

Scene Centre 

Latitude Longitude 

Mexico 2007/11/03 HH Descending 100m 18.1N 91.0W 

Vietnam 2008/11/05 HH Descending 100m 20.8N 106.0E 

Australia 2011/01/09 HH Ascending 100m 27.8S 151.6E 

Colombia 2011/04/01 HH Descending 100m 8.2N 74.2W 

 

3.1.2 Otsu’s method 

Otsu’s method can automatically perform clustering-based image 

thresholding, which is according to viewpoint of minimizing the weighted sum 

of within-class variances of the foreground and background pixels in order to 

establish an optimum threshold (Sezgin and Sankur, 2004). Recalling that 

minimization of within class variances is equal to the maximization of 

between-class scatter (Liao et al., 2001).  

𝜎!! 𝑡 = 𝜔! 𝑡 𝜎!! 𝑡 + 𝜔! 𝑡 𝜎!! 𝑡          (2) 

where: Weights 𝜔!: the probabilities of the two classes separated by a 

threshold;t: Threshold; σ!!: Variances of these classes 
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In this study, the histogram of backscattering coefficient of each PALSAR 

ScanSAR scene was built. Each histogram was treated as an input and was put 

into MATLAB to calculate inundated threshold. 

3.1.3 Calibration of AMSR-E with PALSAR by regression analysis 

After masking out inundated area of PALSAR image and aggregating 

image into the same spatial resolution of AMSR-E, which is 10km,some region 

of interests (ROI) were built and spatial registration for PALSAR and AMSR-E 

was also conducted. Then, a calibration function of index NDFI, NDPI 

corresponding to PALSAR LSWC was derived by applying least squares method 

in MATLAB in order to express the relationship between AMSR-E and PALSAR. 

It was shown as an exponential function (5).  

Ϝ 𝑥 = 𝛼 ∗ 𝑒𝑥𝑝(𝑏 ∗ 𝑋)           (5) 

 where: F(x)—PALSAR LSWC;  X—NDFI, NDPI 

3.1.4 Compare of PALSAR by Landsat 

The Landsat L4-5 TM, which has spatial resolution of 30m was used to 

compare with PALSAR. McFeeters first proposed the Normalized Difference 

Water Index (NDWI) in 1996 to detect surface waters in wetland environments 

so that the measurement of surface water extent was allowed (Mcfeeters, 2013). 

Although the index was created for using with Landsat Multispectral Scanner 

(MSS) image data, it has been successfully used with other sensor systems in 

different kinds of applications where the evaluation of extent of open water is 

needed (Chowdary et al., 2008, EPA 2005, Murray et al., 2012, Panigrahy et al., 

2012, USGS 2013). The NDWI is calculated as Equation (6): 

𝑁𝐷𝑊𝐼 = !"#$!!!"#$!
!"#$!!!"#$!

(6) 
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where Band 2 is the green light reflectance and Band 4 is the near-infrared 

(NIR) reflectance 

The NDWI product is dimensionless and varies between -1 to +1. Mcfeeters 

(2013) asserted that values of NDWI greater than zero are assumed to 

represent water surfaces, whereas values less than, or equal to zero are 

assumed to be non-water surfaces. 

3.2 Incidence angle effects to backscattering of PALSAR 

Figure 3.1 shows vector of arbitrary polyline made respectively from 

ascending and descending PALSAR scene. From which we extracted sections A, 

B, C of polyline crossed through water areas from scene a and sections A, B, C, 

D, E from scene b and made spatial profile to show the relationship between 

incidence angle and σ0 (dB) of each scene as Figure 3.2 and Figure 3.3 shows. 

  
a. Australia (2011/01/09) Ascending b. Colombia (2011/04/01) Descending 

Figure 3.1Arbitrary polyline in two scenes of PALSAR ScanSAR mode 
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Figure 3.2Spatial profile of extracted section A, B, C of water area in ascending scene in 
Australia 

 

Figure 3.3Spatial profile of extracted section A, B, C, D, E of water area in descending scene in 
Colombia 

 

From Figure 3.2 and Figure 3.3 it can be seen that the range of incidence 

angle based on two arbitrary polylines is 4 degree and 5 degree respectively. In 

each water area, σ0 (dB) presents some variation. However, make a general 

survey of all water areas in each scene, backscattering shows rather constant 

along with incidence angle. It presents relative similar behavior in their 

average sigma and their variability.  

Table 3.3 Statistic result of different water area in two senses 

 Water area 
Incidence 

angle(°) 
σ0(dB) Max σ0(dB) Min 

σ0(dB) 

Average 
Stdev. 

Australia 

(2011/01/09) 

Ascending 

Area A 39.6 -19.2 -21.1 -20.0 0.48 

Area B 41.0 -19.8 -20.2 -19.9 0.18 

Area C 42.5 -18.7 -21.1 -20.0 0.43 

Average 
 

-19.2 -20.8 -20.0 0.36 

Colombia Area A 38.9 -24.9 -27.0 -25.8 0.72 
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(2011/04/01) 

Descending 

Area B 38.1 -25.0 -26.2 -25.7 0.39 

Area C 37.1 -24.9 -27.0 -25.9 0.66 

Area D 36.2 -24.6 -26.2 -25.2 0.40 

Area E 35.3 -24.6 -26.8 -25.6 0.63 

Average 
 

-24.8 -26.6 -25.6 0.56 

 

Table 3.3shows statistic result of different water area in two senses, from 

the average σ0 (dB) value of water area A, B, C in Australia and water area A, B, 

C, D, E in Colombia we can see that there is a small difference of only 0.1dB and 

0.7dB. According to the average of Max, Min and average σ0 (dB) it can be seen 

that variation of sigma values is within plus and minus1dB, the standard 

deviation of σ0 (dB) against incidence angle is 0.36 and 0.56, smaller than 1, 

which means σ0 (dB) almost centralized to average value. Moreover, by 

comparing scenes of Australia and Colombia, it has been found that there are 

some variations in σ0 (dB) average for the reason that the research area located 

in different type of land use land cover. There is a large range of agriculture 

land in research area in Australia, whereas a large range of forest located in 

research area in Colombia. 

However, according to the PALSAR technical specification, we know that 

radiometric accuracy of PALSAR instrument is less than 1dB within scene 

(Rosenqvist et al., 2004; PALSAR Reference Guide, 2012; ALOS user handbook) 

because of restriction of PALSAR instrument itself like filter bandwidth, time 

delay, inter-beam deviation etc.  Based on the result of this study, we can 

arrive to conclusion that the effect of incidence angle is within the acceptable 

range of PALSAR. 
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3.3 Spatial correpondence between AMSR-E NDFI/NDPI LSWC distribution 
map and PALSAR LSWC distribution map 

Spatial correspondence between PALSAR LSWC and AMSR-E NDFI, 

AMSR-E-NDPI was discussed by comparing LSWC distribution map of them. 

Figure 3.4 and Figure 3.5 are AMSR-E NDFI/NDPI LSWC distribution map and 

PALSAR LSWC distribution map in Mexico and Colombia on the same day 

respectively. Among them, Figure 3.4a and Figure 3.5a are AMSR-E NDFI 

LSWC distribution map. Figure 3.4b and Figure 3.5b are AMSR-E NDPI LSWC 

distribution map. Figure 3.4c and Figure 3.5c show PALSAR LSWC distribution 

map, which have been made by layer stacking with AMSR-E image in order to 

get the same area and also resized into the same spatial resolution with 

AMSR-E. Brighter area indicates high abundance of water coverage at that 

pixel. According to them, a good agreement between AMSR-E NDFI, NDPI and 

PALSAR LSWC can be seen. LSWC distribution images visually match to each 

other. 

However, on comparison with different scenes, especially in case of Mexico, 

some spatial variations can be found between PALSAR LSWC and AMSR-E 

NDFI, NDPI LSWC distribution maps. Combined with Google Earth map we 

found that the land use and land cover of research area is complicated. As we 

know, the mechanism of PALSAR is backscattering, whereas the mechanism of 

AMSR-E is brightness temperature. Although they both belong to microwave 

remote sensing, the mechanism of them is totally different. There are some 

affects brought by surface roughness and vegetation on performance of PALSAR. 

In addition, the incidence angle is an influence factor to backscattering for 

PALSAR ScanSAR image. Based on our previous research, we found that within 

small range of incidence angle, the incidence angle effect is within the 

acceptable σ0  (dB) variation of PALSAR, however, in view of whole scene, from 
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N to F range a constant variation could be seen (Li and Takeuchi, 2015). 

PALSAR will slightly underestimate inundated area due the influence of 

surface roughness and vegetation. What’s more, because of relative coarse 

spatial resolution of AMSR-E, some blur will be produced along with coastal 

line. Besides, as for AMSR-E, the emitted microwave signal is sensitive to both 

the water and the soil moisture. It is hard to distinguish the wetness and 

flooding clearly by relative low spatial resolution. The inundated area will be 

slightly overestimated. Therefore, the calibration of AMSR-E is important. 

   
(a)AMSR-E NDFI LSWC 

(10km resolution) 
(b). AMSR-E NDPI LSWC 

(10km resolution) 
(c). PALSAR ScanSAR LSWC 

(10km resolution) 
Figure 3.4 AMSR-E NDFI/NDPI LSWC distribution map and PALSAR LSWC distribution map 

in Mexico (2007/11/03) Brighter area indicates high abundance of water coverage at that pixel. 

 

   
(a) AMSR-E NDFI LSWC 

(10km resolution) 
(b). AMSR-E NDPI 

LSWC(10km resolution) 
(c). PALSAR ScanSAR LSWC 

(10km resolution) 
Figure 3.5 AMSR-E NDFI/NDPI LSWC distribution map and PALSAR LSWC distribution map 

in Colombia (2011/04/01) Brighter area indicates high abundance of water coverage at that pixel. 

 



Chapter 3.  

25 

3.4 Inundated Threshold selecting 

3.4.1 Interval estimation 

Interval estimation was conducted to derive threshold based on statistical 

theory. 10 interest of regions (ROI) of water area were extracted, the mean µ 

(average) of backscattering (dB) and σ (standard deviation) of each ROI was 

calculated. Then, µ+σ, µ+2σ, µ+3σ, µ+4σ was calculated in order to mask the 

water area respectively and select the optimal range combined with image 

interpretation. 

Figure 3.6 is scene of PALSAR ScanSAR HHσ0 (dB) in Colombia in 

2011/04/01. From it, a basin area was chosen and zoomed in as Figure 3.7e 

shows as a reference scene. Figure 3.7a, b, c, d are overlapped maps of water 

area in different masking ranges with reference scene. Combined with image 

interpretation we can clearly see that with the increase in multiples, masked 

out water area increased. It indicated that the water area was significantly 

underestimated by masking with µ+σ，µ+2σ, whereas the water area was 

overestimated by masking with µ+4σ. 
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Figure 3.6 PALSAR ScanSAR HH σ0 (dB) scene in Colombia in 2011/04/01 
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a.µ+σ (dB) b. µ+2σ (dB) e. Reference ScanSAR HH σ0(dB) 

 

c. µ+3σ (dB) d. µ+4σ (dB)  

Figure 3.7 Overlays of water map in different masking ranges with reference ScanSAR HH σ0 
(dB) 

 

What’s more, a mountain area was chosen and zoomed in shown as Figure 

3.8a to discuss. Figure 3.8b is the water map masking with µ+4σ. On 

comparison with Figure 3.8c Google Earth image, we can see some valleys were 

also masked out as water area. Therefore it can be proved that on masking with 

µ+4σ range, the inundated area was overestimated.  
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a. PALSAR ScanSAR HH σ0 (dB) b. Water area masking with µ+4σ 

 

 

c. Google Earth Map  

Figure 3.8Image interpretation of PALSAR scene in mountain area by masking with µ+4σ 

 

3.4.2 OTSU’s method 

In addition, Otsu’s method was utilized to obtain inundated threshold 

based on histogram of backscatter coefficient. Figure 3.9 shows histogram of 

backscatter coefficient derived from PALSAR ScanSAR HH scenes in Australia 

and Vietnam. 
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a. Australia (2011/01/09) 

 
b. Vietnam (2008/11/05) 

Figure 3.9 Histogram of backscattering coefficient derived from two PALSAR HH scenes 

 

Table 3.4 Comparison of inundated threshold derived by interval estimation and Otsu’s method 

 
Colombia Australia Vietnam Mexico 

µ+σ (dB) -23.05 -20.10 -20.69 -21.85 

µ+2σ (dB) -21.50 -19.09 -18.32 -20.77 

µ+3σ (dB) -20.12 -18.06 -15.50 -19.69 

µ+4σ (dB) -17.65 -17.00 -13.50 -18.61 

Otsu’s method (dB) -21.80 -17.90 -15.45 -19.43 
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Table 3.4 shows the comparison of inundated threshold derived by the two 

methods. By comparing dB, we found that the results obtained by interval 

estimation with µ+3σ and Otsu’s method is identical statistically. The difference 

between µ+3σ and Otsu’s is 0.16dB, 0.05dB, 0.26dB in Australia, Vietnam and 

Mexico, smaller than 0.5dB. However, when the target and the background vary 

greatly with disparity in size proportion, Otsu’s method does not work so well 

sometimes (Zhang et al., 2011). Therefore we defined HH value with µ+3σ as the 

inundated threshold in this research. 

3.5 Calibration of AMSR-E with PALSAR by regression analysis 

3.5.1 Relationship between NDFI/NDPI and PALSAR LSWC 

According to the result above, the confidence interval (µ-3σ, µ+3σ) was 

utilized to mask out inundated area of PALSAR image.  

Figure 3.10 and Figure 3.11 shows the scatter plot of two cases in Mexico 

and Colombia, which represent the relationship between AMSR-E NDFI and 

PALSAR LSWC, AMSR-E NDPI and PALSAR LSWC. From the figure and 

Table 3.5, it was found that the exponential regression curve could precisely 

represent the scatter points and the determination coefficient reached more 

than 0.8. Both NDFI and NDPI have a good fitting result with PALSAR LSWC.  
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Figure 3.10 Scatter plot representing the relation between AMSR-E NDFI/NDPI and PALSAR 

LSWC 
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Figure 3.11 Scatter plot representing the relation between AMSR-E NDFI/NDPI and PALSAR 
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Table 3.5 Results of coefficients a, b and standard deviation 

 
Mexico (2007/11/03) Colombia (2011/04/01) 

 
NDFI-PALSAR NDPI-PALSAR NDFI-PALSAR NDPI-PALSAR 

a 1.850 2.137 1.599 2.006 

b 0.056 0.025 0.064 0.036 

R-square 0.961 0.962 0.897 0.822 

RMSE 2.614 2.693 1.987 2.588 

  ＊Coefficients (with 95% confidence bounds) 

Furthermore, compared with NDFI and NDPI, we can see that the slope of 

curve are different, the same PALSAR LSWC corresponds to a bigger value of 

AMSR-E NDPI. For the reason that NDPI was calculated by brightness 

temperature with bigger frequency-36.5 GHz, which can lead to a stronger 

penetration. NDPI was more likely to be affected by surface roughness. What’s 

more, the RMSE of NDFI is smaller than that of NDPI, NDFI showed a better 

performance than NDPI on land surface water coverage estimation.  
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Figure 3.12 Scatter plot representing the relation between AMSR-E NDFI/NDPI and PALSAR 

 

Moreover, Mori et al. estimated LSWC with AMSR-E and MODIS, found 

the relationship between AMSR-E NDPI and MODIS LSWC (Mori, et al., 2009). 
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According to the logistic function developed by AMSR-E and MODIS, the 

regression curve was added as the red line to compare with fitting curve of 

AMSR-E with PALSAR (Figure 3.12). Based on the result, we can see that in 

this research, the curve between AMSR-E and PALSAR can better represent 

scatter rather than the curve between AMSR-E and MODIS.  

 

3.6 Compare of PALSAR with optical remote sensing—Landsat 

In order to check the ability of water detection of PALSAR, optical remote 

sensing – Landsat was used to compare with it. We used the same location, 

close date of images to compare. Figure 3.13 is comparison of water area derived 

from PALSAR and Landsat. Figure A shows forest and hill area in Colombia, 

figure B shows urban area in Vietnam and figure C shows agriculture area in 

China. Among them, figure c and d are water area extracted from PALSAR and 

Landsat. Table 3.6 is statistical result of water area derived from different 

sensors. From the figure 3.13, we can see the water area basically coincided 

with each other. From the table 3.6, in the three groups the difference of water 

area is 4%, 1.5% and 4.1% in forest/hill area, urban area and agriculture area 

respectively, smaller than 5%.  

  

a. PALSAR – 20110401-Colombia-Forest/hill b. Landsat – 20110406 –Colombia-Forest/hill 
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c. PALSAR - Water area -Colombia d. Landsat - NDWI -Colombia 

A. Colombia 

  

a. PALSAR-20081105-Vietnam-Urban b. Landsat-20081111-Vietnam-Urban 

  

c. PALSAR-Water area -Vietnam d. Landsat-NDWI -Vietnam 

B. Vietnam 
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a. PALSAR – 20070719-China-Agriculture b. Landsat – 20070721-China-Agriculture 

  

c. PALSAR - Water area -China d. Landsat - NDWI -China 

C. China 

Figure 3.13 Comparison of water area derived from PALSAR and Landsat 

 

However, there is still some spatial variation between each other. For 

example, in figure 3.13.C, because of the impact of the cloud, 7.4% water area 

cannot be detected by Landsat as figure 3.13.C.dshows.Besides, in figure 3.13.A, 

in high slope hill area, because of terrain condition like shadow and layover, 5.4% 

water area was failed to detected by PALSAR. Meanwhile, the surface 

conditions and vegetation also influenced it so that it slightly underestimated 

inundated area. 
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Table 3.6statistical result of water area derived from different sensors 

 Land cover type RS type Water area (%) Omission Commission 

Colombia Forest/hill PALSAR 12.8%   

  Landsat 16.8% 1.3% 5.4% 

Vietnam Urban PALSAR 34.8%   

  Landsat 33.3% 7.4% 3.3% 

China Agriculture PALSAR 14.1%   

  Landsat 10.0% 5.6% 7.1% 

 

Therefore, both of optical remote sensing and microwave remote sensing 

have some omission and commission. Selecting the optimal threshold with 

combination of omission and commission based on different objectives is 

important. 

However, what we focus on in this study is large scale flooding on global 

scale, most of them are seasonal flooding almost happened in rainy season 

which always accompanied by cloudy weather. So in this case, it showed the 

advantage and superiority of microwave remote sensing. 

3.7 Discussion and Conclusion 

In this part, we found within small range of incidence angle, the effect of 

incidence angle is within the acceptable σ0 (dB) variation of PALSAR. What’s 

more, we succeeded to select inundated threshold based on interval estimation 

and Otsu’s method and defined HH value with µ+3σ as the inundated threshold 

in this study. Moreover, the LSWC distribution map of PALSAR was mapped. 

Finally, the calibration function was established to show a good relationship 

between NDFI, NDPI of AMSR-E and LSWC derived from PALSAR. 

Furthermore, we found AMSR-E NDFI showed a better performance than 

AMSR-E NDPI on land surface water coverage estimation.
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Chapter4. Integrating 30 years of global 
record of LSWC database using SSMI, 
AMSR-E, WindSAT and AMSR2 

4.1 Datasests and methods 

4.1.1 Passive microwave radiometers of SSMI, WindSAT and AMSR2 

Table 4.1 shows the comparative operating characteristics of each passive 

microwave radiometers. 

Table 4.1 Comparative Operating Characteristics of SSMI, AMSR-E, WindSAT and AMSR2 

Passive 

microwave 

radiometer 

Frequencies 

(GHz) 

Sample Footprint 

Sizes (km) 

Temporal 

resolution 
Parameter Time period 

SSMI 
19.3, 22.3, 

36.5, 85.5 

37 x 28 (37 GHz) 

15 x 13 (85.5 GHz) 
Daily 

Brightness 

Temperatures 

1987/07/09-

Present 

AMSR-E 

6.9, 10.7, 

18.7, 23.8, 

36.5, 89.0 

74 x 43 (6.9 GHz) 

14 x 8 (36.5 GHz) 

6 x 4 (89.0 GHz) 

Half day 
Brightness 

Temperatures 

2002/05/04-

2011/10/04 

WindSAT 

6.8, 10.7, 

18.7, 23.8, 

37.0 

40 x 60 (6.8 GHz) 

16 x 27 (18.7 GHz) 

8 x 13 (37.0 GHz) 

Daily 
Brightness 

Temperatures 

2003/01/06-

Present 

AMSR2 

6.9, 10.7, 

18.7, 23.8, 

36.5, 89.0 

62 x 35 (6.9 GHz) 

12 x 7 (36.5 GHz) 

5 x 3 (89.0 GHz) 

Half day 
Brightness 

Temperatures 

2012/05/18-

Present 
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4.1.2 River basin delineation using HYDRO1k 

HYDRO1k is a geographic database developed to provide consistent and 

comprehensive global coverage of topographically derived data sets, which 

provides a standard suite of geo-referenced data sets with a resolution of 1 km. 

The HYDRO1k data sets are being developed on a continent-by-continent basis, 

for all landmasses of the globe without Antarctica and Greenland. 

Vector river basin data from HYDRO1k was imported into ArcGIS 10.2.2 

for processing. After converting the projection from Lambert-Azimuthal Equal 

Area to Geographic Lat/Lon in WGS84, the first level of basins (main river 

basin) were highlighted and selected based on the Pfafstetter Coding System 

(1989). Besides, population density data of the world derived from gridded 

population of the world (GPW) which provides estimation of population density 

for the years 2000, 2005, 2010, 2015 based on counts consistent with national 

censuses and population registers with respect to relative spatial distribution 

(Tobler et al., 1997, Deichmann et al., 2001). Then, a subdivision for the first 

level of river basin was carried out in densely populated or river rich areas so 

that the global major river basin was derived. 

 

4.1.3 Cross calibration among SSMI, AMSR-E, WindSAT and AMSR2 in the alternate 

process of sensors by linear regression analysis 

Each major river basin was treated as research areas. The same river basin 

respectively from SSMI LSWC map and AMSR-E LSWC map on the same day 

were exported to compare. Moreover, the same way was used for 

cross-calibration of AMSR-E LSWC map and WindSAT LSWC map, WindSAT 

LSWC and AMSR2 LSWC.   
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Then, a linear regression model was derived to express the relationship as 

linear function as shown in equation (2).  

F(x) = P!  X+ P!                (2) 

Where F(x) represent AMSR-E LSWC when X express WindSAT LSWC, 

whereas F(x) represent SSMI LSWC or WindSAT LSWC when X express 

AMSR-E LSWC or AMSR2 LSWC. The parameter p1 express slope of line and p2 

express intercept. 

4.1.4 Cumulative distribution function 

Firstly, one representative pixel in a region of interest (ROI) was extracted, 

which the size is 10km multiply by 10km. Then, the number of days 

corresponding to each LSWC value was calculated by integrating totally all 

days. Thirdly, after drawing histogram we calculated the probability and 

cumulative distribution function of representative pixel against LSWC. The 

cumulative distribution function of a real-valued random variable X is the 

function given by (Gentle, J.E., 2009) 

𝐹!(𝑥) = 𝑃  (𝑋 ≤ 𝑥)              (3) 

P represents the probability that the random variable X takes on a value 

less than or equal to x. 

The Cumulative distribution function (CDF) of a continuous random 

variable X can be expressed as the integral of its probability density function f(x) 

as follows (Daniel, Z. and Stephen, K., 2010): 

𝐹!(𝑥) = 𝑓!(𝑡)𝑑𝑡
!

!!
                (4) 

t represents an observed value of the test statistic. 
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Finally, probability and cumulative distribution function of all pixels in 

global area during last 30 years by programming were calculated. The global 

cumulative distribution function map set was derived. The simplified diagram 

of integrating processing was showed in Figure 4.1. 

  
Figure 4.1 Simplified diagram of integrating processing 

 

4.2 Cross calibration among SSMI, AMSR-E, WindSAT, AMSR2  

4.2.1 River basin extraction 

Global map of gridded population density in 2015 was prepared and the 

first level river basins (main river basin) all over the world were derived from 

HYDRO1k data set. Figure 4.2shows the gridded population density of the 

world in 2015 overlaid by the first level of river basins wherein each pixel value 

represents persons per square kilometer. It can be seen that the population 

density in Asia and some area in Europe and Africa is very high, especially that 

in India, Bangladesh and China is much high.  
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Figure 4.2 Gridded population density of the world in 2015 overlaid by the first level of river 
basins, the pixel values represent persons per square kilometre. 

Since flooding causes more damage in densely populated areas. Therefore, 

taking into account the river distribution and population density we carried out 

a subdivision for the first level river basin in densely populated or rich basin 

area and finally the 68 major river basins in the worldwide with ID as shown in 

Figure 4.3. Table 4.2 shows the list of several significant major river basins and 

the corresponding ID of each continent. 

 
Figure 4.3 68 major river basin with ID of the world derived from HYDRO 1k data set. 
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Table 4.2 Selected several major river basins and the corresponding ID by continents. 

Continent ID River basin ID River basin 

North America 100 Great basin 110  Yukon 

 
120 Mackenzie 140 Saskatchewan/Nelson 

 160 St Lawrence 170 East coast 

 180 Mississippi 192 Colorado 

South America 200 La Puna/Mar Chiquita 220 Orinoco Basin 

 230  Atlantic North Coast 240 Amazon Basin 

 260 Tocantins Basin 280 La Plata Basin 

Africa 300  Lake Chad 350 Orange 

 
320 Nile 360 Congo 

 
340 Zambezi 380 Niger 

Europe 420 Tigris/Euphrates 440 Don 

 450 North Black Sea Coast 460 Dnieper 

 480 Danube 492 Sweden/Finland/Scandinavia 

Asian 510 Brahmaputra Basin 580 Amur Basin 

 
511 Ganges 591 Huang He Basin 

 
515 Indus Basin 592 Yangtze Basin 

 
520 Ob 594 Mekong Basin 

 
540 Yenisey 596 Irrawaddy Basin 

 

4.2.2 Spatial correpondence among each passive microwave sensing in the alternate 

process of sensors 

Spatial correspondence between SSMI LSWC and AMSR-E LSWC; 

AMER-E LSWC and WindSAT LSWC; WindSAT LSWC and AMSR2 LSWC had 

also been discussed. We mapped the SSMI LSWC, AMSR-E, WindSAT, AMSR2 

LSWC distribution map. Brighter area indicates high abundance of water 
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coverage at that pixel. Some river basins were chosen to show. From Figure 4.4, 

Figure 4.5, Figure 4.6, we can see a high correspondence among four passive 

microwave radiometers in each compared area. Images basically match to each 

other. Moreover, in the LSWC map of SSMI and WindSAT, the edge of water 

area shows some blur. For the reason that the spatial resolution of SSMI and 

WindSAT radiometer is less than 10km, after we resized it to the same spatial 

resolution of AMSR-E, it cannot clearly tell the difference with relative coarse 

spatial resolution. Therefore, the calibration between each sensor in the 

alternate process is necessary. 

 

    
SSMI LSWC AMSR-E LSWC SSMI LSWC AMSR-E LSWC 

a. Ganges delta (2002/07/27) b. Mekong delta (2002/08/24) 

Figure 4.4 Spatial correspondence between SSMI LSWC distribution map and AMSR-E LSWC 
distribution map in different areas on the same day, brighter area indicates high abundance of water 

coverage at that pixel. 

 

    

Windsat LSWC AMSR-E LSWC Windsat LSWC AMSR-E LSWC 

a. Ganges delta (2011/10/01) b. Mekong delta (2011/10/01) 
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Windsat LSWC AMSR-E LSWC Windsat LSWC AMSR-E LSWC 

c. Chao Phraya River basin, Tailand (2011/10/01) d. Amazon basin (2011/10/01) 

Figure 4.5 Spatial correspondence between AMSR-E LSWC distribution map and WindSAT 
LSWC distribution map in different areas on the same day, brighter area indicates high abundance 

of water coverage at that pixel. 

 

 

    

AMSR2 LSWC Windsat LSWC AMSR2 LSWC Windsat LSWC 

a. Ganges delta (2012/07/03) b. Irrawaddy River, Myanma (2012/07/03) 

  

AMSR2 LSWC AMSR2 LSWC 

  

Windsat LSWC Windsat LSWC 

c. Huai river basin, China (2012/07/03) d. Amazon basin (2012/07/03) 

Figure 4.6 Spatial correspondence between WindSAT LSWC distribution map and AMSR2 
LSWC distribution map in different areas on the same day, brighter area indicates high abundance 

of water coverage at that pixel. 
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4.2.3 Calibration among SSMI, AMSR-E, WindSAT and AMSR2 LSWC for all the river 

basin 

Cross calibration was conducted for all the 68 river basins. The regression 

function and scatter plot was made. Figure 4.7, Figure 4.8and Figure 4.9show 

scatter plots of different river basins on the same day which representing the 

relationship between SSMI LSWC and AMSR-E LSWC, AMSR-E LSWC and 

Windsat LSWC, Windsat LSWC and AMSR2 LSWC. The X axis represents 

AMSR-E LSWC, Y axis represent WindSAT LSWC and scatter is value of each 

pixel. We can see that in each case, scatter plots present a linear distribution. 

Moreover, from scatter plot, we can see the regression line of some basins tend 

to be one to one line, but in some river basin the slope of regression line is small. 

So the cross calibration river basin by river basin is necessary. 

Figure 4.10 is cross calibration line of SSMI with AMSR-E for all the river 

basins. It can be seen that there are some variance between line and line. Table 

4.3shows all the regression equation and evaluation parameters of SSMI with 

AMSR-E for each river basin. With the same way, we got calibration functions 

for all the river basins between AMSR-E and WindSAT, WindSAT and AMSR2 

shown as Figure 4.11.Based on these equations, we modified the original 

database and finally got a cross calibrated LSWC database in time series from 

1978 to 2015 successfully. 
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a. Ganges delta (2002/07/27) b. Irrawaddy basin (2002/07/27) 

Figure 4.7 Scatter plot representing the relation between SSMI LSWC and AMSR-E LSWC 

  

a. Mekong river (2011/10/01) b. Ganges delta (2011/10/21) 

Figure 4.8 Scatter plot representing the relation between AMSR-E LSWC and WindSAT LSWC 

  

a. Ganges delta (2012/07/03) b. Indus basin (2012/07/03) 

Figure 4.9 Scatter plot representing the relation between WindSAT LSWC and AMSR2 LSWC 
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Figure 4.10 Calibration line of SSMI with AMSR-E for all the river basins 
 

Table 4.3 The regression equation and evaluation parameters between SSMI and AMSR-E 

ID Function R2 ID Function R2 ID Function R2 

500 y=0.61x-0.43 0.65 400 y=0.98x-0.44 0.90 100 y=0.261x-0.11 0.69 

510 y=0.79x+0.31 0.73 410 y=0.85x+0.81 0.71 110 y=0.85x+1.19 0.77 

511 y=0.77x-0.70 0.85 420 y=0.20x-0.06 0.23 120 y=0.68x-0.79 0.77 

512 y=0.87x-1.74 0.94 430 y=0.82x+0.39 0.64 130 y=0.67x+2.13 0.53 

513 y=0.85x-1.52 0.80 440 y=0.24x+0.01 0.37 140 y=0.73x-1.11 0.70 

514 y=0.80x+1.33 0.65 450 y=0.92x+4.17 0.73 150 y=0.71x+0.28 0.58 

515 y=0.81x-0.86 0.63 460 y=0.25x-0.01 0.34 160 y=0.95x+2.54 0.85 

520 y=0.34x-0.22 0.58 470 y=0.87x-1.39 0.85 170 y=0.87x+3.22 0.76 

530 y=0.80x+3.89 0.53 480 y=0.31x-0.29 0.43 180 y=0.76x-1.20 0.77 

540 y=0.77x-0.84 0.75 490 y=1.01x+3.24 0.71 190 y=1.03x-1.06 0.89 

550 y=0.91x+2.38 0.63 491 y=0.89x+0.37 0.83 191 y=0.86x+1.80 0.74 

560 y=0.38x-0.44 0.38 492 y=0.95x+1.45 0.67 192 y=1.14x-0.33 0.72 

570 y=0.90x+2.41 0.69 493 y=1.06x+3.45 0.61 200 y=0.71x-0.73 0.90 

580 y=0.49x-0.59 0.62 300 y=0.26x-0.18 0.38 210 y=1.04x+2.82 0.62 

590 y=0.98x+5.89 0.68 310 y=0.99x-0.46 0.67 220 y=0.43x-0.59 0.62 
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591 y=0.98x-0.85 0.72 320 y=0.86x-1.10 0.83 230 y=0.95x-0.52 0.79 

592 y=0.44x-0.53 0.59 330 y=0.79x+0.67 0.72 240 y=0.35x-0.51 0.63 

593 y=0.90x+1.19 0.74 340 y=0.77x-0.60 0.89 250 y=0.79x-0.08 0.70 

594 y=0.82x-1.27 0.67 350 y=0.92x-0.36 0.72 260 y=0.20x-0.20 0.75 

595 y=0.90x+1.81 0.76 360 y=0.68x-0.79 0.81 270 y=1.12x-0.22 0.63 

596 y=0.91x +0.80 0.89 370 y=1.05x-0.49 0.79 280 y=0.27x-0.10 0.56 

630 y=0.90x+2.57 0.77 380 y=0.47x-0.64 0.57 290 y=0.83x+1.53 0.61 

690 y=0.91x+3.17 0.76 390 y=0.87x-0.60 0.63    

 

  

Figure 4.11Calibration line of WindSAR with AMSR-E and AMSR2 with WindSAT for all river 
basins 

 

4.3 Temporal analysisby calibrated 30 year LSWC dataset 

LSWC of one pixel, which has area of 100km2, in some flooding areas was 

computed by combining SSMI, AMSR-E, WindSAT and AMSR2 from 1987 to 

2015. Figure 4.12shows daily change of LSWC from 1987 to 2015 of ten flooding 

events. According to time series plotting, we could learn the variation 

characteristics and regular pattern of LSWC. The flooding in Tabasco, Mexico 

and in Songhua river basin, China were used to illustrate, we can see that in 

Tabasco, Mexico, LSWC increased obviously almost in every year around Nov., 

which was most evident in 2007, 2008 and 2010, more than 80%. However, in 
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the research area of Songhua river basin, China, LSWC increased obviously 

only in 2013. We already know that a big flooding happened in Nov. 2007 in 

Tabasco, Mexico and in Aug. 2013 in Songhua river basin, China according to 

the International charter. Therefore, we could initially conclude that the flood 

happened in Tabasco, Mexico belongs to the seasonal flood. Whereas, flood 

happened in Songhua River basin, China belongs to the flash flood. In previous 

research, LSWC has been proved a good performance in large-scale flooding 

detection (Li and Takeuchi, 2014, 2015). Based on viewpoint of retrieval of 

historical record and long-term database, we can not only detect flood event but 

also make clear the flooding pattern of each flooding area.  
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Figure 4.12 Daily change of LSWC in each flooding event from 1987 to 2015 

 

Moreover, the average of LSWC in last 15 years and last 30 years was also 

calculated to compare with the selected specific year when big flooding 

happened as Figure 4.13shows. The blue line represents the average LSWC in 

last 30 years, the red line represents the average LSWC in last 15 years, and 

the black dotted line represents the LSWC in a specific flooding year. According 

to 10 cases showed in Figure 4.13, we can see that LSWC during the flooding in 

specific year significantly exceeds the average. Moreover, we can also see that 

the trend of LSWC in last 15 years was basically consistent with the trend of 

LSWC in last 30 years. While the LSWC value of nearly 15 years is greater than 

the value of nearly 30 years. It is indicated that LSWC has increased year by 

year, and it was expected a growth trend from now on. 
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Figure 4.13Comparison of daily changes of LSWC among average of last 30 years and average 
of last 15 years and a specific flooding year 
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4.4 Probability density analysis and cumulative distribution function of 
LSWC 

4.4.1 Pixel scale 

We chose one representative pixel from each research area and drew 

cumulative distribution curve belongs to different land use land cover types as 

Figure 4.14shows. It can be seen that in different land use land cover types the 

slope of curve changed greatly, shows different kind of curve shapes. From 

barren land, agriculture land, forest, wetland to urban land, the slope of curve 

getting flat. Moreover, when LSWC greater than 20, there are one month in one 

year in the wetland of Mexico. For the urban land in Vietnam there are about 

three and half months in one year. Table 4.4 shows the cumulative distribution 

function of each representative pixel. It can be seen that determination 

coefficient R2 is bigger than 0.60. From barren land, agriculture land, forest, 

wetland to urban land, the coefficient of fitting equation is getting bigger, 

changes from 0.04 to 0.27. 

 

Figure 4.14 Comparison of probability of LSWC in different position of different land use land 
cover types 
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Table 4.4 Cumulative distribution function of each representative pixel 

Position Land use land cover Fitting equation R² 

Huai river basin 1, China      

(32.5N 115.8E) 
Agriculture  y = 0.08ln(x) + 0.69 0.64 

Huai river basin 2, China      

(32.4N 116.3E) 
Agriculture  y = 0.12ln(x) + 0.51 0.74 

Pakistan                                 

(28.2N 69.4E) 
Agriculture  y = 0.11ln(x) + 0.55 0.77 

Vietnam                                 

(20.9N 105.8E) 
Urban land y = 0.27ln(x) - 0.17 0.95 

Namibia                                 

(17.9S 15.6E) 
Barren land y = 0.04ln(x) + 0.83 0.86 

Songhua river basin, China     

(47.7N 132.3E) 
Barren land y = 0.04ln(x) + 0.85 0.60 

Mexico                                  

(18.2N 92.5W) 
Wetland  y = 0.17ln(x) + 0.28 0.81 

Argentina                              

(27.4S 57.6W) 
Forest land y = 0.17ln(x) + 0.32 0.76 

 

According to the result above, it can be seen a basic regularity among 

different land use and land cover type. From wetland, forest, agriculture, to 

barren land, with the increase of aridity, the probability with high LSWC in one 

year decreases. The probability of LSWC can also be inferred by land use land 

cover type. 

4.4.2 Global scale 

With the same method, we got 100 images to show the probability and 

cumulative distribution for all the pixels corresponding to different LSWC value 
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on global scale. Figure 4.15 is probability distribution map for each LSWC value 

in global area and Figure 4.16 is cumulative distribution map for each LSWC 

value in global area during nearly 30 years. From Figure 4.15, we can see that 

some areas like North Africa, Mongolia, where the CDF tend to be maximum 

when LSWC is 1, are always very dry. Whereas when the CDF in almost all the 

area tend to be 1, but some areas like Yangtze basin, Ganges basin, still 

remained small value. It can be proved they are very wet areas. Based on it, we 

could know cumulative distribution corresponding to each LSWC value on 

global scale.  
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Figure 4.15Probability distribution map of each LSWC value in global area 

 

 



Chapter 4.  

61 

 

 



Chapter 4.  

62 

 

Figure 4.16Cumulative distribution map of each LSWC value in global area during 30 years 

 

4.5 Discussion and Conclusion 

In this part, at first, the 68 major river basins were derived in the 

worldwide. Then, LSWC derived from SSMI, AMSR-E, WindSAT, AMSR2 was 

mapped and cross calibration among each passive microwave radiometers in the 

alternate process of sensors was conducted for each river basin. Based on every 

calibration equations, the original database was modified and finally we got a 

cross calibrated LSWC database in time series from 1978 to 2015 successfully. 

In addition, by conducting temporal analysis by cross-calibrated LSWC 

database, it was found that the LSWC value of latest 15 years is greater than 

the value of latest 30 years. It is indicated a growth trend in LSWC during last 

30 years. What’s more, we calculated the histogram and probability of LSWC by 

integrating data during 30 years and created a global cumulative probability 

distribution data set in global scale. From wetland, forest, agriculture, to barren 

land, with the increase of aridity, the probability with high LSWC in one year 

decreases. It is indicated that the probability of LSWC can be inferred by land 

use land cover type. 
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Chapter5. Analysisof precipitation and 
land cover change on the global LSWC 
database& LSWC anomaly detection 

5.1 Datasets and methods 

5.1.1 Climate variables of precipitation analysis by CRU_TS_V3.23 

The gridded CRU_TS (time-series) v3.23 dataset, produced by the Climatic 

Research Unit (CRU) at the University of East Anglia, provides 

month-by-month variations in climate over the period from 1901 to 2014 with 

0.5×0.5 degree grids (Hulme, 1992, Hulme et al., 1998). Firstly the same 

coordinate system (Geographic Lat/Lon in WGS84) was defined to CRU_TS 

precipitation data as projection of river basin in order to combine rainfall 

dataset with river basin. Then rainfall pattern of each major river basin was 

computed by integrating long time series of data from 1980 to 2014 in order to 

compare with the LSWC pattern of the same river basin. 

5.1.2 STL analysis and correlation analysis 

Linear regression has been widely applied to the trend analyses, however, 

it is unable to provide accurate assessment of nonlinear trends  (Shamsudduha 

et al. 2009). A nonparametric time series decomposition method known as STL 

is capable of detecting nonlinear patterns in the long-term trends 

(Shamsudduha et al. 2009). STL is a filtering procedure based on locally 

weighted regression smoother (LOESS) for decomposing time series data into 

trend, seasonal and remainder component (Cleveland et al., 1990). STL provides 

an accurate and robust estimation of trend and seasonal components due to its 

capacity to deal with outliers or missing values within the time series (Jacquin 

et al. 2010). It has been used to assess the degradation of vegetation cover in the 
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Madagascar savanna based on MODIS NDVI time series data (Jacquin et al. 

2010). 

STL decomposes time series data into three separate 

components—seasonal (St), trend (Tt) and remainder (Rt):  

Xt=St + Tt + Rt (2)  

The seasonal component provides the information of phenology cycle of the 

research variables, the trend component enables determination of the direction 

of change during the study period (Jacquin et al. 2010). The trend component 

was modeled by a piecewise linear function.  

The cross-correlation was used to detect the temporal relationship between 

the trend component of monthly LSWC and the trend component of monthly 

precipitation. Cross-correlation was calculated in software R. Least-square 

linear fit of the annual change of LSWC was carried out to explore yearly trend 

of LSWC in this study. The accuracy test was conducted using the coefficients of 

determination (R2) for linear models (Chang et al. 2014). 

5.1.3 Land cover change map 

The land cover maps from year of 1992 (UMD_LC), 2000 (GLC2000) and 

2012 (BU_LC) were used to discuss and explore the relationship between land 

cover change and LSWC change (Loveland et al., 2000, Friedl et al., 2002, 

Bartholome and Belward, 2005). The specification of three land cover products 

is shown in Table 5.1 (Zhang and Tateishi, 2013, Song et al., 2014). Based on 

three kind of classification schemes and conversion legends as shown in Table 

5.2 (Bai et al., 2014), urban area, forest, cropland area and water body for the 

years 1992, 2000 and 2012 was masked out respectively. Finally the land area 

change of each land cover type in each major river basin was calculated. 
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Table 5.1 Characteristics of the three global land cover data sets assessed in this study. 

Global land 

cover data set 

Classification 

scheme 

Sensor Date Number of 

classes  

Resolution 

UMD_LC Simplified IGBP AVHRR 1992 14 1km 

GLC2000 FAO LCCS SPOT-4 2000 23 1km 

BU_LC IGBP MODIS 2012 17 1km 

 

Table 5.2 Conversion legends table of three land cover maps. 

Target legend 
1992  

(UMD-LC) 

2000 

(GLC2000) 

2012 

(BU-LC) 

Cropland Class 11 Class16-18 Class 12, 14 

Forest Class1-6 Class1-6, 9-10 Class 1-5, 8 

Urban Class 13 Class 22 Class 13 

Water Class 0 Class 20 Class 0 

 

5.2 Time series analysis between precipitation and LSWC 

In order to make clear the relationship between rainfall and LSWC, the 

monthly precipitation change of all river basins worldwide was computed by 

integrating long-term monthly CRU precipitation dataset from 1981 to 2014. In 

addition, daily LSWC change from 1987 to 2015 based on cross-calibrated 

LSWC dataset combining with SSM/I, AMSR-E, WindSAT and AMSR2for each 

river basin was computed. The graph of comparison of precipitation and water 

area for 68 river basins were made.  

Figure 5.1 shows the corresponding relationship between precipitation and 

water area for some major river basin. It can be seen that the water area change 

pattern basically coincides with the rainfall pattern, showing a seasonal 

variation characteristic within each year. Moreover in the long term, the trend 
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of continued growth or decreasing in rainfall is not clear whereas water area 

showed an increasing trend. Figure 5.2 shows least square linear fit of the 

annual total change of water area. We can see that water area in these river 

basins showed an annual increasing trend. It can be indicated that rainfall is 

not the only factor that makes the change of LSWC. 

 

a. Machenzie (120) 

 

b. Amazon (240) 

 

c. North Black Sea Coast (450) 
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d. Sweden/Finland/Scandinavia (492) 

 

e. Ganges (511) 

 

f. Yenisey (540) 

 

g. Huang He (591) 
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h. Yangtze (592) 

 

i. Mekong (594) 

Figure 5.1 Daily change of water area and monthly change of precipitation of each river basin. 
 

 

a. Amazon (240) 
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b. Yangtze (592) 

 

c. Mekong (594) 

Figure 5.2 Least square linear fit of the annual change 
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Figure 5.3 Seasonal trend and long-term trend of precipitation in Brahmaputra (510) 

 
Figure 5.4 Seasonal trend and long-term trend of LSWC in Brahmaputra (510) 

 

Figure 5.5 The interactive correlation of long-term trend between precipitation and LSWC in 
Brahmaputra (510) 
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Figure 5.6 Seasonal trend and long-term trend of precipitation in Yangtze basin (592) 

 
Figure 5.7 Seasonal trend and long-term trend of LSWC in Yangtze basin (592) 

 

Figure 5.8 The interactive correlation of long-term trend between precipitation and LSWC in 
Yangtze basin (592) 



Chapter 5.  

72 

 
Figure 5.9 Seasonal trend and long-term trend of precipitation in Mekong-river (594) 

 
Figure 5.10 Seasonal trend and long-term trend of LSWC in Mekong-river (594) 

 
Figure 5.11 The interactive correlation of long-term trend between precipitation and LSWC in 

Mekong-river (594) 

In addition, STL method was used in order to make clear the long-term 

trend relationship between precipitation and water area change. Figure 5.3, 

Figure 5.6, Figure 5.9 is seasonal trend and long-term trend of precipitation in 

Brahmaputra, Yangtze basin and Mekong-river. Figure 5.4, Figure 5.7, Figure 

5.10shows seasonal trend and long-term trend of LSWC in Brahmaputra, 

Yangtze basin and Mekong-river. It was found that the seasonal trend between 

precipitation and LSWC was very coincided but the long-term trend of them 
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was not identical even though we still can find some similar shape. Moreover, 

from the interactive correlation of long-term between precipitation and LSWC 

shown as Figure 5.5, Figure 5.8, Figure 5.11, in Yangtze basin, the precipitation 

is negatively related to the LSWC and the correlation coefficient was -0.27. In 

the case in Mekong basin, the interactive correlation coefficient was 0.6. There 

is some relationship but no significant correlation between long-term trend in 

LSWC and precipitation. Rainfall was indicated not the only factor that brings 

about the change in LSWC.  

5.3 Trend of water area of each river basin in global scale 

After integrating 30 years of global LSWC daily data, the trend of LSWC in 

each river basin was computed as shown in Figure 5.12. In all 68 basins, almost 

unchanged river basin just accounted for only 18%, most of them showed 

obvious growth trend. Declining trend basin accounted for 2.9%, essentially 

unchanged basin accounted for 20.6%, the growth trend basin accounted for 

76.5% 

 

Figure 5.12 The trend of water area on global scale during last 30 years 

 



Chapter 5.  

74 

5.4 The influence of land cover change on LSWC change 

5.4.1 Land cover change from the year 1992, 2000 to 2012 in different river basin 

To further explore factors affecting LSWC, land cover change has been 

discussed. Figure 5.13 shows the proportion of cropland, forest, urban and water 

body area for the year 1992, 2000 and 2012 in different river basin, from which 

we could clear understand the composition and change of each land cover type 

during last 20 years. It could be seen there was no clear trend feature in forest 

cover change. A strong increase in urban area could be found in each basin. 

Especially in Yangtze basin and Huang He basin from 2000 to 2012, the urban 

region increased from 0.08% to 0.83% and from 0.17% to 2.21%. It can also be 

seen that due to global warming, the Himalayan snowmelt year by year, 

causing water in Brahmaputra river increased significantly. Moreover, from 

1992 to 2000 and then to 2012, the proportion of croplands consistent increased. 

Brahmaputra basin area increased by 13.61%, Yangtze basin increased by 

8.02%, especially Ganges basin increased by 41.35%, grew to nearly 70%. 

By comparing cropland with LSWC change from 1992, 2000 to 2012 in each 

basin as shown in Table 5.3, we can find that the cropland presented consistent 

growth situation along with LSWC. According to the relative change in 

Brahmaputra basin, the croplands increased by 5% and 8%, while LSWC 

increased by 4% and 3%. It is hypothesized that since during sowing season 

irrigation causes cropland surfaces to be covered by water, it could have led it to 

be detected as an inundated area. Moreover, since the increase of human 

population and standards of living demand more harvest and production from 

the earth resources, increased irrigation frequency or sowing time in one year 

can be anticipated. Thus it is expected that the widespread expansion of 

cropland may bring about LSWC increasing. In addition, it can also be inferred 



Chapter 5.  

75 

that the rapid expansion of urban and reduction of forest area may be factors 

affecting LSWC change. 

  

a. Yenisey (540) b. AmurBasin(580) 

  

c. Huanghe(591) d. Mekong (594) 
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a. Brahmaputra (510) b. Ganges (511) 

 

 

c. Yangtze (592)  

Figure 5.13 Proportion of 4 types of land cover for 1992, 2000 and 2012 in each river basin 
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5.4.2 Compare of cropland area change with LSWC change 

Table 5.3 Compare of cropland and LSWC change from 1992, 2000 to 2012 in three basins 

River basin Category 

Percentage (%) 
Correlation 

coefficient 1992 2000 2012 
Relative change 

1992-2000 2000-2012 

Brahmaputra 

(510) 

Cropland 11 16 24 5 8 
0.99 

LSWC 7 11 14 4 3 

Ganges 

(511) 

Cropland 28 65 69 37 4 
0.88 

LSWC 4 5 6 1 1 

Huanghe 

(591) 

Cropland 18 27 32 9 5 
0.98 

LSWC 16 20 24 4 4 

Yangtze 

(592) 

Cropland 26 29 34 3 5 
0.98 

LSWC 1 2 3 1 1 

Mekong  

(594) 

Cropland 15 27 35 12 8 
0.99 

LSWC 3 4 5 1 1 

 

By comparing cropland with LSWC change from 1992, 2000 to 2012 in each 

basin as shown in Table 5.3, we can find that the cropland presented consistent 

growth situation along with LSWC. The correlation coefficients between 

cropland and LSWC change was more than 0.85. We considered that since 

during sowing season irrigation causes cropland surfaces to be covered by water, 

it could have led it to be detected as an inundated area. Moreover, since the 

increase of human population and standards of living demand more harvest and 

production from the earth resources, increased irrigation frequency or sowing 

time in one year can be anticipated. Thus it is expected that the widespread 

expansion of cropland may bring about LSWC increasing.  
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5.4.3 Compare of land cover change obtained by FAO and Remote Sensing 

   In order to validate the land cover change result obtained by method of 
remote sensing. The statistic data obtained from FAO (Food and Agriculture 
Organization) was used to compare. Table 5.4 shows the comparison of forest 
and cropland area in 1992, 2000 and 2012 year obtained by method of FAO and 
Remote Sensing.  

Table 5.4 Comparison of land cover area in 1992, 2000 and 2012 year obtained by FAO and RS 

Obtaining 
method 

Land cover 
type 

Area (%) 

1992 year 2000year 2012 year 

FAO Forest 4.42 (%) 4.36 (%) 4.31 (%) 

 Cropland 2.47 (%) 2.68 (%) 3.13 (%) 

RS Forest 6.44(%) 7.29(%) 6.87(%) 

 Cropland 1.82 (%) 2.65 (%) 2.82 (%) 

 

   From table 5.4, comparing with method of FAO and Remote Sensing, it can 
be seen there is around 2.5% difference in forest. As for cropland, there is 
relative a small difference which is 0.65% in 1992, 0.03% in 2000 and 0.31% in 
2012. Although there are some differences between the results obtained by two 
methods, but from year of 1992 to 2000 to 2012, the trend is substantially 
consistent especially for cropland. Therefore, it is indicated that the result of 
land cover change obtained by remote sensing in this study is reasonable and 
can be verified. 
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5.5 Anomaly detection 

 

Figure 5.14 LSWC anomaly for Mississippi basin from 1988 to 2015 

 

Figure 5.14 is the anomaly image of Mississippi basin in May from 1988 to 

2015. Red color represents a positive difference, blue color represents for 

negative difference. According to this map, we can visually find in which year 

there is some anomaly. 
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Figure 5.15 LSWC anomaly in each month during 1987-2015 in each basin 
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Then, we calculated the z-score of LSWC and counted the anomaly in each 

month since 1987 to 2015 for each river basin as shown in Figure 5.15. 
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Figure 5.16 The monthly flooding development during last 30 years in global scale. 

Combining anomaly of 12 months, we made anomaly map for each year and 

got the monthly flooding development during nearly last 30 years in global scale. 

From Figure 5.16, it showed a growth trend of anomaly on frequency especially 

since last 15 years. And a significantly rise could be found in nearly five years, 

the potential floods can be detected. 

5.6 Discussion and Conclusion 

  In this part, firstly, by comparing precipitation monthly change with 

LSWC daily change of each river basin, we found that LSWC pattern basically 

coincide with rainfall pattern, showing a seasonal variation characteristic in 

each year. Secondly, by conducting STL method, it can be found their seasonal 

trend was similar however there was no significant correlation between 

long-term trend in LSWC and precipitation. Rainfall was indicated not the only 

factor that brings about the change in LSWC. Thirdly, it was found that the 

change in urban was very strong in Yangtze basin, from 2000 to 2012, changed 

from 0.08% to 0.83%. Moreover, the proportion of cropland increased 
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significantly, especially Ganges basin increased by 41.35%, grew to nearly 70%. 

In addition the trend of consistent growth was showed both by cropland and 

LSWC. It is expected that the widespread expansion of cropland may bring 

about LSWC increasing. What’s more, by comparing with statistic data of land 

cover change obtained by FAO, it is indicated that the result of land cover 

change obtained by remote sensing in this study is reasonable and can be 

verified. Furthermore, by detecting the anomaly of LSWC, the potential floods 

can be detected, which showed a monthly growth trend on frequency especially 

since last 15 years. 
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Chapter6. Conclusions and future work 
6.1 Conclusions 

This research using long term of nearly 30 years LSWC database the 

probability and trend of land surface water coverage on global scale were 

estimated which could help us understand historical tendency of land 

surface water coverage in each river basin. 

Firstly, the investigated incidence angle effect to the backscattering 

for PALSAR. The change of incidence angle brought backscattering 

variation in PALSAR ScanSAR images. The standard deviation of σ0 (dB) 

against incidence angle in two scenes is 0.36 and 0.56, smaller than 1dB, 

within the acceptable range of PALSAR in this study. Moreover, based on 

interval estimation and Otsu’s method, (µ+3σ0) (dB) was defined as the 

inundated threshold to map LSWC distribution of PALSAR in this study. 

In addition, the calibration function was established to show a good 

relationship between NDFI, NDPI of AMSR-E and LSWC derived from 

PALSAR, which all the R2 was more than 0.80. Besides, since the NDPI 

was calculated by brightness temperature with bigger frequency-36.5GHz, 

which can lead to a stronger penetration, NDPI more likely to be affected 

by surface roughness. NDFI showed a better performance than NDPI on 

land surface water coverage estimation. What’s more, for the mechanism of 

PALSAR is backscattering whereas the mechanism of AMSR-E is 

brightness temperature although they are belong to the same microwave 

remote sensing. A slight underestimation in inundated area was found for 

the surface conditions and vegetation would influence backscattering of 

PALSAR. However, because of relative low spatial resolution of AMSR-E, a 

slight overestimation was found in inundated area. Finally, by comparing 
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with optical remote sensing, it showed the advantage and superiority of 

microwave remote sensing in this study. 

  Secondly, taking into account population density of the world 68 

major river basins all over the world were delineated using Hydro 1k 

dataset. The long term of nearly 30 years global LSWC database was built 

by passive microwave radiometers of SSMI, AMSR-E, WindSAR and 

AMSR2. we mapped LSWC derived from SSMI, AMSR-E, WindSAR, 

AMSR2 and conducted cross calibration between SSMI LSWC and 

AMSR-E LSWC, AMSR-E LSWC and WindSAT LSWC, WindSAT LSWC 

and AMSR2 LSWC in the alternate process of sensors. By conducting 

temporal analysis with cross-calibrated LSWC database, it was found that 

the LSWC value of nearly 15 years is greater than the value of nearly 30 

years. It is indicated a growth trend in LSWC during last 30 years. From 

wetland, forest, agriculture, to barren land, with the increase of aridity, the 

probability with high LSWC in one year decreases. Finally, global 

probability distribution function (PDF) and global cumulative distribution 

function (CDF) was created by integrating 30 years of LSWC database.  

  Thirdly, the monthly precipitation change and daily LSWC change 

from 1987 to 2015of all river basins worldwide was computed. Based on the 

annual least squares fitting, the trend of LSWC in each river basin was 

computed. In all 68 basins, almost unchanged river basin just accounted 

for only 18%, most of them showed obvious growth trend. Declining trend 

basin accounted for 2.9%, essentially unchanged basin accounted for 20.6%, 

the growth trend basin accounted for 76.5%. Moreover, by comparing 

precipitation change with LSWC change of each river basin, LSWC pattern 

basically coincide with rainfall pattern, showing a seasonal variation 

characteristic in each year. However after carrying out STL time series 

analysis between precipitation and LSWC, it was found that the seasonal 

trend between each other was very close but the long-term trend of them 
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was not similar, LSWC almost presented increasing trend whereas 

precipitation had no significant trend. The correlation coefficients were 

small, smaller than 0.50. Therefore, rainfall was indicated not the only 

factor that brings about the change in LSWC.  

Additionally, by calculating 4 kinds of land cover change including 

cropland, forest, urban and water body in each river basin, it was found 

that the change in urban area was very strong in many river basin, 

especially in Yangtze basin and Huang he basin in China, from 2000 to 

2012, changed from 0.08% to 0.83% and from 0.17% to 2.21%. Due to global 

warming, the Himalayan snowmelt increased year by year, causing water 

in Brahmaputra-river increased significantly. Besides, there is no clear 

trend feature in forest cover change. In addition, the proportion of cropland 

increased significantly, especially Ganges basin increased by 41.35%, grew 

to nearly 70%. Meanwhile, the cropland presented consistent growth 

situation along with LSWC. The correlation coefficients between cropland 

and LSWC change was more than 0.85. It is expected that the widespread 

expansion of cropland might bring about LSWC increasing. What’s more, 

by comparing with statistic data of land cover change obtained by FAO, it 

is indicated that the result of land cover change obtained by remote 

sensing in this study is reasonable and can be verified. Furthermore, by 

detecting the anomaly of LSWC, the potential floods can be detected, which 

showed a monthly growth trend on frequency especially since last 15 years. 

Consequently, this research demonstrated the advantages of 

microwave remote sensing, which indicates that they are in trade off 

relationship according to different research purpose. We can combine 

different remote sensing data to compensate each other. Moreover, this 

research covered a global range and provided macroscopic understanding 

and grasp of global land surface water coverage development based on 

daily long-term historical database and was expected to explain popular 
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and significant phenomenon such as global warming, glacial melting, 

cropland use change, urban expansion. 

6.2 Future work 

Uncertainties and limitations still remain in this study. Major river 

basins were derived and analyzed. But there are a lot of small watersheds 

in these large basins, which would lead to uncertainties. Besides, we 

utilized three different land cover change datasets. As we known, different 

datasets got from different sensors and calculated by different methodology 

based on classification scheme. The inevitable variation existed among 

them, which could affect result of land cover change. What’s more, since 

active microwave remote sensing PALSAR will be influenced by land 

surface roughness, passive microwave remote sensing will be influenced 

great by soil moisture, soil type and vegetation would also influence for 

land surface water condition in different place. In addition, since the 

research area is global in this study, different place has its own condition. 

Complex factors as population, social economy, policy and so on would 

bring about uncertainties. It was difficult to formulate a unified standard 

to adapt to the world. 

  For my next step, we advance to conduct spatial analysis of land 

cover change and combine other factors like social economy to discuss their 

influence on LSWC change. What’s more, we try to use other method to 

choose anomaly threshold and the real flood events statistic data will be 

utilized to compare with the anomaly detection result. The flooding 

detection still needs to be analysis. Besides, we will use different data 

mining methods to distinguish cropland cover change effect. The flooding 

may also be related to rising populations, rapid urbanization, deforestation 

and other land-use changes. Separating the climate change signal from the 

human factors that increase flood risk is a real challenge. 
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