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Abstract

Monte-Carlo Tree Search (MCTS) has made a significant impact on various

fields in AI, especially on the field of computer Go. The key factor to the success of

MCTS lies in its combination with bandit algorithms, which solves the multi-armed

bandit problem (MAB). The MAB problem is a problem where the agent needs

to decide whether it should act optimally based on current available information,

or gather more information at the risk of suffering losses incurred by performing

suboptimal actions. One of the most widely used MCTS variants is the UCT

algorithm, which simply applies the UCB algorithm to every node in the tree.

The pure exploration MAB problem seeks to identify the optimal best arm,

rather than gathering as much reward as possible. The pure exploration MAB

problem can also be formally stated as the minimization of simple regret, which is

defined as the difference between the expected reward of the optimal bandit and

the bandit that has been identified as the optimal bandit. Since the main objective

of game tree search is to identify the best action to take, it has been considered

that bandit algorithms that solve the pure exploration MAB problem would be a

better match for application in MCTS. However, the application of simple regret

bandit algorithms to MCTS is far from trivial.

The simple regret bandit algorithm has the tendency to spend more time on

sampling suboptimal arms, which may be a problem in the context of game tree

search. In this research, we will propose combined confidence bounds MCTS

(CCB-MCTS) algorithm, which utilize the characteristics of the confidence bounds

of the improved UCB and UCB√· algorithms to regulate exploration for simple re-

gret minimization in MCTS.



Another possible approach is based on the observation that max nodes and

min nodes in game trees have different concerns regarding their value estimation,

and different bandit algorithms should be applied accordingly. We develop the

Asymmetric-MCTS algorithm, which is an MCTS variant that applies a simple

regret algorithm on max nodes, and the UCB algorithm on min nodes.

Both the performance of the CCB-MCTS and Asymmetric-MCTS algorithm

has shown good performance on the games of 9 × 9 Go and 9 × 9 NoGo. The

empirical performance of the Asymmetric-MCTS algorithm also revealed the ef-

fectiveness of the applying simple regret bandit algorithm seems to be related to

the structure and distribution of the values at the leaf nodes of the game tree.
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Chapter 1

Introduction

“Playing games” has always been an important research topic since the dawn of

artificial intelligence (AI) [36]. Apart from being a display of intelligent behaviour,

games have a well-defined objective of “winning”, and also they have a robust way

of measuring performance, which makes it an ideal vehicle for developing new

methods in AI. Therefore, traditional strategic board games, such as Chess, have

been deemed as “the drosophila of AI” [24].

1.1 Conventional Methods: αβ Pruning

The most widely used conventional method for constructing a game-playing pro-

gram was proposed by Shannon in 1950 [29]. Games can essentially be represented

by game trees, which is a tree structure that systematically enumerates all pos-

sible sequence of each player’s move from a given position in the game. Ideally, if

we are able to expand the game tree from a given position to every possible final

outcome of the game, we will be able to determine the optimal action or strategy

for a player to achieve the best possible result.
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However, this would not be practical due the the huge size of the game tree.

For example, the size of the game tree of Chess is roughly in the order of 10120 [29],

which is more than the number of atoms in the observable universe. Therefore,

we can only approximate this process by constructing the game tree to a certain

depth and perform an estimate evaluation of how good or bad are the positions at

the leaf nodes.

Conventional game-playing programs consist of two main components: the

evaluation function and the search algorithm.

The evaluation function is the component that estimates how good or bad

a position is at the leaf node. The evaluation is performed by an overall assess-

ment of a number of criteria and features in the game. For example, commonly

used features in Chess are the number of materials, the safety of the king, pawn

structure, and so on. The evaluation function typically provides a numeric value

indicating its assessment of the situation, and usually the larger the value, the

more advantageous is the position to the player in question.

The search algorithm dictates how the game tree is expanded and there are

two possible strategies:

• Type A: (brute force expansion) expand every possible sequence.

• Type B: (selective expansion) only expand the sequences that seems to be

promising.

Most conventional game-playing programs adopts the type A expansion strat-

egy and the underlying method for searching the optimal move or game-play strat-

egy is the minimax algorithm. The minimax algorithm propagates the values of

the leaf nodes, which are given by the evaluation function, up to the root node by

taking the purpose of each player into account. The player who is applying the
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minimax algorithm is trying to maximize her advantage, and hence will always

take the action that has the highest value. On the other hand, her opponent will

try to restrict and minimize the player’s advantage and choose the action that

leads to the lowest value. The minimax algorithm essentially tries to find the

principal variation, which is the move sequence if all players behave optimally.

There are various algorithms and heuristics that can be applied to reduce the size

of the game tree that is necessary to be expanded.

αβ pruning maintains a lower bound α and upper bound β of the evaluation

values as the algorithm expands and traverse the game tree. Parts of the tree can

be safely discarded or pruned if the value of those parts are sure to be outside of

the interval [α, β] [20]. The optimal performance of αβ pruning can be achieved if

the best moves are always searched first and then the number of leaf node that is

examined would be in the order of O(bd/2), where b is the branching factor of the

tree, and d is the depth of the expanded tree [20]. Other methods and heuristics,

such a killer heuristics [1], quiescence search [18], null-window search [17], can be

applied with αβ pruning to further improve the performance [26].

The victory of IBM’s DeepBlue over the World Chess Champion Garry Kas-

parov in 1997 marks a milestone achievement of the conventional methods in com-

puter game-play [9].

1.2 Monte-Carlo Tree Search (MCTS)

Despite the success of conventional methods in traditional strategic board games,

the ancient game of Go seems to be still out of reach. The size of the game tree

of Go is in the order of 10360, which is much larger than that of Chess or any

other game that has been conquered by conventional methods [35]. Therefore,

11



type B strategy with pattern matching and pattern recognition algorithms was the

mainstream method in computer Go until the early 2000s [25].

Apart from deterministic methods, stochastic approaches have also been in-

vestigated. One of the first known attempts in applying Monte-Carlo methods

to computer Go was by Bruegmann in 1993 [7]. The program “Gobble”, which

was developed by Bruegmann, performs a number of random self-plays and then

decides upon its move according to the statistics it has gathered from these self-

plays. The idea originated from simulated annealing, in which the randomness

is controlled by a temperature parameter. However, the performance was rela-

tively poor compared to conventional methods, and hence did not attract much

attention.

The idea of Monte-Carlo tree search (MCTS) was revisited in the early 2000s,

with key revisions such as the selective expansion and sampling of the game tree

[5][14]. MCTS has made a significant impact on various fields in AI, especially on

the field of computer Go [6].

The key ingredient to the success of MCTS lies in its combination with ban-

dit algorithms, which solves the multi-armed bandit (MAB) problem [21]. The

MAB problem is a problem where the agent needs to decide whether it should act

optimally based on current available information (exploitation), or gather more in-

formation at the risk of suffering losses incurred by performing suboptimal actions

(exploration) [22]. By viewing each node in the game tree as a single independent

instance of the MAB problem, the MCTS algorithm will essentially be a best-first

search algorithm that is guided by bandit algorithms.

The upper confidence bound on trees (UCT) algorithm is an MCTS al-

gorithm that applies the upper confidence bound (UCB) bandit algorithm on

every node in its expanded game tree [21]. The UCT algorithm is currently the
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most successful MCTS variant and it is used in a wide range of applications [6].

Various heuristics were also developed to further boost the performance of the

MCTS algorithm and they are mainly along two major directions: the incorpora-

tion of offline knowledge and the utilization of the online knowledge.

1.2.1 Incorporation of Offline Knowledge

The integration of offline knowledge was mainly focused on using logistic models

to improve the quality of the simulations [13][31][19]. These models are also used

to determine prior values of newly expanded leaf nodes [19].

Deep neural networks have received a lot of attention in recent years and the

application of deep neural networks to computer Go has being of interest in the

research community. The initial efforts are mainly in the direction of move pre-

diction by convolutional neural networks [11][23]. Convolutional neural networks

are mainly used in the field of computer vision, and they can be applied to the

game of Go by viewing the board as a 19×19 image that has three possible values,

namely Black, White, and Empty [11].

As the prediction accuracy increases, the next logical step would be to combine

them with MCTS [33][30]. Because the convolutional neural networks takes a

significant amount of time to perform a prediction, most efforts are focused on

applying them in the initialization of prior values of the leaf nodes, rather than in

the simulations [33].

A major breakthrough was made by the program AlphaGo, which essentially

combines convolutional neural networks with the PUCB bandit algorithm [28]

on MCTS, and has beaten an elite professional player Lee Sedol in a five-game

challenge match [30].
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1.2.2 Utilization of Online Knowledge

On the other hand, various investigations in increasing the efficiency of the utiliza-

tion of online knowledge have also been carried out. One of them is exploring the

possibility of using bandit algorithms other than the UCB algorithm with MCTS.

Simple regret bandit algorithms, which are a class of bandit algorithms that

solves the pure exploration MAB problem, have attracted some attention in

recent years [8].

The pure exploration MAB problem seeks to identify the optimal best arm,

rather than gathering as much reward as possible. The pure exploration MAB

problem can also be formally stated as the minimization of simple regret, which

is defined as the difference between the expected reward of the optimal bandit

and the bandit that has been identified as the optimal bandit. Because the main

objective of game tree search is to determine the best possible action, it has been

considered that simple regret bandit algorithms that solve would possibly be a

better match for application in MCTS. Therefore, several attempts in applying

simple regret bandit algorithms to MCTS have been carried out.

The SR+CR scheme is an MCTS algorithm that applies a simple regret bandit

algorithm on the root node, and the UCB algorithm on all other nodes [34]. The

SR+CR scheme is based on the argument that edges of the root node represents

the decision that the agent needs to make, and hence simple regret bandit algo-

rithm should be applied on the root node while other nodes can remain the same as

in the UCT algorithm. The sequential halving on trees (SHOT) algorithm applies

the sequential halving algorithm, which minimizes the simple regret by systemati-

cally eliminate suboptimal actions from considerations, on every node throughout

the tree [10]. The Hybrid MCTS (H-MCTS) algorithm merges the UCB algorithm

and the sequential halving algorithm into a single MCTS algorithm by switching
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the UCB algorithm to the sequential halving algorithm when the number of play-

outs performed reach a certain threshold on each individual node [27]. Various

analytical work on the relation between minimzing simple regret and MCTS has

also been carried out, revealing some finer points in their relationship [15].

1.3 Motivation

In this dissertation, we will follow the direction of improving the efficiency of

utilizing online knowledge, and try to address the question of whether minimizing

simple regret does lead to better performance in MCTS. We will also explore ways to

apply simple regret bandit algorithms to MCTS effectively. Our line of investigate

will be along the following questions:

1. What characteristics of a bandit algorithm are desirable for the application

to MCTS? How can we modify a bandit algorithm to make it more suitable

for application to MCTS?

2. How can we regulate the excessive exploration performed in simple regret

bandit algorithms for it to be more suitable for application in MCTS? What

is the effect of such a regulation on the performance of the simple regret

bandit algorithms?

3. The application of bandit algorithms to MCTS has been symmetric so far,

that is the same bandit algorithm are applied on every node. How will an

asymmetric application of bandit algorithm perform in MCTS?

We will first introduce some algorithms and concepts on which our proposed

method are built on in Chapter 2. We will then proceed to investigate and identify
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the various characteristics of the improved UCB algorithm which are not desirable

for direct application to MCTS, and propose modifications to overcome these de-

ficiencies in Chapter 3. In Chapter 4, we will introduce the combined confidence

bound (CCB) bandit algorithm, which utilizes exploration regulating factor to fur-

ther regulate the amount of exploration that is performed by the UCB√· bandit

algorithm. We will also discuss the implications of the CCB bandit algorithm and

its combination with the MCTS algorithm. The asymmetric application of bandit

algorithms to MCTS will be discussed in Chapter 5, and finally a conclusion will

be given in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we will introduce foundational concepts and algorithms on which

our proposed methods will be based on. We will begin by introducing the concept

of game trees and principal variation. Next, we will introduce the four steps in each

iteration of the Monte-Carlo tree search (MCTS). Finally, we will examine the two

main settings of the multi-armed bandit (MAB) problem, with the introduction of

the UCB algorithm, the improved UCB algorithm, and the UCB√· algorithm.

2.1 Game Tree Search

A game can essentially be represented by a game tree, which is a tree structure

that systematically enumerates all possible sequences of each player’s move. Figure

2.1 shows the game tree of the game tic-tac-toe. The player with the circle is the

first to move, and she has three possible first moves if we take symmetries into

consideration. For the move on the top left corner, the game tree can be further

expanded by considering the possible response by the opponent, who plays with

the cross. By counting this process of expanding all possible moves of each player
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Figure 2.1. Game tree of Tic-Tac-Toe.

at each level until all paths from the root node reach a decisive outcome of the

game on all leaf nodes, we will be able to enumerate all possible sequence of plays

by the two players. Although this could be achieved for tic-tac-toe, it would not

be practical for more complex games, such as Chess, Shogi, and Go, as the size

of the game tree would increase at an exponential rate. In practice, we would

only expand the tree to a certain depth, and apply an evaluation function,

which gives an assessment of the outcome of a given position, to every leaf node

to approximate this process.

The main objective of game tree search is to decide upon the best possible

action to take or the optimal strategy to adopt. This task is essentially finding the

principal variation within the game tree. The principal variation is a path from

the root node to a leaf node in the game tree, which is also the move sequence of

the strongest possible moves made by every player on their turn. The principal

variation can be identified by the minimax algorithm. Figure 2.2 shows an exam-
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Figure 2.2. An example of the minimax algorithm

ple of the minimax algorithm. The game tree is expanded to the depth of 3, and

an evaluation is performed on the leaf nodes. The evaluation values are given in

the point of view of the agent. The higher the value, the more advantageous the

agent is in that position. The circle nodes represent the positions when it is the

player’s turn to move and square nodes represent when it is the opponent’s turn

to move. When it is the agent’s turn to move, she will always try to maximize

her advantage by playing the move that leads to the position that has the highest

value. On the other hand, the opponent will try to do the opposite by choosing the

moves that leads to the position that has the lowest value. Therefore, the circle

nodes are max nodes, as it will have the largest value of its child nodes, and the

square nodes are min nodes, as it will have the smallest value of its child nodes.

After assigning a value to each node by the minimax algorithm, we will be able to

identify the principal variation, which is the path that has the same value on every

node. Therefore, the optimal move sequence in Figure 2.2 is the path {a, b, c}.
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Figure 2.3. Monte-Carlo tree search (MCTS)

2.2 Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) is a sample-based tree search algorithm [6].

MCTS mainly consists of number of iterations, and in each iteration there are

four major steps: selection, expansion, simulation, and backpropagation.

In the selection phase, the MCTS algorithm starts from the root node and

ascends down the tree by selecting a child node according to some criteria until

it reaches a leaf node. When the MCTS algorithm has reached a leaf node, it

will then proceed to the expansion phase by expanding a child of the selected

leaf node. The MCTS algorithm will then proceed to perform random self-play,

or simulation until the end of the game or a has a definitive outcome. The

MCTS algorithm will finally propagate the result back up to the root node, while

updating relevant information along the path in the backpropagation phase,

and then proceeds to the next iteration. The total number of iterations can be
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pre-determined or can be run until time or resource runs out.

The key to the success of the upper confidence bound of trees (UCT) algorithm

lies in its application of the UCB bandit algorithm as the selection criteria in the

selection phase.

2.3 The Multi-armed Bandit Problem

The multi-armed bandit problem (MAB) is a problem in which the agent is given

K slot machines (or “one-armed bandits”) and a total number of T plays. The

agent can choose to pull the arm of one machine at each play, and the machine

will produce a reward r ∈ [0, 1]. There are two main possible objectives that the

agent can aim for, and the playing strategy that the agent adopts to achieve these

goals is called a bandit algorithm.

2.3.1 Cumulative Regret Minimization

The conventional objective in the MAB problem is to accumulate as much re-

ward as possible over the total number T of plays. This task can equivalently be

formulated as minimizing the cumulative regret, which is defined as

CRT =
∑T

t=1(r
∗ − rIt),

where r∗ is the mean reward of the optimal arm and rIt is the reward received

from choosing to pull arm It on play t. A bandit algorithm is considered to be

optimal if it can restrict the cumulative regret to the order of O(log T ) [22].
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Algorithm 1 UCB algorithm

Initialization: Play each machine once.

for t = 1, 2, 3, · · ·T do

play arm ai = arg max
i∈K

wi + c
√

log t
ti

,

where wi is the current average reward, ti is the number of times arm ai has

been sampled.

end for

The Upper Confidence Bound (UCB) Algorithm

The upper confidence bound (UCB) algorithm, shown in Algorithm 1, maintains

an estimated confidence bound of the average reward of an arm. After playing

every arm once in the beginning, the algorithm will always play the arm that has

the hight upper confidence bound.

The UCB algorithm has an upper bound of O(K log T
∆

) on the cumulative regret,

where ∆ is the difference of the expected reward between a suboptimal arm and

the optimal arm [2]. Therefore, it is considered to optimally solve the conventional

MAB problem.

The Improved UCB Algorithm

The improved UCB algorithm, shown in Algorithm 2, constitutes an improvement

to the UCB algorithm that further restricts the cumulative regret to the order of

O(K log T∆2

∆
) [3].

The improved UCB algorithm essentially maintains a candidate set Bm of po-

tential optimal arms, and proceeds to eliminate the arms that are most likely to

be suboptimal from the set Bm. The predetermined number of total plays T is

divided into ⌊1
2
log2(

T
e
)⌋ rounds. In each round, the algorithm samples each arm
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Algorithm 2 Improved UCB Algorithm

Input: A set of arms A, total number of plays T

Initialization: Expected regret ∆0 ← 1, a set of candidates arms B0 ← A

for rounds m = 0, 1, · · · , ⌊1
2
log2

T
e
⌋ do

(1) Arm Selection:

for all arms ai ∈ Bm do

for nm = ⌈2 log(T∆2
m)

∆2 ⌉ times do

sample arm ai and update its average reward wi

end for

end for

(2) Arm Elimination:

amax ← MaximumRewardArm(Bm)

for all arms ai ∈ Bm do

if (wi +
√

log(T∆2)
2nm

) < (wmax −
√

log(T∆2)
2nm

) then

remove arm ai from Bm

end if

end for

(3) Update ∆m:

∆m+1 =
∆m

2

end for
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that is still in the candidate set nm = ⌈2 log(T∆2
m)

∆2
m

⌉ times. The algorithm then

proceeds to eliminate those arms whose upper bounds for estimated rewards are

lower than the lower bound of the current best arm. Finally, the algorithm halves

the estimated difference ∆m, and proceeds to the next round.

Therefore, the mean reward for arm ai, where i ∈ K, is estimated to be within

wi ±
√

log(T∆2
m)

2nm
= wi ±

√

log(T∆2
m)·∆2

m

4 log(T∆2
m)

= wi ± ∆m

2
,

where wi is the current average reward received by sampling arm ai in round m.

If the total number of plays T is not given beforehand, then the improved

UCB can be executed in an episodic fashion, with T0 = 2 for the initial episode

and Tℓ+1 = T 2
ℓ for subsequent episodes, at the expense of a looser bound on the

cumulative regret.

2.3.2 Simple Regret Minimization

Another possible objective of the MAB problem is to identify the optimal arm

after a total number of T plays, rather than maximizing the total accumulated

reward. This objective can be formulated as minimizing the simple regret, which

is defined as

SRT = r∗ − rT ,

where r∗ is the mean reward of the optimal arm, and rT is the mean reward of the

arm that the agent identifies as the optimal arm after T plays.

Since the task is to identify which arm is the optimal arm, the agent needs

to gather as much information on each arm as possible, and thus the amount

reward accumulated during this process is irrelevant. It has been shown that a
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trade-off exists between the minimization of the cumulative regret CRT and the

simple regret SRT , i.e., if CRT decreases, then SRT increases, and vice versa [8].

Therefore, a different class of bandit algorithm is needed for this variation of the

MAB problem.

Algorithm 3 UCB√· algorithm

Initialization: Play each machine once.

for t = 1, 2, 3, · · ·T do

play arm ai = arg max
i∈K

wi + c
√√

t
ti
,

where wi is the current average reward, ti is the number of times arm ai has

been sampled.

end for

Recommend arm ai = arg max
i∈K

ti

The UCB√· Algorithm

The UCB√· algorithm, shown in Algorithm 3, is a bandit algorithm that is able

to restrict the simple regret to the order of O(K ·∆exp(−
√
T )) [34].

The algorithmic aspect of the UCB√· algorithm is essentially the same as the

UCB algorithm in that both algorithms selects the arm that has the current high-

est upper confidence bound to sample at each play. The two algorithms only differ

in their definition of the exploration term of the confidence bound, i.e., the explo-

ration term for the UCB algorithm is c ·
√

log T
ti

and the exploration term for the

UCB√· algorithm is c ·
√√

T
ti
, where c is a constant, and ti is the number of times

that arm ai has been sampled. The UCB√· algorithm recommends the arm that it

has been sampled the most as the optimal arm after the total number of T plays.
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Chapter 3

Adaptation of the Improved UCB

Algorithm

In this chapter, we will first discuss the issues concerning whether a bandit al-

gorithm is suited for application in MCTS. We will then proceed to adapt the

improved UCB algorithm to address these issues, and demonstrate the impact of

each modification on the bandit algorithm.

3.1 Issues Regarding the Application of Bandit

Algorithms to MCTS

The main reason for the success of the UCT algorithm lies is the combination of

the UCB bandit algorithm with MCTS. The UCB algorithm essentially controls

which part of the game tree one should examine more closely by viewing each

node as an independent instance of the MAB problem. However, not every bandit

algorithm seems to be suitable for application to MCTS.
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Various characteristics of the improved UCB algorithm highlight some proper-

ties of bandit algorithms that may be problematic when applied to MCTS:

• Early explorations. The improved UCB algorithm seeks to identify the op-

timal arm through the process of elimination. Therefore, it initially tends to

devote more plays to sampling suboptimal arms, in order to eliminate them

from consideration as early as possible. This property may cause MCTS to

focus more on irrelevant parts of the game tree in the early stages, while

trying to verify whether those parts can be discarded. Because time and re-

sources are rather restricted when performing a game tree search, the search

may still be focusing on these irrelevant areas when time or resources run

out, causing the search to miss the more important parts, and hence make

erroneous decisions.

• Not an anytime algorithm. The improved UCB algorithm requires the

total number of plays to be determined beforehand, and hence its various

properties may not hold if it is stopped prematurely. Because each node in

MCTS is considered as a single independent instance of the MAB problem,

the algorithm is likely to be stopped prematurely at nodes that are deeper

in the tree or closer to the leaf nodes. The “temporal” solutions provided by

these nodes might be erroneous, and these errors may be magnified as they

propagate upward toward the root node. Although it is possible to ensure

that the required conditions are met at each node, this would be prohibitively

expensive, as the necessary number of playouts increases exponentially as

more nodes are expanded in MCTS.

Therefore, we propose some modifications to the improved UCB algorithm to

address these issues.
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Algorithm 4 Combined Confidence Bounds Bandit Algorithm

Input: A set of arms A, total number of trials T

Initialization: Expected regret ∆0 ← 1, arm count Nm ← |A|, plays till ∆k

update T∆0 ← n0 ·Nm, where n0 ← ⌈2 log(T∆2
0)

∆2
0
⌉, number of times arm ai ∈ A has

been sampled ti ← 0.

for rounds m = 0, 1, · · ·T do

(1) Sample Best Arm:

amax ← arg max
i∈|A|

(wi +
√

log(T∆2
k
)·ri

2nk

), where ri =
√
T
ti

wmax ←CurrentMaxAverageReward(A)

ti ← ti + 1

(2) Arm Count Update:

for all arms ai do

if (wi +
√

log(T∆2
k
)

2nk

) < (wmax −
√

log(T∆2
k
)

2nk

) then

Nm ← Nm − 1

end if

end for

(3) Update ∆k when Deadline T∆k
is Reached

if m ≥ T∆k
then

∆k+1 =
∆k

2

nk+1 ← ⌈2 log(T∆2
k+1)

∆2
k+1

⌉
T∆k+1

← m+ (nk+1 ·Nm)

k ← k + 1

end if

end for
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3.2 Combined Confidence Bounds Bandit Algo-

rithm

The combined confidence bounds (CCB) bandit algorithm is a modification of

the improved UCB algorithm, and is shown in Algorithm 4. The modifications

attempts to address the issues mentioned above while retaining the main charac-

teristics of the improved UCB algorithm as far as possible.

3.2.1 Algorithmic Modifications

We have performed two major algorithmic modifications to the improved UCB

algorithm in the CCB bandit algorithm:

• Greedy optimistic sampling. We only sample the arm that currently

has the highest upper confidence bound, instead of sampling every possible

optimal arm nm times.

• Maintain candidate arm count. We only maintain a count of the number

of arms that could potentially be the optimal arm for keeping track of when

to halve the estimated difference ∆m, rather than maintaining a candidate

set.

Because we only sample the current best arm, we effectively perform an ex-

tremely aggressive arm elimination. Arms that are considered suboptimal are not

sampled, and hence there is no need to maintain a candidate set. The arms that

are initially considered to be suboptimal can possibly still be sampled if their up-

per confidence bound eventually overtakes the arm that was previously considered

to be optimal, while in the improved UCB algorithm these arms are entirely elim-

inated from consideration. As a result, the guarantee for the confidence bounds
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of the current best arm will be stronger than in the improved UCB algorithm,

because it will be sampled at least nm times. However, it should be noted that the

guarantee for the bounds of other candidates will be weaker. This modification

effectively changes the priority of the bandit algorithm from eliminating subop-

timal arms to finding the most promising arm as soon as possible. Therefore, if

the algorithm is stopped prematurely, then the returned result will more likely be

optimal, rather than an arm that the algorithm perceives as suboptimal and is

still trying to eliminate.

Despite the fact that it is no longer necessary to maintain a candidate set, we

still need to maintain a count of the number of arms that should still be in the

candidate set. The reason is that the confidence bounds in the improved UCB

algorithm for arm ai are defined as wi ±
√

log(T∆2
m)

2nm
, and the updates of ∆m and

nm are both dictated by the number of plays in each round, which is determined

by (|Bm| · nm), i.e., the total number of plays needed to sample each arm in the

candidate set Bm a number of nm times. Therefore, the count of potential optimal

arms |Bm| is still required.

3.2.2 Confidence Bound Modifications

Because we have applied the algorithmic modification of performing greedy opti-

mistic sampling, the confidence bounds for the current best arm should be tighter

than for other arms, and thus adjustments are also required in the definition of

the confidence bound.

The confidence bound in the CCB bandit algorithm for arm ai in round m is

defined as

wi ±
√

log(T∆2
m)·ri

2nm
,
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where we have added an exploration regulating factor ri to reflect the fact the

current best arm is sampled more than other arms. The most straight forward

definition of the exploration regulating factor would be ri =
T
ti
. However, a number

of other possible definitions exist for ri, which we will discuss later in further detail.

Because nm = ⌈2 log(T∆2
m)

∆2
m

⌉, the expected reward for arm ai in the CCB bandit

algorithm can effectively be estimated as

wi ±
√

log(T∆2
m)·ri

2nm
= wi ±

√

log(T∆2
m)·∆2

m·ri
4 log(T∆2

m)
= wi ± ∆m

2

√
ri

after round m.

3.3 Application of Combined Confidence Bounds

to Monte-Carlo Tree Search

The CCB-MCTS algorithm is a variant of the MCTS algorithm in which the CCB

bandit algorithm is employed. The details of the CCB-MCTS algorithm are shown

in Algorithm 5.

The CCB-MCTS algorithm adopts the same game tree expansion paradigm

as the UCT algorithm. The game tree is expanded over a number of iterations,

and each iteration consists of four steps: selection, expansion, simulation, and

backpropagation [21]. The difference is that the tree policy is replaced by the CCB-

MCTS algorithm. The CCB bandit algorithm is run on each node in an episodic

manner, with a total of T0 = 2 plays in the algorithm in the initial episode, and

Tℓ+1 = T 2
ℓ plays in subsequent episodes.

The CCB-MCTS algorithm keeps track of when to update N.∆ and of the

starting point of a new episode by using the variables N.deltaUpdate and N.T ,

respectively. When the number of playouts N.t of the node N reaches the updating
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deadline N.deltaUpdate, the algorithm halves the current estimated regret N.∆,

and calculates the next deadline for halving N.∆. The variable N.T marks the

starting point of a new episode. Hence, when N.t reaches N.T , the related variables

N.∆ and N.armCount are re-initialized, and the starting point N.T of the next

episode is calculated along with the new N.deltaUpdate.

Algorithm 5 Combined Confidence Bound MCTS (CCB-MCTS) Algorithm

1: function CombConfBound-MCTS(Node N)

2: bestucb ← −∞
3: for all child nodes ni of N do

4: if ni.t = 0 then

5: ni.ucb←∞
6: else

7: ni.ucb← n.w+

√

log(N.T×N.∆2)×ri

2N.k

8: end if

9: if bestucb < ni.ucb then

10: bestucb ← ni.ucb

11: nbest ← ni

12: end if

13: end for

14:

15: if nbest.t = 0 then

16: result←RandomSimulation((nbest))

17: else

18: if nbest is not yet expanded then NodeEx-

pansion((nbest))

19: result←CombConfBound-MCTS((nbest))

20: end if

21:

22: N.w ← (N.w ×N.t+ result)/(N.t+ 1)

23: N.t← N.t+ 1

24:

25: if N.t ≥ N.T then

26: N.∆← 1

27: N.T ← N.t+N.T ×N.T

28: N.armCount ← Total number of child

nodes

29: N.k ← ⌈ 2 log(N.T×N.∆2)
N.∆2

⌉
30: N.deltaUpdate← N.t+N.k×N.armCount

31: end if

32:

33: if N.t ≥ N.deltaUpdate then

34: for all child nodes ni of N do

35: if (ni.w +

√

log(N.T×N.∆2)
2n.k

) < (N.w −
√

log(N.T×N.∆2)
2n.k

) then

36: N.armCount← N.armCount − 1

37: end if

38: end for

39:

40: N.∆← N.∆
2

41: N.k ← ⌈ 2 log(N.T×N.∆2)

N.∆2
⌉

42: N.deltaUpdate← N.t+N.k×N.armCount

43: end if

44: return result

45: end function

46:

47: function NodeExpansion(Node N)

48: N.∆← 1

49: N.T ← 2

50: N.armCount← Total number of child nodes

51: N.k ← ⌈ 2 log(N.t×N.∆2)

N.∆2
⌉

52: N.deltaUpdate ← N.k ×N.armCount

53: end function

32



3.4 Experimental Results

First, we will observe the effects of various modifications to the improved UCB

algorithm in the MAB problem. We will then proceed to demonstrate the perfor-

mance of the CCB-MCTS algorithm (ri =
T
ti
) on the game of 9× 9 Go and 9 × 9

Nogo.

3.4.1 Performance of Various Modifications on the Im-

proved UCB Algorithm

The experimental settings are in accordance with the multi-armed bandit testbed

specified in Sutton et. al [32]. The results are averaged over 2000 randomly

generated K-armed bandit tasks. The reward distribution of each bandit is a

normal (Gaussian) distribution with mean wi, i ∈ K, and variance 1. The mean

wi of each bandit for every generated K-armed bandit task is randomly selected

according to a normal distribution with mean 0 and variance 1. We have set

K = 60 in order to more closely simulate the conditions faced by bandit algorithms

face when they are employed in MCTS for games with a middle-high branching

factor.

The results are illustrated in Figure 3.1. The various modifications correspond

to the following algorithms:

• UCB: the UCB algorithm.

• I-UCB: the improved UCB algorithm.

• I-UCB (episodic): the improved UCB algorithm run episodically.
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• Modified I-UCB (no r): only algorithmic modifications on the improved

UCB algorithm.

• Modified I-UCB (no r, episodic): only algorithmic modifications on the

improved UCB algorithm run episodically.

• Modified I-UCB: both algorithmic and confidence bound modifications on

the improved UCB algorithm.

• Modified I-UCB (episodic): both algorithmic and confidence bound mod-

ifications on the improved UCB algorithm run episodically.

The modified I-UCB and modified I-UCB (episodic) algorithms are essentially

the CCB bandit algorithm with the regulating factor defined as ri =
T
ti
.

It is surprising to observe that the original improved UCB, i.e., both I-UCB and

I-UCB (episodic), produced the worst cumulative regret, which is not consistent

with known theoretical results. However, their optimal action percentages increase

very rapidly, and are likely to overtake the UCB algorithm if more plays are intro-

duced. This suggests that the improved UCB algorithm does indeed devote more

plays to exploration in the early stages.

It can be observed that by making only algorithmic modifications, the bandit

algorithm persists on a suboptimal arm, and adding the exploration regulating

factor ri to the confidence bounds solves this problem.

The “slack” in the curves of the algorithms that were run episodically are the

points at which a new episode begins. Because the confidence bounds are essen-

tially re-initialized after every episode, extra explorations are effectively performed.

Therefore, there are resulting penalties on the performance, which can be observed

in both the optimal percentage and the cumulative regret.
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Figure 3.1. Performance of various modifications on the improved UCB algorithm
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Table 3.1. Win rate of CCB-MCTS algorithm (ri =
T
ti
) against plain UCT on 9×9

Go

constant C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 playouts 57.1% 55.2% 57.5% 52.2% 58.6% 58.4% 55.8% 55.3% 54.5%

3000 playouts 50.8% 50.9% 50.3% 52.2% 52.2% 54.4% 56.5% 56.0% 54.1%

5000 playouts 54.3% 54.2% 52.4% 51.0% 52.4% 57.5% 54.9% 56.1% 55.3%

3.4.2 Performance of CCB-MCTS (ri =
T
ti
) algorithm against

Plain UCT on 9× 9 Go

We will demonstrate the performance of the CCB-MCTS (ri = T
ti
) algorithm

against the plain UCT algorithm on the game of Go played on a 9× 9 board.

For an effective comparison of the two algorithms, no performance enhancing

heuristics were applied. The simulations are all pure random simulations without

any patterns or simulation policies. A total of 1000 games were played for each

constant C setting of the UCT algorithm, each taking turns to play Black. The

total number of playouts was fixed to 1000, 3000, and 5000 for both algorithms.

The results are shown in Table 3.1. It can be observed that the performance

of the CCB-MCTS (ri = T
ti
) algorithm is quite stable against various constant

C settings of the plain UCT algorithm, and is roughly on the same level. The

CCB-MCTS (ri =
T
ti
) algorithm seems to have better performance when only 1000

playouts are given, but slightly deteriorates when more playouts are available.
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Table 3.2. Win rate of CCB-MCTS algorithm (ri =
T
ti
) against plain UCT on 9×9

NoGo

constant C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 playouts 58.5% 56.1% 61.4% 56.7% 57.4% 58.4% 59.6% 56.9% 57.8%

3000 playouts 50.3% 51.4% 53.1% 51.0% 49.6% 54.4% 56.0% 54.2% 53.9%

5000 playouts 45.8% 48.8% 48.5% 49.6% 55.1% 51.3% 51.3% 55.0% 52.7%

3.4.3 Performance of CCB-MCTS (ri =
T
ti
) algorithm against

Plain UCT on 9× 9 NoGo

We will demonstrate the performance of the CCB-MCTS (ri = T
ti
) algorithm

against the plain UCT algorithm on the game of NoGo played on a 9 × 9 board.

NoGo is a misere version of the game of Go, in which the first player that has no

legal moves other than capturing the opponent’s stone loses.

All the simulations are all pure random simulations, and no extra heuristics

or simulation policies were applied. A total of 1000 games were played for each

constant C setting of the UCT algorithm, each taking turns to play Black. The

total number of playouts was fixed to 1000, 3000, and 5000 for both algorithms.

The results are shown in Table 3.2. We can observe that the CCB-MCTS

(ri =
T
ti
) algorithm significantly dominates the plain UCT algorithm when only

1000 playouts were given, and the performance deteriorates rapidly when more

playouts are available, although it is still roughly on the same level as the plain

UCT algorithm.
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3.5 Discussion

The success of Monte-Carlo tree search (MCTS) is mainly due to its combination

with bandit algorithms. However, some characteristics of various bandit algorithms

may not be suitable for application in MCTS. The improved UCB algorithm has a

better regret upper bound than the UCB algorithm, but because of characteristics

such as performing early explorations and not an anytime algorithm, a direct

application to MCTS may not be practical. We have proposed some possible

modifications to the improved UCB bandit algorithm, making it more suitable for

application in MCTS.

The combined confidence bounds (CCB) bandit algorithm is a result of such

modifications to the improved UCB algorithm. We have chosen the exploration

regulating factor to be ri =
Ti

ti
, and has demonstrated the effects of various modifi-

cations we have made to the improved UCB algorithm. The CCB-MCTS algorithm

is an MCTS algorithm that combines the CCB bandit algorithm with MCTS. We

have demonstrated the performance of the CCB-MCTS algorithm on the games

of 9× 9 Go and 9× 9 NoGo.

The results on both 9× 9 Go and 9× 9 NoGo suggest that the performance of

the CCB-MCTS (ri =
T
ti
) algorithm is comparable to that of the plain UCT algo-

rithm, but scalability seems to be poor. Since the proposed CCB bandit algorithm

essentially estimates the expected reward of each bandit by wi +
∆m

2

√
ri, where

ri =
√

T
ti
, the exploration term converges slower than the of the UCB algorithm,

and hence more exploration might be needed for the combined confidence bounds

to converge to a “good-enough” estimation value; this might be the reason why

CCB-MCTS (ri =
T
ti
) algorithm has poor scalability. Therefore, we might able to

overcome this problem by trying other definitions for the exploration regulating

factor ri.
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Chapter 4

Regulation of Exploration in

Simple Regret Minimization

This chapter mainly consists of two major parts. First, we will investigate possible

definitions for the exploration regulating factor ri in the CCB bandit algorithm

and its implications. By choosing the definition of ri =
T
ti
, we are able to trans-

form the CCB bandit algorithm to the UCB√· algorithm with regulations on the

amount of exploration that it performs. We will then examine and analyse the

impact of such an regulation on the minimization of simple regret. For the second

part, we will demonstrate how commonly used heuristics in MCTS can be applied

with the CCB-MCTS (r =
√
T
ti
)algorithm. We have chosen the rapid action value

estimation (RAVE) heuristics which increases the efficiency of the utilization of

online knowledge, and hence is also one of the most domain independent heuristics

used in MCTS.
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4.1 Selection of Exploration Regulating Factor

The difference between the definitions of the confidence bounds in the CCB bandit

algorithm and the improved UCB algorithm lies in the inclusion of the exploration

regulating factor ri. That is, the confidence interval of the improved UCB algorithm

for arm ai is wi ± ∆m

2
, and for the CCB bandit algorithm it is wi ± ∆m

2

√
ri, after

round m.

The exploration regulation factor fulfills two main roles:

1. Tightening the confidence bound for the current best arm, because the CCB

bandit algorithm only samples the current best arm.

2. Carrying information across episodes. Because we apply the CCB bandit

algorithm to MCTS in an episodic fashion, all of the terms in the confidence

bounds will be re-initialized before entering a new episode, with the exception

of the average reward wi. This re-initialization essentially throws away most

of the exploration information gained from previous episodes. Therefore,

in order to carry exploration information through episodes, the exploration

regulating factor will not be re-initialized when entering a new episode.

An obvious choice for the exploration regulating factor is ri =
T
ti
, where T is

the total number of plays and ti is the number of times arm ai has been sampled

so far. The more times arm ai is sampled, the smaller ri becomes, hence providing

a tighter bound for arm ai. Therefore, the confidence bound effectively becomes

wi ±
√

log(T∆2
m)·ri

2nm
= wi ± ∆m

2

√
ri = wi ± ∆m

2

√

T
ti
.

Another possible choice is ri =
log T
ti

. This choice will effectively transform the

confidence bounds in the CCB bandit algorithm to
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wi ±
√

log(T∆2
m)·ri

2nm
= wi ± ∆m

2

√
ri = wi ± ∆m

2

√

log T
ti

,

which only differs from the definition of the confidence bound in the UCB algorithm

by the extra factor ∆m

2
in the exploration term. Because we always sample the

current best arm in the CCB bandit algorithm, the algorithmic aspect is still

consistent with the UCB algorithm, and hence the only difference is the factor

∆m

2
, which dynamically regulates the influence of the exploration term.

Because the task of a game tree search is to identify the best move to make,

the identification of the optimal arm in the MAB problem, which is also the mini-

mization of the simple regret, appears to be more compatible with the objective of

MCTS. By choosing ri =
√
T
ti
, the confidence bound in the CCB bandit algorithm

will be transformed to

wi ±
√

log(T∆2
m)·ri

2nm
= wi ± ∆m

2

√
ri = wi ± ∆m

2

√√
T
ti
,

which is similar to the previous case considered above. It only differs from the

confidence bound in the UCB√· algorithm by the extra factor ∆m

2
in the exploration

term, and the algorithmic aspect is still in keeping with the UCB√· algorithm.

The bandit algorithm that minimizes the simple regret attempts to verify that

suboptimal arms are indeed suboptimal, and so more plays will be spent on those

suboptimal arms. Therefore, the search will end up devoting most of its time to

verifying whether some part of the game tree is indeed inferior, and may end before

it reaches the relevant part of the tree. The extra ∆m

2
factor in the CCB bandit

algorithm is able to regulate the performance of excessive exploration, but comes

at the cost of achieving a looser bound on the simple regret.
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4.2 Simple Regret of the CCB Bandit Algorithm

As described above, by defining ri =
√
T
ti
, the CCB bandit and UCB√· algorithms

differ only in the extra ∆k

2
factor in the exploration term. Because ∆k is halved

after every round, at round k the CCB bandit algorithm is effectively the UCB√·

algorithm with the constant in the exploration term set to ck, and thus the upper

confidence bound for arm ai is

ucbk(ai) = wi + ck ·
√√

T
ti
,

where ck = ∆k−1

2
· ck−1. Let the initial constant be set to c = c0. Then, because

∆0 = 1, at round k the constant is given by ck = ∆k−1

2
· ck−1 = ∆0

2k
· c0 = c

2k
.

Therefore, the entire CCB bandit algorithm can be viewed as the progression of

the UCB√· algorithm with the constant set to ck in round k, with ck = c/2k.

Now, we will introduce two theoretical results concerning the UCB√· and im-

proved UCB algorithms, on which our arguments will be based.

Fact 1. (Tolpin et. al [34]) For every 0 < η < 1 and γ > 1, there exists τ such that

for every T > τ the probability of a suboptimal arm ai being sampled is bounded by

Pk ≤ 2γ exp(− ck
√
T

2
).

Fact 2. (Auer et. al [3]) In the improved UCB algorithm, the probability that a

suboptimal arm ai is not eliminated in round k (or before) is bounded by

Pe ≤ 2
T∆2

k

.

First, We will examine a more general algorithm, the CCBδ bandit algorithm,

which represents the progression of constant settings {c0, c1, · · · , ck} in the UCB√·

algorithm, but with the number of plays scheduled in each round defined arbitrar-

ily.

42



Theorem 1. For every 0 < η < 1 and γ > 1, there exists τ such that for any

number of samples T > τ the CCBδ bandit algorithm divides T into M rounds,

and there are tk plays in round k. The simple regret of the CCBδ bandit algorithm

is bounded from above as

SRδ ≤ 2γ|A|∆Mδ exp(− c
√
T

2M+1
),

where ∆ = max
i

∆i and δ = max
k

(nk/T ), with the probability at least 1− η.

Proof. According to Fact 1, for every 0 < η < 1 and γ > 1 there exists τ such that

for any number of samples T > τ , the probability of a suboptimal arm ai being

sampled in round k is Pk ≤ 2γ exp(− ck
√
T

2
). Let δk = (tk/T ) be the proportion

of the number of plays in round k compared to the total plays T . Then, the

probability of suboptimal arm ai being sampled by the CCBδ bandit algorithm

over T plays is bounded by

Pi =

M
∑

k=0

δk · Pk ≤ 2γ

M
∑

k=0

δk exp(−
ck
√
T

2
).

Suppose that the difference of the expected reward of suboptimal arm ai and the

optimal arm is ∆i. Then, the simple regret of the CCBδ bandit algorithm is

bounded from above as

SRδ ≤
|A|
∑

i=1

∆i · Pi ≤
|A|
∑

i=1

∆i · (2γ
M
∑

k=0

δk exp(−
ck
√
T

2
)).

That is,

SRδ ≤ 2γ

|A|
∑

i=1

∆i · (
M
∑

k=0

δk exp(−
c
√
T

2k+1
)).

Let ∆ = max
i

∆i and δ = max
k

(tk/T ). Then,
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SRδ ≤ 2γ|A|∆Mδ exp(− c
√
T

2M+1
).

It can be observed that gradually reducing the influence of the exploration term

by halving the constant c incurs the penalty of decreasing the simple regret. The

more rounds there are, the weaker the restriction on the simple regret becomes.

This is to be expected because when the influence of the exploration term is re-

duced, the bandit algorithm performs less exploration, which impacts the quality

of the final recommendation. Therefore, in order to reduce the impact of reducing

the simple regret, a higher proportion of rounds should be earlier than later. That

is, δ0 ≥ δ1 ≥ · · · ≥ δM . However, if
√
T

2M+1 ≤ 1, then the most dominant term in the

bound exp(− c
√
T

2M+1 ) will have the effect of increasing rather than decreasing, and

hence the total number of rounds should be M ≤ 1
2
log T − 1.

Now, we will proceed to examine the simple regret of the CCB bandit algorithm

with ri =
√
T
ti
.

Theorem 2. For every 0 < η < 1 and γ > 1, there exists τ such that for any

number of samples T > τ the simple regret of the CCB bandit algorithm is bounded

from above as

SRccb ≤ 4γ exp(2− c
√
e

4
)|A|

|A|
∑

i=1

∆i · log2(
T

e
)
log T

T 4
,

with the probability at least 1− η.

Proof. We begin by deriving the upper bound on the number of plays δk in round

k divided by the total plays T . By Fact 2, the probability that a suboptimal arm

ai is still not eliminated in round k is bounded by Pe ≤ 2
T∆2

k

. Therefore, the arm

count in round k can be bounded by |Bk| = Pe · |A| ≤ 2|A|
T∆2

k

. Because the number of
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times that each arm is sampled in the improved UCB algorithm is nk =
2 log(T∆2

k
)

∆2
k

,

the proportion of plays in round k compared to the total number of plays T is

bounded from above as

δk =
(|Bk| · nk)

T
≤ 1

T
· 2|A|
T∆2

k

· 2 log(T∆
2
k)

∆2
k

.

That is,

δk ≤
4|A| log(T∆2

k)

T 2∆4
k

.

Because ∆0 = 1, it follows that ∆k =
1
2k
, δk can be further bounded as

δk ≤
4|A| log(T∆2

k)

T 2∆4
k

≤ 4|A| log(T )
T 2∆4

M

,

where M is the total number of rounds. As M = 1
2
log2

T
e
, it follows that 1

∆4
M

= e2

T 2

and

δk ≤
4|A| logT

T 2
· e

2

T 2
.

That is,

δk ≤
4e2|A| logT

T 4
.

Therefore, by applying the bound from Fact 1, with the fact that ck = c
2k
, the

probability of the suboptimal arm ai being sampled in the CCB bandit algorithm

is bounded from above as
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Pi =

M
∑

k=0

δk·Pk ≤
M
∑

k=0

4e2|A| logT
T 4

·2γ exp(−ck
√
T

4
) ≤ 2γ·M ·4e

2|A| log T
T 4

·exp(− c
√
T

4 · 2M ).

Considering that M = 1
2
log2

T
e
, the bound can be further simplified as

Pi ≤ 4γ exp(2− c
√
e

4
)|A| log2(

T

e
)
log T

T 4
.

Therefore, the simple regret of the CCB bandit algorithm is bounded from

above as

SRccb =

|A|
∑

i=1

∆i · Pi ≤
|A|
∑

i=1

∆i · 4γ exp(2−
c
√
e

4
)|A| log2(

T

e
)
log T

T 4
.

That is,

SRccb ≤ 4γ exp(2− c
√
e

4
)|A|

|A|
∑

i=1

∆i · log2(
T

e
)
log T

T 4
.

We can observe from Theorem 2 that the simple regret of the CCB bandit

algorithm decreases at a rate of O( (logT )2

T 4 ), which is slightly inferior to that of

the UCB√· algorithm. The most dominant exponential term in the more general

Theorem 1 reduces to a constant term exp(2− c
√
e

4
) in Theorem 2, hence the penalty

of performing multiple rounds rather than using a single constant setting through

the whole process is more dominant.
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Figure 4.1. Example of all-moves-as-first (AMAF) heuristics

4.3 Applying All-Moves-As-First Heuristics with

CCB-MCTS

The CCB-MCTS algorithm with ri =
√
T
ti

seems to have good performance in its

purest form. So we will now investigate the possibility of applying commonly used

heuristics in MCTS to the CCB-MCTS algorithm.

The all-move-as-first (AMAF) heuristic [6][16] is a widely used performance

enhancement technique in MCTS, which exploits the fact that in some games,

such as Go, the value of a move is often unaffected by moves played elsewhere or

when it is played. More specifically, in the backpropagation stage of MCTS, instead

of only updating the values of the nodes on the path which we descended in the

selection stage, we also update the values, i.e., the win rate and the simulation
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time counts, of the sibling nodes if their move also occurred in the deeper depth

of the path or in the simulation stage according to the result of the playout.

An example is shown in Figure 4.1. The normal MCTS only updates the nodes

that are on the path that we descended from in the expanded game tree, that is

the A, B, and C nodes. However, when we update upwards and reach node B in

our path, we found that moves C and D occurred in our sibling nodes and they

both also occurred on the deeper part of our descending path. Hence according

the the AMAF heuristic, we will update those sibling nodes as well. The same is

also done for the node E in the expanded tree.

Although AMAF allows the information from the playouts to be shared across

the related positions or moves in the game tree, it also introduces bias to its value.

Therefore, a common way of applying AMAF in MCTS is to use the AMAF value

to speed up the convergence rate in the initial stages of a node, and gradually

decrease the influence of the AMAF value as the number of playouts on a node

exceed a certain point.

Rapid action value estimation (RAVE) [16] is currently the most widely

used method for combining AMAF values and the original MCTS values. RAVE

combines the win rate of a function by

wRAV E = (1− β) · wMCTS + β · wAMAF ,

where β is a variable that diminishes as the number of playouts increases. There

are various scheduling schemes for β, and one of which is the minimum MSE

schedule [16]. The minimum MSE schedule, which tries to minimize the mean

squared error in the combined estimate, defines the value of β as

β = NAMAF

NAMAF+NMCTS+(NAMAF ·NMCTS )/D
,
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where NMCTS and NAMAF are the number of playouts performed on the node in

MCTS and AMAF sense respectively, and D is the bias between the AMAF value

and the MCTS value. The bias D can be viewed as a parameter, which can either

be tuned manually or automatically with machine learning methods.

There are two possible ways of applying RAVE to the combined confidence

bounds:

Apply RAVE to Win Rate

RAVE can be applied to the combined confidence bound in the same way as it is

applied in the UCT-RAVE algorithm [16], by only applying RAVE on the win rate

wiRAV E
± c∆

√

log(T∆2
m)·ri

2nm
.

Apply RAVE to both Win Rate and Halving ∆m

RAVE can be further applied to the update of ∆m by modifying the playout counts

for a node to

nRAV E = ⌊(1− β) · nMCTS + β · nAMAF ⌋,

but the deadline for halving ∆m remains the same, i.e., the calculation of the

deadline will only use MCTS values and no AMAF values. Therefore, RAVE can

be applied in two places in the combined confidence bounds

wiRAV E
± c∆

√

log(T∆2
mRAV E

)·ri
2nm

.

Note that the scheduling for wiRAV E
and ∆mRAV E

should be different, because

AMAF values may have different biases in these two terms. The playout count
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nRAV E is also used for speeding up the episode iteration as well, i.e., the conditions

in Algorithm 5 are modified to N.tRAV E ≥ N.deltaUpdate and N.tRAV E ≥ N.T ,

where N.tRAV E is the RAVE simulation count.

4.4 Experimental Results

We will first demonstrate the performance of the CCB-bandit algorithm given

various definitions of the exploration regulating factor ri on the MAB problem.

Next, we will examine the performance of the CCB-MCTS algorithm when differ-

ent definitions are given to the exploration regulating factor ri with and without

the application of the RAVE heuristic on 9× 9 Go and 9× 9 NoGo.

4.4.1 Performance of Various Exploration Regulating Fac-

tor

The experimental settings follow the multi-armed bandit testbed that is specified

in Sutton et. al [32]. The results are averaged over 2000 randomly generated K-

armed bandit tasks. The reward distribution of each bandit is a normal (Gaussian)

distribution with the mean wi, i ∈ K, and variance 1. The mean wi of each bandit

of every generated K-armed bandit task was randomly selected according to a

normal distribution with mean 0 and variance 1. Observations were made on the

cases of K = 60 and K = 300.
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Figure 4.2. Optimal percentage of various choice of exploration regulating factor

in the CCB Bandit Algorithms

The optimal arm selection percentage of each setting of ri are shown in Figure

4.2. It be observed that the CCB bandit algorithm with ri =
√
T
ti

initially has a low

optimal action percentage, but gradually overtakes the others after 12000 plays,

ending up with the highest percentage of selecting the optimal arm in both K = 60

and K = 300. It For ri =
log T
ti

, it can be observed that the percentage rapidly
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decreases despite it having a similar confidence bound with the UCB algorithm.

This may be due to the fact that the exploration regulating factor will cause the

exploration term to diminish much more rapidly than the UCB algorithm, and

hence not enough exploration has been performed. The opposite can be stated for

the case of ri =
T
ti
, in which the exploration regulating factor may encourage more

excessive exploration.
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Figure 4.3. Cumulative regret of various choice of exploration regulating factor in

the CCB Bandit Algorithms
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Figure 4.4. Simple regret of various choice of exploration regulating factor in the

CCB Bandit Algorithms

The consequence of the optimal arm selection percentage of each ri settings

are reflected in their cumulative regret and the simple regret. We can observe that

the cumulative regret of the CCB bandit algorithm with ri =
√
T
ti

is smaller than

the other definitions of ri in K = 60, and is the second lowest in K = 300, as

shown in Figure 4.3. The reason that ri =
√
T
ti

has the second lowest cumulative
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regret in K = 300 is due to the fact that it performs more exploration in the early

stage than ri =
log T
ti

as observed in the optimal arm selection percentage. The

CCB bandit algorithm with ri =
√
T
ti

achieves the best simple regret minimization

in K = 300, and the third best in K = 60, as shown in Figure 4.4.

4.4.2 Performance of Various Exploration Regulating Fac-

tor in 9× 9 Go and 9× 9 NoGo

We will demonstrate the performance of CCB-MCTS algorithm on the game of

9× 9 Go and 9× 9 NoGo. The komi of 9× 9 Go is set to 6.5, that is Black needs

to score 6.5 more points than White to win the game. The game of 9 × 9 NoGo

is a misère game of Go, which is roughly an “opposite game of Go”, where the

basic rules are the same as in Go, but the first player to capture a stone or runs

out of legal move loses. In order to make a direct and effective comparison of the

impact of bandit algorithms on MCTS, all MCTS algorithms used pure random

simulation, without any performance enhancing heuristics.

Since the difference between the CCB-MCTS and the UCT algorithm is only

in the extra computational efforts needed for the maintenance and reinitialization

of various variables such as expected regret ∆k, arm count Nm, and deadline T∆k
,

the computation time of the two algorithms are roughly equal to each other when

given the same amount of playouts.

We will first investigate the impact of different choice of exploration regulating

factor ri. Table 4.1 shows the win rate of the various settings of the CCB-MCTS

algorithm against the plain UCT algorithm. The fourth column is the optimal

constant settings of the two algorithms, where cccb is the constant of the CCB-

MCTS algorithm, and cuct is the constant of the plain UCT algorithm. All results
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Game Exploration factor ri Win Rate against plain UCT cccb cuct

log T
ti

51.39%±2.04% 0.90 0.40

9× 9 Go
√
T
ti

53.82%±2.03% 0.47 0.37

T
ti

49.60%±2.04% 1.0 0.40

log T
ti

52.83%±2.04% 0.10 0.40

9× 9 NoGo
√
T
ti

53.26%±2.04% 0.84 0.80

T
ti

51.78%±2.04% 0.30 0.41

Table 4.1. Win rate of CCB-MCTS with various exploration regulating factor

against plain UCT on 9× 9 Go and 9× 9 NoGo

are the average of 2300 games, with both algorithms taking turns in playing White

and Black. A total of 5000 playouts are given to both algorithms for each move.

It can be observed that for r =
√
T
ti
, the CCB-MCTS algorithm achieves a

win rate around 53%, showing that there is a slight improvement over the plain

UCT algorithm in both games. For both ri =
T
ti
and ri =

log T
ti

, the CCB-MCTS

algorithm achieves around 49% to 51% win rate in both games, which is only

roughly on the same level of the plain UCT algorithm. Therefore, defining the

exploration regulation factor as r =
√
T
ti

in the CCB-MCTS algorithm seems to

produce the best empirical performance.

We will next inspect the scalability of the CCB-MCTS algorithm with r =
√
T
ti

as the total number of playout increases. The results are shown in Table 4.2. All

results are the average of 2300 games, with both algorithms taking turns in playing

White and Black.

It can be observed that the CCB-MCTS algorithm has a slight edge over plain

UCT when less than or equal to 7000 playouts are given to both algorithms in the

game of 9 × 9 Go, and less than or equal to 9000 playouts in 9 × 9 NoGo. As
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Playouts Win Rate in 9× 9 Go Win Rate in 9× 9 NoGo

1000 53.52% ± 2.04% 52.43% ± 2.04%

3000 54.35% ± 2.04% 54.13% ± 2.04%

5000 53.82% ± 2.03% 53.26% ± 2.04%

7000 54.17% ± 2.04% 53.08% ± 2.04%

9000 58.70% ± 2.01% 53.47% ± 2.04%

11000 57.35% ± 2.02% 56.08% ± 2.03%

13000 55.39% ± 2.03% 55.30% ± 2.03%

Table 4.2. Scalability of the CCB-MCTS (ri =
√
T
ti
)on 9× 9 Go.

for more than 9000 playouts in 9 × 9 Go, and 11000 playouts in 9 × 9 NoGo, the

CCB-MCTS algorithm is shown to be superior to the plain UCT algorithm.

4.4.3 CCB-MCTS with AMAF Heuristics on 9× 9 Go

Finally, we will investigate the effectiveness of applying AMAF heuristics to the

CCB-MCTS algorithm. The exploration regulating factor is set to the definition

of ri =
√
T
ti
.

The performance of the UCT-RAVE algorithm [16], in which only the AMAF

heuristic is applied to the win rate of the UCB confidence bound, is shown in Table

4.3. The results of the CCB-MCTS with AMAF heuristics are shown in Table 4.4.

Drate and D∆ are the parameters for RAVE in win rate and ∆m update, re-

spectively. All the results are the average of 2300 games, with both algorithms

taking turns in playing with Black and White. A total of 5000 playouts are given

to both algorithms for each move. The settings are c∆ = 0.47 for the CCB-MCTS,

and c = 0.37 for both the plain UCT and the UCT-RAVE algorithm. The AMAF

56



Table 4.3. Win rate of the UCT-RAVE algorithm against plain UCT algorithm in

9× 9 Go.

Drate Win Rate

500 55.48% ± 2.03%

1000 58.78% ± 2.01%

2000 59.09% ± 2.01%

4000 61.87% ± 1.99%

6000 62.70% ± 1.98%

heuristics are only applied on the CCB-MCTS and UCT-RAVE algorithm, and

not on the plain UCT algorithm.

We can observe in Table 4.3 that the UCT-RAVE algorithm can achieve a win

rate of 62.70% against plain UCT, and Table 4.4 showns that by applying RAVE

only to the win rate estimation term in the CCB-MCTS, the win rate can be

significantly improved from 53.82% to 66.61% against plain UCT, an increase of

around 13%. If RAVE is also applied to ∆m update, a further improvement of

about 2% may be expected. Observing from the rate of increase of win rate, the

CCB-MCTS seems to benefit more from AMAF heuristics.

We have to note that these are just sample settings to show the effectiveness of

applying AMAF, and not the optimal settings; therefore there might be still room

for further enhancement. It can also be observed that Drate and D∆ should have

different values, where Drate is may be a few hundred times larger than D∆.
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Table 4.4. Win rate of the CCB-MCTS (ri =
√
T
ti
) with AMAF heuristics against

plain UCT algorithm in 9× 9 Go.

Drate D∆ Win Rate

No RAVE No RAVE 53.82% ± 2.03%

500 No RAVE 55.52% ± 2.03%

1000 No RAVE 57.82% ± 2.02%

2000 No RAVE 60.70% ± 2.00%

4000 No RAVE 64.39% ± 1.96%

6000 No RAVE 66.61% ± 1.93%

2000 1000 61.30% ± 1.99%

2000 800 60.83% ± 1.99%

2000 400 62.70% ± 1.98%

2000 200 63.13% ± 1.97%

2000 100 62.43% ± 1.98%

2000 50 63.96% ± 1.96%

3000 50 65.13% ± 1.95%

4000 50 67.13% ± 1.92%

5000 50 65.70% ± 1.91%

6000 50 65.57% ± 1.94%

7000 50 67.26% ± 1.92%

8000 50 66.30% ± 1.93%
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4.5 Discussion

There are many possible definition for the exploration regulating factor ri in the

CCB bandit algorithm. We have made a comprehensive comparison of different

definitions and observed their performance on the MAB problem. We have also

shown that by choosing the definition ri =
√
T
ti
, the CCB bandit algorithm is

essentially the progression of the UCB√· algorithm with different constant settings,

and has the upper bound of O( (logT )2

T 4 ) on the simple regret.

The CCB-MCTS algorithm has been shown to have better performance than

the plain UCT algorithm on the game of 9 × 9 Go and 9 × 9 NoGo when the

exploration regulating factor is set to ri =
√
T
ti
, and also has good scalability in

both games. This result seems to suggest the minimization of simple regret in

MCTS is effective, however the level of exploration needs to be regulated.

We have also demonstrated two possible ways of applying AMAF heuristics

to the combined confidence bounds. The empirical performance of the combined

confidence bounds bandit algorithm outperforms the UCB algorithm in the MAB

problem. The Combined Confidence Bounds MCTS (CCB-MCTS) has shown

to have better performance over the plain UCT algorithm, and also seems to

have good scalability. The application of AMAF heuristics greatly enhances the

performance of the CCB-MCTS, increasing the win rate over plain UCT by around

15%.

Exploring the possibility of applying the various modifications we have made

on the improved UCB algorithm to other bandit algorithms having similar char-

acteristics would be of interest. It would also be interesting to investigate the

possibility of other choices of the exploration regulating factor, and how they will

perform in different situations.
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Chapter 5

Asymmetric Move Selection

Strategies

The paradigm of applying bandit algorithms in all MCTS variants is still essentially

the same: viewing every node in the game tree as an independent instance of the

MAB problem, and applying the same bandit algorithm and heuristics on every

node. Although this approach allows MCTS to be applied in general domains

other than game-play, it leaves certain properties of the game tree unexploited.

The adversarial game tree consists of two types of nodes: min nodes and max

nodes. Max nodes and min nodes generally represent the decision of different

players in the game tree, and it is conventional knowledge in various games that

which strategy to adopt should be based on which player he or she is. For example,

in the game of Go, a komi of 6.5 is given to the Black player, that is the Black

player needs to obtain at least 6.5 points more than the White player to win the

game. Therefore, the Black player needs to adopt a more aggressive strategy, while

the White player can play more conservatively or defensively. The same can also

be observed in the game of Chess, where White is generally considered to have the
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initiative from the start, and hence needs to play more actively, while Black needs

to solve its passivity first. Therefore, max nodes and min nodes are intrinsically

different from this high-level point of view, and it would be natural to treat them

differently, rather than symmetrically.

Some methods have been proposed to reflect the min-max property of game

trees in MCTS, but still essentially treat max nodes and min nodes symmetrically,

and apply the same heuristic on every node [4]. The SR+CR scheme differs only

the root node from other nodes, rather than between max nodes and min nodes

[34].

In this chapter, we will investigate the possibility of treating max nodes and

min nodes differently by applying different bandit algorithms for each node type

in MCTS. We will develop the Asymmetric-MCTS algorithm, which applies the

UCB√· algorithm on max nodes and the UCB algorithm on min nodes. We will

demonstrate its performance on the game of 9× 9 Go, 9× 9 NoGo, and Othello.

5.1 Asymmetric Move Selection Policy in Monte-

Carlo Tree Search

MCTS consists of four major steps: selection, expansion, simulation, and backprop-

agation. Bandit algorithms are mainly applied in the selection phase by viewing

each node as an independent instance of the MAB problem, where each child node

is a single candidate arm. Currently, the most popular variant of MCTS is the

UCT algorithm, in which the UCB algorithm is the applied bandit algorithm.

Although this general MCTS paradigm allows it to be applied in a wide range

of domains, it leaves a number of properties of the game tree unexploited.
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5.1.1 Concerns on Value Estimation of Different Node Types

The role of the bandit algorithm on every node of MCTS is to estimate the value

of the node and perform selection according to the estimated value. As the search

progresses, the estimation value of the nodes also converges. Although the general

goal is to obtain a good estimation as fast as possible, it can be observed that

different node types in the game tree have different requirements to their estimated

values:

• Max node: since the max nodes represent the point of view of the agent,

and hence we need to be more certain about the estimated value of each

possible decision. Estimations should also be more cautious, and not overly

optimistic.

• Min node: since the min nodes represent the reaction of the opponent, it is

not necessary to determine the best possible reaction of the opponent. Just

a good enough reaction that is sufficient to refute a decision made by the

decision maker will do.

Due to the selection and expansion performed in MCTS, the reward of the

MAB problem at each node is non-stationary [12]. For example, consider the

binary tree used for constructing a lower bound of the convergence rate of the

UCT algorithm [12], shown in Fig. 5.1. The binary tree has the depth of D, and

the rightmost path, which is from the root node to the rightmost leaf node, is the

optimal path. For a node N at depth d < D on the optimal path, if the left action

is chosen, then a reward of D−d
D

is received. In other words, all the leaf nodes of

the subtree rooted at N have the value of D−d
D

. If the right action is chosen, the

agent can proceed to expand further down the optimal path. At depth D − 1 of

the optimal path, the left action will give the reward 0, and the right action will
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Figure 5.1. An example tree for which the UCT algorithm has very poor perfor-

mance [12].

give the reward 1. Therefore, MCTS will most likely spend the majority of its time

expanding the subtrees of the left action along the optimal path, as it seems to be

better. Consider the MAB problem at the root node, which has two arms node Na

and node Nb. Since the leaf nodes of the subtree rooted at Na all have the value of

D−1
D

, the reward produced by Na will most likely be fixed around D−1
D

. However,

as the search gradually expand down the optimal path, the reward produced by

Nb will most likely be along the sequence

{D−2
D

, · · · , D−2
D

, D−3
D

, · · · , D−3
D

, · · · , 1
D
, · · · , 1

D
, 1},

instead of being more evened out. Therefore, although the distribution of the

reward of the MAB problem on each node is fixed and determined by the values of

the leaf node, due to the selection and expansion performed in MCTS, the reward

of the MAB problem on each node is biased, and hence affect the estimation made

by the bandit algorithms.
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Consider the case where a sequence of rewards (r1, r2, r3, · · · , rn) are drawn

from distribution N , but due to some sampling bias, the sequence is ordered in a

non-decreasing order, that is ri ≤ rj if i < j. Therefore, the estimated mean reward

will be higher than the true mean reward in the early period of the sequence, and

hence causing the agent to be too optimistic. Similarly, if the sequence is in a non-

increasing order, that is ri ≥ rj if i > j, then the agent tends to be underestimate

the mean in the early stages.

Therefore, one should choose a bandit algorithm that is most likely to resist

over optimistic estimations caused by biased reward to deploy on max nodes,

and a bandit algorithm that can adapt itself rapidly to provide a “good enough”

estimation on min nodes.

5.1.2 Different Bandit Algorithms for Different Node Types

As simple regret and cumulative regret bandit algorithms have different properties,

they can be deployed to different node types accordingly to fulfill the requirements

on the estimation value of each node type:

• Max node: simple regret bandit algorithms, which determine the opti-

mal arm, have a higher level of confidence in its estimation value of each

arm. Moreover, in order to provide a better estimation of the value of each

arm, simple regret bandit algorithms tend to perform more exploration, and

spread its sampling more evenly across the candidates, which effectively make

it less likely to be too optimistic.

• Min node: cumulative regret bandit algorithms, which try to accumulate

as much reward as possible, tend to focus on the current optimal arm, and

adapt rapidly if the current optimal arm changes. Therefore, cumulative

64



Algorithm 6 Asymmetric-MCTS Algorithm

function Asymmetric-MCTS(Node N)

bestucb ← −∞
for all child nodes ni of N do

if ni.t = 0 then

ni.ucb←∞
else

if N.type is MAX then

ni.ucb← n.w + cs ·
√

√

N.t

ni.t

else

ni.ucb← n.w + cr ·
√

logN.t

ni.t

end if

end if

if bestucb ≤ ni.ucb then

bestucb ← ni.ucb

nbest ← ni

end if

end for

if nbest.t = 0 then

result←RandomSimulation(nbest)

else

if nbest is not expanded then Expand(nbest)

result← Asymmetric-MCTS(nbest)

end if

nbest.w ← (nbest.w × nbest.t+ result)/(nbest.t+ 1)

nbest.t← nbest.t+ 1

N.t← N.t+ 1

return result

end function
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Figure 5.2. Asymmetric-MCTS algorithm. The gray nodes are max nodes, which

the UCB√· bandit algorithm are applied, and the white nodes are min nodes, which

the UCB bandit algorithm applied.

regret bandit algorithms seem to fit the requirement of finding a good enough

reaction to refute a candidate decision.

The Asymmetric-MCTS algorithm, which is shown in Algorithm 6, still retains

the four steps in conventional MCTS, namely selection, expansion, simulation,

and backpropagation. The main characteristic of the Asymmetric-MCTS is that it

applies the UCB√· algorithm, which is a simple regret bandit algorithm, on max

nodes, and the UCB algorithm, which is a cumulative regret bandit algorithm, on

min nodes, as shown in Figure 5.2.

5.2 Experimental Results

In this section, we will first demonstrate the effect of biased reward on the UCB

and UCB√· algorithm. We will then proceed to demonstrate the performance

of the Asymmetric-MCTS algorithm on the game of 9 × 9 Go, 9 × 9 Nogo, and
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Figure 5.3. Optimal percentage of biased reward MAB problem
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Figure 5.4. Cumulative regret of biased reward MAB problem.
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Figure 5.5. Simple regret of biased reward MAB problem.
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Othello. The baseline for all experiments is the plain UCT algorithm. For a direct

comparison of the effect of the bandit algorithms, all MCTS algorithms used pure

random simulations, and no performance enhancement heuristics were applied.

Every experimental result is the average of 2300 games, and each algorithm took

turns in playing with Black and White.

5.2.1 Effect of Biased Reward in the MAB problem

We will first demonstrate how bias in the reward affects the performance of the

UCB and UCB√· algorithm. In order to enhance the effect of the biased reward,

we will examine two extreme cases: the rewards are biased to be produced in

ascending order, and descending order.

The MAB problem testbed mainly follows the settings specified in Sutton et

al. [32]. The results are the average of 2000 randomly generated K-armed ban-

dit problems, with K = 20. A total of 5000 plays were given to each problem.

The rewards of each bandit are first generated from a normal (Gaussian) distri-

bution with the mean wi, i ∈ K, and variance of 1. The mean wi of the bandits

were randomly selected from a normal distribution with mean 0 and variance 1.

To simulate biased rewards, the rewards are then sorted in ascending order and

descending order.

It can be observed from Figure 5.3a and Figure 5.3b that regardless of the

order in which the rewards are biased, the UCB algorithm has a higher percentage

of pulling the optimal arm than the UCB√· algorithm, and hence suggesting the

UCB√· algorithm tends to distribute its plays more evenly across the candidates.

As a result, The UCB algorithm also has lower cumulative regret than the UCB√·

algorithm in both cases, as shown in Figure 5.4a and Figure 5.4b.
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However, the UCB√· algorithm has a lower simple regret than the UCB al-

gorithm when the rewards are produced in descending order, as shown in Figure

5.5b. As the UCB√· algorithm performs more exploration, it is able to obtain a

better estimation of the mean reward of each candidate, and thus can make more

informed recommendations, achieving lower simple regret. On the other hand,

the extensive explorations performed by the UCB√· algorithm cause its estima-

tions to be too conservative and pessimistic, and hence lower the quality of the

recommendations, as shown in Figure 5.5a.

Therefore, it can be observed that the UCB√· algorithm is more conservative

in its estimations, and more resistant to situations where it is more likely to make

overly optimistic estimations. One the other hand, the UCB algorithm follows

closely the change in the reward with high efficiency.

5.2.2 Performance of the Asymmetric-MCTS on 9× 9 Go

We will first investigate the performance of the Asymmetric-MCTS on the game

of Go played on the 9× 9 board, with the komi of 6.5.

Performance of SR+CR scheme

For comparison, we demonstrate the performance of SR+CR scheme on the game

of 9×9 Go. The SR+CR scheme applies the UCB√· bandit algorithm only on the

root node, and the UCB bandit algorithm on all other nodes [34]. Table 5.1 shows

the win rate of various settings for the constant cs in the UCB√· algorithm in the

SR+CR scheme algorithms. The best constant setting for the UCB algorithm is

cr = 0.4 in the SR+CR scheme and the plain UCT algorithm is c = 0.4. A total

of 5000 playouts are given to both algorithms for each move.
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Table 5.1. Win rate of SR+CR scheme against plain UCT algorithm in 9× 9 Go.

cs SR+CR Scheme

0.1 50.00% ± 2.04%

0.2 51.29% ± 2.04%

0.3 51.80% ± 2.04%

0.4 53.91% ± 2.04%

0.5 53.50% ± 2.04%

0.6 51.19% ± 2.04%

0.7 52.23% ± 2.04%

0.8 51.80% ± 2.04%

0.9 54.83% ± 2.04%

It can be observed that the SR+CR scheme achieves around 54% with its best

constant setting, which is slightly better than the plain UCT algorithm.

Tuning the C constants

We now proceed to find the best settings for the constant cr in the UCB algorithm

applied on min nodes, and the constant cs in the the UCB√· algorithm applied

on the max nodes, in the Asymmetric-MCTS algorithm. We have found the op-

timal setting as cr = 0.5 and cs = 0.4, and Table 5.2 shows the win rate of the

Asymmetric-MCTS against various constant settings for the plain UCT algorithm.

A total of 5000 playouts are given to both algorithms for each move.

It can be observed that even against the best setting c = 0.3 of the plain UCT

algorithm, the Asymmetric-MCTS still manages to achieve a win rate of around

57.70%. In comparison to the performance of SR+CR scheme, this result suggests

that applying the UCB√· algorithm on the max nodes throughout the game tree,
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Table 5.2. Win rate of the Asymmetric-MCTS with cr = 0.5, cs = 0.4 against

plain UCT algorithm with various constant c settings on 9× 9 Go.

c Win Rate

0.1 58.96% ± 2.01%

0.2 59.52% ± 2.01%

0.3 57.70% ± 2.02%

0.4 58.61% ± 2.01%

0.5 58.30% ± 2.01%

0.6 60.74% ± 2.00%

0.7 62.30% ± 1.98%

0.8 61.91% ± 1.99%

0.9 61.61% ± 1.99%

instead of only on the root node, can make a difference.

Scalability of Asymmetric-MCTS

We now investigate the scalability of the Asymmetric-MCTS as the total number of

playouts increases. The result is shown in Table 5.3. The settings for Asymmetric-

MCTS is cr = 0.5 and cs = 0.4, and that for the plain UCT algorithm is set to

c = 0.3.

We can observe that the Asymmetric-MCTS achieves a very good win rate of

around 65% over the plain UCT algorithm when 1000 playouts are given, and keeps

the win rate to around 60% as more playouts are given to both algorithms. The

results suggest that the Asymmetric-MCTS algorithm has very steady performance

on the game of 9× 9 Go.
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Table 5.3. Scalability of the Asymmetric-MCTS on 9× 9 Go.

Playouts Win Rate

1000 65.22% ± 1.95%

3000 60.00% ± 2.00%

5000 57.70% ± 2.02%

7000 59.39% ± 2.01%

9000 59.57% ± 2.01%

11000 62.61% ± 1.98%

5.2.3 Performance of the Asymmetric-MCTS on 9×9NoGo

We now demonstrate the performance of the Asymmetric-MCTS on the game of

Nogo. Nogo is a misere variation of the game of Go, in which the first player who

has no legal moves other than capturing the stones of the opponent loses.

Performance of SR+CR scheme

As in 9×9 Go, we first demonstrate the performance of the SR+CR scheme on the

game of 9×9 NoGo for comparison. Table 5.4 shows the win rate of various settings

for the constant cs in the SR+CR scheme. The constant setting for the plain UCT

algorithm is c = 0.3. A total of 5000 playouts are given to both algorithms for

each move.

We can observe that SR+CR scheme did extremely well against the plain UCT

algorithm, achieving a near 68% win rate against the plain UCT algorithm.
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Table 5.4. Win rate of UCB√· MCTS and SR+CR scheme against plain UCT

algorithm in 9× 9 NoGo.

cs SR+CR Scheme

0.1 50.23% ± 2.04%

0.2 51.80% ± 2.04%

0.3 52.70% ± 2.04%

0.4 59.60% ± 2.01%

0.5 64.35% ± 1.96%

0.6 65.63% ± 1.94%

0.7 65.28% ± 1.95%

0.8 66.53% ± 1.93%

0.9 67.21% ± 1.92%

Table 5.5. Win rate of the Asymmetric-MCTS with cr = 0.5, cs = 0.4 against

plain UCT algorithm with various constant c settings on 9× 9 NoGo.

c Win Rate

0.1 64.74% ± 1.95%

0.2 66.48% ± 1.93%

0.3 66.17% ± 1.93%

0.4 62.43% ± 1.98%

0.5 65.65% ± 1.94%

0.6 67.00% ± 1.92%

0.7 67.65% ± 1.91%

0.8 67.83% ± 1.91%

0.9 69.83% ± 1.88%
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Table 5.6. Scalability of the Asymmetric-MCTS on 9× 9 NoGo.

Playouts Win Rate

1000 57.57% ± 2.02%

3000 59.48% ± 2.01%

5000 62.43% ± 1.98%

7000 65.65% ± 1.94%

9000 64.96% ± 1.95%

11000 65.96% ± 1.94%

Tuning the C constants

We now proceed to find the best settings for the constants cr and cs the UCB√·

in the Asymmetric-MCTS algorithm. The optimal setting for the Asymmetric-

MCTS algorithm is cr = 0.5 and cs = 0.4. Table 5.5 shows the win rate of the

Asymmetric-MCTS against various constant settings for the plain UCT algorithm.

A total of 5000 playouts are given to both algorithms for each move.

It can be observed that the Asymmetric-MCTS algorithm achieves at least a

win rate of 62.43% against the plain UCT algorithm. This result suggests that

differentiating max nodes and min nodes also produces very good performance,

although the SR+CR scheme might be a better choice on the game of 9×9 NoGo.

Scalability of Asymmetric-MCTS

We now investigate the scalability of the Asymmetric-MCTS as the total number

of playouts increases when applied on 9× 9 Nogo. The results are shown in Table

5.6. The settings for Asymmetric-MCTS is cr = 0.5 and cs = 0.4, and the constant

for the plain UCT algorithm is set to c = 0.4.
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Table 5.7. Win Rate of the SR+CR scheme against plain UCT algorithm on

Othello.

cs SR+CR Scheme

0.1 37.74% ± 1.98%

0.2 51.34% ± 2.04%

0.3 53.26% ± 2.04%

0.4 53.87% ± 2.04%

0.5 52.35% ± 2.04%

0.6 50.74% ± 2.04%

0.7 50.30% ± 2.04%

0.8 49.43% ± 2.04%

0.9 49.78% ± 2.04%

It can be observed that the Asymmetric-MCTS algorithm dominates the plain

UCT algorithm from a total of 1000 playouts to 11000 playouts, and the win rate

gradually increases to near 66% when 11000 playouts are given to both algorithms.

This result suggests that the effect of differentiating max nodes and min nodes will

gradually increase with the number of total playouts.

5.2.4 Performance of the Asymmetric-MCTS on Othello

Finally, we proceed to demonstrate the performance of the Asymmetric-MCTS

algorithm on the game of Othello.

Performance of SR+CR scheme

We will first investigate the performance of the SR+CR scheme on Othello for

comparison. Table 5.7 shows the win rate of various settings for the constant
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Table 5.8. Win rate of the Asymmetric-MCTS with cr = 0.7, cs = 0.4 against

plain UCT algorithm with various constant c settings on Othello.

c Win Rate

0.1 88.86% ± 1.29%

0.2 81.74% ± 1.58%

0.3 70.48% ± 1.86%

0.4 57.61% ± 2.02%

0.5 53.87% ± 2.04%

0.6 50.47% ± 2.04%

0.7 53.39% ± 2.04%

0.8 52.13% ± 2.04%

0.9 53.22% ± 2.04%

cs in the UCB√· algorithm of the SR+CR scheme. The constant setting for the

UCB algorithm in the SR+CR scheme is cr = 0.6 and the plain UCT algorithm is

c = 0.6. A total of 5000 playouts are given to both algorithms for each move.

It can be observed that the SR+CR scheme can produce a best win rate of

around 53%, which is slightly better but still around the same level of the plain

UCT algorithm.

Tuning the C constants

We will now proceed to find the best settings for the constants cr and cs the UCB√·

in the Asymmetric-MCTS algorithm. The optimal setting for the Asymmetric-

MCTS algorithm is cr = 0.7 and cs = 0.4. Table 5.5 shows the win rate of

Asymmetric-MCTS against various constant settings for the plain UCT algorithm.

A total of 5000 playouts are given to both algorithms for each move.
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Table 5.9. Scalability of the Asymmetric-MCTS on Othello.

Playouts Win Rate

1000 52.37% ± 2.04%

3000 52.04% ± 2.04%

5000 53.43% ± 2.04%

7000 50.87% ± 2.04%

9000 51.22% ± 2.04%

11000 53.43% ± 2.04%

It can be observed that the Asymmetric-MCTS algorithm can only achieve a

win rate of around 50% against the plain UCT algorithm. This result suggests that

differentiating max nodes and min nodes is not effective on the game of Othello,

and is around the same level of performance as the plain UCT algorithm.

Scalability of Asymmetric-MCTS

We will now investigate the scalability of the Asymmetric-MCTS as the total

number of playouts increases when applied on Othello. The results are shown in

Table 5.9. The settings for Asymmetric-MCTS is cr = 0.7 and cs = 0.4, and the

plain UCT algorithm is set to c = 0.4.

It can be observed that the performance of the Asymmetric-MCTS algorithm

does not change with the increase of the number of playouts. The win rate of

Asymmetric-MCTS algorithm holds steady around 50%, which is around the same

performance level as the plain UCT algorithm.
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5.3 Discussion

MCTS has made quite an impact on various fields, and the key to its success lies

in the application of bandit algorithms, which solve the MAB problem. In most

MCTS variants, the same bandit algorithm and heuristics are applied to every node

in the game tree by viewing each node as an independent instance of the MAB

problem. The current most dominate variant of MCTS is the UCT algorithm,

which applies the UCB bandit algorithm on every node. Although this paradigm

has the advantage of allowing MCTS to be applied in a wide spectrum of fields, it

leaves a number of properties of the game tree unexploited.

In this chapter, we have proposed that max nodes and min nodes should be

treated differently by applying different bandit algorithms according to its intrin-

sic nature, rather than using the same bandit algorithm throughout the whole

tree. We have observed that different node types have different concerns in their

estimation value, and the simple regret bandit algorithms seem to fit the require-

ments of max nodes, and cumulative regret bandit algorithms seem to fulfill the

requirement of min nodes.

The Asymmetric-MCTS algorithm, which applies the UCB√· algorithm on max

nodes, and the UCB algorithm on min nodes is proposed based on this observation.

The experimental results show that the Asymmetric-MCTS algorithm has a really

good performance and scalability on the games of 9 × 9 Go. The Asymmetric-

MCTS also did well on the game of 9× 9 NoGo, but the SR+CR scheme seems to

be a better choice. However, the Asymmetric-MCTS performed only on par with

the UCT algorithm on the game of Othello.

As the main difference between the Asymmetric-MCTS algorithm and the UCT

algorithm lies in the application of the UCB√· algorithm on max nodes, and hence
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the effectiveness of the Asymmetric-MCTS algorithm seems to depend on whether

the UCB algorithm is more likely to be too optimistic in its estimations on max

nodes. Therefore, it can be suggested from the experimental results that the UCB

algorithm may make too optimistic estimations on max nodes in the game of 9×9

Go, and on the root node in the game of 9×9 Nogo. On the other hand, situations

where the UCB algorithm is likely to be too optimistic rarely occurs in Othello.

Applying bandit algorithms other than the UCB and the UCB√· algorithm

would be a natural direction for further investigation. Apart from bandit algo-

rithms, most performance enhancement methods and heuristics in MCTS, also

treats each node in the game tree as equal [31][13][30]. Therefore, it would be in-

teresting to further investigate the possibility of developing enhancement heuristics

according to node types as well.
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Chapter 6

Conclusion

Monte-Carlo Tree Search (MCTS) has made a significant impact on various fields

in AI, especially on the field of computer Go [6]. The development of MCTS

in recent years can be broadly classified into two main directions: one is the

integration of knowledge learnt offline, and the other is increasing the effectiveness

of the knowledge accumulated online.

In the direction of increasing the effectiveness of online knowledge the use of

various bandit algorithms with MCTS, especially the bandit algorithms that solve

the pure exploration MAB problem has received much attention in recent years.

Simple regret bandit algorithms aim to identify the optimal arm in a given time

constraint, and hence seem to be promising candidates for application in MCTS.

However, the cost of exploration is ignored in simple regret bandit algorithms,

which may not be desirable in the context of game tree search, and thus an effective

application of simple regret bandit algorithms to MCTS is far from trivial.

We have proposed the combined confidence bounds, which utilize the ∆m term

in the confidence bounds of the improved UCB algorithm to dynamically adjust
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the influence of the exploration term of confidence bounds of the UCB√· algo-

rithm, hence regulating the cost of exploration. We have also demonstrated two

possible ways of applying AMAF heuristics to the combined confidence bounds.

The empirical performance of the combined confidence bounds bandit algorithm

outperforms the UCB algorithm in the MAB problem. The Combined Confidence

Bounds MCTS (CCB-MCTS) has shown to have better performance over the plain

UCT algorithm, and also seems to have good scalability. The application of AMAF

heuristics greatly enhances the performance of the CCB-MCTS, increasing the win

rate over plain UCT by around 15%.

Another possible approach is based on the observation that max nodes and

min nodes should be treated differently by applying different bandit algorithms

according to its intrinsic nature, rather than using the same bandit algorithm

throughout the whole tree. We have observed that different node types have

different concerns in their estimation value, and the simple regret bandit algorithms

seem to fit the requirements of max nodes, and cumulative regret bandit algorithms

seem to fulfill the requirement of min nodes.

The Asymmetric-MCTS algorithm, which applies the UCB√· algorithm on max

nodes, and the UCB algorithm on min nodes is proposed based on this observation.

The experimental results show that the Asymmetric-MCTS algorithm has a really

good performance and scalability on the games of 9 × 9 Go. The Asymmetric-

MCTS also did well on the game of 9× 9 NoGo, but the SR+CR scheme seems to

be a better choice. However, the Asymmetric-MCTS performed only on par with

the UCT algorithm on the game of Othello.

The recent breakthrough by AlphaGo seems to suggest a good prior value can

greatly enhance the performance of MCTS [30]. Although, the power consumption

used for training and using the convolutional neural networks is quite large, making
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not at generally applicable as it could be. Exploration into the possibilities of

further exploitation of online knowledge may lead to a simpler model for prior

value estimation would be interesting. Also, the construct of the convolutional

neural networks are also still symmetric. Therefore, it would be interesting to

investigate the possibility of training different neural networks for different types

of nodes.
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