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Chapter 1 

General Introduction 



--

I. Rydberg states of atoms and molecules 

In a Rydberg state of atoms and molecules, a Rydberg electron is 

excited to a highly excited orbital whose mean radius is considerably large 

compared with a size of an ion core, which consists of the rest of electrons 

and an atomic nucleus (or atomic nuclei). Thus a dynamics of a Rydberg 

electron can be treated based on a simple picture in which one electron moves 

in an one-center Coulombic field generated by an ion core. A deviation from 

an ideal one-center Coulombic field is described by using a parameter 6, a 

quantum defect. For example, an energy level, ERyd• of a Rydberg state is 

represented as 

- Ry Ry 
/.5 Ryd = E lp - - = Elp - ---

n'2 (n-6/ ' 
(i) 

where Ry is the Rydberg constant and EJp is the ionization potential, and a 

mean radius of a Rydberg electron <r> can be scaled as <r>=<r>0n *2. Even 

in the most advanced theory to treat a Rydberg state of atomsl-3 and 

molecules4-1, known as a multi-channel quantum defect theory (MQDT), a 

quantum defect is an important parameter to characterize a Rydberg state by 

quantitatively expressing non-adiabatic couplings among "channels" such as 

other Rydberg states, excited valence states and ionic states. 

In most of the previous studies, experimental results have been 

successfully interpreted by MQDT, in other words, by determining quantum 

defects as practical parameters. However, as far as a molecular Rydberg 

state is concerned, only a limited number of studies have been reported so far, 

in which an essential dynamics of a Rydberg electron is extracted spectra. 

Such studies are all those on diatomic molecules and are categorized into the 
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following four cases; 

(i) studies on I-12 by a non-empirical calculationl2-16, 

(ii) studies on a large angular momentum (f) state17-23, such as d and f 

states of I-12 and NO, in which an interaction between a Rydberg electron and 

an ion core can be well-approximated only by a long range potential, 

(iii) studies on CaF24-26, in which an interaction between a Rydberg electron 

and an ion core can be well-approximated by an interaction between an 

Rydberg electron of Ca atom and a negative point charge, 

(iv) studies on metal-rare gas van der Waals dimers (MRg)27-39, such as 

1-!gNe. 

In a Rydberg state of a MRg dimer, dynamics of a Rydberg electron 

can be investigated free from the effect of valence states because an energy 

difference between the first excited state of a rare gas (~17eV: Rg=Ne) and 

the ionization potential, Ip, of a metal atom (~JOeY; M=l-lg) is so large that 

valence orbitals are located far above Ip of a metal atom below which 

Rydberg states associated with a metal atom are located. The interaction 

between a Rydberg electron and an ion core in a diatomic molecule has been 

stud ied theoretically by a semiempiri cal pseudo-potential method27-30 and 

an ab initio SCF method31,32. Experimen tally an interatomic potentia l of 

Rydberg states for MgAr33, CdAr34,35, ZnAr36, HgAr37, HgNe38, and 

AIAr39,40 have been studied by laser spectroscopy. However, in these 

experimental studies, an investigation of an interaction between a Rydberg 

electron and an ion core was not a main concern and such an interaction was 

treated only qualitatively. 

In the present th esis, the aut hor chose HgNe and HgAr as the typical 

metal-rare gas dimers, and investigated the ir Rydberg states to ext ract an 
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essenti al dynam ics of a Rydberg e lectron in a hi ghl y excited HgRg d iatom ic 

molecul e by opti cal-optical doubl e resonance (OODR) laser spectroscopy. 

One o f the advantage of treating HgRg is that their R ydberg states can be 

studied in a wide energy region du e to th e nature of the lowest excit ed A and 

B states associated with Hg(63 PJ), which are used as interm edi ate s tates in 

the OODR scheme. From an analys is o f the ro-vibronic s truc ture of the 

OODR spectra, the author identifies and ex tracts two types o f fundamental 

interactions between a Rydberg electron and an ion core whi ch determine a 

ch aracteri stic fea ture of a dyn amics o f a Rydberg elec tron; 

(i) an exchan ge interac tion between a Rydberg elec tron and a rare gas atom 

characteri z ing an interatomic potential o f an ion core, 

(ii) an exchange and a spin-spin interaction between a Rydberg e lectron and 

an induced spin on a rare gas atom. 

As described below, on th e bas is of the new experim enta l findin gs, the author 

proposes a cons is tent po int of v iew to represent an interatomi c po tenti a l of 

Rydberg states, and a mechanism of the spin induction on a rare gas atom . 

II. Interatomic potential of Rydberg states of HgRg vdW dimers 

II.l Decomposition of the inte1·atomic potential 

In order to investiga te the interaction between a Rydberg e lectron and 

an ion core, interatomic potenti als hav ing a different pri ncipa l quantum 

num ber (n) and an o rbita l ang ul ar momentum qu antu m number (e) are 

compared . Since the probability dens ity distribution of a R ydberg electron 

depends on n and e. the interaction between a Rydberg electron and an ion 

core can be varied by chang ing n and e. In this th esi s, interatomi c potentials 

for th e s-Rydberg series (n=7-10, e=O), whose Rydberg e lectron di stributes 



spherically and penetrates deeply into the ion core, is investigated. From the 

systematic comparison of the determined interatomic potentials, a following 

model is proposed to describe the interatomic potential characteristic of a 

metal-rare gas molecule. 

The interatomic potential (VRyd) is divided into two parts, i.e. the 

interatomic potential of an ion core (Vion) and the repulsive potential (Vex) 

originating from the exchange interaction between a Rydberg electron (n,e) 

and a rare gas atom : 

V!\yd(n, e;R) =Vio,(R)+Vex(n, e;R), (ii) 

where R represents an interatomic distance. Since the Vion(R) is 

independent of the Rydberg electron coordinates, the variation of the 

interatomic potential (VRyd) as a function of n and e is ascribed to that of 

Yex(n, e; R). Assuming that the Vex depends only on the electron density 

derived from the quantum defect orbital (QDQ)41,42, the shape of the 

determined potentials is consistently interpreted. A characteristic feature of 

this molecules is its straightforward prediction of the potential shape only 

from an ion core potential and a quantum defect of a metal atom. The 

experimental results are consistently interpreted based on this simple model 

for the interatomic potential. 

Il.2. S-Rydberg series of HgNe 

The interatomic potentials of 3L+ Hg(n3s1 )Ne (n=7-10), which have 

a 6sns electronic configuration, are determined from the analysis of a 

vibrational structure of optical-optical double resonance (OODR) spectra. 



As shown in Fig.1, the potential shape exh ibi ts a characteristic dependence on 

the principal quantum number (n). A t n=7, the potential has quasi-bound 

well and a hump above the dissociation limit. When n is changed from n=7 

to n=8, the potential shape changes drastically, i.e. th e quasi-bound well at 

n=7 changes to the relatively deep bound well at n=8. As n increases, the 

potential becomes deeper, but th e shape of n=lO is very simi lar to that for n=9 

and the potential for n=lO is on ly s lightl y deeper than that for n=9. This 

observati on indicates that the potential almost converges to the ion core 

potential at n=10. On th e basis of eq.(ii), the large hump observed at n=7 is 

ascribed to th e strong exchange repulsion, Yex(r), at n=7. It is expected that 

Yex becomes smaller as n increases and at n= 10, Yex is so sma ll th at the 

potential becomes almost identical to the ion core potential, Yion(r). 

As shown in Fig.2, the n-dependence of a Rydberg electron density 

IR(r)j2 (R(r): a radial wavefunction of Hg atom) calcu lated by QDO is a lmost 

parallel with the observed n-dependence of the interatomic potential. The 

density of the 7s electron is considerab ly large in a region from 2.5 to 7 A, 
and th en, a large exchange repulsion is expected in th at region. When n 

increases by one, i.e. at n=8, th e density decreases largely, but th e amoun t of 

decrease from n=8 to n=9 is much small er. At n=lO, th e density is so low 

that Yex(r) would be negligibly small. T he good corre lation between th e 

observed potential shape and IR(r)l2 indicates that an interatomic potent ial of 

MRg Rydberg state can be semi-quan titatively predicted by adding an ion 

core potential, Yion(r), and the exchange interaction Yex(r). 

11.3. S-Rydberg series ofHgAr 

An interatom ic potential of 3I+ Hg(83S1)Ar is determined and is 



compared with that of 3L+ Hg(83S1 )Ne. The po tenti a l o f Hg(83S1)Ar 

cons is ts o f one re lative ly deep well and its di ssoci ati on energy , De, is 1602 

cm-1 , which is about 5 tim es as large as th at of 1-lgNe, 209 cm-1. This 

di fference of De between 1-lgAr and 1-lgNe is ascribed to that of ion core 

potenti als, Yion(r) . The attractive interaction to form Yion(r) o ri g inates 

mainly from the charge- charge induced int eraction between J-Ig+ and a rare 

gas atom. Since 1-lgAr+ has a stronger charge-charge interaction than 

1-lgNe+, th e interatomic potenti al of HgAr becomes deeper than th at of 1-lgNe. 

The interatomic po tenti al of l-lg(73SJ)Ar39 has a shall ow well , De=38 

cm-1 , at longer interatomic di stance, re=7A, besides a deep well , De=1430 

cm-1 located at re=2.9A. Comparing the 1-lgAr potential with th e Rydberg 

electron dens ity derived from QDO, the shallow well at n=7 can be 

interpreted as fo ll ows. The density of the 7s-Rydberg e lectron is co nfin ed 

in a region r < 6A and th e Rydberg electron shields th e ion core from the Ar 

atom. Therefore, th e outer shall ow well is fo rm ed at around 7 A by an 

attracti ve dispers ion interaction between th e Rydberg J-I g and A r. The reason 

why th e potenti al of 1-lgNe has no shall ow well is th at th e dispers ion 

interaction in HgNe is not large enough to form such a shall ow well. 

III. The exchange and spin-spin interactions 

111.1. Exchange interaction by the induced spin 

The potenti a ls of lL+ 1-lg(nlSo)Ne (n=7- 9) are determin ed from the 

OODR spectra. The interatomic potenti als both fo r the 1 L+ and th e 3L+ 

states having th e same n are a lmost th e same when n ~ 8, and Des' co in c ide 

with each other within 10 cm-1 . However, as shown in Fig.3, at n=7, th e 

potenti als for the singlet and the tripl et states are different, i. e . th e bo ttom of 
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the potential for 3:L+ lies 80 cm-1 above that for l:L+. For an Hg atom, both 

3sl and lso have the same electronic configurat ion, 6s7s, and the difference 

between these states shou ld be caused by the exchange interaction between 6s 

and 7s. From the Pauli exclusion rule, when 6s and 7s e lectron spins are 

anti-parallel, these electrons can approach each other and when spins are 

parallel, they keep away from each other. Thus, the dens ity of the 7s­

electron of Hg(lSo) near the ion core may be higher somewhat than that of 

Hg(3Sl)· However, from th e observed int era tomic potentials, the electron 

density of l:L+ in the region where the Ne atom is located is es tim ated to be 

lower than that of 3:L+ because Yex has a positive corre lation with th e 

Rydberg electron density. These apparently contradicting si tu ations is 

consisten tl y interpreted by introducing an exchange interaction between a 

Rydberg electron and an induced spin on Ne. Even if the Rydberg e lectron 

density of 3:L+ is lower than that of l:L+ by the Pauli exclusion rule, the 

exchange interaction between the induced spin on Ne and the Rydberg 

electron is strong enough to shift considerably upward th e 3:L+ potential 

relative to the l:L+ potential. 

A mechanism of the sp in induc ti on on Ne is the kinetic exchange 

interaction43,44. This interaction is genera ted by a mixing between two 

electronic configurations, i.e. (6s) 1 (2p2)2 and (6s)2(2p2 ) 1, whe re 6s and 2p2 

are an orbitals of a Hg+ ion and a Ne atom, respectively. The energy 

stabi liza tion, t.E, by inducing a spin through the kinetic exchange interaction 

is derived by a second-order perturbation from two electronic configurations: 

(iii) 
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where \V1 and \[12 are wavefunctions of (6s)l(2pz)2 and (6s)2(2pz)l, 

respectively, and U is an energy difference between th ese two electronic 

configurat ions. S hown in Fig.4 is a schematic diagram of thi s mechanism. 

HgNe+ can be compared with a MnO crystal having an antimagnetism by the 

kinetic exchange interaction; 

Mn2+ + o2-

Hg+ + Ne 

Mn+ + o­

Hg + Ne+ 

U = +6 eV (in crysta l), 

U = +12 eV (in gas phase). 

Assuming the integral in eq.(iii) is th e same for HgNe+ and MnO, the 

stabiliza ti on energy for HgNe+ would be approximately one half of MnO. 

111.2. Spin-spin interaction by the induced spin 

In o rd er to derive more precise information on the induced spin on Ne, 

the rotationa l level structure of 3,L+ Hg(n3S])Ne (n=7-9) is ana lyzed and a 

spin-spi n constants, A, are determined. The determined value of A is 0.38 

cm-1 for n=7, 0.28-0.15 cm-1 for n=8, and 0.00 for n=9. On the o th er hand, 

theoretically th e value of A derived from ss-electronic configuration should 

be zero. This difference can be interpreted by the sp in-spi n interaction 

between the induced sp in on Ne and the Rydberg e lectron. The sp in-spin 

constant of 3,L+ Hg(83S ] )Ne (v=0-3) decreases as a function of a v ibrati ona l 

quan tum number, v. The va lu es of A are 0.28, 0.22, 0.20, and 0.15 cm-1 for 

v=O, 1, 2, and 3, respectively. This v-dependence of the spin-sp in 

interaction is also exp lai ned by th e kinetic exchange interacti on. As the v 

increases, the interatomic distance increases because of a large unh armonic ity, 

and as a consequence, an overlap between a 6s orbital of Hg+ and a 2pz 



orbital of Ne decreases and so does the kinetic exchange interaction . This 

decrease of spin induction on Ne reduces the spin-spin interaction. 
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Fig.3 Interatomic potentials for 3,L+ Hg(73Sl)Ne and l,L+ Hg(71So) Ne. 
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Fig.4 A schematic diagram for the spin induction on Ne by the kinetic 

exchange interaction. 
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Chapter 2 

Interatomic potentials of Rydberg 3L+ states of Hg(n3SJ)Ne (n=S-10) 

and Hg(83SJ)Ar van der Waals dimers 
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ABSTRACT 

The optical-optical double resonance (OODR) spectra of Rydberg 

3L+ states of Hg(n3S1)Ne (n=8-1 0) and Hg(83S1)Ar are measured by using 

A and B states as intermediate states of the OODR process. The interatomic 

potentials of these states are determined over a wide range of the interatomic 

distance, 2-7 A, by the analysis of the vibrational structure. It is found that 

the potential shape varies sensitively with n and converges to that of the ion 

core, HgNe+. Dissociation energies (De) for the n=8, 9 and 10 Rydberg 

states are 209(2) cm-1, 284(2) cm-1 and 309(2) cm-1, respectively. Using 

the quantum defect orbital (QDO) for a Hg atom, it is shown that the 

interatomic potential for the Rydberg states are expressed by the sum of the 

ion core potential, Yion(R), and the repulsive potential, Yex(R) . It is found 

that Yex(R) originates mainly from the exchange repulsion between the 

Rydberg electron and the rare gas atom and has a close correlation with the 

density of a Rydberg electron, JR(r)J2 . A potential for Hg(83S1 )Ar, whose 

dissociation energy is 1602(4) cm-1, is much deeper than that of Hg(83S1)Ne 

correlated to the same Hg state. This rare gas dependence of the interatomic 

potential is also interpreted by expressing the potential as Yion(R) + Yex(R). 
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I. INTRODUCTION 

A metal-rare gas van der Waals (vdW) diatomic molecul es, in which 

a metal atom (M) and a rare gas atom (Rg) is bound by a weak van der Waals 

force, is an ideal system to extract a characteristic dynamics of a Rydberg 

electron in a molecule. Since the lowest electronically excited state of a rare 

gas atom is usually located much higher in energy than an ionization potential 

of a metal atom, excited valence states of M-Rg are located above its 

ionization limit and are well-separated from the Rydberg states. Thus, by 

investigation of the Rydberg states of M-Rg, it is expected that dynamics of a 

Rydberg electron interacting with a diatomic ion core can be extracted free 

from a Rydberg-valence interaction. 

Among the M-Rg vdW dimers, HgRg (Rg=He,Ne,Ar,Kr,Xe) 

molecules have been investigated intensively in this decade 1-11. The lowest 

excited states, A and 8, associated with Hg(63P1) were investigated for 

HgJ-1e6,8,10, HgNe5,8, HgAr4,5,8, HgKr5,11 and HgXe6,7,11. The C state9 

associated with Hg(lPJ) was investigated for HgNe, HgAr, HgKr and HgXe. 

The lowest Rydberg states of I-lgNe 1 and HgAr2,3 associated with Hg(73S]) 

were also studied by optical-optical double resonance (OODR) spectroscopy 

via the A and B states. Though both A and B states of l-lgRg correlate to the 

same excited state of Hg(63P1), their interatomic potentials are very different 

from each other, i.e. the A state is more strongly bound than the 8 state and 

the equilibrium bond length, Re, of the A state is much shorter than that of the 

8 state. In the case of I-lgNe, the dissociation energy Do= 70 cm-1 andRe 

= 3.49 A for the A state, while Do = 11 cm-1 and Re = 4.92 A for the B 

stateS. Therefore, by using these two states as intermediate states in the 

OODR scheme, a wide Franck-Condon region can be covered In other 
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words, an interatomic potenti a l of higher lying Rydberg s tates can be 

investigated over a wide range of an interatomic distance. 

Based on the OODR measurements, Duval et al.3,4 reported that 

HgAr in the lowest Rydberg stale, i.e. the 3L+ state of Hg(73S] )Ar, has a 

deep potential well (Do = 1430 cm-1) as HgAr+ (Do= 1630 cm-1 )2 and a 

shallow outer-well separated each other by a small hump with a barrier height 

of 15 cm-1 measured from the dissociation limit. Recently, Okunishi et al.1 

determined the characteristic interatomic potential of HgNe in the lowest 

Rydberg E 3L+ state of Hg(73S1)Ne by the OODR measurements; at an 

interatomic distance of 3.4 A the interatomic potential has a relatively larger 

hump, whose height is 150 cm-1 measured from the dissociation limit. It 

was found that two quasi-bound states are trapped in the inner well and one 

resonantly trapped state is located around the energy near the top of the 

barrier. In these studies of HgAr and HgNe, the interatomic potentials of the 

lowest Rydberg slates of HgAr and HgNe were interpreted by a superposition 

of a weak dispersion type interaction in the longer interatomic distance and a 

strong attractive ion-induced dipole interaction in the shorter interatomic 

distance, and it was noticed that the position of the hump is close to a mean 

radius of the 7s orbital of the Rydberg electron. 

In the present study, in order to clarify a role of the Rydberg electron 

in determining the interatomic potential of the Rydberg states of M-Rg 

dimers, the OODR investigation is extended towards hi gher-lying 3L+ 

Rydberg states, and the interatomic potentials of Hg(n3S1)Ne (n=S-10) and 

Hg(83S1)Ar are determined precisely by the analysis of th e OODR spectra. 

The observed dependence of an interatomic potential on a principal quantum 

number and a rare gas species attached to Hg is consistent ly interpreted by a 
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Rydberg electron density evaluated by us in g the quantum defect o rb itals 

(QDO) of Hg(n3Sl) (n=6-1 0). 

II. EXPERIMENT 

The experimental setup used in th e present study is s imil ar to that 

described in our previous reportl . The HgNe and HgAr vdW dimers are 

produced respectively in a supersoni c expans ion of Ne and Ar ca rri er gas with 

a trace of 1-lg vapor through a heated fuel-injector type pulsed valve wi th a 

Hg reservo ir. The stagnation pressure for Ne is ~7 atm and th at for Ar is ~ 

4atm. The nozzle temperature is kept at ~zoo oc corresponding to the Hg 

vapor of 17 mTorr. The Hg Rg dimer is excited to their Rydbe rg states by the 

OODR process us ing the frequ ency-doubl ed output of two dye lasers 

(Lambda Phi s ik FL3002 and Mol ectron DL14P), w hich are s imultaneous ly 

pumped by a XeCI excimer laser (Lambda Physik LPX 105i). The 

fluorescence emi tted from the intermediate A and B states is monitored by a 

solar-blind photomultiplier (Hamamatsu R166UH), while th e OODR 

fluorescence signal is detected by a photomu ltipli er (Hamamatsu R928) w ith a 

filter (Toshiba UY29) which efficiently cuts the fluorescence form the 

intermed iate states. Since th e wavenumbers of the vibrational trans ition from 

the ground state to the interm ed iate state were precisely determined using Iz 

spectra by Yamanouchi et ai.8, the dye laser for this tran sition does no t need 

to be calibrated. The dye laser for th e transi tion from th e intermediate s tate 

to the Rydberg sta te is calibrated by measuring si multaneous ly lz spectra and 

two HgNe trans itions with high reso lution (FWHM= ~ 0.08cm-1 ). The 

transitions used for this purpose are Hg(83S1)Ne (v=O) - A (v=O), 

34436.01 (5) cm-1, and Hg(93Sl)Ne (v=l)- A (v=O), 38663.85 (14) cm-1 . 
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III. RESULTS 

III.1. Interatomic potentials of 3L;+ Hg(n3Sl)Ne (n=8-l 0) 

3L;+ Hg(83SJ)Ne 

Since the Rydberg state, Hg(83S])Ne, has a 6s8s electronic 

configuration, from which only 3L;+ and lL;+ are derived, Hg(83S])Ne s hould 

be assigned to 3L:+. The intermediate states, A and B states, have a 6s6p 

electronic configuration. From this configuration, 3n+, 3L;+, ln+, and lL;+ 

are derived taking into accoun t an exchange interaction and a projection of an 

orbital angu lar momentum. These states are split into 8 states by diagonal 

and non-diagonal matrix elements of a spin-orbi t interaction ; i.e. ' no· , ' no·, 

' n,, ' n, , ' "L;, ' "L; ., 'n , and '"L;, which are lined up according to energy from 

the lowest state, so these states are assinged to a, A , B, c, d, e, C, and D, 

respectively . In previous papers, Hund's case(c) notaion has been used for 

these states because of relatively strong spin-orbit int era tion , for exa mple, 

3o+, 3] stand for A and B sta te, respectively. 

The OODR spectra of th e Rydberg 3L;+ sta te of HgNe associat ed with 

Hg(83s1) are measured via six intermediate vibrational states, i.e. , v'=O, 1,2 of 

the A3Q+ state and v'=0,1 ,2 of the 831 state . In this paper, v' is used to label 

the vibrat iona l quantum number for the intermediate A and B s tates, and v 

and v" are used for the vibrational labeling of the Rydberg state and the 

electronic ground s tate, respectively. Shown in Figs.l (a)-(f) are the OODR 

spectra of the 3L;+ +- A(v'=0,1,2) and 3L;+ +- B(v'=O,l ,2) tran s itions nea r the 

Hg(83S] +- 63P1) atomic trans ition. The spectra via the three vibrational 

levels of the A state consist of one s impl e progression whose spacing 
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decreases gradu all y fro m 45 to 13 cm-1 as energy inc reases. In Figs. l (b) 

and l (c), two and three nodes are observed in the Franck-Condon (FC) 

intensity pattern. These nodes refl ect those of the wavefun c tion of the 

intermediate v'=1 and 2 states of the A state. 

As shown in Fig .l (d)-(f) , each v ibronic trans ition tn th e spectra v ia 

the three v ibrationa l levels of B states splits into two peaks, a main pea k and 

an addit ional small peak separated on the lower energy side of th e ma in peak. 

The interval between the ma in peak and th e associated ad ditiona l peak 

graduall y increases from 2.7(5) cm- 1 to 3.4 (5) cm-1 as v inc reases from 4 to 

9. If a perturbation fro m anoth er state causes the split , th e int erva l should 

vary irregularly. Thus, th ese two peaks do no t represent perturbation but the 

ro tational band contour. There is no other el ectronic state overl apping with 

this state, w hich a lso supports that a perturbati on does not cause th e sp lit. In 

the spectra v ia bo th A and B state, the trans itions to v=3-7 are observed. 

Since the wavenu mber of these peaks in the spectra v ia A sta te a re iden ti cal to 

those at top of main peaks in th e spectra v ia B state, th e top of th e main peak 

is rega rd ed as a band o ri g in o f th e trans it ions v ia B state. Aro un d th e band 

origin , th ere are ro tati onal trans itions from low 1' levels o f B s tate, so th e 

additional peak cons ists o f those from high 1' levels and th ere are few levels 

between th e hi gh 1' levels and th e low 1' levels . There are two poss ib il iti es 

that th e h igh 1' levels and th e low 1' levels are prepared a t B state 

si mul taneous ly. (i) Th e rotational structure of B-X trans ition spreads over 

~3 cm-1 and cons ists o f th at for s ix Hg isotopes spilt by th e vo lu me effect 8. 

Whil e, th e line width of th e dye lase r is - 0 .5 cm-1 . Thus, high 1' rotational 

levels of an iso tope and low 1' leve ls o f another iso tope can be prepared. (ii) 

Since R-branch of the B-X trans ition has a head and turn s back to th e lower 
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energy side from there, the hi gh J' levels of R-branch and the low J' levels of 

P,Q-branch can be prepared s imultaneous ly by th e lase r fixing at a lower 

energy side from the head. In th e spectra of Hg(83S J)A r, the sp lit of a 

vibrational level is not observed shown in Fig.6, which supports th at the split 

represents a band con tour because HgAr has about a half rotational constant 

of HgNe and the interval of the spl it is expected to be small er than that of 

HgNe. 

The observed range of th e interatomic distance (3-7 A), which is 

estimated by the intermediate state wave fun ctions, shou ld be w ide eno ugh to 

cover th e v=O wave function of the Rydberg states. Thus, th e observation 

that the progression suddenly starts at the transition located at 738 15 cm-1 in 

all the three spectra of the 3L+<-A trans ition in Figs.1(a)-(c) means that the 

transition at 73815 cm-1 is ass igned to th at to the v=O level of th e 3L+ state. 

The interatom ic potential of 3L+ Hg(83S1)Ne is determined from the 

observed v ibrationa l st ructures as described below. First, th e spacings 

between the adjacent OODR transitions are plotted in the B irge-Sponer (BS) 

plot as shown in Fig.2(a). The spacing decreases lin ea rl y in the low 

vibrat ional quantum number region (v=0-4), but it begi ns to deviate grad uall y 

upward from the linear s lope at around v=5. By a leas t-squares fit to th e 

linear part (v=0-4) of th e BS plot, the Morse potential parameter We=54.1(5) 

cm-1 and WeXe=4.46(1 0) cm-1 are determined. The equilibri um interatomic 

distance, Re=3.01 (3) A, is derived after a trial-and-error s imul ati on of th e FC 

patterns for the trans itions to v=0-4. In the s imulation, the Morse function 

having the determined We and wexe are used for the 3L+ state and the known 

Morse functions for the A and B states8. This Reva lu e is in good agreement 

with Re=2.99(3)A, which is converted from the ro tationa l constant s of th e 
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v=0-3 levels determined by the rotational analysis of the OODR transitionsl2. 

Then, by assuming that the deviation from the Morse function is ascribed to 

the outer wall of the potential, the shape of the outer wall is determined by the 

RKR method13. The potential width, R+-R-, for each vibrational state is 

calculated, where R+ and R_ represent outer and inner classical turning points, 

respectively. Thus, the R+ values are derived from the RKR width, R+-R_, 

by assuming that R_ stays on the inner classical turning points of the Morse 

function. As shown in Table l, for v=0-4, the potential widths, R+-R_, of 

the Morse function are consistent with those derived above by the RKR 

method. The determined potential function is drawn in Fig3(b ), where the 

inner wall of the potential is that of the Morse function and the outer wall is a 

Spline fit to the R+ values. The derived R+ and R_ are listed in Table ll. 

The dissociation energy, Do, of this state is calculated to be 

Do= 183(2) cm-1 by a simple relation, 

Do = Do" + v(Hg) -voo' , (1) 

where Do" = 37(2) cm-1 is the dissociation energy of the electronic ground 

stateS, voo = 73814.97(9) cm-1 is the v=O level of the 3:L+ Rydberg state 

measured from that of the electronic ground state, and v(Hg) = 73961.298 

cm-1 is the term value of the g3s1 level of Hg15. From Do, the De 

=209(2)cm-1 is obtained by using the equation, De=Do+wef2-wexef4 with 

the determined Morse parameters . The errors in Do and De mainly come 

from the error of Do" (± 2cm-1) in the electronic ground X state. The 

determined potential parameters are summarized in Table Ill. 
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3~+ Hg(93St )Ne 

The fo ur OODR spectra via the A(v'=O,l) and B(v'=O, 1) sta tes are 

measured. As shown in Figs.4(a)-(d), the OODR trans iti ons to the v=0-11 

levels of th e 3:L+ state are identified from these four spectra. The observed 

FC patterns are sim ilar to those of th e corresponding spectra of Hg(83S1)Ne. 

The interatomic potential is determined in a similar manner as for 

Hg(83S ] )Ne. The potential width, R+-R-, are calcu lated for the v=0-11 

levels by the RKR method . As shown in the BS plot in Fig.2(b), spacings 

are linear for v=0-5, and they begin to deviate upward smooth ly from th e 

linear s lope at v=6 . The Morse po tenti al parameters we = 54.8(5) cm-1 and 

WeXe = 3.17(10) cm-1 are determined from this linear part of th e BS plot. 

By the FC s imulation fo r v=0-5, th e eq uilibrium interatomic distance Re = 

3.00(3) A is obtained. The potential shown in Fig.3(c) is drawn using an 

inner wall of the derived Morse potential and an outer wall determined from a 

Spline fit to the classical outer turnin g point, R+, calcu lated from the RKR 

widt h assumin g that R_ is on the inner wall. The derived R+ and R_ are 

listed in Table IV. Using Eq.(l), De = 284(2) cm-1 is derived . The 

determined potential parameters are summarized in Table !II. 

32:+ Hg(l o3s1)Ne 

The observed OODR spectra via A(v'=O, l) and B(v'=O, 1) are shown in 

Figs.5(a)-(d) . By combining th e progressions observed in th ese four spectra , 

the trans itions to the v=0-12 vibrational levels are identifi ed. The FC 

patterns of the observed progressions are similar to those in th e corresponding 

OODR spectra of Hg(83S])Ne and Hg(93S])Ne. As shown in th e BS plot in 

Fig.2(c), the spacings are linear for v=0-5 and they beg in to deviate upward 
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smoothly from the linear slope at v=6. As is done for Hg(83sl )Ne and 

Hg(93Sl)Ne, the R+-R- values are derived for the v=0-12 levels by the 

RKR method. The Morse potential parameters We=55.5(5) cm-1 and 

wexe=2.85(5) cm-1 are determined from the linear part of the BS plot (v=0-

5), and the Re =3.00(3) A is derived from the simulation of the FC-patterns. 

The potential is drawn by combining Morse inner wall and a Spline fit outer 

wall. The derived r+ and r_ are listed in Table V. The De=309(2) cm-1 is 

determined by the Eq.(1 ). The potential parameters are summarized in Table 

II. 

III.2 Inte1·atomic potential of 3L+ Hg(83SJ)Ar state 

The OODR spectra via the A(v'=4) and B(v'=3,5,7) states are 

measured. In all of these OODR spectra one simple vibrational progression 

are found and the nodes in the FC patterns reflect those of the vibrational 

wavefunction of the intermediate state. Shown in Figs.6 is an example of the 

OODR spectra via B(v'=7). Reflecting the deep Hg(83S1)Ar potential, a 

total of 39 vibrational levels are identified in the four OODR spectra. The 

interatomic potential for the 3L+ state is determined by the similar procedure 

adopted for the Hg(n3S] )Ne (n=8-10) potentials. The spacing decreases 

linearly for v=0-21, and it begins to deviate upward smoothly from the linear 

slope at around v=22. Since the transition peaks in the progression in the 

spectrum via A(v'=4) smoothly disappears as the transition energy decreases, 

the band origin transition to the v=O level of the 3:L+ state can not be assigned 

simply to the lowest-energy member of the progression. So the vibrational 

quantum numbers are assigned as described below. First, assuming that the 

lowest energy peak observed at 72648 cm-1 in the spectra via A(v'=4) is v=O, 
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the Morse potential parameters We and wexe are determined by a least­

squares fit to the linear part of the BS plot. Then, the FC pattern of the 

OODR spectrum is calculated using the Morse functions for both 3L+ and A 

state. By varying re for the Morse potential of the 3L+ state as one variable 

parameter, the re value which describes best the observed FC pattern is 

determined. As a next step, the vibrational quantum number of the 72648 

cm-1 peak is increased by one and the above procedure is repeat ed. After 

trying the assignment of up to v=4, it is found that th e FC pattern is 

reproduced well only when the 72648 cm-1 peak is assigned to v= 1. Based 

on this vibrational assignment, We= 102(4) cm-1, wexe = 1.77(40) cm-1, 

and Re = 2.83(3) A are derived. The potential shown in Fig.7(b) is drawn 

using an inner wall of the determined Morse potential and an outer wall 

determined from a Spline fit to the classical outer turning point, R+, 

calculated from the RKR width assuming that R_ is on the inner wall. The 

potential parameters determined from the above analysis are summarized in 

Table VI. The dissociation energy De=1602(4) cm-1 is determined by 

Eq.(1 ). 

IV. DISCUSSION 

IV .I Inte•·atomic potentials of Hg(n3SJ)Ne (n=7-1 0) 

In the previous the section, we observed a characteristic principal 

quantum number (n) dependence of the interatomic potentials of Hg(n3SJ)Ne. 

In order to discuss this n-dependence, the potentials for Hg(n3SJ)Ne (n=8-

10) determined in the present study and the potential of Hg(73S1)Ne 

determined by Okunishi et al.l are compared as shown in Fig.3. The 
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interatomic potential of Hg(73S1)Ne lies above the dissociation limit and has 

a hump at around 3.9(1) A. The dissociation energy, De, defined as V(R = 

oo)- V(Re) is -53cm-1, where V(R = oo) represents the pot ential energy at 

the dissociation limit, V(Re) does the potentia l energy at th e bottom of the 

bound part of the potential, and R does the interatomic distance in this paper. 

When n is increased by one from n=7 to n=8, the potential shape changes 

drastically, i.e. the quasi-bound well at n=7 changes to the relatively deep 

bound well at n=8, whose dissociation energy, De, is 209 cm-1. However, 

for n=8 a small hump is still expected at R=7-8 A, because th e potential 

curve lies above the dissociation limit for R>6 A and becomes almost flat at 

around ReO A. At n=9, the potential becomes deeper (De=284 cm-1) and no 

hump is identified. The shape of the potential for n=10 is almost identical to 

that for n=9, but dissociation energy for n=10 (De=309cm-1) is slightly larger 

(by 25 cm-1) than that for n=9. In Fig.8, De is plotted as a function of the 

effect ive principal quantum number, n*. The dissociation ene rgy, De, 

increases largely from n=7 to n=8, but the slope becomes almost flat from n=9 

to n=lO, indicating that the dissociation energy converges to that of the 

HgNe+ ion core, whose dissociation energy is estimated to be only s lightly 

larger than De=309 cm-1 for n= 10. 

In order to interpret the characteristic n-dependence of the shape of 

the interatomic potential function for the Hg(n3SJ)Ne Rydberg states, the 

interatomic potential of a Rydberg state, VRyd(R), is divided into two parts as 

YRyd(n, e; R) = Yion(R) + Yex(n, e; R) (2) 

where Yion is defined as VRyd(R = oo), corresponding with the interatomic 
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potential of an ion core, and Yex(R; n, e) is the residual part defined as 

YRyd(R)-Yion(R). In Eq.(2), n and e (an orbital angular momentum 

quantum number) dependences of YRyd(R) is all ascribed to Yex(n, e; R). 

Since De increases as n increases, Yex(n, e; R) should be positive in the 

observed range of the interatomic distance, 3-7 A. The positive component 

in the potential is expected to be originated from an exchange repulsion 

between the Rydberg electron and the rare gas atom attached to Hg. 

For the interpretation of the interaction between the Hg Rydberg 

electron of Hg and Rg, a wavefunction of the Rydberg electron in Hg(n3Sl) is 

evaluated first by using quantum defect orbital (QDO) 14,15 method, which 

Simons devised to represent a radial wavefunction for a Rydberg state, \fl(r). 

In this paper, r is used for an orbital radius of the Rydberg electron. A QDO 

contains only three parameters; n, e and a quantum defect (o), and is 

expressed as 

''l'(r)- Zr(n-O+A+I) 2Zr l(n-o) e-"'("-•l F.[A.+i-n+02A + Z 2Zr /(n - o)], 
[ ]

112 [ ]'•I 
r (n-li + A.) (n-o)r (2 A.+2) 1 1 

' ' 

(3) 

where 1 F] is a confluent hypergeometric function, Z is a charge of an ion core, 

and A is defined by A= e- lnt(o), with Int(o) being an integer nearest too. It 

is known that a nodal pattern in the small r region is not well described by the 

QDO, but for larger, the QDO is a good approximation of a SCF orbital14. 

An outer electronic configuration of the 3sl Rydberg series of Hg is 

6sns. Since s-orbital is isotropic, there is no need to consider the angular 

part of the wavefunction. The density of Rydberg electron, l\11(r)i2, of Hg 

evaluated by the QDO of Eq.(3) is plotted in Fig.9 for n=7-9. It is clearly 

shown that the Rydberg electron density strongly depends on the principal 
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quantum nu mber (n) in a region of r < 7 A. In th e firs t order approx imation, 

when \jl(r) is large, an interacti on between Rydberg electro n and ra re gas is 

expected be large at an interatomic distance (R) around th e radius of th e 

Rydberg electron (r). In fact, the n-dependence of j\il(r)J2 is similar to the n­

dependence of VRyd(R), i.e. J\V(r)J2 decreases as n increases, and the 

decrease from n=7 to 8 is large. In order to show the co rrelati on between th e 

interatomic potenti al, VRyd(R), and the Rydberg electron densit y, j\fl(r)J2, 

YRyd(R=3.0A) and J\V(r=3.0A)J2 are plott ed in Fig.l 0. At R=3.0 A, where 

the equilibrium interatomic distances of determin ed Rydberg potenti als fo r all 

n are located. The straight line deri ved by a least-squares fit to all data 

points is also drawn in Fig.l 0. The positive linear-correlati on between 

J\IJ(r)J2 and VRyd indicates that Vex is almost proporti onal to J\V(r)J2. Thus, 

based on Eq.(2) the interatomic poten ti al for th e Rydberg state, VRyd. can be 

predicted fro m th e ion core potent ial, Yion• and th e density of Rydberg 

electron derived by the QDO orbital, J\V(r)J2. 

The pos ition of the hum p of th e interatom ic poten tial also reflects the 

peak position of th e Rydberg electron density , j\fl(r)J2. Fo r n=7, the 

interatomi c distance of th e hump is 3.9 A is similar to th e peak pos ition of J 

\il(r)J2 located at 3.0A. For n=8, th e di stance of the hump is 7-8 A is almost 

identical to th e peak pos it ion of J\IJ(r)J2 at 7.6 A. For n=9,10, no hump is 

observed because the peak position of j\fl(r)J2 is located outside of th e region 

fo r the observed potential. The reason why th e peak fo r n=7 sli ghtl y shi fts to 

outside fro m th e peak of th e Rydberg electron densi ty th at th e Yion has a 

steep positive slope in th e interatomic region, 3- 5 A. 

IV.2 Interatomic potentials of Hg(n3SJ)Ar (n=7,8) 
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As shown in Fig.7(b), the interatomic potential of Hg(S3S])Ar 

consists of only one deep well whose dissociation energy (De) is 1 630( 4) cm-

1 and its equilibrium interatomic distance (Re) is 2.83 A. The potential for 

Hg(83S])Ar is much deeper than that for Hg(83S1)Ne, De=209 cm-1, which 

shows that the interatomic potential strongly depends on a species of rare gas. 

The Eq.(2) is applied in order to interpret the rare gas dependence of the 

interatomic potential. We let the Yex be independent of a rare gas species, 

although the exchange repulsion between a Rydberg electron and a rare gas is 

proportional to p2/3, where p is the density of rare gas, if the rare gas can be 

regarded as free electron gas 16. If so, the rare gas dependence of the 

interatomic potentia l is ascribed to the rare gas dependence of Yion· The 

value of Yex(3.0)= l00cm-1 is derived by 

Yex(3.0) = Yion(3.0)- YRyd (3.0) , 

using YRyd(3.0) = -209 cm-1 for Hg(83S1)Ne, Yion(3.0) = -309 cm-1 for 

Hg(l03S1)Ne, whose potential must be close to an unknown HgNe+ potential 

because in Fig.lO the value of YRyd for n=10 is very close to that of 

YRyd(3.0) at IR(3.0)12=0. And then, using the Yex(3.0) derived from HgNe 

and YRyd(3.0) = -1500 cm-1 for I-lg(83S1)Ar, Yion(3.0) = -1600 cm-1 for 

HgAr is derived by 

This value is very close to Yion(2.8) = 1630:!::100 cm-1, which is De of 

HgAr+ estimated using Morse function17. This resu lt shows that the rare gas 
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dependence originates mainly from Yion· 

By another way, Yion for HgAr+ can be estimated from Yion for 

HgNe+. Based on electrostatic model, Hg+ and Rg interact each other by a 

charge-charge induced dipole attractive interaction, whose energy, Ec, is 

expressed as 

Ec = -CaJR419 , (4) 

where a represents a polarizability. Assuming a repulsive wall is vertical 

like hard wall, Yion(R) is proportional to Ec. Using the polarizability for Ar 

and Ne are 1.63 P..3, and 0.39 f..3, respectively20, and R = 3.0 A, the 

dissociation energy Yion(3.0) is about -1300 cm-1 for HgAr+ is derived by 

(5) 

Although this method is crude, the value of Yion is close to the Yion = -1600 

cm-1 derived from Eq.(2), which also indicates that the rare gas dependence 

originates mainly from Yion· 

The above model is applied for the interatomic potential for HgAr at 

n=7. As shown in Fig.7(a), the potential for Hg(73SJ)Ar is shallower than 

that of Hg(83S1)Ar. The dissociation energy (De) at n=7 is 1430 cm-1 2, 

and that of n=8 is 1603 cm-1. Based Eq.(2), since only Yex depends on n, 

the difference of Yex between n=7 and n=8, /:; Yex, is derived by 

t; Yex = YRyd(n=7)- YRyd(n=8) . 
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For HgNe, D. Vex is 173 cm-1, and for HgAr is D. Vex is 262 cm-1. These 

two values are close, which shows the mode l is appropriate. The interatomic 

potential of Hg(73Sl )Ar has a characteristic shape, i.e. there is one shallow 

well whose dissociation energy (De) is 38 cm-1 and equilibrium interatomic 

distance (Re) is 6.95A, and a hump whose height is 15 cm-1 is located at 4.5 

A2. On the other hand, the hump of Hg(73S1)Ne is located at 3.9A. The 

deference of hump position between Hg(73S1)Ar and Hg(73S1)Ne is ascribed 

that the slope of Yion of HgAr in this reg ion is steeper than that of HgNe. 

When the positive slope of Yion is s teeper at a hump of Vex. in s ide of a hump 

of YRyd (= Yion + Yex) becomes deeper than outside of that, so the top of 

hump moves to outside. The position of the shallow well is also explain by 

Eq.(2) and the Rydberg electron density lt!'(r)l2. As shown in Fig.9, the 

position is outside of the high density region 2-6 A for n=7, so the interaction 

to produce the shallow well is a dispersion force. 

V. CONCLUSION 

(1) The OODR spectra of 3L+ Hg(n3S])Ne (n=S-10) and Hg(83S1)Ar are 

observed. From the vibrational structures of these spectra, the interatomic 

potentials of these states are determined by combination of FC simulation 

using Morse function and RKR method. By using A and B s tates whose 

equilibrium interatomic distance is apart from each other as intermediate state 

for OODR process, the shape of potential is determined over a wide range of 

an interatomic distance. The dissociation energy of these potentials, De, is 

derived. 

(2) It is found that a characteristic principal quantum number dependence (n) 

of the interatomic potential, i.e. the dissociation energy in c reases as n 
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increases and a slope of increase becomes flat from n=9 to n=lO. In order to 

interpret this n-dependence, the interatomic potential of 1-IgRg, VRyd(R; n, 

e) , is divided into two potentials: (i) the potential of ion core, Vion(R), which 

is independent of the distribution of Rydberg electron and (ii) the repulsive 

potential, Vex(R; n, e), which depends on the distribution of the Rydberg 

electron. 

(3) By comparison of observed interatomic potentials and the quantum defect 

orbitals (QDO) of Hg Rydberg state, we clarify the correlation between the 

repulsive potential Vex and the distribution of the Rydberg electron, i.e. Vex 

is almost proportional to the density of elect ron of 1-Ig, IR(r)!2, which is 

evaluated by the QDO wavefunction. Based on this idea, it is shown that (i) 

the deference of interatomic potential between HgNe and 1-IgAr originates 

main ly from the deference of Vion (ii) the hump is produced by a balance 

between Vex and Vion, (iii) the origin of an outer shallow well of 

Hg(73S1)Ar is a dispersion force between excited Hg and Ar. 
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Table I. Potential widths (RrR-) for 3L+ Hg(83S1)Ne 

calculated by RKR and Morse. 

R+- R_ I A 
v 

RKR Morse 

0 0.37 0.38 

0.72 0.72 

2 1.04 1.02 

3 1.39 1.37 

4 1.78 1.84 

5 2.22 2.78 

6 2.67 3.02 

7 3.06 

8 3.37 

9 3.62 

10 3.89 

11 4.36 
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Table II. Values of classical turnig points R+ and R_ and energy measured 

from the v=O for 3L+ Hg(83S1)Ne potential. 

v R_a R+b energy I cm-1 

0 2.89 3.25 0 

2.80 3.52 45 

2 2.76 3.80 82 

3 2.74 4.12 109 

4 2.72 4.51 131 

5 2.72 4.94 144 

6 2.71 5.38 156 

7 2.71 5.77 167 

8 2.71 6.08 177 

9 2.71 6.33 186 

10 2.71 6.60 195 

11 2.71 7.07 207 

3inner wall of the Morse function. 

bouter turnig point calculated from the RKR width, R+-R-, assuming that R_ 

is on inner wall of the Morse function. 
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Table Ill. Values of classical turnig points R+ and R_ and energy measured 

from the v=O for 3L+ I-lg(93S])Ne potential. 

v R_a R+b energy I cm-1 

0 2.81 3.21 0 

2.76 3.45 48 

2 2.71 3.65 91 

3 2.68 3.88 127 

4 2.66 4.12 156 

5 2.65 4.40 180 

6 2.64 4.70 200 

7 2.63 5.04 226 

8 2.63 5.42 232 

9 2.63 5 .84 242 

10 2.63 6.27 252 

11 2.63 6.67 259 

3inner wall of the Morse function. 

bouter turnig point calculated from the RKR width, R+-R-, assuming that R_ 

is on inner wall of the Morse function. 
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Table IV. Values of classical turnig points R+ and R_ and energy measured 

from the v=O for 3L+ Hg(J03S1)Ne potential. 

v R_a R+b energy I cm-1 

0 2.89 3.25 0 

1 2.80 3.52 50 

2 2.76 3.80 94 

3 2.74 4.12 133 

4 2.72 4.51 165 

5 2.72 4.94 193 

6 2.71 5.38 217 

7 2.71 5.77 235 

8 2.71 6.08 250 

9 2.71 6.33 263 

10 2.71 6.60 272 

11 2.71 7.07 279 

3inner wall of the Morse function . 

bouter turnig point calcu lated from the RKR width, R+-R-, assuming that R_ 

is on inner wall of the Morse function . 
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Table V. Potential parameters for the 3L+ l-lg(n3Sl)Ne (n=7-1 0) 

and lL+ Hg(61So)Ne. 

lL+ Hg(61So)Nea 

3L+ Hg(73S1)Neb 

3L+ Hg(83SJ)Ne 

3L+ Hg(93SJ)Ne 

3L+ Hg(l03S1)Ne 

areference 8. 

breference 1. 

We I cm-1 

10.5 

54.2(2)C 

55.1(4)C 

55.5(2)C 

WeXe I cm-l De I cm-1 

1.6 46 

-53 

4.49(4)C 209(2)d 

3.20(6)C 284(2)d 

2.85(3)C 309(3)d 

Cthe error is an uncertainty a of the least square method. 

dthe error is estimated from Eq.(l). 

ethe error is estimated from trial-and-error FC simulation. 
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3.90 

2.9(1) 

3.00(3)e 

3.00(3)e 

3.00(3)e 



Table VI. Potential parameters for the 32:+ Hg(n3S1)Ar (n==7,8) . 

32;+ Hg(73S1)Ara 

32;+ Hg(83S1)Ar 

areference 2. 

112(1) 

102(4)b 

2.01 (1) 

1.77(40)b 

1430(7) 

1602(4)C 

bthe error is an uncertainty a of the least sq uare method . 

Cthe error is estimated from Eq.(1). 

dthe error is estimated from trial-and-error FC simulation. 
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FIGURE CAPTIONS 

Fig.l. Observed OODR spectra of 3_L+ Hg(83S1)Ne. The intermediate states 

are (a) A(v=O), (b) A(v=l), (c) A(v=2), (d) B(v=O), (e) B(v=l) and (f) B(v=2). 

The wavenumber means the energy measured from the X (v=O) state. 

Fig.2. BS plot for (a) 3_L+ Hg(83S1)Ne, (b) 3_L+ Hg(93Sl)Ne, (c) 3.L+ 

Hg(J03Sl)Nep. Straight line is drawn by the least square method using (a) 

v=0-4, (b) v=0-5, (c) v=0-5. The Morse parameters, We, wexe, are listed on 

Table I. 

Fig.3. Potential curves for 3.L+ Hg(n3Sl)Ne (n=7-10). The n=7 potential is 

drawn using parameters in the reference 1. 

Fig.4. Observed OODR spectrum of 3_L+ Hg(93Sl)Ne via (a) A(v=O), (b) 

A(v=1), (c) B(v=O) and (d) B(v=l). The wavenumber means the energy 

measured from the X (v=O) state. 

Fig.5. Observed OODR spectrum of 3.L+ Hg(1Q3Sl)Ne via (a) A(v=O), (b) 

A(v=l), (c) B(v=O) and (d) B(v=1). The wavenumber means the energy 

measured from the X (v=O) state. 

Fig.6. Observed OODR spectrum of 3_L+ Hg(S3SJ)Ar via B(v=7). The 

wavenumber means the energy measured from the X (v=O) state. 

Fig.7. Potential curves for (a) 3_L+ Hg(73SJ)Ar and (b) 3.L+ Hg(83S1)Ar. 
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The potent ia l for 3L+ Hg(73SJ)Ar is drawn us ing parameters in th e reference 

2. 

Fig.8 . Dissociation energies (De) of 3L+ Hg(n3SJ)Ne (n=7-10) are plotted 

as a function of n *. n * is defined by n-b, where n is prin c ipa l quantum 

number and b is quantum defect. 

Fig.9 . The density of e lectron , ilii(r) i2, of Hg(n3Sl) (n=7-10) are plotted as a 

function of a radius of Rydberg electron. The wavefunction , tiJ(r), is 

calculated based on Simons's quantum defect orbital12,13. 

Fig.lO. The energy of the interatomic potential at 3.0 A, YRyd(3.0), is plated 

as a function of a densitiy of electron at 3.0 A, j\('(r)i2 . 
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Chapte1· 3 

Spin-spin interaction of Rydbe1·g 3L+ states of Hg(n3SI)Ne (n=7 -9) 

van der Waals dimer 
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ABSTRACT 

High resolution optical-optical double resonance (OODR) spectra of 

3~+ states of Hg(n3S1)Ne (n=7-9) and Hg(83S1)Ar are observed . The 

rotational structures are analyzed by a simulation taking into account the Hii 

nt-London factor of 3L+-3no+ -lL+ transition and laser line width, and 

rotational constants (Bv) and spin-spin constants (A.) are determined. It is 

shown that the spin-spin constant depends on a principal quantum number 

(n): i.e. A.'s for Hg(n3S1)Ne (n=7,8,9) are 0.38 cm-1, 0.15- 0.28 cm-1 and 

0.00 cm-1, respectively. This n-dependence is ascribed to in c rease of 

distance between Rydberg electron and ion core electron . The spin-spin 

constant also depends on the vibrationa l quantum number (n) in the 

Hg(83S])Ne state: i.e. 0.28, 0.22, 0.20 and 0.15 for v=0,1,2,3, respectively. 

Induced spin on the Ne by Hg+ causes the v-dependence. The mechanism 

of the induction of spin on a closed shell rare gas by a metal ion can be 

explained by the kinetic exchange interaction. Line broadening by 

pred issociation is observed in th e Hg(93S])Ne and Hg(83Sl)Ar. The 

lifetimes estimated from the line width are< 20 ps for the Hg(93S J)Ne and < 

10 ps for Hg(83SJ)Ar. 
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[.INTRODUCTION 

The mercury and rare gas diatomic van der Waals cluster (HgRg) is 

suitable for extracting the feature of Rydberg state. Since the first excited 

state of Rg (17eV: Rg=Ne) is much higher than the ionization potential, J.P., 

of Hg (10 eV), no valence state is located under the J.P. and there are only 

Rydberg states in highly excited states of HgRg. Thus, ro-vibronic states 

can be observed without perturbation of valence state. Besides there are 

well-studied A and B statesl which are suitable for an intermediate state for 

optical-optical double resonance (OODR) spectroscopy. 

By using these feature of HgRg vdW cluster, interatomic potential of 

Rydberg state for 3L+ Hg(73S])Ne2, 3L+ Hg(n3S])Ne(n=8-1 0)3, and 3L+ 

Hg(73S])Ar4, 3L+ Hg(S3S])Ar3 has been investigated. First, Duval et ai.4 

reported that the lowest Rydberg state of HgAr, i.e. 3L+ Hg(73S])Ar, has a 

deep potential well and a shallow outer-well separated each other by a small 

hump. They point out that a Rydberg electron is located around the position 

of hump so the deep well is close to HgAr+ and a shallow well generates from 

the dispersion interaction. Recently, Okunishi et al. determined HgNe in the 

lowest Rydberg 3L+ state of Hg(73S] )Ne. The potential has a relatively 

large hump and two quasi-bound states inside the hump. This characteristic 

potential is interpreted by a balance of two interactions: i.e. attractive 

interaction of HgNe+ ion core potential and repulsive exchange interaction 

between a Rydberg electron and a rare gas. Onda et al. determined the 

interatomic potentials in the 3sl -Rydberg states of HgNe and HgAr in a wide 

energy region, i.e. 3L+ Hg(n3S])Ne (n=S-1 0) and 3L+ Hg(S3S])Ar. By a 

systematic study of the interatomic potentials, it is shown that a Rydberg 
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potential can be represented by sum of two potentials: i.e. the ion core 

potential and an repulsive potential generating from exchange repulsion 

between a Rydberg electron and a rare gas. Based on this point of view, 

principal quantum number (n) dependence of potential is ascribed to n­

dependence of the exchange repulsion. The exchange repulsion can be 

predicted semi-quantitatively by a density of a Rydberg electron using the 

quantum defect orbital. 

In the present study, in order to get more information on the Rydberg 

state of HgNe vdW dimer, we investigate systematically spin-spin interaction 

which is one of interaction between a Rydberg electron and an electron on the 

ion core. The spin-spin constant is determined by an analysis of the 

rotational structure in OODR spectra via A (v=O). Observed OODR spectra 

are 32::+ Hg(73SJ)Ne (v=O,l), 3_2::+ Hg(83SJ)Ne (v=0-3) and 3_2::+ 

Hg(93SJ)Ne (v=l-3) having a different principal quantum number (n) and a 

vibrational quantum number (v) each other. 

U. EXPERIMENT 

The experimental setup for OODR is described in our previous paper3. 

The HgRg (Rg=Ne,Ar) van der Waal cluster are produced in a super sonic jet 

by using fuel injector with Hg reservoir heated 200"C . The carrier gas is Ne 

(or Ar) and the stagnation pressure is 4 atom . The HgRg is excited into 

Rydberg state by two dye lasers with intracavity etalon; Lambda Phisik 

FL3002 and Molectron DL14P. Both dye laser are pumped by an excimer 

laser (Lambda Physik LPX 105i), simultaneously. The fluorescence from 

intermediate state (~250 nm) is observed with a solar-blind photomultiplier 

(Hamamatsu Rll6). The fluorescence from Rydberg state is detected with 
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photomultiplier (Hamamatsu R928) with filter (Toshiba Y29) in order to cut 

the fluorescence from intermediate state. The resolution of both dye laser 

with etalon is 0.08 cm-1. The frequency is calibrated by the iodine spectra 

recording simultaneously. 

III. RESULTS 

III.l. Analysis of rotational structu1·es f01· 3L+ Hg(83SI)Ne (v=0,1,2,3) 

In order to observe rotational resolved spectra of Rydberg state, the 

rotational structure of the intermediate has to be well investigated. Although 

the HgNe has small rotational constant and six isotope splitting by magnetic 

hyperfine and volume effect, the rotationa l structure is well studied by 

Yamanouchi et al.4 As shown in Fig. 1, the rotational structure of A(v=O) -

X(x=O) transition consists of six-isotope rotational structure, and the p-heads 

of 200, 202 and 204-isotope species are isolated. By using one of the 

isolated p-head, the rotational structure of Rydberg state can be observed as 

the single isotope rotational structure. However, the p-head of each isotopes 

is isolated in only A (v=O) - X (v=O) transition, so only vibrational states 

observed from A (v=O) state can be obtained as a single isotope rotat ional 

structure. 

The OODR spectra of Hg(83S1)Ne (v=O,l ,2,3) states via the p-head 

of 202-isotope in A (v=O) state are observed as shown in Fig. 2 (a)-(d). 

Although the rotational structures of these state do not separate well , they 

look to consist of split P- and R-branch. Since the 3L+ state is derived from 

6s8s configuration of Hg(83Sl) and closed shell Ne, the origin of splitting 

comes form spin-spin interaction and spin-rotation interaction. We assign 

the unseparated rotational transition by simu lation of the rotationa l structure. 
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In order to simulate these spectra, three factor have to be considered, i.e. 

rotational level s of 3L+, Heinl-Landon factor of 3L+ - 3rro+ -lL+ OODR 

process, and laser line width. 

The rotational levels of a 3L+ state were presented by Watson5 . 

Fl ~BvJ(J +I) +(2A.+y) +(Bv -A.-~y) -[(Bv - A.-~y)2 +4J(J + I)(BV- ~~y)2 ]~ 
(III.l) 

F
2 

= Bvl(J + 1) +(2/..+ y) (I I 1.2) 

F
3 

=BvJ(J+ I) +(ZA +y) +(B11 -A.-~y) +[(Bv -A.-~d +4J(J + I)(BV - ~dJ~ 
(!11.3) 

where Bv is a rotational constant, y is a spin-rotation constant, and A. is a 

spin-spin constant. Since the spin-rotational interaction comes form the 

interaction between electron spin and rotation of core, it is small enough to 

neglect in the heavy molecule. 

3L+ state is excited from ground state lL+ via A 3rro+ in terms of 

case (a) representation, so the Hiinl-London factor of OODR process is 

necessary for the simulation . We derived the Hiinl-London factors of the 

3}:+ (J)- 3n0+ (J')- lL+ (J") in APPENDIX as follows : 

(III.4) 

f(Rll P) 2 2 (J" + 1)(41"' + 1) 
' J" ex: f,l , f-l z (2J" + 1)(2J"- I) 

(I I 1.5) 
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P ex , 2 2(1"- 2)(1" - I)( 4J"' + J" + 12) 
I( P,P)r 1-1 , 1-1, (2J" + 1)(2J"- I) ' (ll1.6) 

(III.7) 

where, for example, J(RQ,P)J" is the Honi-London factor for the successive 

excitation of a P-branch RQ-branch from a ground state having a rotational 

quantum number (J"), ~q and 1-12 are factors of first and second excitation 

respectively, which are common for all the rotational transitions. 

Since p-head of A-X transition is excited by the second laser, the 

OODR intensities of each rotational line depend on the laser line width and 

the relative position between laser and rotational line. Therefore Lorentzian 

function as the second laser line shape (a solid line in the Fig. 1) multiplied by 

each rotational line. 

The variable parameters are Bv, ),, rotational temperature (TR), line 

width of rotational level, and the second laser line width and position. They 

are optimized by a trial-and-error method. The simulations of Hg(n3S1)Ne 

(v=0,1,2,3)- A (v'=O) transitions and the assignment of each peak are shown 

in Fig. 2 (a)-(d). The calculated spectra are good agreement with observed 

spectra. Since the line width of rotational level, 0.08 cm-1, is the same 

width as the dye laser determined by the Hg atomic transition, the broadening 

by predissociation is not observed. 

In order to determine more precise rotational constants and spin-spin 

constants, we apply the non-linear least square fit of eq. (1) - (3) based on 

the above assignment. The variable parameters are band origin , Bv and I, 

and g fixes zero. The determined Bv, I and recalculated from Bv are li sted 

in Table 1. The band origin is listed in Table 2. 
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DI.2. Analysis of rotational structures for 3L+ Hg(93St)Ne (v=l,2,3) 

As shown in Fig. 3 (a)- (c), OODR spectra of Hg(93Sl)Ne (v=1,2,3) 

-A (v=O) are observed. Although all spectra in this state are broaden by 

predissociation, the rotational structure of v = 1 separates enough to reproduce 

the structure by simulation. Based on analysis of n=S, we optimize variable 

parameters; Bv, A., TR, line width of rotational level , and the second laser line 

width and position as shown in Fig. 3 (a). The band origin, Bv and I are 

determined by non-linear least square fit using the assignment of this 

simulation. The parameters are listed in Table 1, and the band origin is listed 

in Table 2. The predissociation lifetime is estimated from the FWHM of the 

rotational level is 20 ps. The line broadening strongly depends on vibrational 

quan tum number. The rotational structure of v=2 and 3 are too broad to 

ana lyze but the rough estimated lifetime are 1 Ops and 5 ps respectively (Fig. 3 

{b),(c)). The lifetimes are listed in Table 3. 

III.3. Analysis of rotational structm·es fo1· 3L+ Hg(83SJ)Ne (v=O,l) 

Although 3L+ Hg(73Sl)Ne is quasi-bound state2, the predisscoiation 

rate is so slow that the each rotational level is sepa rated (Fig. 4 (a) and (b)). 

By using the equation of rotational level , eq. (1)-(3), and Honl-London factor, 

eq. (4) - (7), the rotational structure is simulated as shown in Fig. 4 (a) and 

(b). The variable parameters, Bv, A., TR, line width of rotational level, and 

the second laser line width and position, are optimized by trial-and-error 

method. The band origin, Bv and A. determined by non-linear least square fit 

are listed Table 1 and 2. The assignment in the previous paper2 is different 

from assignment determined by this method, but this assignment is correct. 

62 



III.4. Analysis of .-otational structu1·e for 3L+ Hg(83St)Ar (v=2) 

The rotational structure of 3L+ Hg(83S1)Ar - A (2,4) is observed . 

Although the 3L+ Hg(83S1)Ne is stable, the predissociation of HgAr is too 

fast to resolve rotational structure as shown in Fig. 5. The lifetime of the 

predissociation is less than lOps by rough estimation based on the simulation. 

rv. DISCUSSION 

IV.l. Principal Quantum Numbe•· Dependence of Spin-Spin Inte•·action 

Before a spin-spin interaction of HgNe is discussed, a relation 

between the determined spin-spin constant and a spin-spin interaction has to 

be shown . In general, a spin-spin constant determined from an experiment, 

f.exp' originates both from a spin-spin interaction and from a second-order 

spin-orbit interaction 6, so the "-exp can be written by 

Aexp = "-ss + "-so' (IY.l) 

where "-ss is a constant for a spin-spin interaction and "-so is a constant for a 

second-order spin-orbit interaction . However, the spin-spin constant of 

3L+ Hg(n3Sl)Ne represents only a pure spin-spin interaction because there is 

no spin-orbit matrix element between 3L+ and lL+ states derived from an 

electronic configuration, 6sns. 

In order to clarify a feature of a spin-spin interaction of a 1-lgNe 

Rydberg state, a principal quantum number (n) dependence is investigated. 

The spin-spin constant for v= 1 of each electronic state is chosen to study the 

n-dependence because A. depends on a vibrational quantum number. The 
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constant is plotted in Fig.6 as a function of the mean radius of Rydberg 

electron estimated from scaling ruie10. At the lowest Rydberg state, n=7, 

the spin-spin interaction, "-=0.38(6) cm-1 is largest. When n changes from 7 

to 8, A decreases to 0.22(5) cm-1. The interaction becomes almost zero at 

n=9. Assuming that the spin-spin interaction of 3:L+ Hg(3S1)Ne is an 

interaction between an ion core electron (6s) and a Rydberg electron (ns), the 

n-dependence is ascribed to the distance between 6s and ns, i.e. as the n 

increases, the distance between increase and the interaction decrease. 

In order to discuss more quantitatively, the spin-spin constants of 

these state are calculated from a Rydberg wavefunction of Hg atom. The A. is 

represented by using I ' L:1) , as following equation 7, 

(IY.2) 
2 

=- A 
3 

The Hamiltonian HSS is written asS 

H• R , 3:-~,' -r~,' [2 '( .- - · )] =-I-' - - s .s,. - - s s, + s s, t; ,' I. __ 2 I • I -
(IY.3) 

Assuming the perturbation of Ne is small enough to neglect, the wavefunction 

of 3};+ can be represented by using 6s and ns orbital of Hg atom and Slater 

determinant. 

(IY.4) 
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where ~6s and <l>ns are the wavefunction of Hg 6s and ns orbital, respectively. 

The matrix element eq. (IV.2) can be determined from the Hamiltonian, (IV.3), 

and the wavefunction, (IV.4), as follows8. 

(IY.5) 

We use following quantum defect orbital derived by Simons9 as the 

wavefunctions of Hg, <1>6s and ~ns, 

[ ]

l/2 [ ] ' "' . Z1(n-<'>+A.+ t) 2Zr / (n-&) ·"""·'l . U )- ( ) ( ) ( )e ,r.;[A.+t-n+<'>,ZA+2,2Z, / (n-&)] rn-<'>+1, n-&121..+2 

(IV.6) 

By numeric integration, the A.'s of 3L+ Hg(n3S1)Ne (n=7-9) are calculated. 

The observed and calculated A. are listed Table 4. 

The calculated spin-spin constants are 0.023 cm-1 for n=7, 0.0051 

cm-1 for n=8 and 0.0018 cm-1 for n=9. The calculated A. decreases as n 

increases in the similar manner as the observed A.. The spin-spin interaction 

depends on overlap 6s and ns orbital, thus a spin-spin interaction decreases as 

n increases. Although the tendency to decrease is similar to th e ca lculated 

value, the absolute value is more than ten times as large as the ca lculated 

value. This observed large spin-spin interaction can be explained by 

assuming the induced spin on Ne by Hg+ ion. The Ne atom is close to a 

Rydberg electron enough to generate large spin-spin interaction, for example, 

3.98 A is mean radius of 7s orbital and 2.9 A is equilibrium interatomic 

distance between Hg+ and Ne. 
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A spin is induced on Ne by Hg+ by the kinetic exchange interaction H. 

This interaction generates from a mixing between two electronic 

configurations, i.e. (6s)1(2pz)2 and (6s)2(2pz)l, where 6s is a orbital of Hg+ 

ion and 2pz is a orbital of Ne atom. The energy to stabilize the induced spin, 

6E, by the kinetic exchange interaction is derived by a second-order 

perturbation from two electronic configurations: 

(IY.7) 

where \lf1 and \liz are wavefunctions of (6s)1(2pz)2 and (6s)2(2pz)l , 

respectively, and U is a energy difference between two el ectronic 

configurations. HgNe+ is compared with MnO crystal having anti­

ferromagnetism by the kinetic exchange interaction. 

Mn2+ + o2-

Hg+ + Ne 

Mn+ + o­

Hg + Ne+ 

+6 eY in crystal 

+12 eY in gas phase 

Assuming the integrals in Eq.(IY.7) are the same, since the energy of HgNe+ 

is twice as large as that of MnO, the HgNe+ has approximately a half energy 

of the kinetic interaction of MnO. 

IV.2. Vibrational Quantum Number Dependence of Spin-Spin 

Interaction 

The spin-spin interaction of 3I+ Hg(83S1)Ne strongly depends on the 

vibrational quantum number as shown in Fig.7 . The A for v=O is 0.28 cm-1 

and as v increases, A decreases 10-25 %. In general, the v-dependence of A 
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is ascribed to the v-dependence of an electronic configuration 7. For example, 

a spin-spin constant of B 3L+ state of 0212 strongly depends on v, i.e. when 

v changes from v=l5 to v=16, A increase 25 %. If A of 3L+ Hg(S3SJ)Ne 

originates from a single configuration, 6s8s, this v-dependence cannot be 

explained. Thus, a configuration mixing should be considered. 

By comparing between observed and calculated A in the preceding 

section, it is shown that Ne has a spin induced by the kinetic exchange 

interaction. This can be regarded as one of multi-configuration effect. The 

v-dependence of A can be interpreted by an induced spin on Ne, which 

generates from the kinetic exchange interaction. The induced spin becomes 

smaller as the interatomic distance increases because the integral in Eq. (!V.7), 

which means the overlap between 6s and Ss orbital, decreases. Since most of 

the observed spin-spin interaction is ascribed to the interaction between the 

induced spin of Ne and Rydberg electron, the spin-spin constant decrease as 

the induced spin decreases. As the interactomic distance decrease, the 

distance between a Ne and a Rydberg electron decrease and the spin-spin 

interaction should be increases. The observed v-dependence indicates that 

this increase is smaller than the decrease of induced spin on Ne. The reason 

is that by the exchange repulsion between Ne and Rydberg electron, the 

distance becomes also large as the interatomic distance increase. 

IV.3. Predissociation of 3L+ Hg(3St)Rg states 

The predissociation are observed in 3L+ Hg(93SJ)Ne and 3L+ 

Hg(83SJ)Ar, and the lifetimes estimated line broadening are listed in Table 3. 

The lifetime of Hg(93SJ)Ne is shorter than that of Hg(S3SJ)Ne, and the 

lifetime of HgNe is longer than that of HgAr at the same principal quantum 
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number. By the analysis of products from 3L+ Hg(83SJ)Ar, the 3L+ 

Hg(n3SJ)Rg predissociates to Hg(3Dl or 3o3) and Rg though the Hg((n-

2)3D)Nel3. Therefore then- and Rg-dependence of lifetime is ascribed to 

the overlap between the 3L+ Hg(n3SJ)Rg and the 3L+ Hg((n-2)3D)Ne. 

V. CONCLUSION 

We observed high resolution OODR spectra of 6sns electronic 

configuration states i.e. 3L+ Hg(73S1)Ne (v=O,l), 3L+ Hg(83S1)Ne (v=0-3) 

and 3L+ Hg(93SJ)Ne (v=1-3) having a different principal quantum number 

(n) and a vibrational quantum number (v) each other. Their rotational 

transitions are assigned by simulation taking into account the Hi:inl-London 

factor of 3L+ - 3rro+ - lL+ transition and laser line width. Rotational 

constants and spin-spin constant are determined by non-linear least square fit. 

We found that the spin-spin constant depends on both n and v. Although the 

n-dependence can be explain in terms of the distance between the Rydberg 

electron (ns) and the ion core electron (6s), absolute values of spin-spin 

constant more than ten times as large as calculation values derived form ns6s 

configuration. The v-dependence can not be explained by 6sns configuration, 

ether. Both deviation from view of a single configuration, 6sns, is ascribed 

to an induced spin on the closed shell Ne, and these mechanism to be induced 

spin is the kinetic exchange interaction. High resolution OODR spectra of 

3Lt Hg(83SJ)Ar (v = 2,14) are also observed but their rotational lines are too 

broad to analyze due to predissociation . The rotational lines of 3L+ 

Hg(93SJ)Ne (v = 1,2,3) are broaden, too. The lifetime of 3L+ Hg(93SJ)Ne 

(v==l,2,3) estimated from the line width are 40, 20, 10 ps, respectively and that 

of 3L:t Hg(83s 1)Ar is< 20 ps. 
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APPENDIX 

The OODR Honl-London factor for 3L;+ (J) - 3rro+ (J') - 1L;+ (J") 

can be represented by following equation 

(A1) 

where 3L;+ wavefunctions are expressed using basis wavefunctions 

IA,S,L:;Q,J,M> as: 

13L+; F3> = -2-112 Cj[ I0+,1,1;1,J,M>+ I0+,1,-1;-1,J,M>] 

+Sj I0+,1,0;0,J,M> (A2) 

13L+; F2> = 2-112 c1[ I0+,1,1;1,J,M>- I0+,1,-1;-1,J,M>] (A3) 

13Lt; Fp = 2-1 /2 SJ[ I0+,1,1;1,J,M>+ I0+,1,-1;-1,J,M>] 

+Cj IO+,l,O;O,J,M>, 

where 
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y, 
-[F,(J)- F,(J)] ­

SJ- F,(J) - F,(J) (A6) 

and F1(J), F2(J), F3(J) are the eigenvalues of Fj, F2, F3 state respectively. 

The 3rro+ and lL+ wavefunctions are represented as14 

13f1o+> = 2-1 /2 [ 11,1 ,-l;O,J',M'>+ 1-l ,l,l;O,J',M'>] (A7) 

and 

11"+> = IO+ 0 O·O J" M"> ~ ' ' ' ' ' 0 

(AS) 

The Hiinl-London factors of the OODR process are derived as follows: 

(A9) 

J(RR p ex: 2 2 (J" + 1)(4J" ' + 1) 
' L- I-t , I-t, (2J" + 1)(2J" - 1) 

(AlO) 

l('P P) " ex: 2 2 2(J" -2)(J " -1)(4J "
2 
+J" +12) 

, J I-t , j.,l , (2J" + !)(2J"- 1)' 
(All) 

(A12) 

where, for example, J(RQ,P)J" is the Honl-London factor for the successive 
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excitation of a P-branch RQ-branch from a ground state having a rotational 

quantum number (J"), f-l1 and f-l2 are factors of first and second excitation 

respectively, which are common for all the rotational transitions. 
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Table I. Rotational constants (Bv), equilibrium interatomic distance(re) and 

spin-spin constants (A.) for 3L+ Hg(n3Sl)Ne (n=7,8,9). 

Bv l cm-1 rv I A A. I cm-1 

3L+ Hg(73Sl)Ne v=O 0.0980(17) 3.06(3) 0.38(5) 

v=l 0.0902(23) 3.19(4) 0.38(6) 

3L+ Hg(83S1)Ne v=O 0.0983(20) 3.06(3) 0.28(5) 

v=l 0.0909(20) 3.18(3) 0.22(5) 

v=2 0.0828(23) 3.33(4) 0.20(7) 

v=3 0.0733(14) 3.54(3) 0.15(4) 

3L+ Hg(93Sl)Ne v=l 0.0926(53) 3.15(9) 0.00(12) 

Parenthesis means a uncertainty a derived from the non-linear least square fit. 

72 



Table II. Bandorigins for 3:L+ Hg(n3SJ)Ne (n=7-9) measured from A(v=O). 

Bandorigin 1 cm-l 

3I+ Hg(73Sl)Ne v=O 23087.99(5) 

v=l 23130.86(7) 

3I+ Hg(83S1)Ne v=O 34436.01(5) 

v=l 34481.01(5) 

v=2 34517.50(6) 

v=3 34544.63(4) 

3I+ Hg(93Sl)Ne v=1 38663.85(14) 

Parenthesis means a uncertainty a derived from the non-linear least square fit. 
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Table III. Lifetimes for 3L+ Hg(n3Sl)Ne (n=8,9) and 3L+ Hg(83S1)Ar 

lifetimes I ps 

3r+ Hg(83S 1)Ne v=0-3 >500 

3r+ Hg(93Sl)Ne v=l 40 

v=2 <20 

v=3 <10 

3rt Hg(83S1)Ar v=2 <20 
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Table IV. Calculated and observed spin-spin constants for v=l of 3:L+ 

Hg(n3Sl)Ne (n=7-9) 

n=7 

n=8 

n=9 

spin-spin constant I cm-l 

obs. calc. 

0.38(4) 

0.22(3) 

0.00(12) 

0.023 

0.0051 

0.0018 
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Figure Captions 

Fig. 1 Observed and calculated spectrum A-X (0,0) for HgNe. The broken 

line in the calculated spectrum is 202HgNe rotational structure drawn by the 

analysis of reference 4 . The solid line in the calculated spectrum is the 

second laser shape using Lorentzian function (FWHM = 0.08cm-1) in order 

to calculate the OODR spectrum. 

Fig. 2 High resolution OODR spectra and cal culated rotational structure for 

3L+ Hg(83SJ)Ne (a) v=O, (b) v=l , (c) v=2 and (d) v=3)- A (v=O). The 

rotational constants and spin-spin constants are listed in Table 2. The 

rotational temperature is 2.0 K and FWHM of laser is 0.08 cm-1 . 

Fig. 3 (a) Observed and calculated rotational structure for 3L+ Hg(93S1)Ne 

(v=1) - A (v=O). The FWHM for the calculated spectrum, 0.22 cm-1, is 

larger than the laser line width, 0.08 cm-1 , due to predissociation. (b) and 

(c) Observed rotational structure for 3L+ Hg(93S1)Ne ((b) v=2, (c) v=3)- A 

(v=O). Both spectra are broaden by predissociation. 

Fig. 4 High resolution OODR spectra and calculated rotational structure for 

3Lt Hg(73S1)Ne (a) v=O, (b) v=1)- A (v=O). The rotational constants and 

spin-spin constants are listed in Table 2. The rotational temperature is 2.0 K 

and FWHM is 0.08 cm-1 . 

Fig. 5 Observed rotational structure for 3L+ Hg(83SJ)Ar (v=2)- A (v=4). 

Fig. 6 The spin-spin constants, A, for v=l states of 3L+ Hg(n3S1)Ne 
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(n=7,8,9) are plotted as a function of the mean radius of Rydberg electron, 

<r>. 

Fig. 7 The spin-spin constants, /..., for 3L+ Hg(83S1)Ne (v=0-3) are plotted 

as a function of the interatomic distance. 
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Fig.2(a) 
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Fig.2(d) 
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Fig.3(b) 
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Fig.3(c) 
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Fig.6 
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Fig.7 
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Chapte•·4 

Interatomic potentials of Rydbe•·g l.L+ states of Hg(nlSo)Ne (n=7-9) 

van de1· Waals dimer 
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ABSTRACT 

OODR spectra of lL+ Hg(nlSo)Ne (n=7-9) are measured via A and B 

states. By analysis of vibrational structure of these spectra, interatomic 

potentials are determined. The potential for n=7 has three quasi-bound states 

above the dissociation limit. The dissociation energy (De) defined by energy 

difference between a bottom of the potential and a dissociation limit is 29 

cm-1. For n=8, the potential (De=239cm-1) becomes much deeper. For 

n=9, the potential shape is similar to that for n=8 but the De=297 cm-1 is 

larger. This n-dependence of the potential shape can be explained by the n­

dependence of the exchange repulsion between a Rydberg electron and a rare 

gas in the same manner as Hg(n3S1)Ne Rydberg series which has the same 

electronic configuration, 6sns. However, the potential of singlet series is 

more stable than that of triplet series. It is shown that this difference is 

ascribed to the induced spin on Ne by the kinetic exchange interaction. 
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I. INTRODUCTION 

Rydberg states of HgNe van der Walls dimer has investigated in order to 

reveal the interaction between a Rydberg electron and an ion core. 

Interatomic potentials of 3L+ Hg(n3SJ)Ne (n=7-10) are determined from 

optical-optical double resonance spectra1,2. From the principal quantum 

number dependence (n) of the potential, it is shown that the interatomic 

potential is characterized by the exchange repulsion between Rydberg 

electron and Ne. Since the exchange repulsion between Rydberg electron 

and closed shell Ne correlates to a density of Rydberg electron, the n­

dependence of the interatomic potential can be predicted semi-quantitatively 

by a density of Hg Rydberg electron calculated from the quantum defect 

orbital. 

Another interaction between a Rydberg electron and an ion core is the 

spin-spin interaction. The spin-spin constant (A.) are determined from the 

analysis of rotational structure for 3L+ Hg(n3Sl)Ne (n=7-9)3, and the 

observed A. is too large for Rydberg state. This large spin-spin interaction 

between Rydberg electron and ion core electron is ascribed that the most of 

the spin-spin interaction generates form the interaction with induced spin on 

Ne. The vibrational quantum number (v) dependence of A. also indicates the 

existence of the induced spin on Ne. Since the induced spin on Ne depends 

on the interatomic distance, the spin-spin interaction between the Rydberg 

electron and the induced spin depends on v. 

In this study, in order to get more information on the induced spin on Ne, 

the singlet Rydberg series are observed, and singlet and triplet potential are 

compared. The interatomic potential is characterized by exchange repulsion 

between Rydberg electron and electrons of Ne, so the direction of spin on Ne 
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should be reflected on the interatomic potential. The l,L+ Hg(nlSo)Ne (n=7-

9) are observed by the optical-optica l double resonance method From th e 

ana lysis of vibrational structu re, the interatomic potentials are determined. 

Compared with the potential of 3_L+ Hg(n3S1)Ne (n=7-9), it is shown that the 

induced spin exits on Ne. 

II. Experiment 

The optical-optical double resonance (OO DR) spectra are measured by 

the almost th e similar set up to the triplet series was observedl-3. The HgNe 

is produced in a supersonic expans ion of Ne carrier gas through a heated 

pu lse valve with Hg reservoir. The temperature of the pulse valve and Hg 

reservoir is ~200oC and the stagnation pressure is ~7 atom. The HgNe is 

excited to Rydberg state by OODR process using freq uency-doubl e output of 

two dye lasers (Lambda Phisik FL3002 and Molectron DL1 4P). Both dye 

laser are pumped by XeCl excimer laser (Lambda Physik LPX 1 05i) 

simultaneously. The fluorescence fro m the Rydberg states is detected by a 

photomultipli er (Hamamatsu R928) with a filter (Toshiba UV35) which cut 

the fluorescence from the intermed iate states. The resolution of th e doubled 

dye laser is ~o.8 cm-1, and the wave length is calibrated by atomic trans ition 

of Hg. 

Ill. Results 

Ill. I. Interatomic potential of l,L+ Hg(71So)Ne 

Intermedi ate states for OODR process are A and B states correlated to 

the Hg(63 P1). The potential of A state has a shorter equilibrium intera tom ic 

distance (re) than that of B state, re are 3 .45 and 4.92A, respec tivel y4. By 
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using these two state having different re each other, a wide interatomic region 

of Rydberg potential can be observed. From v=0,1 of A state, Rydberg 

potential in the interatomic distance of 3 - 4.5 A is observed, and from v=O 

and 1 of B state, its interatomic distance is 4- 7.5 A. 
The observed OODR spectra via A (v'=0,1) and B (v'=O) are shown in 

Fig.l (a)-(c). In this paper, the v, v', and v" stand for the vibrational 

quantum number of Rydberg, intermediate, and ground state, respectively. 

The vibrational structure in the spectrum via A (v'=O) (Fig.1 (a)) consists of 

four peaks and the spacing between peaks are 53.6, 45.2, and 34.3 cm-1. The 

intensity pattern has no node because the wavefunction of v'=O is reflected. 

The spectrum via A (v=l) (Fig.l (b)) has five peaks and one node reflecting 

the wavefunction of v= 1. The peak in the highest energy is broad because of 

bound free type transition. The spacing of spectrum via v=l without the 

broad peak are 53.7, 45.0, and 34.2 cm-1, so vibrational quantum numbers 

(v) of four peaks via A(v'=O) are identical to v of the four peaks via A(v'=l). 

Since the both progression starts suddenly, the lowest energy peak is assigned 

to v=O. On the other hand, the transition from B (v"=O) state is very weak 

but bound free type transition is observed (Fig.1 (c)). This bound free 

transition shows that the potential has repulsive wall in longer interatomic 

distance,> 4A, that is the potential lies above the dissociation limit. Position 

of dissociation limit can be estimated from sum of Hg 71So-61So transition 

energy and Do of HgNe ground state. The dissociation limit shows in Fig.1 

as an arrow. Since the arrow in spectra via A (v'=O,l) is located between 

v=0,1 and the arrow in spectrum via B(v'=O) is located at lower energy of the 

broad peak, the most of potential lies above its dissociation limit. 

The Birge-Sponer (BS) plot is drawn in Fig.2(a). The spacing 
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decreases linearly, so the potential is determined based on Franck-Condon 

(FC) calculation using Morse function . By using We and WeXe determined 

from the BS plot, FC factor is calculated as a parameter of re and re is 

estimated by trial-and-error method. The FC factor optimized and the 

determined parameters for Morse function are We = 63.8 (1) cm-1, WeXe = 

4.88(55) cm-1, and re = 2.92 (3) A. The potential of lL+ Hg(71So)Ne is 

shown in Fig.4, and the potential parameters are listed in Table I. 

III.2. Interatomic potential of lL:+ Hg(SlSo)Ne 

OODR spectra of lL:+ Hg(71So)Ne via A (v'=0,1,2) and B (v'=0,1,2) are 

observed and the spectra via A (v'=0,1) and B (v'=l) are shown in Fig.4 (a)­

(c). There are four peaks in the spectrum vi a A (v'=O) and the spacing 

decrease gradually, and intensity pattern reflects a wavefunction of A (v'=O). 

The spectrum via A(v'= 1) has four peaks and the spacing between the second 

and third from the lowest peak in energy is much larger than the others. This 

large spacing reflects a node of a wavefunction of A (v'=l), i.e. one peak 

misses in the large spacing because of the no Franck-Condon overlap. The 

spacing between the lowest two peaks in the spectrum via A (v '=O) and A 

(v'=1) are 49.8 and 49.7 cm-1, respectively . The spacing between the 

second and the third from the lowest peak in energy in spectrum via A(v'=O) 

and A(v=l) are 76.1 and 76 .0 cm-1. Therefore, the four peaks from the 

lowest peak in energy in the spectrum vi a A(v'=1) are identical to the four 

peaks in the spectrum via A(v '=O). The progression vi a A(v'=l) starts 

suddenly, so we assigned the lowest peak as v=O. 

As shown in Fig.4 (c), the spectrum via B(v'=l) has simple progression 

if the one missing peak by the node of intermediate state includes. The 
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spacing between lowest two peak is 25.8 cm-1 of this spectrum but the 

highest two peaks in the spectrum via A(v'=1) is 31.1 cm-1, so both 

progression does not overlap. In order to assign the peaks in the spectra via 

B (v'=0,1), the energy from X (v"=O) are estimated. The energy of v=4 is 

74385.5 cm-1 and the lowest peak in the spectrum via B(v=1) is 74386.2 

cm-1, so these peaks are identical. Based on this assignment, all peaks in 

the spectra via B(v'=0,1) are assigned. 

The potential of this state is determined by following method. First of 

all, in order to know the vibrational quantum number dependence of the 

spacing, Birge-Sponer is plotted in Fig.2(b). The spacing decreases linearly 

and steeply form v=O to 5 and the spacings of more than 5 are deviated from 

the line drawn from the spacings less than v=S. The decrease of spacing of 

more than v=S becomes gradually. The RKR methodS can be applied to be 

estimated the potential width (r+-r-) of each vibrational state from the 

spacings, but in order to determine the potential, it is necessary to estimate the 

interatomic distance of each vibrational state. So the next step is to determine 

the inner wall of the potential using Morse function. Assuming the potential 

shape is Morse function from v=O to 5, that is the linear part of BS plot. 

The We and WeXe can be estimated from the BS plot. Using these parameter, 

We and wexe, the equilibrium distance (re) is estimated from trial-and-error 

fi t of the Franck-Condon pattern. The inner wall of the Morse function is 

assumed to be the observed potential. And finally, the outer wall is drawn 

by connecting the points of r+ whose r_ put on the Morse function's inner 

wall . The potential of 1:L+ Hg(71So)Ne is shown in Fig.4. 
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Ul.3. Interatomic potential of lL+ Hg(91So)Ne 

OODR spectra of lL+ Hg(91So)Ne via A(v'=0,1,2) and B(v'=0,1,2) are 

observed. As shown in Fig.5(a), five vibrational states are observed in the 

spectrum via A(v'=O) except a peak pointed by an arrow because this peak is 

the v=4 state of 3L+ Hg(93Sl)Ne. The peak just above the v=4 of triplet 

potential also looks like one peak of the triplet progression, and the energy is 

the same as v=5 of triplet state. However, this peak should be assigned to 

one of singlet progression because the shape of this peak is the same as the 

other singlet peaks. There are six vibrational states in the spectrum via 

A(v'=l), but two states are missed . One state berries in the v=5 peak of 

triplet state pointed by the right side arrow, and the other state has no 

Franck-Condon overlap due to a node of wavefunction of A (v'=l). The 

progression of the spectra via B (v'=0,1,2) are smoothly connected with the 

progression of the spectra via A(v'=0,1,2). 

The potential is determined by the same way of 1 L+ Hg(Sl So)Ne but the 

assignment of v=O. As shown in BS plot (Fig.2(c)) , the vibrational spacing 

decreases linearly from v=O to 5 and the spacing is deviated gradually above 

v=S. The WeXe is determined from the slop drawn from v=O to5. The 

vibrational assignment and re are determined by trial-and-error fit of the 

Franck-Condon factor using Morse function. The inner wall of this Morse 

function is used as an innerwall of the observed potential. Potential widths, 

r+-r_, are calculated by RKR method, and the outer wall is drawn by 

connecting the r+ putting on the innerwall of the Morse function. The 

potential of lL+ Hg(81So)Ne is shown in Fig.4 and the parameters are listed 

in Table I. 
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IV. DISCUSSION 

IV.l. Principal quantum number dependence of lL+ potential 

As shown in Fig.4, the interatomic potential of 1L+ Hg(nlSo)Ne 

(n=7-9) depends on the principal quantum number (n). The potential of n=7 

is located above dissociation limit and th e potential becomes deeper as n 

increase. This type of n-dependence is similar to the dependence of 3L+ 

Hg(n3Sl)Ne Rydberg seriesl, so the same model is applied to lL+ 

Hg(n lso)Ne Rydberg series. The interatomic potential of Rydberg state 

(YRyd) can be written by following equation. 

YRyd = Yion + Rex (1) 

where Yion is the interatomic potential of HgNe+, and Rex is the exchange 

repulsion between Rydberg electron and rare gas atom. The ion core potential, 

Yion' consists of strong bounding force and independent of the Rydberg 

electron. The exchange repulsion, Rex' make the potential unstable and 

depends on the density of the Rydberg electron. Therefore, the density of 

electron predicts the shape of Rydberg potential. The wavefunction of 

Rydberg state can be calculated from quantum defect, that is the quantum 

defect orbital (QD0)6,7. 

Fig.6 shows the density of Hg (nlSo) (n=6-9) Rydberg electron 

calculated from the Hg's quantum defect. The interatomic distance region of 

the observed potential is from 3 to 7 A, so the density of Rydberg electron in 

this region determine the shape of the Rydberg potential. At n=6, the most of 

electron density concentrates within 2.5 A, so the ion core and the electron 

make neutral atom and the interatomic force between neutral Hg and Ne is 
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dispersion force . At n=7, the density of electron is highest from 2 - 6 A, 
and the potential lies above dissociation limit by strong repulsive force . In 

the case of n=8, the hump of density around 8 A and the potential has a hump 

tbere. The density becomes almost zero from 2.5-7 A so the potential is 

almost the same as HgNe+ potential (Y i011) . 

IV.2. Comparison between l.L+ and 3.L+ potentials 

The 3.L+ Hg(n3Sl)Ne consists of the same e lectronic configuration as 

l_L+ Hg(nlSo)Ne, that is 6sns. If the potential can be predicted by sum of the 

ion core potential (Yion) and the exchange rep ul s io n between Hg's Rydberg 

electron and Ne (Rex), both si ng let and tripl et should be th e same. In order 

to compare between singlet and triplet, the dissociation e nergy (De) is plotted 

as a funct ion of effective principal quantum number (n *) in Fig.7. Although 

De are a lmost the same at n=8 and 9, De at n = 7 is are very different. The 

origin of difference between triplet and singlet is exchange interaction 

between 6s and ns, but the main interaction between ns and ion core at n=7 is 

the exchange repulsion with Ne from above analysis. Therefore, the 

difference of potentials between s ing let and triplet can be exp lain ed taking 

into account the direction of spin on Ne atom. The state which the direction 

of spin on Ne is parallel to Rydberg e lectron and both orbitals are not 

orthogonal is more unstable than the state which the two sp ins are an ti­

parall el. Kinetic exchange interaction can predicts that the direction of spi n 

on Ne is the same as 6s. The mechanism of the kinetic exchange interaction 

is that Ne's electron transfer to Hg+'s 6s orbital through small overlap between 

6s and 2p of Ne. The ion core consists of Hg+ and Ne, so 6s orb ital can 

conta in o ne more electron whose direction s hou ld be different by Pauli 's 
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principal. After anti-parallel electron transferred to 6s, more parallel 

electron remains on Ne then anti-parallel electron. Therefore, the parallel 

spin to 6s is induced on Ne. 

shown by8,9 

!1£ = _ 2b(Ri u , 

The energy of kinetic exchange interaction is 

(2) 

where !1E is the energy difference between parallel and anti-parallel electrons 

of two atoms, b(R) is the parameter depends on overlap between two orbital 

i.e. 6s and 2p, and U is energy difference between two orbital. One of 

material having the similar U to HgNe+ is NiO and NiO has a anti-

ferromagnetism by kinetic exchange interaction . Assuming the overlap 

(b(R)) is the same between HgNe+ and NiO, since the U of HgNe+ is half of 

NiO, i.e. 12eV and 6eV, respectivelylO, the energy of kinetic exchange 

interaction of HgNe+ is estimated half of NiO. The energy of exchange 

interaction between two Ni2+ through o2- by kinetic exchange interaction is 

34 em-1 11, so the energy caused by kinetic exchange interaction seems to 

be enough to make difference between triple and singlet potentials. 

V. Summary 

We measured OODR spectra of lL+ Hg(nlSo)Ne (n=7-9), and 

determined the interatomic potentials by analysis of vibrational structure. It 

is shown that the principal quantum number dependence of the interatomic 

potential can be explained by the density of electron calculated from the 

quantum defect orbital. However, the potential of n=7 is different from 

triplet potential having the same electronic configuration. This difference is 
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ascribed to the induced spin on Ne, i.e. if the induced spin is anti-parallel to 

the Rydberg electron, the exchange interaction between Rydberg electron and 

the induced spin becomes small. The mechanism to induced sp in on Ne is 

the kinetic exchange interaction. 
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Table I. Potential parameters for the lL+ Hg(nlSo)Ne (n=6-9). 

We / cm-1 WeXe I cm-1 

1L+ Hg(61So)Nea 10.5 1.6 

1L+ Hg(71So)Ne 63.9(10)b 4.88(20)b 

1L+ Hg(81So)Ne 59.5(5)b 4.37(1Q)b 

1L+ Hg(91So)Ne 57.0(3)b 3.18(5)b 

areference 4. 

bthe error is an uncertainty a of the least square method. 

cthe error is estimated from Eq.(l). 

dthe error is estimated from trial-and-error FC simulation. 
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FIGURE CAPTIONS 

Fig.l. Observed OODR spectra of lL+ Hg(71So)Ne. The intermediate states 

are (a) A(v=O), (b) A(v=l), and (c) B(v=O). The wavenumber means the 

energy measured from the X (v=O) state. 

Fig.2. BS plot for lL+ Hg(nlSo)Ne (a) n=7, (b) n=S, and (c) n=9. Straight 

line is drawn by the least square method using v=0-4 for n=7, v=0-5 for n=S 

and v=0-6 for n=9. The constants, We, WeXe, are listed on Table I. 

Fig.3. Potential curves for lL+ Hg(nlSo)Ne (a) n=7, (b) n=S, and (c) n=9. 

Fig.4. Observed OODR spectrum of lL+ Hg(SlSo)Ne via (a) A(v=O), (b) 

A(v=l), and (c) B(v=O). The wavenumber means the energy measured from 

the X (v=O) state . 

Fig.S. Observed OODR spectrum of 1L+ Hg(91So)Ne via (a) A(v=O), (b) 

A(v=l), (c) B(v=O) and (d) B(v=l). The wavenumber means the energy 

measured from the X (v=O) state. 

Fig.6. The density of electron, irR(r)i2, of Hg(61So) and Hg(n3Sl) (n=7-10) 

are plotted as a function of a radius of Rydberg electron. The wavefunction, 

rR(r), is calculated based on Simons's quantum defect orbita[6,7. 

Fig.7. Dissociation energies (De) of 3L+ Hg(n3So)Ne (n=7-10) and lL+ 

Hg(nlSo)Ne (n=7-9) are plotted as a function of n*. n* is defined by n-1'>, 
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where n is principal quantum number and o is quantum defect. 
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Fig.l(a) 
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Fig.l(b) 
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Fig.l(c) 
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Fig.2 
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Fig.3 
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Fig.4(a) 
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Fig.4(b) 
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Fig.4(c) 
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Fig.S(a) 
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Fig.5(b) 
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Fig.5(c) 
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Fig.5(d) 
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Fig.6 
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Fig.7 
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