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 1 

Chapter 1. 

General introduction 

 

1.1. Background and objective of this study 

Along with the expansion of world’s population and progress of the 

industrialization, rapid increase in energy consumption is predicted in 21
st
 century. To 

solve the energy problem, scientists need to be addressed more aggressively in order to 

realize a sustainable society. Losses in energy utilization by using heat from combustion 

of fossil fuels are very large, for example, more than 60 % in case of the thermal power 

generation plant [1]. Since the electrochemical reaction performs direct conversion 

between electrical energy and chemical energy, the energy use with electrochemical 

reactions can be possible to reduce the energy loss along with the thermal process. Thus, 

the energy utilization through the electrochemical reaction is important in achieving low 

carbon society because it is capable of high energy utilization efficiency. The key factor 

in the energy conversion efficiency of the electrochemical reactions is an electrocatalyst 

which is a dominant factor of electrode overpotential, and their three elements required 

for the actual use are activity, selectivity and durability.  

The electrocatalyst whose active center is a single metal atom is expected to 

show reaction selectivity because there is no possibility to take the adsorption structure 

across the multiple metal atoms on the basis of its single adsorption site nature. In 

addition to this, a single metal atom electrocatalyst is expected to have a specific 

activity and high metal atom utilization efficiency derived from the characteristics of 1) 

large interaction with support material [2,3], 2) large interaction with ligands [4] and 3) 

no neighboring metal atoms. Such specify is highly attractive from the point of view of 

the functional improvement of the electrocatalyst. In fact, the research on the 
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electrocatalyst carrying a single metal atom has become an active field [5-10]. However, 

in general, there is a problem that single metal atoms carried on the electrode substrate 

are easy to aggregate because of their high surface energy (Fig. 1.1) or easy to drop off 

[8,9,11,12]. Therefore, the development of the electrocatalyst material which carries 

high concentration of single atom with high stability is strongly desired.  

Covalent triazine frameworks (CTFs), one class of regular porous polymer, are 

the leading candidate material to achieve a stable carrying of a high density of single 

metal atoms because it contains high concentration of nitrogen atoms having a lone pair 

that can be a coordination environment of the metal atoms in its pore [13,14]. On the 

other hand, since the conductivity of CTFs are extremely low, there had been no report 

for utilizing them as an electrocatalyst.  

Based on this background, in the present study, the author focused on CTFs as 

a support material of single metal atoms. Firstly, the author tackled to synthesize a novel 

CTF-based conductive material carrying an atomically dispersed metal atom for use as 

an electrocatalyst. To achieve this, he polymerized a monomer of CTF in the presence 

of conductive carbon nanoparticle in order to make hybrid material of CTF and carbon 

nanoparticles. 

The purpose of this study is to clarify the specificity of a single atom 

electrocatalyst by applying synthesized CTF-based material to the electrochemical 

systems, and to find out useful reaction systems. Especially, the author focused on 

platinum as a target metal which is the most widely commercialized catalyst material to 

electrochemical devices such as polymer electrolyte fuel cells and electrolyzers. More 

specifically, the author focused attention on the high reaction selectivity expected on a 

single metal atom, and tackled to the realization of 1) selective oxygen reduction 

reaction in the presence of methanol, 2) selective hydrogen oxidation reaction in the 

presence of oxygen and 3) selective reduction reactions on nitrogen oxides. 
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Fig. 1.1 | Relationships between surface exposure ratio of Pt atoms (dispersion, D
Pt

†
) and 

particle diameter. (See Note 1.1 for elicitation method.) 

 

 

Note 1.1 | 
†
Estimation method of the D

Pt
. 

The surface exposure ratio of the Pt atom of a particle (D
Pt

) was estimated by using uniform 

sphere model. In this model, the entire surface was assumed to have following proportions of 

low index planes: (111):(100):(110) = 1:1:1, i.e. the area of one Pt atom would be 8.07 Å
2

. The 

D
Pt

 is given by 

D
Pt 

= n
s
/n

a
 = S/n

a
a

m
 

where n
s
 is the number of atoms at the surface of a particle of surface area S, n

a
 is the number of 

atoms of mass m
a
 which are in a particle of mass m, and a

m
 is the area occupied by a surface 

atom. 

Since n
a
 = m/m

a
 and m

a
 = /N

A
, and S = 6m/d

n
, D

Pt
 is given by 

D
Pt

 = 6/N
A
a

m
d

n
 

where N
A
 is Avogadro’s constant,  is the relative atomic mass,  is the density, and d

n
 is the 

diameter of a particle. 
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1.2. Single atom catalysis on electrochemistry 

1.2.1. Overview 

As a strategy for improving the selectivity and the number of active site of the 

catalytic reaction, it has been clarified that the reduction of the size of the metal particle 

is effective approach [15-17]. Such specific reactivity had been reported to be shown by 

reducing the particle size of noble metal from nano to subnano [16,17]. In a catalytic 

reaction, interaction of the reactants with the metal active center is one of the most 

important elements as a point of view of the activity and selectivity. One of the 

dominant factors for determining the interaction of the reactant with the metal active 

center is the coordination number of active site. The smaller coordination number sites 

use fewer electrons and orbitals for coupling, i.e., the larger electrons and orbitals are 

capable of binding to the reactant. Further, these sites have less steric hindrance. 

Calle-Vallejo et al. revealed that there is a linear relationship between the coordination 

number of the focused site and interaction of small molecules by the calculation based 

on density functional theory (DFT) [18,19] (Fig. 1.2). They used the coordination 

number weighted by coordination number of neighbor atoms (CN) as a parameter. They 

also confirmed these relationships experimentally by fabricating low coordination site 

on Pt particles and conducting oxygen reduction reaction (ORR). Hu et al. also 

confirmed the linear relationship between coordination number of catalytic active site 

and adsorption energy of oxygen by using Pd, and revealed the relationship with activity 

[20]. As shown in Fig. 1.1, when the particle size of the Pt is reduced, the surface 

exposure ratio of the Pt atoms (dispersion of Pt: DPt) is increased, i.e., the coordination 

number is reduced. The ultimate form of reducing the particle size is a single atom state. 

Since all of the particles are present on the surface, the surface energy of the metal 

particle is extremely high in a single metal atom catalyst (Fig. 1.1). Thus, it can be 

expected that single atom catalysts show specific catalytic activity by strong  
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Fig. 1.2 | Relationship between the coordination number and adsorption energies of 

oxygen species. (a) Active sites which have coordination number (CN) of 9 on various sizes of 

Pt particles and Pt(111) plane. The value of GOH changes significantly ( 0.5 eV) in spite of 

same CN. (b) Relationship of GOH and GOOH versus the coordination number weighted by 

coordination number of neighbor atoms (CN). These relationships showed clear linearity with 

low distribution. Reproduced with permission for Ref. 20. Copyright © 2015, American 

Association for the Advancement of Science. 
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interaction between the reactants and single metal atom active centers. 

However, as mentioned above, easy aggregation of single metal atoms becomes 

a problem generally because of their high surface energy [8,9,11,12]. In order to solve 

the strong tendency of aggregation, for example, 1) a method of carrying through the 

complex-forming material, 2) a method of carrying on a support material which strongly 

interacts with the metal atom, can be considered. 

 

1.2.2. Complex-based molecular catalysts 

 A method of carrying through the complex-forming material stabilizes a single 

metal by a strong interation with ligands. This stabilization can be explained by Ligand 

Field Stabilization Energy (LFSE) as follows. When the ligand coordinated to the metal 

ion, repulsive interaction due to the Coulomb force between the negative charge of the 

electrons and the ligands in the metal orbitals occurs. This interaction increases with 

closer the two negative charges spatially. Thus, the magnitude of this interaction is 

different from the direction of the lobes of the d-orbital of the metal. As a result, the 

energy level of the metal orbital is splitted about 1  3 eV depends on the coordination 

structure of the complex (for example, Fig. 1.3b) [21]. Pt(II), which has d8 

configuration, usually takes a square planar coordination structure. In case of square 

planar structure, LFSE can be represented as following Eq(1). 

LFSE = (1.23k+0.23l0.43m0.51n)0  Eq(1) 

where k, l, m and n are the number of electrons in dx2y2, dxy, dz2 and dxy+dyz orbitals, 

respectively. 0 is the ligand field splitting parameter which depends on the type of 

ligands. Therefore, in general, the electron energy is stabilized when a strong interaction 

between the metal and the ligand occurs. 

Application of the metal complex-based electrode to the electrochemical 

reaction was first reported by Lane et al. in 1973 [22]. They fabricated the electrode 

consists of Fe (III) complex with a salicylate ligand carried on the Pt metal substrate. In  
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Fig. 1.3 | Shapes and energy diagram of d orbitals of a metal atom. (a) Shapes of the d 

orbitals, (b) splitting of d orbitals by each geometry of ligands. 
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their study, the ligand chemically adsorbed to Pt substrate through olefinic group, but 

the stability was significantly decreased with changing the electrode potential. After that, 

chemically modified electrode using carbon substrate was developed by Watkins et al. 

in 1975 [23]. They made carboxyl group on graphite surface by heating graphite in air at 

first, then bind amino acids via amide bond to this site. Whereas they modified carbon 

via amid bond, Brown et al. demonstrated that Fe (III) porphyrin compounds strongly 

adsorbed onto carbon substrate without covalent bond and these electrodes were able to 

apply directly to the electrochemical reaction systems [24]. Thereafter, electrocatalytic 

activities of the many types of electrode carrying a metal-complex having a porphyrin 

or phthalocyanine ring on carbon material have been reported so far. These 

metal-complex/carbons are often used as an electrocatalyst for the oxygen reduction 

reaction [25-29]. The biggest advantage of these catalysts carrying metal-complex is 

that it can be handled in an immobilized form as heterogeneous catalyst while it is 

possible to obtain a high catalytic activity by only a small amount of metal as a 

homogeneous catalyst [30]. However, there is a durability problem in these 

metal-complex/carbon material. Baranton et al. and Cheng et al. reported respectively 

that the catalytic ORR activity of the complex-based electrocatalysts which consist of 

phthalocyanine complex and conductive carbon particles significantly decreased only 

within 10 cycles [26,27]. This degradation of electrocatalytic activity was explained by 

desorption of metal complex, demetallation of the complex, and disruption of 

macrocycle due to the strong adsorption of the oxygen species [26,27]. Therefore, it is 

necessary for long time operation that 1) the ligands which function as a metal anchor 

are firmly immobilized on a carrier, and 2) metals are strongly interacted with ligands. 

 

1.2.3. Directly deposited single metal atom catalysts 

 A method of carrying a single metal atom directly to the substrate stabilizes a 

single metal through a strong interaction with substrate material. In this method, single  
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Fig. 1.4 | Schematic illustrations of single metal atom catalysts. Single metal atoms directly 

deposited on (a) metal oxides, (b) another kind of metal and (c) graphene. Reproduced with 

permission for Ref. 38. Copyright © 2013 American Chemical Society. 

 

 

metal atoms are anchored to the substrate by chemical interaction. As such substrates, 

metal oxides (Fig. 1.4a), another kind of metal surface (Fig. 1.4b) and porous materials 

such as graphene (Fig. 1.4c) had been reported. For example, Qiao et al. deposited 

single Pt atoms on FeOx substrate and applied this material to CO oxidation reaction 

[31]. Shi et al. applied this Pt1/FeOx to the counter electrode of dye sensitized solar cells 

and demonstrated that Pt1/FeOx/FTO effectively catalyzes the reduction reaction of 

triiodide (I3

) to iodide (I


) [32]. Moses-DeBusk et al. also demonstrated that Al2O3 is 

also able to use as a support of single Pt atoms and the resulting Pt1/Al2O3 exhibited 

significantly high CO oxidation activity [33]. As another type of oxide substrate, Wang 

et al. reported that Co3O4 can serve as a support of single Rh atoms, and Rh1/Co3O4 acts 

as a selective catalyst for the reduction reaction from NO to N2 [34]. In these metal 

oxide substrates, surface defects were supposed to function as an anchoring site of 

single metal atoms [31]. Recently, Yang et al. reported that single Pt atom loaded on a 

titanium nitride substrate predominantly generates H2O2 via the 2e

 ORR pathway [35]. 

According to the DFT calculations, Pt atoms are likely to exist in an N-vacancy site on 

the TiN substrate. As an example using another metal as a carrier, Lucci et al. 
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demonstrated that single Pt sites were obtained by depositing approximately 1 at% of Pt 

on Cu metal surface using electron beam evaporation. The resulting Pt-Cu alloy 

catalyzes thermal H2 activation via the bridge type adsorption between Pt atom and Cu 

atom [36]. Each atomically dispersed Pt atoms were confirmed to exist in the replaced 

site of the lattice structure of Cu. Further, Yan et al. successfully synthesized single Pd 

atom deposited graphene by atomic layer deposition technique [37]. They performed 

selective hydrogenation reaction of 1,3-butadiene under relatively low temperature. On 

the graphene layer, Pd single atoms were immobilized by interacting with oxygen 

functionalized group in the defect site of graphene. From the point of view of the 

electrocatalyst, only a few examples that utilizes single atom of platinum group metals 

had been reported [32,35], as described above. 

 The loading amounts of platinum group metals of the catalysts reported so far 

were summarized in Table 1.1. As shown in Table 1.1, a single atomic state had been 

achieved only in a very dilute concentration of 0.5 wt% or less in any of the catalyst. If 

these concentrations of metal atoms rise to a few percent or more, the cluster of metal 

forms inevitably [31,33-35,37]. This strong tendency of the aggregation is supposed to 

be due to relatively weak interaction between single metal atom and substrate compared 

to a complex. Therefore, in order to realize a single metal atom based electrocatalyst 

which has a practical concentration of metal for the use of electrochemical devices, it is 

necessary to apply a substrate which has a stronger interaction with metal atoms than 

the substrate shown in Table 1.1. 
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Fig. 1.5 | Specific activity versus metal loadings and metal particle sizes. Data was collected 

from Ref. 39. Reproduced with permission for Ref. 38. Copyright © 2013 American Chemical 

Society. 

 

 

1.3. Ordered porous organic materials 

1.3.1. Overview 

 Porous materials represented by activated carbon and zeolites are widely used 

in various applications such as adsorption, occlusion, separation and catalyst; they are 

essential material to modern society. Use of a porous material began from the inorganic 

porous material that are exists in nature. In general, porous structure of the inorganic 

porous material is extremely complicated; it is difficult to obtain the porous structure as 

intended.  

Under such circumstances, porous materials with a hybrid of organic-inorganic 

called metal organic frameworks (MOFs) were developed in 1990s [40-42]. During the 

synthesis process of MOFs, coordinative assembling between metal ions and rigid 
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organic ligands occurs to form building units, and subsequently form porous structure in 

a self-organized manner. Thus, MOFs are able to design a porous structure in a 

bottom-up way by choosing structures of metal ions and organic ligands. Although the 

MOFs have various advantages such as the freely controllable pores and high specific 

surface area, in general, stability in basic or acidic solutions is poor since metal ions and 

organic ligands form a structure by coordination bond [43]. For that reason, the use of 

MOFs as an electrocatalyst in such low or high pH electrolyte conditions is difficult.  

As materials to overcome this problem, Côté et al. developed porous crystalline 

materials composed only of organic compounds, so called covalent organic frameworks 

(COFs), in 2005. They firstly synthesized two types of COFs which are polymerized via 

the dehydration of 1,4-benzenediboronic acid (COF-1) or 1,4-benzenediboronic acid 

and hexahydroxytri-phenylene together (COF-5) [44]. In contrast to the MOFs which 

are constituted by a coordination bonds, the COFs are composed only of covalent bonds. 

In addition, COFs are also different from supermoleculars which form porous structures 

through hydrogen bonds or van der Waals’ force. Therefore, in general, many of the 

COFs are chemically and physically stable derived from the covalent bond.  

 Classifying various structures for each type of building unit and arranged from 

1D to 3D structure were summarized in Fig. 1.6. 

 

1.3.2. Covalent organic frameworks 

 Covalent organic frameworks (COFs) are porous material having a repeating 

structure whose building unit is cross-linked by covalent bond and consists of only light 

element (H, B, C and O). As well as the MOFs, COFs are able to design porous 

structure flexibly by selecting the structure of the building unit (Fig. 1.7). Thereafter the 

first examples of COFs having boroxine bond were reported by Côté et al. [44], it had 

been synthesized a lot of types of COFs having a variety of bonding species such as 

boronic acid ester bond [54], imine bond [55], amide bond [56], imide bond [57],  
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Fig. 1.6 | Classification of various structures for each type of building unit. Reproduced 

with permission for Ref. 53. Copyright © The Royal Society of Chemistry 2013. 

 

 

 

 

 

 

 

 

 

Fig. 1.7 | Schematic illustration of reticular chemistry of COFs. Reproduced with permission 

for Ref. 58. Copyright © The Royal Society of Chemistry 2012. 
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triazine bond [58], and so on. In general, the crystallinity of COFs correlates with 

reversibility of the reactions to form covalent bond between each building unit. While 

the crystallinity of COFs improves with higher reaction reversibility, the chemical 

stability decreases. Especially, the COFs composed of imide and triazine bond have low 

reversibility and high chemical stability. These imide and triazine-based COFs are stable 

even in the acidic and basic electrolyte.  

 Among a variety of COFs, those having a triazine structure in repeating unit 

are called covalent triazine frameworks (CTFs). CTFs were first reported by Kuhn et al. 

in 2008 [13]. They synthesized CTFs by polymerizing an aromatic compound having a 

plurality of cyano groups in molten-salt of zinc chloride. In this process, polymerization 

reaction proceeds through the formation of triazine ring by pericyclic reaction via the 

cyclic transition state composed of three cyano groups. In common with other COFs, 

various structures of CTFs are able to obtain by selecting the monomer. The examples 

of monomer group that can obtain CTFs are summarized in Fig. 1.8. 

 From the point of view of the catalyst, the characteristics of CTFs such as high 

specific surface area, high chemical and physical robustness, high design flexibility, and 

high density of nitrogen, are attractive. Since the nitrogen atoms among the CTFs 

possess lone pair, the nitrogen sites are suitable as a coordination environment of the 

single metal atoms. Actually, for example, Palkovits et al. reported that 

2,6-dicyanopyridine (DCP)-based CTF can carry high concentration of Pt atoms of 

approximately C/N/Pt = 3.2/1/0.15 with high stability even in the strong acid condition 

[14]. They demonstrated that Pt modified CTF (Pt-CTF) selectively catalyze partial 

oxidation reaction of methane to methanol as following equation (Eq(5)).  

 CH4 + H2SO4 + SO3 → CH3OSO3H + H2O + SO2  Eq(2) 

 CH3OSO3H + H2O → CH3OH + H2SO4   Eq(3) 

 SO2 + 1/2O2 → SO3     Eq(4) 

(net) CH4 + 1/2O2 → CH3OH    Eq(5) 
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Fig. 1.8 | Examples of monomers to produce CTFs. Reproduced with permission for Ref. 59. 

Copyright © 2008 American Chemical Society. 

 

 

 

 

 

 

 

 

Fig. 1.9 | Synthesis procedure of Pt-CTF. (a) Trimerization in molten ZnCl2 and subsequent 

impregnation of Pt, (b) Pt-bipyrimidine molecular complex catalyst. Reproduced with 

permission for Ref. 14 © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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Interestingly, the turnover number, i.e. catalytic activity, of heterogeneous Pt-CTF 

showed comparable value to homogeneous Periana catalyst [60]. This indicates that the 

Pt atoms were effectively utilized for the catalytic cycles through atomically dispersed 

form. Bavykina et al. synthesized Ir-modified CTF which has 16 wt% of Ir by 

polymerizing the mixture of 2,6-dicyanobenzene (DCB) and 4,4’-biphenyldicarbonitrile 

(DCBP), and subsequent impregnation of Ir complex [61]. The resulting Ir-modified 

CTF catalyzed hydrogen evolution reaction in thermal process through -elimination of 

formic acid at Ir site. Since the produced gas phase hydrogen limits the contact of 

reactant at active site, the diffusivities of both the reactant and the produced hydrogen 

are important for the catalytic activity. As the CTF synthesized from the mixture of 

DCB and DCBP had a preferred mesoporous structure, the diffusion of the reactant and 

the produced hydrogen were effectively proceeded, and then the catalytic reaction was 

facilitated. 

As described above, CTFs are attractive as a catalyst platform since CTFs can 

carry single metal atoms at high concentration with high stability. However, CTFs show 

extremely low electrical conductivity derived from their closed conjugated structure. 

For this reason, the use of CTFs as an electrocatalyst had never been reported so far. 

 

1.4. Outline of this thesis 

 Based on the background as mentioned above, in this study the author synthesis 

novel CTF-based electrocatalyst carrying atomically dispersed Pt, and put the focuses 

on to reveal the reaction selectivities on the single Pt atom and find out useful selective 

reaction systems. To achieve the purpose this thesis, following three reaction systems 

were adopted. 

1) Selective oxygen reduction reaction in the presence of methanol (chapter 2) 

 In chapter 2, the author firstly synthesized the novel CTF-based catalyst with 
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single Pt atoms. Then, the synthesized catalyst was applied to the mixed system consists 

of methanol containing acidic solution and dissolved oxygen, and revealed the reaction 

selectivity in this system. Also, catalytic activities were confirmed in non-mixed system 

for each reactant, and clarified the mechanism of the reaction selectivity. 

2) Selective hydrogen oxidation reaction in the presence of oxygen (chapter 3) 

 In chapter 3, the author applied the synthesized catalyst to the hydrogen 

oxidation reaction (HOR) which is an anode reaction of polymer electrolyte fuel cells 

(PEFCs). Furthermore, the synthesized catalyst was applied to a PEFC by making a 

membrane electrode assembly (MEA), and evaluated the performance in a practical 

device. In actual environment, oxygen is inevitably mixed to the hydrogen fuel from the 

air during the stop of the PEFC, and entrained oxygen causes the corrosion of cathode 

carbon support. Therefore, oxygen tolerance is important to improve the durability of 

PEFCs. To evaluate the tolerance for oxygen, catalytic activities for HOR and oxygen 

reduction reaction (ORR) were compared. 

3) Selective reduction reactions of nitrogen oxides (chapter 4) 

 In chapter 4, the reaction selectivity between nitrate and nitrite on the 

synthesized catalyst were compared. Nitrate reduction reaction on Pt metal surface is 

known to proceed with co-adsorption structure of nitrate and hydrogen, on the other 

hand, the reduction reaction of NO derived from nitrite is known to proceed involving 

with aqueous proton. It was confirmed that the under-potentially-deposited hydrogen 

did not form on single Pt atoms. These hydrogen-free Pt sites are attractive for selective 

reactions. Then, by using hydrogen-free Pt sites, the roles of hydrogen in nitrogen oxide 

reduction reactions were clarified. 

 

Throughout this thesis, in chapter 5, the author summarize the reaction 

tendency on single Pt atoms. Then, the concept of the mechanism of selective reaction 

on single metal atom catalyst was proposed. 
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Chapter 2. 

Platinum-modified covalent triazine frameworks 

hybridized with carbon nanoparticles as methanol 

-tolerant oxygen reduction electrocatalysts 

 

 

Covalent triazine frameworks (CTFs), which are crosslinked porous polymers 

with two-dimensional molecular structures, are promising materials for heterogeneous 

catalysts. However, the application of the frameworks as electrocatalysts has not been 

achieved to date because of their poor electrical conductivity. In this chapter, the auther 

attempted to synthesize a novel hybrid material composed of CTF and conductive 

carbon nanoparticles as a catalyst for electrochemical reactions. After that, he clarified 

the difference of the reactivities between single Pt atoms carried on synthesized hybrid 

material and commercial Pt/C catalyst using methanol/oxygen system. 

 

 

 

 

 

 

 

  

Figure | Schematic illustration of the selective reaction between hydrogen oxidation 

reaction and oxygen reduction reaction on single Pt atom modified CTF. 
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2.1. Introduction 

Covalent organic frameworks (COFs) have attracted a keen attention as novel 

catalyst platforms [1–6] because of their unique physicochemical properties, including 

their nano-porous structure, mechanical robustness and high design flexibility. For 

example, Ding et al. reported that a palladium-modified imine-linked COF catalyzed 

Suzuki–Miyaura coupling reactions with a high stability and an easy recyclability [7]. 

Chan-Thaw et al. deposited palladium nanoparticles on covalent triazine frameworks 

(CTFs) and demonstrated that this material was an effective catalyst for liquid-phase 

glycerol oxidation [8]. Another interesting example of a COF-based catalyst is platinum 

modified CTF (Pt-CTF) developed by Palkovits et al. [9,10], which has been known to 

function as a heterogeneous (solid) catalyst for partial oxidation of methane (CH4) to 

methyl bisulfate (CH3OSO3H) in H2SO4 using oleum as an oxidant The Pt-CTF was 

developed by being inspired by Pt-bipyrimidine complex, known as a Periana catalyst, 

which could catalyze the same partial oxidation reaction [11,12]. Thus, the work carried 

out by Palkovits et al. is important in that they developed the concept of molecular 

complex catalysts to the robust heterogeneous Pt-CTF materials. 

Pt-CTFs are attractive also as heterogeneous electrocatalysts, since molecular 

Pt complexes with a single metal center is known to exhibit reaction selectivity in some 

homogeneous redox reactions, such as alkane oxidation [13,14] and carbon dioxide 

reduction reactions [15]. Considering that molecular complex-based electrocatalysts are 

generally unstable, it is expected that Pt-CTFs can serve as electrocatalysts with both 

unique selectivity and high robustness. However, CTF-based materials have not 

previously been applied as electrocatalysts because of their poor electrical conductivity 

[16]. In the present work, the author demonstrates a solution to this problem by 

synthesizing a hybrid material consisting of Pt-CTF and conductive carbon 

nanoparticles (CPs). The hybridized material (Pt-CTF/CP) exhibits electrocatalytic 
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activity for oxygen reduction reaction (ORR) in acidic solution with a high methanol 

tolerance, which is a very attractive property for direct methanol fuel cells (DMFCs) as 

the methanol crossover effect is one of the issues to be addressed [17–21]. To the best of 

our knowledge, this is the first demonstration of the potential for CTF-based materials 

to serve as electrocatalysts. 

 

2.2. Experimental details 

2.2.1. Synthesis procedure of Pt-CTF/CP 

 CTF/CP was synthesized by polymerization of 2,6-dicyanopyridine in a molten 

salt of zinc chloride (ZnCl2). Specifically, 1.363 g ZnCl2 (Wako), 0.129 g 

2,6-dicyanopyridine (Sigma) and 0.129 g Ketjen Black EC600JD were mixed in a globe 

box. The mixture was placed in a Pyrex glass tube and the tube was sealed, evacuated, 

heated and kept at a terminal temperature of 400 C for 21 h. The resulting powder was 

washed with 0.1 M HCl, water, tetrahydrofolate and acetonitrile, and dried in vacuo. Pt 

atoms were modified by impregnation in 160 mM K2[PtCl4] (Wako) aqueous solution at 

60 C for 4 h before being washed with water and acetone. 

 

2.2.2. Electrochemical characterization 

Electrochemical activity for ORR was evaluated using a rotating disk electrode. 

Working electrodes were first prepared by dispersing 5mg of powder samples in 175 ml 

ethanol and 47.5 ml Nafion solution (5 wt% solution in a mixture of lower aliphatic 

alcohols and water, Aldrich). A 7-ml aliquot of ink was dropped on a glassy carbon 

electrode (0.196 cm
2

). The catalyst loading was controlled at 0.8 mg cm
2

. A Pt wire 

and Ag/AgCl (saturated KCl) were used as the counter and reference electrodes, 

respectively. Commercial 20 wt% Pt/C and Pt-Vulcan XC-72 were purchased from 

Tanaka Kikinzoku and Fuel Cell Earth, respectively. The electrical conductivity of the 
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catalysts was measured with a resistivity meter (Mitsubishi Chemical, Loresta GP). The 

working electrode was rotated with a rotation speed of 1,500 r.p.m. 

 

2.2.3. Physical characterization 

X-ray photoelectron spectra (Axis Ultra, Kratos Analytical Co.) were taken 

with monochromated Al K X-rays at h  1,486.6 eV. For detailed chemical analysis, 

backgrounds of core-level spectra were subtracted using the Shirley method. N-1s 

spectra were fitted with Voigt (70% Gaussian and 30% Lorentzian) functions. Hard 

X-ray absorption measurements (XAFS) were performed at the hard X-ray beam line 

BL01B01 at SPring-8, Japan and by using R-XAS Looper (Rigaku). Transmission-yield 

spectra were acquired using a double-crystal Si (111) monochromator. The 

morphological structures were characterized using TEM with an EDX detector 

(ARM-200F, JEOL) and SEM (SU-8000, Hitachi). The nitrogen adsorption–desorption 

isotherm at 77 K was obtained by a BET (NOVA-4200e, Quantachrome). 

 

2.3. Results 

2.3.1. Morphological characterization of Pt-CTF/CP 

Pt-CTF/CP was synthesized by modifying the standard synthesis protocol of 

Pt-CTF [9,10,22,23]. Briefly, CTFs were obtained by in situ polymerization of 

2,6-dicyanopyridinein-molten ZnCl2  containing CPs (the weight ratio of 

2,6-dicyanopyridine to CP was 1: 1), after which the CTF/CP was impregnated with a 

platinum chloride salt to obtain Pt-CTF/CP. Scanning electron microscopic (SEM) 

inspection reveals that the particles of Pt-CTF/CP (20–200 nm, Fig. 2.1a) are much 

smaller than that of Pt-CTF polymerized without CPs (1–5 mm, Fig. 2.1b), suggesting 

that CTF is well mixed with CPs during the in situ polymerization. Then, the author 

conducted high-resolution transmission electron microscopy (HR-TEM, Fig. 2.2a) and  
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Fig. 2.1 | Representative SEM images. (a) Pt-CTF/CP and (b) Pt-CTF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 | Transmission electron microscopic images of Pt-CTF/CP. (a) A representative 

HR-TEM image of Pt-CTF/CP and (b) the corresponding HAADF-STEM image. (c) Another 

HR-TEM image of Pt-CTF/CP and the corresponding EDX mappings for C, N and Pt atoms. 
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Fig. 2.3 | Transmission electron microscopic images of CP (without Pt-CTF). (a) HR-TEM 

image and (b) the corresponding HAADF-STEM image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 | Schematic illustration of Pt-CTF/CP. Blue: N, red: Pt and black: C, Chlorine atoms 

are not shown for clarity. 
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the corresponding high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM, Fig. 2.2b), the latter of which is a powerful tool for 

discerning individual heavy atoms [24–26]. It was confirmed that the bright spots 

corresponding to Pt atoms (the sizes < 0.5 nm) were uniformly dispersed and almost no 

Pt nanoparticles (the sizes > 1 nm) were observed (Fig. 2.2b). Such bright spots could 

not be observed on the CPs (without Pt-CTF) as shown in Fig. 2.3. Figure 2.2c exhibits 

another HR-TEM image and the corresponding elemental maps (carbon, nitrogen and 

platinum) obtained by energy dispersive X-ray (EDX) technique. Notably, the EDX 

maps revealed that Pt and N atoms are localized at the edges of CPs, strongly 

suggesting that CPs (or the aggregates) are covered with Pt-CTF as schematically 

shown in Fig. 2.4.  

Next, the nitrogen adsorption–desorption isotherms were obtained to analyze 

the pore structure of Pt-CTF/CP (Fig. 2.5). Type IV isotherm and H2 hysteresis loop 

were observed, suggesting that porous structures existed in the synthesized Pt-CTF/CP 

[27,28]. The pore-size distribution calculated based on nonlocal density functional 

theory was shown in the inset of Fig. 2.5. Although CP (Ketjen Black) is known to 

exhibit a peak at 3.6–3.7nm (refs 29,30), the synthesized Pt-CTF/CP exhibited peaks at 

1.4 and 5.3 nm. The total pore volume and the BET surface area were estimated to be 

0.79 cm
3
 g

1
 and 555 m

2
 g
1

, respectively. 

 

2.3.2. Electrochemical characterizations of Pt-CTF/CP 

Figure 2.6 shows current density (j) versus potential (U) curves for Pt-CTF/CP 

obtained in an oxygen-saturated 0.5 M H2SO4 solution. Although the ORR activity of 

Pt-CTF (without CP) was very low (blue curve), the ORR current increased 

significantly upon hybridization of Pt-CTF with CPs (red curve). This enhancement in 

ORR activity can be explained on the basis that both the electric conductivity and the 

electrochemically active surface area of the material were increased by the hybridization 



 

 30 

 

 

 

 

 

 

 

 

 

Fig. 2.5 | Nitrogen adsorption-desorption isotherms for Pt-CTF/CP. The inset shows the size 

distribution calculated based on nonlocal density functional theory (NL-DFT). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 | ORR electrocatalytic activities. j versus U curves for CTF (black), CTF/CP (green), 

Pt-CTF (blue) and Pt-CTF/CP (red) in 0.5 M H2SO4 saturated with dissolved oxygen, obtained 

at a scan rate of 10 mV s
1

. Rotation rate 1,500 r.p.m. (Inset) Magnified curves. 
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with CPs (Fig. 2.1a,b and Table 2.1). In contrast, when the CTFs (without Pt) were 

hybridized with CPs (green curve), the ORR onset potential was much negative than 

that of Pt-CTF/CP, indicating that the Pt atoms in Pt-CTF/CP are an active centre for 

ORR. To the best of our knowledge, this is the first demonstration of the application of a 

CTF-based material as an electrocatalyst. 

Next, to investigate the methanol tolerance of Pt-CTF/CP, the author 

intentionally added methanol to a 0.5 M H2SO4 solution in the presence of oxygen. 

Cyclic voltammograms obtained in the presence of methanol are shown in Fig. 2.7. In 

case of a commercial 20 wt% Pt/C, the oxidation peak of methanol can be clearly 

observed at around 600 mV versus RHE (Fig. 2.7b). After the addition of 1 M 

methanol, the onset potential of the cathodic current shifted 200 mV in the negative 

direction, reaching 580 mV versus RHE. In contrast, surprisingly, the overlap of the 

methanol oxidation current with that of the ORR was almost negligible for Pt-CTF/CP  

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 | Methanol oxidation activity of Pt-CTF/CP and Pt/C. j versus U curves for (a) 

Pt-CTF/CP and (b) 20 wt% Pt/C in 0.5M H2SO4 in the absence of oxygen. Methanol 

concentration: (black) 0M, (blue) 0.1M and (red) 1.0 M. 
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Fig. 2.8 | Methanol oxidation activity of Pt-CTF/CP and Pt/C. j versus U curves for (a) 

Pt-CTF/CP and (b) 20 wt% Pt/C in 0.5 M H2SO4 in the absence of oxygen. Methanol 

concentration: (black) 0 M, (blue) 0.1 M and (red) 1.0 M. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 | ORR electrocatalytic activities in 0.5 M HClO4. j versus U curves for (a) Pt-CTF/CP 

and (b) 20 wt% Pt-Vulcan XC-72 with saturated dissolved oxgen. Methanol concentration: (black) 0 M, 

0.1 M (black) 
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even in the presence of 1 M methanol. To directly compare the methanol oxidation 

activity of Pt-CTF/CP and 20 wt% Pt/C, the author obtained cyclic voltammograms in 

H2SO4 solution containing methanol in the absence of dissolved oxygen (Fig. 2.8). The 

peak currents for methanol oxidation with Pt-CTF/CP (Fig. 2.8a) were 1/40 compared 

with those with Pt/C (Fig. 2.8b). The author confirmed that methanol oxidation is  

inactive even in 0.5 M HClO4 as shown in Fig. 2.9, which excludes the possibility that 

the methanol tolerance originated from the suppression of methanol oxidation by 

strongly adsorbed sulfate/bisulfate [31,32]. Thus, the above results clearly showed that 

Pt-CTF/CP exhibits little activity with regard to methanol oxidation. 

 

2.3.3. X-ray characterizations of Pt-CTF/CP 

Characterizations of Pt-CTF/CP were conducted using various X-ray 

techniques to obtain information on the molecular mechanism of the methanol tolerance. 

The surface concentration of each element was determined by an X-ray photoelectron 

spectroscopy (XPS), and the results are summarized in Table 2.1. Peaks assignable to Pt 

and N were confirmed, and the Pt/N elemental ratio did not show a clear dependence on  

 

 

 

 

 

 

 

 

 

 

 



 

 34 

the amount of CP (the right column of Table 2.1), implying that the structures of 

Pt-CTFs are essentially identical even by hybridizing with CPs. In addition, the surface 

concentration of C, which was calculated with XPS, became higher with the increasing 

ratio of CP. Taking into account that the CP aggregates are uniformly covered by 

Pt-CTFs (Fig. 2.1), these results indicated that the thickness of Pt-CTFs is less than the 

escape depth of photoelectrons (ca. 3 nm) as schematically shown in Fig. 2.4, which 

enabled the Pt-CTF to possess electronic conduction with the CPs. 

The details of the electronic structures of Pt-CTFs were investigated by taking 

XPS and X-ray absorption near-edge structures (XANES; Figs 2.10–2.13). The Pt-4f7/2 

peaks were located at 72.5 eV for Pt-CTF/CP and 72.2 eV for Pt-CTF (Fig.2.10). These 

binding energies were over 1 eV higher than those for metal Pt (70.9 eV), revealing that 

the valence state of Pt was Pt(II) [33,34]. In addition, XANES of Pt L3 edge shown in 

Fig. 2.11 exhibited that the white-line intensities at 11,562 eV for Pt-CTF (1.45) and  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 | Pt-4f XPS spectra. (a) Pt-CTF/CP, (b) Pt-CTF and (c) Pt metal. 
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Fig. 2.11 | Pt L3 XANES spectra for Pt-CTF, Pt-CTF/CP and Pt metal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.12 | N-1s XPS spectra. (a) CTF, (b) Pt-CTF, (c) CTF/CP and (d) Pt-CTF/CP. Black dots, 

measured data; lines, deconvoluted curves (blue: C2NH, red: C3N, green: cyano group). Note 

that the peak positions were not identical upon adding CP as CTF is not conductive and easily to 

be charged by X-ray irradiation. 
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Table 2.2 | Binding energies and relative ratios of the four nitrogen compounds derived 

from decomposed N-1s XPS spectra. 
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Pt-CTF/CP (1.46) are higher than those for metal Pt (1.24), indicating that Pt atoms 

existed as oxidized forms in both Pt-CTF and Pt-CTF/CP [35]. Thus, the Pt-4f XPS and 

the XANES results also show that there was no formation of Pt aggregates (metal Pt) on 

Pt-CTFs. Next, the author focused on the N-1s XPS spectrum (Fig. 2.12 and Table 2.2). 

The N-1s peak at 399.2 eV observed for the 2,6-dicyanopyridine (that is, the catalyst 

monomer, Fig. 2.13) was not observed for the Pt-CTF/CP, indicating that the cyclical 

trimerization of cyano reaction groups efficiently proceeded. The N-1s peak of 

Pt-CTF/CP could be deconvoluted into C2NH (398–399 eV) and C3N (400–401 eV) [4]. 

The peak assigned to C2NH was shifted to the higher-energy side upon Pt loading on 

both CTF and CTF/CP, indicating that the electron density of the N atoms became lower 

in the presence of Pt atoms. The decrease in the electron density of the N atoms can be 

explained by considering the formation of Pt-N coordination bonds (this point will be 

argued later). All the features described above were confirmed even for Pt-CTF (that is, 

without CPs), indicating that the hybridization with CPs did not influence on the 

electronic properties of N atoms in Pt-CTFs. 

Next, the author conducted extended X-ray absorption fine structure (EXAFS) 

analyses of Pt L3 edge to obtain information on the molecular structure of Pt-CTF/CP. 

Fourier transformations of k
3
-weighted EXAFS oscillations for Pt-CTF/CPs, Pt-CTFs, 

commercial Pt(bpy)Cl2 (bpy: 2,20-bipyridine), PtO2, K2[PtCl4] and Pt metal are shown 

in Fig. 2.14. The peak corresponding to a Pt–Pt bond at 2.6 Å was not observed at all for 

Pt-CTF/CPs. Instead, two peaks at R  1.5 and 1.9 Å assignable to Pt–N and Pt–Cl 

bonds, respectively, were clearly observed, indicating that Pt exists in the form of a 

single atom as illustrated in Fig. 2.4. The ratio of the Pt–N peak to the Pt–Cl peak for 

Pt-CTFs corresponded to that for Pt(bpy)Cl2 (model PtN2Cl2 complex), implying that Pt 

atoms mainly existed as PtN2Cl2. It should be noted here that there was no clear 

difference in the EXAFS spectra between Pt-CTF/CP and Pt-CTF, indicating that the 

molecular structure of Pt-CTF is maintained upon the hybridization with CPs. 
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Fig. 2.13 | N-1s XPS spectra for 2,6-dicyanopyridine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 | EXAFS analyses. k
3
-weighted Fourier transform spectra of EXAFS of Pt L3 edge for 

Pt-CTF/CP and Pt-CTF. The spectra of Pt(bpy)Cl2, PtO2, K2[PtCl4] and Pt metal are also shown 

as reference. 
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Fig. 2.15 | Estimated Pt coordination structure at a pore site of CTF optimized by density 

functional theory (DFT) calculations. The calculation was carried out by Open MX. 
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2.4. Discussion 

Let us consider here about the molecular mechanism of the methanol-tolerant 

ORR electrocatalytic activity of Pt-CTF/CP. First, the author consider about the ORR on 

a single Pt site. An oxygen molecule is known to adsorb on a single Pt atom through 

either the Griffiths model (side-on adsorption) or the Pauling model (end-on adsorption) 

[36]. After the adsorption,  donation from the oxygen 2 orbitals to the unoccupied Pt 

5d orbitals, and the  back donation from occupied Pt 5d orbitals to the oxygen 2* 

orbitals could simultaneously occur, resulting in the O–O bond activation [36,37]. In 

fact, Nakamura et al. [38] revealed using 
18

O isotopic infrared study that a single Pt 

atom and an oxygen molecule exchanged electrons, forming Pt–O2 adduct through the 

side-on adsorption. Li et al. [39] also demonstrated by using first principles calculations 

that the O–O bond was activated on single Pt site via the  back donation through the 

end-on adsorption, resulting in the weakening of the O–O bond. These reported lines of 

work suggested that electrocatalytic ORR could proceed even on a single Pt atom. 

On the contrary, a number of researchers have suggested that at least two Pt 

atoms are needed to oxidize methanol [40–46]. It is well known that methanol can be 

oxidized via a dual-path mechanism on Pt, that is, the carbon monoxide (CO) pathway 

and the non-CO pathway [44,45,47]. Cuesta [45,48] revealed by using 

cyanide-modified Pt electrode that dehydrogenation reaction of methanol to CO, a 

critical step of the CO pathway, required at least three contiguous Pt sites. As for the 

non-CO pathway, Osawa and colleagues [44] proposed a molecular mechanism based 

on the results obtained from in situ infrared (IR) absorption spectroscopy. They 

suggested that adsorbed oxygenated species (that is, Oad or OHad) on the Pt site next to 

the methanol absorption site are needed for first dehydrogenation of the O–H bond in 

methanol. This molecular mechanism was further supported by Kuzume et al. [49] 

again by in situ IR absorption spectroscopy. The previous lines of work have thus 

revealed that at least two adjacent Pt sites are required for methanol oxidation regardless 
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of whether the reaction proceeds via the CO or the non-CO pathways. Actually, to the 

best of our knowledge, there have been no reports of methanol oxidation on a single 

Pt-atom site. Considering these literatures, the methanol tolerance of Pt-CTF is 

reasonably explained because the EXAFS results demonstrated that the Pt atoms in 

Pt-CTF were isolated. 
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2.5. Conclusions 

In this chapter, the author successfully synthesized Pt-CTF hybridized with CP, 

preserving its electronic and molecular structure, which exhibited ORR activity in acidic 

solutions with a high methanol tolerance. The methanol tolerance of the Pt-CTF/CP 

indicates that the methanol-crossover effect can be ignored. This property allows a 

considerable increase in the concentration of methanol in DMFC; consequently, the 

energy density of DMFC is expected to increase because of the use of Pt-CTF/CP. 

Another interesting aspect of this work is that it is the first demonstration of 

electrocatalytic function in CTF-based materials. This was achieved by hybridizing 

non-conductive CTFs with conductive CPs. The author anticipates that this 

methodology could be applied generally to other CTFs with unique catalytic properties. 
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Chapter 3. 

Oxygen-tolerant single Pt-atom catalysts supported on 

a covalent triazine framework for the hydrogen 

oxidation reaction 

 

 

Reducing the use of platinum on anodes of polymer electrolyte fuel cells is 

critical for the widespread dissemination of these energy conversion systems. Although 

platinum usage can be minimized by the dispersion of isolated platinum atoms, no 

single platinum-atom catalysts that promote hydrogen oxidation at a rate required for 

practical fuel cells have been reported to date. In this chapter, the auther demonstrates 

that a CTF loaded with single-atom Pt exhibited higher HOR and lower cathodic ORR 

electrocatalytic activity compared to commercially available Pt/C. These 

electrocatalytic properties contribute to protect PEFC cathodes from degradation in 

practical environments, particularly for their use in vehicles, which have frequent 

start-up/shut-down cycles. 

 

 

 

 

 

 

 

 

Figure | Schematic illustration of the selective reaction between hydrogen oxidation 

reaction and oxygen reduction reaction on single Pt atom modified CTF. 
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3.1. Introduction 

Polymer electrolyte fuel cells (PEFC) that utilize hydrogen and oxygen as 

reactants have attracted considerable attention as environmentally friendly energy 

conversion systems, as they can be operated at relatively low temperature (< 100 °C) 

and generate only water as the reaction product [1-4]. Currently, platinum (Pt) or its 

alloys are typically used as the anode catalyst in PEFC systems [5, 6]. However, 

because Pt is rare and expensive, reducing the loading amount of Pt on the anode is 

desirable for cost reduction [7-12]. Another problem regarding Pt anode catalysts is that 

Pt is active not only for the hydrogen oxidation reaction (HOR), but also for the oxygen 

reduction reaction (ORR) [5,6,13,14]. During the start-up of PEFCs, air inevitably flows 

into the anode chamber and cathodic ORR proceeds on the Pt anode catalysts, leading to 

the degradation of the cathode. Thus, the ORR on Pt anode catalysts is recognized as a 

serious limitation of these systems, particularly for their use in vehicles, which have 

frequent start-up/shut-down cycles [15-18]. Due to the limitations associated with Pt, 

improvement of the anode catalyst is essential for the popularization of PEFC systems. 

Single-atom Pt catalyst is a promising candidate to satisfy the requirements for 

PEFC anode catalysts. Because of the single-atom nature of the material, a lower 

loading amount of Pt is likely required, and in addition, unique reaction selectivity may 

be possible, as many types of reactions can only proceed on Pt ensemble sites [19-22]. 

Recently, the author reported that covalent triazine frameworks (CTFs) can serve as a 

platform for single-atom electrocatalyst [23]. Although CTFs are non-conductive, the 

author successfully developed a CTF-based electrocatalyst by hybridizing CTFs with 

conductive carbon particles (CTF/CP) [23]. As CTFs possess abundant nitrogen atoms 

with an electron lone pair, various metals can be loaded onto CTFs via coordination 

bonds with nitrogen. Using this approach, the author demonstrated that atomic-metal 

loaded CTFs exhibit unique reaction activity and selectivity [23-25].  
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In this chapter, the author demonstrates that a hybridized material composed of 

CTF and carbon nanoparticles loaded with single-atom Pt (hereafter termed Pt-CTF/CP) 

exhibit higher HOR and lower cathodic ORR electrocatalytic activity compared to 

commercially available Pt/C. These electrocatalytic properties suggest that Pt-CTF/CP 

may be suitable as a PEFC anode catalyst for practical applications. 

 

3.2. Experimental details 

3.2.1. Catalyst synthesis 

To prepare CTF/CP, 1.363 g ZnCl2 (Wako), 0.0161 g 2,6-pyridinedicarbonitrile 

(Sigma Aldrich), and 0.129 g ketjen black (EC600JD, Lion) were mixed in a glove box. 

The mixture was placed in a Pyrex glass ampoule, which was then vacuum sealed and 

incubated at 400 C for 21 h. The resulting powder was washed sequentially with 0.1 M 

HCl, water, tetrahydrofolate, and acetonitrile, and dried in vacuo. Platinum 

impregnation was performed by adding 100 mg of the resulting powder into 500 mL of 

an aqueous solution of 1 mM K2[PtCl4] (Wako), and the resulting mixture was 

ultrasonically stirred (USS-1, Nihon Seiki) at 30 C for 1 h before being washed with 

water and acetone. 

 

3.2.2. Electrochemical characterizations 

Electrocatalytic activity was evaluated using a rotating disk electrode (RDE) 

method. A catalyst slurry was prepared by ultrasonically dispersing 5.0 mg catalyst in 

1.5 mL ethanol (>99.5%, Wako) and 100 L Nafion solution (5 wt% solution in a 

mixture of lower aliphatic alcohols and water; Sigma Aldrich). Two microliters of the 

resulting catalyst slurry was dropped onto a glassy carbon electrode (0.1256 cm
2
), 

which was then used as a working electrode. The total catalyst loading was controlled to 

be 0.050 mg cm
2

. A titanium coil and Ag/AgCl were used as counter and reference 
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electrodes, respectively. All potentials were converted to the reversible hydrogen 

electrode (RHE) reference scale. As reference catalysts for comparison, 20 wt% Pt/C 

(HiSPEC3000, Johnson Matthey) and 3.0 wt% Pt/C (Sigma Aldrich) were used. All 

measurements were conducted at 25 C in an aqueous solution of 0.1 M HClO4. HOR 

activity was measured by linear sweep voltammetry (LSV) from 0 to 0.3 V at a scan rate 

of 1 mV s
1

 and a rotational rate of 2,500 rpm. The 0.1 M HClO4 solution was saturated 

with 1 atm hydrogen for 30 min prior to the LSV measurements. For cyclic 

voltammetry (CV), the saturation gas was switched to 1 atm argon for 30 min before 

performing the measurements, which were conducted between 0.02 and 1 V at a scan 

rate of 10 mV s
1

 without rotation. The temporal changes in current density for HOR 

were measured at a constant potential of 0.1 V on carbon paper (TGP-H-090, Toray). 

The ORR activity was also measured by LSV between 0.2 and 1.15 V at a scan rate of 

10 mV s
1

 and a rotational rate of 1,600 rpm. The solution was saturated with 1 atm 

oxygen for 30 min prior to performing the LSV measurements. The ring potential was 

set to 1.2 V and the ring current was corrected by the collection efficiency of 0.424. 

 

3.2.3. Physical characterizations 

X-ray absorption fine structure (XAFS) measurements were conducted by a 

transmission method using the hard X-ray beam line BL01B01 of SPring-8, Japan and 

transmitted X-rays were detected using a double-crystal Si (111) monochromator. X-ray 

photoelectron spectra were measured using a X (Axis Ultra, Kratos Analytical Co.) with 

monochromatic Al Kα X-rays of hν = 1486.6 eV. Nitrogen adsorption-desorption 

isotherms at 77 K were determined by the BET method using an Autosorb-3 analyzer 

(Quantachrome). 

 

3.2.4. Membrane electrode assembly (MEA) preparation 

Slurries of each anode catalyst were prepared by mixing 2.8 wt% Pt-CTF/CP or 
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20 wt% Pt/C with Aciplex (20 wt% dispersion, SS700C, Asahi Kasei) at a weight ratio 

of polymer to carbon support of 1.0. A cathode catalyst slurry was also prepared in the 

same manner using 47 wt% Pt/C (TEC10E50E, Tanaka Kikinzoku Kogyo) in place of 

the anode catalyst. The slurries were sprayed over microporous gas diffusion layers 

(GDLs; GDL24, SGL Carbon). Pt was loaded on the anodes at 0.020 ± 0.001 and 0.10 ± 

0.1 mg cm
2

 for 2.8 wt% Pt-CTF/CP and 20 wt% Pt/C, respectively, and Pt on the 

cathode was set at 0.50 ± 0.1 mg cm
2

. A single cell (36-cm
2
 active area) was assembled 

by sandwiching the electrolyte membrane (Nafion 211, DuPont) between the anode and 

cathode GDLs. The carbon separator plates have multiple-path serpentine flow-fields. 

 

3.2.5. Fuel cell testing 

A fuel cell station (CHINO, Japan) was used to test the constructed MEAs. 

Pure H2 and O2 (>99.99% purity) were used for the anode and cathode, respectively, at 

fixed flow rates of 500 mL and 300 mL min
1

, respectively. The cell temperature was 

fixed at 80 C and humidity was controlled at RH 100%. The MEAs were initially 

stabilized in hydrogen-oxygen at 0.1 A cm
2

 at 80 °C for 1 h. Output voltages were 

collected after 20 s for each current density and the cells were maintained at 0.1 A cm
2

 

for 5-min intervals for the measurement of each cycle, and 10 cycles were measured in 

total. Cell resistances were recorded as a function of the current density using an AC 

perturbation of 1 kHz. 

 

3.3. Results 

3.3.1. Physical characterization of Pt-CTF/CP 

The author first conducted physical characterizations of Pt-CTF/CP, which was 

loaded with 2.8 wt% Pt (Fig. 3.1). Commercially available Pt cluster-loaded carbon 

particles (Pt/C) loaded with either 3.0 or 20 wt% Pt were used as comparative 
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references. The surface compositions of Pt-CTF/CP, 20 wt% Pt/C, and 3.0 wt% Pt/C, as 

estimated by X-ray photoelectron spectroscopy (XPS), BET surface area, and pore size 

are summarized in Table 3.1. The physical characteristics of Pt-CTF/CP were similar to 

those mentioned in the Chapter 2, which examined Pt-CTF/CP loaded with 12 wt% Pt. 

Figs. 3.4 a and b show high-resolution transmission electron microscopy (HR-TEM) 

and high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) images of Pt-CTF/CP. As determined from the bright spots in the 

images, the sizes of the loaded Pt were estimated to be below 0.5 nm. In the 

corresponding elemental maps, which were obtained by energy dispersive X-ray (EDX) 

analysis (Fig. 3.4 c), it was confirmed that carbon, nitrogen, and Pt were well dispersed 

on CTF. Extended X-ray absorption fine structure (EXAFS) analysis of the Pt L3-edge 

was also conducted. As shown in Fig. 3.5, peaks assignable to Pt-Cl and Pt-N were 

detected in the Fourier transformation of k
3
-weighted EXAFS oscillations for 

Pt-CTF/CP at 2.0 and 1.5 Å, respectively. However, no peak assignable to Pt-Pt bonds 

was observed. Taken together, these results indicated that the Pt atoms existed in an 

atomically dispersed form in Pt-CTF/CP. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 | Schematic illustration of Pt loaded CTF. 
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Fig. 3.2 | Nitrogen adsorption-desorption isotherms. (a) 2.8 wt% Pt-CTF/CP, (b) 20 wt% Pt/C 

and (c) 3.0 wt% Pt/C. The insets show the pore size distribution calculated based on the 

nonlocal density functional theory (NL-DFT). 
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Fig. 3.3 | Pt-4f XPS spectra. (a) 2.8 wt% Pt-CTF/CP, (b) 20 wt% Pt/C, (c) 3.0 wt% Pt/C and 

(d) Pt metal. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 | Representative transmission electron microscopic images of Pt-CTF/CP. (a) HR 

-TEM image of 2.8 wt% Pt-CTF/CP, (b) corresponding HAADF-STEM image, and (c) 

corresponding elemental maps for C, N and Pt atoms.  
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Fig. 3.5 | EXAFS analysis. k
3
-weighted Fourier transform spectra of Pt L3-edge EXAFS for 

as-prepared 2.8 wt% Pt-CTF/CP, 20 wt% Pt/C, and standard samples of Pt. 
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3.3.2. Electrocatalytic HOR activity 

Pt-CTF/CP in an Ar-purged HClO4 solution was examined by cyclic 

voltammogram (CV) (Fig. 3.6a, red curve). The CVs for 20 wt% and 3.0 wt% Pt/C 

catalysts were also determined as a reference (Fig 3.6a, blue and green curves, 

respectively). For the analysis, the amount of catalyst loaded onto the electrode 

substrates was adjusted to approximately 0.050 mg cm
2

 for all three samples. In the 

CVs, reversible peaks corresponding to formation and desorption of 

under-potentially-deposited hydrogen (upd-H) were observed for the Pt/C catalysts in 

the potential region of 0.02 ~ 0.30 V [26], but not for Pt-CTF/CP. As the formation of 

upd-H proceeds at Pt ensemble sites, such as step, three-fold hollow, and defect sites [27, 

28], these results support the above findings that Pt exists in an atomically dispersed 

form on Pt-CTF/CP. In addition, no significant differences in the current density were 

observed between Pt-CTF/CP and the two Pt/C catalysts in the potential region of 0.30 

~ 0.45 V, where only charging and discharging of the electrical double layer occurs [29], 

indicating that the electrochemically active surface area did not differ markedly among 

the three samples. 

The electrocatalytic activity of Pt-CTF/CP for HOR was next evaluated by 

conducting linear sweep voltammetry (LSV) in an HClO4 solution saturated with 1 atm 

hydrogen (Fig. 3.6b, red curve). The current associated with HOR started to flow at 0 V 

(i.e., without an over-potential) and increased with a positive shift in the potential until 

reaching a peak at approximately 0.05 V. The time course of current density for 

Pt-CTF/CP on carbon paper at a constant potential of 0.1 V is shown in Fig. 3.6c (red 

curve). Carbon paper was used as the substrate to avoid the flaking of the catalyst layer 

that frequently occurred on the glassy carbon substrate.  The electrochemical 

performance of Pt-CTF/CP was nearly identical as that of 20 wt% Pt/C (Fig. 3.6b, blue 

curve). However, 3.0 wt% Pt/C, which contained nearly the same loading amount of Pt 

as Pt-CTF/CP, exhibited a much lower HOR current than Pt-CTF/CP (Fig. 3.6b,  
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Fig. 3.6 | Electrochemical characteristics of Pt-CTF/CP. (a) Cyclic voltammograms recorded 

on RDE at a scan rate of 10 mV s－
1
. The electrolyte (0.1 M HClO4) was saturated with 1 atm 

argon. (b) Polarization curves for HOR recorded on RDE at a scan rate of 1 mV s
1

 and 

rotational rate of 2,500 rpm. The electrolyte (0.1 M HClO4) was saturated with 1 atm hydrogen. 

(c) Time course of the current density of the HOR current with 1 atm hydrogen recorded on 

carbon paper. Catalysts: 2.8 wt% Pt-CTF/CP (red), 20 wt% Pt/C (blue), and 3.0 wt% Pt/C 

(green). All of the measurements were conducted at 25 C. 
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green curve). These results clearly indicated that the efficiency of Pt atom utilization is 

much higher for Pt-CTF/CP. It should be noted here that PEFCs are typically 

constructed with 20  50 wt% Pt/C as the anode catalyst [13,30-33]. Thus, the finding 

that 2.8 wt% Pt-CTF/CP exhibited similar performance to 20 wt% Pt/C is of high 

practical importance. 

The HOR and hydrogen evolution reaction (HER) proceed on Pt via an 

identical reaction intermediate, and hence, are mutually reversible [34,35]. Therefore, 

Pt-CTF/CP is expected to exhibit superior electrocatalytic activity even for HER. To 

examine this speculation, LSVs for Pt-CTF/CP (red curve), 20 wt% Pt/C (blue curve), 

and 3.0 wt% Pt/C (green curve) obtained in the potential range of 0 to 0.3 V, where 

HER proceeds, were measured (Fig. 3.7). Similar to the HOR activity, the 

electrocatalytic HER activity of Pt-CTF/CP was found to be approximately equal to that 

of 20 wt% Pt/C, as expected. 

 

3.3.3. Electrocatalytic HOR activity of 0.29 wt% Pt-CTF/CP 

Pt-CTF/CP (2.8 wt% Pt) exhibited superior HOR activity to 3.0 wt% Pt/C and 

was shown to efficiently utilize the dispersed Pt atoms. Furthermore, the peaks for 

upd-H formation and desorption were not detected in the CV even after the LSV (Fig. 

3.6b) and chronoamperometric (Fig. 3.6c) analyses. Although these results suggest that 

single Pt atoms possess comparable HOR activity to Pt clusters, Pt atoms typically form 

clusters when loaded onto substrates [19-22]. To obtain more definitive evidence that 

single Pt atoms possess HOR activity, we prepared 0.29 wt% Pt-CTF/CP, in which the 

Pt loading amount was reduced by approximately 90%, to avoid the formation of Pt 

aggregates [19,22,36]. As shown in the LSV for 0.29 wt% Pt-CTF/CP (Fig. 3.8a), HOR 

current was detected from 0 V, similar to the 2.8 wt% Pt-CTF/CP and Pt/C catalysts. 

Importantly, no Pt aggregates were observed in the HR-TEM and HAADF-STEM 

images of 0.29 wt% Pt-CTF/CP (Figs. 3.9a and b, respectively), even after the LSV 
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experiments. These results clearly indicated that HOR proceeds on single Pt atoms in 

Pt-CTF/CP and requires almost no activation energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 | Polarization curves for the hydrogen evolution reaction (HER). All of the 

measurements were conducted on RDE with a sweep rate of 10 mV s
1

 and rotational rate of 

2,500 rpm in 0.1 M HClO4 at 25 C. The electrolyte was saturated with 1 atm argon. Catalysts: 

2.8 wt% Pt-CTF/CP (red), 20 wt% Pt/C (blue), and 3.0 wt% Pt/C (green). 
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Fig. 3.8 | Electrocatalytic activity of 0.29 wt% Pt-CTF/CP and CTF without Pt. (a) 

Polarization curves for HOR at a scan rate of 5 mV s
1

 and rotational rate of 2,500 rpm. The 

electrolyte (0.1 M HClO4) was saturated with 1 atm hydrogen at 25 C. (b) Polarization curves 

for ORR at a scan rate of 5 mV s
1

 and rotational rate of 1,600 rpm. The electrolyte (0.1 M 

HClO4) was saturated with 1 atm oxygen at 25 C. 
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Fig. 3.9 | Electron microscopic images of 0.29 wt% Pt-CTF. (b) HR-TEM image and (c) the 

corresponding HAADF-STEM image taken after the LSV measurement shown in Fig. 3.8a. 
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3.3.4. Electrocatalytic ORR activity 

The author next investigated the electrocatalytic ORR activity of 2.8 wt% 

Pt-CTF/CP using a rotating ring-disc electrode (RRDE) technique. Fig. 3.10b shows the 

LSVs obtained for the disc electrodes in oxygen-saturated HClO4 solution. For 20 wt% 

Pt/C, ORR activity was first detectable at 1.06 V and was diffusion-limited at 

approximately 0.80 V (blue curve). In comparison to 20 wt% Pt/C, the electrocatalytic 

ORR activity of Pt-CTF/CP was markedly lower (Fig. 3.10b, red curve). Importantly, in 

the potential region more positive than +0.6 V (E > +0.6 V), which is critical for the 

start-up/shut-down operation of PEFCs [16], the ORR current for Pt-CTF/CP was less 

than 23% of that generated by 20 wt% Pt/C. 

Two different pathways for electrochemical ORR have been extensively 

characterized: a direct 4e

 pathway and an indirect 2e


 pathway, which generates 

hydrogen peroxide (H2O2) as the intermediate [37-39]. The relative ratio of these two 

ORR pathways can be estimated using the RRDE technique by poising the ring 

electrode at the potential (1.2 V) at which H2O2 is electrochemically oxidized. Yang et 

al. reported that single-atom Pt (0.35 wt%) loaded on a titanium nitride substrate 

predominantly generates H2O2 via the 2e

 ORR pathway [22]. However, comparison of 

the anodic ring currents corresponding to Pt-CTF/CP (red curve) and Pt/C (blue curve; 

Fig. 3.10a) revealed that the concentration of H2O2 generated by Pt-CTF/CP and 20 

wt% Pt/C was similar at E > +0.6 V. Although the ORR reaction mechanism for 

Pt-CTFCP cannot be conclusively determined from the RRDE data, the finding that the 

ring current did not significantly differ between the two catalysts at E > +0.6 V is 

critical, as H2O2 can degrade PEFC components, such as membranes and catalyst 

binders [40,41]. 
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Fig. 3.10 | Electrocatalytic ORR activities. (a) H2O2 oxidation currents recorded at 1.2 V vs. 

RHE on the ring electrode during the ORR on disc electrodes with the catalysts 20 wt% Pt/C 

(blue) and 2.8 wt% Pt-CTF/CP (red). The currents were corrected by the collection efficiency of 

0.424. (b) Corresponding polarization curves for the ORR at a sweep rate of 10 mV s
1

 and a 

rotational rate of 1,600 rpm in 0.1 M HClO4 at 25 C. 
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3.3.5. Evaluation of Pt-CTF/CP as a PEFC anode catalyst 

Finally, we evaluated the potential of Pt-CTF/CP to function as a PEFC anode catalyst. 

A membrane electrode assembly (MEA) was fabricated with 2.8 wt% Pt-CTF/CP (0.020 

± 0.001 mg-Pt cm
2

) and 47 wt% Pt/C (0.50 ± 0.01 mg-Pt cm
2

) as the anode and cathode 

catalysts, respectively, and the performance of a PEFC (PEFCSam) equipped with the 

MEA was then evaluated (see the experimental details in the  section). A PEFC 

(PEFCRef) equipped with 20 wt% Pt/C (0.10 ± 0.01 mg-Pt cm
2

) as the anode catalyst 

was also fabricated as a reference sample. Note that anodes and cathodes of MEAs are 

typically loaded with 0.1  0.4 mg-Pt cm
2

 and 0.3  0.5 mg-Pt cm
2

, respectively 

[13,30-33]. Figs. 3.11a and b show the current density (j) vs. voltage (V) and j vs. power 

density relationships for PEFCSam and PEFCRef. The open circuit voltage of PEFCSam 

(0.95 V) was 0.06 V smaller than that of PEFCRef. In addition, the power density of 

PEFCSam was also smaller than that of PEFCRef when j < 0.8 A cm
2

, but was larger 

when j > 0.8 A cm
2

. Based on these values, the maximum power density of PEFCSam 

was determined to be 487 mW cm
2

 at 1.2 A cm
2

, a value that was nearly identical to 

that of PEFCRef (462 mW cm
2

 at 1.0 A cm
2

), which contained approximately 5 times 

more Pt anode catalyst. Taken together, these results demonstrate that Pt-CTF/CP has 

the potential to function as a cost-effective and efficient anode catalyst, as the amount of 

Pt required for catalytic activity is drastically reduced compared to conventional Pt/C 

catalysts. 
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Fig. 3.11 | Fuel cell performance of MEAs. (a) j-V performances, and (b) j-power density 

curves for MEAs prepared using 2.8 wt% Pt-CTF/CP (red curve) and 20 wt% Pt/C (blue curve) 

as the anode catalyst. The platinum loadings of both cathodes were 0.50 ± 0.01 mg-Pt cm
2

. The 

platinum loadings of the anodes prepared with 2.8 wt% Pt-CTF/CP and 20 wt% Pt/C were 0.020 

± 0.001 and 0.10 ± 0.01 mg-Pt cm
2

, respectively. The data were collected at 80 C and 100% 

RH using H2/O2 as the reactants. 
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Fig. 3.12 | j-V curves of fuel cell. (a) j-V performances of cycle 1 (circles) and cycle 10 (open 

squares) of the MEA prepared with a 2.8 wt% Pt-CTF/CP anode, and (b) j-IR free V curves for 

the MEAs constructed using 2.8 wt% Pt-CTF/CP (red) and 20 wt% Pt/C (blue) anodes. 
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3.4. Discussion 

The present analyses demonstrate that the ORR activity of Pt-CTF/CP is 

markedly lower than that of Pt/C and requires greater than 200 mV of over-potential to 

proceed (Fig. 3.10b). For the ORR pathway to occur by the side-on or end-on 

adsorption of oxygen molecules on Pt atoms, higher activation energy is needed 

compared to the bridge-type adsorption of oxygen [42-44]. As the ORR can only 

proceed on single-Pt atoms via the former mechanism, it is reasonable that Pt-CTF/CP 

exhibited lower ORR activity than Pt/C. Thus, the single atom nature of Pt-CTF/CP was 

clearly responsible for the reduction of the electrocatalytic ORR activity. 

In addition to having lower ORR activity, Pt-CTF/CP exhibited superior 

electrocatalytic HOR activity to Pt/C (Fig. 3.6b). The number of electrochemically 

active Pt atoms on Pt/C can be calculated from the electrical charge for the adsorption 

of upd-H in the CV, and was estimated to be 3.7  10
15

 cm
2

. On the other hand, the 

total number of Pt atoms on 2.8 wt% Pt-CTF/CP can be evaluated to be 4.3  10
15

 cm
2

 

(see Note 3.1 for details of the estimation). Because a proportion of the Pt atoms on 

Pt-CTF/CP were likely not exposed to the electrolyte and were therefore 

electrochemically inactive, the HOR activity per Pt atom on Pt-CTF/CP was concluded 

to be equal to or more than that on Pt/C. The HOR can proceed by two different 

mechanisms on Pt: the Heyrovsky-Volmer mechanism via the end-on adsorption of 

hydrogen molecules and the Tafel-Volmer mechanism via bridge-type adsorption [34]. 

The dissociative adsorption of hydrogen molecules via bridge-type adsorption, which is 

the rate-determining step for HOR, is reportedly able to occur on single Pt atoms 

[45-47]. As comparable HOR activities were observed here between Pt-CTF/CP and 

commercial 20 wt% Pt/C, we speculate that both mechanisms are able to occur on 

single Pt atoms. 

Bulk-Pt electrodes modified with a self-assembled patterned monolayer of 

calix[4]arene molecules were shown to have oxygen tolerance [16]. The adsorbed 
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calix[4]arene molecules selectively blocked the ORR, whereas HOR was able proceed 

without suppression. The selectivity for these reactions was determined by the number 

of available Pt sites, with HOR requiring significantly fewer sites compared to ORR. In 

the present work, reaction selectivity was achieved by loading CTF with single atoms of 

Pt, thereby decreasing the ORR activity via the suppression of one of the ORR reaction 

pathways without interfering with the HOR pathways. Using this novel strategy, the 

author successfully obtained an oxygen-tolerant Pt anode catalyst that was loaded with a 

significantly reduced amount of Pt compared to conventional Pt anode catalysts and 

which may have practical application in PEFCs. 

Although single-atom Pt exhibits catalytic activity for various reactions 

[19-22,48,49], constructing electrodes with a high density of atomically dispersed Pt 

remains challenging, as Pt atoms easily form aggregates via surface diffusion. For 

example, although single Pt atoms supported on FeOx (Pt1/FeOx) exhibited catalytic 

activity for CO oxidation, the loading amount of Pt was limited to < 0.2 wt%, and Pt 

formed aggregates when the loading amount exceeded 2.5 wt% [19]. Yang et al.
 
also 

reported that single Pt atoms on titanium nitride functioned as a selective electrocatalyst 

for the indirect 2e

 ORR pathway [22], but the loading amount of Pt was only 

approximately 0.35 wt%. Here, we successfully synthesized Pt-CTF/CP loaded with 2.8 

wt% of Pt. Importantly, CV peaks for upd-H could not be observed, even after 

performing various electrochemical measurements, indicating that Pt aggregation was 

highly suppressed. In Pt-CTF/CP, Pt atoms are strongly anchored on the CTF substrate 

via coordination bonds with nitrogen, which are abundantly present in the pores of CTF. 

These structural features are the possible reason why more Pt could be loaded onto CTF 

without forming aggregates compared to other existing single-atom Pt catalysts. 
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Note 3.1 | Estimation method for the number of electrochemically active Pt atoms. 

The number of electrochemically active Pt atoms in 20 wt% Pt/C was calculated from 

the electrical charge for the adsorption of upd-H (Fig. 3.6a, blue curve). The electrical charge 

was determined using the baseline current at 0.35 V as the current caused by the double layer. 

The number of electrochemically active Pt atoms (Ns) was calculated based on the following 

formula: 

    Ns = QNA/F 

where Q is the electrical charge for the adsorption of upd-H, NA is Avogadro’s constant, and F is 

the Faraday constant. 
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3.5. Conclusions 

In this chapter, the author demonstrated that 2.8 wt% Pt-CTF/CP had 

electrocatalytic HOR activity that was comparable to commercial 20 wt% Pt/C. Notably, 

Pt-CTF/CP also exhibited high oxygen tolerance, which was attributable to the 

dispersion of single Pt atoms throughout the CTF substrate and is of high practical 

importance for protecting PEFC cathodes from degradation during start-up/shut-down 

cycles. As various types of covalent organic frameworks other than CTF are available, 

and because metals other than Pt can also be doped into such frameworks, the author 

anticipates that synthesis strategy reported here can be used to construct novel 

electrocatalytic materials with both high activity and selectivity. 
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Fig. 3.13 | RRDE measurements of 0.29 wt% Pt-CTF/CP for ORR. (a) H2O2 oxidation 

current recorded at 1.2V vs. RHE on the ring electrode during the ORR on the   disc electrode. 

(b) Corresponding polarization curve for the ORR at the sweep rate of 10 mV s
1

 and the 

rotation rate of 1,600 rpm in 0.1 M HClO4 at 25 C. 
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Fig. 3.14 | Cross-sectional scanning electron microscope (SEM) images of the anode 

catalyst layers. (a), (b) 2.8 wt% Pt-CTF/CP, and (c), (d) 20 wt% Pt/C. 
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Fig. 3.15 | Fourier transformations of k
3
-weighted Pt L3-edge EXAFS oscillations taken 

after the LSV measurement shown in Figure 3.8a. Pt(bpy)Cl2: (2,2'-bipyridine)dichloro- 

platinum(II). 
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Fig. 3.16 | Chronoamperometric curves obtained in 0.1 M HClO4 at +0.6 V vs. RHE.   

(red) 0.29 wt% Pt-CTF/CP, (purple) 2.8 wt% Pt-CTF/CP, (green) 3.0 wt% Pt/C, and (blue) 20 

wt% Pt/C. Rotational rate: 2,500 rpm. The input gas was altered at 600 s (dotted line) from pure 

H2 to the mixed gas of H2 and O2 (H2:O2 = 1:1). 
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Fig. 3.17 | The density of states (DOS) projected onto the d-orbitals of Pt. (a) The structure 

of porphyrin-like graphene used for the calculation, (b) projected DOS onto the d-orbitals of the 

Pt atom in the porphyrin ring shown in Fig. 3. 17a, and (c) total DOS of bulk Pt metal. 

Reproduced with permission for Ref. 50. Copyright © 2013 American Chemical Society. 
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Fig. 3.18 | Estimated structure of Pt-CTF and its reaction intermediate calculated by 

density functional theory. (a) Pt-CTF, (b) hydrogen adsorped intermediate for HOR/HER, and 

(c) oxygen adsorped intermediate for ORR. The calculation was carried out by Open MX.  
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Fig. 3.19 | Projected DOS (PDOS) onto the Pt atoms of Pt-CTF shown in Fig. 3.18a. (a) 

Total DOS of Pt atoms in Pt-CTF, (b) PDOS onto dz
2
, (c) dx

2
y

2
, (d) dxy, (e) dxz, and (f) dyz. 

The orientation of axis is based on Fig. 3.18a. The calculation was carried out by Open 

MX. Total DOS shown in Fig. 3.19a is similar to the Pt atom on porphyrin-like 

graphene (Fig. 3.17b). However, the reactants such as hydrogen and oxygen are able 

to contact with Pt atom only through z-axis on Pt coordinated porphyrin-like 

graphene, while they are able to contact through x-axis where electron density is 

high in Pt-CTF/CP, indicating that Pt-CTF/CP has higher catalytic activity than Pt 

coordinated porphyrin-like graphene. 
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Chapter 4. 

Selective electrochemical reduction of nitrogen oxides 

by covalent triazine frameworks modified with single 

Pt atoms 

 

 

As mentioned in the previous chapter, single Pt atoms carried on CTF exhibited 

unique properties of inability to form under-potentially-deposited hydrogen (upd-H). 

The hydrogen-free Pt sites are thought to be attractive as selective electocatalysts, as the 

electrochemical reactions which required the adsorbed hydrogen atoms should be 

inhibited. In this chapter, the author investigated the electrocatalytic properties of single 

Pt atoms carried on CTF for the reduction reactions of nitrate and nitrite, and then put 

our focus on clarifying the role of adsorbed hydrogen for the reactions. 

 

 

 

 

 

 

 

 

 

 

Figure | Schematic illustration of the selective reaction between nitrate and nitrogen 

monoxide derived from nitrite on single Pt atom modified CTF. 
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4.1. Introduction 

Platinum (Pt) is definitely the best catalyst for various useful reactions, such as 

electrocatalytic reactions of fuel cells [1-3] and exhaust gas purification [4-6]. Recently, 

Pt single-atom catalysts (Pt-SACs) have attracted considerable attention not only 

because they can maximize the efficiency of Pt atom utilization but also because they 

offer great potential for achieving high activity and unique selectivity. For example, 

Qiao et al., synthesized Pt-SACs supported on FeOx, which functioned as an efficient 

catalyst for carbon monoxide oxidation [7]. Yang et al. reported that a Pt-SACs on 

titanium nitride selectively reduced oxygen to hydrogen peroxide [8]. However, Pt 

atoms of these Pt-SACs easily aggregate with the increase in Pt content to 

approximately 1 wt% [7-10]. 

Covalent triazine frameworks (CTFs) have 1,3,5-triazine units as linkers, 

represent microporous conjugated polymers. As CTFs possess abundant nitrogen (N) 

atoms with electron lone pair for metal coordination, CTFs are expected to stabilize Pt 

single atoms through coordination with the N atoms. As mentioned in previous chapter, 

the author has indeed synthesized single-Pt atoms modified CTF hybridized with 

conductive carbon nanoparticles (Pt-CTF/CP) as an electrocatalyst [11]. The resulting 

Pt-CTF/CP was inactive towards methanol oxidation (see Chapter 2), and selectively 

catalyzed hydrogen oxidation even in the presence of dissolved oxygen (see Chapter 3) 

[12]. These unique properties were attributed to the atomic dispersion of the Pt atoms. 

In terms of selectivity, Pt-CTF/CP is very interesting material showing significantly 

different electrocatalytic properties from the Pt metal electrode. Although the 

knowledge on reactivity and selectivity is still very limited, considering its mononuclear 

structure, it is expected that Pt-CTF/CP exhibit particularly different reactivity from the 

bulk surface in reactions which involve co-adsorption intermediate structure. 
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In this chapter, the author investigated the electrocatalytic properties of 

Pt-CTF/CP for the reduction reactions of nitrate and nitrite, and then put our focus on 

clarifying the role of adsorbed hydrogen for the reactions. 
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Fig. 4.1 | The major nitrogen oxide reduction reaction pathway on the Pt metal electrode in 

acidic solutions (pKa < 3.4). The nitrate reduction reaction [Eq(1)] is emphasized by blue line, 

and the nitrite reduction reaction [Eq(3)] is emphasized by red line.  
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4.2. Experimental details 

4.2.1. Catalyst synthesis 

Pt-CTF/CP was prepared in the same manner as described in Chapter 2 [11]. In 

brief, a mixture of ZnCl2 (1.36 g, Wako), 2,6-dicyanopyridine (129 mg, Sigma-Aldrich) 

and Ketjen Black EC600JD (129 mg, Lion Corp.) was heat treated in a vacuum-sealed 

glass tube at 400 °C for 21 h. The resulting powder was washed with 0.1 M HCl, water, 

tetrahydrofolate and acetonitrile, and then modified with Pt atoms by stirring in 160 

mM K2[PtCl4] (Wako) solution at 60 °C for 4 h. The sample named Pt-CTF/CP (agg.) 

was prepared by heating of Pt-CTF/CP at 450 °C for 2 h under hydrogen atmosphere in 

a quartz tube, as a comparative material having aggregated Pt atoms on CTF. The 

catalysts were compared with commercially available 20 wt% Pt/C (HiSPEC3000, 

Johnson Matthey). 

 

4.2.2. Electrochemical measurements 

All electrochemical measurements were conducted in three-electrode systems 

at room temperature using rotating disk electrodes (RDE) in 0.1 M HClO4 aqueous 

solution. Working electrodes were prepared by dispersing each catalyst in 120 μL 

ethanol and 47.5 μL Nafion solution (5 wt% solution; Aldrich), and then the resulting 

catalyst inks were dropped onto a glassy carbon electrode. The loading amounts of the 

catalysts were unified by the weight of the carbon support, and the carbon supports were 

controlled to be 0.40 mg cm
2

. A Pt wire and Ag/AgCl (sat. KCl) were used as the 

counter and reference electrodes, respectively. All potentials were converted into a 

reversible hydrogen electrode (RHE). 
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4.3. Results 

4.3.1. Characterizations 

The author previously demonstrated using extended X-ray absorption fine 

structure (EXAFS) spectra and high-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) that Pt atoms in Pt-CTF/CP are individually 

isolated [11]. Fig. 4.2 shows the current density (j) versus potential (U) curves of CP 

(Ketjen Black), CTF/CP, Pt-CTF/CP, Pt-CTF/CP (agg.) and Pt/C in 0.1 M Ar-saturated 

HClO4. On Pt atoms in Pt-CTF/CP, a pair of peaks assignable to the 

adsorption/desorption of under-potentially-deposited hydrogen (upd-H) on Pt atom was 

not observed (Fig.4.2, red curve) [12]. Considering that the formation of upd-H 

proceeds on Pt ensemble sites, such as step, three-fold hollow and defect sites [13], the 

absence of adsorption–desorption peaks of upd-H is due to the isolation of Pt atoms in 

Pt-CTF/CP.  
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Fig. 4.2 | Cyclic voltammograms of the catalysts and its support deposited on glassy carbon 

electrode. Electrolyte (0.1 M HCO4) was purged by Ar. Scan rate: 10 mV s
1

. 

 

 

 

When hypothesized that all of Pt atoms of Pt-CTF/CP were isolated and 

electrochemically active, the total number of Pt atoms on 12 wt% Pt-CTF/CP can be 

evaluated to be 1.8  10
17

 cm
2

. In contrast, the number of electrochemically active Pt 

atoms on Pt/C and Pt-CTF/CP (agg.), which were calculated from the electric charge for 

the adsorption of the upd-H in CV, were estimated to be 4.5  10
16

 cm
2

 and 3.6  10
16

 

cm
2

, respectively (Table 4.1). Although some of Pt atoms on Pt-CTF/CP might not be 

exposed to the electrolyte and are electrochemically inactive, the amount of active Pt 

atom on Pt-CTF/CP would be comparable to that on Pt/C. 
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4.3.2. Electrochemical characteristics for nitrate reduction 

The nitrate reduction activity of Pt-CTF/CP was compared to those of 

Pt-CTF/CP (agg.) and 20 wt% Pt/C by measuring j vs. U relationships in 0.1 M HClO4 

aqueous solution with the addition of nitrate (Fig. 4.3). The Pt-CTF/CP generated 

almost no current even at high nitrate concentrations, whereas the nitrate reduction 

current was clearly observed from about 0.4 V for the Pt/C and Pt-CTF/CP (agg.) 

electrodes. Considering that the number of the active Pt atoms does not differ 

significantly among Pt-CTF/CP, Pt/C and Pt-CTF/CP (agg.), these results indicated that 

Pt single atoms were inactive for the nitrate reduction reaction. 

The first step of nitrate reduction reaction is known to form nitrite (Eq(1)) 

[14-17].  

NO3

(ad) + 2H

+
(ad) + 2e


 → NO2


 + H2O  Eq(1) 

As nitrate adsorption on Pt sites is essential to facilitate the reaction [18], the author 

next examines the nitrate adsorption on Pt-CTF/CP by measuring the oxygen reduction 

reaction (ORR) activities in the presence of nitrate. The polarization curves for ORR in 

the presence of each concentration of NaNO3 are shown in Fig. 4.4. The ORR onset 

potential was about 0.86 V, which was consistent with the result in previous chapter 

(Chapter 2, Fig. 2.5, green curve). Although the onset value (0.86 V) did not depend on 

the nitrate concentration, the decrease in the diffusion limiting current was observed in 

higher nitrate concentration (> 0.1 M). This is presumably because the adsorption of O2 

on single atom Pt in Pt-CTF/CP was inhibited by the adsorbed NO3

. Actually, Groot et 

al reported that the reaction order of nitrate reduction on Pt metal became negative at 

high concentrations (> 0.1 M) because the excess amount of adsorbed nitrate inhibited 

the adsorption of a second species necessary for the reaction [15]. Namely, although 

nitrate can adsorb on the Pt sites of Pt-CTF/CP, the catalyst showed no nitrate reduction 

reaction activity. 
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Fig. 4.3 | Nitrate reduction activity of catalysts and its support. (a) CP, (b) CTF/CP, (c) 

Pt-CTF/CP, (d) Pt-CTF/CP (agg.) and (e) Pt/C in Ar-saturated 0.1 M HClO4 containing each 

concentrations of NaNO3. Rotation rate: 1,500 rpm. Scan rate: 10 mV 
1

. 
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Fig. 4.4 | Polarization curves for ORR in the presence of each concentration of NaNO3. 
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4.3.3. Electrochemical characteristics for nitrite reduction 

Fig. 4.5 shows the Faradaic current density vs. U curves of nitrite reduction 

reaction in 0.1 M HClO4. Although small reduction currents were observed on CP and 

CTF/CP from 0.6 V, the cathodic current density was clearly enhanced by Pt-CTF/CP, 

Pt-CTF/CP (agg.) and Pt/C, indicating that both metallic Pt and single Pt atoms 

accelerated the nitrite reduction reaction. In order to consider the nitrite reduction 

reaction in detail, we need to be aware of the nitrous acid decomposition in acidic 

solutions. The value of pKa for HNO2 is about 3.2, and thus, HNO2 definitely dominates 

over NO2

 in highly acidic solutions (< pH 2). The HNO2 is known to be decomposed 

into NO and NO2 by the following equilibrium. 

2HNO2(aq) → NO(aq) + NO2 + H2O   Eq (2) 

The NO generated by this equilibrium is an important electrochemically active species 

for the nitrite reduction. Duca et al. reported that the Pt metal electrode catalyze the NO 

dimerization and subsequent N2O formation in the potential range of 0.25–0.6 V (Eq(3)), 

while NH2OH gradually became dominate at lower potential (< 0.25 V) [19]. 

NO(ad) + NO(aq) + 2H
+ 

+ 2e

 → N2O + H2O  Eq (3) 

In the j vs. U curve for our Pt-CTF/CP (Figure 4.5c), the change in slope was clearly 

observed at 0.25 V, which coincides with the results of Pt-CTF/CP (agg.) and Pt/C. 

Considering these results and literatures, our Pt-CTF/CP likely reduced nitrite in a 

similar manner to Pt metal electrodes. 
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Fig. 4.5 | Faradaic current density vs. U curves of nitrite reduction reaction. (a) CP, (b) 

CTF/CP, (c) Pt-CTF/CP, (d) Pt-CTF/CP (agg.) and (e) Pt/C in Ar-saturated 0.1 M HClO4 

containing each concentrations of NaNO2. Rotation rate: 1,500 rpm. Scan rate: 10 mV 
1

. 

Faradaic currents were calculated by subtracting the current observed when the CVs were 

performed in electrolyte solutions in the absence of nitrite from the current observed when the 

CV was then performed in electrolyte solutions with nitrite. 
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4.4. Discussion 

Before discuss the mechanisms of nitrate and nitrite reduction reactions on 

Pt-CTF/CP, it is appropriate to summarize that on Pt metal electrode. For nitrate 

reduction reaction, as mentioned above, Groot et al. observed the inverse correlation 

between the NRR current and the nitrate concentration at high concentrations (> 0.1 M) 

[15]. Based on this result, they assumed that nitrate adsorbates blocked the surface for 

the adsorption of hydrogen or water. Therefore, the second adsorbate (hydrogen or 

water) were considered to be essential for the nitrate reduction reaction. Taguchi et al. 

also showed that simultaneous present of adsorbed hydrogen and of adsorbed nitrate 

enhanced the rate of nitrate reduction reaction on the Pt electrodes [16,20]. In addition, 

in the case of our result of Pt/C, the nitrate reduction occurred from 0.4 to 0.05 V, which 

corresponds to upd-H potential region. Considering these literatures and our result, 

nitrate is thought to be reduced on the Pt surface by the reaction of the adsorbed nitrate 

and the upd-H (Langmuir-Hinshelwood mechanism). In the case of the nitrite reduction 

reaction, the electrochemical active species in acidic solutions is the NO molecule 

which is produced by Eq (2), and N2O is known to be the majority product of the NO 

reduction above 0.25 V. Claybone et al. demonstrated by the DFT calculation that the 

following pathway of the NO reduction reaction was energetically favorable: solvated 

NO reacted with surface-bound NO to form an adsorbed (NO)2-dimer, and then the 

dimer abstracted a proton from water [21]. Thus, adsorbed hydrogen might not be 

required for the nitrite (NO) reduction reaction on the Pt surface, at least in higher 

potential region (> 0.25 V). 

Here, let me move on to discuss the reaction mechanism of Pt-CTF/CP to gain 

insight into the electrocatalytic properties of Pt single atom catalysts. Reversible peaks 

corresponding to formation and desorption of upd-H were absent, meaning that the 

single Pt site is free from adsorbed hydrogen above 0.05 V. Thus, although the ORR 

results suggested that a certain portion of nitrate bound on Pt sites, Pt-CTF/CP exhibited 
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almost no activity for nitrate reduction due to the lack of the adsorbed proton which is 

required for the Langmuir-Hinshelwood process. In contrast, the nitrite (NO) reduction 

reaction was facilitated by Pt-CTF/CP because only solvated proton is involved in the 

NO dimerization (Eq (3)). The electrocatalytic activities of Pt-CTF/CP for nitrate and 

nitrite reduction reactions investigated in this study were in good agreement with the 

involvement of adsorbed hydrogen in reaction mechanism that has been proposed on Pt 

metal so far (Eq (1) and (3)).  

Moreover, in the same way as upd-H, electrochemical formations of the 

adsorbed oxygen species are also supposed to show different tendency on Pt single 

atoms of Pt-CTF/CP from Pt metal because atomic oxygen prefers to adsorb at hollow 

site of Pt metal surface [22]. Although the oxidative current corresponds to the 

formation of the Pt-oxide can be seen on Pt metal higher than 0.8 V (Fig. 4.2, blue 

curve) [23], the current value was significantly small on Pt-CTF/CP in the same 

potential region (Fig. 4.2, red curve). This indicates that the number of adsorbed oxygen 

species on Pt-CTF/CP is prominently smaller than that on Pt/C. Therefore, Pt single 

sites of Pt-CTF/CP are expected to have selectivity not only to the reaction systems 

involving adsorbed hydrogen but also to the reaction systems involving adsorbed 

oxygen. 
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4.5. Conclusions 

In this chapter, the author demonstrated that the reduction reaction activities of 

nitrogen oxides on Pt single sites of Pt-CTF/CP. The nitrate reduction reaction was 

inactive on Pt-CTF/CP; in contrast with the reduction reaction of NO decomposed from 

nitrite was active. This selectivity was revealed to be derived from the inability of the 

formation of upd-H on Pt sites of Pt-CTF/CP. These hydrogen-free Pt sites are thought 

to be attractive as selective electrocatalysts, as the electrochemical reactions which 

required the adsorbed hydrogen atoms should be inhibited. Further, it can be said that Pt 

single sites are useful to clarify the involvement of adsorption species in the reaction 

mechanisms. 
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Chapter 5. 

Conclusions and Perspectives 

 

5.1. Conclusions 

Heterogeneous catalyst having a single metal atom active center is expected to 

show specific catalytic activity different from a bulk metal surface. Such specificity is 

attractive from a point of view of the electron transfer catalysts which are the key 

material for electrical－chemical energy conversion. Although single metal atoms are 

expected to show interesting properties, in general, they are easy to aggregate because 

of their high surface energy. Therefore, development of the electrocatalyst which stably 

supports practical concentrations of single metal atoms, especially Pt: the most widely 

utilized catalyst material, is strongly desired. As a support material for single metal 

atoms, covalent triazine framework (CTF) is attractive because it has a regular porous 

structure including high density of nitrogen with lone pair which can be a coordination 

environment of single metal atoms. However, there is a problem that the electrical 

conductivity of CTF itself is extremely low for directly use as an electrocatalyst. 

Based on this background, in this study, the author developed a novel 

CTF-based electrocatalyst modified with single Pt atoms (Pt-CTF/CP) through 

overcoming its low electrical conductivity by hybridizing CTF with conductive carbon 

nanoparticles. Then, the author focused on the reaction selectivity on Pt single site of 

Pt-CTF/CP. As a result, the author constructed useful selective reaction systems by 

using single Pt atom modified Pt-CTF/CP electrocatalyst on which selectivities were 

derived from its single atom nature. 

 

 In chapter 1, the background of this thesis was introduced; especially the single 

atom catalysis on electrochemistry was overviewed. The author mentioned the specific 
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features of single atom electrocatalysts, and the expectations for them to realize reaction 

selectivity. 

 In chapter 2, firstly, the author successfully developed a novel electrocatalyst 

which has practical concentration of single Pt atoms by carrying Pt atoms on hybridized 

material of CTF and conductive carbon nanoparticles. The resulting material 

(Pt-CTF/CP) did not show the aggregated Pt particle, although it possessed high density 

of atomically dispersed Pt particles. Then, the author demonstrated that Pt-CTF/CP 

functions as an electrocatalyst by confirming its catalytic behavior for the oxygen 

reduction reaction (ORR). Besides, the author revealed that Pt-CTF/CP is inactive to the 

methanol oxidation reaction, and it selectively catalyzes ORR even in the presence of 1 

M methanol. This selectivity is useful as a cathode catalyst of direct methanol fuel cells. 

In chapter 3, the author demonstrated that single Pt sites of Pt-CTF/CP can 

catalyze hydrogen oxidation reaction (HOR) effectively with almost zero overpotential. 

Notably, the atomically dispersed 2.8 wt% Pt-modified CTF showed comparable 

catalytic activity for HOR to the commercially available carbon-supported 20 wt% Pt 

catalyst. In addition, 2.8 wt% Pt-CTF/CP showed a much lower catalytic activity 

towards ORR less than 1/4 at 0.6 V versus RHE. Thus, the author revealed that single Pt 

sites of 2.8 wt% Pt-CTF/CP selectively catalyze hydrogen oxidation, even in the 

presence of dissolved oxygen. This property is important because oxygen tolerance of 

an anode catalyst of polymer electrolyte fuel cells (PEFCs) has a potential to overcome 

the problem of cathode degradation during start/stop cycles of PEFCs. 

In chapter 4, selective catalytic activity on the single Pt site of Pt-CTF/CP for 

nitrogen oxide reduction reactions were demonstrated. Although the adsorbed hydrogen 

atoms are required only for nitrate reduction, the formation of under-potentially 

-deposited hydrogen (upd-H) on single Pt atoms of Pt-CTF/CP was inhibited because 

upd-H only forms on the Pt ensemble site such as step, three fold hollow and defect 

sites. From this feature, Pt-CTF/CP was revealed to be inactive towards nitrate 



 

 108 

reduction reaction. In contrast, the reduction reaction of NO decomposed from nitrite 

was active on the single Pt site of Pt-CTF/CP because it only involves dissolved 

hydrated proton. Thus, the author revealed that the lack of upd-H on Pt sites of 

Pt-CTF/CP likely resulted in this unique selectivity for nitrogen oxide reduction 

reactions. Therefore, the hydrogen-free Pt sites are thought to be attractive as selective 

electrocatalysts, as the electrochemical reactions which requires adsorbed hydrogen 

atoms should be inhibited. 

 

The present study is the first example to demonstrate experimentally the 

selective electrochemical reaction on the single Pt site. Through the whole of this study, 

the author constructed a new concept for the selective reactions on the electrocatalysts 

which have a single metal atom active center. On bulk metal surfaces, in general, both 

of the following electrochemical catalytic reactions (i) and (ii) non-selectively proceed 

if the proper potential is applied to the reaction system. 

(i) The reactions which proceeds via the adsorbed structure to multiple metal 

atom site, typical to the reactions following Langmuir-Hinshelwood mechanism 

(Fig. 5.1a). 

(ii) The reactions which proceeds via the adsorbed structure only to a single 

metal atom site, typical to the reactions following Eley-Rideal mechanism (Fig. 

5.1b). 

In contrast, on the single metal site, the reactions (i) are inhibited because of its 

structural factor while the reactions (ii) favorably proceed. Thus, in the reaction system 

both (i) and (ii) are present together, (ii) would be selectively catalyzed on a single 

metal atom. As long as the author knows, this concept for the selective reaction on the 

electrocatalyst had never been clarified to date. Therefore, the present study provided a 

new guideline for constructing a useful reaction system.  
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At last, the final purpose of this study is to realize environmental-friendly 

electrical－chemical energy conversion systems through the electrocatalyst. As shown 

in the present study, acquisition of highly reaction-selective electrocatalyst to the aimed 

reaction contributes greatly to the improvement of energy conversion efficiency and 

device durability. Also, the high reaction selectivity is useful characteristics for many 

situations, for example, the production of useful substances, the treatment of hazardous 

materials, and so on. In addition, the electrocatalyst with a single metal atom active 

center has a possibility to improve metal utilization efficiency. Such effective use of 

metal is expected to contribute to the cost reduction of a device which uses a precious 

metal, such as PEFCs loaded with Pt. Therefore, the development of the electrocatalysts 

with a single metal atom active center has a great possibility to realize environmental- 

friendly society by enabling efficient and cost effective electrical－chemical energy 

conversion. 

 

 

 

 

 

 

 

 

 

Fig. 5.1 | Schematic illustration of reaction mechanisms on the metal surface. (a) 

Adsorption structure onto multiple metal atom site and (b) adsorption structure only onto single 

metal atom site. 

 



 

 110 

5.2. Future perspectives 

In the present study, the author developed the highly reaction-selective 

electrocatalysts based on covalent triazine frameworks (CTFs) modified with single Pt 

atoms. The catalyst synthesized in this study is expected to be extended to a variety of 

reaction systems because it is possible to easily tune the properties of the catalyst. 

Firstly, the pore diameter of the catalytic active site is possible to easily adjust by 

choosing the structure of the monomer used in the polymerization process. Even only 

CTFs, a variety of structures have been reported so far as shown in Figs. 5.2 a-c [1-3]. 

The polymerization conditions of CTFs shown in Figs. 5.2a-c are basically the same; 

those CTFs can be easy to applicate to the catalyst demonstrated in the present study. 

Secondly, the electron density of the metal can be controlled by changing the 

coordination environment by introducing the heteroatoms or functional group. CTFs 

having such hetero atoms had also been reported as shown in Figs. 5.2c and d [4,5]. In 

addition to the CTFs, covalent organic frameworks (COFs) which have coordination 

environment of the metal atoms are also able to applicate. For example, Feng et al. 

reported the synthesis method of COF containing porphyrin ring, and revealed that the 

porphyrin sites are possible to carry Zn atoms (Fig. 5.3a) [6]. Neti et al. demonstrated 

another COF containing both porphyrin ring and phthalocyanine ring (Fig. 5.3b) [7]. 

Other type of COFs which contains nitrogen with lone pair are also applicable [8,9]. 

Thirdly, the kind of a metal atom carried on COFs is easily selected by changing the 

metal salt used in the impregnation process [10-13]. Thus, it is expected to find a variety 

of catalytic behaviors on the COF-based electrocatalyst by adjusting a structure of COF 

and deposit a metal atom appropriate to the purpose. In the future, the developments of 

application of these COF-based electrocatalysts to a various electrochemical systems are 

greatly expected. 
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Fig. 5.2 | Various types of the structure of CTFs. CTFs are polymerized from (a) 

2,6-dicyanopyridine, reproduced with permission for Ref. 1. © 2009 Wiley-VCH Verlag GmbH 

& Co. KGaA, Weinheim, (b) 1,4-dicyanobenzene, reproduced with permission for Ref. 2. © 

2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (c) 5,5’-dicyanobipyridine, 

reproduced with permission for Ref. 3. © The Royal Society of Chemistry 2012, (d) 

1,3,5-benzenetrithiol and cyanuric chloride, reproduced with permission for Ref. 4. © 2013 

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, and (e) tetrafluoroterephthalonitrile, 

reproduced with permission for Ref. 3. © The Royal Society of Chemistry 2013. 
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Fig. 5.3 | Structure of COFs containing porphyrin and phthalocyanine rings. (a) 

Reproduced with permission for Ref. 6. © The Royal Society of Chemistry 2011, (b) 

Reproduced with permission for Ref. 7. © The Royal Society of Chemistry 2013. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 | Structure of 3-dimentional COFs containing nitrogen. (a) Reproduced with 

permission for Ref. 8. Copyright © 2013 American Chemical Society, (b) Reproduced with 

permission for Ref. 9. Copyright © 2015 American Chemical Society. 
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