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                  1 Introduction 

1.1 Brain Surgery 

In these decades, brain tumor has drawn much attention for it is estimated that 35% of all the 

tumors are attributable to brain tumor [1]. Patients who have brain tumor, usually suffer from 

more frequent and severe headache, unexplained nausea or vomiting, vision or speech 

problem, seizures and so on. These symptoms have greatly obstructed the patients’ life with 

inconveniences. Furthermore, according to the latest investigations, brain tumor disease has 

keep increasing in recent years[2]. Thus, conquering the brain cancer becoming more and 

more important. Since brain tumor is usually located inside the head of patient, brain surgery 

is one of the approaches to cure the tumor. 

  

Figure 1-1 Brain cancer incidence trend[2] 

 

During brain surgery, there are some critical eloquent areas, on brain surface, which can 

control human ability such as speech, language, vision, sensation, and movement function, 

as shown in Figure 1-2. In this circumstance, the price to pay for resection of brain tumor 

may be an increase in morbidity or sequela, especially in case of brain tumors in eloquent 

areas due to the high eloquence of the surrounding brain tissue. For example, it is reported 

that the majority of patients will suffer a relapse or local progression of the disease some 

time after surgery. Therefore, these areas are significant important and need to be protected 

during surgery and knowing the accurate brain tumor information, as well as brain function 
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area, vessels is needed. Fortunately, nowadays we can get the 3D brain volumetric 

information using imaging technology, such as MRI, CT and Ultra sound, which can offer 

the accurate information of them. However, the problem is how to map these structures onto 

patient brain surface, which is difficult since brain will deform with a 30-mm magnitude on 

average during surgery. Such amount of deformation which would trivialize the current brain 

navigation system and cannot be ignored.  To overcome these problems, some methods 

have been proposed, which will be described in the following sections. 

 

 

Figure 1-2 The brain eloquent areas. Left temporal and frontal lobes is speech and language area; bilateral 

occipital lobes is vision area; bilateral parietal lobes is sensation area; bilateral motor cortex is movement 

area[3] 

 

1.2 Electrical Stimulation to identify the functions of brain surface 

The first technology to map the brain function area before and during surgery is the electrical 

stimulation. This technology usually allows the surgeons to localize the brain surface 

function areas with awake (language areas) or non-relaxed (motor areas) patients by directly 

stimulating the brain surface. Moreover, this technology allows the realization of the 

function map to identify whether the exposed cerebral cortex is significant or not. The 

electrical stimulation procedure works as follow: the neurosurgeons place an electrode at a 
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small region of cortical area of the brain; then a stimulator from the computer applies some 

stimuli, which can result in neurological change as patient numbness or movement or inhibit 

neurological function as speech arrest. When the stimulation of a local region generates any 

of the above symptoms not accompanied by a crisis or post-discharge, it is realized and 

confirmed that the stimulated brain area is an important region for brain function. The 

stimulation procedure is finished by marking the brain surface with sterile labels to avoid 

damaging the eloquent areas. Figure 1-3 shows the electrical stimulation on brain surgery for 

the brain function mapping of language function area. The two language function areas are 

identified and labeled by paper markers in brain surgery. However, this kind of electrical 

stimulation method is an invasive method and the electrical current might cause epilepsy by 

accident during surgery. To avoid this invasive approach, image-guided neurosurgery (IGNS) 

systems have been developed over the years to assist surgeons during brain surgery while 

avoiding invasively stimulating the eloquent areas. The details about IGNS will be described 

in the next section.  

 

Figure 1-3 Electrical stimulation to identify the brain functions[4] 

 

1.3 Image-Guided Neurosurgery (IGNS) 

Over the past century, Image-Guided Neurosurgery (IGNS) systems have developed a 

standard operating room protocol for invasively assisting the surgeons. Image-Guided 

Neurosurgery (IGNS) systems are usually adapted to locate the surgery target (tumor and 
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eloquent area) and assist the surgeon to know the exact position of the patient brain, surgical 

tools as well as brain surface during surgery. Commonly, in IGNS system, the preoperative 

image (e.g. preoperative MR) is acquired prior to the surgery procedure to assist the 

navigation of the surgery. To establish the guidance, the preoperative image is rigidly rotated 

and translated to align with the patient in the operative room (OR). The transformation 

between the preoperative image and the OR system is usually based on the locations of 

several features both in the preoperative image and the OR coordinate system. The features 

commonly used in the surgery are scalp-attached fiducials, as shown in Figure 1-4 (a). Those 

fiducials will appear hyper-intense on preoperative imaging so that they would be readily 

visible on the preoperative imaging. IGNS usually assist surgeons in two aspects. Firstly, 

they make the planning of surgery easier and match the correspondence between the 

preoperative multimodality 3D images and the patient systems. Accordingly, the surgeons 

could define and relate the boundaries of the anatomical and eloquent structures as well as to 

define the surgical targets and trajectories. Secondly, the IGNS systems can relate the 

preoperative images, the patient’s head and the positions of the surgeons’ instruments with 

each other in the operative room. Thus, the probe (or another instrument) and the set of the 

preoperative image are related and then the surgeon could navigate with the probe 

simultaneously in the patients’ head (patient space coordinate system) and preoperative 

image (preoperative image coordinate system). Therefore, the IGNS can track both the 

surgical instruments and the patient’s brain surface.  

Based on the research of the IGNS systems, the overall IGNS accuracy is estimated to be 2 

mm[5] when assuming that the preoperative image keeps the same shape of the patient brain 

during surgery. However, this assumption could not be held during surgery since the skull 

opening, brain retraction, cerebrospinal fluid (CSF) suction or outflow, lesion resection, 

perfusion and pharmacological manipulation during surgery indeed alter the 3D morphology 

of brain structures, and could lead to localization and tracking errors which might be one 

order of magnitude larger than common IGNS accuracy. This kind of phenomena of brain 

structure change during surgery is called brain shift. The traditional IGNS does not 

compensate brain shift and brain shift is then becoming one of the major problems of IGNS. 

The detail of the magnitude and direction of brain shift will be described in the next section. 
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Figure 1-4 Pictorial description of image-guided surgery: (a) Fiducials (arrows) are attached to a patient's 

scalp to correlate the patient's surface anatomy with the preoperatively obtained image data set; (b)These 

fiducials are localized in the OR prior to surgery. (c) After patient registration, three-dimensional 

reconstruction, sagittal, axial, and trajectory views demonstrate a left parietooccipital tumor. This display 

aids surgical planning[6].  

1.4 Brain Shift: magnitude and direction 

As assumption aforementioned for IGNS is that the brain is rigid and brain shift during 
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surgery compromises the accuracy of current IGNS systems. An example of brain shift on 

IGNS is shown in Figure 1-5, in which the brain shift caused by a retractor blade.  

  

Figure 1-5 The cortical surface of the same patient viewed through the operating microscope immediately 

after the opening of the dura (left) and during the tissue retraction (right). Note the significant tissue 

deformation induced by the retractor blade[6].  

 
A lot of research reports have revealed the investigation of the magnitude and direction of 

brain shift during surgery. 

Nauta el al. first quantitatively reported brain shift during surgery[7]. In their work, two 

stereotactic localization systems were used to quantify brain shift in a patient undergoing 

resection of “an extremely small” tumor. As a result, the difference in localization because of 

brain shift was reported to be approximately 5 millimeters. Later, a preliminary research 

done by Hill et al. reported brain surface shift in 5 patients, with serial measurements in 2 of 

the 5 in 1997. In their work, OPTOTRACK began to be used for localization of surface 

points intraoperatively with a mean number of surface points of 25.57±27.96. Their result 

indicated the brain shift on the order of a centimeter and brain shift increased over the course 

of the surgery with serial surface localizations. In 1998, they further extended the patient 

population size to 21 patients and recorded time-course measurements for each patient[8]. 

Their new result indicated a mean brain surface shift of 3 millimeters with a max of 8 

millimeters before removing of the dura. Also, they reported that the brain surface of each of 

the patient sank on an average 10 millimeters. Then they pointed out that the brain shift 

during surgery was significant surprising and it was necessary to enhance the current 

image-guided neurosurgery (IGNS) systems. 

Besides, some intraoperative image sensors have been used to measure the brain shift. The 

first intraoperative ultrasound (iUS) image measurements system for brain shift was reported 
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by Bucholz et al[9]. To measure the brain shift, a calibrated ultrasound and optically tracked 

probe was used. Some features in serial ultrasound image, such as cross-section point of 

vessel, were measured to quantify the shift. Bucholz et al. applied this iUS measurement 

technique for brain shift to 23 patients undergoing different surgeries. They reported that the 

average shift observed was around 7.3±5.8 millimeters. Similar to Hill’s result, Bucholz 

also reported that the brain shift increased over the duration of surgery. Finally, their brain 

shift analysis provided an evidence to support the development of an iUS method to 

compensate for brain shift.  

Besides using iUS, Maurer el al. were one of the first to use intraoperative magnetic 

resonance imaging (iMR) to demonstrate the effects of brain shift during surgery[10]. In 

their work, five patients undergoing tumor resection therapy were recorded. Little 

quantitative result was reported in their paper. Later, Hartkens et al. further extended 

Maurer’s work to 24 patients within a paper published in 2003[11]. In Hartkens’s work, a 3D 

deformation volumetric registration algorithm was implemented. Because of the 3D 

non-rigid registration, the corresponding feature point between the preoperative patient data 

and the intraoperative MR imaging was obtained. This corresponding mapping can allow 

Hartkens to calculate 3D shift of the brain, as well as volumetric change during the whole 

surgery. Also, their result presented an approach to correct brain shift during surgery using 

iMR, which will be discussed later in this chapter.  

Meanwhile, Hartkens[11] et al. pointed out that the brain shift direction was related to 

gravity. Three cases of the patients are shown in Figure 1-6. In Figure 1-6, the white arrow 

represents the gravity direction. The distribution of the displacement vectors of one surgery 

case is shown in Figure 1-7. The displacement vectors are visualized as points in the 3-D 

coordinate system whereby the axes represent the components of the vectors. Displacement 

vectors with a magnitude of less than 1 mm are not shown in this diagram. The large vector 

in the diagram represents the first axis of the Principle Component Analysis (PCA). The 

variance in direction of this vector is a measure for the magnitude of the displacement field. 

The other two axes of the PCA are visualized in relationship to the variance of the first axis. 

Because the variance in their direction is very low in comparison to the first axis, they can 

hardly be seen in this visualization. The main brain shift direction can be seen along the Z 

direction (Z is the gravity direction). 

Further, Dorward et al. indicated that the brain shift not only happened in surface points but 

also in deep tissue points with measurement of 48 patients[12].  In their experiment, five 
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points were selected for each patient during surgery: on the dura at the center of the 

craniotomy, at the deep tumor margin after resection, on the surface of the skull at the center 

of the craniotomy and on the surface of the cortex adjacent to the tumor before and after 

resection. Their reports indicated that the mean surface shifting for all patients at opening 

and closing were 4.6 and 6.7 millimeters, respectively; also they pointed out that the deep 

tissue shift for all the patients were 5.1 millimeters on average. Dorward et al.’ results 

revealed the complex deformations of the brain shift phenomenon. 

The results of all the aforementioned papers demonstrate the complexity of brain shift and 

the major factors and effects of brain shift during surgery. Although the individual 

measurement result varies from patient to patient in each experiment, the general trend 

indicates that the brain surface shift is on the order of centimeters and deep tissue shift is on 

the order of 5 millimeters. Also, the direction of brain shift is generally parallel to the 

gravitational direction and the brain shift is time dependent. This amount of error could 

cause error thus the compensation of brain shift is one of the biggest issues to improve the 

accuracy of IGNS.  

 

 
(a) 

 
(b) 
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(c) 

Figure 1-6 Brain shift direction. (a) (b) and (c) are 3 cases of brain surgery. The white arrow showed the 

brain shift direction. Also, the gravity direction points to the down direction[11].  

 

 

Figure 1-7 PCA analysis of the brain shift magnitude. X, Y, Z are the three coordinates. The black point is 

the brain shift point coordinate[11].  

 

1.5 Compensation of Brain Shift for IGNS 

From the previous description, it is noticed that the brain shift phenomena have been 

extensively researched and it compromises the accuracy of current IGNS systems. As a result, 

some efforts have been focused on the improvement of current IGNS systems by 

compensating the brain shift. In this section, we will briefly introduce some previous 

techniques to improve the accuracy of IGNS during surgery by compensating brain shift. 

1) Marker based on brain shift compensation method  
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The main purpose of IGNS is to accurately locate the patient brain and surgeon’s instruments 

during surgery through registration. Such kind of locating process is to help the surgeon to 

know where the brain tumor and eloquent area are. In the early stage of this research, marker 

based method is implemented as a direct but manual way to demarcate such key area during 

surgery. Until now, there are two kinds of markers used in IGNS system for assisting surgeon 

according to the position and function they used for: micropatty marker and catheter marker. 

In 1991, Hassenbusch et al. demonstrated a marker based method to account for brain shift 

during resection[13]. The method outlined used surgical micropatties (Surgical Patties. 1/4×

1/4 inch. Codman & Shurtleff. Inc. Randolph. Massachusetts) with string tails tethered to 

them. A series of patties, shown in Figure 1-8, were placed under stereotactical guidance 

around the tumor margin. The micropatty can demarcate the brain key area during surgery. 

The tails of the marker work for 2 purposes: 1st locating the corticotomy 2nd following the 

tail to the tumor and then to the micropatty at the deep tumor edge. The advantage is that the 

tails of the patty markers lead directly to the tumor bulk and then to the edges. Accordingly, 

cumbersome additional equipment is not needed to resect deep-seated tumors. Moreover, the 

author mentioned that the marker system is very cost-effective. 

 

Figure 1-8 Diagrammatic description of the stereotactic placement of a “micropatty” with attached “tail” 

extending out through the brain and the site of the durotomy add the craniotomy[13].  

Later, another kind of marker was used for brain surgery[14]. The second marker is silicon 
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tube. By inserting the silicon tube around the tumor or the eloquent area, the surgeon can 

realize which part of the exposure surface is important, as suggested in Figure 1-9 and one 

clinical situation in Figure 1-10 . This kind of marker system works as: 1st the entry and 

target points were decided; 2nd an adequate number of silicon tubes are inserted under the 

guidance of the navigation system; 3rd the tumor mass is resected under the guidance of the 

silicon tube. Using this kind of marker, the tumor mass can be extirpated without seeing a 

tumor margin.  

 

Figure 1-9 Scheme of the silicon marker[14]. 

 

  

Figure 1-10 Clinical situation used the marker[15]. The white silicon tubes were inserted into the 

patient’s brain 

 

However, these marker-based technologies suffer from some problems: 1st: the marker 

system highly depends on the accuracy of placing the marker on/into the patient; 2nd: the 

marker based system is an invasive approach, which should be avoided during surgery; 3rd: 

in the micro-patty marker system, the tail might disturb the attention of surgeon. Because of 

such inconveniences and problems in marker-based method, the marker-less tracking for 
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brain surface is extremely developed in nowadays. 

 

2) Intraoperative imaging for compensating brain shift in IGNS 

One of the effective marker-less approaches is intraoperative imaging technique. Usually, 

surgeons intuitively estimate the intraoperative brain surface deformation during surgery and 

compensate for brain shift intuitively, which is actually a factor of inaccuracy and biases. 

Some surgery centers further acquired reduced-quality intraoperative images at several 

critical times during surgery, in an attempt to track brain deformations during surgery. Those 

reduced-quality intraoperative images are then added to IGNS systems by adapting a rigid 

registration between them and preoperative images. This rigid registration aligns the 

preoperative images with the intraoperative images in the same coordinate, however, it still 

failed to compensate the brain shift since only rigid registration is performed. Surgeons still 

need to intuitively deform the preoperative images, although it is easier with the 

intraoperative images since they have an image of the brain deformed. As a result, non-rigid 

registration between the intraoperative images and preoperative images is required. This 

non-rigid registration would align the preoperative images according to the deformation of 

the intraoperative images and the preoperative images would then be successively updated.  

One issue for implementation of intraoperative images is what type of intraoperative image 

should be used. Nowadays, various intraoperative image sensors have been investigated to 

capture intraoperative deformations correctly, such as intraoperative MR (iMR), 

intraoperative CT (iCT) and intraoperative US (iUS).  

Intraoperative MR images is an imaging technology used to track brain shift [16-40] during 

surgery. For instance, in reference [21], the preoperative and intraoperative MR are aligned 

by maximizing the Mutual Information (MI). One example of iMR is shown in Figure 1-11. 

iMR can either be acquired by using interventional scanner in OR[21] or moving patients 

between OR and the adjacent scanning room[41]. However, intraoperative MRS is expensive 

and it also needs expensive surgical instruments. The scanners have poor spatial resolution 

and the generated image often suffers from geometric distortions. Because of these reasons, 

intraoperative MRs have not been widely used in brain surgery applications. Another 

approach is moving the patient out of the OR for scanning which might further complicate 

the procedure and it is also not very commonly adopted. Moreover, the resolution of 

intraoperative MR images is often lower than that of the standard diagnostic scanners.  
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Figure 1-11 iMR image used in brain surgery[21] 

 

Another IGNS uses intraoperative CT (iCT) images[42-47]. The first iCT was made by the 

University of Pittsburgh for minimally invasive brain surgery[48]. Recently, a new mobile 

CT scanner with wheels was developed at Harvard[49]. In 2007, a new system named 

BrainSuite iCT, integrating Siemens’s Miyabi CT with BrainLab’s computer-aided surgery 

equipment was developed for the first time. However, it is still costly to adopt them for 

common use. For that reason, a new portable low dose xCAT ENT has been introduced. The 

dimensions of the scanner are smaller than traditional CT scanner. Moreover, the CT images 

with slice thickness as low as 0.4 mm can be produced. This scanner is good for providing 

guidance for the surgeon with better resolution but the soft tissue contrast is not as good as 

diagnostic scanners. One example of the iCT image is shown in Figure 1-12. 

  
Figure 1-12 The iCT image in brain surgery[50] 

 
Compared to iMR and iCT, the iUS has gathered a lot of attentions for the reason that it is 
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cost-effective and safe[51-65]. In 1989, Leroux el al. measured the difference in tumor 

volumes predicted by pCT and iUS[66]. They pointed that using ultrasound can enhance the 

selection of resection margins during surgery. In 1997, Bucholz et al.[9] proposed to use iUS 

to correct brain shift and demonstrate the ability of iUS to capture, register and measure 

brain shift by using 2D US images. They further predict the ability of iUS in 3D space. A 

research group from Canada demonstrated the ability to acquire 3D iUS image to register the 

intraoperative data to preoperative images by incorporating image warping 

technology[67-69]. The current iUS, however, suffers from low signal-to-noise (SNR) which 

limits its effectiveness during surgery.  

Overall, the intraoperative image technologies described in this section failed to provide 

quantitative brain shift compensation by themselves. Rather, the brain shift compensation 

springs from the surgeon’s expertise and is performed in a qualitative manner. Accordingly, 

model-updated image guided neurosurgery (MUIGNS) is proposed to compensate brain shift 

in a quantitative manner.   

3) IGNS developed to track brain shift using model-updated image 

The idea of MUIGNS is that the pre-operative data could use intraoperative data to deform 

algorithmically in order to provide accurate feedback of the position and shape of the brain 

during surgery. At the beginning, Roberts et al. used a computational model that could 

predict the motion of brain under loading conditions in the OR. There has been quite a lot of 

research related to computational model since Roberts’s research [70-87]. Also, some other 

mathematical methods could be used for the matching of intraoperative data and 

preoperative data, such as atlas based modeling of the brain shift[88] or interpolation of shift 

[89]. For the computational models, one of the most accurate models of brain shift has been 

proposed by a group at Dartmouth. The model adapts Biot’s theory of consolidation and 

likens the brain to be a sponge. Nowadays, computer technology could make the model 

calculation real-time. 

For the implementation of MUIGNS, one critical issue is the accurate acquisition of 

intraoperative data. The intraoperative data is renamed as sparse-data in this area since the 

data has limited information or extent. Each of the intraoperative imaging method described 

above could be used for the sparse-data acquisition. However, as aforementioned, iMR 

images are expensive and could interfere with the neurosurgical workflow, leading to 

barriers to its widespread acceptance; iUS is less expensive but provides relatively poor 

image quality. Recently, efficient methods to acquire the brain surface using non-contact 
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range-sensing for the brain surface is widely researched.  

One of the technologies for measuring the brain surface data during surgery is stereovision 

[6, 34, 90-94]. This method provides the brain surface with information in a non-contact 

fashion by using a pair of calibrated cameras. Another textured brain surface measurement 

method, the laser range scanner (LRS), has been used in brain surgery to capture the brain 

surface with texture image [95-110]. The brain surface, measured by stereovision or LRS, is 

used by the MUIGNS system for model deformation driven by registration between 

intraoperative captured images or registration between the preoperative image and 

intraoperative image. Our research in this dissertation is mainly focusing on the 

intraoperative brain image registration for tracking the brain surface deformation for 

MUIGNS to update the brain model to guide brain surgery. The previous methods on 

intraoperative brain-surface registration will be described in next section. 

 

1.6 Previous Methods on intraoperative brain-surface registration and 

their problems 

The previous intraoperative brain registration methods could be classified into 2D image 

registration methods and 3D registration methods according to the registration image 

dimension.  

1) 2D image registration methods 

The researchers in Vanderbilt University proposed a method to register brain image before 

and after tumor resection. In their method, they take the advantage of vessel texture and the 

vessels are considered to be the texture point and segmented using Frangi filter[111]. Then 

the corresponding points between the vessels from two brain images are estimated by Robust 

Point Matching (RPM) algorithm. After obtaining the corresponding points, the whole image 

is deformed by the Thin-Plate-Spline (TPS) interpolation method[101]. The mathematical 

description is shown below: 
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In that function, ya is the control point and f if the transformation that needs to be calculated 

and f(va) is the estimated corresponding point. The first part of the function tries to find the 
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corresponding point while the second part of the function tries to constraint the shape so that 

it deforms smoothly. Afterward, they further extended this method into a vessel based video 

tracking method for 2D-brain image tracking[100]. They introduced a vessel-ness and 

intensity combined feature point extraction in the brain image tracking. The feature can be 

seen in the following equation: 
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Where R, G, B is the pixel intensity value on RGB channel; V is the vessel corresponding 

value of the pixel evaluated by Frangi filer; r is the length of a line perpendicular to each 

center line of the detected vessel. Their clinical evaluation results showed that they can track 

brain surface image well even when there are some occlusions. An example of their vessel 

based brain surface tracking is shown in Figure 1-13. 

In summary, the TPS based 2D brain registration is composed of the following steps: 

1) Texture/Feature point extraction from the 2D image. 

2) Texture/Feature corresponding point estimation. 

3) The whole image deformation by TPS by considering the texture/feature point as the 

control point.  

 

Figure 1-13 An example of Ding’s vessel based brain image tracking. The series images showed the vessel 

tracking result, in which the yellow line is the initial vessel and the green line is the tracking result[100].  
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Furthermore, Ji et al., another research group in Dartmouth College, proposed to adapt the 

optical flow based registration for brain surface registration[93]. Similar to TPS based 

method, his method also contains corresponding and deformation constraints. The 

mathematical description is shown below: 

data smooth( , )E u v E E   

                          2
data (| ( ) ( ) | )dE I I   p w p p                     (1-3) 

2 2
smooth (| | | | )dE u v    p  

Where p = (x, y, t) and the underlying flow field, w(p) is given by w(p) = (u(p),  v(p), 1), 

where u(p) and v(p) are the horizontal and vertical components of the flow field, respectively. 

Edata means the cost for the constancy assumption while Esmooth constraint the shape to 

deform smoothly. In the smooth energy, 2 2 2| | x yu u u   with ,x yu u u u
x y
 

 
   and  is the 

gradient operator. Because the flow field in a natural scene is typically smooth and by 

applying the smooth constraint, the brain can deform smoothly. Their method was evaluated 

by 18 clinical surgical cases and their result shows that their proposed method achieved an 

accuracy around 1mm on average compared to the OPTOTRAK measured results. One 

example of Ji’s method is shown in Figure 1-14. 

 

Figure 1-14 Cross-sections of cortical surfaces reconstructed from iSV at five-time points during surgery 

on the same coronal pMR image showing the progression of the exposed cortical surface during tumor 

resection for patient 11 in (a). The resulting 3D displacement[93] 
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Ji et al.’s method, however, highly depends on the intensity of the brain image since they 

assumed that the intensity of brain image remains constant during surgery. However, this 

challenging assumption could not hold solidly in the clinical situation[112]. To solve this 

problem, Faria et al. further extended Ji’s method using normalized cross correlation (NCC) 

to track brain surface 2D image through stereovision system[113]. NCC was used to find the 

corresponding between the stereovision image pair and successive images for tracking. They 

proposed an iSV based on brain surface reconstruction and tracking method, which is robust 

to intensity variations. However, this method is based on the assumption that the motion of 

the feature between frames is limited, and it fails when significant deformations occur.   

A 2D image should be mapped to a 3D space to compensate for brain surface deformation, 

and interpolation is usually required when resolutions of the 2D image and 3D point are 

different. In addition, 2D image distortion might contribute to displacement errors in the 

physical space. Therefore, registration between intraoperative 3D brain surface images is a 

direct method of tracking brain surface. Some researchers have proposed to use 3D shape 

instead of the 2D image for the registration, which will be described in the following section. 

 

2) 3D surface registration methods 

To track brain surface, Sun et al. assume that the brain did not contain large deformation in 

the surgery and the Iterative Closest Point (ICP) rigid registration method is used to register 

the brain surfaces[6, 94]. 
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In the function, iq is the source point and cor
ip is the considered closest point, R and t are 

the rotation matrix and translation matrix. In Sun’s method, only the surface is used for the 

registration, and the two surfaces are aligned in order to achieve a minimal surface alignment 

error. However, surface information alone might fail in surface registration when the surface 

has large deformation. Then the non-rigid surface registration method is needed.  

Furthermore, vessels, as the most readily visible structures on the brain surface, have also 

been used for brain surface registration [96, 100-102, 104, 114-116]. For example, Marreiros 

et al. proposed a non-rigid deformation pipeline for compensating superficial brain shift 

using superficial blood vessels as landmarks. They used the coherent point drift (CPD) to 

determine the correlation between intraoperative vessels and preoperative vessels from 
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magnetic resonance angiography and then used TPS to generate volume deformation, the 

equation is described as equation 1-5, where va is the point (x,y,z); ya is the estimated 

corresponding and the second part is the constraints. Moreover, Cao et al. also proposed a 

non-rigid registration method using 3D vessel information registration by RPM to find the 

corresponding points. Similar to Marreiros’s method, TPS was implemented to generate a 

global deformation calculated by 3D vessels corresponding between two shapes. The 

influence of surrounding materials could be decreased by integrating vessel structures[104]. 

An example of Cao’s method is shown in Figure 1-15. Through evaluation of the RE and 

TRE, their results showed that the RE is 0.4 mm while the TRE is around 4 mm.   
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Figure 1-15 Registration result of Cao’s result by using the vessel. (White line is the vessel used for 

registration)[96] 

 

The LRS and stereo-system can offer textured brain surface which Perrine Paul et al. Took 

advantage of [117]. They proposed a surface combined with intensity method. In their 

method, a corner detection based on marker can be used to register the 3D surface. An 

energy function containing surface Euclidean distance, intensity Euclidean distance and land 

marker Euclidean distance were proposed to register the brain surface, as shown in equation 

1-6. 
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Where, A is related to the image intensities; B is related to the Euclidean distance between 

surfaces; C is related to the Euclidean distance between landmarks. Their method was 

compared with ICP based registration method by one clinical surgical cases. P is the 3D 

point position. The result showed that the method can achieve an accuracy of 2.2±0.2 mm 

while the result of ICP method is 5.8±0.9 mm. An example of land-marker detected for 

registration is shown in Figure 1-16. 

 

Figure 1-16 Lander marker detection based on brain surface tracking[117]. The red dot is the detected 

corner points for registration during deformation tracking. 

 

3) Problems in previous methods 

 
As mentioned above, some previous methods have been proposed to track brain surface in 

experiment setting up or clinical situation. According to the image dimension used, the 

previous methods can be divided into 2 categories: 2D/2D registration method and 3D/3D 

registration method. However, they suffered from some problems, which will be described 

below. 

 

a) Problems in previous 2D registration methods 

 

In Ding’s TPS-registration method, they use the vessel to obtain the corresponding of the 
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control points and the whole image is deformed by TPS interpolation [100-102]. TPS is a 

linear space interpolation method and when the vessels are few the registration will lead to a 

bad result. Also, when the image pixel point is far away from the vessel but has large 

deformation, their method also might fail in such registration case. In the energy function, as 

seen in equation 1-1, there are only 1 parameter λ, which is used to constraint the 

deformation and it is easy to shrink the image. Further, Ding extended the method to 

intensity and vessel feature based video stream brain image tracking. In this method, the 

continuous video stream is needed to identify and track a set of vessels which means 

additional image processing is demanded when sudden appearance/disappearance of blood 

or surgical tools occurs in the field-of-view. Also, because of adapting TPS, the previous 

disadvantage of TPS has not been overcome.  

Optical Flow based on registration method, proposed by Ji et al., is established on the 

assumption that the intensity of the image remains constant in the surgery[93]. However, the 

OF algorithm can fail or result in displacement artifacts when the gray value constancy 

assumption no longer holds. For example, displacement artifacts occurred when no physical 

correspondence existed for pixels near the craniotomy in the synthetic undeformed image 

when it was radially stretched outward within the craniotomy[112]. This disadvantage can be 

avoided by using the normalized cross correlation (NCC)[113] based on feature point 

tracking method proposed by Faria et al. However, the NCC based on method assumed that 

the motion of the feature between frames is limited, and it fails when significant 

deformations occur.  

 
b)  Problems in previous 3D registration method 

 

In the 3D registration methods, Sun’s registration method assumes that the brain did not 

deform largely in the surgery. Accordingly, they apply a rigid ICP method to register the two 

surfaces. However, if the brain has large deformation, the ICP method would fail in such 

kind of situation because large deformation usually happens in brain surgery [94]. Also, the 

ICP method only considers the shape information, which will easily cause the sliding error 

along the surface, as suggested in Figure 1-17. In Figure 1-17, (a) is an example of source 

with curve texture on it; (b) is the target surface with same texture on it; (c) is one of the 

registration results. And the curve line serves as the texture during registration.  As 

suggested in (c), even the surface can achieve good alignment while the texture remains 
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sliding error on the surface. Accordingly, 3D surface registration combining texture is 

necessary to overcome the problem of shape-using only registration method. 

 

                       (a) Source             (b) Target           (c) Registration 

Figure 1-17 An example of registration sliding error using only the surface. (a) is source surface and (b) is 

target surface. (c) shows one of the surface alignment with a sliding error caused. 

              

Cao’s TPS based 3D shape non-rigid registration method also inherits the disadvantage of 

Ding’s 2D image registration method[104], as described in equation 1-5. As mentioned 

above, the 3D vessel was considered as the texture and the control point in the registration. 

By applying Robust Point Matching method (RPM), the corresponding pair of the 

intraoperative vessels can be estimated. Then the estimated corresponding of vessels drives 

the brain surface deform using TPS, the same interpolation method used by Ding et al. Their 

results showed that the brain registration will get more registration error when few vessels 

are presented.  

In Paul’s 3D brain surface registration method, they combined a corner detection feature, 

surface Euclidean distance and intensity Euclidean distance for the registration of the 

shape[117], as described in equation 1-6. In their energy function, they only give the energy 

cost for the corresponding cost and did not offer the surface deformation constraint. Then 

their method is easy to make abrupt shape change and shape shrinking. On the other hand, 

they use the corner feature which needs a continuous video stream. If there is any 

interruption of the video, the feature tracking will fail.    

In summary, the previous methods suffer from sliding error[6], large error occurred far away 

from texture[90, 96, 101], the assumptions on some special conditions (intensity keep 

constant[90] or feature remain similar in frames[113]).  A 3D non-rigid registration method 

which combines shape and texture, robust to texture-feature numbers change and extend of 

deformation, was proposed in this dissertation. We proposed a novel approach using both 

surface shape and texture. Registration method using only the shape can compensate the 
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brain deformation in the direction vertical to the brain surface. It, however, could cause 

surface sliding error along the surface. On the other hand, using texture information for 

registration can compensate the brain deformation/motion along the brain surface direction. 

Thus, by combining the texture and shape, the proposed method can register the deformed 

brain surfaces while reducing the surface registration sliding error.   

 

1.7 Objective 

In order to track brain surface during deformation and reduce sliding error along brain 

surface, this research proposed a new non-rigid registration method by integrating shape and 

texture information. The shape and texture information were simultaneously obtained by an 

implemented phase-shift measurement system. By integrating shape and texture information, 

the proposed non-rigid registration method achieved higher tracking accuracy compared to 

previous methods. The contributions of this dissertation include the following aspects: 

1) A marker-less approach to tracking brain surface 

As described before, the traditional marker-based tracking system is an invasive approach, 

cumbersome and time-consuming work. Moreover, the marker based tracking system highly 

depends on the accuracy of the placing markers. Thus, we offered an imaged based 

marker-less approach to tracking brain surface deformation. The advantages of the proposed 

mark-less approach is that it’s a non-invasive and effective approach to tracking brain 

surface. More, the assisted equipment of accurately placing markers on the brain surface is 

not needed. 

 

2) A phase-shift based brain surface measurement system for textured 3D brain surface 

measurement 

A phase-shift 3D surface measurement system [118, 119]  was implemented to measure the 

brain surface and capture the texture simultaneously in this dissertation. The implemented 

phase-shift 3D surface measurement system is composed of a high speed camera and a 

projector. The projector can project phase-shift patterns onto the brain surface and the high 

speed camera can capture the brain surface texture information. Different to the previous 

brain surface measurement systems (stereovision [90, 91] and LRS [96, 100, 101, 105, 107, 
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109] ), phase-shift method usually generates a dense 3D surface and one to one pair 

corresponding between the texture point and 3D point. Phase-shift [118, 119] uses the 

wrapped phase information to find the corresponding point between camera image pixel and 

projector image pixel. Then the textured brain surface could be obtained after triangulation. 

Meanwhile, the intensity variation on the brain surface is strong and the implemented 

phase-shift 3D measurement is robust to texture change which is vital in our brain surface 

measurement.  

  

3) Marker-less tracking brain surface by non-rigid registration combining shape and 

texture. 

In this dissertation, we proposed a novel approach to tracking brain surface by non-rigid 

registration combing surface shape and texture. Registration method using only the shape 

can compensate the brain deformation in the direction vertical to the brain surface. It, 

however, could cause surface sliding error along the surface. On the other hand, using 

texture information for registration can compensate the brain deformation along brain 

surface direction. Thus, by combining the texture and shape, the proposed method can 

register the deformed brain surfaces in both perpendicular to the brain surface and along 

brain surface direction, while reducing the surface registration sliding error.   

 

1.8 Thesis Organization 

The following parts of the thesis are comprised of four parts: system introduction, non-rigid 

registration method, experiment and result, conclusions and acknowledgment.   

In chapter 2, our system configuration, the phase-shift measurement, the projector projection 

and system calibration are introduced. 

In chapter 3, the non-rigid registration method including texture segmentation, 

corresponding estimation, deformation constraint, optimization and interpolation were 

described. 

In chapter 4, the 3D shape measurement and non-rigid registration method were designed 

and described in this chapter to evaluate the accuracy of our method and system.  
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A discussion will be given in chapter 5 and a conclusion will be given in chapter 6.  

Finally, an acknowledgment will be given in Chapter 7.  
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2   Method 

In this chapter, the system configuration, 3D surface measurement method, projector 

projection method and system calibration are introduced.   

2.1 System Configuration 

In our system, we implemented the phase-shift 3D shape measurement system to measure 

brain surface with texture. Our 3D surface measurement system is comprised of a projector 

and a camera. The implemented phase-shift measurement system can acquire textured brain 

surface by projecting phase-shift pattern and analyzing the modulated 2D image pattern, as 

shown in Figure 2-1.  

Figure 2-1 (a) shows the projector-camera system configuration. The camera (IDP Express 

R2000, Photron Inc.) and projector (SHOWWX, MICROVISION Inc.) used in our 

measurement system are shown in Figure 2-1 (b) and (c). The camera is used to capture the 

real-time images while the projector is used for the phase-shift pattern projection and the 

brain mapping information projection. 

The specific parameters of projector and camera are listed in Table 1.  

 
(a) System configuration  



 

 36 

     
                  (b) Camera                          (c) Projector 

Figure 2-1 3D measurement system, comprised of a camera and a projector. 

 

The working flow of the whole system is shown in Figure 2-2. In Figure 2-2, in the step 1, an 

initial 3D surface with texture is measured; in step 2, a deformed textured brain surface is 

measured; the two surfaces are registered by the proposed non-rigid registration method in 

step 3.   

Table 1 System configuration 

Camera IDP Express R2000, Photron Inc. 

Camera resolution [pixels] 512 × 512 

Laser projector SHOWWX, MICROVISION Inc. 

Laser projector resolution [pixels] 848 × 480 
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Figure 2-2 3D measurement system work flow: (a) is the projected pattern from the projector; (b) is the 

captured 2D image by the camera; (c) is the object; (d) is the procedure of 3D surface computing; (e) is 

the calculated textured brain surface 

 
The detail of the working environment of our system is shown in Figure 2-3 with a brain 

phantom as the scanning object. Our system is mounted on an adjustable arm (point setter, 

Mitaka Kohki Co., Ltd.), where the position and the angle can be set by the pneumatically 

driving joint. 
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Figure 2-3 Detail of the working environment of our system. The system is comprised of a camera and a 

projector. 

 

2.2 Brain surface measurement 

As mentioned above, our system implemented phase-shift 3D shape measurement to 

measure brain surface. In the previous research, the Laser Range Scanner (LRS) and 

stereo-system have been used to measure brain surface and they can offer the textured brain 

surface.  

 

2.2.1 Previous brain-surface measurement methods 

In the previous research, measuring the intraoperative textured brain surface includes two 

kinds of system: Laser range scanner (LRS) and stereo-system. And these two kinds of 

technologies will be described in this section. 

a. Laser range scanner (LRS) 
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Figure 2-4 The configuration of laser range scanner[120]. The projector projects the red beam onto the 

target object and the camera records the reflection of the beam on the target. 

 
The Laser Range Scanner (LRS) involved a laser-beam projector and a camera, as shown in 

Figure 2-4. A sheet beam is projected on the target, and then the camera gets the incident 

beam positions. Then the range data of the target Z can be given by: 

                             1 2

1 2

tan tan cos
tan tan
dZ  


 




                    (2-1) 

 

Where d, α1, θ is the distance between the camera and the beam projector, the beam 

projection angle, the angle between the x-z plane and point on the target. And α2 is derived 

from a beam position on the image sensor.  

In LRS, the captured 2D texture image and the measured 3D surface is relatively separated. 

In order to obtain the correspondence between the 3D point and the 2D texture, a projection 

transformation is derived using the direct linear transformation algorithm (DLT). The DLT 

uses at least eight geometric fiducials ( , , )i i i iX x y z and their corresponding texture 

coordinates ( , )i i iu u v to calculate 11 projection parameters, which can be used to map X  

to u  as follows: 
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  

 
  

                     (2-2) 

 

Figure 2-5 shows a commercial LRS which is composed of camera and laser scanning, 

which has been used in surgeries applications by Ding et al. and Cao et al. Figure 2-6 (a) 

shows the FOV of a brain surface scanning and Figure 2-6 (b) shows the generated 3D point 

cloud.  

 

Figure 2-5 LRS used in Ding et al.’s research[110] 

 

 
          (a) Brain surface scanning                 (b) Generated brain surface 

 

Figure 2-6 LRS application in brain surgery[110] 
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b. Stereo-system 

 

Another 3D measurement system is an inactive method that has been used to measure 3D 

brain shape with texture by using dual cameras. After the camera calibration to estimate the 

intrinsic parameters, extrinsic parameters and point correspondences, the 3D shape could be 

obtained by triangulation. One of the 3D stereo shape measurement systems is shown in 

Figure 2-7. One of its 3D measurement results is shown in Figure 2-8.  

 

Figure 2-7  Stereo-3D brain surface measurement [6] 
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(a) Captured 2D image for 3D reconstruction 

 
(b) Generated 3D surface 

Figure 2-8 3D measurement result of stereo-camera system[6]. 
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c. Phase-Shift 3D Measurement 

 

In our system, we implemented a phase-shift 3D shape measurement. The resolution of 

points acquired by LRS is less than that of image textures, limiting tracking accuracy. 

Moreover, projection transformation, calculated using 11 estimated parameters, or 

interpolation is needed to obtain the corresponding between 3D point and 2D texture 

(described by equation 2-2). 3D brain surface generated by stereo-system useS only a subset 

of image pixels for matching, resulting in a spatially coarse surface. In contrast, the 

implemented phase-shift method usually generates a dense 3D textured surface by obtaining 

every corresponding pixel pair between camera images and projector images without 

interpolation and projection matrix. This method is robust to the texture intensity change 

which is important for brain surface measurement because the texture on brain surface 

contains large intensity variations. Meanwhile, phase-shift is a 3D measurement method that 

has been applied in different areas. Especially, it has been used into Surgery Navigation 

Systems[118, 119].  

Figure 2-9 shows the configuration of a phase-shift system. This is a typical 

triangulation-based system. A computer generated sinusoidal fringe pattern is projected by a 

projector onto an object surface, a camera, from another viewing angle, captures the 

scattered fringe images by the object. The computer can compute and recover the 3D shape. 

Since this is a triangulation-based system, the correspondences between the projector 

projected image and the camera captured image must be identified. 

In the phase-shift method, the correspondence between camera image pixel and projector 

image pixel is established in phase domain that means a pixel on the camera correspond to 

the point projected by the projector only if both points have the same phase value. Because 

the structured pattern contains vertical stripes, each phase value corresponds to a vertical line 

on the projected image. Once the correspondence is identified, the depth information can be 

recovered based on triangulation. 

A set of sinusoidal patterns is projected onto the object surface. The intensities for each pixel 

(x,y) of the projected patterns are described as:  

          ' '' 2 ( 1)( , ) ( , ) ( , ) cos( ( , ) )iI x y I x y I x y x y
N

 
                   (2-3) 

In the function, I(x,y) is the intensity of the projected patterns and 'I (x,y) is the offset 
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component (background); ''I (x,y) is the modulation signal amplitude; is the phase ( , )x y , 

N is the projected pattern number. Figure 2-10 (a) shows the graph profiles of the 

combination of the three sinuous wave patterns. 

 

 

Figure 2-9 The phase-shift measurement system[121] 

 

 
   (a) Profile of the sinuous patterns         (b) Example of one projected pattern 

Figure 2-10 Phase-shift with three projection patterns and an example of a fringe image 

 

Then the ( , )x y in the function can be calculated by the function shown below: 

            

' 1

1

( , )sin[2 ( 1) / ]
( , ) arctan

( , )cos[2 ( 1) / ]

N
ii

N
ii

I x y i N
x y

I x y i N









    
  




                          (2-4) 

                

Where Ii(x,y) is the intensity of the ith image at pixel (x,y); N is the total projected image 
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number. 

The phase directly gives a depth-map of the projected surface, which can be converted into a 

distance measure from a calibration object with known geometry.  

However, in the phase-shift method, the phase calculated is just the relative phase in the 

region [ π, π]  and then a phase-unwrap is required to achieve unique correspondence 

between phases and heights due to a 2π angular period of radians. The unwrapping 

procedure is illustrated in Figure 2-11 for the undistorted projected pattern (left) and the 

distorted pattern captured in the camera (right). The periods along the dimension of the 

angular phase are added to a multiple of 2π archiving a unique depth information. 

 
(a) Projector image plane                    (b) Camera image plane 

 

Figure 2-11 Phase unwrapping procedure 

                            

The basic idea to unwrap the phase is shown as the following function: 

                       1

0

( ) ( ) 2
INT{[ ( ) ( 1)]/2 +0.5}
0

u i w i i

i w i w i i

x x m
m x x m
m

  
   

 

   



                        (2-5) 

This kind of phase unwrapping is based on the previous pixel result. That means if one-pixel 

phase unwrapping result is incorrect, the error of all the pixels after this pixel will be 

accumulated. An example can be seen in Figure 2-12.  
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              (a) Wrapped image                        (b) Unwrapped image 

Figure 2-12 Phase unwrapping 

 
In Figure 2-12 (a) is the wrapped phase after the calculation and (b) is the unwrapped phase. 

The horizontal line was an error due to an error occurred at one pixel. So some researchers 

proposed other methods addressing this problem, such as flood-fill[122] based, quality map 

quality-guided phase unwrapping algorithm, and reliability evaluation based algorithm[123].  

In those methods, the quality map guided methods provide a guide to the phase unwrapping 

procedure. The state of art quality map calculation methods are shown below: 

1) Pseudo-correlation map 

The pseudo-correlation map[124] is designed to measure the correlation of the wrapped 

phase images. The value of the quality map for pixel (x,y) is calculated according to 

               
2 2

, ,
, 2

( cos ) ( sin )i j i j
x yq

k

 


 
                 (2-6) 

Where ψi,j is the wrapped phase value and the sums are evaluated in the k×k neighborhood 

centered at each pixel(x,y). The pseudo-correlation map is based on the correlation of the 

wrapped phase image. It is sensitive to the noise phase data since the noise regions of 

wrapped phase image are normally the low correlation regions. However, the 

pseudo-correlation map may mark the reliable regions with steep slopes as low-quality 
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regions. 

 

2) Phase derivatives variance map 

      The phase derivative variance map[124] measures the statistical variance of the phase 

derivatives. The value of this map for pixel (m,n) is expressed as  

                  
2 2

, , , ,
, 2

( ( )) ( ( ))x x y y
i j m n i j m n

m nq
k

      


 
             (2-7) 

Where the terms ,
x
i j  and ,

y
i j  are the partial derivatives of the phase, the terms ,

x
m n  and 

,
y
m n  are the averages of these partial derivatives in the k×k windows, and the sums 

evaluated in the k×k neighborhood centered at the pixel (m, n) The phase derivatives 

variance map can be estimated as the local sample variance of the phase derivatives. The 

map indicates the badness of the phase data. In other words, the more unreliable the phase 

data is, the higher the phase derivatives variance is. 

 

3) Maximum phase gradient map 

The maximum phase gradient map[124] is defined as the largest phase gradient value in the 

k×k neighborhood of each pixel. The value of the quality map for pixel (m, n) is calculated 

according to  

                , , ,max{max{| |}, max{| |}}x y
m n i j i jz                     (2-8) 

Where the terms ,
x
i j  and ,

y
i j  are the partial derivatives of the phase and the max are 

evaluated in k×k neighborhoods of the given pixel. 

In our system, we implemented a phase unwrapping methods by reliability[125] which use 

the second differences. The use of the absolute value of the gradients in the reliability 

function has a number of disadvantages. If a high carrier value is present, the carrier 

becomes the major modulation component. However, a low carrier value would increase or 

decrease the values of the gradients depending on the pixel of the images, and produce an 

inappropriate measurement for reliability. 

The calculation of second differences for pixels in an image can be find in Figure 2-13. To 

calculate the second differences, the pixels(i,j-1),(i,j+1)(i-1,j) and (i+1,j) is needed and is 

called orthogonal neighboring pixels. Where (i-1,j-1),(i+1,j-1),(i-1,j+1) and (i+1,j+1) pixels 

are called diagonal neighboring pixels.  
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(i-1, j-1) (i, j-1) (i+1, j-1)
(i-1, j) (i, j) (i+1, j)

(i-1, j+1) (i, j+1) (i+1, j+1)
 

Figure 2-13 Calculation of the second differences in an image 

 

The second difference D of (i,j) pixel can be calculated by the equation: 

                                     1 /R D  

                   2 2 2 2 1/2
1 2( , ) [ ( , ) ( , ) ( , ) ( , )]D i j H i j V i j D i j D i j     
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     
     

     
     
       

       

    (2-9) 

         

This phase unwrapping method can achieve a very good phase unwrapping result because it 

unwrapps the phase from the highest reliable value to the lower reliability value. But if the 

object is separated, the phase unwrapping algorithm will not work. However, this will not 

happen in the surgery brain measurement. The phase unwrapping result will be shown in the 

following section. The device nonlinearity or gamma distortion makes the ideal sinusoidal 

waveforms non-sinusoidal. In the aspect of the frequency domain, a single frequency for the 

ideal sinusoidal waveform becomes an infinite width of spectrum. The summation of infinite 

harmonic coefficients is absolutely convergent because the distorted waveform is a power 

signal.  

After phase unwrapping, we can obtain a relative continuous phase distribution in vertical 

and horizontal direction. For the dot image, we know the dot point phase value and we set 

the value on vertical direction to be _d ver  and in the horizontal direction to be _d lat . We 

can also find the dot point phase value on the phase distribution in the phase unwrapping 

image. We set the value on the phase unwrapping image vertical direction to be '
_d ver and in 

the horizontal direction to be '
_d lat . Then the shift number in vertical and horizontal 

direction to be 
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'

d_ver d_ver
ver int( )

2
S

 



                        (2-10) 

                           
'

d_lat d_lat
lat int( )

2
S

 



                         (2-11) 

Then for all the phase values in the vertical and horizontal direction, the new phase value is 

calculated by 

                       ver ver ver( , ) ( , ) 2x y x y S                          (2-12) 

                       lat lat lat( , ) ( , ) 2x y x y S                           (2-13) 

Then the relative phase to the absolute phase-shift could be solved by the dot image 

projection. 

After obtaining the absolute phase value on the projection image both in vertical and 

horizontal direction, the correspondence between the camera and projector image can be 

obtained by the function as shown below: 

                             

'

'

( , )
2

( , )
2

y

x

x y L
y

x y Lx










                        (2-14)                        

In the function, (x,y) is the coordinate of captured camera pixel in the 2D image while 
' '( , )x y  is the calculated correspondence coordinate in projection image. After this, the 

triangulation information can be used to obtain the 3D position of the object.   
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2.3 Information Visualization  

Our system consists of a projector and a camera for 3D shape measurement. In the system, 

the projector has two roles. One is to project phase-shifted patterns and the other is to project 

images onto the brain surface. Because from the captured image, we can get the 

corresponding pixel of camera from projector and then we can generate a projection image 

for projection by the following equation: 

                         
c

1

c
1

2sin( )
arctan

2cos( )

N
i

i
N

i

i

iI
N

iI
N










 
 
 
 
 
 




                     (2-15) 

In the equation, N is the total shifted pattern number and index i is the ith image number. The 

vertical pixel corresponding and horizontal pixel corresponding will be described in the 

following sections.  

2.3.1 Vertical pixel corresponding calculation 

 

Figure 2-14 Unwrapped phase in x-axis 

 

 
(a)  Wrapped phase                  (b) Unwrapped phase 
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    (c) Vertical original projection phase       (d) Vertical original continuous phase 

Figure 2-15 Vertical phase calculation 

 
Figure 2-14 showed the phase unwrapped distribution in the x-axis direction by simulation. 

In Figure 2-15, (a) is the calculated wrapped phase, and (b) is the unwrapped phase after 

phase unwrapping. (c) is the original vertical projection image with 848 total pixel number in 

the x-direction and Lx is the wave length. (d) is the phase distribution in the x direction. By 

using the following equation, we can get the vertical x pixel corresponding of camera and 

projector. 

 

                       1 1

0

( ) ( ) m 2
m | ( ) ( ) | /2 0.5 m
m 0

u i w i i

i w i w i i

x x
x x

  

   

 

     


             (2-16) 

c c( , )
2p x
x yx L 


  

 

2.4.2 Horizontal corresponding pixel calculation 
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Figure 2-16 Unwrapped phase in y direction 

 

        
(a) Wrapped phase                      (b) Unwrapped phase 

          
          (c) Horizontal original projection phase       (d) Horizontal original continuous phase 

Figure 2-17 Vertical phase calculation 

                1 1
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              (2-17) 

c c( , )
2p y
x yy L 


  

Figure 2-16 showed the phase unwrapped distribution in the y-axis direction by simulations. 

In Figure 2-17, (a) is the calculated wrapped phase and (b) is the unwrapped phase after 
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phase unwrapping. (c) is the original horizontal projection image with 480 total pixel number 

in the y direction and Ly is the wave length. (d) is the phase distribution in y direction. By 

using the following equation, we can get the vertical y pixel corresponding of camera and 

projector. 

 

2.3.3 Example of projection image 

In this section, some projection examples will be demonstrated. 

   
             (a) Original 2D image             (b) 2D image with labeled color 

Figure 2-18 2D brain phantom image 

 
As shown in Figure 2-18, (a) is the original brain image and (b) is the brain function labeled 

image. In Figure 2-18 (b), the transparent green color is labeled to represent the area for 

language function. The “S” means “speaking”. 

After labeling on the original image with brain function mapping color, our system can 

project this function mapping onto the brain surface by scanning the brain surface and 

finding the correspondence between the camera image and projection image. In Figure 2-19, 

it is the calculated projection image with labelling color for projection. In Figure 2-20, the 

projected image captured by camera onto the brain phantom is shown. It can be seen that the 

transparent green color represents the language function area and when surgeon performs the 

surgery, this labeled area should be avoided in the brain surgery. The surgeon can directly 

see the brain labeled color brain mapping information without any other monitor. And also 

because the labeled color is transparent, it will not disturb the vision of surgeon and the 

procedure of the surgery. This is just an example of the language function brain mapping. In 

fact, more functions such as motion, sensor function can be projected onto the brain surface 

with different transparent color labeling.  
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Figure 2-19 Calculated projection image 

 

Figure 2-20 Camera captured projected image 

 

A projection application on the porcine brain surface is shown in Figure 2-21 with some 

projection target points.  

      

(a) Target point of pig brain                     (b) Projection result     

Figure 2-21 Projection on porcine brain 
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2.4 System calibration  

Camera calibration, which is crucial in realizing high accuracy of 3D shape measurement, 

was addressed and will be introduced in this section. The camera is modeled as pinhole 

model for the camera calibration; the projector is also considered as a camera by using 

phase-shift projection technology; and then the camera-projector calibration system was 

calibrated by using normal stereo-system calibration. As the projector has gamma effect, 

gamma correction is implemented to reduce the gamma effect.   

a) Camera calibration 

The camera is modeled as pin model in the calibration system and before determining the 2D 

image coordinates of a specified point by the 3D point position in a world coordinate system, 

some transformations and projections need to be performed, as shown in Figure 2-22: 

1. A rigid transformation from world coordinates (X, Y, Z) to camera coordinates (Xc, Yc , Zc) 

2. Perspective projection from camera coordinates (Xc,Yc,Zc) to undistorted sensor 

coordinates (x,y) 

3. Adjustment of undistorted sensor coordinates (x,y) to distorted sensor coordinates (xd, yd)  

4. Unit conversion (mm to the pixel) of distorted sensor coordinates (xd, yd) to image 

coordinates (xf, yf). 

The detail of each of coordinate systems is described below: 

The transformation from world coordinates to camera coordinates in homogeneous 

coordinates is  

                              

c

c

c 0 1
11

X X
Y R T Y

ZZ

   
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                         (2-18) 

Where R is the rotation matrix and T is the translation matrix. 

Undistorted sensor coordinates (x,y) can be computed from camera coordinates (Xc, Yc , Zc) 

by the following equations: 
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c
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y f
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


                             (2-19) 

Where f is the camera focal length. Then we can see that by using the pinhole camera model, 

a world coordinates could be projected back to the image plane coordinates by  
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                          (2-20) 

Where P is a parameter that can be described by R T and f. 

After that, the conversion of distorted sensor coordinates to image coordinates can be 

described by the following equation: 

fx
f x d x

cx x

N
x S x C

N d
                        (2-21) 

1
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y x C

d
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Figure 2-22 Camera model: perspective projection and lens distortion 

 

For the camera distortion, the mathematical description of the commonly used distortion 

model is described by the equation: 
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                     (2-22) 

Where (x,y) is the undistorted sensor coordinates and (xd, yd) is the distorted sensor 

coordinates. (κ1, κ2,…κn) are the lens distortion parameters. The conversion from the 

distorted sensor coordinates (xd, yd) to image coordinates (xf, yf) is described below: 
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                      (2-23) 
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Where Nfx is the number of pixels in a line sampled by the user; Ncx is the number of camera 

elements in X direction; dx and dy are the center distances between adjacent camera elements 

in X and Y direction, respectively; Sx is the scale factor and (Cx, Cy) is the image center.  

We have described how the world object could be projected to image coordinates by 

perspective projection and a radial lens distortion model. The extrinsic and intrinsic camera 

parameters need to be calibrated to perform a projection. There are total 11 parameters 

among all the parameter and then 11 equations are needed to obtain the 11 parameters. Then 

the transformation from world coordinates to image coordinates could be described as: 
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                          (2-24) 

In that equation, matrix B is the rigid transformation matrix and A includes the projection 

from camera to sensor coordinates, the transformation from the sensor to image coordinates.  

As noted, 11 equations are needed to calculate the extrinsic and intrinsic camera meters, and 

it could be expressed as the following equation: 
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      (2-25) 

Where, (Xi, Yi, Zi) is the world coordinate and (xi, yi) is the image coordinate. Other 

parameters have been described before. 

 

b) Projector calibration 

The projector is a kind of device for display and in our system, the projector calibration 

followed the method proposed by Song Zhang[126] who considered the projector as the 

inverse-camera through phase-shift technology. The flat plane used with 8×6 green filled 

circle before and after projector projected are shown in Figure 2-23 and Figure 2-24.  
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Figure 2-23 Camera captured image 

 

 

Figure 2-24 Camera captured projected image 

 
The detected circle center position in the camera image could be easily transferred to the 

corresponding position in the projector image plane by equation 2-16 and 2-17 for x-axis and 

y-axis, respectively. Then after changing 15 different positions and directions, the equation 

2-23 could be used to estimate the projector parameter.  
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Figure 2-25 Projector calibration re-projection error 

 

The re-projection error of the projector calibration is shown in Figure 2-25 and it shows very 

small projection error. The extrinsic parameters of the calibration are shown in Figure 2-26. 

From the results it shows that the 19 different calibration image plans are listed from 

different direction and position. One of the re-projected image error is shown in Figure 2-27. 

The error direction and magnitude is described. The estimated projector distortion model is 

shown in Figure 2-28.  

 

Figure 2-26 Projector calibration extrinsic parameters 
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Figure 2-27 Projected points and target points 

 

Figure 2-28 Calculated projector distortion model 

 

C) Gamma calibration 

The gamma effect of the projector makes the output of the projector signal not an ideal 

sinusoidal wave form with a power gamma, as shown in Figure 2-29. 

                             c p( )I I                            (2-26) 

We apply a Fourier transformation to the curve of the projector image and we can find the 

second order harmonics of the projection sin-curve, as shown in Figure 2-30. However, an 
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ideal sinusoidal wave form should not have this. So, it is very important for us to do the 

gamma correction. 

 

 
Gamma = 1 

 
Gamma = 1.5 

 
Gamma = 2 

Figure 2-29 Gamma effect of the projector 
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Figure 2-30 Fourier transformation of the projector image 

 

The result of scanning a plane before gamma correction is shown in Figure 2-31 . A sin/cos 

shape wave is observed in both the vertical and horizontal direction of the plane. 

 

Figure 2-31 The flat plane before gamma correction 

 

A pixel of the projected pattern can be expressed as  

                    p p 2(0.5 0.5cos( ))n
nI

N


                           (2-27) 
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Where αp is a modulation constant controlling the intensity range of a sine wave. In the 

camera image, the captured image distorted by gamma is described as  

              c c 2(0.5 0.5cos( ))n
nI

N


                           (2-28) 

Where c
nI  is the intensity of a pixel, α[0,1] is the reflectivity of a scanned object, γ is the 

combined gamma value for the projector-camera pair (γ≥1). 

Apply the binomial series  

                       
0

(1 )t m

m

t
x x

m





  
    

  
                             (2-29) 

Then c
nI  could be calculated as  

                c
0

20.5 cos ( )m
n p m

nI
m N

   



  
   

  
                     (2-30) 

Then we can have 

                                        (2-31) 

Where  

                            A = 0.5B0                                                (2-32) 
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                                    (2-33) 
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


   

     
                     (2-34) 

Then we can have  

                    , 1, , 1,2 1 2 2k m k m k m k mk b k b mb mb                    (2-35) 

If summing the left- and right- hand side of the function, we can obtain  

                            1

1
k

k

B k
B k




 


 
                          (2-36) 

This is the function we used to find the similar γ of the projector. And  
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In our gamma correction procedure, we use the function shown below to calculate the 

gamma. 

                                2

1

1
2

B
B








                            (2-38) 

 
Spatial frequency [mm-1]               Spatial frequency [mm-1] 

Figure 2-32 Fourier analysis for the projection waveform of before and after correction 

 

The Fourier analysis of the waveform before and after the gamma correction is shown in 

Figure 2-32 and it can see that the 2f0 is suppressed.   

The 3D reconstruction of a flat panel of before gamma correction and after gamma 

correction is shown in Figure 2-33. It is clear that after the gamma correction, the sin/cos 

waveform has been suppressed.  
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   (a) After correction                              (b) Before correction 

Figure 2-33 Flat panel reconstruction result  
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3   Non-rigid Registration Method  

In this chapter, the proposed non-rigid registration method, integrating texture and shape, 

and the implemented 3D shape measurement are introduced. Chapter 3 is comprised of 

non-rigid registration method overview, texture extraction, corresponding-point estimation, 

and spatial interpolation for deformation constraint, optimization.  

3.1 Non-rigid registration method overview 

3.1.1 Related previous studies 

 

Registration is a technology to transform 2D or 3D datasets into the same coordinate system 

so as to align overlapping components of these sets. Registration can be divided into rigid 

and non-rigid registration. The rigid registration assumes that the surface is transformed by a 

rigid transformation matrix while the later allows deformation (e.g. morphing, articulation) 

between images or surfaces.  

The impetus of our research is tracking the brain surface deformation in different surgery 

stages using non-rigid registration to offer sparse data for MUIGS. In the previous methods, 

Sun et al. proposed to implement Iterative Closest Point (ICP)[94], a rigid registration 

method, to align brain surface during brain surgery. The ICP registration method assumes 

that the brain did not deform largely in the surgery. However, if the brain has large 

deformation, the ICP method would fail in such kind of situation because large deformation 

usually happened in brain surgery. Also, the ICP method only considered the surface 

information, which will easily cause the sliding error along the surface, as suggested in 

Figure 1-17. In Figure 1-17, (a) is an example of the source with line/curve texture on it; (b) 

is the target surface with the same texture on it; (c) is one of the registration results. As 

suggested in (c), even the surface can achieve good alignment while the texture remains as 

sliding error on the surface. Accordingly, 3D surface registration integrating texture is 

necessary to overcome the problem of surface only registration method. 

Perrine et al. proposed a non-rigid registration method for registering 3D brain surfaces 
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using video sequences by minimizing an energy function including geometry, intensity, and 

landmark costs[117]. Their results showed an improvement in registration accuracy relative 

to ICP. However, their approach requires that video streams be continuously acquired to 

identify and track landmarks, incurring additional image processing during sudden 

appearance/ disappearance of elements, such as blood or surgical tools. Furthermore, their 

energy function did not contain any constraint for surface deformation, which could cause 

disordered shape deformation. Thus to solve this problem, a brain shift estimation method 

using optical flow has been proposed[90]. The calculated brain shift magnitude was reported 

to agree with the tracked probe data. However, a disadvantage lies in that if the intensity 

changes, the algorithm fails to track brain images. This disadvantage can be avoided by 

using the Normalized Cross Correlation (NCC) based on feature point tracking method 

proposed by Faria et al. [113]. However, this method is based on the assumption that the 

motion of the feature between frames is limited, and it fails when significant deformations 

occur. 

Besides the intensity-texture, vessels or sulci, which are the most readily visible structures 

on the brain surface, have been used for brain surface registration. Marreiros et al. proposed 

a non-rigid deformation pipeline for compensating superficial brain shift using superficial 

blood vessels as landmarks[116]. They used the coherent point drift (CPD) to determine the 

correlation between intraoperative vessels and preoperative vessels from magnetic resonance 

angiography and then used TPS to generate volume deformation. However, their method also 

failed to compensate for deformation in areas where blood vessels were not present. Cao et 

al. also proposed a non-rigid registration method using 3D vessel information registration by 

robust point matching (RPM) to find the corresponding points[96]. Similar to Marreiros’s 

method, TPS was implemented to generate a global deformation calculated by 3D vessels 

corresponding between two shapes. The influence of surrounding materials could be 

decreased by integrating vessel structures; however, large errors similarly occurred in points 

far away from the texture because displacement calculated by the TPS with the 3D vessels 

could be arbitrary around those points. 

Thus, to overcome the disadvantage of previous related methods (sliding error[6], large error 

occurred far away from texture[90, 96, 101], the assumptions on some special conditions 

(intensity keeps constant[90] or feature keeps similar in frames[113])), a 3D non-rigid 

registration method which combines shape and texture, robust to texture-feature numbers 

change and extend of deformation, was proposed. The overview of the proposed method will 



 

 68 

be described in the next section. 

  

3.1.2 Overview of proposed method 

In this thesis, a surface and texture integrating non-rigid registration algorithm was proposed 

to track brain surface. Similar to Cao et al.’s research (TPS based[96]), by integrating vessel 

texture, the sliding error can be reduced. The results of previous methods showed that in TPS 

based registration methods, large errors occurred at points far away from the vessels because 

displacement calculated by the TPS with the 3D vessels could be arbitrary around those 

points. We believe that this is a common problem with the TPS method, because TPS is an 

interpolation method, which highly depends on the control point feature (control point 

number and position). However, we offer a distinct and effective approach to integrating 

vessels for surface registration compared with Cao et al.’s method. The differences lie in: 

firstly, all the points are involved into registration while Cao et al. only use vessels for 

registration; secondly, we introduced a smoothness and rigidness constraints for surface 

deformation instead of TPS. 

Moreover, the proposed method is presented by a new energy cost function. Normally, the 

difficulty in non-rigid surface registration lies in determining the corresponding points and in 

deforming the shape. The difficulty in determining corresponding points and deforming the 

shape could be solved using the proposed new energy cost function, which is a weighted 

combination of geometric information, 3D texture matching, deformation smoothness 

constraint, and rigidness constraint. The first two elements help in estimating the 

corresponding points while the last two elements help in shape deformation. The novel point 

of this method lies in the combination of texture and surface registration with smoothness 

and rigid constraint for brain surface deformation, as well as the proposed new energy 

function. 

The flow chart of the proposed non-rigid registration algorithm is shown in Figure 3-1. At 

time ti, a textured brain surface was acquired through our phase-shift 3D shape measurement 

(explained in 2.2). Subsequently, the 3D texture was extracted from a 2D image using a 

Frangi filter (described in 3.2). At time tj, a new 2D texture image and surface were acquired 

by repeating the same measurement procedure applied at time ti. Here, the surfaces acquired 

at time ti and tj are named source surface and target surface, respectively. The source and 

target surfaces were matched using the proposed registration method (described in 3.3 and 

3.4).  
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In the proposed method, space deformation is defined by a group of affine transformations in 

R3. A is the affine transformation matrix and t is the translation vector, shown in Figure 3-2. 

These transformation matrices indicate the degrees of freedom in our optimization, i.e., 12 

degrees of freedom per point to define an affine transformation. Undirected edges connect 

each point to indicate local dependencies and influences. In Equation 3-1, the 0
kx refers to the  

 

Figure 3-1 Registration work-flow 

 

position of every point before deformation and point 0
kx  is transformed to new 

position )(txk  after applying translation k, tk, : 

0( )k k k kx t x A t                              (3-1) 

0
kx ( )k tx

kT

 

Figure 3-2 Affine transformation 

 

Then the strategy of registration of the two shapes is to calculate transformation matrix  

and translation vector t for every point of the surface by minimizing an energy function as 

shown below: 

              
cor _ surface cor _texture smooth rigid( , ) ( , ) ( , ) ( , ) ( , )E E E E E     A t A t A t A t A t        (3-2) 

In equation 3-2 Ecor_surface constraint is mainly used to reduce the error in surface matching. 

(We call it the vertical residue error). It is the residue distance from a point on a surface to 
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the closest point on the other surface and it gets perpendicular to the latter surface. Ecor_texture 

constraint reduces the residue error in texture matching. The error component that is reduced 

by Ecor_texture in addition to Ecor_surface is residue in texture mismatch. It is mainly occurred 

along the surface and called horizontal residue by us. Esmooth constraint describes spatial 

smoothness among the matrix set corresponding two points being on each of the base and the 

floating surfaces. Brain surface misses texture at white matter without vessels. In such area, 

Ecor_texture does not work and instability of Ecor_surface point-pair matching often occurs, which 

is called as aperture problem. Esmooth interpolates and reduce the spatial matching instability. 

Erigid is additional constraint to describe appropreatenss on rigidity of brain deformation. It is 

orthonormality of each matrix corresponding two points on the two surfaces.  

By minimizing the equation 3-2, the affine transformation matrix of every point could be 

estimated. In following paragraphs, the source means the surface before deformation and the 

target means the surface after deformation. The detail of every energy function part will be 

described below.  

 

Table 2 Role of each component of energy function 

 Ecor_surface Ecor_texture Esmooth Erigid 

Reducing vertical residue   N/A N/A 

Reducing horizontal residue N/A  N/A N/A 
Removing instability in 

spatial interpolation 
 N/A  N/A 

Reducing shrinkage or 

expansion 
N/A N/A N/A  

 

 

3.2 Texture extraction 

Vessels, as texture, have been used in the registration of brain surface in either 2D images or 

3D surfaces. The Frangi filter has been used for segmenting vessels in previous studies. 
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Marreiros et al. used the Frangi filter to extract brain surface vessels from infrared images. 

Ding et al. proposed a semi-automatic method for segmenting brain surface vessels to 

register brain images and they further extended their method to an automatic one. Their 

results showed that the Frangi Filter was applicable to animal brains and clinical situations in 

segmenting tube-like structures. Therefore, we implemented the Frangi Filter to segment 

brain surface vessels.  

Frangi filter considers the Eigen value of local hessian matrix, as shown in Equation 3-3 

xx xy

yx yy

I I
I I
 

  
  

H                         (3-3) 

    H  

Where Iij is the second spatial derivative of the image in the i and j direction;  is the Eigen 

vector and λ is the Eigen value.  

Assuming 1 2 3| | | | | |     the relation shape between the Eigen value λi in plate-like, 

tube-like and sphere-like shape is shown in Figure 3-3. From the Figure 3-3, it showed that 

the λ3 has the largest Eigen value because in the μ3 direction, the second deviation has the 

largest value while in the other direction, the Eigen value is much smaller. For a sphere-like 

structure (spot in 2D), because in the 3D Eigen vector direction the second deviation is 

almost same, the Eigen values are almost same. In the tube-like (vessel in 2D) structure, 

along with the tube direction, the second deviation is smaller and the Eigen value is smaller 

than the other direction. This is the Eigen value feature of local hessian matrix. 

 

Figure 3-3 Eigen value description 

 

Based on the Eigen value feature, Frangi et al. proposed a filter (described in equation 3-4) 

to enhance the line structure. In 2D case, the filter can be described as: 



 

 72 

   1
2 2
B

2 2

0 if 0

exp( )(1 exp( ))
2 2

V R S
c






 

  


 2
B

1

| |
| |

R 


    2 2
1 2S                (3-4)  

1

2

2
BR

2

2exp( )
2

BR




line
range

0
2S

2

21 exp( )
2
S
c

 

homogeneous
range

heterogeneous
range

0
 

Figure 3-4 Analysis of frangi filter 

 

Analysis of every component of Frangi filter is shown in Figure 3-4. We plot the value of 
2
B

2exp( )
2
R


  and 
2

21 exp( )
2
S
c

   with the relation of 2
BR  and 2S . From the plot image, we 

can see that the Frangi filter can have a higher value in the line range and heterogeneous 

range which can make sure the line/vessel structure can be enhanced and extracted.  

In our camera captured image, some dark curve structures existed which were considered as 

the texture, as shown in Figure 3-5 (b). A Gaussian blur filter is applied to the 2D image to 

decrease noise of the camera captured 2D image. Then a 2D Frangi filter is utilized to the 2D 

image to segment the texture as described by Eq. (3-4).  

Once the 2D texture in image is extracted the corresponding 3D texture point can be 

obtained. One of the texture extraction result of one porcine brain is shown in Figure 3-5 (c) 

and Figure 3-5 (d) for each 2D and 3D. 

  

Figure 3-5 Images for brain surface scanning and texture extraction. (a) porcine brain scan (b) porcine 

brain 2D image (c) porcine brain extraction mask (d) porcine brain extraction 3D texture (green line) 
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3.3 Corresponding point estimation 

In the registration, the corresponding estimation is usually applied to guide the direction of 

shape deformation, as shown in Figure 3-6. Point x is a point in the surface before 

deformation and x’ is its estimated corresponding point on the surface after deformation. The 

estimated corresponding can drive the shape to deform toward the deformed surface.  

In the previous research, Sun applied ICP algorithm to register the shape. In ICP, the 

corresponding is estimated by using closest point. The closest point with the global rigid 

optimization, the shape can align to the target shape rigidly. Ding et al. and Cao et al. 

proposed to use the Robust Point Matching (RPM) proposed by Chui et al. to obtain the 

corresponding point of the texture point. The two corresponding estimation methods either 

estimate the corresponding only on the surface or only on the texture. Then in our algorithm, 

we estimate the corresponding point both on the texture space group and the surface space 

group. Firstly, the measured brain source shape and target shape are separated by Frangi 

filter into texture points and surface points. Then, the texture point on source find its 

estimated corresponding point on target texture point by closest point and the surface point 

on source find its estimated corresponding point on target surface point by closest point. The 

detail will be described in the following section.  

 
(a) Before deformation             (b) After deformation 

Figure 3-6 Corresponding finding 

 
 

As mentioned above, we separated the whole surface into texture points and surface points 

group. After extracting the 3D texture points on both source and target, the texture points on 

source surface would estimate its corresponding from texture points on target surface by 
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closest point, as shown in Figure 3-7. In Figure 3-7, the red point is the texture point and the 

red line suggested the corresponding estimation line. We assign an energy for the texture 

point the corresponding cost as described in Eq. (3-5) 

cor 2
cor_texture

0
|| ||

k

i i i i
i

E


   A p t p                           (3-5) 

Where, ip and cor
ip represent texture point on source and its estimated corresponding point 

on target, respectively. The k is the total number of texture points. Ai is the affine matrix of 

point i and ti is the translation vector of texture point with index i. 

After estimating texture points’ corresponding, the surface points should estimate their 

corresponding points. Before calculating the corresponding, the whole surface points are 

uniformly down-sampled. Then surface point on source will find its estimated corresponding 

point on target surface by closest point, as also shown in Figure 3-7.  The cost function is 

calculated as: 

          cor 2
cor_surface

0
|| ||

m

j j j j
j

E


   A p t p                        (3-6)  

Where, jp and cor
jp represent surface points on source and its estimated corresponding point 

on target, respectively. Symbol m is the total number of surface points. Aj is the affine matrix 

of point j and tj is the translation vector of surface point with index j. 

 
(a) Before deformation                   (b) After deformation 

Figure 3-7 Example of the corresponding point 

 

3.4 Spatial constraint for deformation 

After obtaining the corresponding point, the shape should deform by deformation constraint. 
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In the previous research, Ding et al. and Cao et al. proposed to apply Thin-Plate-Spine (TPS) 

to interpolate and deform the brain shape which considering the second deviation of the 

deformation to be smooth. 

 

3.4.1 Thin Plate Spline (TPS) interpolation and deformation 

Generally speaking, thin plate splines are a spline-based interpolation technology for data 

smoothing and interpolation. It can be used in either 2D or 3D for interpolation. As shown in 

Figure 3-8, some control points are used to drive the surface to deform and the surface will 

deformed by TPS.  

“Thin Plate” means that a TPS more or less simulates how a thin metal plate would act if it 

was forced through some control points. TPS for 3 control points is a plane and more than 3 

is a curved surface and less than 3 is unknown condition. TPS could be used to deform 2D 

line or image and particularly popular in representing shape transformations. If there are two 

equally sized sets of 2D points with A being the vertices of the original shape and B the 

target shape. Then fitting a TPS over points (aix, aiy, zi) to get the interpolation function of a 

translation of points in x direction. 

In TPS, there is an energy control function named “regularization” which is used to control 

how much the shape or the line could deform and also how robust to the noise data. If λ is 

zero, interpolation is exact and as it approaches infinity, the resulting TPS surface is reduced 

to a fitted plane.  

 

Figure 3-8 Surface deformed by TPS using control points (yellow points)[127] 
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The mathematical description of TPS could be described as: 
2 22 2 2

2 2
tps,smooth 1 22 211 2
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             (3-7) 

Where xi is the control point and λ is the regularization parameter to control deformation 

magnitude. Next, we will show how TPS can deform a shape by using mathematical 

equation.   

Given a set C of p 3D control points and we could have  
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After solving unknown TPS weights w and, we can have a linear equation system. 
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Once we calculate the w


and a


we can interpolate z for a point (x,y) by  

                      1 2 3
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( , )
p

i
i

z x y a a x a y w U


                           (3-10) 

From equation 3-10, we can see that TPS is a linear interpolation system. The TPS 

interpolation result depends on the selection of the control point and it is very difficult to 

control the deformation only by λ. The deformed shape is very easy to shrink in the 

deformation.  

 

 3.4.2. Proposed deformation constraint 

We proposed a smoothness and rigidness constraint to deform the shape. The purpose of 

smoothness constraint is trying to make the shape deform smoothly and the rigidness 

constraint is used for making the shape deform rigidly and keep local feature detail as much 

as possible. 

a. Smoothness constraint 

When brain deforms, it should deform smoothly. Thus, smooth shape deformation constraint 

is introduced in our algorithm. In the algorithm, it is not referred to the smoothness of the 

deformed surface but the smoothness of the actual deformation. In other words, the affine 

transformations applied to a region of the surface should be consistent with each other. In 

Figure 3-9, n is the index of current interesting point and q is the index of the k-closest points 
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around the interesting point. To achieve the smooth deformation around point pn, the local 

transformation matrix should follow the Eq. (3-11): 

 

Figure 3-9 Neighbor points 

 

      2
smooth F|| ||

n

n q
n q N

E


   T T                (3-11) 

where the Frobenius-norm was calculated for the local transformation matrix T By applying 

the smooth constraint, a smooth deformation of the shape in the local region was maintained 

and adjacent parts of the source surface were prevented from being mapped to disparate 

parts of the target surface.  

 

b. Rigid constraint  

When brain surface deforming, local feature details should be reserved as much as possible. 

And when shape deform, the shape should avoid from shrinking. In our method, we use 

another energy cost Erigid to constraint the deformation rigidly. The Erigid penalizes the 

deviation of each transformation from a pure rigid motion. Local features deform as rigidly 

as possible to avoid shearing or stretching artifacts. The cost of rigid constraint is defined by:  

               2 2 2 2 2 2
rigid 1 2 1 3 2 3 1 1 2 2 3 3(( ) ( ) ( ) ) ((1 ) (1 ) (1 ) )t t t t t t

i i
E          a a a a a a a a a a a a           (3-12) 

Where a1, a2 and a3 are the 3×1 column vectors of affine matrix A (A = [a1a2a3]).  

3.5 Optimization and interpolation 

The energy function mentioned above is a nonlinear square least problem. Initially, α = 10, β 

= 100, γ = 1000 and all the parameters in the energy function are halved 

when 5
1| | 10 (1 )K K KE E E
   until α<0.1, β<0.1 and γ<1. The weighting choice of each 
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coefficient will be explained in experiment 4.1. At the beginning, γ is assigned a larger value 

which means at the beginning, the shape will deform as rigid deformation. And the shape 

will deform from rigid deformation to non-rigid as the iteration time increasing because γ is 

released. The adaptation of the weights initially favors global rigid alignment and 

subsequently lowers the stiffness of the object to allow an increase in the deformation as the 

optimization progresses. In addition, the large weight for texture points would make the 3D 

texture act as a skeleton in the registration. The texture point will have the priority to deform 

toward to their corresponding point.  

 

Figure 3-10 Optimization work flow 

 

The optimization procedure is shown in Figure 3-10. We solve this nonlinear least-squares 

problem by using the Levenberg-Marquardt algorithm[112]. Since the system matrix is 

sparse, we solve the normal equations in each iteration by a direct solver that employs sparse 

Cholesky factorization.  

The energy function could be described by mathematical function, as shown in equation 3-13 
2
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Where wi is a measure for the error of y(ti). The weighting matrix W is the diagonal Wii = 

1/w2. The Levenberg-Marquardt adaptively change the parameter updates between gradient 

descent and the Gauss-Newton methods, as described in equation 3-14. 
T T

lm ˆJ WJ+ lI h = J W(y- y)                       (3-14) 

Where λ control the algorithm is like Gauss-Newton or gradient descent method. Small value 
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of λ results in a Gauss-Newton method and large step ofλresults in a gradient descent method. 

At the beginning, the parameterλis assigned a very large value, and as the iteration going, λis 

decreased. In the iteration, the solution typically converges rapidly to the local minimum.  

The Marquardt’s update relationship is  
T T T

lm ˆJ WJ+ ldiag(J WJ) h = J W(y- y)                    (3-15) 

The result of our registration algorithm is a set of deformed positions for the sampled point 

on the source surface. After calculating the transformation matrix for sampled points, we 

extrapolate these deformations to the entire source points by a simple partition of unity 

approach. Then the new position of point ip  is given by 

                            ' θ ( )
k i

iki k i k
N

p


 
pp

p A t                           (3-16) 

Where k and tk are the rotation and translation matrix associated with kp .Normalized 

weights θ θ / θik ik ill
  with 2 2θ exp( || || / )ik i k   p p  is designed to smoothly decay 

with increasing distance.  
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4   Experiments and Results 

In this chapter, selection of energy function coefficients is conducted. Also, the 3D 

measurement, non-rigid registration and projection accuracy are evaluated. For evaluating 

the 3D measurement accuracy, 20 metal balls were used and bias and precision error are 

evaluated. Moreover, five porcine brains were used to evaluate the registration accuracy by 

calculating Residual Error (RE) and Target Registration Error (TRE) using OPTOTRAK.  

 

4.1 Selection of energy function coefficients 

4.1.1 Purpose 

As different energy function coefficients will generate different registration results, selection 

of the proper coefficients is important. Thus, we set up an experiment in order to obtain 

acceptable coefficients.  

 

4.1.2 Materials and Method 

Surface registration error and texture registration error with respect to three coefficients α, β, 

γ were evaluated. Distribution of surface registration error and texture registration error were 

mapped (Figure 4-1), and three coefficients are selected which give us small surface 

registration error and texture registration error. One porcine brain data was used as the object 

for calculation. We changed the value of coefficient α, β and γ from 1 to 107 and increased it 

10 times of its value for each interval. Detail of experimental conditions is shown in Table 3. 

 

 

 



 

 81 

Table 3 Experimental conditions 

Object Porcine brain 
Total point number 12642 

Texture point number 2662 
 range 1, 10, 102, 103, 104, 105, 106 

 range 1, 10, 102, 103, 104, 105, 106 
 range 1, 10, 102, 103, 104, 105, 106 

 

       
(a)                                   (b) 

Figure 4-1 3D mapping of (a) surfaceRMSE and (b) texture RMSE with respect to different coefficients 
 

4.1.3 Result 

The registration error distribution of different α is shown in Figure 4-2. The result showed 

that when α is larger than 1000, the registration error increases throughout the whole range 

of β, γ. Thus we only consider α = 1, 10 and 100 for further investigation.  

The enlarged scale of surface registration error and texture registration error at α = 1, 10 and 

100 are shown in Figure 4-3 and Figure 4-4, respectively. Figure 4-3 and Figure 4-4 showed 

that α = 10 has smaller surface registration error and texture registration error than that 

registration in α = 1 and 100. α = 10 might be one of the acceptable coefficient. Therefore, 

we set α is equal to 10.   
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(a)  = 1 (b)  = 10 (c)  = 102 

   

(d)  = 103 (e)  = 104 (f)  = 105 

 
 

 

(g)  = 106   

 

Figure 4-2 Registration error at different α 
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(a)  = 1 (b)  = 10 

  
(c)  = 102  

    Figure 4-3 Scale enlarged surface registration error when α = 1, 10 and 100 
 

Some typical registration results with combination (β, γ) when α = 10 are shown in Figure 

4-5. Combination of (1,5) and (5,1) showed the obvious over-rigid and over-smooth 

registration result; (3,3) showed an improvement from (3,2) but (3,4) is over-rigid from (3,3). 

The combination (2,3) generate the accecptable result. Thus we decided to use the coefficient 

(10, 100, 1000) as the “estimated” coefficients. 
 

  

(a)  = 1 (b)  = 10 
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(c)  = 102  

Figure 4-4 Texture registration error at different α 

 

   
(2,1)                  (2,3)                 (2,4) 

     
(3,2)                  (3,3)                 (3,4) 

    
(5,1)                  (1,5)                 (6,6)    

Figure 4-5 registration result of (β, γ) when α = 10 

 
In the energy function, the weight of Eshape is considered as 1. As the coefficient α changes, 

the weight of Eshape and Etexture will change. Thus, we further investigate the balance of Eshape 

and Etexutre on registration accuracy. We calculate the surface registration error and target 

registration error at different α with fixing β and γ as 100 and 1000. The quantitative result is 

shown in Figure 4-6. In Figure 4-6, the horizontal axis is the different α value; the vertical 

axis shows the registration result. The red line is the texture residual error and the black line 

is the surface residual error. It showed that at the beginning, when α is increasing from 0, the 
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registration leads a larger surface residual error around 0.2 mm and texture residual error 

around 1.6 mm. With the increasing of α, the surface residual error and texture residual error 

both decrease to around 0.1 mm. While α keep increasing, the surface error increases again. 

To be specific, the qualitative result when α = 0, 10, 50, 500 is shown in Figure 4-7. The 

result in Figure 4-7 showed that when α is 0, during the registration only shape points was 

used for registration. When α increased to 10, the registration results seems reasonable for 

both texture and shape alignment. As α keeps increased to 50, the relatively weight for other 

shape points will decrease and we can see a larger misalignment of the surface, shown in 

Figure 4-7(c). Moreover, the relative weight of smooth and rigid also reduced and the texture 

become “soft” and some shrink error appear, shown in Figure 4-7 (g). Thus, smaller α fails to 

work well but too large α will cause shape alignment error. 

  

 

Figure 4-6 Registration error regarding on different α 

 

    
(a) α = 0             (b) α = 10             (c) α = 50            (d) α = 500 

Registration result 
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(e) α = 0              (f) α = 10             (g) α = 50            (h) α = 500 

Texture alignment 

Figure 4-7  registration result and texture alignment 

 

4.1.4 Discussion 

In the energy function, there are three parameters, α, β, γ which can influence the registration 

result (acutually there are four parameters but during optimization, we set the coeffcient of 

Eshape as constant value 1). The larger the α is, the easier the texture alignment will be. 

However, a relatively larger α would make the Eshape relatively smaller and it produces a 

larger registration error as shown in Figure 4-2 (d)-(f). On the other hand, a small α, such as 

in case of α = 1 causes larger texture alignment error because texture points have lower 

weight during registration, as shown in Figure 4-4.  

The larger the γ is, the more detail of the shape can be conserved during registration (not 

over large), however, higer γ might cause longer computing time since γ controls the 

coefficient of Erigid which has a O(n4) computing complexity. On the other hand, a smaller γ 

or relatively larger β would lead over-smooth of surface and the brain would shrink during 

registration. Therefore, from Figure 4-5 we chose γ as 1000 when α is equal to 10 and β as 

100 when fixing α = 10. Currently, we set a larger γ for the Erigid since we wanted to keep the 

brain shape deforming as rigid as possible, especially the brain real deformation in clinical 

surgery would be larger and elastic. Such kind of rigid deformation can prevent brain shrink 

during registration. A larger γ would make the brain deformation from rigid to non-rigid in 

the optimization procedure.  

In Figure 4-6, the texture residue and surface residue is reduced to around 0.1 mm when α = 

5. Also we found the ratio between shape point and texture point is around 4. Then choosing 

of α for balance shape and texture might should consider the point ratio between shape point 

and texture point to balance their contribution during registration. Further investigation of 

the ratio between shape points and texture points of other four porcine brains showed a value 

of 4.51. Moreover, we want to make the texture point would work as deformable skeleton 

during registration, we assign α = 10 as the coefficient value for the Etexture component. Even 
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this might not be an optimal value, it is an acceptable value considering the shape points is 

larger than texture point number.   

The energy function is a global energy function and every coefficient influent others. In fact, 

the parameters rely on the input data size, the texture number, initial deformation magnitude 

and so on. Currently, we chose α, β and γ with acceptable values. In the future, we might 

need to use our method in the real human brain surface registration. In that circumstance, 

more brain data is needed to be evaluated in order to obtain the optimized coefficient values.  
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4.2 Evaluation of 3D Measurement Accuracy 

4.2.1 Purpose 

The purpose of this experiment is to evaluate the 3D shape measurement accuracy. 3D shape 

measurement is very important and the basic requirement for our registration method since 

we combine surface and texture for evaluation.  

 

4.2.1 Materials and Method 

To evaluate the 3D shape measurement accuracy, bias error and precision error of 20 

spherical metal balls were used, as shown in Figure 4-8. The bias error can reflect the 3D 

displacement error while the precision error can show the local surface variation error. The 

20 spherical metal sphere balls with 8 mm diameter were aligned in 4×5. The measurement 

distances d is calculated from the bottom plane to the front of camera, shown in Figure 4-9. 

Commercial scanner (Range 7/Range 5) is used to measure a golden standard value of 3D 

surface of balls, as shown in Figure 4-10. The experimental conditions are listed in Table 4: 

 

    
(a) Spherical metal ball with 8 mm diameter       (b) 4×5 alignment of balls 

Figure 4-8 Spherical metal balls used in 3D shape measurement evaluation  
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Figure 4-9 Scheme of the 3D measurement evaluation experiment 

 

 

Figure 4-10 Commercial scanner (Range5/Range7) used for evaluating the 3D surface measurement 

accuracy 

Table 4 3D measurement experiment conditions 

Laser projector SHOWWX, MICROVISION Inc. 

Camera IDP Express R2000, Photron Inc. 

Distance d [mm] 250, 275, 300, 325, 350, 375, 400 

Metal ball diameter ϕ [mm] 8 

Metal ball accuracy [mm] 0.037±0.009 

Metal ball number 20 (4×5) 

Measurement Time 10 

Scanner Range7/Range5 

Accuracy: ±40 µm [128] 
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1．3D Measurement Bias Error 

In 3D measurement, the bias error exists which is cause by the calibration. The bias error can 

cause some displacement in the 3D coordinates. We used 20 spherical metal balls and 

measured their centers and then the balls were scanned by using the commercial 3D scanner 

Range7/Range5 with an accuracy: ±40 µm.  

 

Figure 4-11 Bias error. d is the bias error to show the distance between the center of measured surface to 

the true surface 

 

In Figure 4-11, the bias error of the sphere is calculated by  

                              '
bias | O O |E d                    (4- 1) 

Where O and O’
 are the measured sphere center and the sphere center measured by 

Range7/Range 5. The bias error is calculated by the distance between the measured sphere 

center and the real sphere center, as described in the equation 4-1.  

 

2. Precision Error 

In 3D measurement, there exists another error which is called precision error, as suggested in 

Figure 4-12. Precision error can reflect the local surface variation which is also influenced 

by system calibration. 
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Figure 4-12 Precision error. Precision error shows the difference between the estimated sphere radius and 

the true sphere radius 

 

The measurement precision error is calculated by the difference between the measured radius 

and the “real” radius, as described in the equation 4-2: 

                                  

2

1
precision

( )
N

i
i

r r
E

N






                               (4- 2) 

Where r is the real sphere radius and ri is the estimated radius.  

 

4.2.2 Result  

The measured surface of 20 spherical metal balls at the distance of 250 mm is shown in 

Figure 4-13. The 3D measurement bias error is shown in Figure 4-14 with respect to the 

distance of 250, 300, 350, and 400 mm. The color of the figure means the magnitude of the 

bias error.  It was shown that the bias error increased at the boundary of the measurement 

area. Also, it was shown that the bias error increased when measurement distance increased.  
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Figure 4-13 Measured surface of spherical metal ball at 250 mm distance 

 

 
(a) d =250 mm                        (b) d = 275 mm 

 
                    (c) d = 300 mm                       (d) d = 325 mm 

 
(e) d = 350 mm                      (f) d = 375 mm 
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(g) d = 400 mm 

Figure 4-14 Bias error distribution with respect to the different measurement distances 

 

The 3D measurement precision error is shown in Figure 4-15. It was shown that the 

precision error increased as the measurement distance increased. Also, the precision error 

increased in the boundary of the measurement area.  

 
(a) d = 250 mm                          (b) d = 275 mm       

  
 (c) d = 300 mm                         (d) d = 325 mm 
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                  (e) d = 300 mm                         (f) d = 325 mm 

 
(g) d = 400 mm 

Figure 4-15 3D measurement precision error distribution with respect to different distances 
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     (a) Bias error                     (b) Precision error 

Figure 4-16 3D measurement error with respect to measurement distance 

 
The quantitative result of the bias error and precision error is shown in Figure 4-16. The 

measured maximum and minimum bias error was 0.57 mm on average (distance of 400 mm) 

and 0.31 mm on average (distance of 250 mm), respectively; moreover, the measured 

maximum and minimum precision error was 0.27 mm on average (distance of 400 mm) and 

0.025 mm on average (distance of 250 mm), respectively. Both results showed that when 
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measurement distance increased, error increased.  

4.2.3  Discussion 

In this experiment, the 3D measurement accuracy was evaluated. The errors we evaluated 

include bias error and precision error. We scanned the 20 spheres and then we estimated the 

sphere centers and the radius of every sphere. The bias error, which indicates 3D 

measurement shift in 3D space, was calculated as the distance between the assessed sphere 

center and the real sphere center. The precision error, which reflects the local surface point 

variation, was computed using the radius difference between the measured sphere and the 

real sphere surface.  

For both of these two error distribution, it showed that as shown in Figure 4-14 and Figure 

4-15, the boundary error is larger than the center. This kind of error distribution is because 

the used projector has non-linear distortion and such kind of error distribution is consistent 

with the projector distortion model we calculated (Figure 2-19). In the further research, the 

boundary error could be reduced by a more accurate system calibration technology or a 

less-distorted projector might be used for measurement.   

As shown in Figure 4-16 (a) and (b), both bias error and precision error increased when 

measurement distance increased. The bias error mainly related to the distortion of the 

projector. As the projector distortion degree increased with distance, the bias error keep the 

same trendency. The precision error increasing mainly caused by the distance. As the 

measuring distance increases, the increased distance might go out the range of our system 

calibration, and then the error might increase. Moreover, in the evaluation method, the 20 

metal balls were used. And the estimated sphere centers were used to calculate the bias error. 

When the measurement distance increased, the point resolution decreased, and the number of 

points used to estimate sphere center will be fewer since the spherical ball is shown as small 

area in the 2D captured image. Thus the sphere fitting error will increase. So, when the 

distance increase, the bias error will increase.  

Currently, the minimum measurement distance was chosen to 250 mm and we did not 

evaluate with shorter measurement distance because the 250 mm is known as the appropriate 

measurement distance used in clinical situations by other research group. As the result 

showed, the measurement accuracy was decreasing while measurement distance increasing. 

Under this circumstance, we did not evaluate the further longer measurement distance and 

the longest distance evaluated is 400 mm for evaluation.  
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4.3 Simulation experiment  

4.3.1 Purpose 

The purpose of this experiment is to evaluate the registration error of proposed method by 

simulation using surface with different curvatures, deformation magnitudes and texture 

number.  

 

4.3.2 Materials and method 

 

We simulated the non-rigid registration with cylinerical shape which is shown in Figure 4-16. 

This simple shape structure is the ideal shape to evaluate the proposed method on different 

parameters. The total point number size is 80 (horizontal) ×60 (vertical) in the plane.  

Firstly, in order to evaluate the influence of texture direction, we rotated the texture from 0 

degrees to 90 degrees with 15-degree increment, as shown in Figure 4-18. The parameter 

details are listed in Table 5. 3. The source surface shape curvatures were 0.015, 0.020, 0.025 

and 0.030, shown in Figure 4-20. Larger curvature causes larger surface deformation and 

smaller curvature causes smaller surface deformation. The surface shape curvature 0.005 was 

considered as the target surface for registration. The texture frequency was fixed at 1/5. 

Secondly, we also evaluated the influence of texture frequency by increasing the distance 

between the texture lines, as shown in Figure 4-19. The texture frequency was defined as the 

reciprocal of distance d between textures, shown in equation 4-2. When the distance d 

increases, the frequency is decreased. And also, by controlling and changing the curvature of 

the surface, we could deform the plane, as shown in equation 4-3. By doing this, we tried to 

evaluate the registration accuracy with respect to different curvatures, which showed the 

deformation magnitude, as shown in Figure 4-20. The detail of the experimental parameters 

is listed in Table 6. In this experiment, the texture direction was kept 0° direction (vertical 

direction).   

Moreover, we evaluated the accuracy of the proposed method with the deformation along the 

surface, described by Equation 4-4, which showed the divergence deformation and shear 
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deformation, shown in Figure 4-21. In Figure 4-21 exx/eyy is the normal strain in x and y 

direction; the exy/eyx is the shear strain. The norm strain can determine the deformation in 

normal direction without any angle change along axis while the shear strain reflects the 

deformation with angle changing along axis. The experimental details are listed in Table 7. 

The texture direction was kept 0 degrees and texture frequency was kept at 1/5. Divergence 

strain and shear strain were set to 0.01, 0.02, 0.03, 0.04, and 0.05. Figure 4-21 showed the 

divergence deformation and shear deformation at 0.05 with curvature 0.030 for evaluation.  

The experiment results were compared with TPS based registration method [116] [114] [115], 

which uses vessels for corresponding points and TPS for global deformation.  

 

 

Figure 4-17 Simulated cylinder with 80×60 points. 

   

 



 
(a) Texture direction schematic diagram 
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(a) 0 degrees                    (b) 45 degrees                  (c) 90 degrees  

Figure 4-18 Texture direction of 0, 45 and 90 degrees 

 

 
(a)Texture frequency schematic diagram 

 

                (b) Texture frequency at 1/11       (c) Texture frequency at 1/3 

Figure 4-19 Texture frequency of 1/11 and 1/3 

 

1f
d

                                      (4- 3) 
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(a) Shape curvature schematic diagram 

 

(b) Curvature of 0.030                  (c) Curvature of 0.010 

Figure 4-20 (a) example of shape curvatures (b) curvature of 0.030 (c) curvature of 0.010 

1
r

                                      (4- 4) 

 

 
(a) Divergence deformation 
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(b) Shear deformation 

Figure 4-21 Divergence deformation and shear deformation 
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Table 5 Simulation experiment 1: different texture directions with different curvatures 

Object Cylinder with Texture 
Point Number 4800 (80×60) 

Texture Direction θ [deg.] 0, 15, 30, 45, 60, 75, 90 
Curvature κ [mm-1] 0.015, 0.020, 0.025, 0.030 

Texture frequency f [mm-1] 1/5 

 

 



 

 101 

Table 6 Simulation experiment 2: different shape curvatures and different texture frequencies 

Object Cylinder with Texture 
Point Number 4800 (80×60) 

Texture frequency f [mm-1] 1/3,1/4, 1/5, 1/6, 1/ 7, 1/8, 1/ 9, 1/10, 1/ 11 
Texture Direction θ [deg.] 0 

Curvature κ [mm-1] 0.015, 0.020, 0.025, 0.030 
 

Table 7 Simulation experiment 3: different shear/divergence deformations 

Object Flat Plane with Texture 
Point Number 4800 (80×60) 

Texture Direction θ [deg.] 0 
Texture frequency f [mm-1] 1/5 

Curvature κ [mm-1] 0.030 
Divergence strain: εxx/εyy 0.01, 0.02, 0.3, 0.04, 0.05 

Shear strain: εxy/εyx 0.01, 0.02, 0.3, 0.04, 0.05 
  

 
Figure 4-22 Deformation magnitude with respect to different curvatures 

 



 

 102

 
(a) Divergence deformation         (b) Divergence deformation magnitude    

     
(c) Shear deformation             (d) Shear deformation magnitude 

Figure 4-23 Deformation magnitudes with respect to different divergence and shear strain 

 

4.3.2 Result 

The registration accuracy of the proposed method with regard to different curvatures with 

different texture directions are shown in Figure 4-24. The registration accuracy of TPS based 

method is shown in Figure 4-25.  
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Figure 4-24 Registration result regarding on different texture directions and shape curvatures of the 

proposed method 

 

 

Figure 4-25 Registration result regarding on different texture directions and shape curvatures of the TPS 

based registration 
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The result showed that both the proposed method and TPS based registration method 

accuracy increased with the increase of texture direction. When the curvature increase, the 

proposed method accuracy is kept almost unchanged (around 0.01 mm), however, the TPS 

based registration showed relatively large increase.   

 
  (a) Proposed: θ = 0 degrees   (b) Proposed: θ = 45 degrees  (c) Proposed: θ = 90 degrees        

     
          (d) TPS: θ = 0 degrees     (e) TPS: θ = 45 degrees     (f) TPS: θ = 90 degrees 

Figure 4-26 Error distribution at curvature 0.030 of texture direction 0 degrees, 45 degrees and 90 degrees 

 

Figre 4-26 shows the registration error distribution of the proposed method and TPS based 

method in curvature 0.03 with texture angle 0, 45 and 90 degrees. In the proposed method, It 

can be seen that the error was almost kept unchanged. In the TPS based registration, it can be 

seen that the there were relatively large error especially at around the point which is far away 

from texture point, which is constant to Cao’s conclusion.  

 

The registration accuracy of the proposed method with regard to different curvatures with 

different frequencies are shown in Figure 4-27. The registration accuracy of the TPS based 

registration with regard to different curvatures with different frequencies are shown in Figure 

4-28.  
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Figure 4-27 Registration error at different curvatures and texture frequencies of the proposed method 

 

 

Figure 4-28 Registration error at different curvatures and texture frequencies of the TPS based registration 

 
The result showed that for the proposed method, the registration accuracy was kept 

increasing with decrease of frequency. For curvature 0.015 and 0.02, which have less 

deformation magnitude, the gradient of registration error increasing was small. For curvature 

0.025 and 0.035, when texture frequency is larger than 1/11, the gradient of registration error 
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increasing was also small but when the texture frequency is less than 1/11, the registration 

error increased dramatically. As for different curvature, the registration error of the proposed 

method showed an increase tendency.  

However, for the TPS based registration method, the error increased dramatically with the 

texture direction change, especially when the texture frequency is smaller than 1/9. As for 

the different curvatures, the TPS based registration error increased dramatically with 

increase of curvature. 

 

 
     (a) Proposed: f = 1/11 mm-1                     (b) Proposed: f = 1/3 mm-1  

 

    

 
        (c) TPS: f = 1/11 mm-1                        (d) TPS: f = 1/3 mm-1 

Figure 4-29 Error distribution at curvature 0.030 of texture frequency 1/11 and 1/3 

 
To be specific, the registration error distribution of curvature 0.030 with frequency 1/11 and 

1/3 are shown in Figure 4-29. In Figure 4-29, both the proposed method and TPS method 

aligned well. However, the TPS based method showed an increased error in some part of the 

surface. The Figure 4-29 (a) showed that the proposed method worked stable when texture 

frequency decreased. However, the TPS based registration method failed to register the 
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surface especially in the boundary of the surface. The left part of the surface is far away from 

the texture and the TPS showed a low registration accuracy. However, the proposed method 

appears to be robust against the texture frequency change.  

In conclusion, the simulation result of the proposed method was robust against texture 

frequency and deformation magnitudes change. However, the TPS based registration method 

was not robust to texture frequency and deformation magnitude variations.  

 

The registration error against divergence deformation and shear deformation with different 

deformation magnitudes are shown in Figure 4-30 and Figure 4-31. The result showed that 

with the exx/eyy or exy/eyx increasing, the registration error was kept slightly increase, however, 

registration error still remained small in whole measurement range. The TPS registration 

error was also kept increase and held a larger error compared to the proposed method. The 

result showed that the proposed method is robust to divergence deformation.  

 

 

Figure 4-30 Divergence deformation 
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Figure 4-31  Shear deformation 

 

To be specific, the error distribution of proposed method and TPS against divergence 

deformation at 0.01, 0.03 and 0.005 are shown in Figure 4-32. The result showed that the 

proposed method resulted in smaller error, and the error of TPS based registration distributed 

with disordered manner. Moreover, the error distribution of the proposed method and the 

TPS based registration against shear deformation at 0.01, 0.03, and 0. 05 are shown in Figure 

4-33. The result also showed that the proposed method resulted in smaller error and the error 

of the TPS based registration distributed with disordered manner. 
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exx, eyy = 0.01                exx, eyy = 0.03              exx, eyy = 0.05 

 (a) Proposed method 

 
      exx, eyy = 0.01               exx, eyy = 0.03              exx, eyy = 0.05 

 (b) TPS 

Figure 4-32 Divergence deformation against different strain of proposed method and TPS based 
registration 
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     exy, eyx = 0.01               exy, eyz = 0.03                exy, eyz = 0.05 

 (a) Proposed method 

  
     exy, eyx = 0.01               exy, eyz = 0.03              exy, eyz = 0.05 

 (b) TPS 

Figure 4-33 Shear deformation against different shear of proposed method and TPS based registration 

 

4.3.3 Discussion 

In this experiment, the simulated registration accuracy of a cylinderical shape was evaluated 

and the relation between the registration accuracy and the curvature, the texture frequency, 

texture direction, magnitude of divergence and shear deformation were evaluated. The 

registration results were compared with TPS method. 

The result showed that when the texture frequency decreased, the proposed method worked 

stable compared with TPS based method. As noted, our non-rigid registration algorithm uses 

texture for registration. In the registration, texture will only find corresponding point from 

the texture space which will make the texture deform to texture space and surface deformed 

to the surface space. When texture number reduced, the TPS based registration will give 

worse registration result, since the TPS based registration is not robust to texture frequency 

change. As shown in Figure 4-29, the left part of the surface showed a misalignment with 

high registration error. The TPS method uses vessel for registration and the surface deformed 
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by the TPS deformation transformation matrix calculated by the vessel registration. 

Accordingly, the vessel can align well, however, the surface points far away from the 

texture/vessel with large amount of deformation would cause a large error. Since TPS 

consider the deformation as a thin-plate deformation, the farer point from texture, the more 

rigid deformation it is. However, the proposed method uses all surface points including both 

the surface and texture for registration, and the smoothness and rigidness constraint are also 

introduced for registration. The Figure 4-28 showed an error increasing trendency of the 

proposed method. Such trendency is reasonable since if few points are considered as texture 

point, the proposed method would be a near non-rigid ICP method. Thus, it also showed one 

limitation of our method- registration accuracy relied on texture number (even not so much 

compared with TPS method). Fortunately, in the real brain surface, there is sufficient vessel 

information which can be used for registration.  

As for the influence of texture direction, when the texture direction increased, the 

registration error reduced, which appeared in both the proposed method and the TPS based 

registration. This happened because of the cylinderical shape used in this experiment. For 

example, when the texture direction follows 0 degrees, from the texture, there is no 

deformation alone the texture; while when the texture direction increases, the texture can 

“cause” some deformation and this kind of texture deformation can be compensated by the 

texture. In the real brain surface, the vessel structure is very complicated, which could or 

could not follow the deformation of the shape deformation. The registration result showed 

that the proposed method worked robustly on this kind of situations, while the TPS based 

registration was sensitive to the texture direction variation.   

The error distribution of the proposed method and TPS against divergence and shear 

deformation at 0.05 mm is shown in Figure 4-32 and Figure 4-33. Some regular pattern 

appears in the TPS result, since TPS method is an interpolation method. The denser texture 

around, the more interpolated the point get involved. The right below part of image, shown 

in Figure 4-33, has relatively simple texture corresponding and its interpolation is simple. 

Therefore, the registration result there is relatively stable (no pattern). On the contrary, the 

left and the middle part has complex texture corresponding, which lead a registration error 

pattern because the point position is interpolated by the texture point around.  

All the experimental result revealed that the deformation magnitudes, texture frequency, 

texture direction, shear deformation and divergence deformation migh influence the 

registration accuracy. Thus, we need to evaluate the procine brain by considering such 
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conditions. 
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4.4 Evaluation of Brain Surface Tracking  

In this experiment, five porcine brains were used to evaluate the accuracy of the proposed 

method. Two kinds of experiments were conducted in this section. 1) Vertical displacement 

experiment; 2) Horizontal displacement experiment. The two experiments intend to evaluate 

the brain surface tracking accuracy in different deformations. Firstly, by pushing the porcine 

brain from the bottom in the vertical direction, the porcine brain experiences deformation 

under gravity (one source of brain shift in a clinical setting). This vertical deformation is 

important because in the brain surgery, the main brain deformation direction is in gravity 

direction and it is necessary to test the accuracy of the tracking in the direction of the vertical 

direction. Secondly, by pushing the porcine brain in the horizontal direction, the porcine 

brain experiences shrinking deformation by manual force.  

4.4.1  Purpose 

The purpose of this experiment is to test the tracking accuracy of the proposed method when 

the brain experiences different direction and magnitude of deformation.  

4.4.2 Materials and Method 

We evaluated the accuracy of the proposed method by using 5 porcine brains, and brain 

deformed in the vertical direction and horizontal direction. According to the previous 

researches, the brain shift mainly happens in gravity direction. Thus, we made the brain 

displaced and deform in the vertical direction. We also evaluated brain deformation in the 

horizontal direction by pushing a porcine brain in the horizontal direction because the brain 

can be deformed by manual pushing during the surgery.  

 

a) Vertical displacement experiment set up 

The vertical deformation experiment set up is shown in Figure 4-34 and Figure 4-35. The 

porcine brain was fixed on a rubber sheet with thickness of 0.5 mm, and supported by a 

screw placed under the rubber sheet. By rotating the screw, the vertical position of the brain 

was adjusted, thus the porcine brain could be deformed in a non-rigid manner. The 
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displacements of the screw were 5, 10, 15, and 20 mm, corresponding to the average vertical 

displacement of the brain shift. In the vertical displacement experiments, the shapes before 

and after deformation were considered as the target and source shapes, respectively. The 

detail of the experimental conditions is described in Table 8.  

 

 

Figure 4-34 Schematic diagram of vertical displacement experiment set up  

 

 

Figure 4-35 Experimental set up of vertical displacement experiment with a porcine brain 

 

Table 8 Vertical disaplacement experiment 

Object 5 Porcine Brains 

Measurement distance [mm] 250 

Projector Resolution [pixels] 848×480, 8 bit depth of each color 

Camera Resolution [pixels] 512×512, 8 bit depth of intensity 

Vertical displacement d [mm] 5, 10, 15, 20 

Brain shift direction Parallel with gravity direction 

Measurement equipment OPTOTRAK (Northern Digital Inc.) 



 

 115

 

   b) Horizontal displacement experiment set up 

The horizontal displacement experiment set up is shown in Figure 4-36 and Figure 4-37. The 

porcine brain was placed between two walls, one of which was fixed while the other could 

move in horizontal direction. By controlling the linear stage, the wall moved horizontally, 

thus the porcine brain was pushed, thereby inducing deformation. Displacement of the linear 

stage d were 5, 10, and 15 mm, as suggested in Figure 4-36. The detail parameters of 

horizontal experiment are listed in Table 9. Five porcine brains were evaluated.  

 

Figure 4-36 Schematic diagram of horizontal displacement experiment set up  

 

 

Figure 4-37 Horizontal displacement experiment set up with porcine brain 

Table 9 Horizontal displacement experiment 

Object 5 Porcine Brains 

Measurement distance [mm] 250 

Projector resolution [pixels] 848×480, 8 bit depth of each color 

Camera resolution [pixels] 512×512, 8 bit depth of intensity 

Horizontal displacement d [mm] 5, 10,15 

Brain shift direction Perpendicular with gravity direction 

Measurement equipment OPTOTRAK (Northern Digital Inc.) 
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 c) Evaluation methods 

 

1)  Residual Error (RE) 

Firstly, the proposed method was evaluated using Residue Error (RE), which was calculated 

using Equation 4-6.  

2

1RE

n

i
i

e

n



 
                           (4-6)                                                      

where, ei is the closest distance between the registered surface point and the target surface 

point; n is the total point number. RE reflects the proximity of two shapes to each other, and 

is widely utilized to evaluate the registration accuracy. However, the closer distance between 

the two surfaces does not necessarily mean the better registration since there exists some 

sliding error between the two surfaces. Accordingly, another evaluation criterion Target 

Registration Error (TRE) is also adapted. 

 

2)   Target Registration Error (TRE) 

To evaluate the proposed method using TRE, 3 dimensional localizer OPTOTRAK was used 

to calculate TRE. The tracked feature point position was compared with the point position 

measured from OPTOTORAK. Appearance of OPTOTRAK stylus and the procedure for 

measuring the point is shown in Figure 4-38. 

       
(a) Measuring procedure             (b) The stylus of OPTOTRAK 

Figure 4-38 Feature point measuring by OPTOTRAK 

 

We divided the error along the surface and vertical to the surface to see how much the error 

contribution of the texture and surface is. The error along the surface will show the texture 
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error while the error vertical to the surface will show the surface error.  

 

Figure 4-39 Tracking error calculation 

  

As shown in Figure 4-39 pOPT is the point measured point position by OPTOTRAK; pcross is 

the perpendicularly projected point position of pOPT onto the deformed surface; pcal is the 

calculated point position by using our method. The error calculation could be expressed as: 

                            3D OPT cal|| ||E p p   

                         surface cross OPT|| ||E p p                       (4-7) 

                            texture cal cross|| ||E p p   

In equation 4-7, E3D represented the real registration error in the 3D space; Esurface 

showed the error vertical to the surface and the misalignment of the two surface (the 

error of the surface fitting); Etexture showed the error along the surface (the error of the 

texture sliding).   

              

4.4.3 Result  

 
 4.3.3.1 Vertical displacement experiment  

 
1) RE 

 a) Quantitative Result 

The registration surface RE error and texture RE error are shown in Figure 4-40 and Figure 

4-41, respectively. Our registration results were compared with ICP method, Non-rigid ICP 

method and TPS based registration method (Cao et al.). The difference between the three 

methods and the proposed method is shown in Table 10. ICP method only uses shape for 
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registration with a rigid transformation assumption. The nonrigid-ICP method use only shape 

for registration with smoothness and rigidness constraint. The TPS based method uses 

texture as control point to generate a deformation field while the shape is deformed 

interpolation. The proposed method uses both shape and texture for registration and uses a 

smoothness and a rigidness constraint for interpolation. From the quantitative result, it was 

shown that ICP method could cause the largest error, and as the deformation magnitude 

increased, the registration error was kept increasing. The surface RE of the Non-rigid ICP 

method was smaller, but it caused a large texture error, shown in Figure 4-41. The TPS based 

registration method had less texture registration error, but had a larger surface registration 

error. The proposed method could achieve less surface registration error and less texture 

registration error.  

Table 10 Differentces between ICP, nonrigid-ICP, TPS and the proposed method 

 Esurface Etexture Esmooth Erigid 
ICP  N/A N/A  
Nonrigid-ICP  N/A   
TPS N/A   N/A 
Proposed     

 
 

 

Figure 4-40 Registration surface RE of ICP, Nonrigid ICP, TPS based and the proposed method 
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Figure 4-41 Registration texture RE of ICP, Nonrigid ICP, TPS based and the proposed method 

 

b) Qualitative Result 

The qualitative registration result is shown in Figure 4-42 and the registration surface fitting 

error distribution is shown in Figure 4-43. The texture alignment of the non-rigid ICP 

method and the proposed method are shown in Figure 4-44. Green line is the target texture; 

red line is the proposed registration texture and blue line is the non-rigid-ICP registration 

method.  

From the result, it was shown that ICP failed to compensate the shape deformation, as 

suggested by the ICP result of Figure 4-43. The TPS based method could achieve a better 

result but at the boundary of the shape, it failed to align well. The non-rigid-ICP could obtain 

good registration from the surface, but it would bring the sliding error, suggested by Figure 

4-44. However, the proposed method had a good surface alignment and texture alignment.   
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d = 5 mm         d = 10 mm       d = 15 mm       d = 20 mm 

Figure 4-42 Registration result at different vertical displacements of ICP, Nonrigid ICP, TPS based and the 

proposed method 

 

 

                d = 5 mm       d = 10 mm      d = 15 mm       d = 20 mm 

Figure 4-43 Vertical registration error distribution of ICP, Nonrigid ICP, TPS based and the proposed 

method 
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             (a) d = 5 mm                                (b) d = 10 mm 

     
              (c) d = 15 mm                              (d) d = 20 mm 

Figure 4-44 Texture alignment comparison (green: target texture, red: proposed method, blue: 

non-rigid-ICP method) 

 

One of the calculated deformation fields is shown in Figure 4-45 (a) and Figure 4-45 (b). 

The deformation field agreed with the result of vertical displacement experiment. In the 

boundary, it deformed largely while in the middle range, it deformed smaller, which was also 

consistent with the ICP alignment result (Figure 4-43).  
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(a) Brain with 3D deformation field             (b) 3D deformation field 

Figure 4-45 Deformation field of one porcine brain at 25 mm vertical displacement 
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2) TRE 

 a) Quantitative Result 

To evaluate TRE, the proposed method was compared with ICP and non-rigid-ICP 

method. ICP assumes a rigid transformation and non-rigid-ICP only considers the 

surface information (without texture information) for registration. The quantitative result 

evaluated using 5 porcine brains is shown in Figure 4-46. It is shown that the tracking 

error of the proposed method by combing texture was smaller than both ICP method and 

non-rigid ICP method. The error of the proposed method remained stable when the 

displacement increased while that of the non-rigid-ICP was kept increasing.  
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Figure 4-46 TRE with respect to different displacements of ICP, Nonrigid ICP and the proposed method 

 

The result of Esurface and Etexutre for the 5 porcine brains are shown in Figure 4-47. The 

horizontal axis showed the different displacements (5, 10, 15 and 20 mm during the 

vertical displacement experiment). The vertical axis shows the error of Esurface and Etexture 

of the proposed method and non-rigid-ICP method. The result showed that with the 

displacement increasing, the Esurface and Etexutre of non-rigid-ICP increased and more 

texture sliding error was caused. However, the Esurface and Etexutre of the proposed method 

were stable and it reduced the surface sliding error of non-rigid ICP method which only 

considers the surface for registration.  The proposed method can enhace the registration 

error 1 mm on average at displacement 20 mm compared with non-rigid-ICP method. 
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Figure 4-47 Esurface and Etexture of five porcine brains at different displacements 

 

b) Qualitative Result 

 

The TRE error distribution of the feature points of one porcine brain is shown in Figure 4-48. 

In Figure 4-48, (a), (b) and (c) show the TRE distribution after registration of ICP, 

non-rigid-ICP and the proposed method, and different rows show the different displacement. 

Different method means different error with red the largest error and the blue smallest error.  

 
 

              (a)                          (b)                         (c) 

Figure 4-48 TRE error of one porcine brain (a) ICP result (b) non-rigid-ICP result (c) proposed 
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Figure 4-49 Tracking correlation coefficient 

 

Figure 4-49 shows the correlation coefficient of the tracking error and distance change, r = 

0.0862. The related smaller r showed the robustness of the proposed method to brain shift 

displacement. 

 

4.3.3.2 Horizontal displacement experiment  

 

1) RE  

a) Quantitative evaluation 

The registration RE quantitative result of the horizontal experiment is shown in Figure 4-50. 

While the texture alignment RE is shown in Figure 4-51. The RE results were also compared 

with ICP, non-rigid-ICP and TPS method. It showed that by using ICP, the initial alignment 

had some deformation error. Also, the registration RE error increased when pushing distance 

increased. From the result it is shown that the RE of the proposed method was below 0.01 

mm and smaller than non-ICP. Figure 4-51 showed that when the pushing distance increased, 

the texture alignment of the proposed method was stable while non-ICP texture alignment 

increased. 
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Figure 4-50 Horizontal registration surface RE error of ICP, Nonrigid ICP, TPS and the proposed method 

 
Figure 4-51 RE of Texture alignment at different displacements of Nonrigid ICP and the proposed method 

 
b) Qualitative result 

One brain surface alignment result of ICP, non-rigid-ICP, TPS and the proposed method are 

shown in Figure 4-52 and their surface fitting error distribution is shown in Figure 4-53. 

Their texture alignment result is shown in Figure 4-54.  
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                        (a) d = 5 mm        (b) d = 10 mm    (c) d = 15 mm 

Figure 4-52 Registration result of ICP, Non-rigid-ICP, proposed 5 mm, 10 mm and 15 mm displacement 
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                   (a) d = 5 mm         (b) d = 10 mm    (c) d = 15 mm 

Figure 4-53 Horizontal RE distribution at 5 mm, 10 mm and 15 mm displacement 

 
From the result, the ICP result showed that it failed to compensate the brain surface 

deformation especially in 10 mm and 15 mm displacement. At the boundary area of brain 

surface, the alignment error was larger. For the non-rigid ICP method, it could achieve a 

good surface alignment with smaller RE, however, it caused large texture-sliding error along 
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the surface, suggested in Figure 4-54. In Figure 4-54 green line is the target texture; red line 

is the proposed texture alignment while blue line is the non-rigid-ICP registration result. It 

was shown that in displacement 10-mm and 15-mm, the non-rigid-ICP caused a sliding 

alignment error even they had a smaller surface alignment error.  

  

         (a) d = 5 mm                (b) d = 10 mm                (c) d = 15 mm 

Figure 4-54 Horizontal texture alignment result. Green line is the target texture, red line is the proposed 

texture alignment while blue line is the non-rigid-ICP registration result. 
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2) TRE 

 a) Quantitative Result 
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Figure 4-55 TRE of horizontal experiment at different displacements of ICP, Nonrigid ICP and the 

proposed method 

 
The TRE quantitative result is shown in Figure 4-55. ICP, and non-rigid-ICP were compared 

to the proposed method. From the result, it was shown that the TRE of ICP was kept 

increasing when displacement increased. And the TRE of the non-rigid ICP also increased 

when distance increased.  

The detail of Esurface and Etexture for the 5 porcine brains are shown in Figure 4-56. The 

horizontal axis shows the 3 different displacements (5, 10, and 15 mm) and the vertical axis 

shows the Esurface and Etexture of the proposed method and the non-rigid-ICP method. The 

result showed that for both the proposed method and the non-rigid-ICP method, the Esurface 

was smaller. However, the non-rigid-ICP method caused a large surface sliding error shown 

as Etexture in Figure 4-54. 



 

 130

 

Figure 4-56 Esurface and Etexture in horizontal experiment at different displacements 

 

   (b) Qualitative Result 
 

One porcine brain deformation field is shown in Figure 4-57. It was shown that the near the 

pushing area would bring large deformation while the other area was smaller. The TRE 

distribution is shown in Figure 4-58. (a), (b) and (c) show the TRE distribution of ICP, 

Non-rigid-ICP, and the proposed method. The result showed that ICP would result in higher 

error even in the horizontal pushing experiment, the deformation was smaller. The non-rigid 

ICP resulted in higher TRE.  
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Figure 4-57 One brain deformation field of horizontal displacement 

 

 

 
            (a) ICP                (b)  non-rigid-ICP             (c) Proposed 

Figure 4-58 TRE of ICP, non-rigid-ICP and proposed method of one porcine brain 

 

4.4.4 Discussion 

The proposed method integrated 3D texture and 3D surface points. Recently, Ji et al. used 

optical flow to track brain surface in the assumption that the intensity of brain surface did not 

change[90]. Their result depends on the intensity consistency of the 2D image. Also, other 

previous studies employed brain surface texture either in 2D or in 3D. Their approaches are 

obtaining the texture points corresponding and deform shape by Thin-Plate-Spline [104, 

114-116]. It might have the large error when in the surface with less texture. TPS is a linear 

interpolation method and the surface point deformation are greatly influenced by the 

condition of texture points such as position and number.  
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In the proposed method, we implemented smoothness and rigidness constraint to deform all 

the points. The deformation between surface and texture are relatively independent. The 

smoothness constraint can generate a smooth deformation and rigidness constraint can keep 

the local detail information by constraining the transformation matrix to be a rotation matrix. 

The proposed method can register surface and texture simultaneously; also texture works as 

a skeleton in the registration. RE and Target Registration Error (TRE) were evaluated to 

quantitatively evaluate the result. Two kinds of deformation were generated in the 

expariments: one in vertical direction and other in horizontal direction. The figure 4-52 and 

4-53 showed that the ICP method would generate registration error on the boundary part 

since no non-rigid deformation was considered. The ICP method works when brain 

deformation magnitude was small, as Sun et. al has done. The TPS reigtration use 

vessel/sulci on the brain surface as control point and this method would lead error occurred 

where less control point presented. Our implemented TPS registration result do show large 

error at the boundary(less texture) (shown in Figure 4-53) which is consitant with TPS 

disadvantage. The non-rigid ICP method generated texture sliding error as shown in Figure 

4-54 since only using shpe point can not compensate the horizontal residue. The proposed 

method combined shape and texture for registration and generated acceptable results. During 

registration, α = 10 and the ratio between shape points an texture points is 4.2:1. Therefore 

the α value assigned might be a reasonable value for registration. Further investigation of the 

ratio between shape points and texture points of all the tested porcine brains showed a value 

of 4.51. The result of evaluation of brains in the Figure 4-40, Figure 4-41, Figure 4-50 and 

Figure 4-51 further prove the the assigned α value 10 is acceptable.  

Figure 4-47 and Figure 4-56 clearly showed the advantage of the proposed method compared 

to nonrigid ICP method. For example, in Figure 4-56, when the displacement increased from 

5 mm to 15 mm, the Esurface of both proposed method and nonrigid ICP keep almost same 

error, which might be the limitation of the surface alignment of both methods. However, a 

clearly decreased Etexture is shown. The reduced texture error is up to 49% of the error in 

nonrigid ICP method at 15 mm displacement experiment. Moreover, in the horizontal 

experiment, especially in 15-mm displacement experiment, some parts of the brain surface 

are missing because of pushing, as shown in Figure 4-52. In this circumstance, the texture 

point can work as deformable skeleton to guide registration. 

The bifurcation points on porcine surface were used to evaluate the TRE. TRE can be 

influenced by several factors, such as manual point picking error, OPTPTRAK measuring 
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error, registration error of OPTOTRAK system and 3D measurement system. In order to 

evaluate our non-rigid registration algorithm, we chose the distance of 250 mm in the 

experiment as in 250 mm the system has the highest 3D measurement performance. The 

TRE of the proposed method was 0.93 on average, which meets the requirement of the 

clinical application (2 mm).  

We divided the TRE into Esurface and Etexture in order to further investigate the error 

contribution from texture (along brain surface) and shape (vertical to surface), as shown in 

Figure 4-47 and Figure 4-56. Both results showed that the proposed method can reduce the 

error along brain surface. The amount of reduced error might be influced by the coefficient α 

(in Equation 3-2) since if α = 0, the proposed method become a nonrigid ICP method. 

However, it does not necessarily mean larger α would reduce more error along surface. As 

the Figure 4-6 showed, the texture error decreased as α increase and the error keep stable in a 

range. When increased α exceeds this range, the texture alignment error will increase. The 

registration result in Figure 4-47 and Figure 4-56 showed that the balance between Eshape and 

Etexture, we assigned, is acceptable.  

The brain surface is smooth and there is sufficient texture information on the brain surface. 

Since the surface points construct a smooth surface, if only using surface, it could cause the 

sliding errors along the brain surface. However, by combining the surface and texture 

information, the surface sliding error can be reduced. The proposed method takes the 

advantages of texture for registration. The proposed method registered surface and feature 

simultaneously. Accordingly, good registration was obtained for surface points both near and 

far from feature points. In addition, we did not make a large number of comparisons because 

Cao[104] compared brain surface tracking in an objective manner with different registration 

methods, and observed that methods were performed differently according to the patient and 

the particular clinical case. 

Clinical brain surfaces are complex and segmentation of surface vessels is challenging. Ding 

et al. proposed an automatic brain surface vessel segmentation by applying a Frangi filter 

and evaluated their method using clinical data[100, 101]. They reported that in a clinical 

situation, only large vessels, such as tube-like structures, were used for registration because 

it was difficult to establish a correspondence between small vessels[100, 101]. Furthermore, 

the brain surface may be incomplete during deformation. Eventhough the edge part of the 

shape is missing (such as occlusion), horizontal displacement experiments showed that the 

proposed method performed well in this type of incomplete situation. In another case, if the 
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missing part of the shape is located in the middle of the shape (not the edge), in forms such 

as a hole, some manual ROI (Region Of Interest) selection or surface interpolation for filling 

in the incomplete surface might be needed. Therefore, further evaluation using clinical data 

is required in the future work. Our current 3D shape measurement system is limited to a 

single camera viewpoint, and with the multiple synchronizations of cameras and projectors, 

it is possible to acquire more accurate brain surface from different angles.  

As all the 3D points are involved for calculation and the non-linear square least problem 

takes long time, the calculation time is long in the proposed method. However, the 

computing speed can be enhanced by using CUDA calculation. 
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5   Discussion 

Proposed method applies a phase shift method to project patterns onto the patient’s brain 

surface for the 3D shape measurement. The projector can also be used to project some brain 

surface information such as brain function area onto the patient’s brain. By doing this, the 

surgeon can directly recognize the visualized brain function area instead of monitoring the 

screen. The projecting accuracy might be influenced by the projection distance, since our 

projector has large distortion and the distortion increases as the distance increases. Thus, a 

suitable projection distance is needed during the application, such as 250 mm far from the 

brain surface. 

Besides, the proposed method still remained some limitations, drawbacks. They will be 

introduced below in Table 11 as well as the feasibility to apply the proposed method to 

clinic. 

 

Table 11 Limitation of the proposed method 

 
  Ecor_surface Ecor_texture Esmooth Erigid Affected 

Brain 
conditions 
(on each of 

position, 
shape, 

texture and 
hardness) 

Position (distance from the 
device) 

× ×   *2 

Size     Not affected 
Large deformation × *1   Not affected 
Small deformation     Not affected 
Shape smoothness × *1   Not affected 
Shape complexity     Not affected 
Texture-less  × *1   
Texture complexity  × *1  *3 

Texture color     Not affected 
Diseased (material hardness)    × *3 

Lighting 
conditions 

Illumination power × ×    
Ray color     Not affected 
Addition of other light 
sources 

    *3 

Obstacles Occlusion by hand and tools × ×    
*1 This constraint compensates the drawbacks affecting another constraint 
*2 Discussed in the thesis with experiments 
*3 No soluton found by us 

 
(The top row shows four constraints of the proposed method.) The right column shows our 

summarization if the proposed method can be affected by the conditions at the left side. The 

body at center shows possibility if each constraint can be affected by the issues shown at the 
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left side. The left column shows influences, which we should consider. “×” means the energy 

component is influenced; “” means this specific parameter can influence the performance of 

our system; blank means not applicable. The table shows that our system was influenced by 

the hardware position, target conditions, and optical measurements. (Target conditions 

includes patient brain diseased (change in hardness), brain deformation, texture and shape 

conditions. On environmental conditions, lighting conditions and obstacles are chosen because 

our system employs optical measurement which can be mainly affected by illumination.) 

Discussing on how to overcome above effects, some solutions can be proposed: illumination 

power change can be avoided by introducing infra-red light source since infra-red-light 

component is cut off in operation rooms; texture-less problem can be also solved by infra-red 

light source because infra-red light is absorbed by hemoglobins in blood thus it is adequate to 

highlight vessels; and the obstacles caused by hands or surgical tools can be overcome by 

using graph-cut based segmentation methods. Regarding the issues marked with *3, texture 

complexity would not occur so frequently; material hardness would be acquired in the future 

but not at the present; addition of other light sources depends on each case and it is difficult to 

summarize it here. 

Moreover, our system can be used into brain tumor resection surgery. One of commonly used 

methods is finite-element model (FEM). (A generally used FEM is a linear elastic model 

which can treat brain tissues with homogeneous linear elastic continuum.) One of the 

requirements to apply FEM is mathematical model describing material inner condition such as 

hardness. The other is boundary conditions. Regarding the model, we can employ 

homogeneous elastic model which is a kind of spring-damper connection models. The 

finite-element mesh is usually generated from a patient-specific pre-operative MR images. On 

the other hands, closing of boundary condition is required to achieve high accuracy as shown 

in Figure 5-1. The boundary condition of the top brain surface can be obtained by the proposed 

method. The other boundary part, which is the inner sculpture and cannot be obtained by the 

proposed method, can be given by combination of pre-operative MRI scanning, rigid 

registration and intra-operative rigid-motion tracking with markers attached onto the head 

skin.  
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Figure 5-1  application example of our system 
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6   Conclusions 

In this thesis, a marker-less non-rigid method for tracking brain surface by combining shape 

and texture is proposed. 

In brain surgery, the eloquent area which controls patients’ speaking, motor and sensor 

should be avoided and protected in the brain surgery especially when the tumor is near or in 

these areas. This kind of area is quite important in the surgery. However, the brain shift will 

happen which make these areas unstable and the brain area should be tracked. Compared to 

previous on brain surface tracking method, we proposed a new non-rigid registration method 

to track brain surface by integrating shape and texture information. 

Firstly, a brain surface measurement system was implemented by projecting vertical and 

horizontal patterns on to the brain surface. The 3D measurement system can measure the 

textured brain surface since the corresponding between the camera image pixel and projector 

pixel can be obtained simultaneously. Phase-shift 3D shape measurement method can reduce 

the influence of the texture change because they only consider the phase information 

projected from the projector. 

Secondly, a new non-rigid registration algorithm combines shape and texture information has 

been proposed to track brain surface during deformation. The texture on the brain surface is 

extracted by using frangi filter and then the whole textured brain surface is divided into 

texture points set and surface points set. The texture point obtains the corresponding from 

the texture point sets and surface point obtains the corresponding from the surface point sets. 

Then the surface deformed by a smoothness and rigidness constraint to make the shape 

deform smoothly and as rigidly as possible. After solving a non-linear square least problem, 

the brain can deform toward the deformed brain surface to achieve tracking. 

The 3D measurement experimental result showed that our system had 3D shape 

measurement of the bias error around 0.31 mm and precision error around 0.025 mm at 

distance 250 mm and the 3D shape measurement error increases with distance increase. The 

simulation result showed that the proposed method appeared to be superior to the TPS based 

registration method regarding on the deformation magnitude, texture frequency and texture 

direction. Experiments according to brain deformation on vertical and horizontal direction 

was evaluated using five porcine brains. The vertical experiment can show the capability of 
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the proposed method in tracking brain surface when brain deforms caused by gravity and 

horizontal experiment shows the capability of the proposed method in tracking when brain 

deform by pushing. The result showed that proposed method RMSE is around 0.1 mm and 

smaller than ICP, non-rigid ICP and TPS based registration. For the tracking error evaluated 

by OPTOTRAK, our proposed method also can achieve an accuracy around 0.9 mm on 

average and compared to other methods, the proposed method performs better than them. 

And the error of 0.9 mm on average satisfy the 2 mm accuracy requirement of INGS. All the 

experiments showed the advantages of the proposed methods and the feasibility in clinical 

application.    
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