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Abstract

A key element to the widespread adoption of electronic communication was
its strong guarantees of privacy and security. Traditional Public Key En-
cryption (PKE) systems developed from the 1970s fulfill those requirements.
Indeed, any two entities can rely on such schemes to communicate safely
and privately under strong computational assumptions. So strong in fact
that many countries attempted to legally restrict its usage over concerns
of national security. These regulations however proved hard to enforce and
truly private communication between clients and remote services became the
norm as the Internet developed. However, new privacy concerns stemmed
from these omnipresent relations in mainly two ways. Some services built
their business model around the systematic gathering of private information
to create user profiles and the selling of said profiles to advertisers. Other
services unwillingly shared this private data either because they were legally
bound to do it or because a third party illegally breached their security and
unauthorized access occurred.

One way to address these issues is Private Information Retrieval (PIR).
As the name implies, PIR protocols allow a client to recover data on a server
he has access to without compromising his privacy. The concept was formally
introduced in 1995 by Chor et al. and a number of solutions were quickly
designed. Compared to other cryptographic primitives, the definition of PIR
only offers limited power to the client. Namely, he can only recover bits of
information already present on the database and already available to him if
he requests them directly. This apparent simplicity makes PIR comparatively
likely to be used on real-world systems in the near future. Meanwhile, this
low degree of freedom is still sufficient to be applied in a variety of scenarios
ranging from financial services to biometric authentication.

There is a very natural so called trivial PIR algorithm satisfying all the
privacy requirements and consisting in merely sending all the data stored
on the server to the client regardless of his query. While not practical, this
algorithm has a reasonable computational cost, optimal in a lot of settings.
Its bottleneck resides in the prohibitive communication cost since network
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speeds tend to be far slower than local data processing. As such, most early
contributions to this research area focused on reducing the amount of data
that has to be transferred and proved to be very successful in that regard.

More recently, focus has shifted towards the design of lightweight schemes
as the heavy computation cost became the last obstacle standing between
these theoretical protocols and practicality. My research takes place in this
setting. Two main issues were identified and improved on. First, most
schemes deal with a low-level model where the clients know the physical
address of the bits he wishes to recover. While sufficient, this model can
be highly impractical. Second, almost every known PIR protocol operates
by reading the entire database for every query received. This is a major
limitation which can be improved upon.

A scheme that allows the execution of SQL-like queries on a server-hosted
database efficiently and privately was designed. Since most data publicly
available online is organized in such databases, this is a necessary consider-
ation to provide realistic schemes. This situates itself in a generalized PIR
framework called Extended Private Information Retrieval. The algorithms
described distinguish themselves from others in the literature since they do
not require independent data replication, also known as multi-server PIR.
This latter setting only makes sense in some very specific instances while our
approach is applicable to a wide range of situations.

Another contribution is a lightweight block PIR scheme performing very
efficiently. It is built by combining different existing constructions and its se-
curity is based on a well trusted computational assumption known as the Ap-
proximate GCD assumption. Straightforward preprocessing methods speed-
ing up the running time are detailed and shown to also apply to other pub-
lished protocols.

A new and more complex approach to PIR with preprocessing is created
under the name Partial Server Side Parameter Selection (PSSPS) PIR. It
achieves lower overall computation and allows for a justified trade-off where
the cost of running the algorithm can be split in many ways between client
and server. This approach is applied to the Approximate GCD-based scheme
introduced previously and to another one from the literature. Further devel-
opments of this approach are discussed along with guidelines to create more
efficient schemes based on it.

Now, all of the methods described above are compatible with each other
and can be used together to build an efficient scheme on real-world databases
or used independently and combined with other PIR schemes to gain different
combinations of desirable properties.
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Chapter 1

Introduction

1.1 Background and Motivation
Online privacy is a growing concern for many Internet users all over the
world. The issue of privacy over the Internet became a topic of mainstream
media interest with the scandal that followed the Snowden leaks in 2012.
Both governments and consumer associations pleaded for a more private
experience online. Such privacy can take many shapes. Indeed, the revelation
that large scale data collection [GP] was occurring was a reminder of the
importance of privacy-oriented electronic security. Specifically, they outlined
with great detail the secret close collaboration between major companies and
some governmental organizations. Such relationships break the trust users
have put in companies running online services. Similarly, targeted advertising
and other inconspicuous recommendation systems systematically learn users’
behavior in order to aggressively sell them more products. While these can
potentially be helpful or beneficial, very often they are done without warning
the user or acquiring his consent.

There really are only two avenues to solve these issues. One is to outlaw
or regulate such behaviors, and many legislations all around the world have
been passed to make sure citizens’ privacy is not sacrificed for security or
for profit. Another option is to make it impossible practically. This is what
cryptography aims for. Schemes were designed, relying on computational or
other assumptions to guarantee security. Meanwhile, time has proven that
such mathematical assumptions are harder to break and less likely to be
revoked than arbitrary written laws.

Now traditional encryption techniques such as Public Key Encryption and
Symmetric Key Encryption allow the creation of private channels between a
client and a server. Under appropriate assumptions, all communications on
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this channel are shielded from potential eavesdroppers. This of course does
not prevent the server itself from sharing or exploiting the information he
received without the user’s consent. More complex primitives are therefore
required.

We can mainly distinguish two cases for client-server interactions. Either
the client is uploading and maintaining his own information on a cloud ser-
vice, or he is downloading information that the server is willing to share with
him. The former option falls under the broad category of cloud computing
and cryptographic primitives such as homomorphic encryption [Gen09] or
searchable encryption [CGKO06] offer solutions. The latter option’s most
common instances would be performing a search on a public website (search
engine, shopping website, video delivery, some forms of social media, etc.)
This encompasses a very significant portion of the Internet activity performed
by average users [Jac] and is the setting we will be studying in this thesis.

Besides providing strong privacy for any “queryable” online service, we
can identify some specific privacy-sensitive applications which can only be
solved using this approach. For years it had been conjectured that stock
exchange services could monitor investors’ lookups and use that information
for their personal gain. In 2013, the Bloomberg Terminal Snooping scandal
[Cho] revealed that it had actually been happening for a long time, making
it a justifiable fear. In the field of biometrics authentication, it is typical to
have a server hosting the biometrical data for many users and another proxy
server handling the (encrypted) credentials checking process [BCPT07]. This
way, the proxy does not learn personal data and the data-hosting server does
not learn when and who is logging in on a system. Such a setup however
requires this type of privacy-enabling technology between the proxy and the
other server. Finally, DNS servers are a necessity to allow users to convert
memorable URLs into IP addresses. In doing so, they inherently learn the
name of every website said users visit which is a major privacy shortcoming
and could be solved. Naturally, every system relying on a user’s location
would benefit from these schemes as users can access the service without
revealing a highly private data such as their location [KS09].

Now, in this standard setting we have one or more clients each download-
ing data independently from one or more servers. Informally, we need each
client to know the result of their query while the server(s) must be unable to
learn anything about said queries by the end of the interaction. This problem
was formally defined under the name Private Information Retrieval or PIR in
1995 by Chor, Goldreich, Kushilevitz and Sudan [CGKS95]. Their original
suggested solution required several independent servers hosting copies of the
same database and had a communication complexity of O(n1/k) where n is
the number of bits in the database and k the number of servers.
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Following the original construction, a groundbreaking result due to Kushile-
vitz and Ostrovsky in 1997 [KO97] showed that sufficient security could be
achieved without the requirement on the existence of multiple independent
servers. A variety of other schemes followed suit and were developed in the
following decade, bringing the communication cost lower and lower until it
reached a point where it was only a constant number of times larger than
it would be for a non-private protocol in 2005 [GR05]. During this entire
time, the prohibitive cost of sending large amounts of data over a potentially
slow network had been the driving force behind the efforts to reduce com-
munication as can be seen by the trove of protocols developed during that
time [Amb97, AF02, BS03, CGKS95, GR05, GIKM98, Gol07, KO97, Lip05].
Note that all of those schemes either required a local server-side computation
using the entire database as an input or a secure coprocessor attached to the
server.

In 2007, Sion implemented the strongest contenders for practicality and
compiled the results in a widely cited technical report [Sio07]. In particular,
each implementation result was compared with the cost of sending the entire
database over the network (which offers the same level of privacy) for different
transfer speeds. The report’s conclusion was that for all of the single server
PIR schemes, processing one bit of data was actually slower than sending the
same bit over the network, even on a slow channel. In other words, none of
those schemes had any practical usefulness.

After this revelation, most subsequent proposals focused on improving the
computational complexity of PIR algorithms, either theoretical or through
more efficient implementation [MCG+08, DC14]. In 2011, Sion’s original re-
port was revisited by Olumofin and Goldberg [OG12]. Their findings revealed
that the newer schemes were able to perform one to two orders of magnitude
faster than naive database sending. While encouraging, these results are still
not practical for many potential applications of private information retrieval.

1.2 Related Works
Olumofin presented his PhD thesis [Olu01] in 2011 on a related topic. He
had a very different approach however. First, his proposals were built for
multi-server PIR, which gives a lot more freedom to the designer but is
also compatible with only a small fraction of potential applications for PIR.
Second, he did not design any preprocessing-based schemes. It is a well known
fact that preprocessing is a necessity for sublinear complexity, although it has
never truly been achieved in a generic setting so far. Third, his contributions,
written in the wake of Sion’s report [Sio07], aimed at showing that practical
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implementation was possible and actually outperformed the sending of the
entire database. It is therefore very implementation-oriented while we focus
mostly on theoretical findings (we only implement our results as a way to
validate our claims).

1.3 Open Problems
The main issue with Private Information Retrieval protocols is their inade-
quacy for real-world systems, which is materialized in different ways.

First, a vast majority of schemes require reading the entire database for
every query. This is not an option for most online services hosting large
amounts of data. Other schemes have unrealistic assumptions such as many
servers hosting copies of the data but somehow forbidden from communicat-
ing with each other.

Other protocols require the user to place some degree of trust in third-
party issued hardware or certificates. While this is a fairly common assump-
tion in other areas of cryptography, it does not fit the philosophy of PIR
where clients not only do not trust third-parties, they do not even trust the
other party they are interacting with.

The standard PIR model also expects the client to know the physical
location of the data he wants to recover, which is very seldom the case. Most
databases are hosted with a complex structure and data cannot be accessed
meaningfully in such direct, low-level ways.

Finding a scheme that manages to avoid all of these shortcomings is the
main problem we will be tackling here.

1.4 Contributions
PIR still faces many issues before it may be used in widespread large-scale
systems. The formal setting under which it is defined offers great freedom but
also hinders its practicality. Indeed, the standard definition indicates that a
client selects the index of a bit and engages in a protocol with a server, at the
end of which the client learns the data located at the index location while the
server learns nothing about said index. A number of issues naturally arise
when observing this definition. The privacy requirements imply that every
single bit of the database must be read for every query. Meanwhile, there is
an assumption that a client would know the physical location of the data he
wishes to recover. Finally, only a single bit of data is recovered by the end
of the protocol. While this last issue has received considerable attention and
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can arguably be considered solved, the first two problems do not yet possess
a truly satisfactory solution.

Our contributions aim at addressing these concerns by extending the
setting in which PIR is used in meaningful ways to provide privacy where
it is actually needed. For instance, consider the problem of having to read
the entire database to answer any query. In Chapter 3, we build around
the idea that clients usually do not require perfect privacy but only need to
hide specific information when querying. Specifically, we consider the very
common case of SQL-like databases for which realistic usage scenarios are
easy to envision and prepare for. With this limited approach to privacy, we
are able to theorize a framework that addresses the first and second issues to
some extent. In Chapters 4 and 5, we instead focus on a purely computational
approach that partially solves the first and third problems. Both suggestions
can further be used conjointly to build a system providing improvements in
every direction.

We now detail the contributions.
A scheme that allows the execution of SQL-like queries on a server-hosted

database efficiently and privately was designed. Since most data publicly
available online is organized in such databases, this is a necessary consider-
ation to provide realistic schemes. This situates itself in a generalized PIR
framework called Extended Private Information Retrieval (EPIR). In this
framework, clients are not only allowed to recover data directly, but also al-
lowed to recover the result of a semi-private function on said data. Only a
few function families have been shown to be compatible with EPIR schemes.
We show that most common SQL queries can actually be used in such a way.

The algorithms described distinguish themselves from others in the liter-
ature since they do not require independent data replication, also known as
multi-server PIR. This latter setting only makes sense in some very specific
instances while our approach is applicable to a wide range of situations. Fur-
thermore, our approach allows for much greater query expressivity and ease
of use compared to existing generic solutions.

Another contribution is a lightweight block PIR scheme performing very
efficiently. It is built by combining different existing constructions and its se-
curity is based on a well trusted computational assumption known as the Ap-
proximate GCD assumption. Straightforward preprocessing methods speed-
ing up the running time are detailed and shown to also apply to other pub-
lished protocols. The main interest of this scheme however is its compatibility
with the new method introduced next.

Indeed, a new and more complex approach to PIR with preprocessing
is created under the name Partial Server Side Parameter Selection (PSSPS)
PIR. It achieves lower overall computation and allows for a justified trade-off
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where the cost of running the algorithm can be split in appropriate ways
between client and server. This approach is applied to the Approximate
GCD-based scheme introduced previously and to another one from the lit-
erature. This allows us to build a scheme able to go under the information
theoretical lower bound on server-side computation cost in PIR protocols.
This is the first time this bound is broken without any trust assumptions
(secure coprocessor, non colluding servers) or running environment require-
ments (such as a high number of queries at any given time), although we
show our scheme can run even faster under such conditions. Further devel-
opments of this approach are discussed along with guidelines to create more
efficient schemes based on it.

Now, all of the methods described above are compatible with each other
and can be used together to build an efficient scheme on real-world databases
or used independently and combined with other PIR schemes to gain different
combinations of desirable properties.

1.5 Organization
Chapter 2 provides the reader with all the necessary information to under-
stand the technical contents of the thesis. It also provides formal definitions
for the notions briefly mentioned above and used through the document. Fi-
nally, it gives summary examples of protocols from the literature that achieve
various properties of interest or are representative of a specific setting.

Chapter 3 is our first contribution. It details a new protocol allowing
clients to efficiently retrieve the result of a wide variety of SQL queries over a
remote database. It is compatible with queries over any number of fields and
with any condition that can be expressed as a logic formula over field-value
comparisons, including LIKE queries and more generally regular languages
testing. Its complexity will be dependent on the block PIR scheme used to
recover the values once the query has been performed.

Chapter 4 is our second contribution. We designed a lightweight single-
server PIR scheme that can outperform other known schemes — both single-
server and multi-server — through the use of simple preprocessing optimiza-
tions. Its security relies on the Approximate GCD assumption. We also
show how the precomputing techniques can be used on some other schemes
for additional efficiency.

Chapter 5 is our third major contribution. It introduces the new concept
of Partial Server-Side Parameter Selection which allows the server to pre-
select part of the information that is usually sent by the client. This lets the
server perform some computations in an offline phase only happening once
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and before receiving any query. This reduces its online computational com-
plexity but increases the client’s complexity. Complexity trade-offs between
server and client have to be considered and studied.

Chapter 6 shows how to combine all of the contributions presented be-
fore in our main proposal, an efficient PIR scheme designed for real-world
databases, along with measurements and comparisons with other schemes.
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Chapter 2

Preliminaries

In this chapter, we introduce all the techniques that will be relevant to the
building of our main contributions. It will also help the reader better appre-
ciate the broader setting in which this research is located.

2.1 Threat Models
Cryptography can be seen as the art of protecting information against at-
tackers. The type of attacker will vary widely depending on the specific field
of study. We describe the two main models frequently encountered in the
privacy preserving area.

First let us clarify that in a private client-server interaction, not only
third parties but also the server itself are considered adversaries. Security
against third parties is the subject of very extensive research and we will
not be covering it here. For all practical purposes, we can assume that
every communication between client and server is encrypted using a trusted
symmetric key cryptosystem such as the AES encryption [oST01] along with
a secure key exchange protocol such as the Diffie-Hellman Key Exchange
[DH06]. Whenever we talk about security in such privacy-oriented protocols,
the only attackers will be the parties directly involved in the protocol.

We now describe the two adversary models for the server itself, namely
the Honest but Curious model and the Malicious model. When performing
a protocol in the Honest but Curious setting, the parties involved will follow
every step of the protocol as described in its specification. On the side, the
attacker may do additional computations using the data that he received
in an attempt to break the client’s privacy. The attacker (the server) will
however always return what the client expects. Meanwhile, the malicious
model will give greater freedom to the attacker, allowing him to stray from
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the protocol and send arbitrary data instead. A scheme provably secure
(possibly under a number of assumptions) against the weaker assumption of
a Malicious attacker will provide greater security overall. In practice, most
of the PIR protocols we will study only have a single round of interaction.
The client sends a query and the protocol ends when the server sends a
response. In this situation, sending malicious data does not give the server
any additional information.

A PIR scheme will be deemed secure if no Probabilistic Polynomial Time
(PPT) adversary in the malicious model as described before is able to distin-
guish between two queries for different pieces of data (for instance, bit index)
stored server-side. This security will be conditional on a security assumption,
either decisional or computational.

Another consideration will be the number of parties involved. Often-
times, the interaction takes place between a single client and a single server.
However some schemes allow or even require more participants. Most com-
monly, a setting where one client interacts with several servers is the base
for many protocols. It is then common to have a security conditional to the
number of collaborating servers, in particular requiring that not every single
server cooperates with each other. Most of our proposals however work in
the single-server setting where such concerns do not arise.

A t-server PIR scheme will be deemed Information Theoretically secure
(also known as ITPIR) up to a coalition of k < t servers if no adversary
controlling k servers or less can distinguish between two queries for different
pieces of data. In particular this means that for such an adversary, any query
could recover any piece of data with equal probability.

Other schemes allow for several clients to take part in one round of
communication, adding potential concerns for malicious interaction between
clients. Such a protocol will then be expected to guarantee that clients are
unable to retrieve data related to each other’s private information. In partic-
ular, a u-client PIR scheme is deemed secure if no PPT adversary controlling
the server and up to u−1 clients is able to distinguish between two queries for
different pieces of data sent by a client not under the adversary’s control. If
t servers are involved, the scheme is deemed information theoretically secure
if no adversary controlling at most t− 1 servers and at most u− 1 clients is
able to distinguish between two queries for different pieces of data sent by a
client not under its control.
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2.2 Homomorphic Encryption
Homomorphic Encryption is one of the most fundamental constructions avail-
able in cryptography with applications in a wide array of fields. As the base
building block for many proposals, we describe its importance, history and
the main construction that achieves it.

2.2.1 Background
A function F between two algebraic structures (A, ∗A) and (B, ∗B) is an
homomorphism when ∀a1, a2 ∈ A, F (a1 ∗A a2) = F (a1) ∗B F (a2). Common
examples include linear polynomials over any field or exponentiation over
integers.

Now let Enc be an encryption function between a message space SM and
a ciphertext space SC . We assume that both sets have internal operations +
and ∗. In most cases, those sets will be bit sequences which can be translated
to integers on which such operations do indeed exist.

Enc will be considered a homomorphic encryption scheme if there ex-
ist two operations ⋆M and ⋆C ∈ {+, ∗} such that Enc(m1 ⋆M m2) =
Enc(m1)⋆C Enc(m2) for messages m1 and m2 in the message space SM .

This property can be desirable as it allows a client to request some com-
putation to be done on encrypted data remotely stored without having to go
through the trouble of downloading it, performing the computations himself
and then potentially uploading the result. In other settings, it is a nuisance
as it allows malicious attackers to create ciphertexts for messages without
the user’s consent.

A number of schemes are naturally homomorphic (rather than by design)
like the RSA encryption.
Definition 2.2.1

RSA Encryption.
For secret primes p and q, define n = pq and find a public e and secret

d such that ed = 1 mod (p− 1)(q − 1).
For m ∈ Zn, Enc(m) = me mod n and Dec(c) = cd mod n.

We clearly have Enc(m1m2) = Enc(m1)Enc(m2).
In these cases, a scheme can be made non homomorphic in many ways,

for instance by padding the messages with a hash before encryption. We
are however more interested in schemes which are homomorphic by design
as this property allows the convenient building of private schemes.
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2.2.2 Additively Homomorphic Encryption
Of particular interest to us are additively homomorphic encryption schemes.
We will show how these can be used to build privacy-enabling protocols. In
this section, we introduce a few of these.
Definition 2.2.2

Paillier Cryptosystem. [Pai99] (simplified)
For secret primes p and q, define n = pq.
The public key is (n, g) where n = pq and g ∈ Zn2 . The secret key is

λ(n) where λ(n) = lcm(p− 1, q − 1).
Enc(m) = gmrn mod n2 for a random r ∈ Z∗

n

Dec(c) = L(cλ(n) mod n2)

L(gλ(n) mod n2)
mod n where L(x) = (x− 1)/n

Here we have Dec(Enc(m1)Enc(m2)) = Dec(Enc(m1 + m2)) and Enc
is additively homomorphic.

Definition 2.2.3
Goldwasser-Micali Encryption. [GM82]

For secret primes p and q, define n = pq.

The public key is (x, n) where
(
x

p

)
=

(
x

q

)
= −1. The secret key is

(p, q).
Enc(b) = xbr2 mod n for a bit b.
Dec(c) = 0 if c is a quadratic residue, 1 otherwise.
Here too we have Enc(b1)Enc(b2) = Enc(b1 + b2)

2.2.3 Somewhat Homomorphic Encryption
If a scheme supports both additive and multiplicative homomorphic encryp-
tion over single bits, then repeated application of these two basic notions
allows the computation of any function that can be built using OR and AND
gate. This notion is called Fully Homomorphic Encryption (FHE).

Enc : {0, 1} → SC is such that Enc(b1) + Enc(b2) = Enc(b1 + b2) and
Enc(b1)Enc(b2) = Enc(b1b2) where + is the modulo 2 addition.

The existence of such a secure primitive was conjectured since the 1980s
but the first such secure construction was proposed by Gentry in 2009 [Gen09].
Following this publication, many other schemes were developed using more
or less related techniques.

As it turns out, it is impossible to straightforwardly build a secure fully
homomorphic scheme (see [GS16] for instance).
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As such, we define Somewhat Homomorphic Encryption schemes as schemes
supporting both additive and multiplicative homomorphism up to a certain
degree. Typically, ciphertexts contain a certain amount of noise that grows
with every additional homomorphic operation. When the noise crosses a set
threshold, the ciphertext becomes undecipherable. This can in turn be trans-
lated in a threshold on the number of operations that can be performed on
a “fresh” ciphertext.
Definition 2.2.4

Approximate GCD-Based Encryption[vDGHV10]
For a secret large odd number p, random q and noise ϵ small compared

to p, we have:
Enc(b) = pq + 2ϵ+ b
Dec(c) = (c mod p) mod 2
In this case Enc(b1) + Enc(b2) = Enc(b1 + b2) and Enc(b1)Enc(b2) =

Enc(b1b2) so long as the noise does not grow too high.

Definition 2.2.5
Ring-LWE-Based Encryption.[BV11] (simplified)

The secret key is a small s ∈ Rq = Zq[X]/⟨f(X)⟩ according to some
specific Gaussian distribution. The message space is Rt (coefficients less
than t).

Enc(m) = (as+ te+m,−a) for some random a ∈ Zq[X]/⟨f(X)⟩ and
a small noise e according to the same distribution as s.

Dec(c0, c1) = c0 + c1s mod t
Once again Enc(m1)+Enc(m2) = Enc(m1+m2) and Enc(m1)Enc(m2) =

Enc(m1m2) for a specific multiplication and so long as the noise does not
grow too high.

2.2.4 Fully Homomorphic Encryption
Starting with Gentry’s original scheme in 2009 [Gen09], every secure FHE
construction has relied on a technique called bootstrapping on top of a some-
what homomorphic scheme. Bootstrapping consists essentially in homomor-
phically executing a noise removal function (deciphering then re-encrypting
with a low noise once again). The difficulty lies in finding an implementa-
tion of this noise resetting function that requires fewer operations than the
scheme-specific threshold.

The design and implementation of such schemes is beyond the scope of
this thesis and we only present the major scheme that is used in privacy-
oriented constructions.

17



Definition 2.2.6
Fully Homomorphic Encryption over the Integers. [vDGHV10]

Using the Somewhat Homomorphic Encryption scheme from Defini-
tion 2.2.5, homomorphically reset the noise from the ciphertext using a
bootstrapping function light enough that the noise does not outgrow p
during the process.

2.3 Private Information Retrieval

2.3.1 Background
In this section, we define the specific field in which our research situates itself.
Let us assume a server is hosting data that is available for viewing to a client.
A Private Information Retrieval (PIR) protocol allows the client to recover
part of that data without revealing which part is being retrieved.

Formally, the database DB consists of n bits (b1 · · · bn) where bi ∈ {0, 1}.
The client selects an index x ∈ {1, · · · , n}. The protocol has to retrieve the
value bx while maintaining the index x secret from the server. A protocol
may require one or more rounds of interaction between client and server. In
practice, most schemes only have a single round.

We call a query the ordered set containing all the data exchanged be-
tween a client and a server excluding the final server reply. Similarly, we call
the server’s response the ordered set containing all the data returned by the
server. In particular, in a single round scheme a query would be the data
sent by the client initially while the response would be the data returned by
the server.

The protocol can then be repeated as many times as necessary to re-
cover any subset of the database DB. This definition thus allows the private
simulation of any non private client-server interaction over public data.

Trivial Algorithm

A very simple yet important way of achieving the aforementioned goals is to
use the Trivial Algorithm.

This algorithm satisfies all the requirements from the definition of a PIR
protocol. The server has to read and send n bits of data while the client
has to download n bits of data (and discard all but one). While it is deeply
inefficient and extremely simple, we will refer to this algorithm many times
as a base to which other protocols can be compared.
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Algorithm 1 Trivial PIR Algorithm
Require: Public DB = (b1 · · · bn), secret index x ∈ {1, · · · , n}
Ensure: Client learns bx, server does not learn x

Client sends 1 to server
Server returns res = DB
Client recovers bx = res[x]

Security

A PIR scheme is said to be secure if it is hard for an attacker to distinguish
between queries for different bits. The specific definition will depend on the
setting in which we work. A scheme can achieve information theoretical secu-
rity or computational complexity. We detail these two cases in the following
sections.

2.3.2 Information Theoretical Private Information Re-
trieval

A PIR scheme is information theoretically secure if there exists no way for the
server to gain any information about the secret index. In other words, given
a query q for a secret index x, we have ∀i ∈ {1, · · · , n}, Pr(x = i|q) = 1/n.

For instance, the Trivial PIR Algorithm is information theoretically secure
as the query received by the server (a constant 1) could have been a query for
any index in DB with equal probability since its generation did not depend
on x.

Single Server Setting

Interestingly enough, information theory dictates that in a single-server set-
ting, such a scheme is only possible when the server’s response has a size of
at least n bits.
Theorem 2.3.1

Any information theoretically secure PIR protocol has a server response
at least as large as the database size.

Proof : Let us call m the bit size or the server’s response and assume m < n.
Now given a fixed query, we consider the function F (DB) which returns

the server’s response. F : {0, 1}n → {0, 1}m. Since m < n, F is not injec-
tive, we know that there exist DB1,DB2 ∈ {0, 1}n two distinct databases
such that F (DB1) = F (DB2).
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Since the client receives no information besides F (DB), it is impossible
for him to distinguish between DB1 and DB2. However, the protocol’s
correctness means that the client learns bx from the server’s response. As
such, Pr(x = i) = 0 for every index i such that DB1[i] ̸= DB2[i].

Thus the scheme does not achieve information theoretic security.

Naturally, the same is true regarding the computational cost of the algo-
rithm on the server’s side. In other words, the server has to read at least n
bits of information or the scheme cannot be information theoretically secure.
Theorem 2.3.2

If a server reads less than the entire database’s size when answering a
PIR query, then the scheme is not information theoretically secure.

Thus sending exactly n bits of data is the best we can hope to achieve in
this setting. This is exactly the performance from the Trivial PIR Algorithm
consisting in sending the entire database. It is optimal yet impractical which
motivates us to look at different settings.

Multi-Server Setting

One way to go past this limitation is to work in a setting where one client
will interact with several servers. The proof from Theorem 2.3.1 then does
not apply since any indistinguishable databases on any one server’s side may
be distinguishable using the other servers’ responses.

Here a number t > 1 of servers all host a copy of the exact same database
DB. The client enters an exchange with each of these independently and
retrieve their individual answers, which he can then use to recover the value
of bx.

If the servers’ independence is not maintained, the scheme potentially
loses its information theoretic security. In particular, if all t servers collabo-
rate and share the queries sent by one client, the scheme becomes equivalent
to a single-server one and will only maintain its level of security if at least n
bits of data are sent to the client overall. At best, a scheme will retain its
security for coalitions of up to t− 1 servers. Several schemes available in the
literature achieve this level of security. We give informal definitions of two
such examples.
Definition 2.3.3

Goldberg’s Robust PIR Scheme. [DGH12]
There are k servers. The client wants to recover bx,y. He selects k

values αt, t ∈ {1, · · · , k} and a random degree k − 1 polynomial Pi for
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every i ∈ {1, · · · ,
√
n} such that Px(0) = 1. He sends {Pi(αk), 1 ≤ i ≤√

n} to server k.

Server k returns
√
n∑

i=1

bi,jPi(αk) for every j.

The client interpolates Qj(X) =

√
n∑

i=1

bi,jPi(X) and recovers bx,y =

Qy(0).

Definition 2.3.4
CGKS. [CGKS95]

There are 2d servers and n = ld for some l. bx is recovered where index

x =
d∑

c=0

xcl
c where 0 ≤ xc < l.

For every t, server t is sent d subsets Sσc
c where t = σ1 · · ·σd and

S0
c ⊕S1

c = xc and he returns the exclusive-or of all the bits in the subcube
defined by these sets.

The client then computes the exclusive-or of all the bits he receives
and gets bx.

2.3.3 Computational Private Information Retrieval
Unfortunately, very few real-life settings allow for multiple non-colluding
servers to host the same database. Another more practical solution to the
information theoretical limitations is Computational Private Information Re-
trieval (cPIR). In this setting, the security of a scheme relies on the hardness
of distinguishing between queries for different indices in a probabilistic poly-
nomial time in the database size n and some security parameter λs.

More specifically, suppose there exists an algorithm A that takes as input
a query for a secret index x and that returns 0 or 1. Assume, for i ∈ {1, 2},
that A(q) returns 1 with probably σi when the input q is randomly generated
according to the client’s query generation algorithm for secret index xi with
x1 ̸= x2. If Adv(A) = |σ1 − σ2|/2 is non negligible then A is a distinguisher
for the protocol.

The protocol is computationally secure if no such algorithm A exists.
Naturally, proving this non existence requires the assumption that some un-
derlying problem is impossible to solve in a polynomial time.
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Common Assumptions

We list some of the more common assumptions used to build computationally
secure PIR schemes.
Definition 2.3.5

ϕ-hiding Assumption. [CMS99]
Let M ∈ N and p, q be two primes such that exactly one of them di-

vides ϕ(M). It is assumed that it no PPT algorithm is able to distinguish
which one of them does with non-negligible advantage.

There are a number of requirements on the bit size λ of p and q relative
to the bit size of M to circumvent attacks and maintain security of the
assumption. Most importantly, we require that both p and q be less than
M1/4 to prevent attacks due to Coppersmith on modular equations [Cop96a,
Cop96b].

Another assumption we will rely on is the Approximate GCD assumption.
Definition 2.3.6

Approximate GCD Assumption.
Let C = {pqi + ϵi}i where p is an odd random integer over λp bits,

q a random integer over λq bits and ϵ a random integer over λϵ bits. It
is assumed that there exists no PPT algorithm that returns p given a
polynomially large collection C.

Once again, there are requirements on the parameters size to keep the
assumption true. We will detail these in Section 4.4.5. Roughly, we require
λϵ > λs and λq > λsλp(λp − λϵ) to achieve λs bits of security.

Multi-Server Setting

While this type of approach allows for efficient single server PIR, it can also
be used with multi-server systems. For instance, Goldberg’s Robust PIR
Scheme (Definition 2.3.3) can be instantiated in a hybrid mode where the
scheme is information theoretically secure as long as at least one server is
honest and remains computationally secure if all the servers collude.

However, if the setting is such that there is any risk that all servers collude,
it is much more efficient to have a single-server scheme relying exclusively on
a computational assumption. We will therefore not study this situation.

Single Server Setting

This is the main setting of interest for this type of security model. Most PIR
proposals in the literature fall in this class. So do our proposals.
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We briefly present some schemes based on the assumptions mentioned
earlier.
Definition 2.3.7

Gentry-Ramzan’s Constant Communication Rate. [GR05].
Basically, after deciding on a set of n powers of small prime numbers

{pcii , 1 ≤ i ≤ n}, the server, using the Chinese Remainder Theorem,
describes the set {datai, 1 ≤ i ≤ n} containing the whole database as a
single integer e such that e ≡ datai mod pcii .

To recover datai privately, the client sends a generator g of a group
of order qpcii to the server which responds with ge. Now the user com-
putes geq which belongs to a subgroup of order pcii in which he can per-
form a discrete logarithm in base gq. The result of this computation is
e mod pic

i = datai.

Definition 2.3.8
Cachin-Micali-Stadler’s Polylogarithmic Communication. [CMS99]

Assume the client wants to recover bit bx from the database (b1, · · · , bn).
Given a algorithm P able to generate a fixed random sequence of

prime number over λp bits for a seed s, write p = P (x, s, λp) and pick a
modulo M such that M ϕ-hides p (according to Definition 2.3.5) and a
random value r ∈ Z∗

M . Send r, P, s,M, λp to the server.
The server computes x

∏n
i=1 biP (i,s,λp) mod M and sends it to the client.

Then the client checks whether this value is a p-th residue and learns bx.

Definition 2.3.9
Yi’s Fully Homomorphic-Based Scheme (basic scheme) [YKPB13]

Assume the client wants to recover bit bx from the database (b1, · · · , bn).

For any i ∈ {1, · · · , n}, we write i =
⌊log2 n⌋∑
j=0

ij2
j.

Let (Enc, Dec) be a Fully Homomorphic Encryption scheme. The
client sends {cj = Enc(xj), 0 ≤ j ≤ ⌊log2 n⌋} to the server. The server
computes and returns:

res =
n∑

i=1

bi

⌊log2 n⌋∏
j=1

(ij + cj + 1)

The client recovers bx = Dec(res).

In addition, any additively homomorphic scheme can be turned in a PIR
protocol under the same assumption. Alternatively, any FHE scheme can
also be turned into a PIR protocol with logarithmic communication. At this
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point, FHE schemes are far from practical and this construction remains
purely theoretical.

2.4 Private Information Retrieval with Pre-
processing

A variety of PIR protocols relying on preprocessing have been suggested in
the literature.

Schnorr and Jakobsson [SJ00] mentioned PIR with preprocessing as an
application of their encryption scheme back in 2000. In this scheme, the entire
database is encrypted by the server and sent to the client in an offline phase.
Then during the online phase the client further encrypts one of the records
with its own key, sends it to the server who homomorphically decrypts the
first layer of encryption and the client is then able to recover the unencrypted
data using the client’s private key. The applications for such a system are
very limited.

Asonov et al. [AF03] developed in 2003 a system which allows constant
time online queries but requires periodic preprocessing as each additional
query between preprocessing rounds increases the query length. Its privacy
however relies on a secure processor installed on the server but which the
server is not able to read, which is against our principle of forbidding the
need for trust in elements not under client’s control.

Beimel et al. [BIM04] showed in 2004 that preprocessing could provide
improvements without the need for secure hardware or high communication.
Instead, he used a multi-server configuration which, as we mentioned, has
limited applications. We are interested in more schemes usable in more
generic settings.

Gasarch and Yerukhimovich [GY07] built in 2006 a scheme that uses pre-
processing on the client’s side. Namely, the client generates once a large
number of parameters used to make queries. Then during the online phase,
the client is able to efficiently take random subsets of those preprocessed val-
ues to generate queries inexpensively. Since the main bottleneck in PIR is the
server side computation, this provides little improvement overall, especially
in the common situation where a client sends a single query.

Finally, in 2014 Aguilar-Melchor et al. showed how to improve a Ring-
LWE-based scheme [MBFK16] by preprocessing the database values so that
their representation allows for linear computations during the online phase.
This technique’s objective was to linearize the scheme in some of the security
parameters in which it would usually be quadratic. Since the largest param-
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eter is always the database size, this only marginally improves the running
time.

2.5 Related Privacy Enhancing Techniques
We here present other standard cryptographic primitives improving user pri-
vacy in various settings. While they are closely related to PIR and implemen-
tations may occasionally be based off the same assumptions, the construc-
tions behind them and the goals they aim to achieve are widely different.
The informal descriptions we provide justify the choice of PIR as a valuable
research topic.

2.5.1 Oblivious Transfer
Oblivious Transfer was originally defined as the problem of sending a message
with probability 1/2 without learning whether or not it was sent [Rab81]. It
was eventually generalized to 1-out-of-n [BM89].

An 1-out-of-n Oblivious Transfer (OT) protocol is essentially a PIR pro-
tocol with the added restriction that it should not only be impossible for the
server to find the secret index x being recovered but it should also be impos-
sible for the client to recover the value of any bi for i ̸= x. In particular, this
means that the Trivial PIR Algorithm is not an oblivious transfer protocol.

Because of this, OT is sometimes also called Symmetric Private Informa-
tion Retrieval. While technically every OT scheme is a valid PIR scheme,
the added server-side privacy requirement often translates to higher compu-
tational and communication costs. On the other hand, some schemes built
with PIR in mind happen to satisfy the privacy requirements to be considered
OT. While the added privacy never hurts, it is of very little interest in most
of the PIR applications where the database queried is considered public.

2.5.2 Searchable Symmetric Encryption
Searchable Symmetric Encryption (SSE) [CGKO06] is another primitive which
has been studied for about 15 years. It resembles PIR in many ways but has
one key difference. In an SSE setting, a client will encrypt and upload its
own private database onto a server (for instance, all of his personal emails).
He then queries the remote database to retrieve some data.

Depending on security requirements, the query may be private or not.
The server then executes a protocol to return the data the client was searching
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for. This step is reminiscing of PIR except for the fact that all the database
setup was done by the client under a secret key of his choice.

Overall, these schemes can be seen as a somewhat easier version of PIR
thanks to the extra setup step where the client is able to insert a trapdoor
in the data for later efficient retrieval. As such, SSE protocols are not easily
transformed into PIR ones.

2.5.3 Oblivious RAM
An Oblivious RAM scheme [GO96] allows a user to execute a secret program
involving reading and writing data in memory (RAM) in such a way that
an external observer cannot distinguish the memory access pattern for dif-
ferent inputs. Among various applications, this can be used to compute a
secret function over private data that was encrypted and uploaded to a re-
mote server. For instance, the function can simply be information retrieval.
Conversely, by using a PIR protocol a user can retrieve the data needed to
execute his secret program. Oblivious RAM is thus easier than PIR.

However, similarly to Searchable Symmetric Encryption, Oblivious Ram
schemes require that the data read is encrypted by the user in a preliminary
setup phase. This approach is completely incompatible with settings where
the data is meant to be used by many unrelated users, as is common for PIR
applications.

2.5.4 Onion Routing
Another approach to achieve privacy when retrieving data from servers is
anonymous routing, also known as Onion Routing [SGR97]. Here, a client
will build a “chain” or path of nodes (peers) in a network and then route his
standard (non private) query through all of them before it reaches the server.

No single peer on the chain knows both the origin of the query and its
destination and as such privacy is preserved. While PIR hides what is queried,
anonymous routing hides who is querying. Compared with PIR, it has a
slower overhead but communication speeds are greatly reduced. Security is
also only maintained when at least one of the nodes on the chain is honest.

Unlike PIR, onion routing is susceptible to attacks based on traffic anal-
ysis or simply user profiling based on activity. For instance, Onion Routing
cannot be used to access biometrical data which would reveal immediately
who is querying. Similarly, in the field of financial markets study, there is no
need for a malicious server to know who is querying as the analysis of query
trends already provides valuable information.
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The two primitives thus have mostly unrelated applications. Combining
both techniques in one scheme is of course doable [MOT+11], but practicality
takes a severe hit. Besides, PIR can be used for premium or pay-per-view
services while Onion Routing is usually not compatible with such business
models.

2.5.5 Repudiative Information Retrieval
Asonov introduced the notion of Repudiative Information Retrieval (RIR)
[AF02] as a more permissive alternative to Private Information Retrieval.
An RIR protocol achieves the same goals as a PIR protocol but differ in its
security definition.

In an information theoretical setting, an RIR protocol is secure if it is
information theoretically impossible to prove that a specific entry in a public
database was not requested. In particular, the user can always deny having
queried an entry or claim to have queried another one. Compared to a PIR
protocol, there is no requirement for the probability that an element was
requested to be exactly the same for every element. In RIR, it simply needs
to be non-zero.

While this definition made sense in the setting used by Asonov and which
involved a secure coprocessor, it has not been used in other constructions
or in computational PIR where schemes always achieve the stronger PIR
requirements.
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Chapter 3

Private Information Retrieval
for SQL-like Queries

3.1 Introduction
The most basic requirement for a PIR scheme is the ability to privately re-
cover one bit of data at a given secret index out of n bits available on a remote
server. Only considering single-bit recoveries is convenient since it is clearly
sufficient to simulate any operation yet allows the design of schemes relying
on decisional assumptions thanks to their intrinsic binary nature. However
we can easily identify a number of shortcomings this approach entails. First,
most situations where PIR is used would require the reading of potentially
long blocks of consecutive bits stored server-side. This issue is addressed by
Block PIR protocols which have been extensively studied. We do not discuss
them here. Second, there is an implicit requirement that the client needs to
know the physical address of the data he wishes to retrieve. As the data is
usually stored in a structured way, such an address is not directly available
to the client. In some settings, this issue is solved by the use of Private
Information Retrieval by Keywords schemes [BCN98]. Third, the privacy
model requires the server to be unable to distinguish between two potential
secret bit indices. In most scenarios, it makes little to no sense for most bits
to be requested anyway and relaxing the privacy definition allows for more
efficient schemes.

Looking at applications for PIR protocols including DNS servers, access to
biometrical data or financial markets information, one realizes that most real
life servers store data in a relational database such as SQL databases. This
SQL-like structure allows clients to query information based on conditions
using integer, floating point numbers, strings or arbitrary data. Emulating
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this type of common behavior on a low-level implementation of PIR protocols
requires a great number of rounds between the client and server [BCN98]
which, combined with the well-known requirement that the entire database
has to be read for the query received every round to maintain privacy, makes
those protocols impractical. We are interested in generic approaches which
also give the server a greater freedom in setting up his database in any way
he wants, allowing it to perform both private and non private queries on the
same database. This is the main motivation behind our search for highly
SQL-friendly PIR protocols.

Another unrelated motivation is purely theoretical. Many cryptographic
primitives allow the computation of a function on some data in a private
manner. Different privacy requirements will bring about diverse solutions
including (Fully) Homomorphic Encryption [vDGHV10], Garbled Circuits
[BHR12] or Extended Private Information Retrieval (EPIR) [BCPT07]. We
are here interested in EPIR schemes which allow the computation of a par-
tially public function on an input composed of secret client-selected values
and public server-hosted data. Only equality testing, Hamming weight com-
puting [BCPT07] and polynomial evaluation [BC09] have been shown to be
EPIR-compatible. We are therefore interested in developing EPIR protocols
for more complex functions such as the ones required for SQL queries.

In this chapter, we first propose a protocol to recover database entries
that have some of their fields matching a secret pattern picked by the user.
The query itself is not hidden away from the server and only the patterns are
kept secret. This is usually of little importance as most real world databases
have a specific purpose which is known (when performing a query on a DNS
server-hosted database, revealing the fact that the user queries the IP address
associated with a domain name is of no consequence, only the IP address itself
should be kept private). Our protocol is efficient enough to be practically
used on an actual SQL database with few entries (the standard restriction
that every entry of the database has to be read for every query is still valid).
This algorithm is based on the ϕ-hiding assumption which is extensively used
in the field of PIR [CMS99].

We then extend this idea to more complex queries not only testing equal-
ity between a field and a value, but arbitrary comparisons (greater than,
lower than, equal to), eventually leading us to consider the case of complex
logic formulas using said field-value comparisons as predicates. As a final
step, we suggest a scheme able to check if database entries belong in a secret
regular language. In particular, this implies the possibility to perform any
LIKE query in SQL.
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3.2 Related Works
Olumofin described and implemented a framework called SQLPIR [OG10]
that lets a client perform SQL queries privately using PIR techniques. His
proposal has a few key differences with ours however.

First, his scheme is designed for a multi-server setting while ours is de-
signed for single-server situations. This is a major distinction as multi-server
PIR only has a handful of applications while single-server can potentially
be applied to any existing system. Secondly, his approach mainly consists
in filtering a database based on one parameter value, downloading the re-
sults and further filtering locally. In particular, greater than and lower than
comparisons cannot be performed directly by the server. Comparatively, our
approach executes such operations privately in an EPIR [BCPT07] fashion.
For a much wider range of functions than ever shown before, we show that it
is possible to compute their result on public data while keeping the functions
private.

Private Information Retrieval with Keywords

In 1998, Chor, Gilboa and Naor introduced the concept of PrivatE infor-
mation Retrieval with KeYwords (PERKY) [BCN98]. For a server-hosted
database consisting of n strings s1, · · · , sn ∈ {0, 1}l, a PERKY scheme al-
lows a client, given a secret keyword w ∈ {0, 1}ℓ, to learn whether or not
∃i ∈ {1, · · · , n} such that w = si. The very generic scheme they presented is
compatible with any PIR scheme and any data structure on the server-side.
This can be seen as a primitive version of an SQL query testing for equality.

Informally, Chor et al.’s approach consists in performing an oblivious walk
over the data structure. In particular, performance is achieved when the
structure allows the search for a particular entry in a small (ie, logarithmic
in n) number of lookups.

The approach we describe in Section 3.3 achieves the same result and its
most simple version is indeed a PERKY algorithm as defined in [BCN98].
Two of the tree data structures described by Chor et al. require a number of
rounds linear in the length ℓ of the strings. Using perfect hashing techniques,
it is possible to reduce it to a constant number of rounds if the underlying
PIR scheme has a constant number of rounds. However in every case the
schemes cannot be used if the subset of data the client wishes to work on is
not known in advance.

Indeed, for an actual SQL-like table over several fields, a query could be
using any combination of fields for which no efficient data structure exists.
In such cases, the algorithms proposed in [BCN98] would require n rounds
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of PIR.

3.3 Testing for equality
In this section we present an algorithm allowing a user to efficiently and
privately perform SQL-like queries of the following form.

SELECT outField1, ..., outFieldt

FROM table
WHERE inField1 = s1
...
AND inFieldu = su

Here outField stands for output field while inField stands for input
field. The si are the secret input values.

More formally, a table is a set of entries entryi for i ∈ {1, · · · , n} and each
entry is a list of couples entryi = (field1, valuei,1) · · · (fieldf , valuei,f ) where
all the valuei,j are bit strings. We call Fields the set {field1, · · · , f ieldf}.
The client picks a set of input fields inField1, · · · ,
inFieldu and output fields outField1, · · · , outFieldt in Fields along with
a set of input parameters s1, · · · , su where each si is a bit string. For every
entry in the table containing all of the (inFieldj, sj) couples, the user ex-
pects to learn the couples (outFieldk, value). The server should be unable
to distinguish between two queries for secrets (s1, · · · , su) and (s′1, · · · , s′u).

To achieve this, we first show how the problem is equivalent to a simpler
one where t = u = 1. Then we show how to detect whether the table contains
an entry satisfying the conditions or not. Finally, we show how to use this
information to recover the value of the output fields associated to such an
entry if it exists.

3.3.1 Assumptions
For the rest of the section, we will consider the simpler case where t = u = 1.
Indeed, denoting by ∥ the bit string concatenation, we can see that our
problem is equivalent to performing the following SQL-like query:

SELECT outField1 ∥ · · · ∥ outFieldt

FROM table
WHERE inField1 ∥ · · · ∥ inFieldu = s1 ∥ · · · ∥ su
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Indeed, the user can separate the received bit string into the values for
the t output fields and the server performs the query as if all the input fields
behave like a single concatenated field.

All outField values are assumed to have fixed bit length. This is not
an issue as the server’s response must be as long as the longest value in
the outField used to maintain privacy anyway. Under the widely accepted
assumption that there exists collision-resistant hash functions, we can assume
that the concatenated length of the inField values is rather short, regardless
of the input length u. Essentially, for such a secure hash function h, the user
performs this SQL-like query:

SELECT outField1 ∥ · · · ∥ outFieldt

FROM table
WHERE h(inField1 ∥ · · · ∥ inFieldu) = h(s1 ∥ · · · ∥ su)

Here h(s1∥ · · · ∥su) is the secret value and has short, fixed length. Fol-
lowing this reasoning, we now assume that we work on a single input field of
short length L and want to recover a single, possibly long, output bit string.

Furthermore, we can assume without loss of generality that there always
exists at most one entry satisfying the input condition. Indeed, if the user
is able to recover any output field value for a given condition when a single
entry matches it, then he can do the same when several entries do using the
following protocol. First, the server groups the entries of the database sharing
the same values on the set of input fields and adds a temporary field count
indicating the number of entries corresponding to this set of conditions. Note
that this is actually what the standard SQL statement GROUP BY inField1,
..., inFieldu does and requires no specific implementation on the server’s
part.

Then the user starts by only recovering the value of that temporary
field. Afterwards, the server ungroups the entries and adds a temporary
field group_id numbering the entries from 1 to the associated count within
each group. Finally, the user adds group_id to the input fields and recov-
ers the values one at a time on a set of conditions which now guarantees
uniqueness.

Privacy Concerns

This may raise some privacy concerns as the number of queries sent by the
client will reveal the value of the created temporary field count to the server.
Knowing this value, the server can then deduce that the entries the client is
recovering belong to a group of this size.
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A simple solution would be to first have the server let the client know
the maximum value of count after receiving the “private” query structure.
We call this value maxCount. Then if the client actually wants to retrieve
k < maxCount values, he just sends extra queries for random elements so
that maxCount queries are performed regardless.

This is obviously not very efficient and a waste of resources, but it un-
fortunately is optimal. Indeed, if we consider an efficient setting where the
server’s response is proportional to the data being received by the client, and
if said client wants to retrieve k entries, then the server has to return at least
k times the data that would be returned for a single entry.

In practice, we can assume that either the client does not require such
a high level of privacy (otherwise generic PIR techniques can be used) or
that the queries are specific enough to return a fixed number of entries (for
instance a unique result or the first k result according to some order).

3.3.2 Detecting if an entry with a given secret value
exists

We recall here the ϕ-hiding assumption as defined in [CMS99].
Definition 3.3.1

Let M ∈ N and p, q be two primes such that exactly one of them divides
ϕ(M). It is assumed that it no PPT algorithm is able to distinguish which
one of them does with non-negligible advantage.

In this section the user simply detects whether there exists an entry in the
database satisfying the secret condition. Thus, no output field is involved.
Here the parameters of our algorithm are n ∈ N the number of entries in the
database, L ∈ N the bit length of our single input field and s1, · · · , sL ∈ {0, 1}
the bit decomposition of our condition s.

For security parameters λ and f , the user chooses a large random prime p
on λ bits and a random integer q (non prime) on λ(f −1) bits such that q1 =
pq + 1 is a prime on λf bits. He also chooses a prime q2 on λf bits and sets
M = q1q2, this way p|ϕ(M) = pq(q2− 1). In particular, we require p < M1/4

to prevent an efficient attack using Coppersmith’s results [Cop96a, Cop97b]
on finding small root of polynomials.

Note that in this situation, the client does not know the actual factor-
ization of ϕ(M). While this is not needed, it is convenient to consider the
situation where all factors are known. To achieve this, the client sets q = 2q′,
with q′ prime and q2 = 2q′2 + 1 with q′2 prime and then ϕ(M) = 22pq′q′2. Be-
sides 2, all the prime factors of ϕ(M) are very large and with overwhelming
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probability a random odd number in ZM is coprime with M .
The user then chooses such a random value x coprime with M . The client

builds two lists T0 and T1 of length L and fills all L entries Tδ[1], · · · , Tδ[L]
of each list with random even values over µ bits (2µ ≫ p) for δ ∈ {0, 1}.
Finally he picks a random odd number r over µ − λ bits (such that rp has

µ bits) and defines the value S0 = rp−
L∑

j=1

Tsj [j].

We define the function Sum(v1 · · · vL) = S0 +
L∑

j=1

Tvj [j]. Note that

Sum(s) = rp. Also note that for every v ∈ {0, 1}n, Sum(v) is odd as it
is sum of an odd number S0 and L even numbers. The target input field
name inField, T0, T1, S0, M and x are then sent to the server.

For every entry in the database, we call vi the value such that the couple
(inField, vi) belongs to that entry. The server computes Sum(vi) and sends
res = x

∏n
i=1 Sum(vi) mod M to the client.

Upon receiving this value the client computes α = resd where d =
ϕ(M)

gcd(p,ϕ(M))
(d = q(q2 − 1) usually). This value is equal to 1 if and only if

res is a p-th power residue. In this case, the client concludes that there
exists an entry in the table with inField value s. Conversely, if α ̸= 1 then
the client concludes that no entry has an inField value s.

Correctness
Theorem 3.3.2

With overwhelming probability, α = 1 if and only if there exists some
index i ∈ {1, · · · , n} such that vi = s

Proof : We consider the two cases:

• As noted earlier Sum(s) = rp so if the database contains an entry
matching the condition,

n∏
i=1

Sum(vi) is a multiple of p and res will

clearly be a p-th root residue since p|ϕ(M).
• Now let us assume the database contains no such entry. For a bit

string v ̸= s, there exists an index j0 such that vj0 ̸= sj0 . Therefore
Tvj0

[j0] was chosen randomly over µ bits and independently from S0

and every Tvj [j] for j ̸= j0. For 0 ≤ k < p, let us write σk the
probability that the sum of the terms besides Tvj0

[j0] be congruent to
k modulo p:
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σk := Pr(S0 +
∑
j ̸=j0

Tvj [j] ≡ k mod p) (3.1)

Note that we have:

p−1∑
k=0

σk = 1 (3.2)

Thanks to the independence, the following holds:

Pr(Sum(v) ≡ 0 mod p) =

p−1∑
k=0

σk Pr(Tvj0
[j0] ≡ p− k mod p)

(3.3)

Since 2µ ≫ p, Pr(Tvj0
[j0] ≡ p−k mod p) = 1/p for 0 ≤ k < p, which

means that Pr(Sum(v) ≡ 0 mod p) = 1/p. Finally, the probability
that all n values vi satisfy Pr(Sum(vi) mod p ̸= 0) is (1 − 1/p)n ≈
e−n/p ≈ 1−n/p (since n≪ p) which is overwhelming when λ, the bit
length of p, is large:

Pr(p -
n∏

i=1

Sum(vi)) ≈ 1− n/p (3.4)

Therefore with overwhelming probability res = x
∏n

i=1 Sum(vi) mod M
is not a p-th root residue since x was not.

Complexity

We recall here that M is the size of the group in which we work in and is
large. In the first step, the client selects the parameters which only involves
a polynomial (in λ) number of primality tests. When computing res, the
server executes L sums over µ bits and one modular exponentiation over
logM bits for every entry of the database. The complexity is then nµ(L +
log2 M) elementary operations with naive multiplication. Then the client
performs a single exponentiation in at most log3M elementary operations.
The communication complexity is O(logM + µL), which depends on the
database size n (since both µ and logM are larger than λ and we require
that λ is larger than logn).
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Security

As mentioned earlier, security relies on the ϕ-hiding assumption. The server
only knows M , x, S0, T0 and T1. x is just a random number and gives no
information. T0 and T1 are also filled with random numbers. S0 is the only
non-random value as it is part of a linear relation related to M via ϕ(M).
Note that we assume that the server will uncover this relation (in a realistic
scenario, the sought-after pattern is likely to be present in the database
in which case the server would compute rp at some point). Intuitively, if
the server is able to figure out which pattern the user requested, then he
distinguishes between several integers the one that has a divisor also dividing
ϕ(M).
Theorem 3.3.3

If there exists a PPT algorithm distinguishing between queries, then the
ϕ-hiding assumption can also be broken in probabilistic polynomial time.

In order to prove this theorem, we will need a number of lemmas.
We write Q the set of all queries q = (M,x, S0, T0, T1) where M ∈ Z is

the public modulo built as described in Section 3.3.2, x ∈ ZM , S0, T0 and T1

are client-selected values also described in the same section.
Assume there exists an algorithm A(M,x, S0, T0, T1) : Q → {0, 1} such

that:

• A(q) returns 1 with probability σ1 if q is uniformly drawn at random
from the set of all queries for secret value s1

• A(q) returns 1 with probability σ2 if q is uniformly drawn at random
from the set of all queries for secret value s2 ̸= s1

• Advantage Adv(A) = |σ1 − σ2|/2 is non negligible

In other words, A is able to distinguish queries for a secret s = s1 or
s = s2.
Lemma 3.3.4

Without loss of generality, we can assume that σ1 + σ2 = 1 (σ′
1 = 1/2 +

Adv(A) and σ′
2 = 1/2−Adv(A)).

Proof : First, we can assume without loss of generality that σ1 > σ2 (if not
switch the indices).

Second, if we have σ1 + σ2 ̸= 1, we build an algorithm A′(q) that
ignores input and returns 0 with probability α0, ignores input and returns
1 with probability α1 or returns A(q) with probability 1− (α0+α1) for the
following parameters:
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• If σ1 + σ2 > 1 then α0 = 1− 1
σ1+σ2

and α1 = 0 (note that α0 ∈ [0, 1])

• If σ1 + σ2 < 1 then α0 = 0 and α1 = 1 − 1
2−(σ1+σ2)

(note that
α1 ∈ [0, 1])

We write σ′
i = Pr(A′(q) = 1|s = si) = α1 + (1 − (α0 + α1))σi for

i ∈ {1, 2}.

• If σ1 + σ2 > 1 then:

σ′
1 + σ′

2 = (1− α0)(σ1 + σ2) = 1 (3.5)

• Similarly, if σ1 + σ2 < 1 then:

σ′
1 + σ′

2 = 2α1 + (1− α1)(σ1 + σ2)

= 2− 2

2− (σ1 + σ2)
+

σ1 + σ2
2− (σ1 + σ2)

= 1

(3.6)

Proof : Definition of A′ ensures that σ′
1 > σ′

2 when σ1 > σ2, which guarantees
that the new advantage Adv(A′) = σ′

1 − 1/2 is positive.

• If σ1 + σ2 > 1 then:

Adv(A′) = σ′
1 − 1/2 =

σ1
σ1 + σ2

− 1/2

=
2σ1 − (σ1 + σ2)

2(σ1 + σ2)
=

Adv(A)
σ1 + σ2

>
1

2
Adv(A) since σ1 + σ2 < 2

(3.7)

• If σ1 + σ2 < 1 then:

Adv(A′) = σ′
1 − 1/2 = 1− 1

2− (σ1 + σ2)
+

σ1
2− (σ1 + σ2)

− 1/2

= 1/2 +
σ1 − 1

2− (σ1 + σ2)
=

σ1 − σ2
2(2− (σ1 + σ2))

=
Adv(A)

2− (σ1 + σ2)
>

1

2
Adv(A)

(3.8)
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Lemma 3.3.5
Let s1, s2 be two bit strings over L bits.

For k ∈ {1, 2}, we call χk the uniform distribution of all inputs

(M,x, S0, T0, T1) obtained from setting S0 = rpk−
L∑

j=1

Tsk,j [j] for uniformly

random even values Tδ[j] over µ bits, uniformly random odd values r over
µ − λ bits and uniformly random prime pk over λ bits. Assume a PPT
algorithm A(q) returns 1 with probability γk for q ← χk. In other words,
χk is the distribution of all queries for secret sk.

This lemma states that |γ1 − γ2| is negligible.

Proof : Let us assume that |γ1−γ2| is non negligible. Then A is by definition
a distinguisher between the two distributions χ1 and χ2.

Note that the only difference between the input distributions is the
value of S0. If an attacker can distinguish between S0 from χ1 and χ2,

then he can distinguish between S0 +
L∑

j=1
Ts1,j [j] from distributions χ1 or

χ2.

This means distinguish between z1 = rp1 and z2 = rp2 +
L∑

j=1
Ts1,j [j] −

Ts2,j [j]. z1 is a product between a uniformly random prime over λ bits and
a uniformly random number over µ − λ bits. z2 is also a random number
over µ bits.

However, it is a well known fact that the proportion of 2λ-smooth inte-
gers (integers with no prime factor greater than 2λ) less than 2µ is ρ(µ/λ)
where ρ(u) is the Dickman-de Bruijn function [Dic, Gra08]. This function
becomes negligible very quickly, guaranteeing the existence of prime factors
of the order of p1 for large enough parameters. z1 and z2 are both random
numbers over µ bits with a prime factor of size at least λ.

The two distributions are thus indistinguishable.

We now prove Theorem 3.3.3 which we recall here:
Theorem

If there exists a PPT algorithm distinguishing between queries, then the
ϕ-hiding assumption can also be broken in probabilistic polynomial time.

Proof : We are given a ϕ-hiding problem instance: M a semiprime with both
factors over fλ bits, p1 and p2 primes over λ bits such that with equal
probability 1/2 either p1 or p2 divides ϕ(M) while the other is a prime
uniformly selected at random. We build an algorithm B using A (working
in the case σ1 + σ2 = 1) that guesses which pi divides ϕ(M) with non
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negligible advantage.
Note that the distribution for the input tables of A is very simple.

Every element of all L columns is a random even number over µ bits. S0

is drawn from a specific distribution which we must mimic before invoking
A to make sure that it acts as a distinguisher.

For k ∈ {1, 2}, we randomly pick every value in Tk,0 and Tk,1 as
described in Section 3.3.2. We also pick xk randomly in ZM and de-

fine Sk := rkpk −
L∑

j=1
Tk,sk,j [j] for random rk over µ − λ bits. We write

qk := (M,xk, Sk, Tk,0, Tk,1) and t := (A(q1), 1−A(q2)).
B is defined in the following way. If t = (0, 0) or (1, 1), B(M,p1, p2)

returns 0 or 1 with equal probability 1/2. If t = (1, 0) then B(M,p1, p2)
returns 1 and if t = (0, 1) then B(M,p1, p2) returns 0.

By Lemma 3.3.6, we know that B guesses correctly with non negligible
advantage and the ϕ-hiding assumption is broken.

Lemma 3.3.6
B distinguishes between p1 and p2 with advantage Adv(A)/2

Proof : By construction, if pk divides ϕ(M) then A(qk) is 1 with probability
σk since qk is a uniformly random query for sk. Conversely, if pk does not
divide ϕ(M) then qk is not a valid query. Let us assume that A returns 1
with some probability γk on the set of all such inputs.

By Lemma 3.3.5, we have γ1 ≈ γ2 and we write γ their common ap-
proximate value. Now we have (recall that σ1 + σ2 = 1):

Pr(t = (1, 0)) =
1

2
(γσ2 + σ1γ) = γ/2

Pr(t = (0, 1)) = (1− γ)/2

Pr(t = (0, 0)) = ((1− σ1)γ + σ2(1− γ))/2

Pr(t = (1, 1)) = (σ1(1− γ) + (1− σ2)γ)/2

Pr(t = (0, 0) or t = (1, 1))

= ((1− σ1)γ + σ2(1− γ) + σ1(1− γ) + (1− σ2)γ)/2

= (2γ + σ1 + σ2 − 2γ(σ1 + σ2))/2 = 1/2

(3.9)

Furthermore we have:

Pr(t = (1, 0)|pk divides ϕ(M)) = σkγ

Pr(t = (0, 1)|pk divides ϕ(M)) = (1− σk)(1− γ)
(3.10)
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From which we deduce:

Pr(p1 divides ϕ(M)|t = (1, 0)) =
σ1γ

σ1γ + σ2γ
= σ1

Pr(p2 divides ϕ(M)|t = (0, 1)) =
(1− σ2)(1− γ)

(1− σ1)(1− γ) + (1− σ2)(1− γ)

= 1− σ2 = σ1
(3.11)

So the probability that B’s guess is correct is 1
2 ·

1
2 + γ

2σ1 +
1−γ
2 σ1 =

1/4 + σ1/2 = 1/2 + Adv(A)/2.

3.3.3 Recovering the data associated with an entry
containing a secret value

In this section we present two ways to recover the couple (outField, data)
for the entry with the couple (inField, s) where s is the secret value selected
by the client. The first way is a simple extension of the protocol described in
the previous section but has a fairly high computational complexity while the
second method uses any block retrieval PIR protocol to recover consecutive
bits from the database efficiently.

First, the client executes the protocol of Section 3.3.2 to check if there
exists an entry matching the search condition. Now, let’s call Lo the length of
the output field and datai = datai,1 . . . datai,Lo the bit decomposition of the
output field value associated with the i-th entry of the database. For every
j ∈ {1, . . . , Lo}, the server computes resj = x

∏n
i=1 datai,jSum(vi) and sends it to

the client. Now the client can test if resj is a p-th root residue, in which case
datai,j = 1 (datai,j = 0 otherwise). Complexities are similar to those detailed
in section 3.3.2 repeated Lo times. Note that Lo may be large (for instance
when recovering media files, Lo > 230 is possible) and a computation over
the entire database has to be done for every bit sent to the user.

The other method is to use any traditional PIR block recovery algorithm.
To apply such an algorithm in our situation, the user first needs to know
the value of x such that entry number x in the database satisfies the condi-
tions on the inField values. To do this, he can simply request it from the
server using the first protocol described in this section, where only log2 n bits
have to be transferred. This is a reasonable overhead cost, especially when
compared with the hassle of performing an entire SQL-like query entirely
over PIR. Besides, PIR by Keywords protocols described by Chor et al. also
require log2 n rounds for standard data structures. In practice, this is the
recommended solution.

40



See Section 2.3.3 for a short survey of possible candidates for the block
recovery algorithm. Naturally, our own protocol described in Section 4 is a
very fitting option. Such algorithms only have a reasonably small overhead
compared to the non-private transfer of the same data when amortized over
large enough blocks.

3.4 Testing for inequality
In this section we suppose the user wants to execute a query such as:

SELECT outField
FROM table
WHERE inField > s

on the database hosted by the server while keeping s secret. Other types
of comparisons (<, =, ≥, ≤) are supported by applying some minor changes
to the algorithm such as exchanging values.

3.4.1 Comparing a single entry to a secret value
In this section we show how the user can learn whether an entry of the
database located on the server is equal, greater or less than a secret value he
picks. By secret, we mean that the server does not learn the value. We only
show how the scheme works for “greater than” comparisons, the other ones
can be obtained with minor modifications.

Let us denote by L the bit length of inField. Recall that the secret value
we compare to is s = s1 · · · sL. Note that if sL represents an integer with its
Most Significant Bit first, then s =

∑L
j=1 sj2

L−j. Potentially, s could be any
bit string however.

We assume that we are working in some set E (we will give examples of
such sets later on).

The client chooses 3 distinct values αj, βj, γj ∈ E for every j ∈ {1, · · · , L}
and another value α0 ∈ E.

He also selects 2 functions Fj,0 and Fj,1 : E → E for every j ∈ {1, · · · , L}
satisfying the following conditions (δ ∈ {0, 1}):

41



Fj,δ(αj−1) =


αj if δ = sj

βj if δ > sj

γj if δ < sj

Fj,δ(βj−1) = βj if j > 1

Fj,δ(γj−1) = γj if j > 1

(3.12)

To better understand this chapter, it is essential to have an intuition
about what these values mean. If a function ultimately returns αx then all
bits up to x were equal between input field and secret value. If it returns βx

then the input field value was greater so far (and will forever stay greater).
If it returns γx then it was smaller.

Now, the client sends all 2L functions to the server, along with the index
i of the database entry to which he wishes to compare s. We call v = v1 · · · vL
the value of inField for this i-th entry in the database.

The server computes and returns the function:

Fi =
1

⃝
j=L

Fj,vj = FL,vL ◦ FL−1,vL−1
◦ · · · ◦ F1,v1 (3.13)

The client then checks if Fi(α0) = βL. If it is equal, then he deduces that
v > s.

Note that this is not an efficient PIR protocol as simply having the server
send the value in n bits would have been more efficient. However we use it
on the whole database and gain significant per bit efficiency in Section 3.4.2.

Correctness

Clearly Fi(α0) ∈ {αL, βL, γL}. If Fi(α0) = βL then ∃j0 ∈ {1, · · · , L} such
that Fj0,vj0

(αj0−1) = βj0 and ∀1 ≤ j < j0, Fj,vj(αj−1) = αj.
This means that ∀1 ≤ j < j0, vj = sj and vj0 > sj0 , which is equivalent

to saying that v > s.
We can show the same way that Fi(α0) = αL if and only if v = s and

Fi(α0) = γL if and only if v < s.
The scheme is deemed secure if an adversary is unable to efficiently dis-

tinguish between a query with secret parameter s1 or s2.

Matrix-Based Approach

The most natural way to instantiate this model is through the use of matrices.
Each Fj,δ belongs to Zd×d

p for some values p and d.
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Random vectors αj, βj and γj ∈ Zd
p and random non-invertible matrices

Fj,δ ∈ Zd×d
p are picked such that the following conditions are satisfied (slight

variant of the conditions 3.12):

Fj,δαj−1 =


αj if δ = sj

βj if δ > sj

γj if δ < sj

Fj,δβj−1 = βj if j > 1

Fj,δγj−1 = γj if j > 1

(3.14)

In this case function composition is computed through matrix multipli-
cation.

This approach is however not safe as an attacker can compute K =
Ker(Fj+1,0Fj,0 − Fj+1,1Fj,0) and learns information about βj−1 ∈ K (iden-
tically, γj−1 ∈ K). Naturally, the next step consists in studying nonlinear
functions such as polynomial to prevent linear-algebra based attacks.

Polynomial-Based Approach

Here we present a function family that satisfy conditions 3.12. First let us
consider a scheme based on univariate polynomials.

We can take E = Zp for some large prime p and every Fj,δ is a truncated
polynomial in Zp[X]/⟨P (X)⟩ for some irreducible polynomial P (X).

As is, this scheme is also vulnerable to simple attacks. We present a
sketch for an attack on this weak scheme. An attacker can efficiently recover
some information about the secret s since we have:

F3,0(F2,0(β1)) = F3,0(F2,1(β1))

= F3,1(F2,0(β1))

= F3,1(F2,1(β1)) = β3

(3.15)

This means that:

F3,0(F2,0(β1))− F3,0(F2,1(β1)) = 0

F3,1(F2,0(β1))− F3,1(F2,1(β1)) = 0
(3.16)

So β1 is a common root between polynomials F3,0 ◦ F2,0 − F3,0 ◦ F2,1 and
F3,1 ◦ F2,0 − F3,1 ◦ F2,1. The same goes for γ1. A polynomial GCD algorithm
such as Euclid’s algorithm will allow the attacker to recover those common
roots. Then he can deduce βi and γi for j > 1 by evaluating Fj,0 on βj−1.
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Either F1,0(α0) = α1 or F1,1(α0) = β1 or F1,0(α0) = γ1 or F1,1(α0) = α1.
In the first case, F2,0(F1,1(α0)) = β2 and F2,1(F1,1(α0)) = β2.

We define P (X) = F2,0(F1,1(X)) − β2 and Q(X) = F2,1(F1,1(X)) − β2.
Clearly, α0 is a common root between P and Q which can be obtained through
a polynomial GCD algorithm as before. At this point, the attacker can
trivially recover the value s.

Now, observe that the attack succeeds because recovering the common
root of two polynomials is an easy task. We can modify the scheme so that
it uses multivariate polynomials instead and relate its security to a known
hard problem.

Now, E = Zm
p is the set of m-tuples of values in Zp. Each function Fj,δ can

be seen as a set of m polynomials over m variables each modulo an ideal. We
choose an ideal I generated by t polynomials P1, · · · , Pt ∈ Zp[X1, · · · , Xm]
such that:

• α0 is a root of any Pi, i ∈ {1, · · · , t}.

• The number of monomials in any P ∈ Zp[X1, · · · , Xm]/I is a polyno-
mial in m.

We call S = (Zp[X1, · · · , Xm]/I). In this case, we write:

Fj,δ = (Fj,δ,1, · · · , Fj,δ,m) ∈ Sm (3.17)

If (a1, · · · , am) ∈ E then:

Fj,δ(a1, · · · , am) = (Fj,δ,1(a1, · · · , am), · · · , Fj,δ,m(a1, · · · , am)) ∈ E (3.18)

Now to perform the attack sketched above, the attacker would have to
solve a system of m equations over m variables, which is known to be a hard
problem.

3.4.2 Detecting if there exists at least one entry in a
database greater than a secret value

We now use the generic construction defined in the previous section and show
how to apply it on the entire database. We assume that the database has n
entries v1, . . . , vn for the input field and the user wants to know if at least
one of those is greater than the secret s.

The server computes Fi for every i ∈ {1, · · · , n} and returns F =
n

⋆
i=1

Fi

for some adequate ⋆ relation.
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The client then checks if F (α0) can be generated by a sum of values
none of which being βL. If it cannot, then he knows that there exists an
i ∈ {1, · · · , n} such that Fi(α0) = βL and the client knows that at least one
vi is greater than s.

We now give an example based on the scheme detailed above.

Polynomial-Based Approach

As in the previous section, we are working with polynomials in Zp[X1, · · · , Xm].
Using the notations from the previous section, we set βL such that
gcd(βL, p) ̸= 1 (we can naturally extended the definition with p a prod-
uct of a small number of large primes). If p is prime, setting βL = 0 also
works. Similarly, we set αL and γL such that gcd(αL, p) = gcd(γL, p) = 1.

We also define F ⋆G = FG (product of truncated polynomials). Now the
client can easily test if βL was a factor in F (α0) by checking if gcd(F (α0), 1) =
1 or not.

3.4.3 Finding the entry with the k-th highest value
We recall here that the value of the input field for the i-th entry in the
database is an integer vi on L bits. In this section, the client wants to find
Max(k) = vik such that |{vi|vi > vik}| = k for every k such that Max(k) > s.
In particular, Max(0) is the maximum of all the values vi, Max(1) the second
highest value, and so on.

One simple approach would be to ask the server to sort the database
according to the values in the input field (note that the field name is public,
only s is secret) and then use a standard block PIR protocol to recover
the k-th entry in the database. However this approach will no longer work
for complex queries involving conjunctions or disjunctions of different fields.
Meanwhile the protocol we describe here will be naturally generalized in this
scenario (see Section 3.5.3).

We now describe our new approach to find the value of Max(k). First,
the client finds the value of Max(0). As in Section 3.4.2, the client checks if
the database has at least one entry greater than s. If not, then the process is
over. If such entries exist, the client knows that s ≤ Max(0) < 2L. He then
finds the exact value of Max(0) with a dichotomic binary search. Finding
this number requires at most log2 n executions of the protocol described in
section 3.4.2.

Now let us assume that the client knows the value for Max(k) for every
k < K. We show that the client can find out the value of Max(K). First, the
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client computes x =
∑
k<K

G(Max(k)) where G(v) =
1

⃝
j=L

Fj,vj is the function

used by the server on a single entry. The client then executes the protocol
of Section 3.4.2 and subtracts the locally computed value x from the result
F sent by the server. If the value he ends up with shows the existence of
an entry greater than s, then he knows that s < Max(K) < Max(K − 1)
and he can find out the exact value of Max(K) by binary search once again.
Otherwise, he can stop the process as no other vi is greater than s.

Denoting by K the number of elements in the database which verify the
inField > s condition of the query, O(K log2 n) queries are performed and
the communication complexity is O(LK log2 n). Since KL bits of information
are recovered, the communication per bit recovered is O(log2 n). Note that
in a non-PIR setting, this type of query based on a comparison would require
O(L) for the user and O(LK) for the server anyway.

3.5 Testing combinations of several compar-
isons

In the previous section, we showed how to privately execute queries of the
type:

SELECT outField
FROM table
WHERE CMP(inField,s) = c

where s and c are kept secret and

CMP (a, b) =


0 if a = b

1 if a > b

−1 if a < b

(3.19)

In this section we first extend this result to generic disjunction or con-
junction queries of the form:

SELECT outField
FROM table
WHERE CMP(inField1,s1) = c1
OR ...
OR CMP(inFieldk,sk) = ck
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SELECT outField
FROM table
WHERE CMP(inField1,s1) = c1
AND ...
AND CMP(inFieldk,sk) = ck

with all the si and ai kept private. And then we show how to perform
the query for any logical formula based on such field-value comparisons.

3.5.1 Generic conjunction of comparisons
Here, the client wants to find the list of rows ri from the table where inField1 >
s1 AND · · · AND inFieldf > sf . Note that the construction would be ex-
tremely similar for other comparisons so we only detail this one for simplic-
ity’s sake.

For every comparison, the client builds like in Section 3.4.1 a set of ran-
dom functions F∧

t,j,δ and random values αt,j, βt,j and γt,j for 1 ≤ t ≤ f ,
1 ≤ j ≤ L and δ ∈ {0, 1}. He also picks a starting value α0. The functions
F have to satisfy the following conditions:

F∧
1,1,δ(α0) =


α1,1 if δ = s1,1

β1,1 if δ > s1,1

γ1,1 if δ < s1,1

(3.20)

For 1 < t ≤ f and j = 1 (first bit for every comparison but the first one):

F∧
t,1,δ(αt−1,L) = γt,1

F∧
t,1,δ(βt−1,L) =


αt,1 if δ = st,1

βt,1 if δ > st,1

γt,1 if δ < st,1

F∧
t,1,δ(γt−1,L) = γt,1

(3.21)

And for every 1 ≤ t ≤ f and 1 < j ≤ L (subsequent bits):

F∧
t,j,δ(αj−1) =


αt,j if δ = st,j

βt,j if δ > st,j

γt,j if δ < st,j

F∧
t,j,δ(βj−1) = βj

F∧
t,j,δ(γj−1) = γj

(3.22)
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The client then sends all the functions to the server along with the ordered
list of input field names that correspond to the lists.

We write vi,t,j the j-th bit of the value of input field number t for the i-th
entry in the database. The server computes

F∧
i =

1

⃝
t=f

1

⃝
j=L

F∧
t,j,vi,t,j

F∧ =
n

⋆
i=1

F∧
i

(3.23)

Then he sends F to the client. Now the client checks if F∧(α0) can be
expressed without βf,L as a term (see Section 3.4.2). If it cannot then not a
single entry of the database satisfied all the conditions. Otherwise, the client
knows that at least an entry satisfying all the conditions at once exists. He
can recover it using the protocols detailed in section 3.4.3, generalized to
f -tuples of values.

Concretely, he finds through binary search the f -tuple of input field values
for which F∧(α0) has βt,L as factor and such that increasing any of those
input values by 1 would provide an F∧(α0) that does not. This gives the
client the values associated with the greatest entry and requires at most
f log2 n queries. He then iterates with the second greatest entry and so on
until no entry satisfies the set of conditions. Once he knows the exact f -
tuples associated to the values he is interested in, he recovers the values in
the output field with the protocol of section 3.3.3 or any block PIR scheme.

3.5.2 Generic disjunction of comparisons
Here, the client wants to find the list of rows rj from the table where
inField1 > s1 OR · · · OR inFieldf > sf . Like previously, the construction
would be extremely similar for other comparisons so we only detail one for
simplicity’s sake. As in the previous section, the client builds the functions
F∨
t,j,δ in the following manner.

F∨
1,1,δ(α0) =


α1,1 if δ = s1,1

β1,1 if δ > s1,1

γ1,1 if δ < s1,1

(3.24)

For 1 < t ≤ f and j = 1 (first bit for every comparison but the first one):
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F∨
t,1,δ(αt−1,L) =


αt,1 if δ = st,1

βt,1 if δ > st,1

γt,1 if δ < st,1

F∨
t,1,δ(βt−1,L) = βt,1

F∨
t,1,δ(γt−1,L) =


αt,1 if δ = st,1

βt,1 if δ > st,1

γt,1 if δ < st,1

(3.25)

And for every 1 ≤ t ≤ f and 1 < j ≤ L (subsequent bits):

F∨
t,j,δ(αj−1) =


αt,j if δ = st,j

βt,j if δ > st,j

γt,j if δ < st,j

F∨
t,j,δ(βj−1) = βj

F∨
t,j,δ(γj−1) = γj

(3.26)

The rest of the protocol is identical to the conjunction case (Section 3.5.1).
It is clear that if F∨(α0) = βt,L then at least one entry in the database satisfies
at least one of the conditions.

Note that the protocols for conjunctions and disjunctions were indistin-
guishable from the server. As such, we can also assume that the nature of
the query itself (in this case, conjunction or disjunction) is kept private from
the server.

3.5.3 Arbitrary combination of conjunctions and dis-
junctions

This time the client sends the server a tree where the inner vertices are
labelled by AND or OR and the leaves are conditions of the form
CMP(inField, s) = c where the value for every s and c is kept secret from
the server.

First, the leaves are given an index obtained by ordering them according
to a depth-first search. The index goes from 1 to f where f is the total num-
ber of conditions. We call ct the value of c in the label CMP(inField, s) = c
of leaf t. Now, the client attaches to each leaf a set of functions Ft,j,δ where
t is the leaf index, j goes from 1 to L and δ ∈ {0, 1}.
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We define NextOperator(t) as the label found on the “first” common
ancestor in the tree between leaves indexed by t and t+1. The first common
ancestor between two vertices v1 and v2 is the common ancestor v of v1 and
v2 such that no child of v is an ancestor for both v1 and v2.

We write st the value s on the label for leaf with index t. st = st,1 · · · st,L
is the bit decomposition of st.

As before, α0 is a random value and so are αt,j, βt,j and γt,j for t ∈
{1, · · · , f} and j ∈ {1, · · · , L}.

F1,1,δ(α0) =


α1,1 if δ = s1,1

β1,1 if δ > s1,1

γ1,1 if δ < s1,1

(3.27)

We assume for simplicity’s sake that ct = 1 (ie, we are doing “greater
than” comparisons). If not, we can just switch the target value βt,L with
either αt,L or γt,L.

For 1 < t ≤ f , j = 1:
• If NextOperator(t−1) = AND then the same conditions defined for F∧

t,1,δ

apply to Ft,1,δ

• If NextOperator(t− 1) = OR then the same conditions defined for F∨
t,1,δ

apply to Ft,1,δ.
And for every 1 ≤ t ≤ f and 1 < j ≤ L (subsequent bits):

Ft,j,δ(αj−1) =


αt,j if δ = st,j

βt,j if δ > st,j

γt,j if δ < st,j

Ft,j,δ(βj−1) = βj

Ft,j,δ(γj−1) = γj

(3.28)

Then as before the functions Ft,j,δ are sent to the server, along with the
ordered list of input field names corresponding to the leaf ordering. There
is no need to send the tree itself to the server who learns nothing but the
number of comparisons. The server computes

Fi =
1

⃝
t=f

1

⃝
j=L

Ft,j,vi,t,j

F =
n

⋆
i=1

Fi

(3.29)
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As such, the user can detect if at least one entry verifies the formula in
a single query to the server. He then recovers all the data needed as shown
previously.

3.6 Other Expressions

3.6.1 Single Character Wildcard
Another very common operator in SQL-like queries is the LIKE operator
which allows comparisons where some characters are wildcards. There are
two kinds of wildcards: a single character or any number of characters. In this
section, we show how the scheme from the previous section can be modified
very easily to allow for single character wildcards _ (underscore).

Suppose we want to execute a query of the form:

SELECT outField
FROM table
WHERE inField LIKE s

Where s = s1 · · · sL with each sj ∈ {0, 1,_}. The query is expected
to return the outField values of every entry in the database such that the
corresponding inField has sj has its j-th bit when sj ∈ {0, 1} (when sj = _
the j-th bit value of inField does not matter).

Exactly as before, the client picks random α0, αj, βj and γj and defines
a set of function Fj,δ for 1 ≤ j ≤ L and δ ∈ {0, 1} such that the following
conditions are satisfied:

Fj,δ(αj−1) = αj if sj = _
Fj,δ(βj−1) = βj if sj = _
Fj,δ(γj−1) = γj if sj = _

(3.30)

And if sj ∈ {0, 1}:

Fj,δ(αj−1) =


αj if δ = sj

βj if δ > sj

γj if δ < sj

Fj,δ(βj−1) = βj if j > 1

Fj,δ(γj−1) = γj if j > 1

(3.31)
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Then the server computes F as described many times before and sends it
to the client. The client then tests if F (α0) contains αL as a term (depending
on implementation). If it does then at least one entry in the database satisfies
the LIKE condition.

We can then naturally extend the scheme from Section 3.5.3 to also allow
LIKE conditions using single character wildcards as predicates.

3.6.2 Regular Languages
The next natural step in extending the expressivity of the queries supported
by this approach is to add support for the second wildcard operator % which
is a substitute for zero or more characters and is used in LIKE comparisons.
Combined with all the other query types we have described beforehand, this
means that our construction will be able to recognize any regular language.
We thus directly prove this stronger statement.

We define the set R of regular languages over a finite alphabet Σ =
{σ1, · · · , σT} as the smallest set containing ∅, {σt} for all σt ∈ Σ and stable
under union, concatenation and Kleene Star ∗. Let us consider a regular
language L ∈ R over an alphabet Σ. We show that we can privately perform
any query of the following form:

SELECT outField
FROM table
WHERE inField ∈ L

Proof : Since L is regular, there exists a deterministic finite complete automa-
ton A recognizing L. We call S its set of states, with S = {Sk, 1 ≤ k ≤ K}.
Without loss of generality, we assume there is a single initial state Ski and
a single final state Skf ∈ S. The transition function is Trans : S×Σ→ S.
We also write Σ = {σ1, · · · , σT }.

To each state is associated an element e(Sk) ∈ E such that e(Si) =
e(Sj) =⇒ i = j. We define the family of functions Fσt : E → E as
follows.

For every σt, define Fσt : E → E random function such that Fσt(e(Sk)) =
e(Trans(e(Sk), σt)) for every 1 ≤ k ≤ K.

Now let vi be the value of inField on the i-th entry. Since vi ∈ Σ∗ we
can write vi = vi,1 · · · vi,L where vi,j ∈ Σ. Now the server computes:
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Fi =
1
⃝
j=L

Fvi,j

F =
n
⋆
i=1

Fi

(3.32)

Note that if Fi(e(Ski)) = e(Skf ) then vi ∈ L since A is complete.

3.7 Discussion and Comparison
When discussing the results obtained in the previous sections, we have to
consider protocols working if the same, or at least a similar, setting. While
SQL-oriented PIR schemes have been designed in the past [OG10], they did
not reach the same level of query expressivity, instead relying on higher
data transfer and client-side filtering. Furthermore, Olumofin’s approach
worked in a multi-server setting which gives greater freedom to the designer
at the cost of an inherent requirement on the client’s part to trust the true
independence of several third party entities. When it comes to PIR, most
if not all protocols run in linear time. Comparing the efficiency of different
schemes often cannot be achieved without actual implementation. In this
scenario, the two schemes are near incomparable due to the fundamental
differences between single and multi-server PIR protocols.

Now, the other main approach in this setting is the generic search with
keywords [BCN98] or PERKY . Since it can be used with any PIR protocol
to perform the actual queries, it is a fair comparison with our proposal. In
particular, they can both be instantiated in a single-server setting. PERKY
can only perform equality queries and further filtering has to be executed
client-side. For a query that would not include any equality as one of its
conditions, this implies that every single entry would have to be sent over
to the client. Comparatively, the schemes we described are able to realize a
much wider range of SELECT queries server-side, minimizing communication
costs. In both cases, the goal of the framework is to find the physical location
of the data to be recovered. Once this location is known, the actual data
recovery is done through a standard PIR protocol. We are therefore only
interested in this first step.

There is a fundamental difference between Chor’s and our approach.
PERKY is a method to read and browse a remote data structure privately.
It simulates reading the structure locally by sending a new query for each
read operation. With clever organization, this usually means a logarithmic
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number of exchanges between client and server have to take place. Our ap-
proach is unique in that the server itself browses its data while performing a
computation requested by the client. This minimizes the number of transac-
tions and showcases the possibility of private function execution over public
data.

3.8 Conclusion
We have introduced a high-level algorithm relying on the ϕ-hiding assump-
tion, a well-studied security assumption to perform simple SELECT queries
based on equality tests. It is able to detect the existence of results in a single
query and can recover said results in another query through any PIR proto-
col. This translates into a efficiency improvement over previous options for
complex databases in single-server settings.

We have also introduced a system allowing the execution of much more
complex queries encompassing a great portion of queries actually used on real
life databases. The framework could be instantiated on different families,
offering different options and opening for additional research.

While the scheme performing equality tests, and others such as [BCPT07]
computing Hamming weight are based on well understood security assump-
tions, we could not provide the same level of confidence for arbitrary com-
parisons. Conceptually, any scheme able to compute the evaluation of a
private automaton on a public word (the input bits) has to rely on some
noncommutative primitive. This is why polynomial composition and matrix
multiplication were suggested.

Cryptography over non-abelian algebraic structures has received some at-
tention for a long time but no truly trusted and efficient scheme currently
exists based on such structures. If new schemes were to be devised in the
future, they might be able to be used directly as instances for this construc-
tion.

On another level, the possibility of executing partially encrypted func-
tions over unencrypted data is a very exciting idea which has received lit-
tle attention compared to the notion of encrypted functions over encrypted
data (see [Bre01] for a somewhat similar construction to ours using finite
automata). Extended PIR is a useful application for such primitives which
justifies further research.
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Chapter 4

Approximate-GCD-Based
Private Information Retrieval

4.1 Introduction
Private Information Retrieval (PIR) protocols take place between one or more
clients and potentially multiple servers. The goal is for the client to retrieve
part of the data publicly available on the server(s) without them knowing
which bits were retrieved. With many applications in privacy-sensitive fields
such as biometrics or financial markets study, the notion is intuitive and
comes with an obvious catch: a simple way to achieve it is to send over the
entire database to the client. Chor et al. [CGKS95] formalized the notion
in 1995 and provided a first non-trivial solution with much lower transfer
requirements.

Rapidly, more solutions requiring less and less bits transferred [CMS99,
GR05] were devised and later on research focused on decreasing the compu-
tations required [HHG13, IKOS04, LG15, WDDB06, YDDB08] as it became
clear they were the bottleneck preventing practical PIR [Sio07]. The main
constraint preventing widespread usage is the inherent information theoreti-
cal lower bound on the complexity. Clearly, if the server reads less than the
entire database upon receiving a query, he gains information about which bits
were not requested by the client. While there have been numerous attempts
at solving this issue, they can essentially be sorted in three categories.

First, it is possible to improve this bound if we add some trusted ele-
ment to the scheme, such as trusted hardware on the server, a trusted third
party or additional copies of the database on servers trusted to be indepen-
dent. This is for instance the approach taken in the development of Popcorn
[GCM+16] where one server hosts nothing but decryption keys while other

55



servers, trusted not to collude with each other, host the actual encrypted
data. This currently seems to be the most efficient approach providing pri-
vacy at a reasonable cost (Gupta et al. claim a 3.87 price increase [GCM+16]
when moving from a non private to a private video delivery service). Since
PIR’s ultimate goal is to reduce the trust a client has to put in third parties,
this approach can however be controversial.

A second approach consists in answering several queries batched together
at once with a single reading of the database. This solution only works in
settings where many queries are performed at any point and only provides
a constant factor improvement. This is for instance the approach taken by
Lueks and Goldberg in [LG15]. While we show that the scheme we present
is compatible with such techniques in Section 4.4.8, this is not our main
proposal.

Finally, a third approach consists in modifying the database through a
one-time preprocessing step and then effectively reading less bits during the
online phase without compromising privacy thanks to a computational as-
sumption. Beimel used this technique [BIM04] in a multi-server setting, and
similar ideas were used in [MBFK16] and [GY07].

We argue that single-server PIR with preprocessing based on computa-
tional assumptions is the least flawed approach providing clients with the
highest degree of privacy. This type of scheme would have its limitation be
the computational assumption, but so do most widely used cryptographic
schemes. To the best of our knowledge, there is so far no scheme that man-
ages to answer queries while reading less bits than the entire database size
in a completely generic setting.

We point out strong structural similarities between a sublinear protocol
by Beimel et al. [BIM04] and a well performing and high-security multi-
server protocol by Goldberg [Gol07]. This allows us to combine the best of
each protocol and turn Goldberg’s protocol into a potentially sublinear one
with a noticeably lower computational cost.

However this protocol, like any other information theoretically secure
protocol, does not maintain client privacy when every server cooperates.
Alternatively, the protocol cannot be used when there is only one server (or
a single entity owning all the servers) hosting the database. While Goldberg
also suggested a computationally secure protocol that solves this issue, it is
particularly inefficient and our preprocessing technique cannot be used on it.

We thus also introduce a brand new single-server PIR protocol. Its
computational security is derived from the Approximate GCD assumption
[HG01], well-studied in the field of Fully Homomorphic Encryption [vDGHV10].
Its low communication rate is obtained using the common construction in
Goldberg’s and Beimel et al.’s protocols we pointed out earlier. Finally, its
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low computation complexity is possible using the precomputation techniques
we introduce in the first sections of this chapter.

This chapter is organized as follows. First, we show how Goldberg’s
protocol is a perfect fit to allow for some preprocessing. Then we show how
to do the actual preprocessing as efficiently as possible. In the second part, we
present the Approximate GCD assumption and how it can be combined with
Goldberg’s approach to result in a new single-server PIR protocol. Then we
show how precomputations can be achieved on this new protocol. We suggest
and justify parameters to keep the scheme safe.

4.1.1 Notations
In Sections 4.2 and 4.3, we work in the usual multi-server PIR setting where
several servers are hosting the same copy of a public database of size n. This
database is (b1, · · · , bn), bi ∈ {0, 1}. We call t ≥ 2 the minimum number of
servers the client has to query for the protocol to work. In Section 4.4, we
work in a single-server setting (t = 1).

We use the standard notation δx,y = 1 if x = y, 0 otherwise.
For a variable x and a distribution D, we use the notation x ← D to

indicate that x is picked at random from the distribution.

4.2 The 2-dimensional database construction
Motivation

In this section, we present the construction which will serve as the central
building block for the next sections. It was independently used by Goldberg
[Gol07] and to some extent by Beimel et al. [BIM04]. It is also found in
Gasarch and Yerukhimovich’s proposal [GY07]. Essentially, it is a very simple
structure which can be declined in many different ways. It usually provides
a communication complexity of roughly Õ(

√
n), along with a computational

complexity of Õ(
√
n) on the client side. While this seems very high compared

to other schemes achieving O(nϵ) for any ϵ > 0 or even constant rate on
average, we argue that this is more than enough. This is due to the fact that a
query recovers an entire block of O(

√
n) bits, giving us a near optimal per-bit

complexity when at least
√
n bits need to be recovered. As it turns out, this

value seems to correspond to what real-world systems would need. Indeed,
for a medium-sized database of 230 bits which would likely contain text data,
a query recovering a couple kilobytes of data makes perfect sense. Similarly,
in a large database of 250 bits likely containing media files, recovering a
megabyte or more of data seems standard.
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Besides, its structure is the perfect candidate for precomputations as we
will detail in Section 4.3. Finally, this structure can be used in recursive
schemes as in Gasarch and Yerukhimovich’s protocol [GY07].

4.2.1 Goldberg’s Robust Protocol
Here we present Goldberg’s version, on which we will be able to add a layer
of precomputions in Section 4.3 and replace the security assumption in Sec-
tion 4.4.

Recall that the database is (b1, · · · , bn), bi ∈ {0, 1}. We assume the
database can be split into nb blocks of wpb words of bpw bits each, such that
nb wpb bpw = n. Note that nb stands for number of blocks, wpb for words
per block and bpw for bits per word. If n cannot be decomposed in such a
way, we can easily pad the database with a few extra bits to make it so. We
set up the database as a 2-dimensional array of words where every word is
characterized by two coordinates. In other words, we rewrite {bi}1≤i≤n as
{wi,j|1 ≤ i ≤ nb, 1 ≤ j ≤ wpb} where each wi,j contains bpw bits bi in a
meaningful manner. We also call block x the set of words {wx,j|1 ≤ j ≤
wpb}. All t ≥ 2 servers are using the same conventions for this 2-dimensional
database.

Suppose the client wants to recover block x while keeping x secret. We
set S a field with at least t elements. The client selects nb polynomials
P1, · · · , Pnb of degree t−1 with random coefficients in S, except the constant
term always set such that Px(0) = 1 and Pi(0) = 0 when i ̸= x. He also
selects distinct values α1, · · · , αt ∈ S. These values can be anything and do
not have to be kept secret. For instance αk = k will work. The protocol has
only one round, the client sends a request, the server responds and finally
the client deduces the value of every bit in block x from the response.

During the first step, the client sends a request to every server involved in
the protocol. Specifically, for 1 ≤ k ≤ t, the client sends (P1(αk), · · · , Pnb(αk))
to server k.

We consider wi,j as an element of S. Now we define, for 1 ≤ j ≤ wpb, the
degree t− 1 polynomial Qj with coefficients in S.

Qj =
nb∑
i=1

Piwi,j (4.1)

During the second step, every server answers. Specifically, server k com-
putes the following values and sends them to the client.
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{
Qj(αk) =

nb∑
i=1

Pi(αk)wi,j

}
1≤j≤wpb

(4.2)

After receiving the answer of all t servers, the client knows Qj(α1), · · · , Qj(αt)
for every 1 ≤ j ≤ wpb. Since Qj is of degree t− 1, the client can interpolate
all of its coefficients and compute

Qj(0) =
nb∑
i=1

Pi(0)wi,j = wx,j (4.3)

Thus the client knows the value of every word in block x.

4.2.2 Security
Informally, as a variant on Shamir’s secret sharing scheme [Sha79], this
scheme is information theoretically as secure as possible. It is a well known
fact that a protocol cannot be information theoretically secure if every single
server cooperates, thus the best we can hope for is information theoretical
protection when at least one server does not collaborate, which is what is
achieved here. More formally, the scheme is information theoretically secure
against a coalition of up to t−1 servers. Clearly if it is safe against a coalition
of t− 1 servers, it is safe against any coalition of less than t− 1 servers.

4.2.3 Communication complexity
The client sends nb elements of S to each server. Similarly, each server
returns wpb elements of S. Total communication is t(nb+ wpb) log |S|, which
becomes 2t

√
n log |S| = O(t log t

√
n) when nb = wpb =

√
n, bpw = 1 and

S has exactly t elements. Note that the computational complexity is still
linear in the size of the database here since every bi has to be read by the
servers. The seemingly high communication compared to protocols with
polylogarithmic [CMS99] or constant [GR05] communication rate is actually
a non-issue, since asymptotically (and also in practice [Sio07]), the server’s
computational time will be much higher than the data transmission time.
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4.3 Adding precomputations to Goldberg’s Ro-
bust Protocol

In this section, we will show how we can improve the protocol from Section 4.2
by adding an offline step only executed once. First we use the exact same
approach as Beimel et al., which is not practical in our setting, and then we
show how to modify it to make it practical and efficient.

4.3.1 Using precomputations
We now show we can improve Goldberg’s protocol’s running time. To reduce
the computational complexity on the server side we add a precomputation
step before the algorithm is run. A similar idea was introduced in 2004
in an article by Beimel [BIM04], which essentially used a variant of the 2-
dimensional database structure described in Section 4.2. The concept of
preprocessing to speed up computations can also be found in [GY07] where
Gasarch and Yerukhimovich use it to reduce client-side computations. In
our case, we focus on the server’s side since a server is expected to answer
many queries while most clients would only send a few. Regardless, this
preprocessing step is only run once, has polynomial running time and can
be done offline prior to any interaction with clients. Its complexity is thus
irrelevant to the actual protocol running time.

Here is how we proceed. First, for every 1 ≤ j ≤ wpb (every word in a
block), we partition the m = nb bpw bits b1,j, · · · , bm,j into m/r disjoint sets of
r bits each (without loss of generality, we assume r divides m). There are m/r
such sets for every j, or n/r sets in total. We call these sets Ci,j, 1 ≤ i ≤ m/r
and 1 ≤ j ≤ wpb. For every Ci,j, the server computes all |S|r possible linear

combinations with coefficients in S. That is, every Pre(C,∆) =
r∑

d=1

δdC[d]

for any ∆ = (δ1 · · · δr) ∈ Sr. This requires a total of n
r
|S|r log2 |S| bits.

If we set |S| = t (which is the minimal number of distinct elements in
S, attained when bpw is 1) and r = ϵ log2 n for some ϵ, this means a total
of n1+ϵ log2 t log2 t

ϵ log2 n
bits have to be precomputed and stored on the servers. This

value is potentially very large if t is too large. We will solve this issue in
Section 4.3.2. Computing one Pre(C,∆) requires r operations and overall
the preprocessing of the whole database requires O(n1+ϵ log2 t) operations.

During the online phase, each server only reads m/r elements of S to
compute Qj(αk). Over all t servers, only tn log2 |S|

r
bits are read. Note that

the precomputed database should be ordered in such a way that, for a fixed
i, all Pre(Ci,j,∆) are stored consecutively. This way ∆, which is sent by the
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client, only has to be read by the server once. The nature of the algorithm
(reusing the same ∆ for every 1 ≤ i ≤ nb) is what gives us a speed boost
when different protocols would not benefit from the precomputations.

Once again, if we set |S| = t, bpw = 1 and r = ϵ log2 n for some ϵ, a total
of nt log2 t

ϵ log2 n
bits are read during the online phase. If t log2 t < ϵ log2 n, that

means the server’s computation is sublinear in the size of the database.
Communication complexity and security are exactly the same as detailed

in Section 4.2. Indeed, a coalition of servers receives exactly the same infor-
mation from a client as before. While this may seem obvious, it is interesting
if one notes in particular that the potentially sublinear complexity would
allow, from an information theoretical point of view, any individual server
to distinguish some bits from the original database which are definitely not
requested by the client (see the proof in Section 2.3.2). This could have poten-
tially lead to an attack from a coalition of servers if it was not for the formal
proof of Section 4.2. This shows yet again how fitting Goldberg’s scheme is
for this type of computational improvements through precomputation.

4.3.2 Decomposition over base 2
In this section, we present another approach to make precomputations even
more efficient. This potentially improves Goldberg’s complexity by several
orders of magnitude.

Clearly the most limiting factor in the construction from the previous
section (and in Beimel et al.’s approach [BIM04]) is the |S|r factor. In some
scenarios, we want t (and thus |S|) to be large for redundancy purposes.
Using words with more than a single bit can also be interesting. Besides,
it is possible to create schemes based on a computational assumption which
require very large groups S, as we will show in Section 4.4. Alternatively,
some implementations (including Goldberg’s percy++ [GDHH14]) set a fixed
large S regardless of how many servers the client decides to use. In all of
those situations, the space requirements on the server become prohibitive.
We assume here that S = Zℓ for a possibly large ℓ over λ bits.

As before, in the first step the client sends to server k the following values.

(P1(αk), · · · , Pm(αk)) (4.4)

We can however decompose those values as follows, since elements of S
have a standard representation as integers.
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Pi(αk) =
λ∑

c=0

Pi,c2
c where Pi,c ∈ {0, 1} (4.5)

Then the server’s computation can be modified using the following equal-
ity.

nb∑
i=1

Pi(αk)wi,j =
λ∑

c=0

2c
nb∑
i=1

Pi,cwi,j (4.6)

Now once again we partition {1, · · · ,m} as defined earlier into m/r dis-
joint sets Ci,j of r elements each, where 1 ≤ i ≤ m/r and 1 ≤ j ≤ wpb.
For every such set C and every δ1, · · · , δr ∈ {0, 1}, the server precomputes
r∑

d=1

δdC[d]. Each precomputed value requires only log2 r bits for storage.

If r = ϵ log2 n, the following holds regarding the precomputed database
size |DB′|.

|DB′| = m

r
wpb 2r log2 r = n1+ϵ log2(ϵ log2 n)

ϵ log2 n
< n1+ϵ (4.7)

Thus less than n1+ϵ bits are precomputed and stored in total. This value
is independent of the size of S and thus indirectly independent of t. The
one-time preprocessing requires O(n1+ϵ) elementary operations.

Now during the online phase, Qj can be computed in m
r
λ operations.

Overall, the t servers will return their results in n tλ
r

= n tλ
ϵ log2 n

operations,
which is sublinear if tλ < ϵ log2 n. Note that for real world values, log2 r =
log2(ϵ log2 n) is small and summing m/r values should give a number that
fits in a 64-bit register. This means that the online phase of the protocol
can be efficiently implemented without using any large integer libraries for
its most expensive step. Then only λ operations have to be performed using
large integers. Because of this feature, the algorithm remains highly efficient
even when tλ > ϵ log2 n as is the case with very large ℓ, t or small ϵ (to save
space).

4.3.3 A note on Goldberg’s computationally secure scheme
If all t servers collaborate, it is very easy for them to recover the secret x.
Furthermore, we know it is impossible to make an information theoretically
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secure protocol with sublinear communication when every server cooperates.
However it is still possible to make a computationally secure protocol in
this situation as shown in [Gol07]. Note that because all of the servers can
collaborate, we might as well consider that all t servers are the same, and
that gives us a single server PIR protocol (although in some scenarios having
several servers can also be convenient regardless of security concerns).

The basic idea behind the protocol is to encrypt the shares sent to the
servers with an additively homomorphic scheme and to have the servers per-
form the computation on the ciphertexts. In practice, the Paillier cryptosys-
tem is used. It has the interesting property that the product of ciphertexts
is a ciphertext associated to the sum of the original plaintexts. It is not
possible to add a precomputing step in this situation because the parameters
(the modulus) must be chosen privately by the client. As such, all hypothet-
ical precomputations would be done in Z instead of some Z/ℓZ and reading
a hypothetical precomputed product would require reading as many bits as
reading the individual components of the product.

Instead, we can choose to use another additive homomorphic scheme like
one based on the Approximate GCD problem. The scheme has however to
be changed in several ways which we describe in the next section.

4.4 Single Server PIR Using the Approximate
GCD Assumption

4.4.1 Computational assumptions
In this section we reuse the 2-dimensional construction of the database, but
instead of securing it through Shamir’s secret sharing scheme, we rely on
the Approximate GCD assumption. The assumption, which has been the
subject of widespread study thanks to its importance in the field of Fully
Homomorphic Encryption, states that it is computationally hard to solve the
Approximate GCD problem for sufficiently large parameters. This problem
can be formulated as in Definition 4.4.1.

For any bit lengths λq and λϵ and odd number p, we call D(λq, λϵ, p) the
random distribution of values z = pq + ϵ where q has λq bits and ϵ has λϵ

bits.
In addition, for a bit b ∈ {0, 1}, we call D(λq, λϵ, p, b) the random distri-

bution of values pq + 2ϵ+ b where q has λq bits and ϵ has λϵ bits.
Note that we will be using noise values ϵ ∈ {0, · · · , 2λϵ−1}. This makes

notations easy as ϵ is also positive. However, this definition does not allow
the subtraction of noise. In some other articles such as [vDGHV10] the noise
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is chosen uniformly around 0. In other words the noise ϵ′ is picked from
{−2λϵ−1−1, · · · , 2λϵ−1}. However the two notations are clearly equivalent as
we can replace any z = pq + ϵ by z′ = z − 2λϵ−1 before doing any sequence
of ka additions and ks subtraction and then add (ks− ka)2

λϵ−1 to the result.
Definition 4.4.1

(Approximate GCD) Let {zi}i ← D(λq, λϵ, p) be a polynomially large
collection of integers. Given this collection, output p.

It was introduced in 2010 by Van Dijk et al. [vDGHV10] as a general-
ization of Howgrave-Graham’s construction [HG01] from 2001. In the same
paper, Van Dijk et al. also showed that the following problem can be reduced
to the Approximate GCD problem.
Definition 4.4.2

(Somewhat Homomorphic Encryption) Let {zi}i ← D(λq, λϵ, p) be a
polynomially large collection of integers, b ← {0, 1} a secret random bit
and z ← D(λq, λϵ, p, b). Given {zi}i and z, output b.

Now here is how we construct the scheme.
As before we assume the database is wi,j, 1 ≤ i ≤ nb, 1 ≤ j ≤ wpb, each

wi,j containing bpw bits. Note that we have nb wpb bpw = n, the total bit
size of the database. First we consider the convenient case where bpw = 1
(every word is a single bit).

Suppose the client wants to recover block x consisting of {wx,j}1≤j≤wpb.
The client picks a large random odd number p over λp > λϵ which will be its
secret key. He selects nb random zi = pqi + 2ϵi + δi,x ← D(λq, λϵ, δi,x).

Then for every j from 1 to wpb, the server computes the inner product

resj =
nb∑
i=1

bi,jzi. He then sends {resj}1≤j≤wpb to the client.

For every resj received, if
nb∑
i=1

2ϵi < p − 1, the client can compute the

following:

(resj mod p) mod 2 = (
nb∑
i=1

bi,j(pqi + 2ϵi + δi,x) mod p) mod 2

=
nb∑
i=1

bi,j(2ϵi + δi,x) mod 2

= bx,j

(4.8)
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As such, and so long as
nb∑
i=1

2ϵi < p−1, he retrieves one bit of information

bx,j for every j ∈ {1, · · · , wpb} which once combined gives him the value of
the entire block x.

It is important to note that this construction is somewhat homomorphic
and has been used to create fully homomorphic encryption [vDGHV10], but
here we only care about the additive property of the scheme. This is very
important because without multiplications, the noise ϵ will progress very
slowly and we realistically do not have to worry about it becoming too large.
Also, our construction is unrelated to other PIR protocols based off generic
somewhat or fully homomorphic encryption systems like Yi et al.’s [YKPB13]
or Boneh et al.’s [BGH+13] (see Section 2.3.3).

4.4.2 Complexity
First let us look at the communication complexity. The client sends nb values
zi and the server returns wpb values resj. We call λp the bit size of the secret
p and λq the bit size of the qi values. We also write λ = λp + λq. The actual
values of these security parameters will be discussed in section 4.4.4. Each
zi is thus λ bits long. Since resj is essentially a sum of at most nb zi values,
its bit size is λ+ log2 nb.

The overall communication of the protocol is λnb + wpb(λ + log2 nb) to
retrieve a block of wpb bits. When nb = wpb =

√
n, and since log2 nb ≪ λ,

the communication is O(λ
√
n) or O(λ) per bit recovered.

Now let us detail the computational complexity. Multiplying a λp-bit
integer with a λq-bit integer can be done with complexity λpλq < λ2 or less
depending on representations. The same applies for a modulo operation on
λ-bit input values. Adding two λ-bit integers requires λ elementary opera-
tions. Now, the client performs O(nb) multiplications to send the query, the
server in turn performs O(nb wpb) additions to execute it. Finally the client
performs O(wpb) modulo computations to recover the block values from the
server’s reply.

The overall computational complexity of the protocol is O(nb wpbλ).
When nb = wpb =

√
n, which is the optimal value, this becomes O(λn).

4.4.3 Precomputations
As the scheme uses the 2-dimensional structure of the database, we can use
precomputations in the exact same way we described in section 4.3.2. We
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write zi =
λ−1∑
k=0

zi,k2
k, where zi,k ∈ {0, 1}. The server selects a precomputing

parameter r and computes every possible sum of r consecutive words in the
database. The client sends the zi,k values by groups of r bits for a fixed k.
Now the server can compute the resj values r times faster than previously by
working with small integers and only performing λ large integer operations
per resj. See section 4.3.2 for details on this technique.

Communications are unchanged (the client sends the same amount of bits,
simply changing their order) at O(λ) bits transmitted for every bit recovered.

Computations are unchanged on the client side. On the server side, each
rj requires λ nb/r small integer operations and λ large integer operations.
Overall computational complexity is O(λn/r + λ2), which is asymptotically
a r times improvement over the standard version.

4.4.4 Security
The security of a PIR scheme is defined by the following problem. Given two
client queries for blocks x1 and x2 respectively, it should be computationally
hard to distinguish them. In this scheme, this means that the server must
distinguish two queries qx1 and qx2 .

To simplify notations, we write D(λ, p, b) the distribution D(λq, λϵ, p, b)
with λq = λ− log2 p and λϵ = log2 p− log2 nb. qx is defined as:

qx = {zi|zi ← D(λ, p, 0) when i ̸= x, zi ← D(λ, p, 1) otherwise} (4.9)

Let us call Qx the distribution of all possible queries qx. Now we can show
that if an attacker can indeed distinguish these two queries when given access
to polynomially many samples from D(λ, p, 0), it can break the Somewhat
Homomorphic Encryption (Definition 4.4.2) and thus solve the Approximate
GCD Problem (Definition 4.4.1).
Theorem 4.4.3

Given access to polynomially many values of D(λ, p, 0), if there exists a
PPT algorithm distinguishing two queries for distinct blocks of a database
with non-negligible advantage, then there exists a PPT algorithm able to
recover the value p given these samples.

Proof : Let us assume there exists a distinguishing algorithm A(q) that re-
turns 1 with probability σ if q ∈ Qx1 and returns 1 with probability σ + α
if q ∈ Qx2 . Now given an encryption e = pq + 2ϵ + b of a secret bit b, we
build an algorithm B(e) that recovers b with probability at least 1/2+α/4.
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First, with probability α/2, we return 0 and stop immediately. Other-
wise, we draw r ← D(λ, p, 0) and nb− 2 random elements from D(λ, p, 0).
We generate a query q with the random elements in every position but x1
and x2. We randomly pick x1 or x2 and place e in the picked position, r
in the other position. We then return A(q) if the picked position was x1,
1−A(q) otherwise.

If b was equal to 0, then q contains only random encryptions of 0 and
does not belong to some Qx. In this case, let us say A(q) returns 1 with
probability σ′. Then B(e) returns 1 with probability

Pr(B(e) = 1|b = 0) = (1− α/2)(1/2 · σ′ + 1/2 · (1− σ′))

= 1/2− α/4
(4.10)

Now if b was equal to 1, then B(e) returns 1 with probability

Pr(B(e) = 1|b = 1) = (1− α/2)(1/2 · (σ + α) + 1/2(1− σ))

= 1/2 + α/2(3/4− α/4)

≥ 1/2 + α/4 since 0 < α ≤ 1

(4.11)

Then we use the result from Van Dijk et al. [vDGHV10] to show the
reduction from recovering b to recovering the secret p and breaking the
AGCD assumption.

Note that here we had to assume that the attacker has access to random
encryptions of 0. This is actually a very fair assumption since the most
common use of homomorphic encryption is cloud storage and computing.
In such a scenario, it would be common for a server hosting user-submitted
data to know some metadata about the plaintext which would include some
always-0 bits.

4.4.5 Parameters Selection
Van Dijk et al. [vDGHV10] describe how to select parameters so that the
Approximate GCD assumption is secure against known attacks. Let us set λs

some security parameter (i.e., the scheme should achieve λs bits of security).
Many efficient attacks rely on the assumption that an exact multiple of p

is known, which also known as Partial AGCD problem. Brute force attacks
on the noise value mean that λϵ has to be at least λs when an exact multiple
of p is known.
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In our construction, no exact multiple is used. In this case, Chen and
Nguyen [CN12] show that the scheme can be broken in Õ(23λϵ/2) and Coron
et al. showed an improved heuristic attack in Õ(2λϵ).

Most effective are lattice-based attacks. Writing zi = pqi + ϵi, Van Dijk
et al. describe an attack by applying the lattice reduction algorithm LLL
[LLL] to the following matrix:

M =


2λϵ z1 z2 · · · zt

−z0
−z0

. . .
−z0

 (4.12)

We write:

v = (q0, q1, · · · , qt) ·M

= (q02
λϵ , z0q0(

z1
z0
− q1

q0
), · · · , z0q0(

zt
z0
− qt

q0
))

(4.13)

The attack succeeds if v (of size about 2λq+λϵ
√
t+ 1) is the shortest vector

in the lattice and if the lattice reduction finds it. It is likely to be the
shortest when t ≥ λ/λp. On the other hand, since there exist exponentially
many vectors of size 2λ

√
t+ 1, the reduction has to find a better than 2λp−λϵ

approximation. Since in our case we have λp ≈ λϵ + log2 nb, that means it
would have to return a better-than-nb approximation.

Using [Sch03] and its improvement [GHGKN06], we know that it takes
time roughly 2t/k to get a 2k approximation. Since t ≥ λ/λp, we need
t/k > λ

λp log2 nb > λs which means λ > λsλp log2 nb. Note that this is a very
conservative approximation as we would likely need t ≫ λ/λp to guarantee
v is the shortest vector and if t = Cλ/λp for a large C, then the condition
becomes λ > λsλp log2 nb/C

4.4.6 Multiple Bits Words
The process can easily be modified to recover words of more than 1 bit of
data per word at little to no additional cost. Essentially, instead of picking
the values zi as pqi + 2ϵi + δi,x, we can pick zi = pqi + 2bpwϵ + δi,x where
bpw is the number of bits per word. The condition on the ϵi values becomes

2bpw
nb∑
i=1

ϵi < p/2bpw ⇐⇒
nb∑
i=1

ϵi < p/22bpw.
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For instance, if λp is 160 bits and we process databases with less than 230

blocks, we could pick λϵ = 80 bits which would allow bpw to be as high as 25
bits per word.

The server’s response in this case is unchanged, resj =
nb∑
i=1

ziwi,j where

each wi,j is a word of bpw bits. The client then recovers block x consisting of
all the wx,j by computing wx,j = (resj mod p) mod 2bpw.

The overall communication cost of the protocol is now nb λ + wpb(λ +
bpw+ log2 nb) but we now retrieve a block of wpb bpw bits. Besides, we have
bpw wpb nb = n and nb≪ 2λ, which means that when nb = wpb =

√
n/bpw

the communication cost becomes O(
√

n
bpw(2λ + log2 nb + bpw)). Since we

recover wpb bpw =
√
n bpw bits, per-bit-recovered complexity is O(2λ+log2 nb

bpw +

1) which is roughly O(λ/bpw) (note that λ has to be larger than bpw).

Every sum
nb∑
i=1

zi,kwi,j of nb terms over bpw bits each can still be performed

in nb elementary operations so long as log2(nb)+bpw is smaller than the word
size used by the processor (usually 64 or 128 bits). The overall computational
complexity of the protocol is therefore unchanged at O(λnb wpb). When
nb = wpb =

√
n/bpw and we precompute over r bits as described in Section

4.4.3, this becomes O( λn
r bpw).

To sum up, both the communication per bit recovered and the overall
computational cost are improved by a factor of bpw, which can be 10 or
more. Note that it comes at the cost of recovering blocks of bits

√
bpw times

larger, which is a non-issue in a lot of settings.
The question this naturally brings up is whether or not this affects the

security of the scheme. First, the scheme can be reduced to a version of the
Somewhat Homomorphic Encryption scheme (Definition 4.4.5) on bpw bits
as we did in the security proof from Section 4.4.4. Furthermore, we can show
that this version of the Somewhat Homomorphic Encryption scheme can be
reduced to the AGCD problem for numbers pq + 2bpwϵ + b, b ∈ {0, 1}. We
detail these claims using the following lemmas.
Definition 4.4.4

Multiple Bit Distributions

• Dbpw(λ, p, b) is the uniform distribution over the set pq + 2bpwϵ + b
for q over λ− log2 p bits, ϵ < p

22bpwnb and b ∈ {0, 1}.

• Dbpw(λ, p) is the uniform distribution over the set pq + 2bpwϵ+ b for
q over λ− log2 p bits, ϵ < p

22bpwnb and b uniformly drawn from {0, 1}.
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Definition 4.4.5
Multiple Bit Somewhat Homomorphic Encryption Problem

Let {zi}i ← Dbpw(λ, p, 0) be a polynomially large collection of integers,
b← {0, 1} a secret random bit and z ← Dbpw(λ, p, b). Given {zi}i and z,
output b.

Lemma 4.4.6
If there exists a PPT algorithmA that can distinguish with non-negligible
advantage between queries for secret index x1 and x2, then there exists a
PPT algorithm B that can solve the Multiple Bit Somewhat Homomor-
phic Encryption Problem with non-negligible advantage.

Proof : We proceed exactly as in the proof of Theorem 4.4.3. We briefly
recall the reduction here. Suppose that A returns 1 with probability
1/2+Adv(A) for a randomly selected query for secret index x1, and with
probability 1/2−Adv(A) for secret index x2.

Given a random z drawn fromDbpw(λ, p), we build a query q = (z1, · · · , znb).
zi is drawn randomly from Dbpw(λ, p, 0) when i /∈ {x1, x2}. Then we do one
of the following two options with equal probability:

• Option A: Set zx1 := z and zx2 as a random element drawn from
Dbpw(λ, p, 0).

• Option B: Set zx2 := z and zx1 as a random element drawn from
Dbpw(λ, p, 0).

We run A on the generated query and return A(q) if Option A was
selected, 1−A(q) if Option B was selected.

Definition 4.4.7
Multiple Bit Approximate GCD Problem

Given a polynomial number of values zi drawn from Dbpw(λ, p), find
the value of p.

Lemma 4.4.8
If there exists a PPT algorithm A that can solve the Multiple Bit Some-

what Homomorphic Encryption Problem with non-negligible advantage,
then there exists a PPT algorithm B solving the Multiple Bit Approxi-
mate GCD Problem with non-negligible probability.

Proof : We do not fully detail the proof of this step as it closely follows Van
Dijk et al.’s [vDGHV10]. We recall the main steps in the reduction here.
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Given z = pq+2bpwϵ+ b for secret p, q, ϵ and b, we can easily guess the
value of q mod 2. Indeed, the hypothetical algorithm A guesses the value
of b with non-negligible advantage. We run A on z and call b′ the output
A(z). We call a = (z mod 2) ⊕ b′. Clearly, a = q mod 2 if A correctly
guessed the value of b (if b = b′).

We then build an algorithm that given two values z1 and z2 where
zi = pqi + 2bpwϵi + bi computes the binary GCD [Knu97] of q1 and q2 (that
is, gcd(q1, q2) mod 2). With non negligible probability, this GCD is 1, which
means the algorithm finds z̃ = 1 · p+ ϵ (with small enough noise ϵ). Then
the binary GCD algorithm is run a second time on inputs z1 and z̃ which
directly gives the binary decomposition of q1, from which we easily recover
p = ⌊z1/q1⌋.

Note that in [vDGHV10], the noise ϵ ∈ [−2λϵ−1, 2λϵ−1] which allows
subtraction between values and is used in the binary GCD algorithm. This
notation is however equivalent to ours by setting yi = zi − 2λϵ−1.

Theorem 4.4.9
If a PPT algorithm can distinguish between bpw-queries for secret indices
s1 and s2 with non-negligible advantage, then the secret value p can be
efficiently recovered with non-negligible advantage.

Proof : Immediate from lemmas 4.4.6 and 4.4.8.

This shows that this scheme is at least as secure as a version of the AGCD
problem with the bpw−1 least significant noise bits known. Alternatively, any
generic AGCD problem instance can be turned into one of those instances
by bruteforcing the value of said bits. As such, for small enough word sizes
(say, up to 32 bits), the security of the scheme is mostly unaffected.

4.4.7 Updating the Database
Preprocessing techniques provide significant speed-up when answering queries
at the cost of a one-time expensive preprocessing step. However, since the
preprocessed values depend on the original database values, any modifica-
tion of the original database will require the preprocessing step to be per-
formed anew. Naturally, such schemes are better suited for somewhat static
databases but even in those cases updates may still happen occasionally. In
this section we study the complexity of updating the precomputed values
when the original database is modified.

Suppose word wi,j from the original database is updated from v0 to v1.
We call δ = v1 − v0.
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For every (x0, · · · , xr−1) ∈ {0, 1}r, if xk = 1 where k = i− 1 mod r, then
there is one precomputed value v in the preprocessed database that has to
be updated to v′ = v + δ. Overall, every modification of a word’s value
in the original database will require 2r−1 word updates to the preprocessed
database, which is very reasonable if the database is only updated sparingly.

4.4.8 Query Batching
In works by Beimel, Ishai and Malkin [BIM04] or Lueks and Goldberg [LG15],
query batching is used as a way to reduce complexity per query when many
clients are involved in the protocol. The techniques used rely on the sub-cubic
complexity of matrix multiplication. We here detail how the same approach
can be used in our system to provide a significant improvement in the right
setting.
Lemma 4.4.10

Let M , N ∈ Fn×n. The matrix product MN ∈ Fn×n can be computed in
O(nω) multiplications in F for ω < 2.376 [CW87].

Now observe that for a query q = (z1, · · · , znb)
ᵀ ∈ Znb×1 and a server-

hosted database DB = (bi,j, 1 ≤ i ≤ wpb, 1 ≤ j ≤ nb) ∈ Zwpb×nb, the server’s
response is DB · q ∈ Zwpb×1.

More generally, if we have k (independent) queries q1, · · · , qk we can build
the nb×k matrix having query qi as its i-th column. We call this matrix q1∼k.
Now the server’s response to the i-th query is the i-th column in DB · q1∼k.

Let’s assume nb = wpb which is the most efficient setting as described
before. Three cases can be considered:

• If k = nb then both q1∼k and DB are square matrices and DB · q1∼k can
be computed in O(nbω) operations.
This means that the server only performs O(nbω−1) = o(nb2) = o(n/bpw)
operations per query. Each operation here is elementary when splitting
every q1∼k as a sum of λ matrices with values in {0, 1} and so long as
bpw + log2 nb is smaller than the processor word size (see Section 4.4.6
for details).
Overall, per query complexity is O(λ(n/bpw)(ω−1)/2) < O(λ(n/bpw)0.7).

• If k < nb we can pad q1∼k with 0 values to make it a square nb × nb
matrix and process it using the first case.
The computational complexity per query is O(λnbω/k) which is asymp-
totically less than the cost for the non-batching approach λ n

bpw (see
Section 4.4.6) when k > nbω−2.
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• If k > nb we can process nb queries at a time using the first case and
process then remaining k0 = k mod nb using the second case.

In the second case, we can also use a result by Coppersmith [Cop97a]
stating that there exists an algorithm able to compute the product of an
nb × nb matrix by an nb × nbα for a constant α > 0.294 in O(nb2+ϵ) for
any ϵ > 0. In this case the computational cost per query is O(λnb2+ϵ−α) =
o(λnbω−α). This is however a mostly theoretical construction not practical
for reasonable values of nb.

For smaller values of nb, the Strassen-Winograd algorithm [Win71] where
ω = log2 7 ≈ 2.8074 can be used and provide significant improvement when-
ever k > nb0.8074.

4.5 Discussion and Comparison

4.5.1 Implementation
Goldberg provided an implementation called percy++ [GDHH14] that in-
cluded the robust protocol from [Gol07] along with other PIR protocols.
Running tests showed that in multi-server settings, Chor et al.’s protocol
[CGKS95] performed the fastest, followed by Goldberg’s [Gol07]. Note that
Goldberg’s, and by extension our version described in Section 4.3.2, contains
much stronger security features. In single-server settings, Aguilar-Melchor et
al.’s scheme [MG07] was deemed the best performing. The security of this
scheme is based off the so called Differential Hidden Lattice Problem which
the authors introduced and studied. In comparison, our single-server scheme
defined in section 4.4 relies on the computational Approximate GCD assump-
tion on which one of the main candidates for fully homomorphic encryption
is based and has thus received a lot of attention.

We made a straightforward implementation of our protocols without aim-
ing for any kind of optimization. Our objective was the confirmation of the-
oretical complexities. For multi-server protocols, we always picked t = 2
servers, the minimum to keep the protocol safe while maximizing efficiency.
In real world situations, a higher number would be desirable, multiplying the
overall time complexity by a non negligible constant.

We only care about the computational complexity of the server since
the communication and client computational complexities are asymptotically
negligible. In situations where the preprocessing would generate files too
large for our environment, we simulated reading from random files instead,
which makes no difference from the server’s point of view since the data
received is indistinguishable from random data.
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There are a lot of parameters that can be modified when running actual
tests. For Goldberg’s scheme, the preprocessing parameter r described in
section 4.3.1, the number of bits per word and the size of the database. Our
implementation shows that, as expected, the running time will decrease lin-
early as the preprocessing factor r is increased. This is true for databases
small enough that the preprocessed version would still fit in RAM and for
databases large enough that it does not fit in RAM even without preprocess-
ing. For middle-sized databases, the added preprocessing forces the algorithm
to read data directly from the harddrive in a semi-random manner, which
can slow it down significantly depending on reading speeds.

For our single server scheme, a security parameter of 80 was chosen which,
depending on database size, will translate into a value λ > 64000. In this
setting, our implementation of the algorithm runs slower than alternatives.
A tighter security bound than the one described in Section 4.4.5 would be
an improvement. Most importantly, the techniques we will describe in the
next chapter will solve this issue.

4.5.2 Discussion
PIR schemes have been proposed in a wide range of settings. In our approach,
we tried to the setting most likely to be used in practice. That is, there
exists a single server hosting a database, there are no non-computational
assumptions required for scheme to be secure and any block of data may
be recovered. As such, when comparing our results to others, we consider
schemes able to provide the same level of freedom and security as our own.

Now, comparing PIR schemes is not an easy task. There exists a trivial
algorithm performing in only n operations which is said to actually outper-
form more complex schemes [Sio07]. Conversely, there are PIR schemes in
this setting that require more than n operations in total but outperforming
the trivial algorithm [OG12]. Furthermore, different implementations for the
same theoretical construction sometimes have very different practical running
times.

The scheme we described in this Chapter has a number of appealing
points but will only truly be worth studying when combined with the new
techniques developed in Chapter 6. We will then further discuss in Section
6.6.
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4.6 Conclusion
A completely practical PIR scheme has yet to be found. As long as the entire
database has to be read for every query, such schemes will always perform too
slowly. Based on the observation that preprocessing is a necessity to reach
that goal, we first showed how such precomputations can be added to some
already existing protocols and designed a new protocol compatible with this
technique.

We presented the first PIR protocol allowing the recovery of a block of
bits, strong protection against server collusion and Byzantine servers while
performing more efficiently than previously possible. Its performance is the-
oretically better than other such algorithms and the design allows efficient
implementations by mostly avoiding the need for large integers libraries. Our
scheme can be seen as both a generalization of Goldberg’s protocol and
Beimel et al.’s protocol. Compared to Goldberg’s, ours can perform sev-
eral times faster but requires a polynomial expansion of the database. Even
a quadratic expansion is sufficient to provide a faster protocol. Compared to
Beimel et al.’s, the scheme provides much stronger security against several
servers cooperating, a major weak point of multi-server PIR protocols.

We also presented an efficient single-server scheme with a simple struc-
ture. It is compatible for preprocessing techniques, a requirement for sublin-
ear PIR, and relies on a computational assumption which is fairly new but
has received and will likely continue to receive a lot of attention from the
research community. Furthermore, the way we use it allows for relatively
small parameters compared to FHE schemes based on it. New approaches to
precomputing are however required to truly show its usefulness.
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Chapter 5

Partial Server-Side Parameter
Selection

5.1 Introduction
The scheme we detailed in Chapter 4 or the one Aguilar-Melchor et al. de-
signed [MBFK16] are two lightweight constructions highly efficient but that
do not reach the symbolic threshold of reading less bits that the trivial al-
gorithm. In this chapter, we revisit these results and introduce new pre-
processing techniques that can allow us to go under that threshold for large
enough databases. The result is especially of interest theoretically as it shows
that the information theoretical bound can asymptotically be broken under
computational assumptions. To achieve this performance, we first have to in-
crease the client-side computational cost. We further improve on this aspect
after careful security considerations.

Increasing the computational cost of the client may seem counter-intuitive
in a world focusing more and more on cloud computing which aims to achieve
quite the opposite. It however makes sense in a PIR setting as the server
does not benefit from the added computational cost. Indeed, privacy-centered
systems are often not compatible with business models relying on monetizing
clients’ habits. It then makes sense that the recipient of the additional privacy
should shoulder part of the cost through added computations on his side.

This chapter is organized as follows. In Section 5.2, we briefly go over
the scheme from Chapter 4 that we will use as a building block for our main
proposal. Section 5.3 is the new construction. We describe the new pre-
processing technique and the adjusted steps for the client and the server.
We detail parameter selection in Section 5.4 and discuss security concerns in
Section 5.5. Section 5.6 shows two techniques to further improve the perfor-
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mance. Finally, Section 5.7 describes how the techniques detailed previously
can also be applied to the Ring-LWE-based scheme from [MBFK16].

5.2 Working with Near Multiples

5.2.1 Notations
We work in the single-server PIR setting where a server is hosting a pub-
lic database. The database is indexed over two dimensions, we write it
(b1,1, · · · , bnb,bpb), bi,j ∈ {0, 1}. nb stands for number of blocks and bpb
stands for bit per block. Its total length is n = nb bpb. x is the index of the
block that the client wants to retrieve. We use the notation ϵ to suggest a
number is small compared to some other parameters. The exact requirements
on the size will be detailed on a case by case basis.

For parameters p and q, λp is the bit length of p, λq the bit length of q
and λ = λp + λq the overall security parameter of the scheme. We call I the
set of λ indices {0, · · · , λ− 1}.

We try to use uniform notations throughout the chapter as much as pos-
sible. i will be an index on blocks, usually ranging from 1 to nb. j will be
an index on bits within a block, usually ranging from 1 to bpb. Finally, k
will be an index on bits from the input parameter, usually ranging from 0 to
λ− 1 or a subset of I.

log designates the natural logarithm (base e) while logb refers to logarithm
base b.

For a variable z, the notations z(c) and z(s) refer to a splitting of z in a
client part (z(c)) and a server part (z(s)). In other words, when there are
parentheses, (c) and (s) are not exponents but labels.

5.2.2 Scheme Description
In this section, we briefly recall the scheme developed in Chapter 4.

Consider an n-bit public database made of nb blocks containing bpb bits
each. Note that for now we do not consider the specific case where each block
is made of words and each word has a fixed number of bits. We will discuss
what happens when we do in Section 6.4. Recall that bi,j is the bit number
j in block number i.

Assume a remote client wants to recover block number x from the database.
He also wants to keep the index x secret for privacy reasons.

The protocol has only one round and aims at reducing computations
as much as possible. In particular, it uses the additively homomorphic
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properties of Van Dijk et al.’s Somewhat Homomorphic Encryption scheme
[vDGHV10].

First, the client selects at random a large odd secret number p and gen-
erates nb close multiples of it: {zi = pqi + 2ϵi + δi,x|i ∈ {1, · · · , nb}} where
δi,x = 1 if i = x, 0 otherwise and ϵi < p/(2nb) is small compared to p. The
noise is picked from a uniform distribution as in [vDGHV10], but it could
just as securely be picked from a Gaussian distribution (see [Reg04]).

The zis are then sent to the server.
For every bit in a block j ∈ {1, · · · , bpb}, the server computes resj =

nb∑
i=1

zibi,j and sends these values to the client.

So long as
nb∑
i=1

2ϵi+1 < p, the following holds and the client can effectively

recover every bit from block x.

(resj mod p) mod 2 =
nb∑
i=1

2ϵi + δi,xbi,j mod 2

=
nb∑
i=1

δi,xbi,j = bx,j

(5.1)

Server side computational complexity is nb sums over λ bits integers
for every bit in a word. Overall, complexity is λn elementary operations.
Client side complexity is O(nb) which is negligible compared to the server’s
computation.

Communication complexity is λnb bits to send the zi values and λbpb
bits to send back the resj values. If nb = bpb =

√
n, the overall complexity

is O(λ
√
n) bits to retrieve a

√
n-bit long block, or O(λ) bits transferred per

bit recovered.
The security proof from Section 4.4.4 shows that the scheme is secure

under the Approximate GCD assumption with known 0 encryptions, which
informally states that it is computationally hard to recover the value of p
given a polynomial number of close multiples of it (pq+ ϵ for a small ϵ) and a
polynomial number of encryptions of 0 (pq+2ϵ for a small ϵ). In the case of
PIR protocols, security means that the server should be unable to distinguish
between two queries for different blocks in reasonable time.
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5.3 New Approach to Preprocessing
Let us consider a generic PIR protocol in a standard setting where there is
no need for the client to trust some additional property (for instance trusting
that several servers do not collude or using trusted hardware server-side). It
is easy to see that in this situation, protecting client privacy while reading less
than the entire database on the server requires some form of preprocessing
(notion first introduced in 2004 by Beimel et al. [BIM04]). Indeed, let us
assume the original database is left untouched. In this case it is obvious that
the bits not read when answering a query were not the ones requested by the
client.

Now, different kinds of preprocessing can be imagined. Some simply aim
at speeding up computations in the non-preprocessed version of a scheme,
for instance by processing several input bits at once as we did in Chapter 4
or using convenient representations of the data hosted by the server as used
in the LWE-Ring based scheme [MBFK16]. Intuitively, this approach still
requires a computation time linear in the size of the database. We detail
these approaches in more details in Sections 5.6.2 and 5.7.2.

In this section, we introduce a brand new technique that allows the server
to effectively take part in the choosing of the parameters. While this tech-
nique also provides a linear improvement, it is independent from the ones
previously mentioned and thus can be combined with them. For some pa-
rameters, this allows the entire scheme to run securely while reading less
than n bits of data. Furthermore, the technique itself is more involved than
standard preprocessing approaches and is an interesting study case of what
could lead to very efficient schemes.

5.3.1 Server-Side Parameter Selection
In the protocol detailed in the previous section, the client is free to choose
the values of the zi parameters before sending them to the server. We now
show how to modify the protocol to allow the server to decide some of the
values, use them to preprocess some computations and improve the overall
complexity. In order to prevent the server from selecting potentially malicious
parameters, we will assume that every random selection is done according to
a public, unbiased generator (for instance, bits from π’s base 2 decomposition
or a more efficient widely used PRNG) and in a fixed order. Further security
concerns will be discussed in Section 5.5.

We decompose each zi as zi =
∑
k∈I

zi,k2
k where each zi,k ∈ {0, 1} (recall
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that I = {0, · · · , λ − 1}. Note that resj =
∑
k∈I

2k
nb∑
i=1

zi,kbi,j. We call resj,k

the value
nb∑
i=1

zi,kbi,j.

A subset of K indices larger than λp called ClientIndices (CI) ⊂ I is
selected. We also call ServerIndices (SI) the subset I\CI (containing λ−K
elements). A simple selection method is described in the security analysis of
Section 5.5.

For every k ∈ SI and i ∈ {1, · · · , nb}, a random bit z
(s)
i,k ∈ {0, 1} is se-

lected. The server then precomputes for every k ∈ CI and j ∈ {1, · · · , bpb}

the value resj,k =
nb∑
i=1

z
(s)
i,k bi,j. This computation is done prior to any client

request and only once. Computing it merely requires nb elementary opera-
tions for every resj,k, or (λ −K)n operations in total. It also only requires
(λ−K)bpb log2 nb bits of storage.

5.3.2 Client-Side Parameter Selection
Assume once again that a client wants to recover the bits from block x ∈
{1, · · · , nb} while keeping the actual index x private. In this section, we
assume that the client has access to its own private, cryptographically secure
random number generator. Every occurrence of randomness client-side is
assumed to come from this secure generator unless explicitly specified. One
should also note that because the server-side randomness generation method
is public, all of the server-generated values (namely, the z

(s)
i,k ) can also be

assumed to be available to the client.
As in Section 4.2, the client selects a large random odd secret number p

over λp bits. For every block index i ∈ {1, · · · , nb}, he uses Algorithm 2 to
pick some values {z(c)i,k , k ∈ CI}. He then sends all of these values to server:
{z(c)i,k , 1 ≤ i ≤ nb, k ∈ CI}

5.3.3 Server Response
Upon receiving the values z

(c)
i,k for every i ∈ {1, · · · , nb} and k ∈ CI, the

server computes resj,k =
nb∑
i=1

z
(c)
i,k bi,j for every j ∈ {1, · · · , bpb}. Using the

values precomputed for k ∈ SI, he can now also compute resj =
∑
k∈I

2kresj,k.
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Algorithm 2 Getz(c)i (i)

Note: here mk is the k-th bit of m and SET[k] is the k-th element in SET
Input: Block index i
Output: Suitable parameters z

(c)
i,k , k ∈ CI or Not Found exception

1: L← ∅
2: s←

∑
k∈SI

2kz
(s)
i,k

3: for m from 0 to 2K − 1 do

4: z ← s+
K−1∑
k=0

2CI[k]mk

5: if z mod p < p/nb and (z mod p) mod 2 = δi,x then
6: for k from 0 to K do
7: z

(c)
i,CI[k] ← mk

8: L← L ∪ {(z(c)i,k , k ∈ CI)}
9: if L = ∅ then

10: Throw exception Not Found
11: else
12: Output random element from L

These bpb values are then all sent to the client. Finally, the client is able to
recover bx,j from resj exactly as described in Section 5.2.

The communication complexity for this step is unchanged at λbpb. The
computational complexity however went from λn down to Kn elementary
operations (K < λ). See Section 5.4 for a discussion on K’s value.

5.4 Parameter values and practical complex-
ity

In this section we show practical values for the parameters used in Section 5.3.
We then show that the overall scheme can run successfully while reading less
than n bits, which is our main result. Further improvements are discussed
in Section 5.6.
Theorem 5.4.1

If K > 1+σ+ log2 nb then all nb calls to Get_z(c)i will be successful with
probability at least 1− 2−σ

Please refer to Algorithm 2 for notations.
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The key point here is the need for the z values created collaboratively be-
tween the client and the server to behave randomly enough when considered
modulo p. This is the reason why the indices in CI are chosen to be larger
than λp. In practice, just setting CI to be the set of most significant bits is
sufficient. In this edge case, we have z = 2λ−Kz(c)+ z(s) where z(c) is a K-bit
integer chosen by the client while z(s) is a (λ−K)-bit integer imposed by the
protocol (server-side).

We want to find when equation 5.2 has solutions (z, ϵ) such that 0 < ϵ <
p

2nb and 0 < z < 2K .

z2λ−K + z
(s)
i = 2ϵ+ δi,x mod p (5.2)

Note that we are only interested in knowing how large K should be to
near-guarantee the existence of a solution. For clarity’s sake, whenever an
index goes under 0 or over the maximal value for which it is defined, we
assume it is computed modulo this maximal value. The operator / indicates a
(rounded) integer division and not a multiplication by modular inverse which
is denoted by −1. We assume the modulus p is prime therefore inversion is
always possible. All the other computations described thereafter work on
modular sets.

We write E = {0, · · · , 2K − 1} and ∆ = 2−12λ−K mod p ∈ Zp and c =

2−1(z
(s)
i − δi,x) mod p ∈ Zp. We rewrite equation 5.2 as z∆ + c = ϵ mod p.

Now suppose it has no solution, ie ∀z ∈ E, z∆+ c mod p ≥ p
2nb .

Consider the set S = {(x, x∆ mod p) ∈ E × Zp | x ∈ E}. For any i ∈ E,
we write S[i] ∈ E the first coordinate of the i-th smallest element in S when
ordered according to the second coordinate.
Definition 5.4.2 (Distance)

For z1, z2 ∈ E, let x = (z2 − z1)∆ mod p ∈ Z.

We write d(z1, z2) =

{
x if x ≤ p/2

−(p− x) if x > p/2
∈ Z the signed shortest

distance between elements z1 and z2. For i ∈ E, we write d(S[i]) =
(S[i+1]−S[i])∆ mod p ∈ Zp the (modular) distance between an element
and the element following it in S, also called following-element-distance.

We say that z is to the right (respectively, left) of c if d(z, x) ≥ 0 (respec-
tively, d(z, x) ≤ 0).
Definition 5.4.3 (Gap Element)

Since we assumed that for all z ∈ E, z∆ mod p /∈ {−c mod p, · · · ,−c +
p

2nb mod p} (which contains p
2nb consecutive elements), we know that there
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exists z ∈ E such that d(z) ≥ p
2nb . We call any such z a gap element

and write M ≥ 1 the total number of gap elements in E. We define
G = {(z, z∆ mod p) ∈ E × Zp | z gap element} the set of all M gap
elements ordered according to the second coordinate with G[m] being the
first coordinate of the m-th smallest gap element indexed from 0 to M−1.

Note that there can only be at most 2nb distinct gap elements (since they
all belong to Zp and are distant from each other by at least p

2nb). Therefore
M ≤ 2nb.
Definition 5.4.4 (Cluster)

For any gap element z = G[m] = S[i], we define a set of elements of E
containing z we call cluster and write Cm the set containing G[m] and
such that if z ∈ Cm then every x ∈ E within distance p/(2nb) of z is
in Cm. Informally, it is the set containing every element between the
(m− 1)-th gap element (excluded) and the m-th gap element (included).
Alternatively, cluster m contains the m-th gap element and its elements
are not too far from each other. Note that every element of S belongs to
a cluster.

Lemma 5.4.5
We now prove that if for some k ∈ N∗, z ∈ E and m ∈ ZM , both z and
(z+k) belong to the same cluster Cm then for any z′ ∈ E with z+k < 2K ,
both z′ and (z′ + k) belong to the same cluster Cm′ for some m′ ∈ ZM .

Proof : If d(z, z + k) < p
2nb then from the definition of distance we have

d(z′, z′ + k) = d(z, z + k) < p
2nb which implies that z′ and z′ + k belong to

the same cluster.
Now let us assume d(z, z + k) ≥ p

2nb . Since z and z + k belong to the
same cluster, that means there exists a sequence (s1 = z, s2, · · · , st−1, st =
z+ k) ∈ Et of elements between z and z+ k such that d(si, si+1) <

p
2nb for

any i ∈ {1, · · · , t− 1}.
We define the sequence (s′1, · · · , s′t) ∈ Et such that s′i = si + (z′ − z).

Once again, because of the properties of the distance function, we have
d(s′i, s

′
i+1) = d(si, si+1) <

p
2nb for any i ∈ {1, · · · , t − 1} which means that

every s′i belongs to the same cluster. In particular, z′ = s′1 and z′ + k = s′t
do.

We now show that this implies that there exists a cycle of clusters
(Cm[0], · · · , Cm[M−1]) such that if z ∈ Cm[j] then z + 1 ∈ Cm[j+1].
Proof : We consider the sequence of clusters (Cm[1], · · · , Cm[2K ]) such that for

every z ∈ E, z ∈ Cm[z]. We assume K is large enough that 2K > 2nb,
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in which case we have 2K ≥ M and there exists i < j ∈ E such that
m[i] = m[j] and every m[k] for i ≤ k < j is distinct. Because of lemma
5.4.5, this means that the cluster sequence (Cm[i], · · · , Cm[j]) is a cycle (ie
m[j+k] = m[i+k] for any k ∈ E). Furthermore, by definition of a cluster,
each cluster C0 to CM−1 is non-empty so all M clusters must appear in the
sequence.

The cyclic nature of the cluster sequence implies that every cluster con-
tains (almost) the same number of elements, 2K/M (or 2K/M + 1 for some
clusters if 2K is not an exact multiple of M). Furthermore, every non-gap
element z in a cluster has the same distance d(z) to its following element.
This is because the element following z within a cluster is always either z+M
or z −M .
Proof : Indeed, consider the leftmost element z0 in a cluster. We know that

either z0 +M or z0 −M is in E. Suppose that z0 +M is (the other case
is similar and we will not detail it). We write z1 = z0 + M . z1 belongs
to the same cluster and since we assumed z0 is the first element, z1 is to
the right of z0. Now suppose there exists an element z between z0 and
z1. Then either z −M is also in the cluster or z is the smallest element
in the cluster. In the first case, d(z −M, z) = d(z0, z1) but this however
means that z is left of z0 which is a contradiction. In the second case, that
means that z0 is not the smallest therefore z0 −M belongs to the cluster
but d(z0 −M, z0) = d(z0, z1) > 0 which means that z0 −M is left of z0:
contradiction.

Now, we write ∆ as p
M
α+γ such that γ < p

M
and α < M (this decomposi-

tion is unique). Now for a non-gap element z, d(z) = M∆ mod p = Mγ. As
before, we know that the following-element-distance for every gap element is
the same. Since there are M clusters, this means that the distance between
the first and last element of a cluster is less than p/M . Therefore, a cluster
contains 2K/M elements separated by a distance Mγ each and covering a
distance less than p/M overall. This gives us 2Kγ < p/M or γ < p

M2K
.

To summarize, we have ∆ = γ+ α
M
p with γ < p

M2K
≤ p

2K
. In other words,

the assumption that equation 5.2 has no solution implies that ∆ is very close
(within distance p

M2K
) to a fraction α

M
of p with M ≤ 2nb.

The number of such distinct fractions is ϕ(M) ≤M . Therefore an upper
bound for the number of values ∆ very close to a fraction α

M
is p

2K
. Summing

over M from 1 to 2nb we get a conservative upper bound for the number of
values ∆ for which equation 5.2 has no solution: 2nb p

2K
. Since the value of

∆ = 2−12λ−K mod p is uniformly random in Zp when p was picked uniformly
randomly, this means that the probability that equation 5.2 admits solutions
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is at least 1− 2nb
2K

.
Setting K = 1 + σ + log2 nb, this gives us a success probability greater

than 1− 2−σ. There are now essentially two ways to select K:

• For a very large value σ = 80, the scheme should fail with negligible
probability. This case provides the strongest security since the client
can essentially pick p truly randomly and have the protocol succeed,
just as in the non-preprocessed scheme of Chapter 4.

• For a smaller σ such as σ = 20, one value p in 2σ will actually be
unusable. While rare, this would occasionally happen to some clients
in practice. In such cases, the client has to select another random. With
overwhelming probability, only a few attempts would ever be required.
Security is not significantly affected since the secret key space is only
negligibly reduced. See Section 5.5 for security concerns. In this setting
however, computational complexity is improved by a factor of nearly 4
compared to case σ = 80 which is a very significant improvement.

Note that due to the construction used in the proof, if a given p is such
that a solution exists for some z

(s)
i , then a solution will exist for any z

(s)
i′ . In

particular, that means that the probability that a solution exists for every
single i ∈ {1, · · · , nb} is still 1− 2−σ. Setting a somewhat low σ is therefore
not a major concern.

Now, the server-side computational complexity is Kn while on the client
side it is λp2

Knb = λpnb2(2σ + 1) (see Section 5.6.1 for ways to reduce it
further). The overall complexity is Kn+ λpnb2(2σ + 1).

Recall that when solutions to equation 5.2 exist, one in every 2nb values
tried in the for loop in Algorithm 2 will find a suitable z

(c)
i . Since 2K =

nb(2σ + 1) is noticeably larger than 2nb, we can replace Algorithm 2 with
Algorithm 3 for generation of the z

(c)
i values. Algorithm 3 only loops 2nb

times on average (compared to 2K times for Algorithm 2) at the cost of
generating K bits of randomness in every iteration of the loop. Note that
the table perm used in the algorithm only has to be generated once in time
2K and can then be reused for all nb calls to the algorithm. As such, the
amortized cost of generating perm per algorithm call is only O(log nb).

In either case, the client sends nbK bits and the server returns bpbλ
bits giving an overall asymptotically sublinear communication at nb(σ+1+
log2 nb) + bpbλ bits.
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Algorithm 3 Get_perm_z
(c)
i (i, perm)

Input:
Block index i
Table perm of size 2K containing every value from 0 to 2K − 1 in any
order

Ensure: Table perm always contains every value from 0 to 2K − 1 in any
order

Output: Suitable parameters z
(c)
i,k , k ∈ CI or Not Found exception

1: s←
∑
k∈SI

2kz
(s)
i,k

2: for t from 0 to 2K − 1 do
3: r ← Random number in {t, · · · , 2K − 1}
4: Switch perm[t] with perm[r]
5: m← perm[t]

6: z ← s+
K−1∑
k=0

2CI[k]mk

7: if z mod p < p/nb and (z mod p) mod 2 = δi,x then
8: for k from 0 to K do
9: z

(c)
i,CI[k] ← mk

10: Output (z
(c)
i,k , k ∈ CI)

11: Throw exception Not Found

5.5 Security
The natural question that arises is whether or not reducing the range from
which parameters are picked affects the security of the scheme. In this sec-
tion, we assume the server tries to distinguish queries for blocks x1 or x2

using the data sent by the client.
It is important to understand the fundamental difference between our

improved scheme and the original one which we already know is secure. In-
tuitively, our new scheme still selects the same parameters as the base secure
scheme but instead of picking (q, ϵ) and setting z = pq + 2ϵ+ δi,x, it instead
selects z first and checks that suitable q and ϵ exist for it. The proof of Theo-
rem 5.4.1 shows that the ϵ value is a random number and the same goes for q
(since z, p are random and q = ⌊z/p⌋). The underlying security is still based
on the Approximate GCD assumption [vDGHV10] (breaking the assumption
would immediately result in an efficient way to break client’s privacy).
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5.5.1 Security Proof
Important note: from here on, we restrict ourselves to the case where CI is
exactly the set of the K most significant bits. This provides the scheme with
a nice structure where each zi can be written as z(s)i +2λ−Kz

(c)
i which we will

use in the following formal reduction.
To simplify notations, we call CSPS (Client Side Parameter Selection)

the base non-preprocessed scheme from Section 4.4.
The security model for the CSPS scheme was the following: given a query

either for secret indice x1 or x2, it must be impossible to decide which index
is queried with non negligible advantage in probabilistic polynomial time.
While this model is standard and satisfies the intuitive security properties
one would expect from a PIR protocol, we consider a more permissive model
for our PSSPS scheme inspired by the IND-CPA model. We call it IND-CQA
or Indistinguishability Chosen Query Attack and define it as follows.

We call Dx the uniform distribution over all queries {z(c)i , i ∈ {1, · · · , nb}}
for secret index x, generated as described in Section 5.3.2. We summarize
the IND-CQA model in Figure 5.1.

Challenger Adversary
i1 ∈ {1, · · · , nb} i1−→

q1←− q1 ← Di1
...

ik ∈ {1, · · · , nb} ik−→
qk←− qk ← Dik

{x1, x2} ∈ {1, · · · , nb}2 {x1,x2}−−−−→
q←− b← {1, 2}

q ← Dxb

b′
b′−→ b = b′?

Figure 5.1: IND-CQA

In our model, an adversary and a challenger interact in two phases. The
first phase consists of a polynomial number of rounds k. In round j ∈
{1, · · · , k}, the adversary chooses an index ij ∈ {1, · · · , nb}, sends it to the
challenger and the challenger returns a random query {z(c)i , i ∈ {1, · · · , nb}}
for index ij. In the second phase, the adversary sends {x1, x2} ∈ {1, · · · , nb}2
to the challenger. The challenger uniformly picks a random b ← {1, 2}
and returns a query for xb. The adversary then guesses a value b′. The
scheme achieves IND-CQA security if the adversary cannot guess b with

87



non-negligible advantage, i.e. Adv = Pr(b = b′) − 1/2 is negligible for any
PPT challenger.

This model in particular reflects the fact that the different queries are
not generated completely independently like in the non-preprocessed scheme.
Indeed, each query is generated relative to the values z

(s)
i which are shared

between queries.
Let us introduce some notations. We call Q the set of all CSPS queries.

Let D be the probability distribution over all queries in Q according to the
generation algorithm from Section 4.4. For any query q ∈ Q, we write
σq = Pr(q ′ = q |q ′ ← D). For a set S ⊂ Q, we write σS =

∑
q∈S

σq .

Definition 5.5.1 (Near Completeness)
A set of queries S ⊂ Q is called near complete if, for every odd p over
λp bits and every secret index x, S contains at least one query for those
parameters with overwhelming probability.

Definition 5.5.2 (Weakness)
Let S ⊂ Q be a near complete set of queries. We turn S into a probability
distribution DS by assigning probability σq/σS to every q ∈ S. S is called
weak if there exists a PPT algorithm A and two distinct indices x1 and
x2 such that A can distinguish between queries for indices x1 and x2 with
non negligible advantage over the distribution DS.

Definition 5.5.3 (Negligible Weakness)
Let P = {P1, · · · , Pm} be a partition of Q such that every Pj is near

complete and let q ← D be a randomly picked CSPS query. We call Pq ∈
P the set to which q belongs. The CSPS scheme is deemed negligibly
weak if the probability Pr(Pq weak|q ← D) is negligible for any such
partition.

We assume the AGCD problem is negligibly weak (Definition 5.5.3).
Note that the assumption of negligible weakness from Definition 5.5.3

is a weaker assumption than the traditional security assumption stating that
there exists no PPT algorithm able to distinguish queries for distinct indices
x1 and x2 over Q.
Proof : If there exists a PPT algorithm A able to distinguish queries for dis-

tinct indices x1 and x2, then the AGCD is clearly non negligibly weak
(consider the partition P = {Q} where Q is near complete and weak be-
cause of A).

Now let us assume the AGCD scheme is non negligibly weak. There
exists a partition P = {P1, · · · , Pm} such that each Pj is near complete
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and Pr(Pq weak|q ← D) is non negligible. If Pj is weak, we call Aj the
PPT algorithm that can distinguish between indices over DPj . If Pj is not
weak, we write Aj the algorithm that returns 1 with probability 1/2. We
could build an algorithm A distinguishing over Q by calling the right Aj

for any input, but since there could be an exponential number of Aj there
is no guarantee that A would be a PPT algorithm.

As such, the two notions are not necessarily equivalent.

Since the notion may not be equivalent to a standard well trusted assump-
tion, we may wonder if it is a reasonable assumption. Clearly, if the CSPS
scheme was non negligibly weak, then for a non negligible portion of queries
we could build a PPT algorithm distinguish between indices for that query.
Using the reduction from Section 4.4.4, we could actually show that given
a polynomial number of near multiples of pwe can build with non-negligible
probability a PPT algorithm recovering p. This would be a major security
concern for any application relying on the AGCD assumption. As such, we
can only hope that the CSPS scheme is indeed non negligibly weak.

For any Y = (y1, · · · , ynb) ∈ {0, · · · , 2λ−K − 1}, consider the set SY of all
valid CSPS queries (z1, · · · , znb) for any p and any secret index x such that
for all i ∈ {0, · · · , nb}, zi mod 2λ−K = yi.

Since the CSPS scheme is assumed to be non negligibly weak, with over-
whelming probability there exists no PPT algorithm able to distinguish be-
tween two indices for all queries over SY when Y is picked randomly.

Note that such a PPT algorithm AY actually exists for some sets Y . For
instance, if Y is such that many yi are equal then with high probability at
least two zi will be equal (since there are only 2K/(2nb) = 2σ valid zi on
average for a given yi). If zi = zj then clearly they both are encryptions of
0 and neither i nor j is the secret index. This justifies our introduction of
non-negligibility and its non-triviality.

Now, for two indices x1 and x2, let q = {zi, i ∈ {1, · · · , nb}} ∈ Q be a
random query for the CSPS scheme retrieving either index x1 or x2 such that
for all i ∈ {1, · · · , nb}, zi mod 2λ−K = z

(s)
i where z

(s)
i are the parameters of

the PSSPS scheme. Suppose the PSSPS scheme is not IND-CQA secure.
Then let us call A the algorithm that simulates the following interaction

with a hypothetical adversary able to break the indistinguishability for x′
1 and

x′
2 with non-negligible advantage. During the first phase, for every index ij

sent by the adversary, choose a random odd pj over λp bits, build a random
PSSPS query for index ij and return it to the server. During the second
phase, upon receiving {x′

1, x
′
2}, return query q ′ = {z(c)i , i ∈ {1, · · · , nb}}

where:
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z
(c)
i =



⌊zx1/2
λ−K⌋ if i = x′

1

⌊zx2/2
λ−K⌋ if i = x′

2

⌊zx′
1
/2λ−K⌋ if i = x1

⌊zx′
2
/2λ−K⌋ if i = x2

⌊zi/2λ−K⌋ otherwise

(5.3)

We claim that q ′ is indistinguishable from a random query drawn from
Dx′

1
or Dx′

2
where Dx is the distribution of all queries for secret index x. To

show this, we prove that the most significant bits of a random CSPS query
for index x with least significant bits equal to z

(s)
i have the same distribution

as a random query from Dx.
Indeed, by construction Algorithm 2 returns for every i ∈ {1, · · · , nb} a

value uniformly drawn among all near multiples of p with least significant bits
matching {z(s)i } since it computes all such near multiples and then returns
one at random. Since two values generated for two distinct i are generated
independently, this means that the query for the PSSPS parameter as a whole
is generated uniformly among all CSPS queries where each zi has its least
significant bits matching z

(s)
i .

Besides, q is a query for xb in the CSPS scheme if and only if q ′ is a
query for x′

b in the PSSPS scheme. As such, we are able to distinguish with
non-negligible advantage which index is retrieved by q using this adversary.
This means that the set SY where Y = (z

(s)
1 , · · · , z(s)nb ) which is near complete

(because of K’s selection in Section 5.4) is weak. By our security assumption
(Definition 5.5.3), this means that such an adversary can only exist for a
negligible portion of all queries q .

In other words, an instance of the PSSPS scheme set up with random
parameters {z(s)i , i ∈ {1, · · · , nb}} is secure with overwhelming probability.

5.6 Additional Improvements

5.6.1 Alternative Client-Side Parameter Selection
In Section 5.3.2, we described an algorithm that allows the client to find bit
values for which the values zi will have the desired properties (namely, a close
multiple of p with the right noise parity). In Section 5.4, we also detailed
the actual complexity of this algorithm. While less than linear, it can still
be quite expensive. We describe here a more clever approach that allows the
client to find valid parameters much more efficiently.
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Once again, we work in the convenient setting where CI is the set con-
sisting of the K most significant bits of each zi. For every i ∈ {1, · · · , nb},
the client needs to find z

(c)
i such that zsi +2λ−Kz

(c)
i mod p = ϵ < p/(2nb) and

(z
(s)
i + 2λ−Kz

(c)
i mod p) mod 2 = δi,x.

Since we want to use a lattice reduction algorithm to find such small
solutions, we first “shift” the unknowns such that the solution range is sym-
metrical around 0. We write ∆ = 2−12λ−K mod p ∈ Zp, ϵmax = p

2nb and
c = 2−1(z

(s)
i − δi,x) mod p ∈ Zp. We set z′ = z

(c)
i − 2K−1 and ϵ′ = ϵ− ϵmax/2

and c′ = c− ϵmax/2 + ∆2K−1.
Solving equation z2λ−K + z

(s)
i = 2ϵ + δi,x mod p with 0 < ϵ < p

2nb and
0 < z < 2K is equivalent to solving equation 5.4 for −2K−1 ≤ z < 2K−1 and
−1

2
· p
22bpwnb ≤ ϵ′ < 1

2
· p
22bpwnb :

z′∆+ c′ = ϵ′ mod p (5.4)

Now we consider the dimension 3 lattice generated by the following base
represented as the following 3× 3 matrix:

 ∆′ 2λϵ−K−1 0
c′ 0 ϵmax/2
p 0 0

 (5.5)

Because of the way we selected K in Section 5.4, we know that if there
exists a solution, then there should exist 2σ solutions on average to equation
5.4. In such low dimensions, we are guaranteed to find one of those short
solutions using reduction algorithms such as LLL [LLL].

Our target vector is:

(c1∆
′ + c′ mod p, c12

λϵ−K , 2λϵ) with c1 < 2K (5.6)

Since at least one vector in the reduced basis has a non-zero third co-
efficient c2, we will have |c2| = 1 with high probability for that vector.
All the other coefficients of the vector will be smaller, ie |ϵ′| < 2λϵ /2 and
|c1|2λϵ−K < 2λϵ−1 which means |c1| < 2K−1. Now ϵ mod 2 is random and
equal to δi,x with probability 1/2. If it has the wrong parity, we repeat the
process with slightly different coefficients until we find a satisfying combina-
tion.

There is a lot of freedom when it comes to the selection of the lattice
reduction algorithm. In particular, since the input basis has dimension 3,
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we can use the results from [Sem01] which provides an algorithm running in
time O(λ2

p) (whereas the regular LLL algorithm runs in time O(λ3
p))).

Alternatively, we can search for vectors close to (−c′, 0) in the two-

dimensional lattice generated by
(

∆
2λϵ−K−1

)
and

(
p
0

)
. We know that if

solutions to equation 5.4 exist then there are vectors
(

ϵ′

z′2λϵ−K−1

)
away from

the target. Indeed, z′
(

∆
2λϵ−K−1

)
+

(
c
0

)
=

(
ϵ′

z′2λϵ−K−1

)
+ k

(
p
0

)
for some

k ∈ Z.
In either case, once a solution has been found, other solutions can easily

be discovered by finding small roots (r1, r2) ∈ Zp of the linear equation
r1∆

′ = r2. Indeed, if (z′, ϵ′) is a solution then every solution has the form
(z′ + r1, ϵ

′ + r1∆
′) for small r1 and r2.

For middle-sized to large databases (at least 220 blocks), even using LLL
on a small matrix with coefficients over λp bits will outperform an exhaus-
tive search over K bits. This was confirmed by actual implementation of
the client-side parameter search algorithm. Recall that exhaustive search as
described in Section 5.3.2 required λpnb22σ+1 operations to guarantee success
with probably at least 1− 2−σ.

Note that when using this algorithm, the distribution of z(c)i (the K most
significant bits of pqi + 2ϵi) and the distribution of ϵi is not uniform among
all near multiples of p matching z

(s)
i unless we find the full set of small roots

and uniformly draw a root from this set. The uniformity of the distribution
was used as an argument in the security proof of Section 5.5.

The distribution of the most significant bits seems widely irrelevant to
the security of the scheme. The distribution of the noise could be an issue
based on the fact that the lattice reduction algorithm will tend to minimize
the noise value, therefore reducing security. However even the smallest noise
value out of the 2K = 2σ+1nb will still be on the order of p

nb . If it is too low to
satisfy the security conditions detailed in Section 4.4.5, the lattice reduction
is run with slightly different coefficients.

5.6.2 Second layer of precomputations
Naturally, the preprocessing described in this section is compatible with the
more straightforward techniques discussed in Chapter 4. Intuitively, the
server can precompute short sums for every possible input and the online
phase will then be performed several bits at a time. Overall, this allows
the scheme to perform faster by a constant factor at an exponential spatial
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cost. This spatial limitation coupled with the necessity for a large security
parameter meant the scheme was still not able to perform in sublinear time.
We can now combine both techniques to achieve our improved result.

We use the same preprocessing parameter r described in Section 4.3.2.
The server precomputes and stores all possible linear combination of r con-
secutive bits in adjacent blocks. This requires an expansion from an n-bit
database to a n2r/r-bit one and improves the computational complexity by
a factor of r.

Combined with our preprocessing technique from Section 5.3, this puts
the overall server-side complexity at K

r
n elementary operations and the total

number of bits read server-side becomes K log2 r
r

n+ o(n).
Now, the server-side computational complexity is (K/r)n while on the

client side it is λp2
Knb = λpnb22σ+1. The overall complexity is (K/r)n +

λpnb22σ+1.

If we set r = K/ϵ (ϵ < 1), the space requirement is 2rn/r =
ϵ(nb2σ+1)

1/ϵ

log2(nb2σ+1)

bits and offers a sublinear overall complexity at ϵn + λpnb22σ+1 when nb is
somewhat smaller than

√
n. The number of bits read server-side becomes less

than n when K < r log2 r. While this is still prohibitive, it will be improved
upon in Section 6.4.

When using the technique from Section 5.6.1, the client-side complexity
becomes O(λ2

p) which is negligible in n even for the optimal value nb = bpb =√
n, offering sublinear complexity.

The client sends nbK bits and the server returns bpbλ bits giving an
overall sublinear communication at nb(log2 nb + σ + 1) + bpbλ bits.

5.6.3 Updating the Database
In Section 4.4.7, we explained how preprocessing over r bits requires 2r−1

updates to preprocessed values whenever one bit of the original database is
flipped, which is a reasonable amount. Now, we can also look at at the cost
of modifying the original database when using PSSPS preprocessing.

Recall that in this setting, the server precomputes for j ∈ {1, · · · , bpb}
and k ∈ SI (with |SI| = λ−K) the following values:

resj,k =
nb∑
i=1

z
(s)
i,k bi,j (5.7)

Clearly, when flipping bit bi,j from v0 to v1, the only preprocessed values
requiring updating are resj,k for every k ∈ SI. One has to set res′j,k =

resj,k + z
(s)
i,k (v1 − v0).
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In fact, we can go a step further. During the online phase, the values
resj,k are never used by themselves. Only res

(s)
j =

∑
k∈SI

2kresj,k is (see Section

5.3.3). Actual implementation would thus naturally only precompute and
store res

(s)
j for j ∈ {1, · · · , bpb} rather than every resj,k. The server should

also further precompute and store z(s)i =
∑
k∈SI

2kz
(s)
i,k . In this situation, flipping

bit bi,j only requires an update: res
′(s)
j = res

(s)
j + z

(s)
i (v1 − v0).

To summarize, flipping a bit in the original database requires 2r−1 updates
with the method from Section 5.6.2, only 1 constant-time update with PSSPS
and 2r−1 + 1 when combining both (since the two methods are performed
independently).

5.7 Ring LWE
In 2014, Aguilar Melchor et al. introduced a new PIR scheme aiming for
computational efficiency. It is called XPIR and is based on the Ring-LWE
assumption. While the existence of the scheme was already mentioned in
[BV11], Aguilar Melchor et al. showed how efficiently it can be implemented
and how some precomputations can speed it up. In this section, we show
that our preprocessing technique is also compatible with this scheme.

5.7.1 Notations
We work in Rq = Zq[X]/⟨XN +1⟩. λ = log2 q and N is a security parameter.
χ is a Gaussian distribution of “small” polynomials from Rq with standard
deviation r. The client has a secret key sk picked from χ. tv designates the
element of Rq with every coefficient equal to t. a⊗b is the product coefficient
by coefficient while a ∗ b is the polynomial product modulo XN + 1.

To encrypt a message m ∈ Rt (every coefficient is less than t), return
(q1, q2) where q1 ← Rq and q2 = q1 ∗ sk+ e⊗ tv +m with e some small noise
drawn from χ. To decrypt (q1, q2), compute q2 − (q1 ∗ s) mod t. Note that
usually, we can think of t as equal to 2 (although larger values are possible).

We also define
Sum((a1, a2), (b1, b2)) = (a1 + a2, b1 + b2)

Absorb(k, (a1, a2)) = (k ∗ a1, k ∗ a2)
(5.8)

Now to retrieve block x from the server, the client generates for every
block a value zi ∈ R2

q which is an encryption of δi,x (1 when i = x, 0 oth-
erwise). The server returns resj = Sumnb

i=1Absorb(wi,j, zi). The client then
recovers wx,j by using the decryption algorithm on resj.
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For more details about this protocol and its security, refer to [MBFK16].

5.7.2 Preprocessing Techniques
The main computational cost of this scheme is the product between polyno-
mials in Rq. This can be made more efficient by using an NTT (Number-
Theoretic Transform) representation for polynomials and CRT (Chinese Re-
mainder Theorem) for integers. In this representation, both addition and
multiplication can be done in near linear time in N . Usually the conver-
sion between coefficient-based representation and NTT-CRT representation
would cancel out the benefits from faster multiplication, but in the case of
PIR such representations for the messages wi,j can be computed in advance
and converting one zi allows for bpb multiplications in linear time.

Yet another preprocessing trick involves the use of Newton Quotients to
speed up scalar multiplication in Zq. At the cost of one integer division during
preprocessing, further multiplications modulo q can be done in two integer
multiplications, one bit shift and one conditional integer subtraction instead
of one integer multiplication and one costly division without preprocessing.

Overall, the scheme performs much faster using these precomputations.
Furthermore, the required storage for the precomputed values is minimal.
However, this approach has no hope of bringing the computational cost under
n, it merely linearizes the nonlinear parts of the computation.

5.7.3 Partial Server Side Parameter Selection for Ring-
LWE

Recall that the client sends a value zi for every i ∈ {1, · · · , nb}. We write
zi = (ai, bi).

Each ai ∈ Rq can be written as an N -dimensional vector over Zq:
ai = (ai,1, · · · , ai,N) in the canonical embedding [BV11]. In this represen-
tation, both addition and multiplication are done coordinate by coordinate.

As before, each ai,d (d ∈ {1, · · · , N}) can be split in a client part a(c)i,d and
a server part a

(s)
i,d . The same goes for bi. We call K the number of bits for

the client-side coefficients. a
(c)
i,d is the K most significant bits of ai,d while

a
(s)
i,d is made of the remaining λ−K least significant bits. Similarly, we write

sk = (sk1, · · · , skN). Now we have:

bi − aisk = (bi,1 − ai,1sk1, · · · , bi,N − ai,NskN)

bi,d − ai,dskd = 2λ−K(b
(c)
i,d − a

(c)
i,dskd) + b

(s)
i,d − a

(s)
i,dskd

(5.9)
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We now place ourselves in a setting where every a
(s)
i,d and b

(s)
i,d is fixed. For

instance, we can generate a random (ai, bi) according to the non-preprocessed
scheme and set all the a

(s)
i,j (respectively, b(s)i,j ) to the set of the least λ − K

significant bits of each coefficient of ai (respectively, bi). The client is free to
choose the values for the coefficients a

(c)
i,d and b

(c)
i,d over K bits.

The client selects a secret key sk from χ as usual.
Let Ad(a, b) = 2λ−Kb + b

(s)
i,d − (2λ−Ka + a

(s)
i,d )skd. We build a distribution

D over all 22K possible couples (a, b) ∈ {0, · · · , 2K − 1}2.
We call Pχ(y, i) = Pr(e ⊗ tv + δi,x = y|e ← χ). Note in particular that

Pχ(y, i) = 0 when y mod t ̸= δi,x.
We define σi =

∑
(a,b)∈{0,··· ,2K−1}2

Pχ(Ad(a, b), i).

We define D such that Pr(X = (a, b)|X ← D) = Pχ(Ad(a, b), i)/σ. D
is well-defined when σ ̸= 0, which is true when at least one couple (a, b) ∈
{0, · · · , 2K − 1}2 is such that Ad(a, b) mod t = δi,x. Note that this equation
is true with probability 1/t (where t is usually 2) for any of the 22K couples.

The distribution D is an approximation of the distribution of all encryp-
tions of δi,x. For a random secret key picked according to distribution χ

Now K must be large enough that the noise from summing nb values
drawn from D does not go over q/2 with overwhelming probability. As a
first approximation, we know that we need K large enough that for every
i ∈ {1, · · · , nb}, at least one value v out of the 22K possible is such that
v mod t = δi,x and |v| < q/(2nb).

The first condition is satisfied with probability 1/t. The second condition
is satisfied with probability 1/nb. These conditions match the ones detailed
in Theorem 5.4.1. In other words, we need 2K > log2(tnb) + σ to guarantee
the existence of such a v with probability at least 1− 2−σ.

Now the server can precompute for every j ∈ {1, · · · , bpb} the value
Sumnb

i=1Absorb(mi,j, z
(s)
i ). During the online phase, the client computes A(a, b)

for every (a, b) ∈ {0, · · · , 2K − 1}2, builds D as described earlier and samples
a random (a(c)i,d , b

(c)
i,d) from that distribution. The client then sends all the

(a(c)i,d , b
(c)
i,d) to the server.

The server only has to send back the precomputed values along with
res

(c)
j = Sumnb

i=1Absorb(mi,j, z
(c)
i ). All the precomputation techniques sug-

gested by Aguilar-Melchor et al. still work in the exact same manner. Our
technique simply reduces the input size from λ bits to K bits, thus speeding
scalar multiplications involved in the polynomial multiplications. Depending
on implementation, the expected speedup is about λ/K.

Security considerations are widely similar to those described in Section 5.5
and we do not detail them here.
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5.8 Conclusion
We showed that in a Private Information Retrieval setting, a variety of proto-
cols relying on additionally homomorphic schemes can be improved through
the use of partial server-side parameter selection. This can lead to a speed
up by an order of magnitude or more. The logic behind the scheme is generic
enough that it could be used in completely unrelated areas of cryptography.
Furthermore, this technique can be used on top of other preprocessing meth-
ods. This results in protocols performing in less than n elementary operations
relying exclusively on computational assumptions.

The additional cost for the client is moderate and justifiable. As multi-
server PIR schemes become very close to being practical, such improvements
give hope that single-server schemes and their often stronger privacy prop-
erties will follow suit in the near future.
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Chapter 6

Efficient Private Information
Retrieval

6.1 Introduction
In this chapter, we discuss how to combine all the previous results in a very
efficient scheme. Namely, we build a protocol able to privately execute com-
plex SQL queries and retrieve the query result using the protocols developed
and detailed previously.

6.2 Scheme Overview
Using the protocols detailed in Chapter 3, we can execute every query of the
form:

SELECT outField1, · · ·, outFieldk1

FROM table
WHERE Filter((inField1, s1), · · ·, (inFieldk2, sk2))

Here Filter is a logical formula using conjunctions and disjunctions with
predicates being comparisons (<, > or =) or LIKE operations between field
inFieldi values and secret parameters si. This encompasses a very large
portion of real-world queries used for essentially every online service.

In this case, executing a query simply means the client learns whether or
not some entry in the database satisfies the Filter formula described in the
query. Instead of directly recovering the bits from outField1, · · · outFieldk1 ,
the client will recover the entry index x in the database, which ranges from
1 to n and under which the entries are sorted. In particular, this means only
⌈log2 n⌉ bits need to be recovered.
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Now the client uses a block PIR protocol to retrieve the block associated
with entry x for the output fields listed earlier. We will consider the use of our
Approximate GCD-based protocol (Chapter 4) with all of its optimizations
combined.

To achieve this, we use a precomputation over r bits when the input is
decomposed over base 2 as detailed in Section 4.3.2 along with multiple bit
words as described in Section 4.4.6, PSSPS for the parameter selection as in
Section 5.4 and the efficient client-side parameter search from Section 5.6.1.

Security parameters and database decomposition has to be studied care-
fully to match the conditions required in each of these optimizations.

6.3 Recursive PIR
The 2-dimensional construction that was described in Section 4.2 and used
extensively after that can be generalized to a d-dimensional construction in a
natural way. This is a classic PIR trick which greatly reduces communication
at the cost of some extra computation for the server. Under normal circum-
stances, we would not want to use such a trade-off since the communication
time(O(

√
n) in dimension 2) tends to be asymptotically negligible compared

to the server’s computation time (at least n). However this construction has
another usually inconsequential side effect in that it significantly reduces the
client’s computational cost.

In our PSSPS construction, the client’s computations can be very expen-
sive, even approaching the server’s. In this setting, a slight increase on the
server side might be beneficial if the time saved client-side more than com-
pensates it. We first present the construction and then discuss how it can be
used together with the other optimizations we have developed.

We generalize over d dimensions the process from Section 4.2.

Set n1, · · · , nd ∈ N such that
d∏

i=1

ni = n and index every bi as bi1,··· ,id

where 1 ≤ ij ≤ nj. In practice, we tend to use n1 = · · · = nd = n1/d.
Suppose the client wants to recover bx1,··· ,xd

. Then for every c ∈ {1, · · · , d},
the client sends nc values zc,i (i ∈ {1, · · · , nc}) such that zc,i = pqc,i + 2ϵc,i +
δxc,i for appropriate qci and ϵc,i.

We write res1,i1,··· ,id = bi1,··· ,id .

The server computes resc+1,ic+1,··· ,id =
nc∑
i=1

zc,iresc,i,ic+1,··· ,id whenever de-

fined. He returns resd+1 to the client. Then the client knows that:
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(resd+1 mod p) mod 2 = bx1,··· ,xd
(6.1)

The communication complexity is λ
d∑

c=1

nc which is λdn1/d if all nj are

equal to n1/d.

The client-side computational complexity is also O(λ
d∑

c=1

nc). The server-

side computational complexity is λ
d∑

i=1

d∏
c=i

nc. In particular when n1 = · · · =

nd = n1/d, it becomes λ
d∑

i=1

ni/d = λn+ o(n).

Note that the scheme can also be interrupted at step c < d + 1. The
server then returns resc,ic,··· ,id for all ncnc+1 · · ·nd or n(d−c)/d values in total
for the case n1 = · · · = nd. In other words, the client is able to retrieve
blocks of nk/d bits for any 1 ≤ k ≤ d.

Compared to the simple 2-dimensional case, this reduces communication
significantly and increases computation cost slightly. Note that the commu-
nication cost per bit recovered actually grows with the dimension. If a client
recovers at least

√
n bits — as is often the case in practice — then d = 2

provides the most efficient setting.
Looking at how the algorithm works in details, one notices that while

res2,i2,··· ,id depends linearly on the client-sent values z1,i and the local database
variables bi1,··· ,id , all other values resc+1,ic+1,··· ,id for c > 1 will depend linearly
on the result of the previous computations (hence the recursive aspect of
the scheme). This represents a major obstacle to the use of preprocessing
techniques.

Indeed, both the PSSPS (Section 5.3) and base-2 preprocessing (Section
4.3.2) techniques require an offline phase where the server needs to know
exactly which values will be multiplied with the input sent by the client. In
the d-dimensional case, this can therefore only be used up to the computation
of res2,i2,··· ,id . Luckily, the cost of computing every res2,i2,··· ,id is O(λn) while
the cost of computing {resj,ij ,··· ,id , j ∈ {3, · · · , d}} is only O(λn1−(j−2)/d) =
o(n).

So applying both techniques to the recursive scheme will still result on
an asymptotic complexity of O(Kn/r) +O(λn(d−1)/d) = O(Kn/r) as usual.

Let us now look at the client’s computational complexity. When using
PSSPS over the 2-dimensional scheme, it increases from O(λnb) to O(λp nb 2K)
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for the exhaustive search approach or O(λ2
p nb) for the LLL-based approach.

However in a d-dimensional construction, only n1 = n1/d values z
(c)
1,i need to

be searched based on the fixed bits z
(s)
1,i . Every zc,i for c > 1 is generated

randomly as before by picking qc,i and ϵc,i and setting zc,i = pqc,i+2ϵc,i+δxc,i.
As such, client computational complexity is O(λpn

1/d2K + λ(d− 1)n1/d) for
exhaustive search and O(λ2

pn
1/d+λ(d−1)n1/d) is considerably faster than in

dimension 2 in either case.
To sum up this whole section, as it turns out preprocessing for a d-

dimensional construction offers almost the same improvement as on a 2-
dimensional even though preprocessing can only be used on the first di-
mension. Meanwhile, communication is significantly reduced and so are the
client’s computations.

6.4 Using Words on Several Bits
The original scheme from Chapter 4, along with some others including [Gol07]
could be used on words with more than a single bit. This leads to a significant
improvement in computations at the cost of an increase in block size. In this
situation, we will write the database as a set of words wi,j of bpw-bit (bits
per word) each with 1 ≤ i ≤ nb and 1 ≤ j ≤ wpb (words per block).

In our case, using words on bpw bits would require a new definition for the
parameters zi selected by the client. We have to set zi = pqi+2bpwϵi+ δi,x for
i ∈ {1, · · · , nb} and the server returns resj =

n∑
i=1

ziwi,j for j ∈ {1, · · · , wpb}.

The condition on the ϵi values becomes:

∀j ∈ {1, · · · , wpb},
nb∑
i=1

ϵiwi,j <
p

2bpw (6.2)

Which, in particular, is satisfied if the following is true for all 1 ≤ i ≤ nb:

ϵi <
p

22bpw nb
(6.3)

When receiving the server’s response resj, the client now computes
(resj mod p) mod 2bpw to recover the j-th bpw-bit word in block x.

However this minor difference changes the parameter selection described
in Section 5.4. The probability that a single candidate z in Algorithm 2 is
such that z mod p < p/(2bpwnb) is 1/(2bpwnb). Meanwhile, the probability
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that (z mod p) mod 2bpw = δi,x is 1/2bpw. Overall, the probability that z be a
suitable candidate is reduced from 1/(2nb) in the single-bit version down to
1/(22bpwnb).

One may wonder why setting bpw = 1 does not give us the previous
result. This is because we used a less conservative condition. The more
accurate condition would be z mod p < p/((2bpw− 1)nb) which is close to the
one we use for large enough bpw. We now study how to select K under these
conditions.

When working with words over bpw bits, the equation to solve is modified.
It becomes:

z2λ−K + z
(s)
i = 2bpwϵ+ δi,x mod p (6.4)

We are looking for a solution to it such that 0 < ϵ < p
22bpwnb and 0 < z <

2K . As before, we write ∆ = (2bpw)−12λ−K mod p ∈ Zp and c = (2bpw)−1(z(s)−
δi,x) mod p ∈ Zp. We rewrite equation 6.4 as z∆+ c mod p = ϵ.

Following the steps used in the single-bit word case from Section 5.4, the
condition on the number of clusters M becomes M ≤ 22bpwnb and we reach
the following condition on K: setting K = σ + log2(2

2bpwnb) = σ + 2bpw +
log2 nb, this gives us a success probability greater than 1−2−σ for a uniformly
random p.

This increase has several consequences. First, the client-side computa-
tions will increase by a factor of 22bpw−1 if using the exhaustive search al-
gorithm (Algorithm 2). Since this becomes prohibitive, the LLL-based ap-
proach (Section 5.6.1) has to be used instead.

Finally, using words with more than one bit affects security slightly but
not in any threatening way. See Section 4.4.6 for details. The overall perfor-
mance of the scheme is significantly improved. Indeed, so long as bpw+log2 nb
is less than the word size used by the architecture (typically 64 although 128
bit operations are also common), working on bpw-bit words reduces the per-
recovered-bit communication and the overall computation cost by a factor
of bpw at the cost of recovering blocks

√
bpw larger. See Section 4.4.6 for

justification.
Overall, server-side computation cost becomes:

Kn

bpw
= n

2bpw + σ log2 nb
bpw

= n(2 +
σ + log2 nb

bpw
)

(6.5)
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As detailed in Section 5.6.3 for the case bpw = 1, modifying the value of a
word in the original database only requires a single constant-time update to
the preprocessed database values. This approach is thus highly compatible
with non-static databases.

6.5 Complete Construction
Now we can combine the construction over several words with the PSSPS
optimization and observe that the server can still precompute over r bits
sent by the server.

The expanded database size will be n2r/r which significantly limits the
maximum value of r. However, since the other optimizations did not require
additional space (thanks to the fact that every z

(s)
i can be set to 0), this still

seems realistic for r ≤ 8.
The final server-side complexity is now r times faster than described in

the previous section, or Kn
r bpw = n(2/r+ log2 nb+1+σ

r bpw ) which is well below n for
real-world parameters.

By using the d-dimensional construction detailed in Section 6.3 on top
of everything else, we further reduce the communication cost considerably,
improve the client side computational cost and barely affect the server-side
computational cost.

Note that the query-batching techniques described in Section 4.4.8 can
also be added on top of everything else to add yet another layer of speedup.
However, this require a less-generic setting than what we are mainly intested
in. In particular, these techniques will only provide an improvement if the
server receives more than nbα queries before it can answer the first one, for an
α > 0.8074. A lot of PIR applications will not satisfy this specific condition.

SQL Compatibility

Note that this scheme is suited to be used as a recovery scheme that follows a
private SQL query such as the system described in Chapter 3 or Chor’s PIR
by Keywords [BCN98]. When combined this way, we address all three major
issues with Private Information Retrieval in general: the hardness to find
the physical location of the desired information on the server, the sometimes
superfluous privacy requirements and the need to perform at least as many
operations as the database is large.
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6.6 Discussion and Comparison
As described in Section 4.5, we are interested in schemes achieving the same
level of privacy in the same realistic settings. We can discard pre-2007
schemes which were proven inefficient by Sion [Sio07].

While different schemes may have slight advantages for different param-
eters, when it comes to our setting where every known scheme performs
linearly, the better scheme will almost always be faster regardless of pa-
rameters. Surveys comparing PIR schemes have been published in the past
[Sio07, OG12] and one of the most recent notable constructions is XPIR
[MBFK16] which is an implementation-focuses contribution for which the
authors showed the superior processing speed of the described Ring LWE-
based scheme. This was independently confirmed by Gupta et al. [GCM+16]
who chose XPIR as the fastest PIR implementation for a real world applica-
tion.

We therefore directly compare our work with XPIR which is free soft-
ware and conveniently available. We are mainly interested in comparing the
theoretical complexity and, to a lesser extent, running time from an actual
implementation.

For each j ∈ {1, · · · , wpb}, the XPIR scheme performs 2nb sums of ele-
ments of Rq = Zq[X]⟨XN + 1⟩ and 2nb products in Rq. The products are
simplified by using precomputations detailed in Section 5.7.2, but still require
at least N elementary operations each. Denoting by n the number of bits in
the database, this means that at least 2n elementary operations are required
to compute the sums and at least another 2n to compute the products. Even
with an extremely conservative estimation, server-side computations would
require at least 4n operations.

Meanwhile, theory indicates that our scheme eventually reaches a less-
than-n number of operations for large enough preprocessing parameters.

Even for practical values used in a straightforward implementation (single-
threaded, no pipelining or implementation-specific optimizations), we are
able to match the server-side running times of XPIR. Consider the following
set of parameters for a 1 Gigabit database:

n = 230, nb = wpb = 213, bpw = 16

λϵ = 80, λp = λϵ + 2bpw + log2 nb + 1 = 126, λ = λϵλp log2 nb = 131, 040

σ = 20, K = 2bpw + σ + log2 nb = 65

(6.6)

The first thing we notice is the tremendous improvement gained by re-
placing a O(λn) complexity by a O(Kn) since K is about 2000 times smaller.
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For this set of parameters, client-side parameter selection of all nb values z(c)i

took 1.36s while the server-side computation only required 0.40s. Asymptot-
ically, client-side complexity grows linearly in nb while server-side complexity
grows linearly in n = nb2. The offline precomputation phase on the server
required a modest 637s.

Here is the evolution for some other database sizes when every other
parameter is picked the same way:

Database Size (bits) 230 232 234 236

Client Selection Time (s) 1.36 2.95 6.34 14.74
Server Computation Time (ms) 259 891 3170 12000

Note that for larger values, memory limitations make the testing environ-
ment unrealistic.

Now for the same database, letting XPIR auto-optimize its set of param-
eters and running the efficient Ring-LWE implementation, reported total
processing time was 0.63s.

The main contribution remains the theoretical breaking of the n threshold
even though it cannot be realized for practical parameters at this point.

We summarize this result by comparing the complexities of various im-
portant PIR schemes:

6.7 Conclusion
By combining a great number of independent optimizations all providing a
linear improvement over the base case, we are able to reduce the constant
factor in the complexity of the algorithm so much that it becomes less than
1 and the information theoretical restriction stating that n bits have to be
read to provide security is finally broken. Now, considering the fact that
some protocols were already able to perform on real world data for less than
4 times the cost of their non-private counterparts [GCM+16], this makes
our final construction a prime contender for practical Private Information
Retrieval over large databases.
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Chapter 7

Conclusion

7.1 Concluding Remarks
We introduced a number of strategies allowing Private Information Retrieval
protocols to become as close to practicality as we can reasonably expect
them to be at this point. One main strategy is the ability to perform a broad
array of SQL-like queries covering most practical situations. This required
the development of a system that essentially built encrypted function which
are executed over unencrypted data, compress it and still allow the client to
recover information about the function’s output from the compressed data.
The system is an open framework which can be instantiated with different
families of primitives. We suggest such a family based on systems of mul-
tivariate polynomials which has not been broken yet and may prove secure.
Others can be designed in the future if the need arises. These findings are
mainly theoretical and give insight into the great expressiveness of general-
ized definitions of private information retrieval.

The other main strategy is the development of generic optimization meth-
ods which can be used over a variety of schemes, along with a particularly
efficient scheme thanks to its simplicity. The first optimization method con-
sists in splitting a client’s query into short chunks for which the output
has already been computed at the cost of an exponential expansion of the
database in the chunks’ size. It had already been used by Beimel et al.
[BIM04] in a multi-server setting. We showed how it can be beneficial to
different multi-server schemes, but also to some single-server schemes.

The second optimization method consists in working on multiple bit words
rather than individual bits. Taking advantage of the architecture on which
the algorithm is executed allows for an important computational speed in-
crease at no noticeable cost. This method had also been used in multi-server
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settings by Goldberg [Gol07] and once again we showed that it has a univer-
sality to it which should be exploited in single-server schemes also. While
this very significantly reduces running time of the algorithm, it relies on the
fact that modern computers naturally process multiple bits at once. This is
thus less of a theoretical finding and more of a practical one.

The third optimization is brand new and reduces the size of the pub-
lic parameters selected by the client. In the examples we provide, it allows
for a very significant linear boost as it essentially bypasses the requirements
for the security parameter. Suprisingly and perhaps counter-intuitively, this
does not affect security in any significant way when careful parameter se-
lection is done. In our case, the improvement remains linear but is by far
the largest running time improvement. It has both theoretical and practical
implications.

All of those optimizations being compatible with a scheme that naturally
performs in a very efficient manner allows us to present a scheme that out-
performs every other in the most generic setting, which is highly desirable.
Indeed, it does not require any non mathematical assumption such as placing
any level of trust on the server, its hardware or its independence from other
services.

7.2 Future Directions
It is our hope that the Partial Server Side Parameter Selection can be used
to build schemes, in particular lattice-based schemes, that would perform
in sublinear complexity in the database’s size and under a reasonable poly-
nomial preprocessing expansion. Naturally, the ultimate long term goal for
generic PIR would be the development of a O(logn) algorithm running only
a constant times slower than non-private alternatives. While this is a very
far-fetched goal, there is currently no research that would suggest that it is
impossible. If such a scheme existed, PIR could be cheaply implemented in
most online services. Considering the fact that preprocessing is a require-
ment for all sublinear schemes, our results are a significant step towards that
long-term goal.

In another area, it seems entirely possible to build a system able to pri-
vately execute even more expressive SQL-queries. Over a single entry, any
function could potentially be executed in a Fully Homomorphic Encryption
fashion except running on unencrypted data. More specifically, dealing with
nested queries and the like would prove useful. Finding secure instances
for our SQL scheme is another project that could benefit from additional
research.
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A challenge posed by PIR with preprocessing is the heavy cost of updating
the preprocessed values when the database is updated, which can be an
extremely common occurrence on actual systems. The development of a
scheme that requires a minimal number of preprocessing when an update is
done is something to look forward to. Alternatively, a system that can work
with both preprocessed values and newly updated one in parallel would limit
the constant need for updating the preprocessed values.

Finally, one could start wondering whether some PIR schemes could be
built specifically to target search engines. Research in this direction has
proven unfruitful as the databases work in much more complex and dynamic
ways than a simple list of (field, value) which we used to modelize them.
In particular, efficient set intersection computation would be required, which
falls outside of the models we have developed.
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