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SUMMARY 

Antimicrobial drug discovery is the most challenging field. For several decades, most 

of the drug discovery efforts have concentrated on target-based screens which 

generates protein disease model first and finds a candidate lead molecule. In contrast, 

less-biased phenotypic screening approaches have shown promises in potentially 

improving success rates of drug development. For comprehensive drug screening, 

various chemical genomic approaches have been developed to systematically search 

for targeted chemical libraries of compounds that potently and selectively modulate 

the functions of target proteins. Among others, single-cell phenomics technology, a 

microscopy-based chemical genomic method, has emerged as a critical set of tools for 

enhancing the power of analyses (Ohya et al., 2015). It involves the acquisition of 

high-dimensional phenotypic profiles of a single cell in response to drug stimuli on a 

genome-wide scale from which the drug target is estimated by comparing 

morphological profiles of chemical perturbation with that of gene disruption. Using 

image-processing system CalMorph, Ohnuki et al. (2010) demonstrated that a drug 

target could be predicted from dose-dependent morphological changes induced by the 

drug. Later, the high-dimensional morphological data generated in a similar way has 

been exploited in identifying new targets of drugs as well as exploring their mode of 

action (Iwaki et al., 2013; Okada et al., 2014; Piotrowski et al., 2015). Though it is 

considered that our current approach is powerful, much more simpler, efficient and 

complementary methods are required as significant tools for drug discovery and 

development. Therefore, I envisaged gaining further insights into the currently 

available antimicrobial drugs, and proposing new method(s) for discovering 

molecular targets and mode of action of novel drugs. In this study, I discussed the 

alternative methods for elucidating the potential mechanisms of action and identifying 

cellular targets of a candidate antifungal compound. In the first chapter, I focused on 

profiling currently available antifungal drugs using yeast morphology as a 

chemogenomic signature. Our similarity search system revealed not only the expected 

similarity but also unexpected functional connection among different cellular process. 

In the second chapter, as an alternative to current method, I proposed the development 

of new phenotypic profiling method, which sorts a newly discovered compound into a 

class with a similar mode of action without any mutant information. In the third 

chapter, aiming at reducing the amount of candidate compound required for 
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morphometric analysis using WT yeasts, I developed another method which combines 

drug-hypersensitive yeast collection and high-throughput microcopy. Herein, dose-

dependent morphological phenotype of the drug-hypersensitive host strain was 

compared with the new panel of morphological data composed of ~2,000 

representative quadruple mutant strains. The applicability of an integrated approach 

was demonstrated in profiling the targets of landmark anticancer and antifungal 

compounds. I hope that this strategy will facilitate the development of drugs for rare 

and/or neglected diseases as well as potentially useful novel compounds from scarce 

natural products to treat various diseases. 
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GENERAL INTRODUCTION 

Overview of antimicrobial drug discovery and development 
Infectious diseases account for a considerable amount of deaths worldwide. They 

generally result from the interaction between few pathogens among the many varieties 

of microorganisms, and the defense mechanisms of the hosts they infect (Engering et 

al., 2013). A relatively few list of pathogenic bacteria contribute to globally important 

diseases in human including tuberculosis caused by Mycobacterium, pneumonia 

induced by Streptococcus and Pseudomonas, foodborne illnesses caused Shigella, 

Campylobacter, and Salmonella, and some others cause infections such as tetanus, 

typhoid fever, diphtheria, syphilis, and leprosy (Morens et al., 2004). In addition, 

infections are being caused by few opportunistic fungi species, mainly Candida spp., 

Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Coccodiodides 

imitis and Fusarium species (Ablordeppey et al., 1999; O’Brien et al., 2005). These 

opportunistic fungal infections are life-threatening diseases that cause increasing rates 

of mortality and morbidity, particularly in individuals’ with impaired immune system.  

 

For the last several years, antibiotics and similar drugs, hereafter called antimicrobial 

agents, have been used to treat individuals affected by infectious diseases (Spellberg 

et al., 2004). Antimicrobial agent refers to natural, or synthetic substance that kills or 

inhibits the growth of microbes that cause little or no damage to the host. They are 

often grouped according to the microorganisms they act primarily against - antibiotics 

used for drugs against bacteria, and antifungals for those against fungi. Antimicrobial 

drug discovery is the most challenging field (Livermore, 2011; Silver, 2011). The 

discovery and development of antifungal agents was lagging far behind the antibiotics 

despite the knowledge of their existence well before that of bacteria. The main reason 

is that most agents toxic to fungi are also noxious to the human hosts as they are 

eukaryotic species, which are biochemically similar to the hosts as opposed to the 

prokaryotes. This difficulty ultimately complicates evaluation of properties of a 

potential antifungal agent in vitro or in vivo. To elude the damage to the human cells, 

the use of such antimycotic agents should exploit subtle differences between 

mammalian and fungal cells; e.g. sterol components - cholesterol and ergosterol. 
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Cholesterol is the major sterol in the plasma membranes of higher eukaryotes, while 

ergosterol is present in lower eukaryotes including yeast and other fungi (Bloch, 

1983). The notable difference between the two sterols is in their chemical structures - 

ergosterol has two additional double bonds (at positions C7 and C22) and a methyl 

group at C24 of the side chain. In spite of limitations, advancements have been made 

in understanding the existing antifungal agents as well as developing even the new 

ones. Since the golden era of antibiotics (~1940-1970), different new antimycotics 

have been discovered and limited of them have reached the clinic (Butts & Krysan, 

2012). The polyene antifungal agents, namely nystatin, amphotericin B, and 

pimaricin, were discovered in 1950’s. In the early 1960’s, Griseofulvin, the first 

orally effective antibiotic was used for dermatophytosis management. Later in 1969, 

the discovery of broad-spectrum agents such as azole antifungal agents that 

functioned by disrupting the fungal cell membrane was the success story. Imidazole, 

triazole and polyenes in current use had been introduced into the clinics by 1980. It 

took about 3 decades for the newest class of antifungal drugs, the echinocandins, to 

translate basic scientific findings into therapies (Mukherjee et al., 2011). Despite 

these contemporary therapeutic interventions, preventing most invasive fungal 

infections are far from ideal (Roemer & Krysan, 2014). 

To treat infectious diseases, natural products and their derivatives have been an 

ultimate source of new therapeutic agents (Newman et al., 2003). Indeed, the vast 

majority of antifungals in current clinical use, including polyenes and echinocandins, 

are natural product derivatives. Researchers aim to find new antimicrobial agents 

either by discovering bioactive compounds from natural sources such as plants, 

microorganisms, or by systematic screening of compound libraries (Shen, 2015). As 

an approach to expediting drug development in general, the concept of drug 

repurposing has also emerged to treat new diseases. However, the campaigns continue 

to rediscover previously known molecules from new natural product collections 

remain a challenge facing natural product-based screening (Roemer et al., 2011).  

In the past few decades, most of the drug discovery efforts have concentrated on 

target-based screens, in which disease model and pathway analysis generate candidate 

proteins, followed by a biochemical studies to find candidate small molecules 

(Schenone et al., 2013). Phenotypic drug discovery, a less-biased method however, 
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has enabled the cell to reveal a target required to achieve a desired phenotype (Eggert, 

2013; Schenone et al., 2013). Using drugs discovered between 1999 and 2008, 

Swinney & Anthony (2011) demonstrated that 28 (56%) of 50 first-in-class new 

molecular entities approved clinically were discovered by phenotype approach, while 

17 (34%) were target-based. This striking analysis underlined the power of 

phenotype-based discoveries. The resurgence of phenotypic screening is partly due to 

the adaptation of high content imaging to drug discovery (Lang et al., 2006) along 

with computer-driven detection and analysis with immunofluorescent techniques 

(Wagner & Schreiber, 2016). 

Yeast chemical genomic approaches in drug discovery 

Model organisms are the main workhorse of biological research, offering manipulable 

and cost-effective experimental systems that constantly yield fundamental insights 

into human biology and health. Amongst others, budding yeast Saccharomyces 

cerevisiae has been an excellent model to study various aspects of mammalian 

biology by acting as a living eukaryotic vehicle for carrying reporter constructs for 

screening (Ross-Macdonald, 2003) or as a representative of its pathogenic 

counterparts (Mccusker, 2006).  This long utility certainly extends to pharmaceutical 

drug discovery process, including its use to isolate novel lead molecules, to reveal the 

mechanism of action of compounds, to discover and characterize components of 

signalling pathways and to dissect protein function. Moreover, Kachroo et al. (2015) 

demonstrated that almost half (47%) of yeast genes could systematically be 

functionally replaced with their human cousins, implying the relevance of addressing 

human life challenges through the study in yeast. 

 

In order to comprehend how life works, genetics aims at understanding the relation 

between genotype and phenotype. Though, it is formidable to study their gene 

functions as complete deletion of most yeast genes (∼80%) has no apparent 

phenotypic effect in rich medium (Hillenmeyer et al., 2008). In light of this, small 

molecules are shown potent probes for dissecting cellular physiology at all levels of 

biological complexity (Schreiber, 2005). It is, thus, of paramount importance to study 

the biological systems using chemical perturbation, instead of genetic intervention 

alone. For studying chemical-biological interactions, diverse fields have emerged to 
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understand the relations between small molecules and genes on a systems level. The 

current strategies in drug discovery and development are chemical biology, chemical 

genetics, and chemical genomics. Chemical biology may be defined as the application 

of chemistry to the study of molecular events in biological systems. As such if a new 

phenotype is discovered by the action of a certain compound, the identification of the 

responsible target follows. Chemical genetics is the dedicated study of proteins and 

signal transduction pathways by the screening of chemical libraries of small 

molecules. Chemical genomic, or chemogenomic, study is an approach that combines 

the latest tools of genomics and chemistry, and applies them to target and drug 

discovery. It enables one to understand genomic responses to small molecule 

perturbants. 

Numerous chemical genomic approaches have been developed to provide a platform 

that contends with the complexity inherent in the postgenomic view of cellular 

biology. Current yeast-based chemical genomic studies encompass high-throughput 

genomic approaches (Fig. 0-1) such as fitness profiling (Giaever et al., 1999, 2002), 

and transcript profiling (Hughes et al., 2000), as well as high content image profiling 

(Ohya et al., 2005). In light of this, remarkable advances in S. cerevisiae chemical 

genomics have been achieved via a technological development that enabled invention 

of genome-wide clone sets. One of the most important technical feats was the 

systematic modulation of gene dosage on a genome scale (Rine et al., 1983). The first 

demonstration in yeast was that drug targets could be identified by their ability to 

confer resistance when overexpressed. In addition, the advancements of chemical 

genomic assays on the yeast whole-genome heterozygous and homozygous deletion 

collections have enabled the quantification of the growth fitness of each deletion 

strain in the presence of chemical stress conditions, hence uncovering a phenotype of 

all genes (Giaever et al., 2002; Hillenmeyer et al., 2008). Additionally, microarray-

based transcriptional profiling proved a valuable tool to thoroughly understand the 

cell's immediate and dynamic response to a perturbant on a genome-wide level 

(Bammert & Fostel, 2000; Hughes et al., 2000; Agarwal et al., 2008) and global 

biological networks (Creighton & Hanash, 2003). Moreover, cellular morphology is 

closely linked to cellular processes and functions in virtually all eukaryotic 

organisms. Fluorescence imaging proved a valuable tool for high-content assays that 

appraises in vivo effects of genetic or chemical perturbation using multiple cellular 
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response parameters (Ohya et al., 2005; Vizeacoumar et al., 2009). As such 

microscopy-based screens (Fig. 0-2) facilitate phenotype measurements in individual 

cells and heterogeneous response analyses, which provide deeper insights into 

biological processes and function (Ohya et al., 2005, 2015; Liberali et al., 2015). This 

approach was successfully applied to predict drug targets in a cell by matching the 

morphological profiles of a drug-treated cell with that of the mutant collection. 

Application of yeast single cell phenomics in drug targets prediction 
In high content image profiling, quantitative morphological analysis was performed 

using CalMorph, a program that outputs a large amount of data on cell cycle phase, 

cell forms, and other parameters (Ohtani et al., 2004). High-dimensional 

morphological information obtained after treating of the cells with a drug of serial 

concentrations made it possible to search for a set of mutants with a similar 

morphology (Ohnuki et al., 2010).	A multidimensional quantitative data generated 

this way was used to predict drug target, functionally related genes as well as 

exploring mode of action (Iwaki et al., 2013; Okada et al., 2014; Piotrowski et al., 

2015). First, Iwaki and his colleagues showed that prediction of intracellular target of 

chemicals based on morphological profiling was effective for vanillin, an 

antimicrobial compound produced by degradation of lignocellulose (Iwaki et al., 

2013). Therein, comparison of the morphological profiles of vanillin-treated cells and 

non-essential gene deletion mutants revealed that components of large subunits of 

ribosome shown to be its target. In addition, Okada and his colleagues performed 

quantitative morphological analyses after treatment with drugs that inhibit different 

processes during cell wall synthesis, to uncover the distinct role of cell wall 

biogenesis (Okada et al., 2014). The profiles of the tunicamycin treatment showed 

significantly similar morphology to those of strains defective in α-mannosylation, 

consistent with its mode of action which blocks N-glycosylation (Ballou, 1990; 

Jigami, 2008). Likewise, morphological profiling was conducted to define the mode 

of action of echinocandin B. They found that echinocandin B induced morphological 

effects similar to those observed in some fks1 mutants, with reduced glucan synthesis 

activity, suggesting that the agent affects 1,3-β-glucan synthesis, and additional 

functional domain. More recently, similar technique was applied for identification of 

the intracellular target of poacic acid, newly extracted compound from plant 

lignocellulose (Piotrowski et al., 2015). Analysis of morphological profiles of 
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compound-treated cells established that poacic acid caused similar phenotype to many 

cell-wall defective mutants. They further verified that poacic acid had antifungal 

activity on many phytopathogenic fungi by binding to 1,3-β-glucan thereby inhibiting 

glucan synthase activity of fungal cells.  

 

In this dissertation, I summarized the findings of my diverse research themes into 

three principal chapters. The first chapter deals with morphological profiling of 

antifungal agents with current morphological profiling approach while the second 

chapter introduces the proposal of a new phenotypic profiling method for identifying 

the targets of bioactive compounds as an alternative to our current approach. The last 

chapter describes the development of sensitive and high-throughput profiling method 

for studying the responses of antimicrobial agents from single cells, and demonstrates 

its applicability using diverse landmark compounds. 
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FIGURES 

	
Figure 0-1. Approaches in yeast chemical genomic studies. 

 (A) Fitness profiling. Profiling of an organism’s growth could be used to identify the 

genes involved in some of adaptive responses, e.g. all genes required for a role in 

response to challenge with the antimicrobial compound (Giaever et al., 1999). (B) 

Expression profiling. Because the relative abundance of transcripts is tailored to 

specific cellular needs, expression profiling studies were used to monitor the genes 

that respond to conditions or treatments of interest using DNA microarray 

hybridization assay (Hughes et al., 2000). (C) Morphological profiling. Analysis of 

fluorescent microscopic images of triple-stained cells makes it possible to treat 

morphological variations (parameters) as quantitative traits to study attributing 

functions to genes (Ohya et al., 2005).  
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Figure 0-2. Overall strategy in microscopy-based chemical genomics. 

 

Generally, chemogenomics-based drug discovery involves screening of large 

collections of chemical products for the parallel identification of biological targets 

and biologically active compounds. In image-based approach, this followed by 

analysis of the phenotypic profiles after high-content, high-dimensional 

morphological data acquisition. The underlying principle of target prediction laid on 

the assumption that a compound, which induces a specific phenotypic change, should 

share similar perturbation profiles with that of gene mutation or authentic drug. 

Therefore, comparison of similarity of morphology induced by a compound of 

interest induced with that of gene deletions (reference set) should provide its likely 

intracellular targets and pathways involved in. Ultimately, the molecular targets 

predicted by the morphological profiling of yeast treated with biologically active 

compounds are then validated for appropriateness using different techniques including 

biochemical studies. 
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RESULTS AND DISCUSSION 

Chapter I: Morphological Profiling of Antifungal Agents  

1.1 INTRODUCTION 
Identification of the molecular targets is indispensable during the development of new 

antifungal drugs (Hughes et al., 2000; Carrillo-Muñoz et al., 2006; Agarwal et al., 

2008). Antifungal drugs with known clear targets can be easily applied for antifungal 

therapies. Antifungal drugs with distinct molecular targets are attractive because of 

the effectiveness of their combinatorial usage.  

 

Several potential criteria must be fulfilled by targets of antifungal drugs (Agarwal et 

al., 2008). A potential target must be essential for fungal cell survival either in the 

process of static growth, homeostatic stability or infection of the host. It is also 

important for the target to be a fungal-specific protein; otherwise, even if it is 

conserved, the affinity of the counterpart to the drugs must be low. Fungal-specific 

metabolic pathways are attractive targets because each metabolic component is a 

potential target. Finally, because the plasma membrane can act as a barrier to 

chemicals, cell surface proteins are preferable as targets. 

 

Due to these restrictions, the intracellular targets of currently available antifungal 

drugs are limited to the processes related to the cell wall, the cell membrane and 

ribonucleotide metabolism. Echinocandins such as echinocandin B, caspofungin and 

micafungin target the biosynthesis of 1,3-β-glucan, a key fungal cell wall component 

(Perlin, 2007). A recent study of drug-resistant mutant echinocandins suggested that 

the drugs impact a putative catalytic subunit of 1,3-β-glucan synthase, Fks1p 

(Johnson et al., 2011; Johnson & Edlind, 2012). Azole compounds (Bodey, 1992) 

such as fluconazole and miconazole, allylamine compounds (Petranyi et al., 1984) 

such as terbinafine and naftifine, and morpholine compounds (Polak-Wyss et al., 

1985) such as fenpropimorph and amorolfine impact ergosterol biosynthesis. Azoles, 

allylamines and morpholines inhibit lanosterol 14 α-demethylase, squalene epoxidase 

and Δ14 reductase/Δ7-Δ8 isomerase, respectively (Carrillo-Muñoz et al., 2006). 
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Ergosterol, a component of the fungal membrane itself, binds to polyene antifungals 

such as nystatin and amphotericin B (Zygmunt & Tavormina, 1966). Finally, 

flucytosine, or 5-fluorocytosine, a fluorinated pyrimidine analog, is a synthetic 

antifungal drug that inhibits ribonucleotide metabolism (Finland & Schönebeck, 

1972). Although antifungal drugs with the same structural backbone have similar 

modes of action (MoA), the reverse is not always the case. New drugs with novel 

structures could be established without relying on structure-based screening. 

 

Phenotype-based screening has been also recognized as a reliable approach to 

identifying new antifungal drugs. Such techniques have recently become more 

powerful after the development of modified phenotypic screens, such as high-

throughput, high-content and omics-based screens (Feng et al., 2009; Houle et al., 

2010; Roti & Stegmaier, 2012; Futamura et al., 2013a). Various genomic and genetic 

tools for the advancement of genome-wide studies in Saccharomyces cerevisiae have 

been developed (Luesch et al., 2005; Bharucha & Kumar, 2007), and a large-scale 

data set has been deposited in public databases, greatly facilitating the comparison 

and interpretation of results. Expression profiling and fitness profiling have been 

widely used for these purposes. It was reported that the pattern of changes in global 

gene expression can be used as a fingerprint to identify specific pathways perturbed 

by the chemical compounds (Hughes et al., 2000). Fitness profiling with a decreased 

or increased gene dosage was shown to facilitate classification of chemical 

compounds with similar MoAs (Hillenmeyer et al., 2010; Lee et al., 2013). 

 

Another phenotype-based approach that involves the assessment of a high-

dimensional cellular response caused by the drugs is image-based profiling (Perlman 

et al., 2004). Ohnuki and his colleagues developed the image-based method to infer 

drug targets based on the yeast morphological changes after treatment (Ohnuki et al., 

2010). The morphological profiles induced by the drugs were statistically compared 

with those induced by deletion of each of 4,718 non-essential genes. Based on the 

ranking of similarity in each mutant, this method was capable of inferring intracellular 

targets among the 4,718 non-essential genes (Ohnuki et al., 2010; Iwaki et al., 2013; 

Piotrowski et al., 2015). However, no systematic analysis and comparison of 

antifungal drugs based on morphological profiling has been performed to date. 
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To gain further insights into antifungal drug profiles, I profiled currently available 

antifungal drugs using yeast morphology as chemogenomic signature. I analyzed 

echinocandins (echinocandin B and micafungin), an azole (fluconazole), an 

allylamine (terbinafine), a morpholine (amorolfine) and a fluorinated pyrimidine 

analog (5-fluorocytosine). Comparison with deletion mutants of each of 4,718 non-

essential genes confirmed the MoA of the drugs and revealed unexpected connections 

among the various cellular processes. This suggested the comparison between 

chemical-induced phenotypes and genetic perturbation is a powerful method to 

understand the MoA of antifungal agents. 

1.2 RESULTS  
Morphological changes induced by antifungal agents 

I examined the morphological changes after treating haploid yeast cells with 

antifungal agents that disrupt three well-known targets—the ergosterol, nucleic acid 

and cell wall biosynthesis pathways (Table 1-1). To minimize high-dose side effects, I 

used the concentration of each drug that delayed the wild-type cell growth by 10% for 

morphological analysis (see Materials and methods). I found that cells treated with 

FCZ, TBF, AMF, FCS, ECB, and MCF displayed aberrant morphological phenotypes 

(Fig. 1-1A). To explore the dose-dependency of these effects, I quantified 501 

morphometric parameters using CalMorph (Ohtani et al., 2004) after treatment with 

various concentrations of the drugs (Table 1-1) and analyzed them using the 

Jonkheere-Terpstra test, a test for an ordered alternative hypothesis within the data 

sets (Jonckheere, 1954). Of the 501 morphological parameters examined, I 

successfully identified 17, 52, 9, 49, 343, and 251 dose-dependent parameters of FCZ, 

TBF, AMF, FCS, ECB and MCF, respectively (Table S1, A-F). I did not use nystatin, 

an agent binding to ergosterol, because its pharmacological effect did not allow us to 

observe the morphological changes (Fig. S1; see Supplemental procedure, and results 

& discussion). 

 

I next analyzed these dose-dependent parameters as described previously (Ohnuki et 

al., 2012). Figure 1-1B shows that the PC1 scores increased in a dose-dependent 

manner for each of the antifungal agents, suggesting that similar morphological 

changes became progressively more apparent in the data sets. Next, I performed PCA 

to identify independent features in the dose-dependent parameters (see Materials and 
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methods; Table S2, A-C). Accordingly, I illustrated phenotypic responses to the 

representative agents and summarized the morphological changes of yeast cells at the 

indicated cell cycle stages using representative features (Fig. 1-2A). As shown in 

Figure 1-2B, a moderate relationship was observed between MCF and TBF, but a 

weak or negligible relationship was recorded between FCS and the other two agents 

(TBF & MCF). Consistent with their difference in MoA, the agents of the three 

classes induced distinct alterations in cellular, actin, and nuclear morphology. 

 

Morphological profiling of the antifungal agents—expected similarities 

To unravel the MoA of the antifungal agents in more detail, a comparison of the 

morphological profiles of the cells treated with the agents and those of non-essential 

deletion mutants with defects in their MoA-related genes was conducted (Ohnuki et 

al., 2010). Among the 4,718 haploid non-essential gene deletion mutants, I identified 

morphologically similar gene deletion mutants (p < 0.05, after Bonferroni correction) 

after treatment with each drug (Fig. 1-3).  

I then analyzed the genes enriched in the mutants similar to those in cells treated with 

FCS, a nucleic acid biosynthesis inhibitor, using the GO term finder (Boyle et al., 

2004). I found that the genes related to maturation of small subunit ribosomal RNA 

(SSU-rRNA; GO ID: 0000462) were significantly enriched (Fig. 1-3; Table S5).  FCS 

is known to be bioconverted into cytostatic fluorouracil, which, in turn, is further 

converted to metabolites that inhibit fungal RNA and DNA synthesis (Waldorf & 

Polak, 1983; Parker & Cheng, 1990; Vermes, 2000; Fang et al., 2004). Therefore, 

FCS was likely incorporated into newly synthesized RNA and potently blocked rRNA 

processing; thus, FCS-treated cells were similar to SSU-rRNA mutants. Treatment 

with two ergosterol biosynthesis inhibitors (FCZ and TBF) resulted in significant 

morphological similarities with an erg28 mutant (Fig. 1-3; Fig. 1-4; Table S5), a 

mutant endoplasmic reticulum membrane protein, required for ergosterol biosynthesis 

(Mo et al., 2004). The correlation coefficients for erg28 were 0.57 and 0.70 for FCZ 

and TBF, respectively. This finding is consistent with Hughes et al. (2000), who 

demonstrated by microarray analyses that the ERG28 transcript is induced in erg11, 

erg2, erg3 and wild-type cells treated with azole drugs. AMF-treated cells were 

significantly associated with an erg2 mutant (Fig. S3), a mutant of C-8 sterol 

isomerase (Rahier et al., 2008). This result is in line with the findings of Jia et al., 
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(2002) who reported that, like other morpholines, AMF targets primarily Erg2, 

although it has been shown to also inhibit Erg24 at higher concentrations. The 

morphology of cells treated with two cell wall biosynthesis inhibitors (ECB and 

MCF) shared significant similarity with that of two mutants (hoc1 and mnn10), which 

have defects in “cell wall biogenesis” (Fig. 1-3, Fig. 1-4). Analysis of ECB-MCF 

correlation revealed strong similarity between cell wall drugs (Fig. S2). This is 

reasonable because even if the two compounds are distinct but of the same target. 

This indicates the validity of morphometric approach in finding likely targets of the 

drugs including previously unreported ones. 

 

Morphological profiling of the antifungal agents—unexpected similarities 

Strikingly, I found some unexpected morphological similarities between the cells 

treated with ergosterol affecting agents and V-ATPase-affecting agent, CMA (Fig. 1-

4, Fig. S2). The GO term analysis of mutants similar to cells treated with FCZ, TBF 

and AMF showed no enrichment in the genes responsible for the ergosterol pathway, 

but the genes responsible for V-ATPases (Table S5). I also observed high 

morphological similarity between the yeast cells treated with ergosterol-affecting and 

V-ATPase-inhibiting agents (Fig. 1-5). The similarity between the cells treated with 

ergosterol-affecting agents and vacuolar ATPase-deficient cells suggested a role of 

ergosterol in V-ATPase function, although there is little direct evidence (Zhang et al., 

2010). I then assessed the effect of ergosterol inhibitors on the vacuole. Cells treated 

with ergosterol inhibitors showed a decrease in the ergosterol content in wild-type 

cells (Kelly et al., 1995). In addition, I observed the reduction of vacuolar quinacrine 

fluorescence in wild-type yeast cells (Fig. 1-6, Table S3), implying that the antifungal 

drugs had impaired vacuolar acidification. Taken together, these data suggest that 

ergosterol depletion is a likely mechanism of antifungal activity for disrupting V-

ATPase function.  

Likewise, GO term analysis using mutants that were similar to ECB- and MCF-

treated cells showed enrichment in several genes related to vacuolar function (Fig. 1-

5; Table 1-2; Table S5). This unexpected similarity might be because of the cell wall 

perturbation induced by defective vacuoles. To this end, robust morphological 

similarity found between inhibitors of cell wall synthesis (ECB, and MCF) and the V-

ATPase inhibitor (CMA) may support this idea (Fig. 1-4; Fig. S2). I next tested 
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whether this association could be explained by cell wall defects across those 

antifungal drugs of different classes (ECB, MCF and CMA). To assess the impact of 

drug treatments on the cell wall structure, I measured the susceptibility of yeast cells 

to zymolyase, an enzyme that effectively lyse cell wall of viable yeast cells (Lussier et 

al., 1997; Ovalle et al., 1998). I found that preincubation of yeast cells with CMA and 

cell wall-affecting drugs similarly resulted in an increased sensitivity to zymolyase 

compared with the mock-treated cells (Fig. 1-7). Therefore, I concluded that 

unexpected similar phenotypes between CMA-treated and ECB- or MCF-treated cells 

are due to the functional connection between these two cellular processes. 

1.3 DISCUSSION 
A wealth of biologically meaningful information can better be obtained from a well-

designed research in conjunction with suitable statistical analysis. To mine genetically 

and biologically important information, application of morphometric analysis high-

dimensional yeast morphological data was shown a powerful approach. This is 

fundamentally because a single experiment usually provides a high-dimensional 

morphological data set in which each cellular image contains various morphological 

features. To this end, quantification of cell shape, actin, nuclear DNA, and 

microtubular morphology was finalized for a collection of nonessential deletion 

mutants (Ohya et al., 2005; Vizeacoumar et al., 2009). Such morphological data has 

enabled us to search for a set of mutants that share significant similarity with 

morphology of cells treated with chemical compound (Ohya et al., 2005). Notably, 

this method was shown to be a powerful tool to identify the target and describe the 

mode of action of a candidate compound (Ohnuki et al., 2010, 2015).  

 

Morphological similarities among the antifungal agent-treated cells  

Our quantitative morphological analyses showed distinct but somewhat similar 

morphological phenotypes among the cells treated with ergosterol-, vacuole-, and cell 

wall-acting agents. It is important to know the mechanism of their similarity because 

it is directly related to the understanding of the fungal physiological system. 

Experimental evidence, in fact, has supported their functional relationships; 

ergosterol-deficient cells showed no acidification of vacuoles, and vacuolar-deficient 

cells showed cell wall defects. These findings are also particularly of interest from 
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therapeutic aspects because of the frequent combinational use of antifungal drugs in 

therapy. It is known that a synergetic antifungal effect of 11% was recorded for the 

antifungal combination of MCF with FCZ against clinical isolates Candida spp. 

without any antagonistic influence (Nishi et al., 2009). AMF also showed a synergetic 

combination with terbinafine and azole drugs (Polak-Wyss, 1995). These facts 

suggest that the high-content profiling of antifungal drugs is useful for the 

understanding of yeast cell biology and pharmacology of antifungal agents. 

1.4 MATERIALS AND METHODS 
Antifungal agents 

The compounds, their acronyms and suppliers are as follows:  fluconazole (FCZ; 

Tokyo Chemical Industry, Tokyo, Japan), terbinafine (TBF; Tokyo Chemical 

Industry), amorolfine (AMF; Tokyo Chemical Industry), flucytosine (FCS; Sigma-

Aldrich, St Louis, MO, USA), echinocandin B (ECB; a kind gift from O. Kondo, 

Chugai Pharmaceutical, Tokyo Japan), micafungin (MCF; Astellas Pharma, Tokyo, 

Japan), lovastatin (LVS; Wako Pure Chemical Industries, Osaka, Japan), 

concanamycin A (CMA; Sigma-Aldrich), Stock concentrations and solution 

preparation methods are summarized in Table 1-1. 

 

Culture conditions for morphological analysis 

Yeast culture for morphological analysis was performed as described previously 

(Ohnuki et al., 2010). The S. cerevisiae haploid strain BY4741 (MATa; his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0) was used as the wild-type (WT) strain. Cells were grown at 

25 °C in yeast rich medium (YPD) containing 1% Bacto yeast extract (BD 

Biosciences, San Diego, CA, USA), 2% Bactopeptone (BD Biosciences) and 2% 

glucose (Wako Pure Chemical Industries). Growth inhibitory tests were performed, 

with or without a compound, at least twice using the biophotorecorder TVS062CA 

(Advantec, Tokyo, Japan). The doubling time was calculated to determine the 

inhibitory concentration that delayed the growth by approximately 10% of that of the 

control. Cell samples were grown (n = 5) in the presence of various concentrations of 

the study drugs, up to the 10% inhibitory concentration (Table 1-1).  
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Image acquisition and processing 

Morphological data were acquired as described previously (Ohya et al., 2005). I 

quantified the morphological attributes in budding yeast to obtain 501 parameter 

values from at least 200 individual cells in each experiment using the automated 

image-processing software CalMorph (ver. 1.2) for haploid cells. The CalMorph 

software can be downloaded from SCMD: S. cerevisiae Genome Database (Saito et 

al., 2004). For illustrative purposes, images were processed using Adobe Photoshop 

CS2 (Adobe Systems, San Jose, CA). 

 
Statistical Analysis 

Most of the statistical analyses were performed using R ver. 3.0.0 (http://www.r-

project.org/). A custom-made Java-based program was used to assess the 

morphological similarity between the cells treated with each agent and 4,718 non-

essential gene deletion mutants, as reported previously (Ohnuki et al., 2010, 2015).  

 

Extraction of morphological features 

To elucidate complex phenotypic changes in the cell, principal component analysis 

(PCA) was performed using the prcomp() function in R as described previously 

(Ohnuki et al., 2012; Iwaki et al., 2013; Okada et al., 2014; Piotrowski et al., 2015). 

The dose-dependent parameters were detected by the Jonckheere-Terpstra test. 

Significant parameters, obtained from five replicated experiments of each drug data 

set (FDR = 0.05, t-test; Table S1), were transformed into rank-sum values to 

standardize the distribution. To identify morphological features, I executed a PCA on 

selected parameters using 122 replicated WT morphological data as a null 

distribution. Among several independent PCs extracted, at least one parameter in each 

PC was selected as a representative parameter (highlighted in yellow, Table S2) by 

considering significant absolute loading values (> 0.5). Based on the representative 

parameters, drug-induced morphological changes are depicted. 
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Gene ontology (GO) terms analysis 

Information on GO annotations was gathered using the “GO Term Finder,” ver. 0.83 

(http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl) in the Saccharomyces 

Genome Database (Boyle et al., 2004). Genes of morphologically similar mutants 

were used as query genes, and 4,708 of 4,718 non-essential genes associated with at 

least one GO term were considered as the background gene set. 

 

Quinacrine staining 

Quinacrine staining was used to assess the effects of antifungal agents on vacuole 

acidification in vivo. Yeast cells from an overnight culture were inoculated into 5 ml 

of fresh YPD with FCZ (7 µg mL-1), TBF (4 µg mL-1) or control (1% DMSO). The 

cells with or without drugs were cultured for 5 h at 25 °C. After harvesting, the cells 

were suspended in 50 mM potassium phosphate buffer (pH 7.6) plus 2% glucose 

containing 500 µM quinacrine solution and incubated for 10 min. The cells were then 

washed three times with YPD and immediately observed under a fluorescence 

microscope using an aniline blue filter.  

 

Zymolyase sensitivity test  

To check the cell wall integrity, the zymolyase sensitivity test was performed as 

described previously (Vink et al., 2002) with slight modifications. Briefly, the yeast 

strain (y13206: pdr1Δpdr3Δsnq2Δ) was precultured in YPGal (the same composition 

as YPD, but with 2% galactose instead of 2% glucose) until log phase, and then 

resuspended in fresh YPGal at 1.5 × 107 cells mL-1. Cells were incubated in fresh 

YPGal medium containing the test compounds in 96-well microtiter plates (CoStar®; 

Corning Incorporated, Corning, NY, USA) and incubated at 25 °C for 4 h with 

shaking. The compounds used were 4 µg mL-1 echinocandin B, 30 ng mL-1 

micafungin, 100 mM concanamycin A, and 1% DMSO as the control. The cell pellets 

were washed twice with 10 mM Tris-HCl (pH 7.5) and resuspended in the same 

buffer containing Zymolyase 100T (Seikagaku, Japan) at 20 µg mL-1. After an initial 

OD600 nm measurement, samples were incubated at 30 °C, and the first OD600 nm 

reading was taken after 30 min. Subsequent OD readings were recorded every 15 min 

for ~2 h using a plate reader (SPECTRAmax plus384; Molecular Devices,	Sunnyvale, 
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CA, USA). In each sample, OD600 nm values were standardized at time 0=1 (or 100%).  

1.5 FIGURES 

	
Figure 1-1. Dose-dependency of morphologic changes induced by treatment with 

antifungal agents.  
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Wild-type cells (BY4741) were cultured until the early log-phase at 25 °C in YPD 

medium with or without the indicated concentrations of antifungal drugs. Cells were 

triply stained with FITC-Con A, Rhodamine phalloidin, and DAPI to detect the cell 

wall, actin and nucleus, respectively. (A) Representative images at the indicated cell 

cycle stages from five independent experiments are shown. Scale bar, 5 µm. (B) 

Distribution of PC1 scores. Initially, some dose-dependent parameters of each drug 

were selected using the Jonkheere-Terpstra test (FDR = 0.05; Table S1). 

Morphological data from five replicates were standardized by the rank-sum method, 

and PC scores that made the greatest contribution to morphological features (PC1s) 

were plotted versus drug concentrations. 
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Figure 1-2. Morphological changes induced by typical antifungal agents of 

various classes.  
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(A) TBF, FCS and MCF were selected and exemplified as typical agents of each 

class. Morphological changes induced by the agents were extracted by PCA to 

identify representative parameters for each agent. Representative parameters used for 

illustration are summarized in Table S2. (B) To investigate the relationships among 

the representative antifungal agents TBF, FCS, and MCF, a correlational network 

map was constructed. The correl() function in Excel was used to calculate the 

coefficient of correlation among the morphological variables (PC scores) of the two 

drugs. The 102 PC scores of each agent were estimated by the algorithm used for 

morphological profiling. Light blue and gray lines, and scores near an individual line 

denote the degree of association: moderate (R > 0.5), weak (R < 0.5) or negligible (R 

< 0.2) relationship.  
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Figure 1-3. Morphological profiling of ergosterol, cell wall and nucleic acid 

biosynthesis inhibitors.  

 

WT cells treated with different concentrations of each drug and the morphological 

profiles were compared with those of 4,718 non-essential gene deletion mutants, as 

described previously (Ohnuki et al., 2010). The horizontal axis indicates each ORF in 

alphabetical order of the systemic name. The vertical axis represents –log10P (1-sided 

P value) of the similarity of the profiles between the drug treatment and each gene 

deletion. Red filled circles are genes that share significant similarity with those related 

to the GO terms “ergosterol biosynthesis,” or “Vacuolar proton transporting V-type 

ATPase,” or “maturation of SSU-rRNA,” or “cell wall biogenesis.” Black filled 

circles show genes that show insignificant similarity with drug treated cells. 
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Figure 1-4 Correlation among ergosterol, V-ATPase, and cell wall biosynthesis 

inhibitors. 

 

To build the network model, the correlation coefficient of the morphological profile 

between each pair of antimicrobial drugs was determined from 102 PC scores of a 

pair of agent considered as estimated by the morphological profiling approach. Red 

and light blue lines, and scores near an individual line denote the degree of 

association: strong (R > 0.70), or moderate (R > 0.50) correlation.  
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Figure 1-5. Morphological analysis of ergosterol, and cell wall biosynthesis 

inhibitors for V-ATPase mutants profile.  
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WT cells treated with several concentrations of each drug and the morphological 

profiles were compared with that of 4,718 non-essential gene deletion mutants, as 

described previously (Ohnuki et al., 2010). The horizontal axis indicates each ORF in 

alphabetical order of the systemic name. The vertical axis represents –log10P (two-

sided P value) of the similarity of the profiles between drug treatment and each gene 

deletion. Red circles are genes that share significant similarity to those related to the 

GO terms “ergosterol biosynthesis” (FCZ and AMF), or “cell wall biogenesis”  

(ECB), or “Vacuolar proton-transporting V-type ATPase” (FCZ, AMF, and ECB). 

Black filled circles show genes that show insignificant similarity with drug treated 

cells. 
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Figure 1-6. Treatment of budding yeast with ergosterol biosynthesis inhibitors 

disrupts V-ATPase function.  

 

WT cells were grown in YPD for 16 h, and a small volume of the culture was 

inoculated into YPD without or with TBF or FCZ for 5 h followed by the addition of 

quinacrine (500 µM) for 15 min at 25 °C. Cells were then washed with YPD (pH 7.6). 

Fluorescence images of cells were obtained immediately after washings. The figure 

shows representative images of quinacrine-stained cells using the aniline blue filter 

(right panel) and Normarski photomicrographs of corresponding fields (left panel) of 

TBF-treated cells as representative images. As a control, the phenotype of mock- and 

CMA- treated WT cells is also shown.  Bar: 5 µm. 
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Figure 1-7. Sensitivity of V-ATPase and cell wall drug-treated cells to 

Zymolyase.  

 

Yeast cells of the triple mutant strain (y13206) were treated for 4 h with 

concanamycin A (CMA, 100 nM), echinocandin B (ECB, 4 mg mL-1) and micafungin 

(MCF, 30 ng mL-1), prior to zymolyase assay. The OD600 nm was determined before 

the addition of zymolyase (0* min) and was considered as an initial OD value. 

Thereafter, measurements were taken at addition (0 min), after 30 min of zymolyase 

addition and every 15 min thereafter for ~2 h. Cell lysis is expressed as the decrease 

in OD at 600 nm (as a percentage of the initial value (0*). Data are expressed as mean 

values of three independent experiments. Error bar: standard error of the mean. 
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1.6 TABLES  
Table 1-1. Chemical compounds used in this study 

Compound Abbreviation Stock solution Treatment concentrations Target cellular process 

Fluconazole FCZ 10 mg mL-1 methanol  0, 1.75, 3.5, 5.25, 7 µg mL-1 Ergosterol biosynthesis 

Terbinafine TBF 10 mg mL-1 methanol 0, 0.0625, 0.125, 0.25, 0.375, 0.5 µg mL-1 Ergosterol biosynthesis 

Amorolfine AMF 1 mg mL-1 methanol 0, 1.25, 2.5, 3.75, 5 ng mL-1 Ergosterol biosynthesis 

Flucytosine FCS 2 mg mL-1 in DW 0, 0.125, 0.25, 0.375, 0.5 µg mL-1 Nucleic acid biosynthesis 

Micafungin MCF 10 mg mL-1 in DW 0, 10, 15, 20, 25, 30 ng mL-1 Cell wall biogenesis 
 
Echinocandin B 

 
ECB 

 
2 mg mL-1 DMSO 

 
0, 1, 2, 3, 4 µg mL-1 

 
Cell wall biogenesis 
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Table 1-2. Enrichment of vacuolar acidification defects from WT cells treated with ergosterol and cell wall drugs 

Agent GO 
category 

GO term P-value Annotated Genes 

FCZ Process Vacuolar acidification 1.31E-07 VMA1, VMA3, VMA16, VMA5, VPH2, VMA6, VMA4, VMA11  

TBF Process Vacuolar acidification 3.12E-07 VMA2, VMA1, VPS3, VMA3, VMA7, VMA16, VMA5, VPH2, VMA6, VMA4, 
VMA11 

AMF Process Vacuolar acidification 8.41E-08 VMA2, VMA1, RRG1, RAV2, VMA3, VMA8, VMA7, VMA5, VPH2, MEH1, 
VMA6, VMA4, VMA11 

ECB Process Vacuolar acidification 6.10E-06 VMA2, VMA3, VMA7, VMA16, RAV1, VMA5, VPH2, VMA6, VMA4, VMA11, 
VMA13 

MCF Function H+-transmembrane transporter activity 0.00264  VMA3, VMA5, VMA6, ATP18, VMA4, ATP4, VMA11, ATP15 
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Chapter II: New Phenotypic Profiling Method for 
Identifying the Targets of Bioactive Compounds 

2.1 INTRODUCTION 

Antimicrobial drugs are indispensable for the prevention and treatment of disease. 

The history of drug development began in 1920’s, when Fleming serendipitously 

discovered penicillin and a number of subsequent antimicrobial discoveries quickly 

followed, which ushered the golden era of antibiotics (Davies, 2006). The discovery 

of newer antifungal compounds continued but the progress has been relatively slow. 

This is partly because of increasing antifungal resistance, and to some extent also 

fungi are eukaryotes like mammalian cells. Consequently, rational drug designs 

directed at producing drugs have focused on identifying molecular targets, which are 

different or have no mammalian analog. For several decades, most of the drug 

discovery efforts have concentrated on target-based screens. However, less-biased 

phenotypic screening approaches shown promises in potentially improving success 

rates of drug development (Eggert, 2013; Schenone et al., 2013). 

Bioactive compounds interfere with fungal cellular activity by a number of different 

mechanisms; some of the compounds inhibit the growth of fungi (fungistatic activity) 

while some others kill the fungal cell (fungicidal effect). Based on their mode of 

action, there are a number of potential targets for antifungal treatment (Andriole, 

1999). These include the compounds that interfere with cell wall synthesis, membrane 

sterol biosynthesis, metabolites, and nucleic acid synthesis. Despite this, more 

efficacious bioactive compounds, with novel biological activity and novel structures, 

are yet indispensable to combat various fungal infectious and tumor disease.  

 

Identification of cellular target is the most important step in biological research and 

drug development as understanding the molecular targets of a compound can help 

elucidate its biological functions and potential pharmaceutical applications. Following 

the completion of the human genome sequencing, target-based screenings was 

considered to be the most rational and powerful approach for demonstration of 

dramatic clinical efficacy for emerging molecular-target drugs. However, the 

reintroduction of phenotypic approach as a complementary strategy for drug 
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discovery has sparkled renewed interest as it shown advantage especially in the 

exploration of first-in-class therapeutics (Swinney & Anthony, 2011). With the 

advancement of omics-based approaches, modified phenotypic screens such as the 

high-content imaging-driven methods emerged as vital tools in earlier steps of the 

small molecule discovery (Feng et al., 2009; Houle et al., 2010; Roti & Stegmaier, 

2012). Our ability to analyze information on the possible molecular targets related to 

phenotypes determines the competency of identifying a compound with a specific 

mechanism of action and its efficacy. It is thus expected that a multidimensional 

phenotypic profiling approach supported either by genetics or the application of well-

validated drugs can offer a promising strategy for discovering new drugs and defining 

their mechanisms of action. For example, the comparison between chemical-induced 

phenotypes and genetic perturbation proved a powerful tool to understand the MoA of 

antifungal agents (Ohnuki et al., 2010). In spite of this, our current approach requires 

mutant information in advance. Therefore, it would be sagacious to consider 

complementary chemical genetic method that could overcome this setback.  

 

In this study, I envisaged the development of a new method that classifies bioactive 

antimicrobial agents based on their difference in the phenotypic responses. This is 

made possible because of the fact that the morphological changes observed in cells 

treated with different classes of antifungal drugs are distinct from one another. I 

successfully established a systematic classifier that sorts antifungal agents into the 

three major classes: cell wall synthesis inhibitors, sterol biosynthesis inhibitors, and a 

nucleic acid synthesis inhibitor.  

2.2 RESULTS 
Classification of antifungal drugs by mode of action 

I considered that the comparison between chemical-induced phenotypes and genetic 

perturbation is a powerful tool to understand the MoA of antifungal agents. However, 

for this purpose, I needed to obtain mutant information in advance. I report here a new 

method to classify antifungal agents without any mutant information by performing 

LDA on quantified morphological data. To that purpose, I summarized our image-

profiling strategy into six analytical steps as shown in Figure 2-1 (see Materials and 

methods for the detailed algorithm). CalMorph analysis was executed on fluorescence 

microscopic images to obtain quantified morphological data for each drug considered 



	

 34 

(Step 1). Before applying LDA, I analyzed the multidimensional drug data with GLM 

(Step 2A), and the resulting figures were designated as specific phenotypic 

descriptors. The machine supervised with response descriptors of six drug data sets 

yielded a learned machine that could discriminate drugs according to their MoA (Step 

3). Next, GLM was performed on random samples derived from each drug data set 

(Step 2B). This test data set was used to validate the efficiency of the learning 

machine (Step 4). Selection of the best classifier was accomplished using the overall 

cyclic processes of optimization (Step 5). Eventually, the morphological profiling 

results from the projection of test compounds onto the best classifiers (Step 6) were 

visualized in 2D-phenotypic space.  

 

The training algorithm was applied to the high content data of FCZ, TBF, AMF, FCS, 

ECB, and MCF (Table 1-1), and the resulting LD scores of the phenotypic responses 

were depicted on 2D space to visually classify the features of each agent (Fig. 2-2A). 

I can see that the first linear discriminant (LD1) separated the classes quite well, but 

the second linear discriminant (LD2) added less valuable information. In this space, 

the color-filled circles represent the distribution of the six drugs from the three 

classes; solid arrows represent the direction of training data separation by the LDA. 

Therein, drugs that have similar activities formed a cluster at a specific distance from 

the center. Cross validation of the test set showed clustering of nearly all of the test 

data points around the six points of the training data set (Fig. 2-2A). In this figure, the 

diamond symbols denote median points of the test data, and the dashed arrows show 

the directions of the test data set separation. Even if the distance of the median points 

of the training and test sets from the center are different, the direction is similar. In 

this space, specific phenotypic responses were shown as a distinct cluster distribution. 

The results suggested that the classification of antifungal agents based on the 

morphological profiles of the three classes reflects their intracellular MoA.  

 

Classification of other antifungal agents 

In our machine learning approach, I anticipate that when the test agents form a group 

with a particular training set compound, they are likely to have similar cellular targets. 

To evaluate our proposed method, I selected a well-characterized drug set containing 

10 antifungal agents as “target unknown” drugs data (Table 2-1). The profiles of 
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phenotypic multiparameters of these test compounds were visualized in 2D scatter 

plot. The possible target drug class to which a given compound of interest may belong 

was determined based on their posterior probability scores. Intriguingly, an optimized 

classifier assigned nearly all of the agents into the three categories with the highest 

posterior probability > 0.90 (Fig. 2-2; Table 2-1), indicating that well-characterized 

drugs were classified by MoA.  

 

Classification of other antifungal agents: cell wall-affecting drugs 

Of the bioactive test compounds, our image-profiling method suggested that caffeine 

(CAF) and nikkomycin Z (NMZ) were significantly associated with a cluster of 

distinguished cell wall-disrupting drugs, echinocandin B and micafungin (Fig. 2-2B). 

Essentially, both CAF and NMZ are known to affect the yeast cell wall. CAF is an 

analog of purine bases that induces alteration in the yeast cell wall architecture 

(Levin, 2005; Kuranda et al., 2006). NMZ is a competitive inhibitor of chitin 

synthases in fungi (Gaughran et al., 1994). Thus, our machine learning method was 

successful in profiling cell wall-affecting drugs based on their specific phenotypic 

response. 

 

Classification of other antifungal agents: nucleic acid-acting drugs 

Some of the nucleic acid synthesis-interfering compounds—such as hydroxyurea 

(HXU), bleomycin (BMC), tunicamycin (TCM), and hygromycin B (HYG)—were 

classified along with FCS, an inhibitor of fungal DNA and RNA synthesis and protein 

translation (Waldorf & Polak, 1983) (Fig. 2-2B). HXU is an antitumor agent with 

antileukemic activity, causing the inhibition of ribonucleotide reductase activity and 

consequent suppression of DNA synthesis (Chang & Cheng, 1978). BMC binds to 

DNA and causes single- and double-strand breaks catalytically, resulting in inhibition 

of DNA biosynthesis (Chen & Stubbe, 2005). TCM is known to affect N-

glycosylation, but it also causes G1 arrest of S. cerevisiae cells in the unbudded phase 

and prevents initiation of DNA synthesis (Vai et al., 1987). HYG is an 

aminoglycosidic agent that inhibits protein synthesis by disrupting translocation and 
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promoting mistranslation at the 80S ribosome(Ahmad et al., 1980). This similarity in 

their MoAs might have induced similar morphological profiles. 

 

Classification of other antifungal agents: ergosterol-affecting drugs 

Miconazole (MCZ) and amorolfine (AMF), which interfere with the fungal sterol 

synthetic pathway (Shah Alam Bhuiyan et al., 2007; Isham & Ghannoum, 2010), 

were classified into the cluster of ergosterol synthesis inhibitors (Fig. 2-2B; Fig. S3). 

MCZ inhibits ergosterol biosynthesis at the step of sterol 14α-demethylase in the 

ergosterol biosynthetic pathway (Ghannoum & Rice, 1999). However, AMF blocks 

the same pathway at the step of Δ14 reductase and Δ7-Δ8 isomerase (Shah Alam 

Bhuiyan et al., 2007). Therefore, it is conceivable that the data of these agents were 

plotted at or nearby the cluster organized by the ergosterol biosynthesis inhibitors 

(Fig. 2-2B). Lovastatin (LVS) is another drug that inhibits ergosterol biosynthesis 

(Fig. S3). Independent of its hydroxymethyl glutaryl-CoA reductase inhibition 

(Alberts et al., 1980), LVS reduces proteasome activity, leading to G1 phase arrest 

(Rao et al., 1999). The newly established method plotted LVS in the space between 

the clusters of ergosterol- and nucleic acid- synthesis interfering agents (Fig. 2-2B), 

indicating that the high-content system was successful in profiling phenotypes by 

drug function.  

2.3 DISCUSSION 
I analyzed the image-based morphological profiling of the currently available 

antifungal agents and developed a new profiling method that facilitates the prediction 

of drug targets. The system uses quantified multiparametric data based on 

morphological alterations induced by a candidate drug. Most of the drugs were 

classified into the three training set groups, indicating the system can successfully 

recognize the morphological changes of a drug and group them into drugs with 

similar MoAs. The designed method identifies the biological targets of a compound of 

interest without relying on any mutant information in advance. In the current situation 

in which I only have a reference dataset for non-essential mutants, this approach can 

also be used for the prediction of essential gene targets of a certain compound. A 

similar approach can be applicable to higher eukaryotes once the system is established 

in the budding yeast, a proven model organism for studying related human diseases. 
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Thus, my results suggest the potential use of this new profiling method as an 

interesting powerful tool to predict the target of a small molecule of interest. 

 

Comparison with the fitness profiling approach  

The multimorphic method employed 501 morphologic parameters to predict drug 

targets. A comparable method, such as fitness profiling, which employs growth as a 

primary phenotypic descriptor, has been developed in yeast chemical genomic 

studies. The fitness approach identifies the likely target of a given compound in two 

discrete assays—haploinsufficient profiling (HIP) and homozygous profiling (HOP). 

In the HIP assay, essential gene targets of a certain compound of interest could be 

identified from the fitness data of the heterozygote strain deleted for the drug target 

(Giaever et al., 1999; Lum et al., 2004; Lee et al., 2005). In HOP, growth data from a 

complete loss-of-function deletion in a diploid strain allow identification of non-

essential gene targets of a compound (Parsons et al., 2004, 2006; Dudley et al., 2005; 

Fry et al., 2005). Unlike fitness profiling, our profiling system facilitates genome-

wide target assessment from multidimensional cellular responses caused by the drugs 

in a systematic manner once the training database is sufficiently diverse. Therefore, 

morphological profiling and fitness profiling are complementary, and serve as new 

drug-prediction tools. 

 

Comparison with other image-profiling approaches 

Our chemical genomics research wing focuses on developing various methods for 

drug target prediction based either on the assumption that chemicals should 

phenocopy the mutation or screening drugs that share similar perturbation profiles. In 

Chapter one, I reported a method of exploring the cellular functions affected by 

candidate compounds by comparing with the phenotypes of yeast non-essential gene-

deletion mutants (Ohnuki et al., 2010). Therein, several functionally related genes, 

and potentially affected cellular pathways, were identified in addition to previously 

known target genes of studied compounds. This approach was limited in its ability to 

cross-examine all relevant gene targets because it interrogates only nonessential gene 

targets; no information related to essential genes could consequently be inferred. The 

new method developed in this study was a complementary approach, enabling us to 

extrapolate a drug target and other pertinent information without any reliance on a 
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mutant database. The machine learning technique sorts a new compound into a class 

of drug with a similar MoA, defining the MoA of the compound from different 

viewpoints. Remarkably, the combinatory usage of these two image-profiling 

methods has allowed us to leverage the scale of our study by not only identifying 

candidates of drug targets but also mapping detailed phenotypic information on the 

cellular response to any conditions that may induce morphologic changes.  

 

Application of linear classification models for drug discovery 

In this study, I developed the method that learns phenotypic profiles induced by the 

drugs of training set and classifies bioactive substances. Our profiling system involves 

a simple procedure involving triple staining of the cells (the cell wall, DNA and 

actin), extracting high-dimensional phenotypic data using CalMorph, and sorting 

compounds into a class with a similar MoA. Another chemical-genetic phenotype 

profiling approach, morphobase (Futamura et al., 2012), was developed using the 

images of mammalian cells. Morphobase strategy engages PCA and similarity search 

software to detect targets of a candidate small molecule. Our expedient image-

profiling tool employs LDA, which performs dimensionality reduction while 

preserving as much of the class discriminatory information as possible, attempting to 

explicitly model the differences among the classes of data (Swets, 1996; Martinez & 

Kak, 2001; James, 2012). LDA best discriminates up to three classes, yet can achieve 

average classification accuracies of above 80% for a number of classes until four 

(Castro, 2012). To create a quantitative structure–activity relationship model and 

identify new compounds from molecular topology databases, other studies used LDA 

and multiple linear regression (Gozalbes et al., 2000; Mahmoudi et al., 2006, 2008). 

Their model could discriminate between inactive and active compounds by learning 

the drug’s structural patterns. This approach and our method are both powerful in 

target prediction and deduced biological information despite the difference in 

screening criteria (e.g., structure vs. phenotype) used and number of features involved 

(Gozalbes et al., 2000; Ohya et al., 2005).  
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New insights into mode of action of some bioactive compounds 

Intriguingly, the systematic classifier drew new insights into antifungal agents. For 

example, miconazole was assigned to ergosterol biosynthesis inhibitors, but plotted 

near DNA affecting agents’ class.  Recent mechanistic studies (Najm et al., 2015) 

showed that miconazole affects pathways regulating DNA synthesis via interfering 

the role of mitogen-activated protein (MAPK)/extracellular signal-regulated kinase 

(ERK) signaling in estrogen receptor positive MCF-7 breast carcinoma cells. This 

suggests the power of the method in efficiently indicating drugs MoA from their 

morphologic signatures. Moreover, since LVS is another drug that acts in a 

mevalonate synthesis pathway, I expected it to be sorted into the ergosterol 

biosynthesis inhibitors. Although lovastatin is plotted in the clusters of ergosterol 

affecting agents, functionally classified as nucleic acid biosynthesis inhibitors (Fig. 2-

2). As such, I presumed that LVS might be a drug that exerts dual effect on yeast 

cellular processes.  Research evidences showed that independent of its hydroxymethyl 

glutaryl-CoA reductase inhibition (Alberts et al., 1980), LVS reduces proteasome 

activity thereby leading to G1 phase arrest (Rao et al., 1999). Furthermore, 

considering its MoA, I expected CMA, potent V-ATPase inhibitor (Dröse et al., 

1993),  to be classified into either ergosterol or cell wall synthesis inhibitors. 

However, it was notably ascribed to a different drug group - nucleic acid inhibitors 

(Fig. 2.2). Consequently, I thought it was unfortunately misclassified at that time. To 

my surprise, a very recent research evidences demonstrated an unexpected finding 

that the yeast vacuole plays a positive essential role in initiation of the cell-cycle and 

its functional loss results in a specific arrest of cells in G1 phase (Jin & Weisman, 

2015). Taken together, these data indicate that high-content system was successful in 

profiling phenotype by drug function.  

 

In general, though the target prediction process went well with the training 

compounds considered, the cluster representing ergosterol and nucleic acid seems to 

get closer to each other. This might reflect the limitation of such linear methods as 

LDA. To increase its discrimination power, nonlinear multiclass models such as 

neural networks can be used as a supervised classification technique (Terfloth & 

Gasteiger, 2001; Concu et al., 2010). Moreover, our profiling technique is a 

quantitative morphology-based system that attempts for the first time to use LDA for 

drug target prediction starting with a small training data set. Expanding the compound 
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database of diverse therapeutic categories could enhance the effectiveness of this 

image-profiling technology.  

2.4 MATERIALS AND METHODS 
Antimicrobial agents 

The following is the list of compounds analyzed, their acronyms and suppliers: 

Lovastatin (LVS; Wako Pure Chemical Industries, Osaka, Japan), concanamycin A 

(CMA; Sigma-Aldrich), tunicamycin (TCM; Sigma-Aldrich), bleomycin (BMC; 

Sigma-Aldrich), hydroxyurea (HXU; Sigma-Aldrich), miconazole (MCZ; Sigma-

Aldrich), hygromycin B (HYG; Wako), caffeine (CAF; Nacalai tesque, Kyoto, Japan) 

and nikkomycin Z (NMZ; Sigma-Aldrich). Stock concentrations and solution 

preparation methods are summarized in Table 1-1 and Table 2-1 for training and test 

compounds sets, respectively. 

 

Culture conditions and data acquisition for morphological analysis 

As in first chapter, drug treatment experiments was conducted using haploid wild-

type (WT) yeast strain; BY4741 (MATa; his3Δ1 leu2Δ0 met15Δ0 ura3Δ0). Yeast 

culture condition, and morphological data acquisition was performed as described in 

first chapter of this dissertation. 

 

Linear discriminant analysis  

Linear discriminant analysis (LDA) is a machine learning method that generates a 

classifier based on the combination of variables that best predicts the group to which a 

given compound belongs. LDA best separates two or more classes (Friedman, 1989). 

To classify and show the difference of the three classes of antifungal agents, I 

performed LDA as indicated in the following six principal steps.  

 

Step 1. CalMorph analysis. Yeast cells were treated with serial concentrations of 

antifungal agents and triply stained with fluoroscienisothiocyanate labeled 

concanavalin A (FITC-ConA), Rhodamine-phalloidin, and 4',6-diamidino-2-

phenylindole (DAPI) to obtain fluorescent images of the cell wall, actin cytoskeleton, 

and nuclear DNA, respectively. To describe the cellular responses using quantitative 

values, fluorescent images were analyzed using CalMorph, which generated 
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quantified 501 morphological parameters for each drug set. The mean values in each 

parameter were calculated from at least 200 individual cells treated with six different 

antifungal agents as specific phenotypic descriptors.  

 

Step 2. Performing the Generalized Linear Model (GLM). I applied the GLM, a 

flexible generalization of ordinary linear regression (Nelder & Wedderburn, 1972), to 

estimate the dose-dependency of the data. The probability distribution functions and 

the link functions to estimate the effects of a drug on cell morphology in each 

parameter was used as described in Yang et al. (2014). I subjected the training and 

test data sets to GLM as follows. 

 

Step 2A. GLM on the training data. For the training data set, effects of six well-

known drugs from the three classes were used as a supervisor for the machine 

learning. The Z value of the Wald test for dose-dependency (a fixed effect of a drug 

treatment) in each parameter was calculated by simple linear regression with GLM 

between five or six concentrations of the drug treatment and parameter values (five 

replications in each concentration). The number of Z values was six for each 

parameter: three for ergosterol (FCZ, AFM &TBF), 1 for DNA (FCS), and two for 

cell wall (MCF & ECB) drugs.  

 

Step 2B. GLM on the test data. Regarding the test data set for cross validation, Z 

values of the Wald test for the dose-dependency in each parameter were estimated by 

simple linear regression with GLM between the drug concentrations and parameter 

values of three replicates randomly selected from the five replicates of each 

concentration. The number of Z values calculated in the test data was 1,500 for each 

class (4,500 in total) in each parameter: FCZ, AMF & TBF: 500; FCS: 1,500; MCF & 

ECB: 750. Before implementing LDA, Z values of both training and test data set were 

superimposed onto 122 PCA-rotated replicated WT morphological data sets.  

 

Step 3. Machine learning 

At first, one pair of PCs among all pairs of 122 PCs (7,381 combinations) was 

selected for the classifier that can discriminate among drugs with different 

mechanisms of action. Next, to enhance the efficiency of sorting, a third possible 

partnering PC was similarly selected from the remaining 120 PCs. Using 
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combinations of the three PCs, the classifier was calculated by supervising the 

machine with a training data set (n = 6).  

 

Step 4: Cross-validation 

Validation of the classifier was accomplished by the accuracy estimated from a 3 × 3 

contingency table among three categories of the six drugs and predicted categories by 

the classifier with the test data set (n = 4500). Projection of test data set resulted in a 

cross-validated learning machine.   

 

Step 5. Optimization 

Repeated processes of selecting PC combination, calculation of a classifier by 

instructing the machine with the training data set using selected PCs, and validation of 

the classifier with the test data set consequently generates the optimum classifier. The 

morphological parameters attributed to the three best PCs that produced optimum 

drug classifier (PC63, PC77 & PC54) were determined by estimating the association 

between PC and Z values of the training data set using cor.test() function. The 

parameters were detected at false discovery rate (FDR) of 0.1 estimated by qvalue() 

function in R package (Storey, 2002). The list of contributing parameters is shown in 

table S4. 

 

Step 6. Superimposing the test compounds  

The Z values of test compounds were computed using GLM, the values were 

projected to 122 PCA-rotated WT data, and the resulting PCs were superimposed onto 

the best classifier. The generated linear discriminant (LD) scores were displayed in 

two-dimensional (2D) phenotypic space. Posterior probability scores defined the 

target prediction of a test compound. 
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2.5 FIGURES 

										 	
Figure 2-1. Schematic illustration of new phenotypic profiling method.  
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The image-based antifungal drug profiling technique involves six principal steps, as 

described in the Results and Materials and Methods. Images from A-I denote the 

following: (A) Dose-dependent antifungal agent treatment of yeast cells; (B) 

CalMorph-processed morphological data of triply stained cells; (C) Training data set 

represented in six different colors; (D) Test data set generated from random samples; 

(E) Output of machine learning; (F) Result of cross-validation; (G) Optimum 

systematic classifier; (H) Test compound to be profiled by the best classifier; (I) the 

results of target prediction. 
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Figure 2-2. Classification of antifungal drugs based on their morphological 
profile differences in 2D-phenotypic space. 
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(A) The clustering pattern of the test data set around six data points of the training set 

from antifungal agents of three distinct classes. Clusters represent the test data 

distribution of the cell wall (red, left side), ergosterol (green, middle), and nucleic 

acid (black, right side) acting drugs respectively. Training data (filled circles); test 

data median points for each drug class (diamond symbol). The positions of the 

median points for the test data (dashed arrow), and training data (solid arrow) from 

the center (green open circle; average of posterior probability scores) are indicated. 

(B) Target profiling of test antifungal compounds. A biplot shows classification of the 

test compounds into different classes with similar mechanisms of action by the 

optimum classifier. LD1 & LD2: linear discriminant functions 1 & 2; larger circle 

(test data distribution), small circles (exact position of each test compound), small 

filled circle (correctly classified), and small open circle (incorrectly classified). 
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2.6 TABLES  
Table 2-1 Antimicrobial drugs used as test compounds in this study 

Compound Abbreviation Stock solution Treatment concentrations Target cellular process 

Caffeine CAF    10 mg/ml in DW  0, 197.5, 296.3, 444, 666, 1000 µg/ml Cell wall biogenesis 
Nikkomycin Z NMZ 10 mM in DW 0, 80, 160, 240, 320, 400 µM Cell wall biogenesis 

Miconazole MCZ 10 µM in DMSO 0, 2, 4, 6, 8 nM Ergosterol biosynthesis 

Concanamycin A CMA 100 µM in DMSO 0, 2, 3.9, 7.8, 15 µM V-ATPase 

Lovastatin LVS 20 mg/ml in ethanolic 
NaOH* 

0, 6.25, 12.5, 25, 50 µg/ml Mevalonate synthesis 

Tunicamycin TCM 10 mg/ml DMSO 0, 20, 40, 60, 80, 100 ng/ml Glycoprotein synthesis 
Hygromycin B HYG 5 mg/ml DW 0, 0.78, 1.56, 3.13, 6.25, 12.5 µg/ml Macromolecular biosynthesis 
Hydroxyurea HXU 2M in DW 0, 10, 15, 20, 25, 30 nM Macromolecular synthesis 
Bleomycin BMC 1 mg/ml DW 0, 31.3, 62.5, 125, 250, 500 ng/ml Nucleic acid biosynthesis 

 *Contains 15% (v/v) Ethanol and 0.25% NaOH 
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												Table 2-2 Comparison of the predictions of target-unknown drug classes by LDA analysis versus experimental research evidence 

Drug  Abbreviation Predicted  

drug class 

Target, mechanism of action and/or 

function 

References 

Caffeine CAF Cell wall Blocks cell wall biosynthesis   Levin (2005); Kuranda et al. (2006) 

Nikkomycin Z NMZ Cell wall Inhibits chitin synthase of Saccharomyces 
cerevisiae 

 Gaughran et al. (1994)  

Miconazole MCZ Ergosterol Blocks the biosynthesis of ergosterol, 
inhibits sterol 14α-demethylase 

 Ghannoum & Rice (1999)  

Amorolfine AMK* Ergosterol Inhibits Δ14 reductase and Δ7-Δ8 isomerase  Shah Alam Bhuiyan et al. (2007)  

Lovastatin LVS Ergosterol/ 
Nucleic acid 

HMG-CoA synthase inhibitor; disrupts the 
cholesterol synthesis pathway; 
Mediates G1 arrest via inhibition of 
proteasome  

 
  
 Alberts et al. 1980; Rao et al. (1999) 

Tunicamycin TCM Nucleic acid Affects bud emergence and initiation of 
DNA synthesis;  
Inhibitor of yeast glycoprotein synthesis 

  
 Kuo & Lampen (1974); Vai et al. (1987) 

Hygromycin B HYG Nucleic acid Inhibiting protein synthesis;  
Stabilizes the tRNA-ribosomal acceptor site, 
thereby inhibiting translocation 

 Borovinskaya et al. (2008); Shoji et al. (2009)  
 

Hydroxyurea HXU Nucleic acid Inhibits DNA synthesis;  
Reduces mRNA levels of small subunit of 
ribonucleotide reductase (RNR2)  

 Timson, (1975); Moore & Hurlbert (1985) 
 

Bleomycin BMC Nucleic acid DNA fragmenting agent Chen & Stubbe (2005)  

Concanamycin A CMA Nucleic acid Inhibits vacuolar-type H+-ATPases Dröse et al. (1993) 

         *AMK – Amorolfine data acquired in different experiment 
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CHAPTER III: Sensitive and High-throughput Profiling of 
the Responses of Antimicrobial Agents from Single Cells 

3.1 INTRODUCTION 
Antimicrobial drug development is a time-consuming and costly process. The most 

challenging but crucial aspect of antimicrobial drug research is elucidating the mode 

of action and cellular targets of new compounds (Livermore, 2011; Futamura et al., 

2013b). Much of the difficulty in identifying the mode of action of putative bioactive 

compounds emerges from the complexity and interrelationship of the cellular system 

(Toledo-Arana & Solano, 2010), the existence of multiple targets (Rix & Superti-

Furga, 2009; Silver, 2011), and the pleiotropic effects of target genes (Kohanski et al., 

2010; Toledo‐Arana & Solano, 2010). Profiling multimetric phenotypic signatures 

of small molecules proved useful in offering substantial insights into their 

mechanisms of action, a systems level understanding of biological pathways (targets) 

and their responses to drug treatments including uncharacterized ones. It thus 

deserves due emphasis in the drug discovery process especially at an early step. 

 

Cell-based screens are increasingly being used in drug discovery pipeline to assess 

drug responses of signalling pathways because they properly reflect the complexity of 

the cell than target-based approaches (Fishman & Porter, 2005). Among others, high-

throughput image analysis is becoming a powerful tool for drug target identification, 

and compound lead selection (Perlman et al., 2004; Lang et al., 2006).  First, the 

availability of yeast S. cerevisiae as a eukaryotic cell model of choice for high-

throughput phenotyping has facilitated phenotypic drug discovery process. This is 

mainly due to its ease of manipulation and genetic tractability, inexpensiveness to 

maintain and grow, many of its core cellular process conserved in humans (Botstein et 

al., 1997; Botstein & Fink, 2011). To this end, researchers have unparalleled breadth 

of reagents to interrogate the yeast genome as its strains are ideal to model disease 

state in human cells and for studying conserved targets and mechanisms of basic 

biological processes (St Onge et al., 2012). Second, increased availability of 

automated fluorescence microscopy, supercomputing facilities, and advances in 

molecular labeling has enabled the advancement of high-throughput image-based 
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assays (Price et al., 2002; Zhou & Wong, 2006). Such assays have impressively 

empowered large-scale phenotyping of single cells including cellular morphology. 

Finding of new therapeutics from vast natural products using high-throughput 

screening shall, however, meet various challenges. For example, the development of 

natural products is hampered by a lack of a mechanistic understanding of their 

molecular action and identifying the potential targets associated with a bioactive small 

molecule, among others.  

 

Diverse genomic and genetic tools of for the advancement of genome-wide studies in 

S. cerevisiae have so far been developed (Luesch et al., 2005; Bharucha & Kumar, 

2007). As part and parcel of the scientific development, our chemical genomics 

research has predominantly focused on developing tools for drug target prediction, 

which is based either on the assumption that chemicals should phenocopy the 

mutation, or screening drugs that share similar perturbation profiles. Ohnuki et al. 

(2010) reported a method of exploring the cellular functions affected by candidate 

compounds by comparing with the phenotypes of yeast non-essential gene-deletion 

mutants. Later, as an alternative to the current system, I developed a high-content 

method that profiles genetic targets of an antifungal compound without relying on any 

mutant information in advance (Gebre et al., 2015). Despite these developments, 

relatively high concentration of drugs is needed because wild-type yeast cells are 

treated with drugs. As a result, quite a number of abundance -limited natural products 

have largely been prone to exclusion from characterization via high-throughput 

profiling strategies. To enhance the value of the high-throughput screening paradigm 

for the discovery of new therapeutics, new efficient systems are highly demanded. 

The use of alternative resources that may increase compound efficiency and further 

diminishes is hence of paramount importance in this regards. 

 

Nowadays, resistance to multiple drugs becomes one of the major concerns in the 

areas of antibiotics and antifungal drug development. The major mechanism 

responsible for increased resistance to drug (e.g. azole) in clinical Candida isolates is 

drug efflux mediated by plasma membrane transporters (Rogers & Barker, 2003; 

Holmes et al., 2008). Consequently, it is supposed that knocking out these 

transporters in model systems background could facilitate the drug discovery at 
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reduced amount of a given compound. In this study, I envisaged developing a new, 

efficient image-profiling tool for high-throughput drug discovery. To that purpose, an 

integrated profiling method was proposed to combine hypersensitive strains and high-

throughput microscopy through high statistical power as a great tool for connecting 

low-abundance natural compounds to their biological targets and pathways. The 

introduction of new yeast deletion mutant dataset that compromised the cell’s ability 

to efflux toxic compounds allows the use of small amount of compound compared to 

wild type. Besides, a high-content microscopy is used as one of the faucets of 

integrated approach to enable large-scale screening of chemical library. Furthermore, 

high power statistical approach that accommodates the non-normally distributed data, 

a generalized linear model (GLM), was utilized for the analysis of dose response 

morphological data. As a proof-of-concept study, I employed six standard compounds 

to demonstrate its applicability for the discovery of new drug. My profiling system 

successfully identified the targets of those compounds and potentially affected 

cellular pathways, demonstrating the validity of this approach.  

3.2 RESULTS 
The sensitivity of morphological dataset                                                      

In this study, I considered using a collection of S. cerevisiae with drug-hypersensitive 

background to establish new morphological dataset. Thus, first I examined the 

morphological changes in a triple mutant (pdr1Δpdr3Δsnq2Δ, hereafter designated as 

“TM”) background strain compared to its isogenic wild type (Fig. 3-1). Visual 

inspection revealed the triple mutant yeast is different in the morphological traits 

compared to the WT (Fig. 3-1A). Quantitative phenotypic description showed TM 

distinct from its WT in more than 170 morphological parameters (Fig 3-1B, Table 

S6). To study the contribution of each gene deletion to the TM morphology, I 

examined the phenotypic effects of potential drug-hypersensitive background strains 

(Table S7). The study revealed that snq2 gene deletion in single, double and triple 

mutants background showed comparable number altered morphological profile (Fig. 

3-1C), supporting the finding that deletion of SNQ2 in the pdr1Δpdr3Δ mutant 

background yielded a highly drug sensitive strain (Andrusiak, 2012). To find out 

which gene(s) is/are the principal contributor(s) to the TM background, I subjected 

the morphological data to PCA, a multivariate statistical approach. I found that taking 

all the dimensions into account, snq2 and pdr1 genes are the most dominant genes 
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(Fig. 3-1D), and Snq2 gene is the main contributor to the TM morphology based on 

the 2D phenotypic profile (Fig. 3-1E).  

Because phenotypic characteristics such as defective growth could be scored to 

determine the sensitivity of cells to chemical compounds, at first, I pondered 

assessing drug sensitivity of hypersensitive yeast and WT cells after exposing both 

strains to a similar range of concentrations of standard compounds. Therein, a relative 

sensitivity was defined by taking the ratio of data determined from growth-inhibition 

test of triple mutants to that of its isogenic WT (Fig. 3-2A, see Material & methods 

for the details). Depending on the bioactive compounds, I found that TM yeast 

showed 2-15 fold higher sensitivity compared to the equivalent wild-type S. 

cerevisiae background strain used in previous image-based chemical genomics 

experiments in yeast. In addition, further comparison of morphological sensitivity 

after treating the cells with same concentration of TCM, ECB and HU revealed 

significant number of parameters altered in TM than WT (Fig. 3-2B). Altogether, the 

comparison provided evidence that yeast host is a sensitive and practical model 

system for our chemical phenomics studies. 

Development of sensitive high-throughput phenotyping method 

Previous works in our laboratory demonstrated that phenotypic similarity could be 

used for the prediction of drug targets (Ohnuki et al., 2010; Okada et al., 2014; Jin & 

Weisman, 2015), identification of target of a new antifungal drug (Iwaki et al., 2013; 

Piotrowski et al., 2015). However, for the comprehensive analyses of cellular 

responses even from reduced amount compound, I developed a more integrated 

profiling method that offers high-throughput sensitive screening capability (Fig. 3-3). 

In this approach, the genetic target(s) of a drug is explored by associating 

morphologic changes induced by chemical with that of the genetic perturbations. 

Target prediction pipeline from HTP-image acquired and processed data, could be 

accomplished the following three steps: Firstly, the distributions of each parameter 

value from about 2000 mutants were normalized using 726 replicates of WT sample 

distribution by generalized linear model (GLM) to evaluate the 501 parameters in 

each mutant, followed by characterization using principal component analysis (PCA). 

Secondly, morphological data from chemical compound treated set were similarly 

characterized by GLM and PCA. Finally, morphologic similarities were defined using 
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the Pearson product-moment correlation coefficient (R value). Using p values from 

the correlation coefficient test (at one-sided p value after the Bonferroni correction), 

mutants with significantly high positive R-values were defined as potential targets. 

 

Phenotypic profiling of antimicrobial response signatures  

As proof of mechanism, using well-characterized standard compounds, I needed to 

demonstrate the validity of an approach that allows the identification of those gene 

products that functionally interact with small molecules and result in the inhibition of 

cellular proliferation. For that purpose, I used six different standard compounds, 

which include both anticancer, and antifungals – hydroxyurea (HU), bortezomib 

(BTZ), benomyl (BML), methyl methanesulfonate (MMS), tunicamycin (TCM) and 

echinocandin B (ECB). The results from screening are described below. 

Antifungal compounds. Since the quest for new effective antifungal agents is 

struggling to keep up with emerging drug resistance, using standard drugs, it is worth 

verifying the vitality of the new method in facilitating chemoprospecting of untapped 

natural compounds repository. I used three antifungal agents: ECB and TCM as 

representative of agents that damage the cell wall while BML as the antimitotic 

antifungal compound that inhibits microtubule polymerization and dynamics.  

 

Benomyl 

BML is an antifungal agent with fungicidal acidity that is selectively toxic to both 

microorganisms and invertebrates. The antimitotic antifungal compound inhibits 

microtubule polymerization and dynamics, thereby interfering with cell functions and 

intracellular transportation. A microtubule-depolymerizing agent was also shown to 

inhibit cancer cell proliferation at mitosis, by binding to a novel site in tubulin (Gupta 

et al., 2004). Microtubules are comprised of α- and β-tubulin subunits encoded by 

TUB1/TUB3 and TUB2, respectively. The essential TUB1 and TUB2 gene was not 

evaluated in this study because the both mutant was not included among the tested 

1984 mutants. TUB2, the core of S. cerevisiae β-tubulin, was indicated to be a 

potential binding site for benomyl (Richards et al., 2000). Morphological profiling 

revealed CIN4, a GTP-binding protein involved in beta-tubulin (Tub2p) folding, 

shared significant similarity with benomyl-treated cells (Fig. 3-4 & Fig. 3-5, Table 3-

1). The GO term analyses with 20 most similar mutants showed 5 genes were 
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associated with GO process “tubulin assembly complex” (Table S8; GOID: 7021). 

This is consistent with a genetic screen which demonstrated CIN4 mutants display 

super-sensitivity to BML (Stearns et al., 1990).  

 

Tunicamycin 

TCM, a nucleoside antibiotic, is a specific inhibitor of N-linked glycosylation that 

blocks the first step of glycoprotein synthesis thereby inducing protein unfolding. The 

known target of tunicamycin is an essential gene ALG7, which encodes for UDP-N-

acetyl-glucosamine-1-P transferase. The morphological profiles induced by the TCM 

treatment showed significant resemblance (165 out of 1984: 8.32%) to those induced 

by individual deletions of genes that encode mannosyltransferase (HOC1, MNN10, 

OCH1, MNN2, etc.) (Fig. 3-4 & Fig. 3-5, Table S8; p < 0.0001 after Bonferroni 

correction). The correlation coefficient for hoc1, and mnn10 was 0.69 and 0.59, 

respectively. The Gene Ontology enrichment analysis with the significantly similar 

165 gene deletion mutants (p < 0.01) showed 10 genes annotated to GO term 

“glycoprotein biosynthetic process,” in a GO database (Table S8, GOID: 9101). 

These results are consistent with the mode of action of TCM, which blocks N-

glycosylation (Ballou, 1990; Jigami, 2008).  

 

Echinocandin B 

ECB, a lipopeptide, is the first of the echinocandin class of antifungals which was 

known to inhibit Fks1p activity, the synthesis of 1,3-β-D-glucan, a major component 

of the yeast cell wall (Sawistowska-Schriider et al., 1984). In my profiling; however, 

ECB-treated cells had no or little similarity to the FKS mutants (Fks2 and fks3). 

Instead, ECB-treated cells had somewhat similar profiles with TCM-treated cells i.e. 

mutants related to α-1,6-mannosyltransferase were enriched (p < 0.00001 after 

Bonferroni correction; Fig. 3-4 & Fig. 3-5, Table S8). This is consistent with previous 

observations and is probably due to functional redundancy between Fks1 and Fks2 

and/or the multifunctional properties of Fks1 (Ohnuki et al., 2010; Okada et al., 

2010).  

 

Anticancer compounds. Because of the extensive homology between yeast and 

human biochemical pathways and, in particular, that of the cell cycle, I tested the 

hypothesis that our chemical-genetic technique could reveal the mechanism of action 
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of anticancer compounds. Presented below is the profiles of some of such compounds 

in this study: HU, MMS, and BTZ.  

 

Hydroxyurea  

HU is an antineoplastic drug used in myeloproliferative disorders. The agent inhibits 

ribonucleotide reductase activity and consequent suppression of DNA synthesis 

(Chang & Cheng, 1978).  In the yeast S. cerevisiae, HU targets RNR1 and RNR3, 

encode α-subunits (Elledge & Davis, 1990) though RNR2 (Elledge & Davis, 1987) 

and RNR4 (Wang et al., 1997) encode β-subunit. To identify mutant cells with 

similar morphologic profiles, I applied the high-content image profiling on the 

phenotypic information of the mutants (Fig. 3-4 & Fig. 3-5). Of 1984 mutants, 770 

(38.81%) morphologic profiles were significantly similar with that of the 

hydroxyurea-treated cells by the high-content image profiling at one-sided p <0.00001 

with the Bonferroni correction. Among these mutants, 104 of them were annotated to 

a GO process term “DNA metabolism” in the GO database (Fig. 3-4 & Fig. 3-5; Table 

S8, GOID: 6259, p < 0.01). Although the rnr4 mutant was not detected as a candidate 

as it wasn't included in our dataset, probably due weak phenotype, the mutant of the 

HU target rnr3 was identified (R = 0.30). Thus, this proves that the method 

proficiently identified genes from pathways related to the function of the agent. 

 

Bortezomib 

BTZ is an antitumor drug approved for the treatment of multiple myeloma, which acts 

either by inhibiting the activity of the 26S proteasome or through the inhibition of 

transcription factor nuclear factor-kappa beta (Richardson & Anderson, 2003). Our 

image profiling detected 466 (23.48%) of the 1984 genes including RPN10, non-

ATPase base subunit of the 19S RP of the 26S proteasome (R=0.74), as potential 

bortezomib targets at one-sided p < 0.00001 with the Bonferroni correction. Besides, 

mutants such as RTT109, a gene required for H3K56 acetylation which plays a 

critical role in conferring resistance to replication stress, and rpn4, the transcription 

factor that stimulates expression of proteasome genes (R=0.68) were associated with 

“cellular response to DNA damage stimulus” (Table S8, GOID: 6974), a GO term that 

was significantly enriched (Fig. 3-4 & Fig. 3-5). Consistent with my finding research 

evidences indicated that proteasome inhibitors activate the DNA damage response or 
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perturb its pathway (Jacquemont & Taniguchi, 2007), which often equates to the 

enhanced chemosensitivity of cells to DNA damaging agents (Takeshita et al., 2009). 

In a nutshell, this proves the power of our phenomic profiling in properly identifying 

genes in pathways related to the DNA damage signalling as targets for BTZ.  

 

Methyl methanesulfonate (MMS)                                                          

MMS, an anticancer agent, which acts on DNA by methylating predominantly on N7-

deoxyguanosine and N3-deoxyadenosine (Pegg, 1984). Brown and co-workers found 

a set of genes whose expression increased following methyl-methanesulfonate 

(MMS), which includes RAD51, RAD54, RNR2, RNR4 or more (Gasch et al., 2001; 

Chang et al., 2002). Our image profiling system revealed that among the 1984 

mutants, 563 (28.38%) were notably comparable to MMS-treated cells at one-sided 

p<0.00001 after Bonferroni correction (Fig. 3-4 & Fig. 3-5). Amongst the most likely 

candidates, 63 mutants including Rad55 and MMS22 were associated with “cellular 

response to DNA damage stimulus” (Figure S8, GOID: 6974), which represented a 

significant GO enrichment (p <	0.01). This clearly indicates my method competently 

identified the genes encoding proteins in pathways related to DNA damage response. 	

3.3 DISCUSSION  
To advance our understanding of disease biology, the characterization of the 

molecular target for clinically proven or new drugs is very important. In this study, I 

developed a novel image-based sensitive and high-throughput method to 

systematically identify genes encoding drug targets in yeast S. cerevisiae. The 

multimorphic profiling method uses quantitative morphologic response of 

antimicrobial compound from yeast cells and a dataset of ~2000 nonessential deletion 

mutants in drug-hypersensitive background. I used six well-characterized standard 

compounds that affect several cellular functions as a representative of antitumor and 

antifungal drugs. I attested that the proposed method could detect targets and uncover 

their potential mechanisms of action of drug candidate independent of prior 

information. 

 

The technique is high-throughput would mean that large-scale screening of the 

chemical compound library can be done at a time. This will enable us to successfully 

recover targets for a large number of known compounds as well as make predictions 
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for several uncharacterized compounds. I also considered that our new yeast 

morphological database might serve as a powerful tool for linking novel low-

abundance bioactive compounds to their biological targets and pathways. In a new 

yeast deletion, each strain was created in triple mutant background 

(Δpdr1Δpdr3Δsnq2) that compromises the cell’s ability to pump out toxic compounds. 

Thus, a host strain carrying these mutations render cells more sensitive to bioactive 

compounds. As such it is expected to facilitate target identification through 

phenotypic response of any candidate compound at reduced amount. Moreover, the 

high-throughput profiling system will not only enable characterizing drug activity in 

yeast, but these analyses could also be extended in more relevant context in extensive 

chemical-biology program centered around mammalian cells. I propose that my new 

method could serve as a useful tool for high-throughput drug discovery. 

 

Chemical genomic studies in yeast face dual challenges of determining compounds 

that induces complex phenotypes and inferring compounds' targets. My high-

throughput phenomic profiling is a microscope-based chemical genomic study tool, 

which uses image-processing program CalMorph that outputs 501 cell morphology 

parameters (Ohtani et al., 2004). Using this CalMorph system, our laboratory 

successfully identified genetic targets of both characterized bioactive compound from 

their morphologic signatures (Ohnuki et al., 2010; Iwaki et al., 2013; Gebre et al., 

2015). Chemical-genomic profiling, a similar approach to mine, also involves high-

throughput screening a compound against a collection of mutant strains with defined 

genetic perturbations. Therein, the profiles of mutants that are differentially sensitive 

and show different morphology from this collection acts as a “fingerprint” for a 

compound’s mode of action (Parsons et al., 2004). Combining genetic interactions-

based chemical genomics profiling and CalMorph-based phenomic profiling will 

facilitate the development of new paradigms for high-throughput drug discovery.  

3.4 MATERIALS AND METHODS 
Yeast Strains                       

To establish new morphological dataset for morphological profiling, I employed new 

yeast deletion mutant collection, where each strain carries three additional mutations 

(pdr1Δ pdr3Δ snq2Δ), covering over 5000 ORFs. These huge resources were obtained 

from the laboratory of Dr. Charles Boone at the University of Toronto. To 
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systematically identify yeast mutants and appropriate their growth under similar 

conditions, I took into consideration the research evidences noted previously 

(Warringer et al., 2003; Ohya et al., 2005). Since Ohya et al. (2005) demonstrated 

that individual deletion of nearly half of the nonessential genes in the genome (2,378 

out of 4,718) affects cellular morphology; a list of 2,300 was extracted from a set of 

nearly 5000 quadruple mutants. By cluster analysis, groups of yeast mutants that have 

similar growth characters were identified using reference strains, mutant having 

relevant growth behavior available at PROPHECY database (Warringer et al., 2003; 

http://prophecy.lundberg.gu.se).  

Drug sensitivity of triple mutant host strain  

Growth sensitivity. The evaluation of chemical sensitivity of TM host strain was 

identified from the dose-response analysis. Both yeast strains (WT and TM) were 

grown in YPD medium containing serially diluted antimicrobial agent in a 96-well 

microplate for about 42 h at 25 °C. Growth inhibition was determined from the 

doubling time of cells treated with each doses over mock-treated cells. After taking 

the ratio of relative growth delay in TM to its isogenic WT at each concentration of 

the standard compounds, the dose that has higher hit rate define the sensitivity of a 

given strain compared to the equivalent WT.  

Morphological sensitivity. To assess the effects (e.g. the changes in the 

morphological parameters) brought about by the drug in hypersensitive yeast, both 

WT and sensitized yeast strains were treated with the same concentration of each 

standard drug. The number of altered parameters induced by the compounds in the 

WT and TM describes if the strain is sensitive than its WT cousin or not. 

 
High-throughput image acquisition and analysis 

Acquisition and analysis of image from high throughput samples was performed using 

an automated microscope In CELL analyzer as described previously (Okada et al., 

2015) with little modifications. Briefly, Wild-type yeast strains were cultured at 25  

°C in YPD until the early log phase overnight on microtiter plate shaker. The cells 

were fixed with 3.7% formaldehyde (Wako Pure Chemical Industries) and 0.1 M 

potassium phosphate buffer (pH 6.5), agitated for 30 min at 25 °C in a water bath. 

Yeast cells were triply stained, image were acquired and subjected to CalMorph (ver. 
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1.2) analysis. To study the effect of gene deletion on the yeast morphology, image 

acquisition and analysis of single, double, triple mutant yeasts as well as their wild-

type strain were carried out. Conditions of cell culture and image acquisition using 

AxioImager M1 microscope were described previously (Ohya et al., 2005). 

 

Phenotypic analysis of drug-hypersensitive strains 

To find out what makes triple mutant strain different from its WT, the Manny-

Whitney-Wilcoxon test was performed on PCA subjected quantitated morphological 

data using wilcox.test() function. Significantly changed morphological parameters 

were detected at the threshold p value of 0.01 or 0.05 after Boniferonni correction. 

Ultimately, morphological changes induced by the deletion of three pleotropic drug 

resistance genes in the hypersensitive background was summarized in the relevant cell 

cycle stages and depicted schematically.  

To describe phenotypes of hypersensitive mutants taking all the dimensions 

into account, I applied PCA on the Z values of wild type 50 data. Next, I calculated 

the Z values of 7 yeast deletion mutants’ and their parental wild-type morphological 

data (Table S2). To remove spurious correlation among morphological parameters, 

the Z values of mutants were projected onto the PCA-rotated 50 WT phenotypic data. 

After calculating the difference of all mutant data from mean value of wild type as a 

center, the association between two strains was estimated from correlation coefficient 

between the net values of resulting PC scores. For 2D phenotypic depiction, 

quantified raw morphological data was subjected to PCA without scaling and the first 

two PCs (PC1 and PC2) were plotted in 2D-phenotypic space. 

 

Gene Ontology (GO) analysis 

Information on GO annotations was gathered using the ‘GO Term Finder’, ver. 0.83 

(http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl) in the Saccharomyces 

Genome Database (Boyle et al. 2004). Genes of morphologically similar mutants 

were used as query genes, and 1980 of 1984 quadruple mutant associated with at least 

one GO term were considered as the background gene set. 
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3.5 FIGURES 
 
 

	
Figure 3-1. Morphological changes in Δpdr1Δpdr3Δsnq2. 
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(A) Microscopic observation of TM and WT cells. (B) Summary of morphological 

changes induced by three gene deletions. (C) Number of morphological parameters 

altered by deletion effect. (D) Then phenotypic characteristics of each mutant with 

respect to the triple mutant host strain was determined by a correlational analysis 

estimated after the data distribution is centered at the WT mean value. The result was 

depicted in column histogram expressed in terms of standard deviation. (E) The 

morphological data of the eight hypersensitive strains subjected to PCA and displayed 

in a 2D-phenotypic space.  
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Figure 3-2. Drug sensitivity of Δpdr1Δpdr3Δsnq2. 
 
Using the same concentration data for both WT and TM and growth sensitivity of 

triple mutants to 6 standard compounds (A) and the number of altered parameters by 

the compounds 100 ng/ml TCM, 2 µg/ml ECB, and 20 mM HU (B), respectively 

were determined by the Manny-Whitney-Wilcox test. 
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Figure 3-3. Schematic illustration of the integrated method used in this study. 
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Yeast cells (both mutants and drug-treated) were cultured, fixed with 37% 

formaldehyde, and stained triply with FITC (cell wall), Rhodamine-Ph (actin 

cytoskeleton), and DAPI (nuclear DNA), respectively. From the fluorescent 

microscopic images of triple-stained yeast cells, CalMorph analyzes and quantitates 

501 cell morphology parameters. To characterize the mutants, first the distributions of 

726 TM host strain, considered as a “wild-type (WT)”, values for each parameter 

were transformed. Using more than 700 WT samples, the distributions of parameter 

values for the 2000 quadruple mutants (QMT) were normalized and subjected to 

PCA. This serves as gene perturbation reference set. Next, the distributions of the 

parameter values from drug-treated wild-type yeast were characterized and then 

defined by the PCA of wild-type data transformed for 259 parameters. The output will 

be used as chemical perturbation test data set. Finally, the Pearson product-moment 

correlation coefficient (R) defined the morphologic similarities between the dose-

dependent changes induced drug treatment and those induced by the deletion 

mutations.   
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Figure 3-4. Prediction of 6 target-known compounds. 
 
Morphological profiling was performed using integrated method for sensitized yeast 
cells treated with BML, TCM, ECB, HU, MMS, and BTZ. Comparison of profiles of 
drug-treated cell morphology with non-essential genes deletion in the hypersensive 
background revealed cellar target of each drug and genes involved in functionally 
related pathways. Red filled circles are genes that share significant similarity with 
those related to the GO terms “tubulin complex assembly,” or “glycoprotein 
synthesis,” or “cell component biogenesis,” or “DNA metabolism,” or “cellular 
response to DNA damage,” or “cellular response to DNA damage stimulus.” Black 
filled circles show genes that show insignificant similarity with each drug treated 
cells. 
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Figure 3-5. Morphological similarity of yeast treated with standard compounds. 
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Morphology of cells treated with the six standard compounds was compared to 
mutant that shared significantly similarity. The degree of morphological resemblance 
was expressed as a Pearson product moment correlation coefficient, R values for each 
drug, which is indicated on the right side of respective images.  
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3.6 TABLES 
Table 3-1 Yeast mutants that shared significant similarity with benomyl treated hypersensitive host strain 

Drug ORF GENE DESCRIPTION R p 

BML YMR138W CIN4 GTP-binding protein involved in beta-tubulin (Tub2p) folding; isolated as mutant with 
increased chromosome loss and sensitivity to benomyl 

0.55 1.66E-22 

 YER007W PAC2 Microtubule effector required for tubulin heterodimer formation; binds alpha-tubulin, required 
for normal microtubule function, null mutant exhibits sensitivity to benomyl 

0.51 4.69E-19 

 YPL165C SET6 SET domain protein of unknown function; deletion heterozygote is sensitive to compounds 
that target ergosterol biosynthesis, may be involved in compound availability  

0.47 2.08E-16 

 YOR058C ASE1 Mitotic spindle midzone-localized microtubule bundling protein; undergoes cell cycle-
regulated degradation by anaphase promoting complex; potential Cdc28p substrate 

0.47 3.93E-16 

 YDR183W PLP1 Protein that interacts with CCT (chaperonin containing TCP-1) complex; has a role in actin 
and tubulin folding; has weak similarity to phosducins, which are G-protein regulators 

0.45 4.82E-15 

 YJL145W SFH5 Non-classical phosphatidylinositol transfer protein (PITP); localizes to the peripheral 
endoplasmic reticulum, cytosol and microsomes; similar to Sec14p; partially relocalizes to the 
plasma membrane upon DNA replication stress 

0.44 5.72E-14 

 YEL003W GIM4 Subunit of the heterohexameric cochaperone prefoldin complex; complex binds specifically to 
cytosolic chaperonin and transfers target proteins to it 

0.40 6.33E-12 

 YPL241C CIN2 GTPase-activating protein (GAP) for Cin4p; tubulin folding factor C involved in beta-tubulin 
(Tub2p) folding; mutants display increased chromosome loss and benomyl sensitivity 

0.40 7.57E-12 

 YBR101C FES1 Hsp70 (Ssa1p) nucleotide exchange factor; required for the release of misfolded proteins from 
the Hsp70 system to the Ub-proteasome machinery for destruction; cytosolic homolog of Sil1p 

0.39 2.12E-11 

 YOR349W CIN1 Tubulin folding factor D involved in beta-tubulin (Tub2p) folding; isolated as mutant with 
increased chromosome loss and sensitivity to benomyl  

0.39 3.33E-11 

 YML124C TUB3 Alpha-tubulin; associates with beta-tubulin (Tub2p) to form tubulin dimer, which polymerizes 
to form microtubules; expressed at lower level than Tub1p; TUB3 has a paralog, TUB1 

0.37 2.38E-10 
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Table 3-2. Yeast mutants that shared significant similarity with tunicamycin treated hypersensitive host strain 

Drug ORF GENE DESCRIPTION R p 

TCM YJR075W HOC1 Alpha-1,6-mannosyltransferase; involved in cell wall mannan biosynthesis; subunit of a Golgi-
localized complex that also contains Anp1p, Mnn9p, Mnn11p, and Mnn10p 

0.69 
 

1.06E-38 

 YDL192W ARF1 ADP-ribosylation factor; GTPase of the Ras superfamily involved in regulation of coated 
vesicle formation in intracellular trafficking within the Golgi  

0.65 9.37E-34 

 YNL238W KEX2 Kexin, a subtilisin-like protease (proprotein convertase); a calcium-dependent serine protease 
involved in the activation of proproteins of the secretory pathway 

0.64 1.53E-32 

 YKL073W LHS1 Molecular chaperone of the endoplasmic reticulum lumen; involved in polypeptide 
translocation and folding; regulated by the unfolded protein response pathway 

0.64 2.29E-31 

 YLR242C ARV1 May function in transport of glycosylphosphatidylinositol intermediates into ER lumen; 
required for normal intracellular sterol distribution; human ARV1 is required for normal 
cholesterol and bile acid homeostasis, can complement yeast arv1 null mutant  

0.64 4.92E-31 

 YBL007C SLA1 Cytoskeletal protein binding protein; required for assembly of the cortical actin cytoskeleton; 
interacts with proteins regulating actin dynamics and proteins required for endocytosis; found 
in the nucleus and cell cortex; has 3 SH3 domains  

0.64 5.66E-31 

 YGL084C GUP1 Plasma membrane protein involved in remodeling GPI anchors;  role in misfolded protein 
quality control; proposed to be involved in glycerol transport 

0.64 5.79E-31 

 YPL069C BTS1 Geranylgeranyl diphosphate synthase (GGPS); increases the intracellular pool of 
geranylgeranyl diphosphate 

0.62 1.86E-29 

 YDR414C ERD1 Predicted membrane protein required for lumenal ER protein retention; mutants secrete the 
endogenous ER protein, BiP (Kar2p)  

0.61 7.38E-29 

 YMR307W GAS1 Beta-1,3-glucanosyltransferase; required for cell wall assembly localizes to cell surface via a 
GPI anchor 

0.59 6.35E-27 
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Table 3-3. Yeast mutants that shared significant similarity with echinocandin B treated hypersensitive host strain		

Drug ORF GENE DESCRIPTION R p 

ECB YDR245W MNN10 Subunit of a Golgi mannosyltransferase complex; complex mediates elongation of the 
polysaccharide mannan backbone; membrane protein of the mannosyltransferase family 

0.79 5.26E-59 

 YPL069C BTS1 Geranylgeranyl diphosphate synthase (GGPS); increases the intracellular pool of 
geranylgeranyl diphosphate 

0.76 5.85E-52 

 YKL073W LHS1 Molecular chaperone of the endoplasmic reticulum lumen; involved in polypeptide 
translocation and folding; nucleotide exchange factor for the ER lumenal Hsp70 chaperone 
Kar2p; regulated by the unfolded protein response pathway 

0.75 2.49E-49 

 YGR105W VMA21 Integral membrane protein required for V-ATPase function; localized to the yeast endoplasmic 
reticulum (ER) 

0.74 8.03E-48 

 YHR178W STB5 Transcription factor; involved in regulating multidrug resistance and oxidative stress response; 
forms a heterodimer with Pdr1p; contains a Zn(II)2Cys6 zinc finger domain that interacts with 
a pleiotropic drug resistance element in vitro 

0.74 1.25E-47 

 YJR075W HOC1 Alpha-1,6-mannosyltransferase; involved in cell wall mannan biosynthesis 0.70 9.31E-41 
 YDR414C ERD1 Predicted membrane protein required for lumenal ER protein retention; mutants secrete the 

endogenous ER protein, BiP (Kar2p) 
0.68 3.65E-37 

 YMR307W GAS1 Beta-1,3-glucanosyltransferase; required for cell wall assembly and also has a role in 
transcriptional silencing 

0.68 4.47E-37 

 YOR293W RPS10A Protein component of the small (40S) ribosomal subunit; homologous to mammalian 
ribosomal protein S10 

0.67 1.09E-35 

  YKL092C BUD2 GTPase activating factor for Rsr1p/Bud1p; mutants exhibit random budding in all cell types 0.67 1.28E-35 
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Table 3-4. Yeast mutants that shared significant similarity with hydroxyurea treated hypersensitive host strain 

Drug ORF GENE DESCRIPTION R p 

HU YHR031C RRM3 DNA helicase involved in rDNA replication and Ty1 transposition; binds to and 
suppresses DNA damage at G4 motifs in vivo; relieves replication fork pauses at 
telomeric regions 

0.86 1.59E-138 

 YNR010W CSE2 Subunit of the RNA polymerase II mediator complex; associates with core polymerase 
subunits to form the RNA polymerase II holoenzyme 

0.83 9.92E-122 

 YJL188C BUD19 Dubious open reading frame; unlikely to encode a functional protein 0.83 5.82E-120 
 YDR287W INM2 Inositol monophosphatase; involved in biosynthesis of inositol; enzymatic activity 

requires magnesium ions and is inhibited by lithium and sodium ions; inm1 inm2 double 
mutant lacks inositol auxotrophy 

0.83 1.74E-118 

 YDL113C ATG20 Required for the cytoplasm-to-vacuole targeting (Cvt) pathway and for endosomal 
sorting; has a Phox homology domain that binds phosphatidylinositol-3-phosphate; 
interacts with Snx4p 

0.82 2.64E-116 

 YLR357W RSC2 Component of the RSC chromatin remodeling complex; required for expression of mid-
late sporulation-specific genes; involved in telomere maintenance 

0.82 3.28E-116 

 YPL090C RPS6A Protein component of the small (40S) ribosomal subunit; homologous to mammalian 
ribosomal protein S6 

0.82 2.8E-113 

 YHR210C YHR210C Putative aldose 1-epimerase superfamily protein; non-essential gene 0.82 1.47E-112 
 YLR418C CDC73 Component of the Paf1p complex; binds to and modulates the activity of RNA 

polymerases I and II; required for expression of certain genes, modification of some 
histones, and telomere maintenance 

0.81 1.9E-109 

 YPL240C HSP82 Hsp90 chaperone; redundant in function with Hsc82p; required for pheromone 
signaling, negative regulation of Hsf1p; promotes telomerase DNA binding, nucleotide 
addition; protein abundance increases in response to DNA replication stress 

0.81 1.76E-108 
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Table 3-5. Yeast mutants that shared significant similarity with methyl methanesulfonate treated hypersensitive host strain 

Drug ORF GENE DESCRIPTION R p 

MMS YOR080W DIA2 Required for deactivation of Rad53 checkpoint kinase, completion of DNA replication 
during recovery from DNA damage, assembly of RSC complex, RSC-mediated 
transcription regulation, and nucleosome positioning 

0.70 8.79E-40 

 YBR194W AIM4 Protein proposed to be associated with the nuclear pore complex; null mutant is viable, 
displays elevated frequency of mitochondrial genome loss  

0.70 9.78E-40 

 YOR014W RTS1 B-type regulatory subunit of protein phosphatase 2A (PP2A); required for maintenance 
of septin ring organization during cytokinesis, for ring disassembly in G1 and for 
dephosphorylation of septin, Shs1p 

0.69 2.36E-38 

 YPL055C LGE1 Protein of unknown function; null mutant forms abnormally large cells, and 
homozygous diploid null mutant displays delayed premeiotic DNA synthesis and 
reduced efficiency of meiotic nuclear division 

0.69 5.91E-38 

 YOR038C HIR2 Subunit of HIR nucleosome assembly complex; involved in regulation of histone gene 
transcription; recruits Swi-Snf complexes to histone gene promoters; promotes 
heterochromatic gene silencing with Asf1p 

0.69 1.33E-37 

 YOL012C HTZ1 Histone variant H2AZ; exchanged for histone H2A in nucleosomes by the SWR1 
complex; involved in transcriptional regulation through prevention of the spread of 
silent heterochromatin 

0.68 6.66E-37 

 YDR159W SAC3 mRNA export factor; required for biogenesis of the small ribosomal subunit; component 
of TREX-2 complex (Sac3p-Thp1p-Sus1p-Cdc31p) involved in transcription elongation 
and mRNA export from the nucleus 

0.68 1.01E-36 

 YDR076W RAD55 Protein that stimulates strand exchange; stimulates strand exchange by stabilizing the 
binding of Rad51p to single-stranded DNA; involved in the recombinational repair of 
double-strand breaks in DNA during vegetative growth and meiosis 

0.68 1.46E-36 

 YPR160W GPH1 Glycogen phosphorylase required for the mobilization of glycogen; non-essential; 
regulated by cyclic AMP-mediated phosphorylation; expression is regulated by stress-
response elements and by the HOG MAP kinase pathway 

0.67 6.16E-36 

 



	 73 

 
Table 3-6. Yeast mutants that shared significant similarity with botezomib treated hypersensitive host strain 

Drug ORF GENE DESCRIPTION R p 

BTZ YHR200W RPN10 Non-ATPase base subunit of the 19S RP of the 26S proteasome; N-terminus plays a role in 
maintaining the structural integrity of the regulatory particle (RP); binds selectively to 
polyubiquitin chains; homolog of the mammalian S5a protein 

0.74 7.74E-47 

 YLR182W SWI6 Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the 
G1//S transition; involved in meiotic gene expression 

0.69 2.69E-38 

 YKL113C RAD27 5' to 3' exonuclease; required for Okazaki fragment processing and maturation, for long-patch 
base-excision repair & large loop repair, ribonucleotide excision repair 

0.69 3.3E-38 

 YLL002W RTT109 Histone acetyltransferase; critical for cell survival in presence of DNA damage during S phase; 
acetylates H3K56, H3K9; buffering of mRNA synthesis rate against changes in gene dosage 
during S phase 

0.68 5.54E-37 

 YKR082W NUP133 Subunit of Nup84p subcomplex of nuclear pore complex (NPC); contributes to 
nucleocytoplasmic transport, NPC biogenesis; is involved in establishment of a normal 
nucleocytoplasmic concentration gradient of GTPase Gsp1p 

0.68 1.33E-36 

 YPR120C CLB5 B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote 
initiation of DNA synthesis; most abundant during late G1 phase 

0.67 3.61E-36 

 YDL020C RPN4 Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn 
regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is 
transcriptionally regulated by various stress responses; relative distribution to the nucleus 
increases upon DNA replication stress  

0.67 3.83E-36 

 YPR141C KAR3 Functions in mitosis and meiosis, localizes to the spindle pole body depend on functional 
Cik1p, required for nuclear fusion during mating; potential Cdc28p substrate 

0.67 7.09E-36 

 YLR320W MMS22 Subunit of E3 ubiquitin ligase complex involved in replication repair; stabilizes protein 
components of the replication fork, and promoting efficient recovery during replication stress 

0.67 1.98E-35 

 YIL040W APQ12 Nuclear envelope/ER integral membrane protein; interacts and functions with Brr6p and Brl1p 
in lipid homeostasis 

0.66 1.18E-34 
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 Table 3-7. Representative enriched GO processes associated with genes affected in sensitized yeast treated with antimicrobial compounds 
 

Drug GOID GO term P-value Genes annotated to the term 

BML 7021 Tubulin complex assembly 1.22E-06 GIM4, PAC2, CIN4, CIN1, CIN2  
TCM 9101 Glycoprotein biosynthetic 

process 
0.00635 PMT2, MNN2, MNN10, ERD1, GDA1, HOC1, EOS1, ALG6, OST3, ALG5, MDM10, SLA1  

ECB 71840 Cellular component 
organization or biogenesis 

0.00287 REI1, WHI4, RAD55, SPO71, NUM1, MNN10, ESC2, SLX8, BEM2, XRN1, PAC10, VMA21, 
KSP1, EST3, APQ12, RTT101, HOC1, LHS1, BUD2, NUP133, HBS1, RTT109, RPS28B, KAR3, 
MMS22, TSR2, UBX2, CIK1, MRE11, GAS1, RPS19B, BUB3, RPS10A, RMI1, BEM4, CTF4,  

HU 6259 DNA metabolic process 2.85E-09 SAW1, SWD1, HEK2, HHT1, MUM2, RDH54, HSM3, DPB3, DCC1, RIM1, SLX5, RPN4, 
RAD59, BRE1, RAD57, RAD28, RAD55, MSH6, DPB4, SWI5, SAC3, HTA1, SUM1, IRC3, 
ESC2, SEM1, RAD51, SLX8, RAD4, PNC1, LIF1, SOH1, RAD54, SAE2, SKI8, RTF1, 
CLB6, RRM3, WSS1, RTT107, CTF8, EST3, FKH1, RTT101, SET2, POL32, EAF6, IXR1, 
RAD27, APN1, ASH1, NUP133, RTT109, BRE2, RAD5, HOG1, SWI6, TOP3, MMS22, 
REC102, RSC2, PSY3, CTF3, CST9, CDC73, TSA1, RAD52, MFT1, SUB1, CSM3, RCO1, 
CTF18, NAM7, MLH1, HSC82, SGS1, MRE11, YKU70, FKH2, EAF7, PSY2, TOF1, MCK1, 
STB1, MSH2, HMI1, DIA2, LEO1, ELG1, IES4, RFM1, VTS1, IRC15, RAD1, RMI1, ELC1, 
LGE1, CTI6, HSP82, REC8, CLB5, CTF4, MMS1 

MMS 6974 Cellular response to DNA 
damage stimulus 

8.78E-10 SAW1, HHT1, RDH54, HSM3, DPB3, DCC1, SLX5, RPN4, RAD59, BRE1, RAD57, RAD28, 
RAD55, MSH6, DPB4, SAC3, HTA1, ESC2, SLX8, RAD4, CKB1, LIF1, SOH1, RAD54, 
SAE2, RTF1, RRM3, WSS1, RTT107, RTT101, POL32, GRR1, RAD27, APN1, NUP133, 
RTT109, RAD5, YLR235C, MMS22, RSC2, PSY3, CDC73, TSA1, RAD52, CSM3, CTF18, 
MLH1, SGS1, MRE11, MKT1, PSY2, TOF1, MCK1, MSH2, CKA2, LEO1, ELG1, IES4, 
RAD1, RMI1, ELC1, CTF4, MMS1 

BTZ 6974 Cellular response to DNA 
damage stimulus 

1.28E-16 SAW1, TEL1, HHT1, RDH54, HSM3, DPB3, DCC1, RPN4, RAD59, BRE1, RAD57, RAD28, 
RAD55, DPB4, SAC3, HTA1, ESC2, SLX8, RAD4, CKB1, LIF1, SOH1, RAD54, SAE2, 
RTF1, RRM3, WSS1, RTT107, MPH1, RTT101, POL32, GRR1, RAD27, APN1, NUP133, 
RTT109, RAD5, YLR235C, MMS22, RSC2, PSY3, CDC73, TSA1, RAD52, SUB1, CSM3, 
CTF18, MLH1, SGS1, MRE11, YKU70, MKT1, EAF7, PSY2, TOF1, MCK1, MSH2, CKB2, 
CKA2, LEO1, ELG1, IES4, RAD1, RMI1, CTF4, MMS1 
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GENERAL DISCUSSION 
The overview of the development of antimicrobial therapeutic agents reflects 

increased interest in this particular area of infectious diseases. It is therefore necessity 

to put concerted efforts in developing more promising and effective antimicrobials for 

use in the clinical arena. Although still in the investigational stages, recent advances 

in the development of new antifungals and/or antibiotics offer some new hope of 

improving the future of antimicrobial therapy. While hitting the target is the basic 

challenge in phenotype-driven drug discovery, advances in computational and 

biochemical approaches are providing a powerful toolbox with complementary 

technologies for target identification. 	

 
In this study, I developed two quantitative morphology-based methods to predict 

cellular targets of an antifungal agent using phenotypes of yeast cells responding to 

extracellular chemical stimuli. At first, I profiled currently available antifungal drugs 

using yeast morphology to gain further insights into antifungal drug profiles, and 

propose new methods of predicting drug targets without any mutant information. I 

analyzed echinocandins, an azole, an allylamine, a morpholine, and a fluorinated 

pyrimidine analog. Comparison with deletion mutants of each of 4,718 non-essential 

genes confirmed the MoA of the drugs and revealed unexpected connections among 

the various cellular processes. I then proposed that development of supervised 

classifier based on the morphological profiles of the drugs could facilitate elucidating 

the mode of action of a newly discovered compound as it sorts into drugs with similar 

MoA. Intriguingly, all the (target-known) compounds in test set were exclusively 

classified into expected antifungal class according to their MoA. To this end, I 

suggest that morphological profiling can be used to develop novel antifungal drugs.  

 

In addition to this, the systematic classifier also drew new insights into antifungal 

agents. For example, miconazole was assigned to ergosterol biosynthesis inhibitors, 

but plotted near DNA affecting agents’ class.  Recent mechanistic studies (Najm et 

al., 2015) showed that miconazole affects pathways regulating DNA synthesis via 

interfering the role of mitogen-activated protein kinase/extracellular signal-regulated 



	 76 

kinase signaling in estrogen receptor positive MCF-7 breast carcinoma cells. This 

suggests the power of the method in efficiently indicating drugs MoA from their 

morphologic signatures. Though I expected CMA to be classified into cell wall 

synthesis inhibitors, considering its MoA, it was notably ascribed to a different drug 

group - nucleic acid inhibitors. To my surprise, a very recent research evidences 

demonstrated an unexpected finding that the yeast vacuole plays a positive essential 

role in initiation of the cell cycle and its functional loss results in a specific arrest of 

cells in G1 phase (Jin & Weisman, 2015). Taken together, these data indicate that 

high-content system was successful in profiling phenotype by drug function.  

 

Aiming at enhancing the contribution of natural products (NPs) and rare compound to 

the modern drug development, I sought to address the drawbacks of the existing 

analytical method that utilizes relatively high amount drugs. To establish yeast 

morphology-based chemical genomics as a powerful approach for characterizing low-

abundance NPs, this thesis introduced two major faucets. First, I sought to modify the 

current morphological profiling strategy so as to reduce the quantity of each 

compound required for analysis. To that purpose our laboratory introduced new yeast 

gene deletion collections that were generated in the hypersensitive background; 

strains compromised for their ability to efflux chemical compounds. Second, I 

endeavored to combine those compound-efficient new yeast deletion collections with 

high-content high-speed automated microscopy to maximize the efficiency of high 

throughput screening. Therein, dose-dependent morphological phenotypes of the 

drug-hypersensitive strain were compared with the new panel of morphological data 

composed of ~2,000 representative mutant strains. Finally, I needed to demonstrate 

the applicability of the new integrated approach by profile six previously 

characterized compounds, for which it successfully established the targets and 

functionally related genes. In my opinion, it would be great if the use of these 

different phenotypic drug discovery approaches could be combined so as to leverage 

the scale of our study (Fig. 0-3). 
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Figure 0-3. Conceptual framework for integrating antimicrobial drug 

development paradigms in this study.  
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The proposed model platform envisages integration of the two independently 

developed methods in this study in order to leverage the morphology-based chemical 

phenomics. First, compound library will be screened to find out reagents with 

bioactivity in yeast cells, followed by acquisition and processing of morphological 

data and subsequent phenotypic analysis of selected compounds using LDA approach 

indicates the mode of action of each compound. Next, specific target gene for those 

bioactive compounds for which mode of action is identified could be predicted using 

new integrated method (refer to blue line designated with symbol “b”). Similarly, 

quantitative morphological data obtained from small amount of bioactive compounds 

treated hypersensitive strains will then be compared with the HTP morphological 

information of quadruple mutants so as to predict their cellular targets. Alternatively, 

the mode of action of the drugs might be described using a machine learning approach 

established previously (see the blue line represented with symbol “a”). After 

appropriate validation of the predicted targets with relevant genetic, biochemical or 

molecular methods, promising candidate is ready for required next stage study. Red 

marked “Δ” symbol in LDA space is predicted MoA of a drug while red filled circles 

in profiling plot indicates targets of a compound from my morphological similarity 

search system. 
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PERSPECTIVES 
In seek of new directions in antimicrobial drug research and development, researchers 

across many scientific domains have responded to the increasing lack of effective 

drugs by inventing new effective and safe antimicrobial agents. Correspondingly, 

investigators responded to the challenges from the threats posed by increasing drug-

resistant pathogenic strains by studying the feasibility of combinatorial therapy as 

combination drugs are less prone to drug resistance. Therein, it was demonstrated that 

reinforcing the computational prediction science in the discovery of synergistic drug 

combinations based upon known combinations and advancements of fungal chemical 

genomics prospects a new direction in antimicrobial drug discovery and therapy 

(Chen et al., 2007; Jansen et al., 2009). Alternatively, to overcome the phenomenon 

of multidrug resistance, researchers engage themselves in finding new clinically 

useful potential compound from various sources. Integration of computational 

approaches into a drug development process was indicated helpful in providing a 

powerful toolbox for target identification, discovery and optimization of drug 

candidate molecules (Katsila et al., 2016). As part and parcel of this concerted effort, 

the findings of my study shall be considered for their prospective application to 

substantiate the antimicrobial drug discovery pipeline.  

	
The application of the chemical genomic approaches offers capacity for describing the 

global cellular response to a certain compound, for predicting the target of a 

compound, and for inferring the function of genes. One of chemogenomic approach 

comparable to our morphological profiling system is homozygous profiling or haploid 

deletion chemical-genetic profiling (Parsons et al., 2004, 2006; Lee et al., 2005; 

Hillenmeyer et al., 2008). HOP, an assay in which relative growth rate e.g. in the 

presence of drug, is measured by microarray signal intensity in the strains that are 

completely deleted for non-essential genes in either haploid or diploid strains. By 

screening a collection of compounds across non-essential genes in this assay, each 

compound produces a unique chemogenomic signature. When these genome-wide 

profiles are compared to those obtained from drugs with well-characterized 

mechanisms, clustering of the signatures allow a researcher to infer the mechanism of 

action (Parsons et al., 2004, 2006). At current stage, our target prediction procedure is 

possible by comparing the phenotypic (501 dimensional interaction) profiles wild-
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type cells treated with compound against morphological data of deletion mutants. To 

take this phenotypic drug discovery approach to the next stage, it would be great if the 

laboratory of signal transduction ponders drug target profiling using morphological 

analysis of mutant cells treated with compound, which offers quite significant 

advantage (501 x n dimensional interaction profile) over its fitness assay where 

mutant cells treated with compound would generate n dimensional profile only. 

 

Moreover, it has also been established that similarity between fitness or 

morphological profiles indicates a similarity in the mode of action of the 

corresponding compounds (Parsons et al., 2006; Ohnuki et al., 2010; Gebre et al., 

2015). The capability of chemical genomic profiles to estimate similarities in the 

mode of action, gene function and cellular response dare one to ask whether they can 

also be used to predict synergy. Such concept of using chemogenomic approaches for 

synergy prediction was attempted by Jansen and his colleagues (Jansen et al., 2009). 

This suggests that relevant bioinformatics-driven approaches could be geared to 

efficiently predict compound synergy for their combinatorial therapies thereby 

eluding the failures of costly developed drugs due to either inherent or acquired 

resistance. By the same token, my systematic drug classifier could be considered as 

one of the new complementary methods to predict compound synergy. Therein, the 

approach shall use morphological profiles in order to identify compound profiles that 

have a statistically significant degree of similarity to a standard drug (e.g. fluconazole, 

or flucytosine or echinocandins) profile. The compounds identified will be then 

experimentally verified to be synergistic with standard compounds and with each 

other, in both S. cerevisiae and/or the fungal pathogen Candida albicans.  

	
Furthermore, miniaturization is the concept fundamental to enhancing the state-of-

the-art in high-content, high throughput drug screening, so as to facilitate dramatic 

cost savings through reduced usage of expensive biochemical reagents and to enable 

large-scale screening on primary cells.	 Natural products are selected for precise 

biological functions in nature and are therefore a rich source of specific small 

molecule inhibitors. In spite of these characteristics and their overwhelmingly 

favorable success, the use natural-based compounds by many pharmaceutical 

companies have declined of based on their incomparability with high-throughput 

screening approaches (Harvey, 2008). This is largely because natural products are 
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often difficult and expensive to obtain and are therefore available in very limited 

quantities. Moreover, from an industry perspective, drug development platforms for 

rare (“orphan”) and/or neglected diseases are less interesting due to the low revenue 

on investment. In my study, I presented the adoption of an integrated approach to 

profile potentially useful anticancer and antifungal compounds, and I hope that this 

strategy will help to move forward the field of drug development for orphan and/or 

neglected diseases as well as from scarce natural products. 
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APPENDICES 

SUPPLEMENTAL RESULTS AND DISCUSSION 
 

Cellular effects of nystatin 

The other test compound included for the comprehensive study of antifungal agents 

was the polyenes; e.g., nystatin. Nystatin, an ionophore ergosterol-targeting polyene 

agent, is known to bind to membrane ergosterol and increase the permeability of the 

fungal cell membrane, accelerating leakage of intracellular contents (Lampen et al., 

1962; Zygmunt & Tavormina, 1966; Hammond, 1977; Akaike & Hirata, 1994). For 

this reason, we expected that its effect might be so immediate that there may be 

insufficient time to observe changes in cell morphology. As expected, agent-treated 

cells were found to be dead without any significant effect on cellular morphology 

(Fig. S1A). In addition, the growth rates at dose-dependent agent concentrations 

revealed that cell growth was the extension of a lag phase without any significant 

alteration of doubling time (Fig. S1 B & C), suggesting its primary effect is killing, 

but the survived cells continued to proliferate independent of the presence of 

bioactive agent. As a result, we culled the data of this drug from processing for further 

study.  

SUPPLEMENTAL EXPERIMENTAL PROCEDURE 
Cell viability test 

Owing to its mode of action, we assessed the effect on cell viability before evaluating 

the cellular responses to the polyene agent, nystatin. For this purpose, wild-type cells 

were cultured in YPD at 25°C overnight. Logarithmically growing cells were treated 

with or without 100 µg mL-1 nystatin for 1 h, and then collected by centrifugation and 

mixed with 4 mM propidium iodide (Sigma-Aldrich Co, St. Louis, MO, USA) in PBS 

for 5 min at room temperature to stain dead cells. After washing with PBS, the cell 

suspensions were mounted on glass slides and observed by fluorescence microscopy 

(AxioImager M1, Zeiss, Germany) using the filter set for Rhodamine-phalloidin.  
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SUPPLEMENTARY FIGURES 

	
 

Figure S1. Growth inhibition and cellular effect of nystatin.  

 



	 84 

 

(A) Wild-type cells in culture were harvested after 1 h of incubation with nystatin 

(100 µg mL-1, final concentration), stained with propidium iodide (PI), and directly 

observed under a fluorescence microscope with differential interference contrast 

(DIC, left panel) and a red filter (right panel). Microscopic examination shows images 

of dead cells without any significant morphological alteration. Bar, 5 µm. (B) Wild-

type cells were grown in 4 ml of YPD medium containing the dose-dependent 

concentrations of nystatin at 25°C in L-shaped test tubes. The OD600 nm was measured 

using a biophotorecorder. (C) The doubling time was calculated using consecutive 

data points of the measured values ranging from 0.1 to 0.2, and the relative growth 

inhibition ratio was calculated by dividing the doubling time of nystatin-treated cells 

by that of mock-treated cells. 
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Figure S1. Correlational network for ergosterol-, V-ATPase-, and cell-wall-

acting agents. 

Correlation of the morphological profile was estimated from the 102 variables of the 

PC scores of each agent by the phenotypic profiling approach reported in Ohnuki et 

al. (Ohnuki et al., 2010). Red and green lines, and score near each line, denote the 

degree of association—strong (r > 0.7), moderate (r > 0.5) and weak (r < 0.5) 

correlation. High degrees of similarities were noted across drugs.  

	
 



	 86 

	
Figure S2. Commonly used antifungal drugs affecting ergosterol biosynthesis 

pathway of budding yeast, S. cerevisiae. 
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Important intermediates of the pathway are shown in schematic linear model. 

Principal enzymes and drugs inhibiting key intermediates are indicated on the left and 

right side respectively. Antifungal drugs used in this study include allylamines 

(terbinafine), azoles (fluconazole and miconazole), morpholines (amorolfine) and 

lovastatin are listed beneath the class names. The role position of Erg28 in the 

pathway was indicated in boldface. HMG, hydroxymethyl glutaryl; CoA, Coenzyme 

A.  
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SUPPLEMENTARY TABLES 
	
Table S1A. List of parameters significantly affected by fluconazole 

Rank ID Description Z value P value Q value 

1 DCV179_C CV_of_Nuclear_minimum_radius_i
n_mother 

4.1355  3.54E-05 0.0077  

2 DCV14-1_A CV_of_Nuclear_size 3.9443  8.00E-05 0.0077  
3 C115_A1B Mother_axis_ratio -3.8486  1.19E-04 0.0077  
4 CCV126_A1B CV_of_Brightness_difference_of_ce

ll_wall 
3.8486  1.19E-04 0.0077  

5 DCV14-1_C CV_of_Nuclear_size_in_mother 3.7530  1.75E-04 0.0091  
6 DCV173_A CV_of_Maximal_distance_between_

nuclear_gravity_center_and_nuclear_
outline 

3.7052  2.11E-04 0.0092  

7 C115_A Whole_cell_axis_ratio -3.6574  2.55E-04 0.0095  
8 ACV103_A1B CV_of_Relative_distance_of_actin_

patch_center_from_neck_in_mother 
3.3705  7.50E-04 0.0244  

9 C115_C Mother_axis_ratio -3.3227  8.91E-04 0.0258  
10 C126_A Brightness_difference_of_cell_wall -3.2749  0.0011  0.0271  
11 ACV8-1_A CV_of_Actin_region_brightness 3.2271  0.0013  0.0271  
12 DCV14-3_C CV_of_Nuclear_size_in_whole_cell 3.2271  0.0013  0.0271  
13 DCV176_A CV_of_Nuclear_long_axis_length 3.0837  0.0020  0.0332  
14 DCV179_A CV_of_Nuclear_minimum_radius 3.0837  0.0020  0.0332  
15 ACV123_A1B CV_of_Ratio_of_actin_patches_to_a

ctin_region 
3.0837  0.0020  0.0332  

16 A107 actin_c_api_ratio     -3.0837  0.0020  0.0332  
17 A118 actin_e_ratio_to_budded_cells 3.0359  0.0024  0.0367  
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Table S1B. List of parameters significantly affected by terbinafine 

Rank ID Description Z value P value Q value 

1 C115_A Whole_cell_axis_ratio -5.7297  1.01E-08 2.23E-06 
2 C115_C Mother_axis_ratio -5.6572  1.54E-08 2.23E-06 
3 C115_A1B Mother_axis_ratio -5.5846  2.34E-08 2.26E-06 
4 C114_C Bud_axis_ratio -4.6780  2.90E-06 2.10E-04 
5 C104_C Short_axis_length_in_mother 4.4967  6.90E-06 4.00E-04 
6 C13_A Whole_cell_fitness_for_ellipse -4.3517  1.35E-05 5.60E-04 
7 CCV110_C CV_of_Distance_between_bud_tip

_and_mother_long_axis_extension 
4.3517  1.35E-05 5.60E-04 

8 C104_A1B Short_axis_length_in_mother 4.2791  1.88E-05 6.80E-04 
9 C13_C Mother_cell_fitness_for_ellipse -4.2429  2.21E-05 7.11E-04 
10 C13_A1B Mother_cell_fitness_for_ellipse -3.9165  8.98E-05 0.0026  
11 CCV106_C CV_of_Bud_direction 3.8802  1.04E-04 0.0028  
12 C109_A1B Neck_width 3.8077  1.40E-04 0.0034  
13 C126_A Brightness_difference_of_cell_wall -3.6989  2.17E-04 0.0048  
14 DCV173_A CV_of_Maximal_distance_between

_nuclear_gravity_center_and_nucle
ar_outline 

3.5901  3.31E-04 0.0064  

15 C114_A1B Bud_axis_ratio -3.5901  3.31E-04 0.0064  
16 C109_C Neck_width 3.5539  3.80E-04 0.0069  
17 D177_C Nuclear_long_axis_length_in_bud 3.5176  4.35E-04 0.0074  
18 C104_A Short_axis_length_in_whole_cell 3.4451  5.71E-04 0.0083  
19 C108_C Short_axis_length_in_bud 3.4451  5.71E-04 0.0083  
20 D174_C Maximal_distance_between_nuclea

r_gravity_center_and_nuclear_outli
ne_in_bud 

3.4451  5.71E-04 0.0083  

21 DCV176_A CV_of_Nuclear_long_axis_length 3.3725  7.45E-04 0.0103  
22 D14-2_C Nuclear_size_in_bud 3.3549  7.94E-04 0.0103  
23 DCV17-1_A CV_of_Nuclear_fitness_for_ellipse 3.3363  8.49E-04 0.0103  
24 C106_C Bud_direction -3.3363  8.49E-04 0.0103  
25 C106_A1B Bud_direction -3.3000  9.67E-04 0.0108  
26 D14-3_A1B Nuclear_size 3.3000  9.67E-04 0.0108  
27 C11-1_A1B Mother_cell_size 3.2275  0.0012  0.0129  
28 D15-3_A1B Nuclear_brightness 3.2275  0.0012  0.0129  
29 D157_C Angle_between_C2D2-

2_and_C2C4-2 
3.1912  0.0014  0.0142  

30 D188_A Distance_between_nuclear_gravity
_center_and_brightest_point 

3.1187  0.0018  0.0170  

31 D15-3_C Nuclear_brightness_in_whole_cell 3.1187  0.0018  0.0170  
32 D176_A Nuclear_long_axis_length 3.0462  0.0023  0.0192  
33 DCV14-1_A CV_of_Nuclear_size 3.0462  0.0023  0.0192  
34 DCV102_A CV_of_Distance_between_nuclear_

gravity_center_and_mother_tip 
3.0462  0.0023  0.0192  

35 C11-1_C Mother_cell_size 3.0462  0.0023  0.0192  
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36 D175_A1B Maximal_distance_between_nuclea
r_gravity_center_and_nuclear_outli
ne 

3.0099  0.0026  0.0205  

37 CCV110_A1B CV_of_Distance_between_bud_tip
_and_mother_long_axis_extension 

3.0099  0.0026  0.0205  

38 D173_A Maximal_distance_between_nuclea
r_gravity_center_and_nuclear_outli
ne 

2.9736  0.0029  0.0225  

39 CCV106_A1B CV_of_Bud_direction 2.9374  0.0033  0.0234  
40 C101_C Whole_cell_size 2.9374  0.0033  0.0234  
41 D14-3_C Nuclear_size_in_whole_cell 2.9374  0.0033  0.0234  
42 D179_A Nuclear_minimum_radius 2.9011  0.0037  0.0251  
43 D156_C Angle_between_C2D1-

2_and_C2C4-2 
2.9011  0.0037  0.0251  

44 D15-1_A Nuclear_brightness 2.8648  0.0042  0.0257  
45 C111_C Distance_between_bud_tip_and_m

other_short_axis_extension 
2.8648  0.0042  0.0257  

46 D180_C Nuclear_minimum_radius_in_bud 2.8648  0.0042  0.0257  
47 DCV123_C CV_of_Ratio_of_D121_to_C107 -2.8648  0.0042  0.0257  
48 CCV104_A1B CV_of_Short_axis_length_in_moth

er 
2.8286  0.0047  0.0282  

49 D14-1_A Nuclear_size 2.7923  0.0052  0.0292  
50 C112_A1B Distance_between_middle_point_of

_neck_and_mother_center 
2.7923  0.0052  0.0292  

51 C128_A1B Distance_between_middle_point_of
_neck_and_mother_hip 

2.7923  0.0052  0.0292  

52 D178_A1B Nuclear_long_axis_length 2.7923  0.0052  0.0292  
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Table S1C. List of parameters significantly affected by amorolfine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

	

Rank  ID. Description Z value P value Q value 

1 C115_A1B Mother_axis_ratio -4.0408 5.33E-05 0.0240 
2 C126_A Brightness_difference_of_cell

_wall 
-3.1801 1.47E-03 0.1022 

3 CCV11-2_A1B CV_of_Bud_cell_size 3.2757 1.05E-03 0.1022 
4 C115_C Mother_axis_ratio -3.0844 2.04E-03 0.1022 
5 CCV12-2_A1B CV_of_Bud_cell_outline_leng

th 
3.2279 1.25E-03 0.1022 

6 C126_A1B Brightness_difference_of_cell
_wall 

-3.2757 1.05E-03 0.1022 

7 CCV118_A1B CV_of_Cell_size_ratio 3.1322 1.73E-03 0.1022 
8 DCV145_A1B CV_of_Distance_between_nuc

lear_outline_point_D7_and_m
other_hip 

3.0844 2.04E-03 0.1022 

9 CCV13_C CV_of_Mother_cell_fitness_f
or_ellipse 

-3.3235 8.89E-04 0.1022 
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Table S1D. List of parameters significantly affected by flucytosine 
 
Rank ID Description Z value P value Q value 
1 D17-1_A Nuclear_fitness_for_ellipse 4.7570  1.96E-06 4.77E-04 
2 A7-1_A Size_of_actin_region 4.7092  2.49E-06 4.77E-04 
3 D182_A Nuclear_axis_ratio 4.5658  4.98E-06 6.37E-04 
4 D154_A Angle_between_C1D1-

1_and_C1C1-2 
-4.2789  1.88E-05 0.0018  

5 A101_A Actin_region_ratio_in_whole_cell 3.8964  9.76E-05 0.0062  
6 D125_C Distance_between_nuclear_gravity_

center_in_mother_and_mother_hip 
3.8964  9.76E-05 0.0062  

7 DCV188_C CV_of_Distance_between_nuclear_
gravity_center_and_brightest_point_
in_mother 

3.8486  1.19E-04 0.0065  

8 D141_C Distance_between_nuclear_brightest
_point_in_mother_and_mother_hip 

3.7530  1.75E-04 0.0082  

9 DCV182_A CV_of_Nuclear_axis_ratio 3.6574  2.55E-04 0.0082  
10 ACV7-

1_A1B 
CV_of_Size_of_actin_region_in_mo
ther 

3.6574  2.55E-04 0.0082  

11 D17-1_C Nuclear_fitness_for_ellipse_in_moth
er 

3.6574  2.55E-04 0.0082  

12 D103_C Distance_between_nuclear_gravity_
center_in_mother_and_mother_tip 

3.6574  2.55E-04 0.0082  

13 A106_A Actin_b_ratio -3.5140  4.41E-04 0.0119  
14 A105_A Actin_a_ratio 3.4662  5.28E-04 0.0119  
15 ACV8-

1_A1B 
CV_of_Total_brightness_of_actin_r
egion_in_mother 

3.4662  5.28E-04 0.0119  

16 D128_C Distance_between_nuclear_brightest
_point_in_mother_and_mother_tip 

3.4662  5.28E-04 0.0119  

17 A115 actin_b_ratio_to_no_bud_cells -3.4662  5.28E-04 0.0119  
18 ACV123_A CV_of_Ratio_of_actin_patches_to_a

ctin_region 
3.3227  8.91E-04 0.0156  

19 DCV105_A CV_of_Ratio_of_D102_to_C103 3.3227  8.91E-04 0.0156  
20 C113_A1B Distance_between_bud_tip_and_mot

her_long_axis_through_middle_poin
t_of_neck 

3.3227  8.91E-04 0.0156  

21 ACV9_A1B CV_of_Proportion_of_actin_region_
at_neck 

3.3227  8.91E-04 0.0156  

22 A114 actin_a_ratio_to_no_bud_cells 3.3227  8.91E-04 0.0156  
23 D127_A Distance_between_nuclear_brightest

_point_and_cell_tip 
3.2749  0.0011  0.0176  

24 DCV102_A CV_of_Distance_between_nuclear_
gravity_center_and_mother_tip 

3.2271  0.0013  0.0200  

25 C102_A1B Whole_cell_outline_length 3.1793  0.0015  0.0227  
26 DCV17-1_A CV_of_Nuclear_fitness_for_ellipse 3.1315  0.0017  0.0257  
27 D203 nuclear_D_ratio     3.0904  0.0020  0.0271  
28 CCV104_A CV_of_Short_axis_length_in_whole

_cell 
3.0837  0.0020  0.0271  

29 DCV127_A CV_of_Distance_between_nuclear_ 3.0837  0.0020  0.0271  
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brightest_point_and_cell_tip 
30 D135_A Distance_between_nuclear_brightest

_point_and_cell_center 
3.0359  0.0024  0.0307  

31 A111 actin_ae_ratio 3.0127  0.0026  0.0321  
32 A9_A1B Proportion_of_actin_region_at_neck -2.9881  0.0028  0.0327  
33 A112 actin_bcd_ratio -2.9881  0.0028  0.0327  
34 D106_C Ratio_of_D103_to_C103 2.9403  0.0033  0.0349  
35 DCV173_C CV_of_Maximal_distance_between_

nuclear_gravity_center_and_nuclear
_outline_in_mother 

2.9403  0.0033  0.0349  

36 D206 nuclear_A_ratio_to_no_bud_cells -2.9048  0.0037  0.0349  
37 DCV188_A CV_of_Distance_between_nuclear_

gravity_center_and_brightest_point 
2.8925  0.0038  0.0349  

38 C105_A1B Neck_position 2.8925  0.0038  0.0349  
39 A103_A1B Relative_distance_of_actin_patch_ce

nter_from_neck_in_mother 
2.8925  0.0038  0.0349  

40 C117_C Cell_outline_ratio -2.8925  0.0038  0.0349  
41 DCV176_C CV_of_Nuclear_long_axis_length_i

n_mother 
2.8925  0.0038  0.0349  

42 DCV197_C CV_of_Ratio_of_nuclear_size 2.8925  0.0038  0.0349  
43 D170_A1B Angle_between_C4-1D2-1_and_C4-

1C1 
2.8446  0.0044  0.0379  

44 C118_C Cell_size_ratio -2.8446  0.0044  0.0379  
45 D182_C Nuclear_axis_ratio_in_mother 2.8446  0.0044  0.0379  
46 D105_A Ratio_of_D102_to_C103 2.7968  0.0052  0.0404  
47 D155_A Angle_between_C1D2-

1_and_C1C1-2 
-2.7968  0.0052  0.0404  

48 C110_A1B Distance_between_bud_tip_and_mot
her_long_axis_extension 

2.7968  0.0052  0.0404  

49 DCV182_C CV_of_Nuclear_axis_ratio_in_moth
er 

2.7968  0.0052  0.0404  
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Table S1E. List of parameters significantly affected by echinocandin B 

Rank ID Description Z value P value Q value 

1 C124_C Medium_bud_ratio 5.8580  4.68E-09 1.67E-07 
2 C125_C Large_bud_ratio -5.8566  4.72E-09 1.67E-07 
3 C115_A1B Mother_axis_ratio -5.7132  1.11E-08 1.67E-07 
4 CCV11-1_A CV_of_Whole_cell_size 5.6654  1.47E-08 1.67E-07 
5 CCV112_A1B CV_of_Distance_between_middle

_point_of_neck_&_mother_center 
5.6654  1.47E-08 1.67E-07 

6 C115_C Mother_axis_ratio -5.6654  1.47E-08 1.67E-07 
7 CCV12-1_A CV_of_Whole_cell_outline_length 5.6176  1.94E-08 1.67E-07 
8 CCV128_A1B CV_of_Distance_between_middle

_point_of_neck_and_mother_hip 
5.6176  1.94E-08 1.67E-07 

9 C109_C Neck_width 5.6176  1.94E-08 1.67E-07 
10 CCV104_A CV_of_Short_axis_length_in_who

le_cell 
5.5698  2.55E-08 1.98E-07 

11 CCV103_A CV_of_Long_axis_length_in_who
le_cell 

5.4741  4.40E-08 3.10E-07 

12 D203 nuclear_D_ratio     5.3775  7.55E-08 4.88E-07 
13 D176_A Nuclear_long_axis_length 5.2829  1.27E-07 6.61E-07 
14 C117_C Cell_outline_ratio -5.2829  1.27E-07 6.61E-07 
15 D173_A Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
tline 

5.2351  1.65E-07 6.61E-07 

16 DCV176_A CV_of_Nuclear_long_axis_length 5.2351  1.65E-07 6.61E-07 
17 C104_C Short_axis_length_in_mother 5.2351  1.65E-07 6.61E-07 
18 D179_C Nuclear_minimum_radius_in_mot

her 
5.2351  1.65E-07 6.61E-07 

19 D17-1_A Nuclear_fitness_for_ellipse 5.1873  2.13E-07 6.61E-07 
20 D179_A Nuclear_minimum_radius 5.1873  2.13E-07 6.61E-07 
21 DCV127_A CV_of_Distance_between_nuclear

_brightest_point_and_cell_tip 
5.1873  2.13E-07 6.61E-07 

22 C118_C Cell_size_ratio -5.1873  2.13E-07 6.61E-07 
23 A8-1_C Total_brightness_of_actin_region_

in_mother 
5.1873  2.13E-07 6.61E-07 

24 CCV11-2_C CV_of_Bud_cell_size 5.1873  2.13E-07 6.61E-07 
25 CCV112_C CV_of_Distance_between_middle

_point_of_neck_and_mother_cent
er 

5.1873  2.13E-07 6.61E-07 

26 D14-1_A Nuclear_size 5.1407  2.74E-07 7.36E-07 
27 D178_A1B Nuclear_long_axis_length 5.1395  2.75E-07 7.36E-07 
28 CCV12-

1_A1B 
CV_of_Mother_cell_outline_lengt
h 

5.1395  2.75E-07 7.36E-07 

29 CCV108_C CV_of_Short_axis_length_in_bud 5.1395  2.75E-07 7.36E-07 
30 DCV102_A CV_of_Distance_between_nuclear

_gravity_center_and_mother_tip 
5.0917  3.55E-07 8.34E-07 

31 CCV102_C CV_of_Whole_cell_outline_length 5.0917  3.55E-07 8.34E-07 
32 CCV128_C CV_of_Distance_between_middle 5.0917  3.55E-07 8.34E-07 
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_point_of_neck_and_mother_hip 
33 A118 actin_e_ratio_to_budded_cells 5.0917  3.55E-07 8.34E-07 
34 DCV179_A CV_of_Nuclear_minimum_radius 5.0439  4.56E-07 9.56E-07 
35 D14-3_A1B Nuclear_size 5.0439  4.56E-07 9.56E-07 
36 D14-1_C Nuclear_size_in_mother 5.0439  4.56E-07 9.56E-07 
37 CCV12-2_C CV_of_Bud_cell_outline_length 5.0439  4.56E-07 9.56E-07 
38 D206 nuclear_A_ratio_to_no_bud_cells -5.0070  5.53E-07 1.03E-06 
39 D204 nuclear_E_ratio     5.0006  5.72E-07 1.03E-06 
40 D175_A1B Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
tline 

4.9961  5.85E-07 1.03E-06 

41 CCV103_A1B CV_of_Long_axis_length_in_mot
her 

4.9961  5.85E-07 1.03E-06 

42 DCV181_A1B CV_of_Nuclear_minimum_radius 4.9961  5.85E-07 1.03E-06 
43 CCV101_C CV_of_Whole_cell_size 4.9961  5.85E-07 1.03E-06 
44 CCV107_C CV_of_Long_axis_length_in_bud 4.9961  5.85E-07 1.03E-06 
45 DCV14-1_A CV_of_Nuclear_size 4.9482  7.49E-07 1.21E-06 
46 D181_A1B Nuclear_minimum_radius 4.9482  7.49E-07 1.21E-06 
47 CCV11-

1_A1B 
CV_of_Mother_cell_size 4.9482  7.49E-07 1.21E-06 

48 D14-3_C Nuclear_size_in_whole_cell 4.9482  7.49E-07 1.21E-06 
49 C115_A Whole_cell_axis_ratio -4.9004  9.56E-07 1.45E-06 
50 DCV173_A CV_of_Maximal_distance_betwee

n_nuclear_gravity_center_and_nuc
lear_outline 

4.9004  9.56E-07 1.45E-06 

51 DCV104_A1B CV_of_Distance_between_nuclear
_gravity_center_and_mother_tip 

4.9004  9.56E-07 1.45E-06 

52 A113_A Actin_n_ratio 4.8566  1.19E-06 1.63E-06 
53 D188_A Distance_between_nuclear_gravity

_center_and_brightest_point 
4.8526  1.22E-06 1.63E-06 

54 D15-3_A1B Nuclear_brightness 4.8526  1.22E-06 1.63E-06 
55 CCV104_A1B CV_of_Short_axis_length_in_mot

her 
4.8526  1.22E-06 1.63E-06 

56 ACV8-1_A1B CV_of_Total_brightness_of_actin
_region_in_mother 

4.8526  1.22E-06 1.63E-06 

57 ACV102_A1B CV_of_Bud_actin_region_ratio_to
_total_region 

4.8526  1.22E-06 1.63E-06 

58 DCV196_A1B CV_of_Maximal_intensity_of_nuc
lear_brightness_divided_by_avera
ge 

4.8526  1.22E-06 1.63E-06 

59 C104_A1B Short_axis_length_in_mother 4.8048  1.55E-06 1.91E-06 
60 C117_A1B Cell_outline_ratio -4.8048  1.55E-06 1.91E-06 
61 C118_A1B Cell_size_ratio -4.8048  1.55E-06 1.91E-06 
62 DCV126_A1B CV_of_Distance_between_nuclear

_gravity_center_and_mother_hip 
4.8048  1.55E-06 1.91E-06 

63 CCV12-1_C CV_of_Mother_cell_outline_lengt
h 

4.8048  1.55E-06 1.91E-06 

64 D182_A Nuclear_axis_ratio 4.7570  1.96E-06 2.24E-06 
65 D17-3_A1B Nuclear_fitness_for_ellipse 4.7570  1.96E-06 2.24E-06 
66 ACV8-2_A1B CV_of_Total_brightness_of_actin

_region_in_bud 
4.7570  1.96E-06 2.24E-06 
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67 A102_C Bud_actin_region_ratio_to_total_r
egion 

-4.7570  1.96E-06 2.24E-06 

68 D207 nuclear_A1_ratio_to_budded_cells -4.7570  1.96E-06 2.68E-06 
69 C125_A1B Large_bud_ratio -4.7126  2.45E-06 2.68E-06 
70 DCV15-1_A CV_of_Nuclear_brightness 4.7092  2.49E-06 2.68E-06 
71 CCV117_C CV_of_Cell_outline_ratio 4.7092  2.49E-06 2.68E-06 
72 CCV118_C CV_of_Cell_size_ratio 4.7092  2.49E-06 2.68E-06 
73 ACV7-1_A1B CV_of_Size_of_actin_region_in_

mother 
4.6614  3.14E-06 3.12E-06 

74 C11-1_C Mother_cell_size 4.6614  3.14E-06 3.12E-06 
75 A7-1_C Size_of_actin_region_in_mother 4.6614  3.14E-06 3.12E-06 
76 D14-2_C Nuclear_size_in_bud 4.6614  3.14E-06 3.12E-06 
77 CCV11-1_C CV_of_Mother_cell_size 4.6614  3.14E-06 3.12E-06 
78 A112 actin_bcd_ratio -4.6614  3.14E-06 3.12E-06 
79 A102_A1B Bud_actin_region_ratio_to_total_r

egion 
-4.6136  3.96E-06 3.83E-06 

80 A103_A1B Relative_distance_of_actin_patch_
center_from_neck_in_mother 

4.6136  3.96E-06 3.83E-06 

81 CCV101_A1B CV_of_Whole_cell_size 4.5658  4.98E-06 4.59E-06 
82 D17-1_C Nuclear_fitness_for_ellipse_in_mo

ther 
4.5658  4.98E-06 4.59E-06 

83 D103_C Distance_between_nuclear_gravity
_center_in_mother_and_mother_ti
p 

4.5658  4.98E-06 4.59E-06 

84 D177_C Nuclear_long_axis_length_in_bud 4.5658  4.98E-06 4.59E-06 
85 D15-1_A Nuclear_brightness 4.5180  6.24E-06 5.04E-06 
86 C12-2_A1B Bud_cell_outline_length -4.5180  6.24E-06 5.04E-06 
87 A109_A1B Actin_e_ratio 4.5180  6.24E-06 5.04E-06 
88 D15-1_C Nuclear_brightness_in_mother 4.5180  6.24E-06 5.04E-06 
89 D173_C Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
tline_in_mother 

4.5180  6.24E-06 5.04E-06 

90 D174_C Maximal_distance_between_nucle
ar_gravity_center_and_nuclear_ou
tline_in_bud 

4.5180  6.24E-06 5.04E-06 

91 D176_C Nuclear_long_axis_length_in_mot
her 

4.5180  6.24E-06 5.04E-06 

92 CCV104_C CV_of_Short_axis_length_in_mot
her 

4.5180  6.24E-06 5.04E-06 

93 CCV113_C CV_of_Distance_between_bud_tip
_and_mother_long_axis_through_
middle_point_of_neck 

4.5180  6.24E-06 5.04E-06 

94 DCV186_C CV_of_Total_length_of_two_strai
ght_segments_D12-1C4-
1_and_D12-2C4-1 

4.5180  6.24E-06 5.04E-06 

95 A109 actin_e_ratio     4.5180  6.24E-06 5.04E-06 
96 D200 nuclear_A1_ratio     -4.5180  6.24E-06 5.04E-06 
97 DCV117_A CV_of_Distance_between_nuclear

_gravity_center_and_cell_center 
4.4702  7.82E-06 6.00E-06 

98 DCV147_A CV_of_Relative_distance_of_nucl
ear_gravity_center_to_cell_center 

4.4702  7.82E-06 6.00E-06 
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99 DCV194_A CV_of_Maximal_intensity_of_nuc
lear_brightness_divided_by_avera
ge 

4.4702  7.82E-06 6.00E-06 

100 D169_C Angle_between_C4-1D1-
1_and_C4-1C1 

4.4702  7.82E-06 6.00E-06 

101 DCV185_C CV_of_Total_length_of_two_strai
ght_segments_D11-1C4-
1_and_D11-2C4-1 

4.4702  7.82E-06 6.00E-06 

102 A113 actin_n_ratio   4.4258  9.61E-06 7.30E-06 
103 D128_C Distance_between_nuclear_brighte

st_point_in_mother_and_mother_t
ip 

4.4223  9.76E-06 7.35E-06 

104 A7-2_A1B Size_of_actin_region_in_bud -4.3745  1.22E-05 8.73E-06 
105 D131_C Distance_between_nuclear_brighte

st_point_in_bud_and_middle_poin
t_of_neck 

-4.3745  1.22E-05 8.73E-06 

106 D141_C Distance_between_nuclear_brighte
st_point_in_mother_and_mother_h
ip 

4.3745  1.22E-05 8.73E-06 

107 D170_C Angle_between_C4-1D2-
1_and_C4-1C1 

4.3745  1.22E-05 8.73E-06 

108 ACV122_C CV_of_Number_of_bright_actin_
patches 

4.3745  1.22E-05 8.73E-06 

109 DCV14-
3_A1B 

CV_of_Nuclear_size 4.3267  1.51E-05 1.04E-05 

110 D125_C Distance_between_nuclear_gravity
_center_in_mother_and_mother_hi
p 

4.3267  1.51E-05 1.04E-05 

111 CCV13_C CV_of_Mother_cell_fitness_for_el
lipse 

4.3267  1.51E-05 1.04E-05 

112 DCV15-1_C CV_of_Nuclear_brightness_in_mo
ther 

4.3267  1.51E-05 1.04E-05 

113 DCV179_C CV_of_Nuclear_minimum_radius
_in_mother 

4.3267  1.51E-05 1.04E-05 

114 A7-1_A1B Size_of_actin_region_in_mother 4.2789  1.88E-05 1.25E-05 
115 DCV14-1_C CV_of_Nuclear_size_in_mother 4.2789  1.88E-05 1.25E-05 
116 DCV177_C CV_of_Nuclear_long_axis_length

_in_bud 
4.2789  1.88E-05 1.25E-05 

117 C11-2_A1B Bud_cell_size -4.2311  2.33E-05 1.49E-05 
118 C107_A1B Long_axis_length_in_bud -4.2311  2.33E-05 1.49E-05 
119 D15-2_C Nuclear_brightness_in_bud 4.2311  2.33E-05 1.49E-05 
120 D15-3_C Nuclear_brightness_in_whole_cell 4.2311  2.33E-05 1.49E-05 
121 D180_C Nuclear_minimum_radius_in_bud 4.2311  2.33E-05 1.49E-05 
122 CCV115_A CV_of_Whole_cell_axis_ratio 4.1833  2.87E-05 1.73E-05 
123 A112_A1B Actin_cd_ratio -4.1833  2.87E-05 1.73E-05 
124 D132_A1B Distance_between_nuclear_brighte

st_point_and_middle_point_of_ne
ck 

4.1833  2.87E-05 1.73E-05 

125 A108_C Actin_d_iso_ratio -4.1833  2.87E-05 1.73E-05 
126 D109_C Distance_between_nuclear_gravity

_center_in_bud_and_middle_point
_of_neck 

-4.1833  2.87E-05 1.73E-05 
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127 DCV174_C CV_of_Maximal_distance_betwee
n_nuclear_gravity_center_and_nuc
lear_outline_in_bud 

4.1833  2.87E-05 1.73E-05 

128 A117 actin_d_iso_ratio_to_budded_cells -4.1833  2.87E-05 1.73E-05 
129 D214 nuclear_A1_ratio_to_nuclear_A1B

C_cells 
-4.1833  2.87E-05 1.73E-05 

130 DCV129_A1B CV_of_Distance_between_nuclear
_brightest_point_and_mother_tip 

4.1355  3.54E-05 2.05E-05 

131 C103_C Long_axis_length_in_mother 4.1355  3.54E-05 2.05E-05 
132 DCV130_C CV_of_Distance_between_nuclear

_brightest_point_in_mother_and_
middle_point_of_neck 

4.1355  3.54E-05 2.05E-05 

133 D211 nuclear_A1_ratio_to_nuclear_AA
1BC_cells 

-4.1355  3.54E-05 2.05E-05 

134 D216 nuclear_C_ratio_to_nuclear_A1B
C_cells 

4.1355  3.54E-05 2.05E-05 

135 DCV17-1_A CV_of_Nuclear_fitness_for_ellips
e 

4.0877  4.36E-05 2.45E-05 

136 DCV135_A CV_of_Distance_between_nuclear
_brightest_point_and_cell_center 

4.0877  4.36E-05 2.45E-05 

137 A112_C Actin_cd_ratio -4.0877  4.36E-05 2.45E-05 
138 CCV126_C CV_of_Brightness_difference_of_

cell_wall 
4.0877  4.36E-05 2.45E-05 

139 C123_A1B Small_bud_ratio 4.0408  5.33E-05 2.86E-05 
140 C11-1_A1B Mother_cell_size 4.0399  5.35E-05 2.86E-05 
141 ACV9_A1B CV_of_Proportion_of_actin_regio

n_at_neck 
4.0399  5.35E-05 2.86E-05 

142 C128_C Distance_between_middle_point_
of_neck_and_mother_hip 

4.0399  5.35E-05 2.86E-05 

143 DCV17-1_C CV_of_Nuclear_fitness_for_ellips
e_in_mother 

4.0399  5.35E-05 2.86E-05 

144 DCV112_C CV_of_Ratio_of_D108_to_C128 4.0399  5.35E-05 2.86E-05 
145 DCV151_C CV_of_Ratio_of_distance_betwee

n_each_nucleus_and_middle_poin
t_of_neck 

4.0399  5.35E-05 2.86E-05 

146 A8-2_A1B Total_brightness_of_actin_region_
in_bud 

-3.9921  6.55E-05 3.45E-05 

147 D144_C Distance_between_nuclear_outline
_point_D6-
2_in_bud_and_middle_point_of_n
eck 

-3.9921  6.55E-05 3.45E-05 

148 C127_A Thickness_difference_of_cell_wall 3.9443  8.00E-05 4.05E-05 
149 DCV182_A CV_of_Nuclear_axis_ratio 3.9443  8.00E-05 4.05E-05 
150 C109_A1B Neck_width 3.9443  8.00E-05 4.05E-05 
151 DCV145_A1B CV_of_Distance_between_nuclear

_outline_point_D7_and_mother_hi
p 

3.9443  8.00E-05 4.05E-05 

152 DCV198_C CV_of_Ratio_of_nuclear_brightne
ss 

3.9443  8.00E-05 4.05E-05 

153 A111 actin_ae_ratio 3.9443  8.00E-05 4.05E-05 
154 D110_A1B Distance_between_nuclear_gravity

_center_and_middle_point_of_nec
k 

3.8964  9.76E-05 4.82E-05 
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155 DCV118_A1B CV_of_Distance_between_nuclear
_gravity_center_and_mother_cent
er 

3.8964  9.76E-05 4.82E-05 

156 CCV103_C CV_of_Long_axis_length_in_mot
her 

3.8964  9.76E-05 4.82E-05 

157 DCV15-3_C CV_of_Nuclear_brightness_in_wh
ole_cell 

3.8964  9.76E-05 4.82E-05 

158 A7-1_A Size_of_actin_region 3.8486  1.19E-04 5.68E-05 
159 C127_C Thickness_difference_of_cell_wall 3.8486  1.19E-04 5.68E-05 
160 A8-2_C Total_brightness_of_actin_region_

in_bud 
-3.8486  1.19E-04 5.68E-05 

161 DCV14-3_C CV_of_Nuclear_size_in_whole_ce
ll 

3.8486  1.19E-04 5.68E-05 

162 DCV119_C CV_of_Distance_between_nuclear
_gravity_center_in_bud_and_bud_
center 

3.8486  1.19E-04 5.68E-05 

163 CCV126_A1B CV_of_Brightness_difference_of_
cell_wall 

3.8008  1.44E-04 6.73E-05 

164 C12-1_C Mother_cell_outline_length 3.8008  1.44E-04 6.73E-05 
165 D106_C Ratio_of_D103_to_C103 3.8008  1.44E-04 6.73E-05 
166 DCV176_C CV_of_Nuclear_long_axis_length

_in_mother 
3.8008  1.44E-04 6.73E-05 

167 ACV122_A CV_of_Number_of_bright_actin_
patches 

3.7530  1.75E-04 7.92E-05 

168 DCV142_A1B CV_of_Distance_between_nuclear
_brightest_point_and_mother_hip 

3.7530  1.75E-04 7.92E-05 

169 D112_C Ratio_of_D108_to_C128 -3.7530  1.75E-04 7.92E-05 
170 D123_C Ratio_of_D121_to_C107 3.7530  1.75E-04 7.92E-05 
171 DCV131_C CV_of_Distance_between_nuclear

_brightest_point_in_bud_and_mid
dle_point_of_neck 

3.7530  1.75E-04 7.92E-05 

172 DCV105_A CV_of_Ratio_of_D102_to_C103 3.7052  2.11E-04 9.30E-05 
173 C112_C Distance_between_middle_point_

of_neck_and_mother_center 
3.7052  2.11E-04 9.30E-05 

174 D145_C Distance_between_nuclear_outline
_point_D7_in_mother_and_mothe
r_hip 

3.7052  2.11E-04 9.30E-05 

175 D153_C Mobility_of_nucleus_in_bud -3.7052  2.11E-04 9.30E-05 
176 DCV173_C CV_of_Maximal_distance_betwee

n_nuclear_gravity_center_and_nuc
lear_outline_in_mother 

3.7052  2.11E-04 9.30E-05 

177 C104_A Short_axis_length_in_whole_cell 3.6574  2.55E-04 1.08E-04 
178 C126_A Brightness_difference_of_cell_wal

l 
-3.6574  2.55E-04 1.08E-04 

179 A106_A Actin_b_ratio -3.6574  2.55E-04 1.08E-04 
180 CCV126_A CV_of_Brightness_difference_of_

cell_wall 
3.6574  2.55E-04 1.08E-04 

181 ACV123_A CV_of_Ratio_of_actin_patches_to
_actin_region 

3.6574  2.55E-04 1.08E-04 

182 D113_C Ratio_of_D109_to_C107 -3.6574  2.55E-04 1.08E-04 
183 ACV102_C CV_of_Bud_actin_region_ratio_to

_total_region 
3.6574  2.55E-04 1.08E-04 
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184 A108_A1B Actin_d_iso_ratio -3.6096  3.07E-04 1.26E-04 
185 D190_A1B Distance_between_nuclear_gravity

_center_and_brightest_point 
3.6096  3.07E-04 1.26E-04 

186 DCV110_A1B CV_of_Distance_between_nuclear
_gravity_center_and_middle_point
_of_neck 

3.6096  3.07E-04 1.26E-04 

187 DCV152_C CV_of_Mobility_of_nucleus_in_
mother 

3.6096  3.07E-04 1.26E-04 

188 DCV196_C CV_of_Maximal_intensity_of_nuc
lear_brightness_divided_by_avera
ge_in_whole cell 

3.6096  3.07E-04 1.26E-04 

189 DCV188_A CV_of_Distance_between_nuclear
_gravity_center_and_brightest_poi
nt 

3.5618  3.68E-04 1.48E-04 

190 CCV110_C CV_of_Distance_between_bud_tip
_and_mother_long_axis_extension 

3.5618  3.68E-04 1.48E-04 

191 ACV9_C CV_of_Proportion_of_actin_regio
n_at_neck 

3.5618  3.68E-04 1.48E-04 

192 DCV14-2_C CV_of_Nuclear_size_in_bud 3.5618  3.68E-04 1.48E-04 
193 D209 nuclear_C_ratio_to_budded_cells 3.5618  3.68E-04 1.48E-04 
194 A109_C Actin_e_ratio 3.5387  4.02E-04 1.61E-04 
195 C12-1_A1B Mother_cell_outline_length 3.5140  4.41E-04 1.73E-04 
196 C101_A1B Whole_cell_size 3.5140  4.41E-04 1.73E-04 
197 CCV13_A1B CV_of_Mother_cell_fitness_for_el

lipse 
3.5140  4.41E-04 1.73E-04 

198 DCV194_C CV_of_Maximal_intensity_of_nuc
lear_brightness_divided_by_avera
ge_in_mother 

3.5140  4.41E-04 1.73E-04 

199 C124 medium_bud_ratio_to_buded_cell
s 

3.4909  4.81E-04 1.87E-04 

200 DCV148_A CV_of_Relative_distance_of_nucl
ear_brightest_point_to_cell_center 

3.4662  5.28E-04 2.02E-04 

201 CCV106_C CV_of_Bud_direction 3.4662  5.28E-04 2.02E-04 
202 ACV120_C CV_of_Total_length_of_actin_pat

ch_link 
3.4662  5.28E-04 2.02E-04 

203 DCV197_C CV_of_Ratio_of_nuclear_size 3.4662  5.28E-04 2.02E-04 
204 D184_A1B Nuclear_axis_ratio 3.4184  6.30E-04 2.37E-04 
205 D188_C Distance_between_nuclear_gravity

_center_and_brightest_point_in_m
other 

3.4184  6.30E-04 2.37E-04 

206 A108 actin_d_iso_ratio     -3.4184  6.30E-04 2.37E-04 
207 A123_A Ratio_of_actin_patches_to_actin_r

egion 
-3.3705  7.50E-04 2.76E-04 

208 C101_C Whole_cell_size 3.3705  7.50E-04 2.76E-04 
209 A7-2_C Size_of_actin_region_in_bud -3.3705  7.50E-04 2.76E-04 
210 A9_C Proportion_of_actin_region_at_ne

ck 
-3.3705  7.50E-04 2.76E-04 

211 DCV143_C CV_of_Distance_between_nuclear
_outline_point_D6-
1_in_mother_and_middle_point_o
f_neck 

3.3705  7.50E-04 2.76E-04 

212 A9_A1B Proportion_of_actin_region_at_ne -3.3227  8.91E-04 3.23E-04 
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ck 
213 A103_C Relative_distance_of_actin_patch_

center_from_neck_in_mother 
3.3227  8.91E-04 3.23E-04 

214 CCV105_C CV_of_Neck_position 3.3227  8.91E-04 3.23E-04 
215 C11-1_A Whole_cell_size 3.2749  0.0011  3.71E-04 
216 D114_A1B Ratio_of_D110_to_C128 3.2749  0.0011  3.71E-04 
217 D152_A1B Mobility_of_nucleus_in_mother 3.2749  0.0011  3.71E-04 
218 DCV15-

3_A1B 
CV_of_Nuclear_brightness 3.2749  0.0011  3.71E-04 

219 A104_C Relative_distance_of_actin_patch_
center_from_neck_in_bud  

-3.2749  0.0011  3.71E-04 

220 DCV108_C CV_of_Distance_between_nuclear
_gravity_center_in_mother_and_m
iddle_point_of_neck 

3.2749  0.0011  3.71E-04 

221 DCV144_C CV_of_Distance_between_nuclear
_outline_point_D6-
2_in_bud_and_middle_point_of_n
eck 

3.2749  0.0011  3.71E-04 

222 C123_C Small_bud_ratio 3.2405  0.0012  4.17E-04 
223 A105_A Actin_a_ratio 3.2271  0.0013  4.27E-04 
224 D170_A1B Angle_between_C4-1D2-

1_and_C4-1C1 
3.2271  0.0013  4.27E-04 

225 DCV107_A1B CV_of_Ratio_of_D104_to_C103 3.2271  0.0013  4.27E-04 
226 D189_C Distance_between_nuclear_gravity

_center_and_brightest_point_in_b
ud 

3.2271  0.0013  4.27E-04 

227 D197_C Ratio_of_nuclear_size -3.2271  0.0013  4.27E-04 
228 C124_A1B Medium_bud_ratio -3.1808  0.0015  4.87E-04 
229 A101_A Actin_region_ratio_in_whole_cell 3.1793  0.0015  4.87E-04 
230 A8-1_A1B Total_brightness_of_actin_region_

in_mother 
3.1793  0.0015  4.87E-04 

231 C110_C Distance_between_bud_tip_and_m
other_long_axis_extension 

-3.1793  0.0015  4.87E-04 

232 DCV17-2_C CV_of_Nuclear_fitness_for_ellips
e_in_bud 

3.1793  0.0015  4.87E-04 

233 DCV155_C CV_of_Angle_between_C1D2-
1_and_C1C1-2 

3.1793  0.0015  4.87E-04 

234 A114 actin_a_ratio_to_no_bud_cells 3.1793  0.0015  4.87E-04 
235 A115 actin_b_ratio_to_no_bud_cells -3.1793  0.0015  4.87E-04 
236 D136_A1B Distance_between_nuclear_brighte

st_point_and_mother_center 
3.1315  0.0017  5.62E-04 

237 DCV132_A1B CV_of_Distance_between_nuclear
_brightest_point_and_middle_poin
t_of_neck 

3.1315  0.0017  5.62E-04 

238 C106_C Bud_direction -3.1315  0.0017  5.62E-04 
239 D134_C Distance_between_two_nuclear_br

ightest_points_through_middle_po
int_of_neck 

-3.1315  0.0017  5.62E-04 

240 D139_C Distance_between_nuclear_brighte
st_point_in_bud_and_bud_tip 

3.1315  0.0017  5.62E-04 

241 D205 nuclear_F_ratio     3.0847  0.0020  6.39E-04 
242 C12-1_A Whole_cell_outline_length 3.0837  0.0020  6.39E-04 
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243 C103_A1B Long_axis_length_in_mother 3.0837  0.0020  6.39E-04 
244 C128_A1B Distance_between_middle_point_

of_neck_and_mother_hip 
3.0837  0.0020  6.39E-04 

245 CCV106_A1B CV_of_Bud_direction 3.0837  0.0020  6.39E-04 
246 DCV143_A1B CV_of_Distance_between_nuclear

_outline_point_D6-
1_and_middle_point_of_neck 

3.0837  0.0020  6.39E-04 

247 DCV15-2_C CV_of_Nuclear_brightness_in_bu
d 

3.0837  0.0020  6.39E-04 

248 DCV180_C CV_of_Nuclear_minimum_radius
_in_bud 

3.0837  0.0020  6.39E-04 

249 ACV103_A1B CV_of_Relative_distance_of_actin
_patch_center_from_neck_in_mot
her 

3.0359  0.0024  7.41E-04 

250 ACV7-1_C CV_of_Size_of_actin_region_in_
mother 

3.0359  0.0024  7.41E-04 

251 DCV158_C CV_of_Angle_between_D1-1D1-
2_and_C1-1C1-2 

3.0359  0.0024  7.41E-04 

252 C112_A1B Distance_between_middle_point_
of_neck_and_mother_center 

2.9881  0.0028  8.27E-04 

253 C126_A1B Brightness_difference_of_cell_wal
l 

-2.9881  0.0028  8.27E-04 

254 D142_A1B Distance_between_nuclear_brighte
st_point_and_mother_hip 

2.9881  0.0028  8.27E-04 

255 D17-2_C Nuclear_fitness_for_ellipse_in_bu
d 

2.9881  0.0028  8.27E-04 

256 D116_C Distance_between_two_nuclear_gr
avity_centers_through_middle_poi
nt_of_neck 

-2.9881  0.0028  8.27E-04 

257 D194_C Maximal_intensity_of_nuclear_bri
ghtness_divided_by_average_in_
mother 

-2.9881  0.0028  8.27E-04 

258 ACV121_C CV_of_Maximal_distance_betwee
n_patches 

2.9881  0.0028  8.27E-04 

259 DCV149_C CV_of_Relative_distance_of_nucl
ear_gravity_center_in_bud_to_bud
_center 

2.9881  0.0028  8.27E-04 

260 DCV195_C CV_of_Maximal_intensity_of_nuc
lear_brightness_divided_by_avera
ge_in_bud 

2.9881  0.0028  8.27E-04 

261 C125 large_bud_ratio_to_buded_cells -2.9881  0.0028  8.27E-04 
262 A105 actin_a_ratio     2.9881  0.0028  8.27E-04 
263 D213 nuclear_C_ratio_to_nuclear_AA1

BC_cells 
2.9881  0.0028  8.27E-04 

264 DCV147_A1B CV_of_Relative_distance_of_nucl
ear_gravity_center_to_mother_cen
ter 

2.9403  0.0033  9.48E-04 

265 ACV8-1_C CV_of_Total_brightness_of_actin
_region_in_mother 

2.9403  0.0033  9.48E-04 

266 DCV137_C CV_of_Distance_between_nuclear
_brightest_point_in_bud_and_bud
_center 

2.9403  0.0033  9.48E-04 

267 DCV183_C CV_of_Nuclear_axis_ratio_in_bud 2.9403  0.0033  9.48E-04 
268 DCV189_C CV_of_Distance_between_nuclear 2.9403  0.0033  9.48E-04 



	 103 

_gravity_center_and_brightest_poi
nt_in_bud 

269 ACV8-1_A CV_of_Actin_region_brightness 2.8925  0.0038  0.0011  
270 D186_C Total_length_of_two_straight_seg

ments_D12-1C4-1_and_D12-2C4-
1 

2.8925  0.0038  0.0011  

271 DCV109_C CV_of_Distance_between_nuclear
_gravity_center_in_bud_and_midd
le_point_of_neck 

2.8925  0.0038  0.0011  

272 DCV159_C CV_of_Angle_between_D2-1D2-
2_and_C1-1C1-2 

2.8925  0.0038  0.0011  

273 A113_A1B Actin_n_ratio 2.8499  0.0044  0.0012  
274 DCV155_A CV_of_Angle_between_C1D2-

1_and_C1C1-2 
2.8446  0.0044  0.0012  

275 D185_C Total_length_of_two_straight_seg
ments_D11-1C4-1_and_D11-2C4-
1 

2.8446  0.0044  0.0012  

276 DCV123_C CV_of_Ratio_of_D121_to_C107 -2.8446  0.0044  0.0012  
277 D121_C Distance_between_nuclear_gravity

_center_in_bud_and_bud_tip 
2.7968  0.0052  0.0014  

278 ACV120_A CV_of_Total_length_of_actin_pat
ch_link 

2.7490  0.0060  0.0016  

279 A104_A1B Relative_distance_of_actin_patch_
center_from_neck_in_bud  

-2.7490  0.0060  0.0016  

280 CCV108_A1B CV_of_Short_axis_length_in_bud -2.7490  0.0060  0.0016  
281 DCV152_A1B CV_of_Mobility_of_nucleus_in_

mother 
2.7490  0.0060  0.0016  

282 ACV121_A CV_of_Maximal_distance_betwee
n_patches 

2.7012  0.0069  0.0019  

283 D126_A1B Distance_between_nuclear_gravity
_center_and_mother_hip 

2.7012  0.0069  0.0019  

284 CCV109_A1B CV_of_Neck_width 2.7012  0.0069  0.0019  
285 D143_A1B Distance_between_nuclear_outline

_point_D6-
1_and_middle_point_of_neck 

2.6534  0.0080  0.0022  

286 ACV120_A1B CV_of_Total_length_of_actin_pat
ch_link 

2.6534  0.0080  0.0022  

287 C116_C Axis_ratio_ratio 2.6534  0.0080  0.0022  
288 C127_A1B Thickness_difference_of_cell_wall 2.6062  0.0092  0.0025  
289 CCV111_A1B CV_of_Distance_between_bud_tip

_and_mother_short_axis_extensio
n 

2.6056  0.0092  0.0025  

290 ACV7-2_A1B CV_of_Size_of_actin_region_in_b
ud 

2.6056  0.0092  0.0025  

291 CCV102_A1B CV_of_Whole_cell_outline_length 2.5578  0.0105  0.0027  
292 C102_C Whole_cell_outline_length 2.5578  0.0105  0.0027  
293 C111_C Distance_between_bud_tip_and_m

other_short_axis_extension 
2.5578  0.0105  0.0027  

294 D16-1_C Maximal_intensity_of_nuclear_bri
ghtness_in_mother 

-2.5578  0.0105  0.0027  

295 D158_C Angle_between_D1-1D1-
2_and_C1-1C1-2 

-2.5578  0.0105  0.0027  

296 ACV101_C CV_of_Actin_region_ratio_in_wh 2.5578  0.0105  0.0027  
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ole_cell 
297 DCV135_C CV_of_Distance_between_nuclear

_brightest_point_in_mother_and_
mother_center 

2.5578  0.0105  0.0027  

298 DCV167_C CV_of_Angle_between_D2-1D2-
2_and_C4-1C4-2 

2.5578  0.0105  0.0027  

299 A106 actin_b_ratio     -2.5578  0.0105  0.0027  
300 A113_C Actin_n_ratio 2.5086  0.0121  0.0031  
301 C110_A1B Distance_between_bud_tip_and_m

other_long_axis_extension 
-2.4622  0.0138  0.0035  

302 ACV121_A1B CV_of_Maximal_distance_betwee
n_patches 

2.4622  0.0138  0.0035  

303 D159_C Angle_between_D2-1D2-
2_and_C1-1C1-2 

-2.4622  0.0138  0.0035  

304 DCV134_C CV_of_Distance_between_two_nu
clear_brightest_points_through_mi
ddle_point_of_neck 

2.4622  0.0138  0.0035  

305 A122_A Number_of_bright_actin_patches -2.4149  0.0157  0.0039  
306 D129_A1B Distance_between_nuclear_brighte

st_point_and_mother_tip 
2.4144  0.0158  0.0039  

307 CCV110_A1B CV_of_Distance_between_bud_tip
_and_mother_long_axis_extension 

2.4144  0.0158  0.0039  

308 ACV101_A1B CV_of_Actin_region_ratio_in_wh
ole_cell 

2.4144  0.0158  0.0039  

309 DCV148_A1B CV_of_Relative_distance_of_nucl
ear_brightest_point_to_mother_ce
nter 

2.4144  0.0158  0.0039  

310 A122_C Number_of_bright_actin_patches -2.4144  0.0158  0.0039  
311 DCV148_C CV_of_Relative_distance_of_nucl

ear_brightest_point_in_mother_to
_mother_center 

2.4144  0.0158  0.0039  

312 C122 large_bud_ratio     -2.4144  0.0158  0.0039  
313 CCV118_A1B CV_of_Cell_size_ratio 2.3666  0.0180  0.0044  
314 C108_C Short_axis_length_in_bud 2.3666  0.0180  0.0044  
315 ACV123_C CV_of_Ratio_of_actin_patches_to

_actin_region 
2.3666  0.0180  0.0044  

316 DCV139_C CV_of_Distance_between_nuclear
_brightest_point_in_bud_and_bud
_tip 

2.3666  0.0180  0.0044  

317 D202 nuclear_C_ratio     2.3666  0.0180  0.0044  
318 A101_A1B Actin_region_ratio_in_whole_cell -2.3187  0.0204  0.0049  
319 D107_A1B Ratio_of_D104_to_C103 -2.3187  0.0204  0.0049  
320 CCV105_A1B CV_of_Neck_position 2.3187  0.0204  0.0049  
321 C113_C Distance_between_bud_tip_and_m

other_long_axis_through_middle_
point_of_neck 

2.3187  0.0204  0.0049  

322 C126_C Brightness_difference_of_cell_wal
l 

-2.3187  0.0204  0.0049  

323 D152_C Mobility_of_nucleus_in_mother -2.3187  0.0204  0.0049  
324 C103_A Long_axis_length_in_whole_cell 2.2709  0.0232  0.0055  
325 D154_A Angle_between_C1D1-

1_and_C1C1-2 
-2.2709  0.0232  0.0055  
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326 D135_A Distance_between_nuclear_brighte
st_point_and_cell_center 

2.2231  0.0262  0.0061  

327 D155_A Angle_between_C1D2-
1_and_C1C1-2 

-2.2231  0.0262  0.0061  

328 C108_A1B Short_axis_length_in_bud -2.2231  0.0262  0.0061  
329 D146_C Distance_between_nuclear_outline

_point_D8_in_bud_and_bud_tip 
2.2231  0.0262  0.0061  

330 CCV109_C CV_of_Neck_width 2.2231  0.0262  0.0061  
331 DCV154_C CV_of_Angle_between_C1D1-

1_and_C1C1-2 
2.2231  0.0262  0.0061  

332 A107_A1B Actin_c_api_ratio 2.1773  0.0295  0.0068  
333 DCV154_A CV_of_Angle_between_C1D1-

1_and_C1C1-2 
2.1753  0.0296  0.0068  

334 A101_C Actin_region_ratio_in_whole_cell -2.1753  0.0296  0.0068  
335 DCV166_C CV_of_Angle_between_D1-1D1-

2_and_C4-1C4-2 
2.1753  0.0296  0.0068  

336 DCV188_C CV_of_Distance_between_nuclear
_gravity_center_and_brightest_poi
nt_in_mother 

2.1753  0.0296  0.0068  

337 D127_A Distance_between_nuclear_brighte
st_point_and_cell_tip 

2.1275  0.0334  0.0075  

338 D104_A1B Distance_between_nuclear_gravity
_center_and_mother_tip 

2.1275  0.0334  0.0075  

339 DCV114_A1B CV_of_Ratio_of_D110_to_C128 2.1275  0.0334  0.0075  
340 D147_C Relative_distance_of_nuclear_gra

vity_center_in_mother_to_mother
_center 

-2.1275  0.0334  0.0075  

341 D191_C Average_of_nuclear_brightness_in
_mother 

-2.1275  0.0334  0.0075  

342 A107 actin_c_api_ratio     -2.1275  0.0334  0.0075  
343 A119 actin_f_ratio_to_budded_cells 2.1275  0.0334  0.0075  
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Table S1F. List of parameters significantly affected by micafungin 

Rank ID Description Z value P value Q value 

1 A7-1_A Size_of_actin_region 6.4187  1.37E-10 6.90E-09 
2 CCV104_A CV_of_Short_axis_length_in_wh

ole_cell 
6.4187  1.37E-10 6.90E-09 

3 CCV12-1_A CV_of_Whole_cell_outline_lengt
h 

6.3824  1.74E-10 6.90E-09 

4 A106_A Actin_b_ratio -6.3652  1.95E-10 6.90E-09 
5 A101_A Actin_region_ratio_in_whole_cel

l 
6.3099  2.79E-10 6.90E-09 

6 CCV103_A CV_of_Long_axis_length_in_wh
ole_cell 

6.3099  2.79E-10 6.90E-09 

7 CCV11-1_A CV_of_Whole_cell_size 6.2737  3.53E-10 6.90E-09 
8 A115 actin_b_ratio_to_no_bud_cells -6.2573  3.92E-10 6.90E-09 
9 A105_A Actin_a_ratio 6.2374  4.45E-10 6.90E-09 
10 A111 actin_ae_ratio 6.2374  4.45E-10 6.90E-09 
11 DCV102_A CV_of_Distance_between_nuclea

r_gravity_center_and_mother_tip 
6.1649  7.05E-10 9.94E-09 

12 CCV128_A1B CV_of_Distance_between_middl
e_point_of_neck_and_mother_hi
p 

6.0923  1.11E-09 1.33E-08 

13 A114 actin_a_ratio_to_no_bud_cells 6.0923  1.11E-09 1.33E-08 
14 C124_C Medium_bud_ratio 5.9504  2.67E-09 2.64E-08 
15 C125_C Large_bud_ratio -5.9504  2.67E-09 2.64E-08 
16 CCV112_A1B CV_of_Distance_between_middl

e_point_of_neck_and_mother_ce
nter 

5.9473  2.73E-09 2.64E-08 

17 A105 actin_a_ratio     5.9300  3.03E-09 2.76E-08 
18 C115_C Mother_axis_ratio -5.8385  5.27E-09 4.54E-08 
19 ACV8-1_A CV_of_Actin_region_brightness 5.8022  6.54E-09 5.07E-08 
20 A112 actin_bcd_ratio -5.8022  6.54E-09 5.07E-08 
21 DCV127_A CV_of_Distance_between_nuclea

r_brightest_point_and_cell_tip 
5.7297  1.01E-08 7.43E-08 

22 DCV14-1_A CV_of_Nuclear_size 5.6934  1.25E-08 8.04E-08 
23 C117_C Cell_outline_ratio -5.6934  1.25E-08 8.04E-08 
24 C118_C Cell_size_ratio -5.6934  1.25E-08 8.04E-08 
25 C115_A Whole_cell_axis_ratio -5.6572  1.54E-08 9.17E-08 
26 DCV104_A1B CV_of_Distance_between_nuclea

r_gravity_center_and_mother_tip 
5.6572  1.54E-08 9.17E-08 

27 DCV126_A1B CV_of_Distance_between_nuclea
r_gravity_center_and_mother_hip 

5.6209  1.90E-08 1.05E-07 

28 CCV128_C CV_of_Distance_between_middl
e_point_of_neck_and_mother_hi
p 

5.6209  1.90E-08 1.05E-07 

29 ACV123_A CV_of_Ratio_of_actin_patches_t 5.5846  2.34E-08 1.25E-07 
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o_actin_region 
30 A7-2_A1B Size_of_actin_region_in_bud -5.5121  3.55E-08 1.83E-07 
31 C122 large_bud_ratio     -5.4758  4.35E-08 2.18E-07 
32 A108 actin_d_iso_ratio     -5.4396  5.34E-08 2.59E-07 
33 CCV12-1_A1B CV_of_Mother_cell_outline_leng

th 
5.4033  6.54E-08 2.74E-07 

34 CCV104_A1B CV_of_Short_axis_length_in_mo
ther 

5.4033  6.54E-08 2.74E-07 

35 ACV102_A1B CV_of_Bud_actin_region_ratio_t
o_total_region 

5.4033  6.54E-08 2.74E-07 

36 CCV11-1_C CV_of_Mother_cell_size 5.4033  6.54E-08 2.74E-07 
37 CCV112_C CV_of_Distance_between_middl

e_point_of_neck_and_mother_ce
nter 

5.4033  6.54E-08 2.74E-07 

38 C115_A1B Mother_axis_ratio -5.3671  8.00E-08 3.26E-07 
39 CCV104_C CV_of_Short_axis_length_in_mo

ther 
5.3308  9.78E-08 3.89E-07 

40 C104_C Short_axis_length_in_mother 5.2945  1.19E-07 4.62E-07 
41 DCV179_A CV_of_Nuclear_minimum_radius 5.2583  1.45E-07 5.50E-07 
42 A7-1_A1B Size_of_actin_region_in_mother 5.2220  1.77E-07 6.38E-07 
43 DCV145_A1B CV_of_Distance_between_nuclea

r_outline_point_D7_and_mother_
hip 

5.2220  1.77E-07 6.38E-07 

44 CCV101_C CV_of_Whole_cell_size 5.1857  2.15E-07 7.58E-07 
45 C118_A1B Cell_size_ratio -5.1495  2.61E-07 8.44E-07 
46 A103_A1B Relative_distance_of_actin_patch

_center_from_neck_in_mother 
5.1495  2.61E-07 8.44E-07 

47 CCV11-1_A1B CV_of_Mother_cell_size 5.1495  2.61E-07 8.44E-07 
48 CCV111_A1B CV_of_Distance_between_bud_ti

p_and_mother_short_axis_extensi
on 

5.1495  2.61E-07 8.44E-07 

49 C125 large_bud_ratio_to_buded_cells -5.0777  3.82E-07 1.19E-06 
50 A117 actin_d_iso_ratio_to_budded_cell

s 
-5.0769  3.84E-07 1.19E-06 

51 CCV106_A1B CV_of_Bud_direction 5.0407  4.64E-07 1.38E-06 
52 A118 actin_e_ratio_to_budded_cells 5.0407  4.64E-07 1.38E-06 
53 C124_A1B Medium_bud_ratio -5.0252  5.03E-07 1.47E-06 
54 C104_A1B Short_axis_length_in_mother 5.0044  5.60E-07 1.61E-06 
55 C123_A1B Small_bud_ratio 4.9877  6.11E-07 1.72E-06 
56 A8-1_A1B Total_brightness_of_actin_region

_in_mother 
4.9682  6.76E-07 1.84E-06 

57 D132_A1B Distance_between_nuclear_bright
est_point_and_middle_point_of_
neck 

4.9682  6.76E-07 1.84E-06 

58 DCV176_A CV_of_Nuclear_long_axis_lengt
h 

4.8956  9.80E-07 2.49E-06 

59 C117_A1B Cell_outline_ratio -4.8956  9.80E-07 2.49E-06 
60 ACV8-2_A1B CV_of_Total_brightness_of_actin

_region_in_bud 
4.8956  9.80E-07 2.49E-06 

61 CCV12-1_C CV_of_Mother_cell_outline_leng
th 

4.8956  9.80E-07 2.49E-06 
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62 A108_A1B Actin_d_iso_ratio -4.8782  1.07E-06 2.68E-06 
63 CCV103_A1B CV_of_Long_axis_length_in_mo

ther 
4.8594  1.18E-06 2.90E-06 

64 A109_A1B Actin_e_ratio 4.7868  1.69E-06 3.86E-06 
65 CCV13_A1B CV_of_Mother_cell_fitness_for_

ellipse 
4.7868  1.69E-06 3.86E-06 

66 A8-1_C Total_brightness_of_actin_region
_in_mother 

4.7868  1.69E-06 3.86E-06 

67 A9_C Proportion_of_actin_region_at_n
eck 

-4.7868  1.69E-06 3.86E-06 

68 DCV185_C CV_of_Total_length_of_two_stra
ight_segments_D11-1C4-
1_and_D11-2C4-1 

4.7868  1.69E-06 3.86E-06 

69 ACV9_C CV_of_Proportion_of_actin_regi
on_at_neck 

4.7506  2.03E-06 4.56E-06 

70 A8-1_A Actin_region_brightness 4.7143  2.43E-06 5.08E-06 
71 DCV15-1_A CV_of_Nuclear_brightness 4.7143  2.43E-06 5.08E-06 
72 DCV173_A CV_of_Maximal_distance_betwe

en_nuclear_gravity_center_and_n
uclear_outline 

4.7143  2.43E-06 5.08E-06 

73 CCV105_A1B CV_of_Neck_position 4.7143  2.43E-06 5.08E-06 
74 ACV9_A1B CV_of_Proportion_of_actin_regi

on_at_neck 
4.7143  2.43E-06 5.08E-06 

75 CCV13_A CV_of_Whole_cell_fitness_for_e
llipse 

4.6780  2.90E-06 5.76E-06 

76 A102_A1B Bud_actin_region_ratio_to_total_
region 

-4.6780  2.90E-06 5.76E-06 

77 C11-1_C Mother_cell_size 4.6780  2.90E-06 5.76E-06 
78 DCV186_C CV_of_Total_length_of_two_stra

ight_segments_D12-1C4-
1_and_D12-2C4-1 

4.6780  2.90E-06 5.76E-06 

79 C11-2_A1B Bud_cell_size -4.6418  3.45E-06 6.61E-06 
80 C116_C Axis_ratio_ratio 4.6418  3.45E-06 6.61E-06 
81 CCV117_C CV_of_Cell_outline_ratio 4.6418  3.45E-06 6.61E-06 
82 CCV101_A1B CV_of_Whole_cell_size 4.6055  4.11E-06 7.59E-06 
83 ACV7-1_A1B CV_of_Size_of_actin_region_in_

mother 
4.6055  4.11E-06 7.59E-06 

84 CCV11-2_C CV_of_Bud_cell_size 4.6055  4.11E-06 7.59E-06 
85 C12-1_C Mother_cell_outline_length 4.5692  4.89E-06 8.62E-06 
86 C112_C Distance_between_middle_point_

of_neck_and_mother_center 
4.5692  4.89E-06 8.62E-06 

87 A7-1_C Size_of_actin_region_in_mother 4.5692  4.89E-06 8.62E-06 
88 CCV113_C CV_of_Distance_between_bud_ti

p_and_mother_long_axis_throug
h_middle_point_of_neck 

4.5692  4.89E-06 8.62E-06 

89 C128_C Distance_between_middle_point_
of_neck_and_mother_hip 

4.5330  5.82E-06 9.80E-06 

90 CCV103_C CV_of_Long_axis_length_in_mo
ther 

4.5330  5.82E-06 9.80E-06 

91 CCV108_C CV_of_Short_axis_length_in_bu
d 

4.5330  5.82E-06 9.80E-06 

92 DCV14-3_C CV_of_Nuclear_size_in_whole_c 4.5330  5.82E-06 9.80E-06 
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ell 
93 CCV118_C CV_of_Cell_size_ratio 4.4605  8.18E-06 1.35E-05 
94 ACV7-1_C CV_of_Size_of_actin_region_in_

mother 
4.4605  8.18E-06 1.35E-05 

95 C107_A1B Long_axis_length_in_bud -4.3879  1.14E-05 1.85E-05 
96 CCV107_C CV_of_Long_axis_length_in_bud 4.3879  1.14E-05 1.85E-05 
97 CCV110_A1B CV_of_Distance_between_bud_ti

p_and_mother_long_axis_extensi
on 

4.3517  1.35E-05 2.14E-05 

98 DCV14-3_A1B CV_of_Nuclear_size 4.3517  1.35E-05 2.14E-05 
99 CCV109_A1B CV_of_Neck_width 4.2429  2.21E-05 3.46E-05 
100 D110_A1B Distance_between_nuclear_gravit

y_center_and_middle_point_of_n
eck 

4.2066  2.59E-05 3.98E-05 

101 DCV15-1_C CV_of_Nuclear_brightness_in_m
other 

4.2066  2.59E-05 3.98E-05 

102 DCV105_A CV_of_Ratio_of_D102_to_C103 4.1703  3.04E-05 4.49E-05 
103 DCV129_A1B CV_of_Distance_between_nuclea

r_brightest_point_and_mother_tip 
4.1703  3.04E-05 4.49E-05 

104 DCV179_C CV_of_Nuclear_minimum_radius
_in_mother 

4.1703  3.04E-05 4.49E-05 

105 A109 actin_e_ratio     4.1703  3.04E-05 4.49E-05 
106 C12-2_A1B Bud_cell_outline_length -4.1341  3.56E-05 5.02E-05 
107 ACV8-1_A1B CV_of_Total_brightness_of_actin

_region_in_mother 
4.1341  3.56E-05 5.02E-05 

108 CCV13_C CV_of_Mother_cell_fitness_for_
ellipse 

4.1341  3.56E-05 5.02E-05 

109 CCV102_C CV_of_Whole_cell_outline_lengt
h 

4.1341  3.56E-05 5.02E-05 

110 CCV106_C CV_of_Bud_direction 4.1341  3.56E-05 5.02E-05 
111 A106 actin_b_ratio     -4.0978  4.17E-05 5.82E-05 
112 DCV181_A1B CV_of_Nuclear_minimum_radius 4.0616  4.87E-05 6.69E-05 
113 C123 small_bud_ratio_to_budded_cells 4.0616  4.87E-05 6.69E-05 
114 A112_A1B Actin_cd_ratio -4.0440  5.25E-05 7.14E-05 
115 CCV12-2_C CV_of_Bud_cell_outline_length 4.0253  5.69E-05 7.47E-05 
116 CCV105_C CV_of_Neck_position 4.0253  5.69E-05 7.47E-05 
117 ACV8-1_C CV_of_Total_brightness_of_actin

_region_in_mother 
4.0253  5.69E-05 7.47E-05 

118 DCV159_C CV_of_Angle_between_D2-1D2-
2_and_C1-1C1-2 

4.0253  5.69E-05 7.47E-05 

119 CCV115_A CV_of_Whole_cell_axis_ratio 3.9890  6.63E-05 8.57E-05 
120 CCV110_C CV_of_Distance_between_bud_ti

p_and_mother_long_axis_extensi
on 

3.9890  6.63E-05 8.57E-05 

121 C11-1_A1B Mother_cell_size 3.9528  7.73E-05 9.82E-05 
122 DCV158_C CV_of_Angle_between_D1-1D1-

2_and_C1-1C1-2 
3.9528  7.73E-05 9.82E-05 

123 D200 nuclear_A1_ratio     -3.9165  8.98E-05 1.13E-04 
124 DCV117_A CV_of_Distance_between_nuclea

r_gravity_center_and_cell_center 
3.8077  1.40E-04 1.75E-04 

125 C119 no_bud_ratio    3.7714  1.62E-04 2.01E-04 
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126 A104_C Relative_distance_of_actin_patch
_center_from_neck_in_bud  

-3.7352  1.88E-04 2.31E-04 

127 ACV123_A1B CV_of_Ratio_of_actin_patches_t
o_actin_region 

3.6989  2.17E-04 2.62E-04 

128 DCV15-3_C CV_of_Nuclear_brightness_in_w
hole_cell 

3.6989  2.17E-04 2.62E-04 

129 C125_A1B Large_bud_ratio -3.6329  2.80E-04 3.35E-04 
130 A9_A1B Proportion_of_actin_region_at_n

eck 
-3.6264  2.87E-04 3.35E-04 

131 ACV7-2_C CV_of_Size_of_actin_region_in_
bud 

-3.6264  2.87E-04 3.35E-04 

132 DCV103_C CV_of_Distance_between_nuclea
r_gravity_center_in_mother_and_
mother_tip 

3.6264  2.87E-04 3.35E-04 

133 D210 nuclear_A_ratio_to_nuclear_AA1
BC_cells 

3.6264  2.87E-04 3.35E-04 

134 C12-1_A1B Mother_cell_outline_length 3.5901  3.31E-04 3.77E-04 
135 C106_C Bud_direction -3.5901  3.31E-04 3.77E-04 
136 D144_C Distance_between_nuclear_outlin

e_point_D6-
2_in_bud_&_middle_point_of_ne
ck 

-3.5901  3.31E-04 3.77E-04 

137 C110_A1B Distance_between_bud_tip_and_
mother_long_axis_extension 

-3.5539  3.80E-04 4.20E-04 

138 DCV14-1_C CV_of_Nuclear_size_in_mother 3.5539  3.80E-04 4.20E-04 
139 DCV194_C CV_of_Maximal_intensity_of_nu

clear_brightness_divided_by_ave
rage_in_mother 

3.5539  3.80E-04 4.20E-04 

140 D211 nuclear_A1_ratio_to_nuclear_AA
1BC_cells 

-3.5539  3.80E-04 4.20E-04 

141 D203 nuclear_D_ratio     3.5350  4.08E-04 4.48E-04 
142 D109_C Distance_between_nuclear_gravit

y_center_in_bud_and_middle_poi
nt_of_neck 

-3.5176  4.35E-04 4.75E-04 

143 D105_A Ratio_of_D102_to_C103 3.4813  4.99E-04 5.33E-04 
144 A123_A1B Ratio_of_actin_patches_to_actin_

region 
3.4813  4.99E-04 5.33E-04 

145 D15-3_A1B Nuclear_brightness 3.4813  4.99E-04 5.33E-04 
146 C127_A1B Thickness_difference_of_cell_wa

ll 
3.4451  5.71E-04 6.06E-04 

147 DCV196_C CV_of_Maximal_intensity_of_nu
clear_brightness_divided_by_ave
rage_in_whole cell 

3.4088  6.52E-04 6.83E-04 

148 C124 medium_bud_ratio_to_buded_cel
ls 

3.4088  6.52E-04 6.83E-04 

149 ACV122_A CV_of_Number_of_bright_actin_
patches 

3.3725  7.45E-04 7.59E-04 

150 DCV107_A1B CV_of_Ratio_of_D104_to_C103 3.3725  7.45E-04 7.59E-04 
151 D143_C Distance_between_nuclear_outlin

e_point_D6-
1_in_mother_and_middle_point_
of_neck 

3.3725  7.45E-04 7.59E-04 

152 DCV125_C CV_of_Distance_between_nuclea 3.3725  7.45E-04 7.59E-04 
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r_gravity_center_in_mother_and_
mother_hip 

153 A107_C Actin_c_api_ratio -3.3196  9.02E-04 9.13E-04 
154 C123_C Small_bud_ratio 3.3081  9.39E-04 9.46E-04 
155 D193_A1B Average_of_nuclear_brightness 3.3000  9.67E-04 9.61E-04 
156 DCV142_A1B CV_of_Distance_between_nuclea

r_brightest_point_and_mother_hi
p 

3.3000  9.67E-04 9.61E-04 

157 D204 nuclear_E_ratio     3.2778  0.0010  0.0010  
158 CCV126_A CV_of_Brightness_difference_of

_cell_wall 
3.2637  0.0011  0.0011  

159 DCV135_A CV_of_Distance_between_nuclea
r_brightest_point_and_cell_center 

3.2637  0.0011  0.0011  

160 D131_C Distance_between_nuclear_bright
est_point_in_bud_and_middle_po
int_of_neck 

-3.2637  0.0011  0.0011  

161 A102_C Bud_actin_region_ratio_to_total_
region 

-3.2275  0.0012  0.0012  

162 D151_C Ratio_of_distance_between_each
_nucleus_and_middle_point_of_n
eck 

-3.2275  0.0012  0.0012  

163 CCV116_A1B CV_of_Axis_ratio_ratio 3.1912  0.0014  0.0013  
164 A121_C Maximal_distance_between_patc

hes 
3.1912  0.0014  0.0013  

165 DCV128_C CV_of_Distance_between_nuclea
r_brightest_point_in_mother_and
_mother_tip 

3.1912  0.0014  0.0013  

166 D135_A Distance_between_nuclear_bright
est_point_and_cell_center 

3.1550  0.0016  0.0015  

167 D16-3_A1B Maximal_intensity_of_nuclear_br
ightness 

3.1550  0.0016  0.0015  

168 DCV196_A1B CV_of_Maximal_intensity_of_nu
clear_brightness_divided_by_ave
rage 

3.1550  0.0016  0.0015  

169 ACV7-1_A CV_of_Size_of_actin_region 3.1187  0.0018  0.0016  
170 C110_C Distance_between_bud_tip_and_

mother_long_axis_extension 
-3.1187  0.0018  0.0016  

171 DCV14-2_C CV_of_Nuclear_size_in_bud 3.1187  0.0018  0.0016  
172 DCV141_C CV_of_Distance_between_nuclea

r_brightest_point_in_mother_and
_mother_hip 

3.1187  0.0018  0.0016  

173 D117_A Distance_between_nuclear_gravit
y_center_and_cell_center 

3.0824  0.0021  0.0018  

174 D191_A Average_of_nuclear_brightness 3.0824  0.0021  0.0018  
175 C101_C Whole_cell_size 3.0824  0.0021  0.0018  
176 C13_A1B Mother_cell_fitness_for_ellipse 3.0466  0.0023  0.0020  
177 C106_A1B Bud_direction -3.0462  0.0023  0.0020  
178 C112_A1B Distance_between_middle_point_

of_neck_and_mother_center 
3.0462  0.0023  0.0020  

179 D154_A1B Angle_between_C1D1-
1_and_C1C1-2 

3.0462  0.0023  0.0020  

180 A120_C Total_length_of_actin_patch_link 3.0462  0.0023  0.0020  
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181 D14-1_A Nuclear_size 3.0099  0.0026  0.0022  
182 A107_A1B Actin_c_api_ratio 2.9922  0.0028  0.0024  
183 D15-1_A Nuclear_brightness 2.9736  0.0029  0.0024  
184 D16-1_A Maximal_intensity_of_nuclear_br

ightness 
2.9736  0.0029  0.0024  

185 D155_A Angle_between_C1D2-
1_and_C1C1-2 

-2.9736  0.0029  0.0024  

186 CCV114_A1B CV_of_Bud_axis_ratio 2.9736  0.0029  0.0024  
187 DCV110_A1B CV_of_Distance_between_nuclea

r_gravity_center_and_middle_poi
nt_of_neck 

2.9736  0.0029  0.0024  

188 D114_A1B Ratio_of_D110_to_C128 2.9374  0.0033  0.0027  
189 DCV130_C CV_of_Distance_between_nuclea

r_brightest_point_in_mother_and
_middle_point_of_neck 

2.9374  0.0033  0.0027  

190 C128_A1B Distance_between_middle_point_
of_neck_and_mother_hip 

2.9011  0.0037  0.0030  

191 D152_A1B Mobility_of_nucleus_in_mother 2.9011  0.0037  0.0030  
192 D117_C Distance_between_nuclear_gravit

y_center_in_mother_and_mother
_center 

2.9011  0.0037  0.0030  

193 DCV177_C CV_of_Nuclear_long_axis_lengt
h_in_bud 

2.9011  0.0037  0.0030  

194 A120_A1B Total_length_of_actin_patch_link 2.8648  0.0042  0.0033  
195 A121_A1B Maximal_distance_between_patc

hes 
2.8648  0.0042  0.0033  

196 CCV115_A1B CV_of_Mother_axis_ratio 2.8648  0.0042  0.0033  
197 A120_A Total_length_of_actin_patch_link 2.8286  0.0047  0.0037  
198 D147_A Relative_distance_of_nuclear_gra

vity_center_to_cell_center 
2.7923  0.0052  0.0041  

199 DCV194_A CV_of_Maximal_intensity_of_nu
clear_brightness_divided_by_ave
rage 

2.7561  0.0059  0.0045  

200 A123_C Ratio_of_actin_patches_to_actin_
region 

2.7561  0.0059  0.0045  

201 D155_C Angle_between_C1D2-
1_and_C1C1-2 

-2.7561  0.0059  0.0045  

202 D157_C Angle_between_C2D2-
2_and_C2C4-2 

2.7561  0.0059  0.0045  

203 D207 nuclear_A1_ratio_to_budded_cell
s 

-2.7561  0.0059  0.0045  

204 D143_A1B Distance_between_nuclear_outlin
e_point_D6-
1_and_middle_point_of_neck 

2.7198  0.0065  0.0049  

205 CCV126_A1B CV_of_Brightness_difference_of
_cell_wall 

2.7198  0.0065  0.0049  

206 DCV118_A1B CV_of_Distance_between_nuclea
r_gravity_center_and_mother_ce
nter 

2.7198  0.0065  0.0049  

207 D108_C Distance_between_nuclear_gravit
y_center_in_mother_and_middle
_point_of_neck 

2.7198  0.0065  0.0049  

208 D206 nuclear_A_ratio_to_no_bud_cells -2.6903  0.0071  0.0053  
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209 C116_A1B Axis_ratio_ratio 2.6835  0.0073  0.0053  
210 ACV101_A1B CV_of_Actin_region_ratio_in_w

hole_cell 
2.6835  0.0073  0.0053  

211 C103_C Long_axis_length_in_mother 2.6835  0.0073  0.0053  
212 DCV155_C CV_of_Angle_between_C1D2-

1_and_C1C1-2 
2.6835  0.0073  0.0053  

213 A112_C Actin_cd_ratio -2.6665  0.0077  0.0056  
214 ACV103_A1B CV_of_Relative_distance_of_acti

n_patch_center_from_neck_in_m
other 

2.6473  0.0081  0.0057  

215 C109_C Neck_width 2.6473  0.0081  0.0057  
216 D15-2_C Nuclear_brightness_in_bud 2.6473  0.0081  0.0057  
217 D194_C Maximal_intensity_of_nuclear_br

ightness_divided_by_average_in_
mother 

-2.6473  0.0081  0.0057  

218 D198_C Ratio_of_nuclear_brightness 2.6473  0.0081  0.0057  
219 CCV111_C CV_of_Distance_between_bud_ti

p_and_mother_short_axis_extensi
on 

2.6473  0.0081  0.0057  

220 C101_A1B Whole_cell_size 2.6110  0.0090  0.0063  
221 D199 nuclear_A_ratio     2.6110  0.0090  0.0063  
222 D176_A Nuclear_long_axis_length 2.5747  0.0100  0.0070  
223 D135_C Distance_between_nuclear_bright

est_point_in_mother_and_mother
_center 

2.5385  0.0111  0.0077  

224 DCV155_A CV_of_Angle_between_C1D2-
1_and_C1C1-2 

2.5022  0.0123  0.0085  

225 D123_C Ratio_of_D121_to_C107 2.5022  0.0123  0.0085  
226 A113_A1B Actin_n_ratio 2.4952  0.0126  0.0086  
227 CCV113_A1B CV_of_Distance_between_bud_ti

p_and_mother_long_axis_throug
h_middle_point_of_neck 

2.4659  0.0137  0.0093  

228 DCV188_C CV_of_Distance_between_nuclea
r_gravity_center_and_brightest_p
oint_in_mother 

2.4659  0.0137  0.0093  

229 D170_A1B Angle_between_C4-1D2-
1_and_C4-1C1 

2.4297  0.0151  0.0101  

230 D159_C Angle_between_D2-1D2-
2_and_C1-1C1-2 

-2.4297  0.0151  0.0101  

231 ACV102_C CV_of_Bud_actin_region_ratio_t
o_total_region 

2.4297  0.0151  0.0101  

232 C109_A1B Neck_width 2.3934  0.0167  0.0112  
233 A110_A1B Actin_f_ratio -2.3790  0.0174  0.0115  
234 D118_A1B Distance_between_nuclear_gravit

y_center_and_mother_center 
2.3572  0.0184  0.0120  

235 CCV102_A1B CV_of_Whole_cell_outline_lengt
h 

2.3572  0.0184  0.0120  

236 D153_C Mobility_of_nucleus_in_bud -2.3572  0.0184  0.0120  
237 DCV106_C CV_of_Ratio_of_D103_to_C103 2.3572  0.0184  0.0120  
238 DCV137_C CV_of_Distance_between_nuclea

r_brightest_point_in_bud_and_bu
d_center 

2.3572  0.0184  0.0120  
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239 ACV120_A1B CV_of_Total_length_of_actin_pa
tch_link 

2.3209  0.0203  0.0130  

240 C111_C Distance_between_bud_tip_and_
mother_short_axis_extension 

2.3209  0.0203  0.0130  

241 D14-1_C Nuclear_size_in_mother 2.3209  0.0203  0.0130  
242 D113_C Ratio_of_D109_to_C107 -2.3209  0.0203  0.0130  
243 D205 nuclear_F_ratio     2.3179  0.0205  0.0130  
244 C104_A Short_axis_length_in_whole_cell 2.2846  0.0223  0.0139  
245 D148_A Relative_distance_of_nuclear_bri

ghtest_point_to_cell_center 
2.2846  0.0223  0.0139  

246 D185_C Total_length_of_two_straight_se
gments_D11-1C4-1_and_D11-
2C4-1 

2.2846  0.0223  0.0139  

247 D186_C Total_length_of_two_straight_se
gments_D12-1C4-1_and_D12-
2C4-1 

2.2846  0.0223  0.0139  

248 DCV108_C CV_of_Distance_between_nuclea
r_gravity_center_in_mother_and_
middle_point_of_neck 

2.2846  0.0223  0.0139  

249 DCV174_C CV_of_Maximal_distance_betwee
n_nuclear_gravity_center_and_nuc
lear_outline_in_bud 

2.2846  0.0223  0.0139  

250 D173_A Maximal_distance_between_nucl
ear_gravity_center_and_nuclear_
outline 

2.2484  0.0246  0.0152  

251 D158_C Angle_between_D1-1D1-
2_and_C1-1C1-2 

-2.2484  0.0246  0.0152  
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Table S2A. Parameters that describe major alteration induced by terbinafine treatment 

PC ID Description Loadings P value 
PC1* D14-3_A1B Nuclear_size 0.780  3.42E-26 
 C104_C Short_axis_length_in_mother 0.779  4.25E-26 
 D14-2_C Nuclear_size_in_bud 0.774  1.58E-25 
 C101_C Whole_cell_size 0.767  7.54E-25 
 C11-1_C Mother_cell_size 0.765  1.21E-24 
 C104_A1B Short_axis_length_in_mother 0.754  1.27E-23 
 C128_A1B Distance_between_middle_point_

of_neck_and_mother_hip 
0.751  2.28E-23 

 C11-1_A1B Mother_cell_size 0.751  2.33E-23 
 D14-3_C Nuclear_size_in_whole_cell 0.745  7.05E-23 
 D180_C Nuclear_minimum_radius_in_bud 0.746  1.01E-22 
 D177_C Nuclear_long_axis_length_in_bud 0.738  3.32E-22 
 D174_C Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
tline_in_bud 

0.699  3.66E-19 

 D176_A Nuclear_long_axis_length 0.695  6.64E-19 
 D178_A1B Nuclear_long_axis_length 0.683  4.63E-18 
 D173_A Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
tline 

0.679  8.76E-18 

 D14-1_A Nuclear_size 0.673  1.93E-17 
 D179_A Nuclear_minimum_radius 0.672  2.24E-17 
 C112_A1B Distance_between_middle_point_

of_neck_and_mother_center 
0.671  2.97E-17 

 D175_A1B Maximal_distance_between_nucle
ar_gravity_center_and_nuclear_ou
tline 

0.668  4.26E-17 

 C108_C Short_axis_length_in_bud 0.608  1.15E-13 
 C13_A1B Mother_cell_fitness_for_ellipse -0.591  7.72E-13 
 C115_C Mother_axis_ratio -0.566  1.14E-11 
 C109_A1B Neck_width 0.551  4.98E-11 
 C109_C Neck_width 0.541  1.23E-10 
 C115_A1B Mother_axis_ratio -0.519  8.58E-10 
 C104_A Short_axis_length_in_whole_cell 0.517  1.10E-09 
 D188_A Distance_between_nuclear_gravity

_center_and_brightest_point 
0.502  3.90E-09 

 C13_C Mother_cell_fitness_for_ellipse -0.506  4.30E-09 
PC2* DCV176_A CV_of_Nuclear_long_axis_length 0.697  4.67E-19 
 DCV173_A CV_of_Maximal_distance_betwee

n_nuclear_gravity_center_and_nuc
lear_outline 

0.673  2.17E-17 

 DCV14-1_A CV_of_Nuclear_size 0.659  1.67E-16 
 D14-1_A Nuclear_size 0.647  8.67E-16 
 D173_A Maximal_distance_between_nucle

ar_gravity_center_and_nuclear_ou
0.631  6.34E-15 
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tline 
 D176_A Nuclear_long_axis_length 0.622  2.16E-14 
 D179_A Nuclear_minimum_radius 0.585  1.51E-12 
 C104_A1B Short_axis_length_in_mother -0.553  3.97E-11 
 C112_A1B Distance_between_middle_point_

of_neck_and_mother_center 
-0.552  4.47E-11 

 C11-1_A1B Mother_cell_size -0.534  2.39E-10 
 D14-3_C Nuclear_size_in_whole_cell 0.516  1.16E-09 
 DCV17-1_A CV_of_Nuclear_fitness_for_ellips

e 
0.515  1.26E-09 

 D174_C Maximal_distance_between_nucle
ar_gravity_center_and_nuclear_ou
tline_in_bud 

0.514  1.43E-09 

 C104_C Short_axis_length_in_mother -0.510  1.90E-09 
PC3* D15-3_A1B Nuclear_brightness 0.629  8.12E-15 
 D15-1_A Nuclear_brightness 0.616  4.40E-14 
 D15-3_C Nuclear_brightness_in_whole_cell 0.611  7.99E-14 
 C106_C Bud_direction -0.556  3.08E-11 
 CCV110_C CV_of_Distance_between_bud_tip

_and_mother_long_axis_extension 
0.521  7.82E-10 

 CCV106_C CV_of_Bud_direction 0.513  1.51E-09 
PC4* D15-3_A1B Nuclear_brightness 0.583  1.80E-12 
 D15-3_C Nuclear_brightness_in_whole_cell 0.574  4.82E-12 
 CCV110_A1

B 
CV_of_Distance_between_bud_tip
_and_mother_long_axis_extension 

-0.569  7.69E-12 

 D15-1_A Nuclear_brightness 0.564  1.40E-11 
 CCV106_A1

B 
CV_of_Bud_direction -0.559  2.22E-11 

PC5* D156_C Angle_between_C2D1-
2_and_C2C4-2 

-0.838  2.10E-33 

 D157_C Angle_between_C2D2-
2_and_C2C4-2 

-0.751  2.16E-23 

  DCV123_C CV_of_Ratio_of_D121_to_C107 0.726  3.06E-21 
*Principal component 1, 2, 3, 4, and 5, respectively. 	 	
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Table S2B. Parameters that describe major alteration induced by flucytosine treatment 

PC ID Description Loadings P value 
PC1* A106_A Actin_b_ratio 0.972  2.38E-77 
 A105_A Actin_a_ratio -0.971  9.61E-77 
 A115 actin_b_ratio_to_no_bud_cells 0.971  2.11E-76 
 A101_A Actin_region_ratio_in_whole_cell -0.970  7.26E-76 
 A114 actin_a_ratio_to_no_bud_cells -0.970  1.28E-75 
 A7-1_A Size_of_actin_region -0.940  6.00E-58 
 A111 actin_ae_ratio -0.929  5.65E-54 
 A112 actin_bcd_ratio 0.910  8.47E-48 
 ACV123_A CV_of_Ratio_of_actin_patches_to_actin

_region 
-0.791  1.99E-27 

  ACV7-
1_A1B 

CV_of_Size_of_actin_region_in_mother -0.530  3.37E-10 

PC2* D128_C Distance_between_nuclear_brightest_poi
nt_in_mother_and_mother_tip 

-0.725  3.77E-21 

 D103_C Distance_between_nuclear_gravity_cent
er_in_mother_and_mother_tip 

-0.721  8.27E-21 

 D135_A Distance_between_nuclear_brightest_poi
nt_and_cell_center 

-0.681  5.83E-18 

 D141_C Distance_between_nuclear_brightest_poi
nt_in_mother_and_mother_hip 

-0.629  8.11E-15 

 D106_C Ratio_of_D103_to_C103 -0.568  8.95E-12 
 D125_C Distance_between_nuclear_gravity_cent

er_in_mother_and_mother_hip 
-0.565  1.28E-11 

 C102_A1B Whole_cell_outline_length -0.559  2.25E-11 
 D127_A Distance_between_nuclear_brightest_poi

nt_and_cell_tip 
-0.553  4.19E-11 

 C113_A1B Distance_between_bud_tip_and_mother
_long_axis_through_middle_point_of_n
eck 

-0.521  7.57E-10 

 D170_A1B Angle_between_C4-1D2-1_and_C4-1C1 -0.518  1.01E-09 
  D105_A Ratio_of_D102_to_C103 -0.509  2.17E-09 
PC3* D17-1_C Nuclear_fitness_for_ellipse_in_mother 0.555  3.35E-11 
 D141_C Distance_between_nuclear_brightest_poi

nt_in_mother_and_mother_hip 
-0.536  2.07E-10 

 D128_C Distance_between_nuclear_brightest_poi
nt_in_mother_and_mother_tip 

-0.529  3.68E-10 

 D103_C Distance_between_nuclear_gravity_cent
er_in_mother_and_mother_tip 

-0.525  5.23E-10 

 DCV173_C CV_of_Maximal_distance_between_nuc
lear_gravity_center_and_nuclear_outline
_in_mother 

0.515  1.28E-09 

 D125_C Distance_between_nuclear_gravity_cent
er_in_mother_and_mother_hip 

-0.514  1.40E-09 

 D106_C Ratio_of_D103_to_C103 -0.506  2.78E-09 
 DCV176_C CV_of_Nuclear_long_axis_length_in_m

other 
0.504  3.38E-09 

  C117_C Cell_outline_ratio -0.502  3.93E-09 
PC4* DCV173_C CV_of_Maximal_distance_between_nuc

lear_gravity_center_and_nuclear_outline
0.625  1.43E-14 
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_in_mother 
  DCV176_C CV_of_Nuclear_long_axis_length_in_m

other 
0.565  1.17E-11 

PC5* D17-1_A Nuclear_fitness_for_ellipse -0.546  7.95E-11 
 DCV17-1_A CV_of_Nuclear_fitness_for_ellipse -0.542  1.12E-10 
  D182_A Nuclear_axis_ratio -0.511 1.79E-09 
PC6* C110_A1B Distance_between_bud_tip_and_mother

_long_axis_extension 
-0.711  4.36E-20 

  C105_A1B Neck_position -0.703  1.68E-19 
*Principal component 1, 2, 3, 4, 5, and 6, respectively. 	 	
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Table S2C. Parameters that describe major alteration induced by micafungin treatment 

PC ID Description Loadings P value 
PC1* C112_A1B Distance_between_middle_point_of_neck_

and_mother_center 
-0.840  1.15E-33 

 C104_A1B Short_axis_length_in_mother -0.818  1.42E-30 
 C12-1_A1B Mother_cell_outline_length -0.805  5.63E-29 
 C11-1_A1B Mother_cell_size -0.802  1.36E-28 
 C104_C Short_axis_length_in_mother -0.793  1.31E-27 
 C112_C Distance_between_middle_point_of_neck_

and_mother_center 
-0.788  5.27E-27 

 C11-1_C Mother_cell_size -0.766  9.52E-25 
 C12-1_C Mother_cell_outline_length -0.742  1.36E-22 
 C101_C Whole_cell_size -0.738  2.95E-22 
 C128_A1B Distance_between_middle_point_of_neck_

and_mother_hip 
-0.726  3.38E-21 

 D117_A Distance_between_nuclear_gravity_center
_and_cell_center 

-0.714  2.81E-20 

 D135_A Distance_between_nuclear_brightest_point
_and_cell_center 

-0.694  8.02E-19 

 C103_C Long_axis_length_in_mother -0.687  2.28E-18 
 C101_A1B Whole_cell_size -0.681  5.71E-18 
 A7-1_A1B Size_of_actin_region_in_mother 0.677  1.06E-17 
 C128_C Distance_between_middle_point_of_neck_

and_mother_hip 
-0.671  2.64E-17 

 D117_C Distance_between_nuclear_gravity_center
_in_mother_and_mother_center 

-0.652  3.95E-16 

 D186_C Total_length_of_two_straight_segments_D
12-1C4-1_and_D12-2C4-1 

-0.652  4.14E-16 

 D185_C Total_length_of_two_straight_segments_D
11-1C4-1_and_D11-2C4-1 

-0.649  6.45E-16 

 A109_A1B Actin_e_ratio 0.634  4.47E-15 
 A118 actin_e_ratio_to_budded_cells 0.633  4.95E-15 
 D108_C Distance_between_nuclear_gravity_center

_in_mother_and_middle_point_of_neck 
-0.629  7.96E-15 

 C115_A1B Mother_axis_ratio 0.623  1.75E-14 
 A112_A1B Actin_cd_ratio -0.622  1.98E-14 
 A102_A1B Bud_actin_region_ratio_to_total_region -0.614  5.63E-14 
 A111 actin_ae_ratio 0.609  1.01E-13 
 A112 actin_bcd_ratio -0.608  1.06E-13 
 D147_A Relative_distance_of_nuclear_gravity_cent

er_to_cell_center 
-0.605  1.52E-13 

 C104_A Short_axis_length_in_whole_cell -0.602  2.17E-13 
 D148_A Relative_distance_of_nuclear_brightest_po

int_to_cell_center 
-0.597  4.04E-13 

 C115_C Mother_axis_ratio 0.590  8.27E-13 
 A109 actin_e_ratio     0.580  2.53E-12 
 A101_A Actin_region_ratio_in_whole_cell 0.569  7.78E-12 



	 120 

 DCV14-1_A CV_of_Nuclear_size 0.539  1.52E-10 
 D105_A Ratio_of_D102_to_C103 -0.539  1.58E-10 
 C13_A1B Mother_cell_fitness_for_ellipse 0.532  2.81E-10 
 A7-1_C Size_of_actin_region_in_mother 0.531  3.13E-10 
 D143_C Distance_between_nuclear_outline_point_

D6-
1_in_mother_and_middle_point_of_neck 

-0.522  6.92E-10 

  A8-1_A1B Total_brightness_of_actin_region_in_moth
er 

0.521  7.53E-10 

PC2* A123_C Ratio_of_actin_patches_to_actin_region 0.848  7.31E-35 
 A123_A1B Ratio_of_actin_patches_to_actin_region 0.845  2.46E-34 
 A120_A1B Total_length_of_actin_patch_link 0.838  2.54E-33 
 A121_A1B Maximal_distance_between_patches 0.837  3.20E-33 
 A121_C Maximal_distance_between_patches 0.821  6.19E-31 
 A120_C Total_length_of_actin_patch_link 0.819  1.12E-30 
 A120_A Total_length_of_actin_patch_link 0.796  5.78E-28 
 ACV120_A1B CV_of_Total_length_of_actin_patch_link -0.766  8.37E-25 
 ACV122_A CV_of_Number_of_bright_actin_patches -0.703  1.67E-19 
 ACV123_A CV_of_Ratio_of_actin_patches_to_actin_r

egion 
-0.667  4.69E-17 

 A105 actin_a_ratio     -0.661  1.20E-16 
 ACV123_A1B CV_of_Ratio_of_actin_patches_to_actin_r

egion 
-0.627  1.18E-14 

 A115 actin_b_ratio_to_no_bud_cells 0.605  1.52E-13 
 A114 actin_a_ratio_to_no_bud_cells -0.604  1.80E-13 
 A106_A Actin_b_ratio 0.6034  1.90E-13 
 A105_A Actin_a_ratio -0.593  6.01E-13 
 A8-1_A1B Total_brightness_of_actin_region_in_moth

er 
0.589  8.90E-13 

 A8-1_A Actin_region_brightness 0.583  1.79E-12 
 DCV15-1_A CV_of_Nuclear_brightness 0.579  2.90E-12 
 A111 actin_ae_ratio -0.571  6.74E-12 
 A112 actin_bcd_ratio 0.545  8.33E-11 
 DCV15-3_C CV_of_Nuclear_brightness_in_whole_cell 0.543  1.06E-10 
 A101_A Actin_region_ratio_in_whole_cell -0.532  2.94E-10 
 D15-3_A1B Nuclear_brightness -0.531  3.10E-10 
 D15-2_C Nuclear_brightness_in_bud -0.529  3.68E-10 
 DCV15-1_C CV_of_Nuclear_brightness_in_mother 0.529  3.94E-10 
 A7-1_A Size_of_actin_region -0.516  1.17E-09 
  A8-1_C Total_brightness_of_actin_region_in_moth

er 
0.505  3.10E-09 

PC3* C11-2_A1B Bud_cell_size -0.797  5.41E-28 
 C12-2_A1B Bud_cell_outline_length -0.794  9.63E-28 
 C107_A1B Long_axis_length_in_bud -0.746  5.96E-23 
 A7-2_A1B Size_of_actin_region_in_bud -0.717  1.63E-20 
 A107_A1B Actin_c_api_ratio 0.659  1.47E-16 
 C117_A1B Cell_outline_ratio -0.636  3.52E-15 
 C118_A1B Cell_size_ratio -0.634  4.66E-15 
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 C123_A1B Small_bud_ratio 0.620  2.53E-14 
 A106 actin_b_ratio     0.615  4.82E-14 
 C101_A1B Whole_cell_size -0.603  2.00E-13 
 C123 small_bud_ratio_to_budded_cells 0.602  2.27E-13 
 D210 nuclear_A_ratio_to_nuclear_AA1BC_cells 0.594  5.26E-13 
 C119 no_bud_ratio    0.588  1.12E-12 
 C122 large_bud_ratio     -0.562  1.65E-11 
 D199 nuclear_A_ratio     0.549  5.76E-11 
 C110_A1B Distance_between_bud_tip_and_mother_l

ong_axis_extension 
-0.544  9.23E-11 

  A108 actin_d_iso_ratio     -0.543  1.04E-10 
PC4* D16-3_A1B Maximal_intensity_of_nuclear_brightness 0.570  7.21E-12 
 DCV14-2_C CV_of_Nuclear_size_in_bud -0.561  1.90E-11 
 D193_A1B Average_of_nuclear_brightness 0.548  6.61E-11 
 D14-1_C Nuclear_size_in_mother -0.519  8.88E-10 
  D16-1_A Maximal_intensity_of_nuclear_brightness 0.518  1.01E-09 
PC5* CCV12-1_C CV_of_Mother_cell_outline_length 0.655  2.70E-16 
 CCV11-1_C CV_of_Mother_cell_size 0.625  1.43E-14 
 CCV104_C CV_of_Short_axis_length_in_mother 0.609  9.13E-14 
 CCV101_C CV_of_Whole_cell_size 0.609  9.34E-14 
 CCV128_C CV_of_Distance_between_middle_point_o

f_neck_and_mother_hip 
0.560  1.99E-11 

 DCV185_C CV_of_Total_length_of_two_straight_seg
ments_D11-1C4-1_and_D11-2C4-1 

0.549  5.46E-11 

 CCV102_C CV_of_Whole_cell_outline_length 0.539  1.41E-10 
  DCV186_C CV_of_Total_length_of_two_straight_seg

ments_D12-1C4-1_and_D12-2C4-1 
0.534  2.33E-10 

PC9* D159_C Angle_between_D2-1D2-2_and_C1-1C1-2 0.571  6.40E-12 
 D158_C Angle_between_D1-1D1-2_and_C1-1C1-2 0.566  1.11E-11 
 C106_C Bud_direction 0.555  3.21E-11 
  C111_C Distance_between_bud_tip_and_mother_s

hort_axis_extension 
-0.535  2.15E-10 

PC10* CCV104_A1B CV_of_Short_axis_length_in_mother 0.559  2.09E-11 
 CCV12-1_A1B CV_of_Mother_cell_outline_length 0.558 2.50E-11 
 CCV11-1_A1B CV_of_Mother_cell_size 0.540  1.38E-10 
  CCV103_A1B CV_of_Long_axis_length_in_mother 0.523  6.50E-10 
PC11* DCV125_C CV_of_Distance_between_nuclear_gravity

_center_in_mother_and_mother_hip 
0.624  1.71E-14 

 DCV106_C CV_of_Ratio_of_D103_to_C103 0.618  3.25E-14 
 DCV103_C CV_of_Distance_between_nuclear_gravity

_center_in_mother_and_mother_tip 
0.606  1.37E-13 

 DCV141_C CV_of_Distance_between_nuclear_brighte
st_point_in_mother_and_mother_hip 

0.565  1.23E-11 

  DCV128_C CV_of_Distance_between_nuclear_brighte
st_point_in_mother_and_mother_tip 

0.534  2.37E-10 

*Principal component 1, 2, 3, 4, 5, 9, 10, and 11, respectively. 	 	
	
	
	



	 122 

	
	
 
Table S3. Vacuole morphology of antifungal agent-treated yeast cells 

Strain Drug Percentage of quinacrine-stained cells (%)* 

Stained 

Vacuole 

Stained Entire 

cell 

Unstained 

Cells 

BY4741 MOCK 41.6 ± 5.4 9.3 ± 2.2 49.1 ± 7.5 

 BY4741 FCZ 26.7 ± 8.0 13.9 ± 3.1 59.4 ± 10.1 

 BY4741 TBF 27.6 ± 5.6 21.3 ± 2.9 51.1 ± 4.1 

* Cell count as a mean from three independent experiment ± standard error of the mean 
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Table S4. List of parameters involved in three PCs that optimally classified antifungal 

drugs at FRD= 0.1 

PC ID Parameter description 

PC63* C125 Large bud ratio to budded cells 
 C11-2_A1B Bud cell size 
 A7-2_A1B Size of actin region in bud 
 DCV179_A Coefficient of variation of D179 A 
 C118_A1B Cell size ratio 
 A108_A1B Actin d ratio 
 DCV196_A1B Coefficient of variation of D196 A1B 
 D143_A1B Distance between nuclear outline point D6-1 and middle point 

of neck 
 DCV102_A Coefficient of variation of D102 A 
 C12-2_A1B Bud cell outline length 
 C117_A1B Cell outline ratio 
 A108 actin d ratio     
 C107_A1B Long axis length in bud 
 A110_A1B Actin f ratio 
 D144_C Distance between nuclear outline point D6-2 in bud and middle 

point of neck 
 DCV104_A1B Coefficient of variation of D104 A1B 
 D117_A Distance between nuclear gravity center and cell center 
 A107_A1B Actin c ratio 
 CCV112_A1B Coefficient of variation of C112 A1B 
  A9_C Proportion of actin region at neck 
PC54* CCV11-1_C Coefficient of variation of C11-1 C 
 CCV110_C Coefficient of variation of C110 C 
 CCV126_A1B Coefficient of variation of C126 A1B 
 DCV193_A1B Coefficient of variation of D193 A1B 
 CCV12-1_C Coefficient of variation of C12-1 C 
 CCV109_C Coefficient of variation of C109 C 
 CCV103_C Coefficient of variation of C103 C 
 CCV101_C Coefficient of variation of C101 C 
 DCV158_C Coefficient of variation of D158 C 
 DCV159_C Coefficient of variation of D159 C 
  D137_C Distance between nuclear brightest point in bud and bud center 
PC77* A113_A1B Actin n ratio 
 DCV196_C Coefficient of variation of D196 C 
 D131_C Distance between nuclear brightest point in bud and middle 

point of neck 
 A8-1_C Total brightness of actin region in mother 
 D153_C Mobility of nucleus in bud 
 A117 actin d ratio to budded cells 
 D194_C Maximal intensity of nuclear brightness divided by average in 
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whole cell 
 C128_C Distance between middle point of neck and mother hip 
 ACV121_C Coefficient of variation of A121 C 
 A102_A1B Bud actin region ratio to total region 
 A108_A1B Actin d ratio 
 A108 Actin d ratio     
 D144_C Distance between nuclear outline point D6-2 in bud and middle 

point of neck 
 CCV128_A1B Coefficient of variation of C128 A1B 
 C125_C Large bud ratio 
 C12-1_C Mother cell outline length 
 D109_C Distance between nuclear gravity center in bud and middle 

point of neck 
 C104_C Short axis length in mother 
 C11-1_C Mother cell size 
 DCV186_C Coefficient of variation of D186 C 
 DCV185_C Coefficient of variation of D185 C 
 D16-1_C Maximal intensity of nuclear brightness in mother 
 CCV103_A1B Coefficient of variation of C103 A1B 
 DCV177_C Coefficient of variation of D177 C 
 CCV101_A1B Coefficient of variation of C101 A1B 
 A7-1_C Size of actin region in mother 
 C124_C Medium bud ratio 
 C12-2_A1B Bud cell outline length 
 C117_A1B Cell outline ratio 
 C107_A1B Long axis length in bud 
 D113_C Ratio of D109 to C107 
 CCV12-1_A1B Coefficient of variation of C12-1 A1B 
 CCV107_C Coefficient of variation of C107 C 
 ACV120_C Coefficient of variation of A120 C 
 DCV179_A Coefficient of variation of D179 A 
 C118_A1B Cell size ratio 
 DCV196_A1B Coefficient of variation of D196 A1B 
 C112_C Distance between middle point of neck and mother center 
 C118_C Cell size ratio 
 C117_C Cell outline ratio 
 A104_C Relative distance of actin patch center from neck in bud  
 C123_A1B Small bud ratio 
 CCV104_A1B Coefficient of variation of C104 A1B 
 D123_C Ratio of D121 to C107 
 A103_A1B Relative distance of actin patch center from neck in mother 
 CCV13_C Coefficient of variation of C13 C 
 A109_C Actin e ratio 
 A102_C Bud actin region ratio to total region 
 CCV12-2_C Coefficient of variation of C12-2 C 
 DCV174_C Coefficient of variation of D174 C 
 CCV102_C Coefficient of variation of C102 C 
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 DCV129_A1B Coefficient of variation of D129 A1B 
 A109_A1B Actin e ratio 
 C11-2_A1B Bud cell size 
 CCV103_A Coefficient of variation of C103 A 
 A104_A1B Relative distance of actin patch center from neck in bud  
 ACV120_A1B Coefficient of variation of A120 A1B 
 ACV9_A1B Coefficient of variation of A9 A1B 
 CCV11-2_C Coefficient of variation of C11-2 C 
 DCV195_C Coefficient of variation of D195 C 
 A112_A1B Actin cd ratio 
 DCV194_A Coefficient of variation of D194 A 
 A7-2_A1B Size of actin region in bud 
 A118 actin e ratio to budded cells 
 DCV15-1_A Coefficient of variation of D15-1 A 
 C104_A1B Short axis length in mother 
 CCV113_C Coefficient of variation of C113 C 
 CCV108_C Coefficient of variation of C108 C 
 A7-1_A1B Size of actin region in mother 
 CCV112_A1B Coefficient of variation of C112 A1B 
 C113_C Distance between bud tip and mother long axis through middle 

point of neck 
 A109 actin e ratio     
 D132_A1B Distance between nuclear brightest point and middle point of 

neck 
 ACV121_A1B Coefficient of variation of A121 A1B 
 C101_C Whole cell size 
 ACV122_C Coefficient of variation of A122 C 
  C127_A Thickness difference of cell wall 
* Principal component 63, 54, and C77 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents 
 
Agent GO 

categor
y 

GO ID GO term P-value FD
R 

No. 
of 
AQ
G 

No. 
of 
QG 

No. 
of 
AB
G 

No. 
of 
BG 

Gene(s) annotated to the term 

FCZ Cellular 
process 

GO: 0007035 Vacuolar acidification 1.31E-07 0 8 65 23 4708 VMA1, VMA3, VMA16, VMA5, 
VPH2, VMA6, VMA4, VMA11 

  GO:0051453 Regulation of intracellular pH 1.95E-07 0 8 65 24 4708 VMA1, VMA3, VMA16, VMA5, 
VPH2, VMA6, VMA4, VMA11 

  GO:0030004 Cellular monovalent 
inorganic cation homeostasis 

3.34E-06 0 8 65 33 4708 VMA1, VMA3, VMA16, VMA5, 
VPH2, VMA6, VMA4, VMA11 

 Cellular 
function 

GO:0044769 ATPase activity, coupled to 
transmembrane movement of 
ions, rotational mechanism 

5.87E-07 0 7 65 22 4708 VMA1, VMA16, VMA5, VMA6, 
VMA4, VMA11, ATP15 

  GO:0015077 Monovalent inorganic cation 
transmembrane transporter 
activity 

4.85E-05 0 8 65 57 4708 VMA1, VMA3, VMA16, VMA5, 
VMA6, VMA4, VMA11, ATP15 

 Cellular 
compon
ent 

GO:0016471 Vacuolar proton-transporting 
V-type ATPase complex 

9.50E-09 0 7 65 13 4708 VMA1, VMA3, VMA16, VMA5, 
VMA6, VMA4, VMA11 

  GO:0000220 Vacuolar proton-transporting 
V-type ATPase, V0 domain 

4.18E-05 0 4 65 6 4708 VMA3, VMA16, VMA6, 
VMA11 

  GO:0033178 Proton-transporting two-
sector ATPase complex, 
catalytic domain 

0.0006  0 4 65 10 4708 VMA1, VMA5, VMA4, ATP15 

    GO:0000221 Vacuolar proton-transporting 
V-type ATPase, V1 domain 

0.0073  0 3 65 7 4708 VMA1, VMA5, VMA4 

Note: No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: 
number of background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of the antifungal agents on the WT yeast (Continued) 

Agent GO 
category 

GO ID GO term P-value FDR No. of 
AQG 

No. 
of 
QG 

No. of 
ABG 

No. 
of 
BG 

Gene(s) annotated to the 
term 

TBF Cellular 
process 

GO:0007035 Vacuolar acidification 3.12E-07 0 11 197 23 4708 VMA2, VMA1, VPS3, 
VMA3, VMA7, VMA16, 
VMA5, VPH2, VMA6, 
VMA4, VMA11 

  GO:0030004 Cellular monovalent 
inorganic cation 
homeostasis 

2.32E-06 0 12 197 33 4708 VMA2, VMA1, VPS3, 
VMA3, VMA7, VMA16, 
TOK1, VMA5, VPH2, 
VMA6, VMA4, VMA11 

 Cellular 
function 

GO:0046961 Proton-transporting 
ATPase activity, 
rotational mechanism 

2.58E-06 0 8 197 14 4708 VMA2, VMA1, VMA7, 
VMA16, VMA5, VMA6, 
VMA4, VMA11 

 Cellular 
compone
nt 

GO:0016471 Vacuolar proton-
transporting V-type 
ATPase complex 

3.23E-08 0 9 197 13 4708 VMA2, VMA1, VMA3, 
VMA7, VMA16, VMA5, 
VMA6, VMA4, VMA11 

  GO:0022627 Cytosolic small 
ribosomal subunit 

1.67E-06 0 14 197 51 4708 FUN12, RPS14A, RPS26B, 
RPS28B, RPS30A, RPS29A, 
RPS17A, RPS1B, ASC1, 
RPS16A, RPS7B, RPS7A, 
RPS30B, RPS10A 

  GO:0000221 Vacuolar proton-
transporting V-type 
ATPase, V1 domain 

0.0004  0 5 197 7 4708 VMA2, VMA1, VMA7, 
VMA5, VMA4 

    GO:0000220 Vacuolar proton-
transporting V-type 
ATPase, V0 domain 

0.0066  0 4 197 6 4708 VMA3, VMA16, VMA6, 
VMA11 

Note:- No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of 
background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 
 
Agent GO 

category 
GO ID GO term P-value FDR No. of 

AQG 
No. of 
QG 

No. of 
ABG 

No. of 
BG 

Gene(s) annotated to the term 

AMF Cellular 
process 

GO:0007035 Vacuolar acidification 8.41E-08 0 13 306 22 4708 VMA2,VMA1,RRG1,RAV2,VMA
3,VMA8,VMA7,VMA5,VPH2,ME
H1,VMA6,VMA4,VMA11 

  GO:0051452 Intracellular pH reduction 8.41E-08 0 13 306 22 4708 VMA2,VMA1,RRG1,RAV2,VMA
3,VMA8,VMA7,VMA5,VPH2,ME
H1,VMA6,VMA4,VMA11 

  GO:0045851 pH reduction 8.41E-08 0 13 306 22 4708 VMA2,VMA1,RRG1,RAV2,VMA
3,VMA8,VMA7,VMA5,VPH2,ME
H1,VMA6,VMA4,VMA11 

  GO:0030641 Regulation of cellular pH 1.82E-07 0 13 306 23 4708 VMA2,VMA1,RRG1,RAV2,VMA
3,VMA8,VMA7,VMA5,VPH2,ME
H1,VMA6,VMA4,VMA11 

 Cellular 
function 

GO:0046961 Proton-transporting ATPase 
activity, rotational mechanism 

5.43E-05 0 8 306 13 4708 VMA2,VMA1,VMA8,VMA7,VMA
5,VMA6,VMA4,VMA11 

  GO:0015078 H+ transmembrane 
transporter activity 

0.00219 0 12 306 43 4708 VMA2,VMA1,VMA3,VMA8,VMA
7,COX6,VMA5,VMA6,VNX1,VM
A4,VMA11 

  GO:0042625 ATPase activity, coupled to 
transmembrane movement of 
ions 

0.00817 0 9 306 28 4708 VMA2,VMA1,VMA8,VMA7,VMA
5,VMA6,VMA4,VMA11 

Note:- No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of background genes     
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 
 
Agent GO 

category 
GO ID GO term P-value FD

R 
No. 
of 
AQG 

No. 
of 
QG 

No. 
of 
ABG 

No. 
of 
BG 

Gene(s) annotated to the 
term 

AMF Cellular 
compone
nt 

GO:0016471 Vacuolar proton-transporting 
V-type ATPase complex 

7.61E-
07 

0 9 306 12 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0033176 Proton-transporting V-
ATPase complex 

7.61E-
07 

0 9 306 12 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0016469 Proton-transporting two-
sector ATPase complex 

8.32E-
05 

0 10 306 22 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0000221 Vacuolar proton-transporting 
V-type ATPase, V1 domain 

0.00011 0 6 306 7 470
8 

VMA2,VMA1,VMA8,VMA7
,VMA5,VMA4 

    GO:0033180 Proton-transporting V-type 
ATPase, V1 domain 

0.00011 0 6 306 7 470
8 

VMA2,VMA1,VMA8,VMA7
,VMA5,VMA4 

Note:- No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of 
background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 
 

Agent GO 
category 

GO ID GO term P-value FD
R 

No. 
of 
AQG 

No. 
of 
QG 

No. 
of 
ABG 

No. 
of 
BG 

Gene(s) annotated to the 
term 

AMF Cellular 
compone
nt 

GO:0016471 Vacuolar proton-transporting 
V-type ATPase complex 

7.61E-07 0 9 306 12 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0033176 Proton-transporting V-
ATPase complex 

7.61E-07 0 9 306 12 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0016469 Proton-transporting two-
sector ATPase complex 

8.32E-05 0 10 306 22 470
8 

VMA2,VMA1,VMA3,VMA8
,VMA7,VMA5,VMA6,VMA
4,VMA11 

  GO:0000221 Vacuolar proton-transporting 
V-type ATPase, V1 domain 

0.00011 0 6 306 7 470
8 

VMA2,VMA1,VMA8,VMA7
,VMA5,VMA4 

    GO:0033180 Proton-transporting V-type 
ATPase, V1 domain 

0.00011 0 6 306 7 470
8 

VMA2,VMA1,VMA8,VMA7
,VMA5,VMA4 

Note:- No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of 
background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 
 
Agent GO 

categor
y 

GO ID GO term P-value FD
R 

No. 
of 
AQG 

No. 
of 
QG 

No. 
of 
ABG 

No. of 
BG 

Gene(s) annotated to the 
term 

FCS Cellular 
process 

GO:0042274 Ribosomal small subunit 
biogenesis 

2.57E-11 0 15 98 52 4708 FUN12, RPS14A, BUD23, 
RPS18A, RPS24A, LTV1, 
RPS0B, FYV7, RPS17A, 
RPS18B, RPS1B, RPS16A, 
RPS19B, RPS19A, BUD21 

  GO:0051029 rRNA transport 0.0000  0 8 98 11 4708 RPS18A, RPS26B, RPS0B, 
RPS28B, RPS18B, RPS19B, 
RPS19A, RPS10A 

  GO:0000462 Maturation of SSU-rRNA 
from tricistronic rRNA 
transcript (SSU-rRNA, 
5.8S rRNA, LSU-rRNA) 

1.87E-08 0 11 98 34 4708 FUN12, RPS14A, BUD23, 
RPS18A, RPS24A, RPS0B, 
FYV7, RPS18B, RPS1B, 
RPS16A, BUD21 

  GO:0006405 RNA export from nucleus 3.98E-05 0 10 98 52 4708 NPL3, RPS18A, RPS26B, 
RPS0B, RPS28B, RPS18B, 
RPS19B, THP1, RPS19A, 
RPS10A 

  GO:0000466 Maturation of 5.8S rRNA 
from tricistronic rRNA 
transcript  

5.70E-04 0 6 98 18 4708 BUD23, RPS18A, LRP1, 
RPS0B, RPS18B, BUD21 

  GO:0031123 RNA 3'-end processing 0.0093  0 7 98 41 4708 CCR4, LRP1, CTK2, RPS0B, 
CTK3, POP2, THP1 

 Cellular 
compon
ent 

GO:0022627 Cytosolic small 
ribosomal subunit 

5.39E-18 0 19 98 51 4708 FUN12, RPS14A, RPS18A, 
RPS24A, RPS26B, RPS4B, 
RPS4A, RPS0B, RPS28B, 
RPS30A, RPS22B, RPS17A, 
RPS18B, RPS1B 

Note: No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 

 

 

Agent GO 
category 

GO ID GO term P-value FDR No. 
of 
AQG 

No. 
of 
QG 

No. 
of 
ABG 

No. 
of 
BG 

Gene(s) annotated to the 
term 

ECB Cellular 
process 

GO:0007035 Vacuolar acidification 6.10E-06 0 11 253 23 4708 VMA2, VMA3, VMA7, VMA16, 
RAV1, VMA5, VPH2, VMA6, 
VMA4, VMA11, VMA13 

  GO:0042274 Ribosomal small subunit 
biogenesis 

3.00E-04 0 14 253 52 4708 FUN12, RPS14A, BUD23, 
RPS16B, LSM6, RPS24A, 
LTV1, RPS17A, RPS1B, LSM7, 
RPS19B, RPS19A, BUD21, 
YAR1 

  GO:0030004 Cellular monovalent 
inorganic cation 
homeostasis 

5.40E-04 0 11 253 33 4708 VMA2, VMA3, VMA7, VMA16, 
RAV1, VMA5, VPH2, VMA6, 
VMA4, VMA11, VMA13 

 Cellular 
function 

GO:0044769 ATPase activity, coupled to 
transmembrane movement 
of ions, rotational 
mechanism 

3.05E-08 0 12 253 22 4708 VMA2, VMA7, VMA16, VMA5, 
VMA6, ATP18, VMA4, ATP4, 
VMA11, ATP15, ATP20, 
VMA13 

  GO:0046961 Proton-transporting ATPase 
activity, rotational 
mechanism 

8.73E-07 0 9 253 14 4708 VMA2, VMA7, VMA16, VMA5, 
VMA6, VMA4, ATP4, VMA11, 
VMA13 

  GO:0042626 ATPase activity, coupled to 
transmembrane movement 
of substances 

1.85E-05 0 14 253 48 4708 VMA2, SPF1, VMA7, VMA16, 
VMA5, VMA6, ATP18, PDR18, 
VMA4, ATP4, VMA11, ATP15, 
ATP20, VMA13, VMA2, VMA3 

Note: No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of background genes 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 

Note:- No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of background genes 
 
 
 

 

 

 

Agent GO 

category 

GO ID GO term P-value FDR No. of 

AQG 

No. of 

QG 

No. of 

ABG 

No. of 

BG 

Gene(s) annotated to the term 

ECB Cellular 
compone
nt 

GO:0016471 Vacuolar proton-
transporting V-type 
ATPase complex 

3.98E-07 0 9 253 13 4708 VMA7, VMA16, VMA5, 
VMA6, VMA4, VMA11, 
VMA13 

  GO:0022627 Cytosolic small 
ribosomal subunit 

6.89E-06 0 15 253 51 4708 FUN12, RPS14A, PAT1, 
RPS16B, RPS24A, RPS22B, 
RPS29A, RPS17A, RPS1B, 
ASC1, RPS19B, RPS19A, 
RPS7A, RPS30B, RPS10A 

  GO:0033177 Proton-transporting 
two-sector ATPase 
complex, transporting 
domain 

0.00032 0 7 253 13 4708 VMA3, VMA16, VMA6, 
ATP18, ATP4, VMA11, 
ATP20 

   GO:0000221 Vacuolar proton-
transporting V-type 
ATPase, V1 domain 

0.00171 0 5 253 7 4708 VMA2, VMA7, VMA5, VMA4, 
VMA13 
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Table S5. Results of GO term analysis showing the genes related to the effect of antifungal agents (Continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agent GO 
category 

GO ID GO term P-
value 

FDR No. of 
AQG 

No. of 
QG 

No. of 
ABG 

No. of 
BG 

Gene(s) annotated to the term 

MCF Cellular 
function 

GO:00150
78 

Hydrogen ion transmembrane 
transporter activity 

0.0026
4 

0 8 134 44 4708 VMA3, VMA5, VMA6, ATP18, VMA4, 
ATP4, VMA11, ATP15 

  GO:00469
61 

Proton-transporting ATPase 
activity, rotational mechanism 

0.0028
5 

0 5 134 14 4708 VMA5, VMA6, VMA4, ATP4, VMA11 

 Cellular 
compone
nt 

GO:00164
71 

Vacuolar proton-transporting 
V-type ATPase complex 

0.0032
7 

0 5 134 13 4708 VMA3, VMA5, VMA6, VMA4, VMA11 

    GO:00331
77 

Proton-transporting two-sector 
ATPase complex, transporting 
domain 

0.0032
7 

0 5 134 13 4708 VMA3, VMA6, ATP18, ATP4, VMA11 

Note: -  
(1) No. AQG: number of annotated query genes; No. QG: number of query genes; No. ABG: number of annotated background genes; No. BG: number of 
background genes.  
(2) The analysis was executed by "GO term finder (ver. 0.83)" in Saccharomyces genome database http://www.yeastgenome.org/. Query genes were selected 
as those genes deletion mutants were morphologically similar to cells treated by indicated drug 65, 197, 306, 98, 253, and 134 for FCZ, TBF, AMF, FCS, 
ECB, and MCF, respectively; P < 0.001 after Bonferroni correction; Fig. 1-3, Fig. 1-5). And 4,708 of 4,718 non-essential genes were considered as the 
background gene set. To simplify the result, GO term which had the lowest P value was selected as representative of subset of GO terms that shared the same 
annotated genes and GO category. 
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Table S6. Independent morphological features describing triple mutants 

PC# Param. ID Parameter description Loadings p values Independent features represented     

PC1 D175_A1B Maximal_distance_between_nuclear_gravity_c
enter_and_nuclear_outline 

0.715 3.88221E-09 Nuclear brightness increased at G1 phase  

 D178_A1B Nuclear_long_axis_length 0.714 4.06952E-09    
 D181_A1B Nuclear_minimum_radius 0.649 2.58464E-07      
 D15-2_C Nuclear_brightness_in_bud 0.786 8.14499E-12      
 D192_C Average_of_nuclear_brightness_in_bud 0.651 2.25623E-07 Increased actin region & brightness in mother, 

increased cell size, and increased nuclear 
brightness in S/G2 phase  

 
 D16-2_C Max_intensity_of_nuclear_brightness_in_bud 0.663 1.15067E-07  
 D16-1_A Maximal_intensity_of_nuclear_brightness 0.739 5.5488E-10  
 D16-3_C Max_intensity_of_nuclear_brightness_in_whol

e_cell 
0.621 1.15819E-06  

 D14-3_A1B Nuclear_size 0.857 1.07458E-15    
 D15-3_C Nuclear_brightness_in_whole_cell 0.682 3.67276E-08      
 C112_A1B Distance_between_middle_point_of_neck_and_

mother_center 
0.663 1.17904E-07  

 C11-1_A1B Mother_cell_size 0.605 2.59802E-06 
 C104_A1B Short_axis_length_in_mother 0.672 6.5541E-08 
 D15-3_A1B Nuclear brightness 0.672 7.71858E-13 
 C101_A1B Whole_cell_size 0.712 4.69903E-09 
 D179_A Nuclear_minimum_radius 0.707 6.4548E-09 Increased nuclear brightness in mother & bud 

and increased nuclear brightness in the cell in 
M phase 

 
 A7-1_A1B Size_of_actin_region_in_mother 0.553 2.54224E-05  
 C103_A Long_axis_length_in_whole_cell 0.408 1.11632E-06  
 A101_A1B Actin_region_ratio_in_whole_cell 0.554 2.49405E-05  
 A8-1_A1B Total_brightness_of_actin_region_in_mother 0.621 1.14999E-06  
  D136_A1B Distance_between_nuclear_brightest_point_and

_mother_center 
0.571 1.2246E-05           
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Table S6. Independent morphological features describing triple mutants (Continued) 

 
PC 
No. 

 
Parameter 
ID 

 
Parameter description 

 
Loadings 

 
p values 

 
Independent feature represented 

    

PC2 C113_C Distance_between_bud_tip_and_mother_lo
ng_axis_through_middle_point_of_neck 

0.556 2.31037E-05      

 C102_C Whole_cell_outline_length 0.793 4.01602E-12      
 D186_C Total_length_of_two_straight_segments_D

12-1C4-1_and_D12-2C4-1 
0.687 2.55296E-08      

 D185_C Total_length_of_two_straight_segments_D
11-1C4-1_and_D11-2C4-1 

0.687 2.53765E-08      

 C107_C Long_axis_length_in_bud 0.687 2.51394E-08      
 C118_A1B Cell_size_ratio -0.615 1.5566E-06 Increase cell size in M phase    
 C123_A1B Small_bud_ratio 0.596 3.96526E-06      
 C128_C Distance_between_middle_point_of_neck_

and_mother_hip 
0.639 4.34514E-07      

 C104_C Short_axis_length_in_mother 0.700 1.07846E-08      
 C12-1_C Mother_cell_outline_length 0.755 1.50259E-10      
 D14-3_C Nuclear_size_in_whole_cell 0.755 1.38529E-05      
 C117_A1B Cell_outline_ratio -0.634 5.90011E-07      
 C103_C Long_axis_length_in_mother 0.687 2.5627E-08      
 C11-1_C Mother_cell_size 0.747 2.97838E-10      
  C101_C Whole_cell_size 0.808 7.72521E-13           
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Table S6. Independent morphological features describing triple mutants (Continued) 

PC# Param. ID Parameter description Loadings p values Independent features represented     

PC3 D198_C Ratio_of_nuclear_brightness 0.572 1.14397E-05 Variation in nuclear brightness at G1 
stage   D193_A1B Average_of_nuclear_brightness 0.572 1.32956E-06 

 D16-1_C Max_intensity_nuclear_brightness_in_mot
her 

-0.574 1.08118E-05 Average nuclear brightness at S/G2 stage 

 DCV15-1_A Coefficient_of_variation_of_D15-1_A 0.732 1.03126E-09 Nuclear brightness in mother cell 
  
  

 D15-1_C Nuclear_brightness_in_mother -0.590 5.19487E-06 
 DCV191_A Coefficient_of_variation_of_D191_A 0.626 9.17129E-07 
  DCV16-1_A Coefficient_of_variation_of_D16-1_A 0.597 3.71716E-06 
PC4 D176_C Nuclear_long_axis_length_in_mother 0.562 1.76726E-05  

 
Nuclear mobility in mother at S/G2 phase 

 D173_C Maximal_distance_between_nuclear_gravit
y_center_and_nuclear_outline_in_mother 

0.575 1.01286E-05 

 D152_A1B Mobility_of_nucleus_in_mother -0.623 1.03284E-06   
 D143_C Distance_between_nuclear_outline_D6-1 

in_mother_and_middle_point_of_neck 
-0.679 4.30786E-08      

 D108_C Distance_between_nuclear_gravity_center
_in_mother_and_middle_point_of_neck 

-0.627 8.51759E-07      

  D130_C Distance_between_nuclear_brightest_point
_in_mother_and_middle_point_of_neck 

-0.635 5.68895E-07           

PC5 DCV16-3_C Coefficient_of_variation_of_D16-3_C -0.555 2.36605E-05           
PC6 D116_C Distance_between_two_nuclear_gravity_ce

nters_through_middle_point_of_neck 
0.553 2.59907E-05      

 C110_A1B Distance_between_bud_tip_and_mother 0.556 2.2393E-05      
  C12-1_A1B Mother_cell_outline_length 0.559 1.94535E-05           
PC11 D147_A Relative_distance_of_nuclear_gravity_cent

er_to_cell_center 
-0.581 7.74174E-06      
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Table S7. Description of S. cerevisiae hypersensitive deletion strains used in this study 

 
Strain 

 
Alias 

 
 Genotype* 

 
Description 

 
Y8835 

 
WT 

 
Ura3Δ::natR; can1Δ::STE2pr-Sp_his5 lyp1Δ; his3Δ1 leu2Δ0 ura3Δ0 
met15^0 LYS2+ 

 

 
Y12669 

 
pdr1Δ 

 
Pdr1Δ::NATMX; his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 

 
Transcription factor that regulates 
the pleiotropic drug response 
(PDR) 

 
Y13118 

 
pdr3Δ pdr1Δ 

 
Pdr3Δ::KIura3; pdr1Δ::NATMX; can1Δ::STE2pr-Sp_his5 lyp1Δ; 
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 

 

 
Y13206 

 
snq2Δ pdr3Δ pdr1Δ 

 
Snq2Δ::KILeu2; pdr3Δ::KIura3; pdr1Δ::NATMX;can1Δ::STE2pr-
Sp_his5 lyp1Δ;  his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 

 
Y13282 

 
snq2Δ 

 
Snq2Δ::KILeu2; lyp1Δ his3Δ1 leu2 Δ0 ura3Δ0 met15Δ0 LYS2+ 

 
Plasma membrane ATP-binding 
cassette (ABC) transporter 

 
Y13287 

 
snq2Δ pdr1Δ 

 
Snq2Δ::KILeu2; pdr1Δ::NATMX; can1Δ::STE2pr-Sp_his5 
lyp1Δ;his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 

 

 
Y13291 

 
snq2Δ pdr3Δ 

 
Snq2Δ::KILeu2; pdr3Δ::KIura3; can1Δ::STE2pr-Sp_his5 
lyp1Δ;his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 

 
Y13307 

 
pdr3Δ 

 
Pdr3Δ::KIura3; can1Δ::STE2pr-Sp_his5 lyp1Δ; his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 LYS2+ 

Transcriptional activator of the 
PDR network; Regulates 
expression of ABC transporters  

*Adapted from: Andrusiak K (2012) 
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Table S8. Representative gene set enrichment for the GO terms in antimicrobial agents treated hypersensitive strain 

Drug GO 
category 

GOID GO term No. 
AQ
G 

No. 
QG 

No. 
ABG 

No. 
BGG 

p-
value 

FDR Expect
ed FP 

Gene(s) annotated to the term       

BML Process 7021 Tubulin 
complex 
assembly 

5 20 9 1980 1.22E-06 0 0 GIM4, PAC2, CIN4, CIN1, CIN2    

 6457 Protein 
folding 

5 20 35 1980 0.00267 0 0 PLP1, PAC2, CIN4, CIN1, CIN2    

Function 15631 Tubulin 
binding 

4 20 17 1980 0.00023 0 0 GIM4, PAC2, ASE1, CIN1    

  8092 Cytoskeletal 
protein 
binding 

4 20 30 1980 0.00246 0 0 GIM4, PAC2, ASE1, CIN1    

TCM Process 1901137 Carbohydrate 
derivative 
biosynthetic 
process 

16 165 55 1980 0.00324 0 0 PMT2, MNN2, MNN10, ERD1, SAM2, GDA1, GUP1, 
LAS21, HOC1, ARV1, EOS1, IRA2, PPM2, ALG6, 
OST3, ALG5 
 

 9101 Glycoprotein 
biosynthetic 
process 

10 165 24 1980 0.00635 0 0 PMT2, MNN2, MNN10, ERD1, GDA1, HOC1, EOS1, 
ALG6, OST3, ALG5 

ECB 
  

process 70651 Nonfunctional 
rRNA decay 

4 60 4 1980 0.00036 0 0 XRN1, RTT101, HBS1, MMS1      

  71840 Cellular 
component 
organization 
or biogenesis 

38 60 697 1980 0.00287 0 0 MDM10, SLA1, REI1, WHI4, RAD55, SPO71, NUM1, 
MNN10, ESC2, SLX8, BEM2, XRN1, PAC10, 
VMA21, KSP1, EST3, APQ12, RTT101, 
HOC1, LHS1, BUD2, NUP133, HBS1, RTT109, 
RPS28B, MMS22, TSR2, UBX2, CIK1, MRE11, 
GAS1, RPS19B, BUB3, RPS10A, RMI1, BEM4, 
CTF4, KAR3 

 

Note: No. AQG-number of query genes; No.QG - number of query genes; No. ABG-number of annotated background genes; No. BG-number of background 
genes 
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       Table S8. Representative gene set enrichment for the GO terms in antimicrobial agents treated hypersensitive strain (Continued)  

     

Drug GO categoryGOID GO_term No. AQG No. QG No. ABG No. BGG P-value FDR EFP Gene(s) annotated to the term

MMS Process 6259 DNA metabolic process 89 563 159 1980 3.96E-11 0 0

90304 Nucleic acid metabolic 
process

191 563 452 1980 5.44E-10 0 0

6974 Cellular response to DNA 
damage stimulus

63 563 102 1980 8.78E-10 0 0

6725 Cellular aromatic compound 
metabolic process

209 563 519 1980 9.98E-09 0 0

46483 Heterocycle metabolic 
process

209 563 523 1980 2.58E-08 0 0

51276 Chromosome organization 99 563 200 1980 3.37E-08 0 0

SAW1,SWD1,HEK2,HHT,RDH54,HSM3,DPB3,DCC1,RIM1,SLX5,RPN4,RAD59,BRE1,RAD57,RAD28,RAD55,MSH6,DPB4,SAC3,HTA1,IRC3,
ESC2,SEM1,RAD51,SLX8,RAD4,LIF1,SOH1,RAD54,SAE2,SKI8,RTF1,CLB6,RRM3,WSS1,RTT107,CTF8,EST3,FKH1,:RTT101, 
SET2,POL32,RAD27,APN1,NUP133,RTT109,BRE2,RAD5,HOG1,SWI6,TOP3,MMS22,REC102,RSC2,PSY3,CTF3,CST9,CDC73,TSA1, 
RAD52,CSM3,CTF18,MLH1,SGS1,MRE11,FKH2,PSY2,TOF1,MCK1,STB1,MSH2,HMI1,DIA2,LEO1,ELG1,IES4,RFM1,VTS1,RAD1, 
RMI1,ELC1,LGE1,CTI6,HSP82,REC8,CLB5,CTF4,MMS1

ATS1,SAW1,SWD1,BUD14,FMT1,RRN10,HEK2,YBL055C,NUP170,HHT1,RPS11B,RDH54,TEC1,HSM3,DPB3,DCC1,RIM1,SNT1,BUD31, 
HCM1,PAT1,PTC1,SLX5,RPN4,SLM3,RAD59,BRE1,TRM3,RAD57,RPS11A,RAD28,RAD55,MSH6,DPB4,INO2,RPA14,SAC3,HMO1,HTA1, 
IRC3,ESC2,SEM1,SPT3,LRS4,SDC1,EDC3,RAD51,SWI4,SLX8,RTR1,RAD4,PDR1,CKB1,DBP3,LIF1,ARC1,SOH1,MRM2,RAD54,XRN1, 
BUD13,SAE2,HOS2,SKI8,RTF1,SLX9,CLB6,RPS23A,GTR2,ELP2,YAP3,RPS27B,RRM3,PIH1,UBA4,WSS1,RTT107,STB5,CTF8,SKN7,EST3,V
ID28,NOT3,AIR1,FKH1,MLP2,IST3,DAL81,MGA2,RTT101,SAP185,ASF1,LSM1,SET2,POL32,RAD27,APN1,CTK1,TOF2,IRS4,DBP7,SAP190,
SET3,RPS21A,MSA2,NUP133,RTT109,PPR1,BRE2,RAD5,RPS0B,HOG1,PUS5,SWI6,TOP3,RPS28B,MMS22,REC102,RSC2,PSY3,CTF3, 
IKI3,CST9,SKI2,CDC73,RPS18B,TSA1,RAD52,RPS1B,NGL3,GTR1,CSM3,MOT3,CTF18,YMR087W,RPS16A,MLH1,SPT21,SGS1,ESC1, 
MRE11,ELP6,FKH2,LSM7,PSY2,RTT106,SIN4,TOF1,MCK1,STB1,DAL82,CSE2,MPP6,HTZ1,MSH2,HMI1,SKM1,HST3,CIN5,HIR2,CKA2,MS
A1,BUD21,DIA2,LEO1,ELG1,IES4,NPT1,PUS7,RFM1,VTS1,RAD1,RMI1,ELC1,LGE1,ELP3,RLM1,RPS6A,CBC2,CTI6,LEA1,USV1, 
HSP82,HAL1,REC8,HAA1,ROX1,CLB5,RPS23B,CTF4,MMS1

SAW1,HHT1,RDH54,HSM3,DPB3,DCC1,SLX5,RPN4,RAD59,BRE1,RAD57,RAD28,RAD55,MSH6,DPB4,SAC3,HTA1,ESC2,SLX8,RAD4, 
CKB1,LIF1,SOH1,RAD54,SAE2,RTF1,RRM3,WSS1,RTT107,RTT101,POL32,GRR1,RAD27,APN1,NUP133,RTT109,RAD5,YLR235C,MMS22, 
RSC2,PSY3,CDC73,TSA1,RAD52,CSM3,CTF18,MLH1,SGS1,MRE11,MKT1,PSY2,TOF1,MCK1,MSH2,CKA2,LEO1,ELG1,IES4,RAD1, 
RMI1,ELC1,CTF4,MMS1
ATS1,SAW1,SWD1,BUD14,FMT1,RRN10,HEK2,URA7,YBL055C,NUP170,HHT1,RPS11B,RDH54,TEC1,PHO3,HSM3,DPB3,DCC1,RIM1, 
SNT1,BUD31,HCM1,PAT1,PTC1,SLX5,RPN4,SLM3,RAD59,BRE1,TRM3,RAD57,TRP1,RPS11A,RAD28,RAD55,MSH6,DPB4,INO2,RPA14, 
SAC3,HMO1,HTA1,HNT2,IRC3,ESC2,SEM1,SPT3,LRS4,SDC1,SAM2,FDC1,EDC3,RAD51,SWI4,SLX8,RTR1,RAD4,PDR1,CKB1,DBP3,LIF1,
ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,HOS2,SKI8,RTF1,SLX9,CLB6,RPS23A,GTR2,ELP2,YAP3,RPS27B,RRM3,PIH1,UBA4, 
WSS1,RTT107,STB5,CTF8,SKN7,EST3,VID28,HIS6,NOT3,AIR1,FKH1,MLP2,IST3,DAL81,MGA2,RTT101,SAP185,ASF1,LSM1,SET2,POL32,
RAD27,APN1,CTK1,TOF2,IRS4,DBP7,SAP190,SET3,RPS21A,MSA2,NUP133,RTT109,PPR1,BRE2,RAD5,RPS0B,HOG1,PUS5,SWI6,TOP3, 
RPS28B,MMS22,REC102,RSC2,PSY3,CTF3,IKI3,CST9,SKI2,CDC73,APT1,RPS18B,TSA1,RAD52,RPS1B,NGL3,GTR1,CSM3,MOT3,CTF18, 
YMR087W,RPS16A,MLH1,SPT21,SGS1,PFK2,ESC1,MRE11,COX7,ABZ2,ADH2,ELP6,FKH2,LSM7,PSY2,RTT106,SIN4,TOF1,MCK1,STB1, 
DAL82,CSE2,MPP6,HTZ1,THI20,IRA2,MSH2,HMI1,SKM1,HST3,CIN5,HIR2,CKA2,MSA1,BUD21,DIA2,LEO1,ELG1,IES4,NPT1,PUS7,RFM1,
VTS1,RAD1,RMI1,ELC1,LGE1,ELP3,RLM1,RPS6A,COX10,CBC2,CTI6,LEA1,THI6,USV1,HSP82,HAL1,REC8,HAA1,ROX1,CLB5,THI22, 
RPS23B,CTF4,MMS1,QCR2

ATS1,SAW1,SWD1,BUD14,FMT1,RRN10,HEK2,URA7,YBL055C,NUP170,HHT1,RPS11B,RDH54,TEC1,PHO3,HSM3,DPB3,DCC1,RIM1, 
SNT1,BUD31,HCM1,PAT1,PTC1,SLX5,RPN4,SLM3,RAD59,BRE1,TRM3,RAD57,TRP1,RPS11A,RAD28,RAD55,MSH6,DPB4,INO2,RPA14, 
SAC3,HMO1,HTA1,HNT2,IRC3,ESC2,SEM1,SPT3,LRS4,SDC1,SAM2,EDC3,RAD51,SWI4,SLX8,RTR1,RAD4,PDR1,CKB1,DBP3,LIF1,ARC1,
SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,HOS2,SKI8,RTF1,SLX9,CLB6,RPS23A,GTR2,ELP2,YAP3,RPS27B,RRM3,PIH1,UBA4,WSS1, 
RTT107,STB5,CTF8,SKN7,EST3,VID28,HIS6,NOT3,AIR1,FKH1,MLP2,IST3,DAL81,DAL4,MGA2,RTT101,SAP185,ASF1,LSM1,SET2,POL32,
RAD27,APN1,CTK1,TOF2,IRS4,DBP7,SAP190,SET3,RPS21A,MSA2,NUP133,RTT109,PPR1,BRE2,RAD5,RPS0B,HOG1,PUS5,SWI6,TOP3, 
RPS28B,MMS22,REC102,RSC2,PSY3,CTF3,IKI3,CST9,SKI2,CDC73,APT1,RPS18B,TSA1,RAD52,RPS1B,NGL3,GTR1,CSM3,MOT3,CTF18, 
YMR087W,RPS16A,MLH1,SPT21,SGS1,PFK2,ESC1,MRE11,COX7,ABZ2,ADH2,ELP6,FKH2,LSM7,PSY2,RTT106,SIN4,TOF1,MCK1,STB1, 
DAL82,CSE2,MPP6,HTZ1,THI20,IRA2,MSH2,HMI1,SKM1,HST3,CIN5,HIR2,CKA2,MSA1,BUD21,DIA2,LEO1,ELG1,IES4,NPT1,PUS7, 
RFM1,VTS1,RAD1,RMI1,ELC1,LGE1,ELP3,RLM1,RPS6A,COX10,CBC2,CTI6,LEA1,THI6,USV1,HSP82,HAL1,REC8,HAA1,ROX1,CLB5, 
THI22,RPS23B,CTF4,MMS1,QCR2

SWD1,SHE1,HEK2,NUP170,HHT1,RDH54,MSI1,DPB3,DCC1,BIK1,SNT1,PAT1,CSM1,SLX5,RAD59,BRE1,RAD57,DPB4,SAC3,HMO1,HTA1,
MCM21,SWR1,ESC2,SEM1,SPT3,LRS4,SDC1,GMC1,CIN8,BIM1,CHZ1,RAD51,SLX8,RAD4,IOC3,SOH1,RAD54,SAE2,HOS2,RTF1,RRM3, 
ARP1,CTF8,EST3,HOP1,HOS4,FKH1,MLP2,MGA2,ASF1,SET2,BUD2,RAD27,TOF2,IRS4,SET3,NUP133,RTT109,BRE2,APC9,TOP3,MMS22,R
SC2,CTF3,CST9,CDC73,RAD52,CAC2,GTR1,CSM3,CTF18,SPT21,SGS1,CIK1,ESC1,FKH2,RTT106,TOF1,MCK1,HTZ1,MSH2,RTS1,HST3, 
BUB3,HIR2,DIA2,LEO1,ELG1,IES4,NPT1,RMI1,LGE1,CTI6,HSP82,REC8,CLB2,CTF4,KAR3
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    Table S8. Representative gene set enrichment for the GO terms in antimicrobial agents treated hypersensitive strain (Continued)  

     

Drug GO 
category GOID GO_term No. AQG No. QG No. AGB No. BGG P-value FDR Expected FP Gene(s) annotated to the term

HU Process 90304 Nucleic acid 
metabolic process

252 770 452 1980 1.59E-13 0 0

6725 Cellular aromatic 
compound 
metabolic process

280 770 519 1980 6.05E-13 0 0

6259 DNA metabolic 
process

104 770 159 1980 2.85E-09 0 0

44260 Cellular 
macromolecule 
metabolic process

370 770 765 1980 9.30E-09 0 0

Function 5488 Binding 223 770 458 1980 0.00029 0 0

Component44428 Nuclear part 141 770 248 1980 2.50E-07 0 0

ATS1,SAW1,OAF1,SWD1,BUD14,HIR1,FMT1,RRN10,HEK2,,TOD6,SNT1,RPS8A,,NUP170,HHF1,HHT1,RPS11B,MUM2,RDH54,TEC1,HPC2,HSM3,DPB3,DCC1,RIM1,BUD31,HCM1,PAT1,PTC1, 
SLX5,RPN4,SLM3,LHP1,RAD59,BRE1,RXT3,TRM3,PRR2,RAD57,RPS11A,RAD28,RAD55,MSH6,TMA64,TRM1,DPB4,INO2,SWI5,RPA14,SAC3,CWC15,HMO1,HTA1,SUM1,IRC3,ESC2,SEM1, 
SPT3,LRS4,SDC1,EDC3,RAD23,RAD51,SWI4,SLX8,SCS2,RTR1,RAD4,TOG1,DEG1,GAT1,PDR1,CKB1,PNC1,DST1,DBP3,LIF1,ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,GTS1,HOS2,SKI8,
RTF1,SLX9,CLB6,RPS23A,GTR2,ELP2,YAP3,RPS27B,RRM3,PIH1,UBA4,WSS1,RTT107,STB5,CTF8,SKN7,EST3,VID28,NOT3,AIR1,FKH1,MLP2,IMP2',IST3,DAL81,MGA2,RTT101,SAP185,ASF1,
LSM1,RPS21B,SET2,RPS14B,POL32,EAF6,IXR1,RAD27,APN1,CTK1,ELF1,ASH1,TOF2,IRS4,DBP7,SAP190,SET3,DAL80,UTH1,NAP1,RPS21A,MSA2,NUP133,SIR1,RTT109,PPR1,BRE2,IRC25, 
RAD5,RPS0B,SPT8,HOG1,PUS5,RFX1,SWI6,YKE2,TOP3,RPS28B,MMS22,REC102,NUP2,RSC2,PSY3,CTF3,IKI3,CST9,SKI2,CDC73,LEU3,RPS18B,TSA1,YML028W,USA1,YML029W,RAD52, 
MFT1,RPS1B,NGL3,GTR1,SUB1,ARG80,CSM3,MOT3,RCO1,CTF18,NAM7,YMR087W,RPS16A,MLH1,SPT21,HSC82,SGS1,ESC1,MRE11,ZDS1,YKU70,ELP6,FKH2,NCS2,EAF7,LSM7,PSY2, 
RTT106,SIN4,TOF1,YNL273W,CLA4,TRF5,MCK1,STB1,DAL82,CSE2,MPP6,HTZ1,RTG1,MSH2,HMI1,SKM1,TRM11,HST3,CIN5,HIR2,CKA2,MSA1,BUD21,DIA2,LEO1,ELG1,IES4,NPT1,PUS7, 
RFM1,SNU66,YOR338W,VTS1,IRC15,RAD1,RMI1,TRM44,ELC1,SGF11,LGE1,ELP3,RLM1,RPS6A,ELP4,CBC2,CTI6,LEA1,USV1,HSP82,HAL1,REC8,HAA1,ROX1,CLB5,RPS23B,CTF4,MMS1
ATS1,SAW1,OAF1,SWD1,BUD14,HIR1,FMT1,RRN10,HEK2,URA7,TOD6,YBL055C,RPS8A,YBL072C,NUP170,HHF1,HHT1,RPS11B,MUM2,RDH54,TEC1,PHO3,HPC2,HSM3,DPB3,DCC1,RIM1, 
SNT1,BUD31,HCM1,PAT1,PTC1,SLX5,RPN4,SLM3,LHP1,RAD59,BRE1,RXT3,TRM3,HNT1,PRR2,RAD57,TRP1,RPS11A,RAD28,RAD55,MSH6,TMA64,TRM1,DPB4,INO2,SWI5,RPA14,SAC3, 
CWC15,HMO1,HTA1,HNT2,SUM1,IRC3,ESC2,SEM1,SPT3,LRS4,SDC1,SAM2,FDC1,EDC3,RAD23,YEF1,RAD51,SWI4,SLX8,SCS2,RTR1,RAD4,TOG1,DEG1,GAT1,PDR1,CKB1,PNC1,DST1,DBP3,
LIF1,ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,GTS1,HOS2,SKI8,RTF1,SLX9,CLB6,RPS23A,GTR2,ELP2,YAP3,RPS27B,RRM3,PIH1,UBA4,WSS1,RTT107,STB5,CTF8,SKN7,EST3,VID28, 
HIS6,NOT3,RNR3,AIR1,COX5B,FKH1,MLP2,IMP2',IST3,DAL81,MGA2,RTT101,SAP185,ASF1,LSM1,RPS21B,SET2,RPS14B,POL32,CYC1,EAF6,IXR1,RAD27,APN1,PGM1,CTK1,ELF1,ASH1, 
TOF2,IRS4,DBP7,SAP190,SET3,DAL80,UTH1,NAP1,RPS21A,SIS2,MSA2,NUP133,SIR1,RTT109,PPR1,BRE2,IRC25,RAD5,PDC1,RPS0B,SPT8,HOG1,PUS5,RFX1,SWI6,YKE2,YLR200W,PNP1, 
YLR209C,TOP3,RPS28B,MMS22,REC102,NUP2,RSC2,PSY3,CTF3,IKI3,CST9,SKI2,CDC73,LEU3,APT1,RPS18B,TSA1,USA1,RAD52,MFT1,RPS1B,NGL3,GTR1,SUB1,ARG80,CSM3,MOT3,RCO1,
CTF18,NAM7,YMR087W,RPS16A,YMR143W,MLH1,SPT21,HSC82,SGS1,PFK2,ESC1,MRE11,COX7,ZDS1,YKU70,ABZ2,ADH2,ELP6,FKH2,NCS2,EAF7,LSM7,PSY2,RTT106,SIN4,TOF1,CLA4, 
TRF5,MCK1,STB1,DAL82,CSE2,MPP6,ABZ1,HTZ1,THI20,RTG1,IRA2,MSH2,HMI1,SKM1,TRM11,HST3,CIN5,HIR2,CKA2,MSA1,BUD21,DIA2,LEO1,ELG1,IES4,NPT1,PUS7,RFM1,SNU66, 
YOR338W,VTS1,IRC15,RAD1,RMI1,TRM44,ELC1,SGF11,LGE1,ELP3,RLM1,RPS6A,ELP4,COX10,CBC2,CTI6,LEA1,THI6,USV1,HSP82,HAL1,REC8,HAA1,ROX1,CLB5,THI22,RPS23B,CTF4, 
MMS1, QCR2

OAF1,SWD1,RRN10,SHE1,HEK2,TOD6,NUP170,HHF1,HHT1,DPB3,BIK1,SNT1,BUD31,MUM2,CSM1,SLX5,LHP1,BRE1,RXT3,RAD57,RAD55,MSH6,TRM1,DPB4,INO2,RPA14,SAC3,CWC15, 
HMO1,HTA1,SWM1,MCM21,SWR1,SPT3,LRS4,SDC1,KRE28,RAD23,CIN8,RAD51,SWI4,SLX8,SCS2,RAD4,IOC3,KAP122,CKB1,YBP2,DBP3,LIF1,SOH1,BUD13,HOS2,SKI8,RTF1,SLX9,GTR2, 
YGR283C,RRM3,WSS1,SPO12,EST3,APQ12,HOP1,AIR1,HOS4,MLP2,IST3,HUL4,POL32,EAF6,IXR1,CTK1,ELF1,ASH1,TOF2,DBP7,SET3,NUP133,SRP40,SIR1,BRE2,POM34,RAD5,SPT8,APC9, 
SWI6,REC102,NUP2,RSC2,CTF3,CST9,CDC73,RAD52,MFT1,CSI1,CSM3,RCO1,CTF18,MLH1,SGS1,ESC1,MRE11,GFD1,YKU70,MKT1,EAF7,LSM7,PSY2,IES2,SIN4,TOF1,TRF5,STB1,CSE2, 
MPP6,HTZ1,MSH2,RRI2,RTS1,BUB3,CKA2,BUD21,DIA2,CEX1,LEO1,NFI1,IES4,RFM1,SNU66,RAD1,RMI1,ELC1,SGF11,CBC2,CTI6,UIP4,LEA1,REC8,ROX1,CTF4

SAW1,SWD1,HEK2,YBL055C,HHT1,MUM2,RDH54,HSM3,DPB3,DCC1,RIM1,SLX5,RPN4,HEK2,BRE1,RAD57,RAD28,RAD55,MSH6,DPB4,SWI5,SAC3,HTA1,SUM1,IRC3,ESC2,SEM1,RAD51,SL
X8,RAD4,PNC1,LIF1,SOH1,RAD54,SAE2,SKI8,RTF1,CLB6,RRM3,WSS1,RTT107,CTF8,EST3,FKH1,RTT101,SET2,POL32,EAF6,IXR1,RAD27,APN1,ASH1,NUP133,RTT109,BRE2,RAD5,HOG1,SW
I6,TOP3,MMS22,REC102,RSC2,PSY3,CTF3,CST9,CDC73,TSA1,RAD52,MFT1,SUB1,CSM3,RCO1,CTF18,NAM7,MLH1,HSC82,SGS1,MRE11,YKU70,FKH2,EAF7,PSY2,TOF1,MCK1,STB1,MSH2,H
MI1,DIA2,LEO1,ELG1,IES4,RFM1,VTS1,IRC15,RAD1,RMI1,ELC1,LGE1,CTI6,HSP82,REC8,CLB5,CTF4,MMS1
SSA1,ATS1,SAW1,OAF1,PEX22,CNE1,SWD1,BUD14,KIN3,HIR1,FMT1,FUS3,RRN10,BIK1,TOD6,YBL055C,RPS8A,SSA3,NUP170,HHF1,HHT1,RKM3,RPS11B,MUM2,RDH54,UBC4,TEC1,SLI15,
HPC2,HSM3,DPB3,DCC1,STE50,RIM1,SNT1,BUD31,HCM1,IMG2,PAT1,PTC1,SLX5,RPN4,SLM3,LHP1,RAD59,BRE1,RXT3,RPP1A,TRM3,PRR2,WHI4,OST4,PHO13,RAD57,RPS11A,RAD28, 
VMS1,RAD55,MSH6,TMA64,TRM1,DPB4,KIN1,INO2,SWF1,SWI5,RPA14,SAC3,NBP2,CWC15,HMO1,HTA1,MNN10,SWM1,SUM1,IRC3,RQC1,GGA1,ESC2,SEM1,RPP2B,SPT3,ERD1,PPM1,LRS4,
SDC1,RPL27B,EDC3,RAD23,AFG1,BIM1,RPL34A,PCL6,RAD51,SWI4,SLX8,SCS2,YCK3,RTR1,RAD4,TOG1,DEG1,GAT1,BUD27,BST1,UBP6,PDR1,CKB1,PNC1,DST1,TIF4632,DBP3,GUP1,LIF1,
ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,GTS1,HOS2,SKI8,RTF1,EFM5,SLX9,DBF2,PCP1,CLB6,RPS23A,GTR2,UBR1,CRH1,ELP2,YAP3,RPS27B,RRM3,PIH1,KSP1,UBA4,ARP1,WSS1, 
RTT107,STB5,PTH1,CTF8,RPN10,SKN7,EST3,VID28,NOT3,PKP1,PIG2,AIR1,RSM25,HOS4,FKH1,RPL16A,MLP2,IMP2',IST3,DAL81,MGA2,RTT101,BCK1,SAP185,ASF1,LSM1,PBS2,RPS21B, 
YAK1,SNA3,HAL5,SET2,RPS14B,HUL4,POL32,HOC1,EAF6,GRR1,RPS4A,RPL14A,IXR1,VPS24,ELM1,TEF4,BUD2,HSL1,RAD27,APN1,SSH4,PGM1,CTK1,ELF1,NNK1,ASH1,PEX1,TOF2,IRS4, 
DBP7,BCH2,SAP190,SET3,DAL80,UTH1,NAP1,RPS21A,MSA2,SIR1,RTT109,SSK1,PPR1,BRE2,IRC25,UBR2,RAD5,RPS0B,SPT8,APC9,HOG1,PUS5,RFX1,SWI6,YKE2,TOP3,ARV1,RPS28B,GUF1,
UBC12,MMS22,REC102,NUP2,RSC2,VID22,PSY3,CTF3,IKI3,CST9,SKI2,RPL31B,CDC73,RPN13,ATG17,LEU3,PPZ1,RPS18B,TSA1,USA1,RAD52,MFT1,RPS1B,BUL2,NGL3,GTR1,CSI1,IMP2, 
MIH1,SUB1,ARG80,CSM3,MOT3,RCO1,YMR075W,CTF18,NAM7,YMR087W,ASC1,RPS16A,MLH1,SPT21,HSC82,SGS1,ESC1,MRE11,RPS10B,ZDS1,YKU70,TDA1,ELP6,ARK1,YDJ1,FKH2,EOS1,
NCS2,EAF7,LSM7,PSY2,RTT106,URE2,SIN4,TOF1,PCL1,CLA4,TRF5,RPS19B,MCK1,STB1,SKP2,DAL82,CSE2,MPP6,PPG1,PET494,BRE5,PFA4,HTZ1,CMK2,RTG1,MSH2,HMI1,SKM1,RRI2, 
TRM11,RTS1,SFM1,HST3,BUB3,CIN5,HIR2,CKA2,MSA1,BUD21,DIA2,LEO1,ELG1,NFI1,RPS30B,IES4,LIP5,NPT1,PUS7,RFM1,RPS10A,SNU66,RPL20B,YOR338W,VTS1,LSP1,RQC2,IRC15, 
RAD1,RMI1,TRM44,ELC1,SGF11,LGE1,ELP3,RLM1,RPS6A,ELP4,CBC2,CTI6,LEA1,USV1,HSP82,CLN2,HAL1,REC8,HAA1,ROX1,UBA3,LTP1,CLB2,CLB5,SCD6,RPS23B,CTF4,GPH1,MMS1
SSA1,SAW1,OAF1,PEX22,CNE1,HIR1,RRN10,SHE1,HEK2,EDE1,TOD6,SSA3,NUP170,HCM1,HHT1,MUM2,RDH54,UBC4,TEC1,CCZ1,TBS1,AMN1,SSE2,MSI1,BEM1,HPC2,YPT10,REI1,DPB3, 
BIK1,STE50,RVS161,RIM1,HCM1,PAT1,ABP1,SLX5,RPN4,GPR1,LHP1,RAD59,BRE1,VAM6,ATG20,HNT1,DLD2,WHI4,OST4,RAD57,RAD55,MSH6,TMA64,DPB4,SWI5,NUM1,SAC3,NBP2, 
HMO1,HTA1,IVY1,PMP3,GIC2,SUM1,YSP2,MSN5,GGA1,GIM4,EDC3,RAD23,BIM1,CHZ1,GET2,RAD51,SWI4,SCS2,BEM2,RAD4,TOG1,GAT1,IOC3,FAB1,PDR1,DST1,TIF4632,LIF1,ARC1, 
PMR1,XRN1,SAE2,GTS1,RTF1,PAC10,GTR2,ELP2,MVB12,HSV2,SCW4,YAP3,PIH1,KSP1,STB5,RPN10,SKN7,EST3,NOT3,HOP1,FKH1,RPL16A,MLP2,ASF1,LSM1,PBS2,SNA3,ATG27,RPS14B, 
RCY1,CPR7,MOG1,GRR1,BUD4,RPL14A,IXR1,TEF4,SHE2,ELF1,ASH1,PEX1,SET3,DAL80,NAP1,SIR1,SSK1,PPR1,RAD5,SPT8,HOG1,RFX1,PEX13,YKE2,GUF1,NUP2,ROM2,IKI3,CST9,SKI2, 
CDC73,RPN13,ATG17,LEU3,TSA1,USA1,MFT1,CAC2,SOK2,SUB1,ARG80,MOT3,NAM7,ASC1,MLH1,HSC82,CIK1,PFK2,MRE11,YKU70,ELP6,SFB2,YDJ1,FKH2,LSM7,RTT106,URE2,SIN4, 
MCK1,STB1,SKP2,DAL82,ATP11,VPS27,MPP6,BRE5,HTZ1,TLG2,MSH2,TRM11,BUB3,STI1,CIN5,SHE4,HIR2,VPS5,BUD21,DIA2,ARF3,CEX1,LEO1,ELG1,NFI1,RUD3,HES1,RFM1,VTS1,SCP1, 
LSP1,RQC2,IRC15,RAD1,RMI1,RLM1,CBC2,CTI6,USV1,YAR1,HSP82,REC8,ROX1,CLB2,SCD6,CTF4,KAR3,CUR1,VPS4
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           Table S8. Representative gene set enrichment for the GO terms in antimicrobial agents treated hypersensitive strain (Continued) 

        

Drug GO 
category GOID GO_term No. AQG No. QG No. AGB No. BGG P-value FDR Expected FP

BTZ Process 90304 nucleic acid metabolic 
process

183 466 452 1980 1.90E-17 0 0

6259 DNA metabolic process 89 466 159 1980 3.78E-17 0 0

6974 cellular response to DNA 
damage stimulus

66 466 102 1980 1.28E-16 0 0

46483 heterocycle metabolic 
process

198 466 523 1980 3.18E-15 0 0

Function 5488 binding 148 466 458 1980 0.00017 0 0

5515 protein binding 78 466 218 1980 0.00309 0 0

46983 protein dimerization 
activity

9 466 10 1980 0.00505 0 0

Component 44428 nuclear part 102 466 248 1980 8.27E-09 0 0

Gene(s) annotated to the term

BIK1,RAD57,RAD55,BIM1,PEX1,SSK1,CIK1,KAR3,VPS4

SHE1,NUP170,HHT1,DPB3,BIK1,SNT1,BUD31,HCM1,CSM1,BRE1,RAD57,RAD55,DPB4,INO2,RPA14,S
AC3,HMO1,HTA1,MCM21,SWR1,SPT3,LRS4,KRE28,CIN8,RAD51,SWI4,SLX8,RAD4,CKB1,YBP2,SGF7
3,LIF1,SOH1,BUD13,RTF1,UPF3,SLX9,RRM3,SRB2,WSS1,SPO12,EST3,APQ12,HOP1,MLP2,IST3,HUL4,
POL32,ASH1,TOF2,SET3,NUP133,RAD5,SPT8,APC9,SWI6,RSC2,CST9,CDC73,RAD52,MFT1,CSI1,CSM
3,RCO1,CTF18,MLH1,SGS1,ESC1,MRE11,GFD1,YKU70,MKT1,EAF7,LSM7,GCR2,PSY2,IES2,SIN4,TOF
1,STB1,CSE2,MPP6,TOP1,HTZ1,MSH2,RTS1,BUB3,CKB2,CKA2,DIA2,CEX1,LEO1,IES4,RFM1,SNU66,
RAD1,RMI1,CTI6,UIP4,LEA1,REC8,CTF4

SAW1,BUD14,HIR1,YBL055C,NUP170,TEL1,HHT1,RPS11B,MUM2,RDH54,TEC1,HSM3,DPB3,DCC1,RI
M1,SNT1,BUD31,HCM1,PAT1,RPN4,SLM3,RAD59,BRE1,PHO2,TRM3,RAD57,RAD28,RAD55,TMA64,D
PB4,INO2,RPA14,SAC3,HMO1,HTA1,IPK1,ESC2,SEM1,SPT3,LRS4,FIR1,RAD51,SWI4,SLX8,RAD4,CKB
1,DST1,SGF73,LIF1,ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,RTF1,UPF3,SLX9,CLB6,RPS23A,E
LP2,YAP3,RRM3,SRB2,UBA4,WSS1,RTT107,STB5,CTF8,SKN7,EST3,VID28,NOT3,MLP2,IMP2',MPH1,I
ST3,DAL81,MGA2,RTT101,ASF1,SET2,POL32,RAD27,APN1,ASH1,TOF2,IRS4,SAP190,SET3,MSA2,NU
P133,RTT109,PPR1,IRC25,RAD5,SPT8,HOG1,PUS5,RFX1,SWI6,TOP3,RPS28B,MMS22,RSC2,PSY3,CST
9,SKI2,CDC73,LEU3,RPS18B,TSA1,USA1,RAD52,MFT1,RPS1B,NGL3,GTR1,SUB1,CSM3,MOT3,RCO1,
CTF18,YMR087W,MLH1,SPT21,HSC82,SGS1,ESC1,MRE11,YKU70,ELP6,FKH2,NCS2,EAF7,LSM7,GCR
2,PSY2,RTT106,SIN4,TOF1,CLA4,MCK1,STB1,CSE2,MPP6,TOP1,HTZ1,MSH2,HMI1,SKM1,HST3,HIR2,
CKB2,CKA2,MSA1,DIA2,LEO1,ELG1,IES4,NPT1,PUS7,RFM1,SNU66,YOR338W,RAD1,RMI1,LGE1,ELP
3,RPS6A,ELP4,CTI6,LEA1,USV1,HSP82,HAL1,REC8,HAA1,CLB5,RPS23B,CTF4,MMS1

SAW1,YBL055C,TEL1,HHT1,MUM2,RDH54,HSM3,DPB3,DCC1,RIM1,RPN4,RAD59,BRE1,RAD57,RAD
28,RAD55,DPB4,SAC3,HTA1,ESC2,SEM1,RAD51,SLX8,RAD4,LIF1,SOH1,RAD54,SAE2,RTF1,UPF3,CL
B6,RRM3,WSS1,RTT107,CTF8,EST3,MPH1,RTT101,SET2,POL32,RAD27,APN1,ASH1,NUP133,RTT109,
RAD5,HOG1,SWI6,TOP3,MMS22,RSC2,PSY3,CST9,CDC73,TSA1,RAD52,MFT1,SUB1,CSM3,RCO1,CTF
18,MLH1,HSC82,SGS1,MRE11,YKU70,FKH2,EAF7,PSY2,TOF1,MCK1,STB1,TOP1,MSH2,HMI1,DIA2,L
EO1,ELG1,IES4,RFM1,RAD1,RMI1,LGE1,CTI6,HSP82,REC8,CLB5,CTF4,MMS1

SAW1,TEL1,HHT1,RDH54,HSM3,DPB3,DCC1,RPN4,RAD59,BRE1,RAD57,RAD28,RAD55,DPB4,SAC3,
HTA1,ESC2,SLX8,RAD4,CKB1,LIF1,SOH1,RAD54,SAE2,RTF1,RRM3,WSS1,RTT107,MPH1,RTT101,PO
L32,GRR1,RAD27,APN1,NUP133,RTT109,RAD5,YLR235C,MMS22,RSC2,PSY3,CDC73,TSA1,RAD52,SU
B1,CSM3,CTF18,MLH1,SGS1,MRE11,YKU70,MKT1,EAF7,PSY2,TOF1,MCK1,MSH2,CKB2,CKA2,LEO1,
ELG1,IES4,RAD1,RMI1,CTF4,MMS1

SAW1,BUD14,HIR1,URA7,YBL055C,NUP170,TEL1,HHT1,RPS11B,MUM2,RDH54,TEC1,PHO3,HSM3,D
PB3,DCC1,RIM1,SNT1,BUD31,HCM1,PAT1,RPN4,SLM3,RAD59,BRE1,PHO2,TRM3,HNT1,RAD57,RAD
28,RAD55,TMA64,DPB4,INO2,RPA14,SAC3,HMO1,HTA1,HNT2,IPK1,ESC2,SEM1,SPT3,LRS4,SAM2,FI
R1,RAD51,SWI4,SLX8,RAD4,CKB1,DST1,SGF73,LIF1,ARC1,SOH1,MRM2,RAD54,XRN1,BUD13,SAE2,
RTF1,UPF3,SLX9,CLB6,RPS23A,ELP2,YAP3,RRM3,SRB2,UBA4,WSS1,RTT107,STB5,CTF8,SKN7,EST3,
VID28,HIS6,NOT3,COX5B,MLP2,IMP2',MPH1,IST3,DAL81,DAL4,MGA2,RTT101,ASF1,SET2,POL32,RA
D27,APN1,ASH1,TOF2,IRS4,SAP190,SET3,MSA2,NUP133,RTT109,PPR1,IRC25,RAD5,SPT8,HOG1,PUS5
,RFX1,SWI6,PNP1,TOP3,RPS28B,MMS22,RSC2,PSY3,CST9,SKI2,CDC73,LEU3,RPS18B,TSA1,USA1,RA
D52,MFT1,RPS1B,NGL3,GTR1,SUB1,CSM3,MOT3,RCO1,CTF18,YMR087W,MLH1,SPT21,HSC82,SGS1,
PFK2,ESC1,MRE11,COX7,YKU70,ABZ2,ADH2,ELP6,FKH2,NCS2,EAF7,LSM7,GCR2,PSY2,RTT106,SIN
4,TOF1,CLA4,MCK1,STB1,CSE2,MPP6,TOP1,HTZ1,IRA2,MSH2,HMI1,SKM1,HST3,HIR2,CKB2,CKA2,
MSA1,DIA2,LEO1,ELG1,IES4,NPT1,PUS7,RFM1,SNU66,YOR338W,RAD1,RMI1,LGE1,ELP3,RPS6A,EL
P4,CTI6,LEA1,USV1,HSP82,HAL1,REC8,HAA1,CLB5,THI22,RPS23B,CTF4,MMS1
SAW1,PEX22,CNE1,SLA1,HIR1,SHE1,EDE1,NUP170,TEL1,HHT1,MUM2,RDH54,UBC4,TEC1,TBS1,MSI
1,BEM1,REI1,DPB3,BIK1,RIM1,HCM1,PAT1,RPN4,RAD59,BRE1,VAM6,PHO2,ATG20,HNT1,RAD57,RA
D55,TMA64,DPB4,NUM1,SAC3,NBP2,HMO1,HTA1,IVY1,GGA1,GIM4,BIM1,CHZ1,RAD51,SWI4,RAD4,
FAB1,DST1,LIF1,ARC1,PMR1,XRN1,SAE2,RTF1,UPF3,PAC10,ELP2,YAP3,SRB2,KSP1,CRP1,STB5,RPN
10,SKN7,EST3,NOT3,HOP1,RPL16A,MLP2,MPH1,ASF1,PHO86,SNA3,ATG27,RCY1,MOG1,GRR1,LHS1,
ASH1,PEX1,SET3,SSK1,PPR1,RAD5,SPT8,HOG1,RFX1,CST9,SKI2,CDC73,RPN13,ATG17,LEU3,UBX2,TPEX22,CNE1,SLA1,HIR1,SHE1,EDE1,NUP170,MUM2,UBC4,MSI1,BEM1,BIK1,PAT1,RAD59,VAM6,RA
D57,RAD55,DPB4,NUM1,SAC3,NBP2,GGA1,GIM4,BIM1,CHZ1,DST1,RTF1,PAC10,ELP2,SRB2,RPN10,N
OT3,ASF1,PHO86,SNA3,RCY1,MOG1,GRR1,LHS1,PEX1,SET3,SSK1,SPT8,CDC73,RPN13,ATG17,UBX2,
TSA1,USA1,MFT1,CAC2,UBX4,MOT3,ASC1,HSC82,CIK1,MRE11,YDJ1,FKH2,GCR2,RTT106,SIN4,MC
K1,STB1,SKP2,ATP11,BUB3,HIR2,LEO1,RFM1,SCP1,CTI6,YAR1,HSP82,CLB2,KAR3,CUR1,VPS4
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