博士論文

プロモーター領域中の塩基置換が 転写活性化能へ与える影響の網羅的解析

榊原 雄太

プロモーター領域中の塩基置換が 転写活性化能へ与える影響の網羅的解析

平成 28 年 9 月

東京大学大学院 新領域創成科学研究科 メディカル情報生命 専攻 ゲノムシステム医療科学分野

榊原 雄太

 1.序論 1.1プロモーター領域の配列情報にコードされる転写制御機構を解明することの重要性 1.2細胞内に存在する分子メカニズムを理解に向けた情報蓄積 1.3 完全長cDNAプロジェクトとヒト遺伝子プロモーター配列の情報蓄積 1.4 ヒト遺伝子のプロモーター配列の差が転写活性化能へ与える影響の解析 1.5 本研究の目的 	3
2.材料及び方法 2.1 培養細胞	7
2.2 遺伝子のプロモーター領域の同定	
2.3 プロモーター配列間の差が転写活性化能に与える影響の解析	
2.4 プロモーター配列の塩基レベルの差が転写活性化能に与える影響の解析	
2	24
3. http:// 1. http:/	24
3.1 夏仏丁のノロモーター配列間の左が転子活性化化やったうて影響の解析	
3.3 退伍十のノロモーター配列の転与估性化能とKNA-seqの免現重の比較	
1 绘杆	05
 4.松山 5.1 プロエーター 配列の 配列 差 が 転 定 洋 州 ル 能 に ち う る 影 郷 の 韶 近 	95
5.1 ノロモーク 配列の配列左が報子伯圧化化に子える影響の脾例	
3.2 气极的废主	
6.参考文献	97
	2.
7.論文目録	101
8.謝辞	102

目次

1 序論

1.1 プロモーター領域の配列情報にコードされる転写制御機構を解明することの重要性

ヒトは約37兆といわれる細胞から構成されている。個々の細胞は、それぞれに固有の遺伝子発 現プログラムを有し、その細胞機能を実現、維持している[1]。遺伝子の発現は、転写開始、転写 伸長、転写終結、転写産物の輸送、スプライシングさらには分解といった多段階の制御を受ける。 中でもその最初の段階である転写開始反応は非常に重要な制御段階であると考えられている。転 写開始反応は、遺伝子の転写開始点近傍のプロモーター領域に基本転写因子が結合、RNAポリメ ラーゼ II がリクルートされ、転写開始前複合体を形成[2,3]することで開始される。この効率は、 DNA 配列が規定する配列要素や、その配列因子に転写因子と呼ばれる一群のタンパク質が結合す ることで制御される。転写開始反応に関与する要素因子がいくつか示唆されている。すなわち転 写開始反応では、プロモーターやエンハンサーと呼ばれる領域の配列因子(シス因子)[4]、プロ モーター、エンハンサーへ結合する転写制御タンパク質因子(トランス因子)、さらにはクロマチ ン構造といった高次構造因子やメチル化を中心とした塩基修飾因子等が織りなす複雑な制御によ り、最終的に転写開始量が決定される。

私は本研究において、遺伝子の転写開始を制御する最も基本的な因子として、プロモーター、 エンハンサーといった転写制御領域の DNA の配列情報に着目した。これらの領域の一次元の DNA 配列に内在的にコードされる転写活性化能が、遺伝子発現制御において最も基盤的な制御機 構であり、その解析は転写制御の全体像の解明に向けて、その起点となると考えた。

1.2 細胞内に存在する分子メカニズムを理解に向けた情報蓄積

2001年に、国際ヒトゲノム解読計画の成果として、ヒトゲノム配列のドラフト配列の解読が完 了した[5,6]。さらに2003年には、ヒトゲノム配列の完全解読が発表された[7]。これにより、ヒト ゲノム配列の配列情報を利用し、ヒトゲノム配列中に存在する個々の遺伝子の遺伝子機能を包括 的に理解する試みが可能となった。ヒトゲノム配列解読の成果として、ヒトゲノム配列全体は30 億塩基対で構成され、その配列中には約22000遺伝子が存在していることが明らかとなった。タ ンパク質コード領域については、アミノ酸配列が推定され、その機能推定を行ういわゆるアノテ ーションが活発に行われた。一方で、プロモーター領域など、その遺伝子発現制御に関わる機能 性領域の解析も着手された。しかし、当時のヒトゲノムの配列情報には、遺伝子の正確なエクソ ン開始位置すなわち転写開始点情報、上流プロモーター領域情報、近傍のクロマチン構造、とい った情報が欠如しており、ヒトゲノム配列だけでは遺伝子の配列及びそれに伴う遺伝子機能など、 生物学的な情報を抽出することは困難であった。

米国の ENCODE (The Encyclopedia of DNA Elements) プロジェクトや日本におけるゲノムネットワークプロジェクトなど、ゲノム配列中の生物学的な情報の理解を目的とした大規模プロジェクトが実施された。ENCODE プロジェクトでは、ゲノム配列中の機能性領域のカタログ化を目的

に、100 細胞以上の網羅的な遺伝子発現パターン、転写因子の結合情報やクロマチン構造などの データが蓄積された[3]。ゲノムネットワークプロジェクトでは、遺伝子発現調節、遺伝子発現、 タンパク質間相互作用などの情報蓄積が実施された。また、これらの成果により、ゲノムレベル での機能性領域の理解に向けた、情報の蓄積及び情報収集や情報活用のための技術開発が進んだ。

しかし、これらのプロジェクトでは、一次元の DNA 配列であるヒトゲノム配列に内在的にコードされる転写制御機構の情報収集は、その解析手法の大規模化が困難であったために、実施項目に含まれず、関連する情報蓄積は依然として限られたものであった。

1.3 完全長 cDNA プロジェクトとヒト遺伝子プロモーター配列の情報蓄積

私の所属する研究室においては、ENCODE プロジェクトやゲノムネットワークプロジェクトを 補完する位置付けとして、完全長 cDNA プロジェクトを実施してきた。ヒト遺伝子配列およびそ の配列構造を理解するためには、ヒト遺伝子のエクソン構造から構成される mRNA の配列解析が 必要であった。mRNA に相補的なヒト完全長 cDNA を利用することで、ヒト遺伝子配列の配列解 析が各国におけるヒト完全長 cDNA プロジェクトの形で行われた。当研究室では、新エネルギー・ 産業技術総合開発機構(NEDO)におけるプロジェクトの1つとして、当研究室で開発されたオリゴ キャッピング法[8]を用いたヒト完全長 cDNA プロジェクト(FLJ プロジェクト)を主導した[9]。

オリゴキャッピング法により得られた完全長 cDNA は mRNA の 5'端を有していることから、 mRNA の転写開始点の決定が可能であった。決定された転写開始点をゲノム配列へマッピングす ることで、転写開始点近傍のゲノム配列をプロモーター領域として同定することが可能であった [10,11]。これらの情報は転写開始点データベース DBTSS (http://dbtss.hgc.jp/) [12]として公開され ており、ヒトプロモーター領域の配列解析が可能であった。また、完全長 cDNA を利用した解析 により、遺伝子をコードしない遺伝子間領域にも多数の転写産物が存在すること[13]や、複数の転 写開始点を有する遺伝子[14]も見つかった。それまで考えられてきた転写制御機構の全体像よりも さらに複雑な制御が行われている可能性が示唆されていた。

1.4 ヒト遺伝子のプロモーター配列の差が転写活性化能へ与える影響の解析

私は、利用可能となったヒトゲノム配列に依拠して完全長 cDNA により転写開始点が規定された 5'端近位プロモーター領域の配列に関する実験的解析を試みた。ある細胞内に存在する遺伝子群のプロモーター領域に対して実験的および計算機的に統一的な実験条件下で大規模にその転写活性化能の測定を行うことで、細胞内に存在する遺伝子群の転写制御機構を全体像として明らかにすべくその要素還元的アプローチの起点とすることができると考えた。

本研究では、その第一段階として、ある特定の細胞内に存在する遺伝子群のプロモーター領域 が一次元の DNA 配列として内在的に有する転写活性化能が、その細胞内において全体としてどの ように分布するのかを明らかにすることを目的として、細胞内の遺伝子のプロモーター配列につ いて大規模に転写活性化能を測定できる体系的なルシフェラーゼアッセイ系の構築及び遺伝子の プロモーター配列の差が測定した転写活性化能へ与える影響の解析を実施した[15]。 本研究以前の遺伝子のプロモーター領域に対する解析は、解析ごとに異なる細胞、異なる実験 条件下で実施された研究であり、特定の細胞における転写制御機構の全体像の解明を目指したも のではなかった [16]。マイクロアレイや SAGE 法といった、網羅的に遺伝子発現を解析する手法 は存在した。しかし、これらの手法は細胞中の mRNA レベルを解析する手法である。これは、上 述した遺伝子発現制御のうち、プロモーターやエンハンサー、クロマチン構造といった制御を受 け転写開始された RNA が、スプライシングや分解といった多段階の制御を受けた最終結果を測定 したものである[17]。そのために、これらの手法で得られた計測結果は、配列要素の活性を直接示 すものではない。

1.5 本研究の目的

本論文の第一章では、体系的なルシフェラーゼアッセイによる転写活性化能の測定系の構築と 実践について論じる。ルシフェラーゼアッセイによる転写活性化能は、目的とする DNA 配列の転 写活性化能をルシフェラーゼの酵素反応による化学蛍光強度として検出することで実施した。レ ポーターアッセイはプラスミド DNA を外来的に導入し、レポーター遺伝子を指標に、そのプロモ ーター配列の転写活性化能の計測を行う。本計測系では、クロマチン構造や mRNA の分解など、 それ以外の要素が排除されるために、DNA 配列が有する内在的に有する転写活性化能が直接的に 測定可能であると考えた [15]。

しかし、この解析手法ではスループットに限界があり、より効率的な実験手法の確立が必要で あることも同時に明らかとなった。そこで本論文の第二章では、次世代シークエンサーを用いた さらにハイスループットな測定系の構築を行った。近年、従来のサンガー法に加えていわゆる次 世代シークエンス法が広く用いられるようになっている。[18-20] 。 次世代シーケンサーは、数 百 bp の DNA 配列を数億本同時に解析することが可能である[21,22,23]。次世代シークエンサーの スループットを利用して、トランスクリプトーム解析 (RNA-seq[24,25,26]、TSS-seq[27])、転写因 子結合領域やクロマチン構造を決定する ChIP-seq[28,29]など、様々な応用が開発され実践されて いる。

次世代シーケンサーを利用してハイスループットにプロモーター領域やエンハンサー領域の転 写活性化能を測定する方法がいくつか提案されている[30-34]。MPRA(Massively Parallel Reporter Assay)[35]は、目的の配列とランダムタグ配列を142 mer のオリゴ DNA として合成し、クローニ ングする手法である。合成オリゴを用いてプラスミドに DNA ライブラリーを構築し、細胞にトラ ンスフェクションして mRNA として転写されたランダムタグを、次世代シーケンサーでカウント する。STARR-Seq(Self-Transcribing Active Regulatory Region Sequencing)[36]は、断片化したゲノム 配列をクローニング、プラスミドライブラリーを作成、細胞にトランスフェクション後に mRNA として転写された断片化されたゲノム配列をカウントする。これにより、転写活性を有するゲノ ム領域を同定することが可能であるという。これらの手法は、遺伝子のプロモーター領域に塩基 レベルでの欠損や塩基置換を導入した活性測定系への拡張が容易ではない。塩基レベルでの転写 活性化能の測定を安価、高効率に行うためにはさらなる技術的開発が必要であると考えられた。

本論文の第二章では、プロモーター配列内の1塩基レベルでの配列の差が転写活性化能へ与え る影響を解析するため、塩基レベルでの欠損や塩基置換を入れた変異プロモーターを網羅的に作 成し、その配列決定後に転写活性化能を測定する測定系の構築を行った。

2 材料及び方法

2.1 培養細胞

ヒト培養細胞である Human Embryonic Kidney (HEK) 293 細胞 (ATCC number: CRL-1573) を用いた。

HEK293 細胞は、10% Fetal Bovine Serum (FBS)、0.584 mg/L L-グルタミン酸 (GIBCO)、 0.15% 炭酸水素ナトリウム、60 mg/L カナマイシン (GIBCO) を含んだ、Dulbecco's Modified Eagle's Medium (DMEM) を用い、37℃、5%CO2 インキュベーター内で培養を行った。

2.2 遺伝子のプロモーター領域の同定

HEK293 細胞由来の mRNA より、オリゴキャッピング法を用いて、完全長 cDNA ライブラ リーを作成した[8]。作成した完全長 cDNA ライブラリーより、ランダムに 12504 種類のクロ ーンを選択し、5'端配列を取得した。取得した 5'端配列をヒトゲノム配列(hg16, UCSC genome browser, https://genome.ucsc.edu/)へ、配列解析ソフトウェアである BLAT[37]及び SIM4[38]を用 いてマッピングし、転写開始点を同定した。同定した転写開始点を基点に、上流 1000bp 及び 下流 200bp の領域をプロモーター領域として同定した。最終的に、2170 遺伝子のプロモータ 一領域を同定した(転写開始点から上流 1.0kb および下流 0.2kb の領域には、転写因子結合配 列の 82%が含まれる) [8, 10, 39-42]。遺伝子の転写開始点を同定する際、ひとつの遺伝子に複 数の転写開始点がマッピングされた[43]。このような場合、転写開始点は完全長 cDNA クロ ーンによるサポートが最も多い転写開始点を採用した。

また、本研究においては、ヒトゲノム配列から抽出された 2170 遺伝子のプロモーター領 域の配列情報よりランダムに選んだ、852 遺伝子のプロモーター領域の配列情報を利用した。

2.3 プロモーター配列間の差が転写活性化能に与える影響の解析

2.3.1 遺伝子のプロモーター領域へのプライマー作成

各遺伝子のプロモーター領域について、転写開始点を Obp としたときの-1000bp から -900bp 及び 100bp から 200bp の配列中に、5'-プライマー及び 3'-プライマーをそれぞれ 設計した。プライマーの設計にはプライマー設計ソフトウェアである PRIMER3 (http://bioinfo.ut.ee/primer3/)を用いた。Tm 55.0℃の設定で利用した。(転写活性化能の 測定を行なうことができた遺伝子のプロモーター領域に用いたプライマーの詳細につい て(表 3.1)に示した。)

また、クローニング時に利用した、組み換えを原理とした Gataway Cloning System (Invitrogen) に必要な配列を付加した。具体的には、5'-プライマーの 5'端に attB1 サイ トの一部 (5'-AAAAAGCAGGT-3')、3'-プライマーの 5'端に attB2 サイトの一部 (5'-AGAAAGCTGGGT-3') を付与した。 human genomic DNA(Clontech)をテンプレートとし、2.3.1 で設計した 5'-プライマー 及び 3'-プライマー、KOD-plus PCR kit(TOYOBO)を用いて PCR を行った。PCR 条件 は、94℃1 分、58℃1 分、68℃2 分を 35 サイクルに設定した。

各遺伝子のプロモーター配列に Gataway Cloning System で用いる完全な attB1 サイト 及び attB2 サイトを付与するため、前記の PCR 産物をテンプレート、完全な attB1 サイ ト (5'-GGGGACAAGTTTGTACAAAAAAGCAGGT-3') 及び完全な attB2 サイト (5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3') を 5'-プライマー及び 3'-プライマ ー、KOD-plus PCR kit を用いた PCR を行った。PCR 条件は、94℃15 秒、55℃30 秒、68℃2 分を 20 サイクルとした。

2 段階の PCR により増幅された各遺伝子のプロモーター配列は、ポリエチレングリコ ール沈殿処理により精製及び濃縮した。濃縮した各遺伝子のプロモーター配列溶液は、 SPECTRA max Plus 384 (Molecular Devices)を用い吸光度を測定し、測定結果をもとに精 製水で 45 ng/μL に濃度調整した。

2.3.3 遺伝子のプロモーター配列のクローニング

2.3.2 で増幅した各遺伝子のプロモーター配列を、Gataway Cloning System を利用し、 ホタルルシフェラーゼ遺伝子を有する pGL3 Basic ベクター (Promega) へ挿入した。pGL3 Basic ベクターは、Gataway Cloning System にもちいる配列カセットを SmaI サイトに挿入 した、pGL3 Basic CaA ベクターを利用した。

Gateway Cloning System の反応は、まず 2.3.2 で調整した遺伝子のプロモーター配列 6.63µL、150 ng/µL pDONR 1.33 µL、BP Buffer 2µL、BP clonase 4µL を加え、25℃で一晩反 応した。一晩反応した溶液に 150 ng/µL pGL3 Basic CaA 2µL、0.75M NaCl 0.66µL、LR clonase 4µL を加え、一晩反応した。一晩反応した溶液に、proteinase K 2µL を加え、37℃ 10 分反応した。

反応後の溶液 1.5µL を用い、ヒートショック法にて Competent High E. *Coli* DH5a 15µL を形質転換した。形質転換した Competent High E. *Coli* DH5a を LB 寒天培地(5g/L Bacto Yeast Extract (DIFCO)、10g/L Bacto Tryptone (BD)、15g/L Bacto Agar (BD)、10g/L 塩化 ナトリウム、50mg/L アンピシリン)、37℃にて一晩培養した。寒天培地中のアンピシリンにより選択形成されたコロニーを、185µL の LB 培地(5 g/L Bacto Yeast Extract (DIFCO)、10 g/L Bacto Tryptone (BD)、10g/L 塩化ナトリウム、50mg/L アンピシリン)に移し、37℃ で一晩培養した。培養後、45µL の 80%グリセロール水溶液を添加し、グリセロールストックとして保存した。

2.3.4 クローニングした配列の確認

グリセロールストックとして保存したクローン 1µL、5'-プライマー (5'-CTAGCAAAATAGGCTGTCCC-3') 及び3'プライマー (5'-GACGATAGTCATGCCCCGCG -3') 3.2 pmol、Ex Taq (Takara)を用いた PCR にて、配列確認に供する配列を増幅した。 PCR 条件は、95°C 15 秒、55°C 15 秒、72°C 4 分を 30 サイクルとした。増幅した配列よ り、ExoSap-IT (USB Corporation)により、未反応の dNTPs やプライマーを除去した。 ExoSap-IT 処理後の配列 2µL、5'-プライマー (5'-GCCAGAACATTTCTCTATCG -3')又 は3'プライマー (5'-CTTTATGTTTTTGGCGTCTTCC-3')、BigDye Terminator v3.1 Cycle Sequencing Kit (ABI)を利用し、シーケンス用サンプルを作成した。PCR 条件は、95°C 10 秒、50°C 5 秒、60°C 2 分 30 秒を 30 サイクルとした。

5'端及び3'端から増幅したシーケンス用サンプルはエタノール沈殿処理を行い、20μL の精製水に溶解した。調整したシーケンス用サンプルは ABI PRISM 3730 DNA Analyzer (ABI)を用いて配列を決定した。

2.3.5 遺伝子のプロモーター配列ではないゲノム配列中の DNA 断片のクローニング

遺伝子のプロモーター配列のコントロールとして、ゲノム配列中のランダムな約 1.0kbの DNA 断片をクローニングした。

まず、DNA 断片の増幅には、human genomic DNA をテンプレートとし、attB1 サイト (5'-GGGGACAAGTTTGTACAAAAAAGCAGGT-3')及び attB2 サイト (5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3')を5'-プライマー及び3'-プライマ ー、Ex Taq を用いた PCR を行った。PCR 条件は、プライマーがテンプレートに容易にア ニーリングできる条件として、95℃1分、40℃1分、72℃1分で20 サイクルとした。

増幅した DNA 断片溶液を、1%アガロースゲルへ電気泳動した。電気泳動の結果より QIAquick Gel Extraction Kit (Qiagen)を用い、約 1kbp(750bp~1200bp)の DNA 断片を抽 出した。抽出した DNA 断片は、SPECTRA max Plus 384 を用い吸光度を測定し、測定結 果をもとに精製水で 45 ng/μL に濃度調整した。

調整した DNA 断片は、遺伝子のプロモーター配列と同様(2.3.3、2.3.4) に Gateway Cloning System を利用して pGL Basic ベクターへ挿入、クローニングした。プラスミド DNA に挿入された DNA 断片の配列を決定し、既知の遺伝子のプロモーター配列でない約 1.0kbp の DNA 配列であることを確認後、ランダム領域とした。

2.3.6 転写活性化能の測定

2.3.6.1 プラスミド DNA の精製

グリセロールストックより目的の配列が挿入されたクローンを、2mLのLB培地で20時間培養した。培養後、QIAwell 96 Ultra Plasmid Kit (Qiagen)を用いてプラス ミド DNA を抽出した。抽出したプラスミド DNA はイソプロパノール沈殿処理によ り濃縮し、SPECTRA max Plus 384 を用い吸光度を測定した。測定結果をもとに精製水で 25ng/µL に濃度調整した。

2.3.6.2 HEK293 細胞へのトランスフェクション

HEK293細胞 5×10^{^3} cells及びDMEM培地100µLを96 WELL CULTURE CLUSTER (Coster) へ分注し、24時間培養した。24時間培養後のHEK293細胞に、2.3.6.1にて 精製後のプラスミドDNA 50ngをトランスフェクションした。トランスフェクション にはFuGENE6 Transfection Reagent(Roche)0.3µL及びDMEM FCS(-)培地9.7µLを用い た。補正用のウミシイタケルシフェラーゼ遺伝子を有するphRL-TKベクター5ngも同 時にトランスフェクションした。

2.3.6.3 レポーター遺伝子アッセイ

トランスフェクションから48時間後の細胞を、Phosphate Buffer Saline (PBS: 8g/L NaCl 0.2g/L KCl、 1.44g/L Na₂HPO₄、0.24g/L KH₂PO₄)で2回洗浄後、Passive Lysis Buffer (Promega) 15µLを用いて溶解した。

溶解したサンプル3µLに、Luciferase assay regent II 15µLを加え、2秒静置後、5秒 間ホタルルシフェラーゼ活性の測定を行った。その後、Stop and Glo溶液 15µLを加 え、2秒静置後、5秒間ウミシイタケルシフェラーゼ活性の測定を行った。活性測定 には、Dual-Luciferase Reporter Assay System (Promega)及びCentro XS3 LB960 (BERTHOLD)を用いた。

2.3.6.4 転写活性化能の算出

測定されたホタルルシフェラーゼ活性をウミシイタケルシフェラーゼ活性で除 した値として算出し、測定した3回の平均値を代表値とした。

2.3.7 TATA box の探索

ATA box の検索は、以前の論文に従い、緩やかな条件(less-strict TATA box)および厳しい 条件(strict TATA box)、2種類の検索を行った。[10]

各領域における転写開始点近傍領域(転写開始点を 0 としたとき、-90 から+27)のセンス鎖に対して、マトリックス検索を用い、less-strict TATA box を検索した。マトリックス検索として、転写因子結合配列検索ソフトウェア MATCH を利用し、転写因子結合配列 データベースである TRANSFAC7.2 に含まれる V\$TATA_C および V\$TATA_01 を検索した。[16]

strict TATA box として、同様の転写開始点近傍領域におけるセンス鎖に対して TATA[T or A] 配列を検索した。

ランダム領域について TATA box を検索する際、ランダム領域の 3'端から 195 bp 目(ク ローニングされた各ヒト遺伝子のプロモーター領域における、3'端から転写開始点まで の塩基数の平均値)を仮想的な転写開始点として定めた。そして、仮想的に定義された転 写開始点を 0 とした際、転写開始点近傍となる領域のセンス鎖に対して TATA box の検索 を行った。

2.3.8 GC 含有率

GC 含有率は、各領域のセンス鎖に対して次式([C]の数+[G]の数)/(領域の塩基数)により 求めた。

2.3.9 CpG island の検索

CpG island の検索は、以前の論文に従い、次のような条件で行った。[10] 評価対象となる領域のセンス鎖より、5³端から始点が 1bp ずつ異なる 100 bp の DNA 配列をそれぞれ抽出し、抽出された各 DNA 配列について次の 2 つの評価を行った。 1)100bp の DNA 配列における GC 含有率(方法 3-6-2 と同様)が 50%より多い。2)100bp の DNA 断片において次式([CG]の数×領域の塩基数)/([C]の数×[G]の数) > 0.6 を満たす。これ ら 2 つの条件を満たす DNA 配列の始点が 200bp 連続した場合に CpG island(+)とした。

2.4 プロモーター配列の塩基レベルの差が転写活性化能に与える影響の解析
 2.4.1 変異プロモーター配列-GFP 遺伝子-ランダムタグ配列のクローニング

変異プロモーターは、遺伝子の野生型のプロモーター配列より高効率に塩基置換を導入する Error Prone PCR 法を用いて作成した。変異プロモーター配列、転写活性化能の測定時に利用する GFP 遺伝子、多様な変異プロモーター配列を識別するランダムタグ配列を連結した DNA 断片を作成し、pGL3 Basic ベクターへクローニングした。

2.4.1.1 変異プロモーター配列の増幅

各遺伝子の野生型プロモーター配列より、Error Prone PCR 条件[44]を用い、変異 プロモーター配列を増幅した。Error Prone PCR 条件として、Taq ポリメラーゼ、不 均衡な dNTP 濃度(2mM dCTP 及び dTTP、10mM dGTP 及び dATP)、50mM MgCl2 及び 5mM MnCl2 を用いた。PCR による増幅は 2 段階で行い、非特異な断片の増加 を抑制した。25 ng/µL に調整された遺伝子の野生型プロモーター配列の挿入された プラスミド DNA 溶液を用いて、1/4 希釈ずつ 7 階段の希釈を行い、8 種類の濃度の プラスミド DNA 溶液を調整した。調整した各濃度のプラスミド DNA 1 µL をテンプ レートとし、5'-プライマー (5'- CTAGCAAAATAGGCTGTCCC-3') 及び 3'-プライマ ー (5'- CTTCCAGCGGATAGAATGGC-3')を用い、エラーの入りやすい PCR 条件に より DNA 断片を増幅した。PCR は、95℃ 15 秒、55℃ 15 秒、72℃ 2 分を 40 サイク ルとした。各濃度のプラスミド DNA をテンプレートとして増幅した DNA 断片溶液 を、1%アガロースゲルへ電気泳動した。PCR による増幅が確認できた最も薄いサン プルについて、QIAquick Gel Extraction Kit (Qiagen)を用い、30 µL の精製水で抽出し た。

抽出された DNA 断片を 1/4 希釈ずつ 7 階段の希釈を行い、8 種類の濃度の DNA 断片溶液を調整した。調整した各濃度の DNA 断片溶液 1 µL をテンプレートとし、 5'- プライマー (5'-GCCAGAACATTTCTCTATCG-3') 及び 3'- プライマー (5'-GACGATAGTCATGCCCCGCG-3')を用い、エラーの入りやすい PCR 条件によ り DNA 断片を増幅した。PCR は、95℃ 15 秒、55℃ 15 秒、72℃ 2 分を 40 サイクル とした。各濃度の DNA 断片溶液をテンプレートとして増幅した DNA 断片溶液を、 1%アガロースゲルへ電気泳動した。電気泳動の結果、PCR による増幅が確認でき且 つラインの最も薄いサンプルについて、QIAquick Gel Extraction Kit (Qiagen)を用い、 DNA 断片を抽出した。なお、30 µL の精製水で抽出した。

増幅した変異プロモーター配列の 5'端に In-Fusion クローニングによりベクター に組み込むための 15 塩基の配列を、3'端に GFP 遺伝子とオーバーラップする配列 を 付 与 す る た め 、 5' プ ラ イ マ ー (5'-GATCTAAGTAAGCTTGGGGGACAAGTTTGTACAAAAAGCAGGCT -3')及び 3'プラ イマー (5'- CTCACCATGGTGGCGGGGGGACCACTTTGTACAAGAAAGCTGGGT -3')、 KOD-plus PCR kit を用いた PCR で増幅した。PCR 条件は、94℃15 秒、55℃30 秒、 68℃2 分を 20 サイクルとした。増幅した変異プロモーター配列は QIAquick Gel Extraction Kit を用い、30 µL の精製水で抽出した。

2.4.1.2 GFP 遺伝子の増幅

pAcGFP1-1 ベクター(Clontech)の GFP 遺伝子領域を、5'プライマー(5'-CGCCACCATGGTGAGCAAGG-3')及び3'プライマー(5'-CGCTCACTTGTACAGCTCAT-3')、KOD-plus PCR kit を用いた PCR で増幅した。PCR 条件は、94°C15 秒、55°C30 秒、68°C2 分を20 サイクルとした。不要なプラスミド を分解するため、2µL DpnI(New England Biolabs)を1時間処理し、反応後のサンプル を1%アガロースゲルへ電気泳動、QIAquick Gel Extraction Kit を用い、目的の DNA 断片を抽出した。

2.4.1.3 ランダムタグ配列の作成

ランダムな 12 塩基配列であるランダムタグ配列を設計した。ランダムタグ配列の 5'端に GFP 遺伝子とオーバーラップする配列、3'端に In-Fusion クローニングにより ベクターに組み込むための 15 塩基の配列を付与した (5'-CGCCCCGACTCTAGANNNNNNNNNNNCTGCTGCGCTCACTTGTACAG-3')。 ラン ダムタグ配列の作成は、eurofinsのカスタムオリゴ DNA 合成サービスを利用した。

2.4.1.4 変異プロモーター配列-GFP 遺伝子-ランダムタグ配列の作成

2.4.1.1、2.4.1.2、2.4.1.3 で増幅した、変異プロモーター配列、GFP 遺伝子、ランダ ムタグ配列を Overlap extension PCR 法により結合した。

変異プロモーター配列 50 ng、GFP 遺伝子 50 ng、12 塩基のランダムタグ配列を含 む DNA 断片を、KOD-plus PCR kit を用いた PCR により結合した。PCR は、94℃15 秒、55℃30 秒、68℃3 分を 10 サイクルとした。

反応後のサンプルをテンプレートとし、5'プライマー(5'-GATCTAAGTAAGCTTGGGGGA-3')及び3'プライマー(5'-CGCCCCGACTCTAGA-3')、 KOD-plus PCR kit を用いた PCR で増幅した。PCR 条件は、94℃15 秒、55℃30 秒、 68℃2 分を15 サイクルとした。

反応後のサンプルを 1%アガロースゲルへ電気泳動、QIAquick Gel Extraction Kit を用い、目的の DNA 断片を抽出した。

2.4.1.5 pGL3 Basic ベクターの増幅

In-Fusion クローニングを用い、pGL Basic ベクターへ変異プロモーター配列-GFP 遺伝子-ランダムタグ配列を挿入するため、pGL3 Basic ベクターのルシフェラーゼ遺 伝子以外の領域を増幅した。

pGL3 Basic ベクターのルシフェラーゼ遺伝子以外の領域、5'プライマー(5'-TCTAGAGTCGGGGCGGCCGG-3') 及び 3' プライマー(5'-AAGCTTACTTAGATCGCAGA -3')、KOD-plus PCR kit を用いた PCR で増幅した。PCR 条件は、94°C15 秒、55°C30 秒、68°C2 分を 20 サイクルとした。

2µL DpnI(New England Biolabs)を1時間処理し、反応後のサンプルを1%アガロー スゲルへ電気泳動、QIAquick Gel Extraction Kit (Qiagen)を用い、目的の DNA 断片を 抽出した。

2.4.1.6 変異プロモーター配列-GFP 遺伝子-ランダムタグ配列のクローニング

2.4.1.4 で作成した変異プロモーター配列-GFP 遺伝子-ランダムタグ配列を、2.4.1.5 で増幅した pGL3 Basic ベクターへ、In-Fusion HD Cloning Kit(Clontech)を用いて、クローニングした。

In-Fusion クローニングの反応条件は、In-Fusion HD 8 μL、pGL3 Basic ベクター6 μL (100 ng)、変異プロモーター配列-GFP 遺伝子-ランダムタグ配列 12μL (100 ng)、 精製水 14µL を 50℃ 15 分反応した。

反応後のサンプル 10 µL 及び NEB 5-alpha Competent E. coli (New England Biolabs) 100 µL を用い、ヒートショック法 (氷上 30 分、42°C 45 秒、氷上 2 分、SOC 培地を 1000uL 加え、37°C 30min)による形質転換を実施した。形質転換は 4 回実施した。形 質転換した NEB 5-alpha Competent E. coli を LB 培地 (5g/L Bacto Yeast Extract (BD)、 10 g/L Bacto Tryptone (BD)、10 g/L 塩化ナトリウム (WAKO) にて 500mL 調整し、 50mg アンピシリン (WAKO) を添加)、37°Cにて一晩培養した。培養後、QIAfilter Plasmid Maxi Kit (Qiagen) を用いてプラスミド DNA を抽出した。抽出したプラス ミド DNA はイソプロパノール沈殿処理による濃縮後、Nano Drop ND-1000 を用い吸 光度を測定した。吸光度の測定結果をもとに精製水で 1 µg/uL に濃度調整し、プラ スミドライブラリーとして保存した。

形質転換した NEB 5-alpha Competent E. coli 20 μL を LB 寒天培地(5g/L Bacto Yeast Extract、10g/L Bacto Tryptone、15g/L Bacto Agar (BD)、10g/L 塩化ナトリウム、50mg/L アンピシリン)、37℃にて一晩培養し、コロニー数をカウントすることでライブラリーの種類数を推定、ライブラリーサイズが 10,000 種類を超えていることを確認した。

2.4.2 クローニングした変異プロモーター配列-ランダムタグ配列の配列決定

変異プロモーター配列及びランダムタグ配列の全長は約 1.2kb となり、Hiseq2000 (Illumina)では一度に配列決定が行えない。このため、トランスポゾン配列をランダム に挿入し、トランスポゾン配列とランダムタグ配列を利用した 3'端側及び 5'端側双方の シーケンス用ライブラリーを作成の上、変異プロモーター配列の両端から全長配列の決 定を行った。

2.4.2.1 変異プロモーター配列の3'端側シーケンス用ライブラリーの作成2.4.2.1.1 変異プロモーター配列-ランダムタグ配列の増幅

2.4.1 で作成したプラスミド DNA より、5'端より変異プロモーター配列-ラン ダムタグ配列となる DNA 断片を増幅した。

まず、2.4.1.6 で精製したプロモーター配列-GFP 遺伝子-ランダムタグ配列を 挿入したプラスミド DNA をテンプレートとし、5'プライマー (5'-ACAAGTGAGCGCAGC-3')及び3'プライマー (5'-ACAAGAAAGCTGGGT-3')、KOD-plus PCR kit を用いた inverse PCR で、 変異プロモーター配列-ランダムタグ配列の DNA 断片を増幅した。PCR 条件は、 94°C 15 秒、55°C 15 秒、68°C 6 分を5 サイクルとした。PCR 後のサンプルより 2µL DpnI を1時間処理して、不要なプラスミドを分解した。

増幅した DNA 断片をセルフライゲーションにより環状化 DNA とした。1/10 希釈した PCR サンプル 2 μL、Ligation High (TOYOBO) 5μL、T4 Polynucleotide Kinase (TOYOBO) 1 μ L、精製水 7 μ L を用い、増幅した DNA 断片をセルフラ イゲーション反応を行った。反応は 16℃で 1 時間とした。セルフライゲーショ ン反応後のサンプルは、Plasmid-Safe ATP-Dependent DNase を用い、セルフライ ゲーション未反応生成物である直鎖 DNA を分解した。反応は、25mM dATP 1uL、 Plasmid-Safe ATP-Dependent DNase 1uL で、37℃ 1 時間とした。反応後のサンプ ルより、AMPure XP Kit (BECKMAN COULTER) を用い、環状 DNA とした変 異プロモーター配列-ランダムタグ配列を精製した。

環状化した変異プロモーター配列-ランダムタグ配列をテンプレートに、5'プ ライマー (5'-GCCAGAACATTTCTCTATCG-3') 及び 3'プライマー (5'-GTGGTTTGTCCAAACTCATC-3')、Q5 High-Fidelity 2x Master Mix (New England Biolabs)を用いた PCR で、変異プロモーター配列-ランダムタグ配列を増幅し た。PCR 条件は、98°C 10 秒、55°C 30 秒、72°C 45 秒を5 サイクルとした。増幅 した DNA 断片は、QIAquick PCR Purification Kit (Qiagen)を用いて精製した。

2.4.2.1.2 トランスポゾンを用いたシーケンス用ライブラリーの作成

2.4.2.1.2 で増幅した変異プロモーター配列-ランダムタグ配列に、EZ-Tn5 <KAN-2> Insertion Kit(AR BROWN)を用いて、トランスポゾン配列をランダムに 挿入した。反応は、EZ-Tn5 10x Reaction buffer 1 µL、増幅した DNA 断片 150ng、 Transposon 1 µL、EZ-Tn5 Transposase 1 µL を用い、37℃で2時間とした。トラ ンスポゾン挿入後, AMPure XP Kit で精製した。

トランスポゾン挿入後の変異プロモーター配列-ランダムタグ配列をテンプ レート、トランスポゾンの配列にシーケンス用アダプターを付加した 5'-プライ マ ー (5'-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC CGATCTTGAGATGTGTATAAGAGACA -3')及び3'プライマー(5'-C CAAGCAGAAGACGGCATACGAGAT-(illumina index sequence)-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT -(N or NN or NNN)-GCCGCCCCGACTCTA-3')、Q5 High-Fidelity 2x Master Mix を用いた PCR で、シーケンス用ライブラリーを作成した。PCR条件は、98°C 10秒、55°C 30 秒、72°C 45 秒を 15 サイクルとした。PCR後のサンプルより、1本鎖 DNA を分 解するために、Exonuclease I 1 μ Lを用い、37°C 1 時間反応した。反応後のサン プルより DNA 断片を AMPure XP Kit にて精製した後、2%アガロースゲルへ電 気泳動し、350bp から 1000bp を QIAquick Gel Extraction Kit (Qiagen)を用い抽出 した

2.4.2.2 変異プロモーター配列の 5'端側シーケンス用ライブラリーの作成 2.4.2.2.1 ランダムタグ配列-変異プロモーター配列の増幅 2.4.1 で作成したプラスミド DNA より、5'端よりランダムタグ配列-変異プロ モーター配列となる DNA 断片を増幅した。

2.4.1.6 で精製したプロモーター配列-GFP 遺伝子-ランダムタグ配列を挿入し た プ ラ ス ミ ド DNA を テ ン プ レートとし、5' プ ラ イ マー (5'-ACAAGAAAGCTGGGT -3')及び 3'プライマー(5'- CGCCCCGACTCTAGA -3')、 KOD-plus PCR kit を用いた PCR で、変異プロモーター配列-GFP 遺伝子-ランダ ムタグ配列の DNA 断片を増幅した。PCR 条件は、94°C 15 秒、55°C 15 秒、68°C 6 分を 5 サイクルとした。2µL の DpnI を 1 時間処理して、未反応プラスミドを 分解した。

増幅した DNA 断片をセルフライゲーションにより環状化 DNA とした。1/10 希釈した PCR サンプル 2 µL、Ligation High (TOYOBO) 5µL、T4 Polynucleotide Kinase (TOYOBO) 1 µL、精製水 7 µL を用い、増幅した DNA 断片をセルフラ イゲーション反応を行った。反応は 16℃で 1 時間とした。セルフライゲーショ ン反応後のサンプルは、Plasmid-Safe ATP-Dependent DNase を用い、セルフライ ゲーションしなかった直鎖 DNA を分解した。反応は、25mM dATP 1uL、 Plasmid-Safe ATP-Dependent DNase 1uL で、37℃ 1 時間とした。反応後のサンプ ルより、AMPure XP Kit (BECKMAN COULTER) を用い、環状 DNA とした変 異プロモーター配列-ランダムタグ配列を精製した。

環状 DNA とした変異プロモーター配列-ランダムタグ配列をテンプレート、5' プライマー (5'-ATGGATGAGCTGTACAAGTG-3')及び3'プライマー (5'-CGCCATTCAGCTCGATCAGG-3')、Q5 High-Fidelity 2x Master Mix (New England Biolabs)を用いた PCR で、ランダムタグ配列-変異プロモーター配列を 増幅した。PCR条件は、98℃10秒、55℃30秒、72℃45秒を5サイクルとした。 増幅した DNA 断片は、QIAquick PCR Purification Kit (Qiagen)を用いて精製し た。

2.4.2.2.2 トランスポゾンを用いたシーケンス用ライブラリーの作成

2.4.2.1.2 で増幅したランダムタグ配列-変異プロモーター配列に、EZ-Tn5 <KAN-2> Insertion Kit(AR BROWN)を用いて、トランスポゾン配列をランダムに 挿入した。反応は、EZ-Tn5 10x Reaction buffer 1 µL、増幅した DNA 断片 150ng、 Transposon 1 µL、EZ-Tn5 Transposase 1 µL を用い、37℃で 2 時間とした。トラン スポゾン挿入後, AMPure XP Kit で精製した。

トランスポゾン挿入後の変異ランダムタグ配列-変異プロモーター配列をテ ンプレート、トランスポゾンの配列にシーケンス用アダプターを付加した 5'-プ ラ イ マ ー (5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC CGATCTTGAGATGTGTATAAGAGACA -3')及び3'プライマー(5'-C CAAGCAGAAGACGGCATACGAGAT-(illumina index sequence)-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-(N or NN or NNN)-ACAAGTGAGCGCAGC-3')、Q5 High-Fidelity 2x Master Mix を用いた PCR で、 シーケンス用ライブラリーを作成した。PCR 条件は、98°C 10秒、55°C 30秒、 72°C 45 秒を 15 サイクルとした。PCR 後のサンプルより、1 本鎖 DNA を分解す るために、Exonuclease I 1 μ L を用い、37°C 1 時間反応した。反応後のサンプル より DNA 断片を AMPure XP Kit にて精製した後、2%アガロースゲルへ電気泳 動し、350bp から 1000bp を QIAquick Gel Extraction Kit (Qiagen)を用い抽出した。

2.4.2.3 変異プロモーター配列-ランダムタグ配列のシーケンシング

2.4.2.1.2 及び 2.4.2.22 で抽出した DNA 断片をテンプレート、5'-プライマー(5'-AATGATACGGCGACCACCGAG -3') 及び 3' プライマー (5'-CAAGCAGAAGACGGCATACG -3')、Q5 High-Fidelity 2x Master Mix を用いて、シー ケンス用の DNA 断片を増幅した。PCR 条件は、98℃ 5 秒、55℃ 10 秒、72℃ 45 秒 を10 サイクルとした。反応後のサンプルより DNA 断片を AMPure XP Kit にて精製 した後、バイオアナライザ (Agilent) でシーケンス用 DNA 断片の品質を確認し、 Hiseq2000 を用いた 101bp Paired-End Rapid Run でシーケンスを行った。なお、シー ケンシングプライマーは、トランスポゾン配列を利用した Read1 プライマー (5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAGATGTGTATAAGAGAC A-3') 及びランダムタグ配列側の Read2 プライマーを用いた。変異プロモーター配 列の 5'端側及び 3'端側ライブラリーの Read2 プライマーは、それぞれ 5'端側ライブ ラ IJ Read2 プ ラ イ 7 (5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCGCCCCGACTCTAGA-3') 3'端 側 ラ イ ブ ラ リ ー Read2 プ ラ イ マ ー (5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACAAGTGAGCGCAGCAG-3') を用いた。Index プライマーは Illumina 純正のプライマーを用いた。

2.4.2.4 変異プロモーター配列-ランダムタグ配列の配列決定

2.4.2.3 で得られた変異プロモーター配列の 5'端側及び 3'端側ライブラリーのシー ケンシング結果を利用し、次の手順で配列決定を行った。

シーケンスで得られたリードのうち、Read1 は 80 %以上の塩基でクオリティスコ アが 20 以上のリード、Read2 はランダムタグ配列の全ての塩基でクオリティスコア が 20 以上のリードを用い、変異プロモーター配列とランダムタグ配列のリードペア として解析に用いた。

ランダムタグ配列ごとに、リードペアを野生型プロモーター配列へマッピングし

た。マッピングにはアライメントツールである BWA (Burrows-Wheeler Aligner) [45] を用いた。マッピング結果より、予想されるストランドとは異なる方向へマッピン グされたリード、プロモーター配列の半分以上の長さでマッピングされたリードは 信頼性が低いとみなし除外した。

マッピングされたリードより、Picard Tools の MarkDuplicates を用い、重複配列を 除外、SAM tools[46]を用い、プロモーター配列内の変異を特定した。

プロモーター配列内の 90%の塩基で、5 リード以上マッピングされた変異プロモ ーター配列を以後の解析に利用した。

2.4.3 転写活性化能の測定

2.4.3.1 HEK293 細胞へのトランスフェクション

HEK293細胞 1×10⁶ cells及びDMEM培地10 mLを10 cm² Dish (Greiner bio-one) へ 分注し、24時間培養した。24時間培養後のHEK293細胞に、2.4.1.6にて精製後のプラ スミドDNA 6µgをトランスフェクションした。トランスフェクションには X-treme-Gene9 transfection reagent (Roche) 30 µL及びOpti-MEM Reduced Serum Medium (Life Technology)) 361.3 µLを用いた。この際、コントロール用として6種 類のプラスミドDNA (異なる3種類のランダムタグ配列を付与したGAPDH遺伝子の プロモーター配列、異なる3種類のランダムタグ配列のみを挿入したプラスミド DNA) も同時にトランスフェクションした。

2.4.3.2 mRNA 抽出と cDNA 合成

トランスフェクションから48時間後のHEK293細胞を回収、RNeasy Midi Kit (Qiagen)を用いてtotal RNAを抽出した。その後、Magnosphere UltraPure mRNA Purification Kit (TaKaRa)を用い、poly-Aを有するmRNAを抽出した。抽出後のサン プルより、TURBO DNA-free Kit (Life Technologies)を用い、DNAを分解した。反応 条件は、mRNA 500 ng、TURBO DNase 1 µLを用い、37℃で25分とした。

次に、SuperScript III Reverse Transcriptase kit (Life Technologies)を用い、逆転写 によりcDNAを合成した。反応には、mRNA 10 µLに逆転写用プライマー (5'-GCAGCTTATAATGGTTACAA-3')を用いた。反応後のサンプルに、Ribonuclease H (Life Technologies) 1 µLを37℃ 20分処理することで、RNAを分解した。

反応後のサンプルを用い、リアルタイムPCRを利用することで、cDNAの合成を 確認した。リアルタイム PCR には、5'-プライマー (5'-CCTGGGCAATAAGATGGAGT-3') 及び3'-プライマー (5'-GAAGCGGCCGGCCGCCCCGA-3')、Power SYBR Green PCR Master Mix (Applied Biosystems)を用い、7900HT Fast Real-Time PCR System (Applied Biosystems)で実施した。

2.4.3.1 でトランスフェクションに用いたプラスミド DNA 及び 2.4.3.2 で合成した cDNA をテンプレート、シーケンス用アダプターを付加した 5'-プライマー(5'-CAAGCAGAAGACGGCATACGAGAT-(illumina index sequence)-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTGGGCAATAAGAT GGAGT-3') 及 び 3' プ ラ (イ 7 5°-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA TCTGAAGCGGCCGGCCGCCCGA-3')、Q5 High-Fidelity 2x Master Mix を用いた PCR で、シーケンス用ライブラリーを作成した。PCR 条件は、98℃ 10 秒、55℃ 30 秒、72°C 30 秒を 5 サイクルとした。反応後のサンプルより、DNA 断片を AMPure XP Kit にて精製した。

精製した DNA 断片をテンプレート、5'-プライマー (5'-AATGATACGGCGACCACCGAG -3') 及び 3' プライマー (5'-CAAGCAGAAGACGGCATACG -3')、Q5 High-Fidelity 2x Master Mix を用いて、シー ケンス用の DNA 断片を増幅した。PCR 条件は、98℃ 10 秒、55℃ 30 秒、72℃ 30 秒 を10 サイクルとした。反応後のサンプルより DNA 断片を AMPure XP Kit にて精製 した後、バイオアナライザ (Agilent) でシーケンス用 DNA 断片の品質を確認し、 Hiseq2000 を用いた 36bp Single-End Run でシーケンスを行った。なお、シーケンシ プ ン グ ラ イ 7 -は 5°-CTAGA-3'を用いた。Index プライマーは Illumina 純正のプライマーを用いた。

2.4.3.4 転写活性化能の算出

2.4.3.4 で得られたプラスミド DNA 及び cDNA のランダムタグ配列のシーケンシング結果を利用し、次の手順で転写活性化能を算出した。

シーケンス結果が得られたリードのうち、 ランダムタグ配列 12 塩基すべてでクオ リティスコアが 20 以上のリードを解析に用いた。

各リードよりランダムタグ配列を抽出し、各ランダムタグ配列をカウントした。 プラスミド DNA は 100 以上、cDNA は 1 以上カウントされたランダムタグ配列を解 析に用いた。コントロール用として加えた 6 種類のランダムタグ配列とシーケンス 結果が 1 塩基違いのランダムタグ配列は、シーケンスエラーと判断し、カウントか ら除外した。

プラスミド DNA、cDNA のそれぞれに、各ランダムタグ配列数を総ランダムタグ 配列数で除した値を算出、ランダムタグ配列ごとに cDNA の算出値をプラスミド DNA の算出値で除した値を転写活性化能として算出した。 2.4.3.5 野生型プロモーター配列の転写活性化能の測定

コントロールとして、野生型プロモーター配列についても、2.4.1、2.4.2、2.4.3.1-3 と同様の方法で、転写活性化能の測定を行った。

25 ng/µL に調整された遺伝子の野生型プロモーター配列の挿入されたプラスミド DNA をテンプレートとし、5'-プライマー(5'- CTAGCAAAATAGGCTGTCCC-3')及 び3'-プライマー(5'- CTTCCAGCGGATAGAATGGC-3')を用い、PCR により DNA 断片を増幅した。PCR 条件は、95°C 15 秒、55°C 15 秒、72°C 2 分を 40 サイクルとし た。

増幅した DNA 断片は、2.4.1、2.4.2、2.4.3.1-3 と同様の方法で、野生型プロモータ ー配列-GFP 遺伝子-ランダムタグ配列を pGL3 Basic ベクターに挿入し、配列の確認、 転写活性化能の測定を行った。

2.4.3.6 塩基レベルの変異が転写活性化能へ与える影響の解析

2.4.3.6.1 各塩基の変異有無が転写活性化能へ与える影響の解析

説明変数として転写活性化能、目的変数として塩基ごとの変異有無とした重 回帰モデルを用い、変異の有無が転写活性化能へ与える影響を偏回帰係数とし て推定した。偏回帰係数が 0 か否かの検定として、推定された偏回帰係数及び その標準誤差を利用した t 検定を実施した。重回帰分析には統計解析ソフトウ ェア R[47]を用いた。

(1) $\log_2 y = \beta_0 + \sum \beta_i x_i$

それぞれの変数は下記を表す。

- y: 転写活性化能
- β₀: 回帰切片
- β;: 転写開始点を基点とした i 番目の塩基の偏回帰係数
- xi: 転写開始点を基点としたi番目の塩基の変異有無(変異無=0/変異有=1)

2.4.3.6.2 各塩基の変異パターンが転写活性化能へ与える影響の解析

説明変数として転写活性化能、目的変数として塩基ごとの各変異パターン有 無とした重回帰モデルを用い、各変異パターンが転写活性化能へ与える影響を 偏回帰係数として推定した。偏回帰係数が0か否かの検定として、推定された 偏回帰係数及びその標準誤差を利用したt検定を実施した。なお、各変異パタ ーンとは、欠損及びA、T、G、Cそれぞれへの変異を表す。重回帰分析には統 計解析ソフトウェアRを用いた。

(2)
$$\log_2 y = \beta_0 + \sum \beta_{ij} x_{ij}$$

それぞれの変数は下記を表す。

- y: 転写活性化能
- β₀: 回帰切片
- β_{ii}: 転写開始点を基点とした i 番目の塩基の各変異パターン j の偏回帰係数
- x_{ij}: 転写開始点を基点とした i 番目の塩基の各変異パターン j 有無 (変異無=0/変異有=1)
- 2.4.3.6.3 10 分割交差検証

2.4.3.5.1 及び2.4.3.5.2 で利用した重回帰モデルの予測性能を検証する目的で、 10 分割交差検証を行った。重回帰分析に利用するデータを 10 分割し、9 割のデ ータを用いた重回帰モデルの構築、残り 1 割のデータを用いて重回帰モデルに よる予測値と観測値の比較を行った。予測値と観測値の検証は、重回帰モデル の検証に用いるデータを変更しながら 10 回実施し、得られたすべての予測値と 観測値のデータよりピアソンの相関係数を算出した。重回帰モデルの構築及び 相関係数の算出には統計解析ソフトウェア R を用いた。

2.4.3.7 転写因子結合配列の探索

遺伝子のプロモーター配列中の転写因子結合配列の探索には、転写因子結合配列 探索ソフトウェア MATCH を利用した[48]. 転写因子のデータベースは TRANSFAC 2014.1 を用いて、False Positive を最小にするパラメーターセットで探索を行なった [49]. TATA ボックスの探索には、データベース上の転写開始点を基準(0)とした際に、 -90~+27の領域にデータベース中の VTATA_01 又は文字列 TATA[T/A][T/A]と一致す るものを TATA ボックスとした.

2.4.3.8 プロモーター配列中5塩基ごとのGC含有率

プロモーター配列中の5塩基あたりのGC含有率は、各領域のセンス鎖の連続する5塩基を抽出し、次式([C]の数+[G]の数)/(領域の塩基数=5)で求めた。

2.4.3.9 配列保存度

プロモーター配列の各塩基の配列保存度はPhastCons[50]の conservation scores を利

用した。

2.4.4 転写活性化能の確認

2.4.4.1 本研究で測定した転写活性化能を従来のルシフェラーゼアッセイで確認

2.4.3.4 で算出した転写活性化能を、従来のルシフェラーゼアッセイを用いて算出 した転写活性化能と比較し、確認を行った。

2.4.1.6 で保存したプラスミド DNA ライブラリーを用い、ヒートショック法にて NEB 5-alpha Competent E. coli を形質転換、LB 寒天培地 (5g/L Bacto Yeast Extract、10g/L Bacto Tryptone、15g/L Bacto Agar (BD)、10g/L 塩化ナトリウム、50mg/L アンピシ リン)、37℃にて一晩培養した。寒天培地中のアンピシリンにより選択形成されたコ ロニーを、ランダムに選択し、200 µL の LB 培地 (5 g/L Bacto Yeast Extract (DIFCO)、 10 g/L Bacto Tryptone (BD)、10g/L 塩化ナトリウム、50mg/L アンピシリン) に移し、 37℃で一晩培養した。培養後、45µL の 80% グリセロール水溶液を添加し、グリセロ ールストックとして保存した。

グリセロールストックとして保存したクローン 1 μ L、5'-プライマー (5'-CTAGCAAAATAGGCTGTCCC -3')及び3'プライマー(5'-GACGATAGTCATGCCCCGCG -3') 3.2 pmol、Ex Taqを用いた PCR にて、配列確認 に供する配列を増幅した。PCR条件は、95°C 15秒、55°C 15秒、72°C 4分を30サイ クルとした。増幅した配列、ランダムタグ配列用プライマー (5'-GTGGTTTGTCCAAACTCATC-3')、5'-プライマー(5'-GCCAGAACATTTCTCTATCG -3')又は3'プライマー

(5'-CTTTATGTTTTTGGCGTCTTCC-3')、BigDye Terminator v3.1 Cycle Sequencing Kit (ABI) を利用し、シーケンス用サンプルを作成した。PCR 条件は、95°C 10 秒、 50°C 5 秒、60°C 2 分 30 秒を 30 サイクルとした。シーケンス用サンプルは、イソプ ロパノール沈殿を行い,風乾した後,20µL のホルムアミドに溶解した。調整したシ ーケンス用サンプルは ABI PRISM 3730 DNA Analyzer (ABI) を用いて配列を確認し た。

ランダムタグ配列、変異プロモーター配列が確認されたクローンについて、グリ セロールストックより、2mLのLB 培地で16時間培養した。培養後、QIAwell 96 Ultra Plasmid Kit (Qiagen)を用いてプラスミド DNA を抽出した。

抽出したプラスミド DNA をテンプレートとし、attB1 サイト (5'-GGGGACAAGTTTGTACAAAAAAGCAGGT-3')及び attB2 サイト (5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3')を5'-プライマー及び3'-プラ イマー、KOD-plus PCR kit (TOYOBO)を用いた PCR にて、各遺伝子のプロモータ ー配列を増幅した。PCR 条件は、94°C1分、58°C1分、68°C2分を35 サイクルとし た。増幅した DNA 断片溶液を、ポリエチレングリコール沈殿処理により精製及び濃 縮した。濃縮した各遺伝子のプロモーター配列溶液は、SPECTRA max Plus 384 を用 い吸光度を測定し、測定結果をもとに精製水で45 ng/µLに濃度調整した。

調整した DNA 断片は、遺伝子のプロモーター配列と同様(2.3.3、2.3.4、2.3.6)に Gateway Cloning System を利用して pGL3 Basic ベクターへ挿入、クローニングし、 転写活性化能の測定を行った。

2.4.4.2 各塩基の変異が転写活性化能へ与える影響の確認

各塩基に変異を挿入した点変異プロモーター配列を作成し、ルシフェラーゼアッ セイによる転写活性化能の測定を実施した。点変異プロモーター配列は、inverse PCR による点変異導入法を用い、作成した。まず、野生型プロモーター配列を pGL3 Basic ベクターに挿入したプラスミド DNA をテンプレートとし、変異導入用プライマー 及び各プロモーターの共通プライマー、KOD-plus PCR kit を用い、DNA 断片を増幅 した。PCR 条件は、94℃ 15 秒、55℃ 15 秒、68℃ 6.5 分を 5 サイクルとした。なお、 利用したプライマーは表 3.22 に示した。PCR 後のサンプルより不要なプラスミド DNA を分解するため、2µL DpnI を 1 時間処理した。

増幅した DNA 断片をセルフライゲーションによる環状 DNA とした。まず、1/10 希釈した PCR サンプル 2 µL、Ligation High (TOYOBO) 5µL、T4 Polynucleotide Kinase (TOYOBO) 1 µL、精製水 7 µL を用い、増幅した DNA 断片をセルフライゲーショ ン反応を行った。反応は 16℃で 1 時間とした。セルフライゲーション反応後のサン プルは、Plasmid-Safe ATP-Dependent DNase を用い、セルフライゲーションしなかっ た直鎖 DNA を分解した。反応は、25mM dATP 1uL、Plasmid-Safe ATP-Dependent DNase 1uL で、37℃ 1 時間とした。反応後のサンプルより、AMPure XP Kit (BECKMAN COULTER) を用い、環状 DNA とした点変異プロモーター配列を精製した。

精製した点変異プロモーター配列は、遺伝子のプロモーター配列と同様(2.3.3、 2.3.4、2.3.6)に、クローニングし、転写活性化能の測定を行った。

3 結果及び考察

3.1 遺伝子のプロモーター配列間の差が転写活性化能へ与える影響の解析3.1.1 遺伝子のプロモーター配列の転写活性化能の測定

今回解析対象に選定したヒト胎児腎臓由来細胞株 HEK293 細胞においては、完全長 cDNA データの解析結果から、2170 遺伝子についてその発現と cDNA の構造が記載され ていた。これらの遺伝子よりランダムに選んだ 852 遺伝子を対象としてヒトゲノム配列 からプロモーター領域の配列情報を取得した。それぞれについて PCR プライマーを作成 し、健常人ゲノムより該当領域を増幅し、レポーターアッセイプラスミドへとクローニ ングし、転写活性化能の測定を行った。その結果、472 遺伝子のプロモーター領域につ いて転写活性化能を測定することができた(図 3.1)。472 遺伝子のプロモーター領域のク ローニングおよび HEK293 細胞を用いたルシフェラーゼレポータージーンアッセイは統 一的な実験条件下で行なった。各遺伝子のプロモーター領域に対する転写活性化能の測 定は 3 回ずつ行った。全転写活性化能測定データのうち 86%で、測定データに対する標 準誤差率が 25%以下であった(図 3.1)。転写活性化能の測定された 472 遺伝子のプロモー ター領域に対する詳細を(表 3.1)として示す。

図 3.1:遺伝子のプロモーター配列の転写活性化能

転写活性化能の測定を行なうことができた 472 遺伝子のプロモーター領域が有する転写活性化能の測定値を、転 写活性化能の強い順に左から並べた。コントロールとして、強い転写活性化能を有することが知られる EEF1A1 および空ベクターである pGL3 basic vector についてそれぞれ矢印で示す。

表 3.1:転写活性化能を測定した 472 遺伝子のプロモーター領域の詳細

PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	標準偏差
DDD 0001	NM 001673		TGCTCTCCAAGCATTGACTG	ATCOTOCACCOCTTOCTTO	<u>(-xx to +yy: TSS=0)</u> -031 +185	2750 57	277.72
PPR 0002	NM 001016	RPS12		GGGTTACGGGTGAAGTTGAA	-936 +189	1540 54	104.38
PPR 0003	NM 001967	FIF4A2	GCAGTTTACGCAGCAAGGAT	CCGTGCCATCCACTATCATC	-980 +148	800 72	75.11
PPR 0004	NM 003016	SRSF2	ATGGTGAGTGGAGAAGGCAG	TCATAGCTCTGAGTGGCGG	-928.+179	796.37	10.31
PPR_0005	NM_006466	POLR3F	GGGGTGAACTTAATGCCTTG	CTGCACCTTCACCTTCACCT	-965,+134	768.34	40.62
PPR_0006	NM_016299	HSPA14	TTTGCAAAGCAATTTTCACC	CCAGGTGAACTCCGATGG	-976,+118	735.84	32.89
PPR_0007	NM_006276	SRSF7	AGCAAGGCTGCTATTTCCAC	CTCGCAGTGCTCACTACACC	-905,+188	690.52	25.96
PPR_0008	NM_005057	RBBP5	TGGGCAACATGAAAATGCT	CTCAGCTCCGGCAACAAC	-952,+93	640.83	27.94
PPR_0009	NM_001030	RPS27	GTTGTGGTGAGCCGAGATG	CCCTCTACGATCCGAAATCA	-932,+126	631.19	41.83
PPR_0010	NM_000973	RPL8	GCTCGACAGTGCTCACTCAG	GCCTCACGGAAGAGGATG	-954,+86	594.75	69.94
PPR_0011	NM_003753	EIF3D	GGCGAGAGGACCACTTTAGA	CCGCAGGAACCTATGAAACA	-953,+150	566.61	43.95
PPR_0012	NM_004396	DDX5	AAGACCCTATCCAGGGAACC	TAGAAAAGCGTGCGACAAGT	-976,+135	565.23	24.56
PPR_0013	NM_007208	MRPL3	TCCAAATTTCTACAAACAGTAATCTGA	CGCTCTGCTTTCAGGGAGT	-937,+119	553.97	11.88
PPR_0014	NM_001254	CDC6	AGAATTGGGTTCTGGCCTCT	CCTCCTCGAGCAATCCTCTT	-974,+132	553.58	112.97
PPR_0015	NM_016368	ISYNA1	GTCCACTTCCAACTCCCTCA	GTCAGCGGGGACTCTAAGC	-899,+164	541.69	10.31
PPR_0016	NM_001895	CSNK2A1	TAAAGGGAGGGAGGCAACAC	CCCTAGGTACCTGTGGTGGA	-940,+111	529.44	27.25
PPR_0017	NM_002700			AACATCACCTTGGTTCTCCG	-969,+134	526.55	9.55
	NM 002106			COCTOTOTOCOCAACTETACO	-907,+113	513.02	41.40
DDD 0020	NM 006425				-990,+124	300.37	32.95
PPR 0020	NM 002816	PSMD12		TCCTCACCTTGGCTAGCTTC	-999 +164	498.34	64.43
PPR 0022	NM 000688			CGCTGAGGACTGCAGAGG	-958 +120	477.39	85 34
PPR 0023	NM 005324	H3F3B	GGCAAAGGTAGGGATTAGCA	TACCCAACGCCGAAGTTTTA	-966 +119	446 74	54 84
PPR 0024	NM 024662	NAT10	TTCAGGTCCTTGTTCCATCC	ATCCCAGCCAGTGGAGAAG	-984.+119	437.54	67.55
PPR_0025	NM_001316	CSE1L	CTGGGCACCCAGTTCAAT	CTCACCTCGTGGGGGATACAG	-937,+111	421.31	53.19
PPR_0026	- NM_006275	SRSF6	TCTCCTTTCCTGCGCTTAAA	TGTAGCTCAGGCGTCCTATG	-933,+186	400.84	27.15
PPR_0027	NM_006362	NXF1	GGAGACACCTGCCCAGAATA	TTACCGCTGTACGACTTCCC	-979,+130	392.96	28.50
PPR_0028	NM_005973	PRCC	TAAATGGGCTGGACAAGGAC	GGCAGATGAGGCCTACTTGA	-993,+197	390.05	15.31
PPR_0029	NM_003404	YWHAB	CTGGGCGACAGAAAGAGACT	CGAGATGACCTCTTCCTTCCT	-984,+139	381.84	62.64
PPR_0030	NM_016407	RTFDC1	GTCTCACCATGTTGTCCAGG	TTTCTGGGGTCGTCAAATTC	-954,+188	363.96	45.53
PPR_0031	NM_001417	EIF4B	GCCACTCTGTCTCCACACAA	GCAGCCCTCAATTCAGAAAG	-944,+162	352.50	11.05
PPR_0032	NM_002815	PSMD11	CCTCCTTTTATGGGACAGCA	AGTGGAGGATGTCGATGGAG	-935,+124	350.14	32.76
PPR_0033	NM_007358	MTF2	GGAGTGGAAGGGTATGACCA	AGGGTTGGGGGTAGAATGAG	-951,+133	343.39	33.55
PPR_0034	NM_003435	ZNF134	TTCAGACACTGTCGGTGTAATTG	CAGAGCGAACAGCGACTTC	-970,+73	342.00	7.74
PPR_0035	NM_005002	NDUFA9	TGGCTCTTTGTAGAACAATGC	AACCTTAAATCCCCGTCTCG	-938,+125	341.57	60.95
PPR_0036	NM_021058	HIST1H2BJ	ATCTGGACCACCTTCCCTCT	TGGACCTGCTTCAGAACCTT	-925,+157	341.14	29.37
PPR_0037	NM_003145	SSRZ			-957,+93	334.54	47.62
PPR_0038	NM_006206	EEFIAI		GGGATCAAGAATCACGTACT	-945,+142	330.83	7.20
PPR_0039	NM 022200				-962,+190	320.07	237.11
PPR 0041	NM 000985	RPI 17		GCCTCCAGCGAGGATTTAGT	-939 +189	315.99	45 78
PPR 0042	NM 005850	SE3B4	TTTTCTATGGGAATGAGGCG	GGAAGGGAGGAGTCCAGTCT	-956 +177	315.01	33.90
PPR 0043	NM 000969	RPL5	CTTCCTGATGCTTTTGCCTC	GGGAACCTCCATGCATCTAA	-974.+124	314.69	18.29
PPR 0044	NM 006294	UQCRB	TGAGCCTCAGCTTTCTCCTC	TGCAGCAAAAATAAACGGTG	-960.+129	310.66	11.01
PPR_0045	NM_016422	RNF141	GGATTGCTGTGAAGATTAAACG	TTTCTCTTCCCAGACCCAGA	-911,+150	306.40	25.35
PPR_0046	NM_016485	VTA1	GCTGGAGATTTTGGCTCTTG	CTGAGCCGTCCTCAGATGAT	-943,+125	305.67	10.96
PPR_0047	NM_024814	CBLL1	TTTTAACCTCTCCTTCCGGC	TAATCCCTTTTGCCTGCTGT	-943,+121	283.55	33.02
PPR_0048	NM_006782	ZFPL1	CCCACAGGCAAACTGTTTTT	CTGCACTGGTTCCGAAGG	-961,+150	282.66	17.35
PPR_0049	NM_002592	PCNA	GTTGCAATGAGCTGAGATCG	GCGGGAAGGAGGAAAGTCTA	-915,+140	278.94	89.03
PPR_0050	NM_006328	RBM14	CCTCAGCCTCCCAAGTAGC	GACGTTGCCCACGAATATCT	-924,+116	277.83	7.12
PPR_0051	NM_006773	DDX18	GCTGAAGGGTCCTTGGGTAT	AACGCATCTCACCCTGAAAC	-927,+152	275.68	35.57
PPR_0052	NM_004537	NAP1L1	TGAGAATGCAAAAGGCAGTC	CCGTTACCGGCGACTAGTAT	-922,+153	273.63	45.26
PPR_0053	NM_006392	NOP56	AAAATCCCCTTCGAATGACTC	AACGCAACCTCAGCGTCT	-978,+181	270.58	32.86
PPR_0054	NM_014412	CACYBP	TCCATTACCTGGGCAAATTC	CAGCCTGGTTACTTTCAAACG	-922,+126	270.48	10.16
PPR_0055	NM_003457	ZNF207	GCTCCCTTACGGAGATACCC	TGCGACCCATAACTGTGTTC	-892,+171	269.68	50.29
PPR_0056	NM_006830	UQCRII		GCACAAATACGGAACGCAG	-964,+165	261.10	23.89
PPR_0057	NM_015950	MRPL2		CIICCCGGGIAAGAIGGAII	-966,+164	255.31	28.95
PPR_0058	NM_005085				-964,+136	250.70	9.15
PPR_0009	NM 024601				-950,+165	249.30	25.29
	NW 020060		AAGUTUCAAGAAGGAGGGAG	GGAGACAATGACCGAGGAAA	-909,+190	240.02	21.14
PPR_0001	NM 004741			CGAACTTATTGGCCACCTCT	-917,+149	243.91	32.70
PPR 0063	NM 001697	ATP50	CAGGGATTCTTTGCTTTTGC	TGGTGCTCGAGGTTTGGTA	-955 +141	242.20	12.64
PPR 0064	NM 004343	CALR	AGCCGTTTAATTGCAAAAGC	TACCTCCGTCCAGAAACTGC	-940 +165	239.35	39.38
PPR 0065	NM 002635	SLC25A3	GGCCATGTGTGACTGTACCA	CTTTTCCTTCCCGTCTCCAC	-939.+180	238.97	15.76
PPR 0066	NM 006409	ARPC1A	CAGCCTAAGCAACACAGCAA	GACAAGAGAGGCCGACAGG	-957.+136	238.81	6.46
PPR_0067	NM_000269	NME1	GGTCTTTTGGTGTCGTCTAA	AACTCCTCACCTAACCCACT	-982,+137	235.91	71.42
PPR_0068	NM_007158	CSDE1	TCCCAGTGGTTACACATACAACA	TCCCCTGGGTTTCTGCTAC	-937,+122	234.77	12.79
PPR_0069	NM_003091	SNRPB	GGCAAAACCCCGTCTCTACT	CAGCCTGTGCCCTCCTTAC	-929,+112	233.98	45.25
PPR_0070	NM_024513	FYCO1	CCCCCAAACTGACTACTCCA	TAAGGGCAACAGGTGACAAG	-983,+198	230.32	26.92
PPR_0071	NM_016504	MRPL27	CAAAAAGAATTCCTGCAGCC	CGTCCCTCAAACCTGGAGTA	-940,+196	229.08	35.78
PPR_0072	NM_000967	RPL3	AATTCCGAGGAAACAACGAG	GCCTTACGGGTCCGCTAT	-923,+137	223.09	21.60
PPR_0073	NM_014633	CTR9	CATGTTGAAATGAGATTTTGGA	GTCAAAAGGCGAGCAAGTGT	-937,+130	213.90	5.29
PPR_0074	NM_001418	EIF4G2	TAGTTCAACTTGCCGGCTTT	CCTCAAACTCAGCTCAGAGGA	-920,+146	213.68	5.08
PPR_0075	NM_006096	NDRG1	GCTCCTCTGGGACTTCTCAT	TACCTAACGCGAGGGAGAAA	-920,+121	211.75	6.81

表 3.1	(続き):	転写活性化能を測定し	た 472 遺伝子のプ	。ロモーター領域の詳細
-------	-------	------------	-------------	-------------

PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	標準偏差
PPR 0076	NM 007192	NAME SUPT16H	CTGGCTAAAGGCAAGGGAAT	TACAGGATCTTCCTCACCCG	-997 +178	208.98	9.73
PPR 0077	NM 001320	CSNK2B	AAAGCTCCGGGTTCAGTTC	CAGCGACGACTTCAGACTCA	-978 +136	200.50	42.08
PPR 0078	NM 004539	NARS	ACAACGGACTCGGGGGAAG	CGTTGCATCAGAGAGCGTAG	-932.+126	207.03	26.85
PPR_0079	- NM_002482	NASP	TTGAACTCCTGACCTCGTGA	ACTCCATGGCCATCGTTC	-921,+119	205.39	22.88
PPR_0080	NM_006170	NOP2	GAGGAGGTAAGTGGCATGGA	GGGTTAATGTCCGAGAGTGC	-963,+90	205.29	10.00
PPR_0081	NM_018077	RBM28	GTGAAACCCTGTCTCTGCAA	GGCCCACAAATAAGGTCAGG	-922,+123	204.44	12.49
PPR_0082	NM_016070	MRPS23	GCTGCATAGGGTTCCAAAGA	CACCCTGCAATACGCCTC	-939,+190	203.49	11.46
PPR_0083	NM_005911	MAT2A	GCACATTCAAGGGAACGAAT	TGTCCGTTCATGTTGGTGTC	-986,+91	202.29	2.75
PPR_0084	NM_004960	FUS	GCCCTGTAATCAGGCACAAT	GGTCCCACTGAAAACGAAAA	-977,+152	201.59	11.76
PPR_0085	NM_005507	CFL1	TATGCTCTGCAAGGTACCCC	TTCCGGAAACGAAAAGGAG	-988,+139	199.58	40.75
PPR_0086	NM_020239	CDC42SE1	TCAATTACTGGCGTGTTCCA	CTCACCTGCTCTTCTCCACC	-892,+175	199.09	11.54
PPR_0087	NM_01/816		CCCAACACIGCICACIIICA		-9/6,+184	195.96	24.86
	NM_007202	HSP90AB1			-918,+141	195.85	4.00
PPR 0000	NM 003286	TOP1		GTAAGCGGCGGTGACTGT	-952 +107	194.80	12.63
PPR 0091	NM 006739	MCM5	AGATTGAGCCACTGCACTCC	TCCAACTACACCCGGAAATC	-953+131	188.80	41 12
PPR 0092	NM 004661	CDC23	AGTGCAATGGCACGATCTC	CCGCAATAAGCAGCAGTTG	-961.+131	187.21	41.68
PPR_0093	NM_005687	FARSB	CTTTGTTTCTGGTGGCTGCT	CTCCGAGAAGAGGCGTAGG	-935,+121	186.68	7.74
PPR_0094	NM_001791	CDC42	GACGTCGAGATTGCAGTGAG	GAAGGTAGGGTGGCAGCTC	-924,+119	184.17	33.54
PPR_0095	NM_000983	RPL22	GCTTGAGGCCTGAGTTGAAA	AGCGAGCCTGGGTAGATG	-952,+122	183.61	14.94
PPR_0096	NM_006112	PPIE	ATAAAGCCTGCGTTTGCTGT	TCCTCCTGGTTCAGAGATGC	-950,+141	183.26	2.76
PPR_0097	NM_017850	C1orf109	GCCTGATTGTTTGGATTTGG	CGCCGTCTCTTCTCTGACAT	-922,+150	182.44	41.53
PPR_0098	NM_015946	PELO	CTGCCCTCCACTCCATCTAA	TTTCTAAGGGCACTTGCCTG	-996,+156	179.24	1.78
PPR_0099	NM_000291	PGK1	TTGTGCATTTCGTCCAGTTC	TACAGCTGGGGAGAGAGGTC	-979,+99	179.00	15.90
PPR_0100	NM_020414	DDX24	GGATGCTGTAGCCGGTTTTA	TGGTACTCACCGTGTGGAGA	-970,+127	175.72	18.82
PPR_0101	NM_002129	HMGB2	ACACTCGGGGCTTGGAAT	GAACCCGAGGGTATTGGAG	-949,+143	174.71	18.27
PPR_0102	NM_021974			GUICECGCACICACIIGI	-958,+125	174.62	23.54
PPR_0103	NM 006207		COTCOAATCOCAACACTITC		-903,+170	173.90	19.00
DDD 0105	NM 004597				-930,+146 -018 +136	172.29	44.04
PPR 0106	NM 003366	LIQCRC2	ACGAAGTCATCCCAGGATCT	AGCCGGCTCTGGTTAGTAGC	-931 +169	169.56	21.30
PPR 0107	NM 003707	RUVBL1	CCACCTGGGTGTACCTGTCT	CTTTCACGTGGCTGTGGG	-946.+141	168.42	65.45
- PPR_0108	- NM_014142	NUDT5	CCATTCTAAGCCAGTTACACATTTT	TCCTCTCTCGACACTTCGGTA	-953,+121	164.64	47.32
PPR_0109	NM_004663	RAB11A	GGCTTTTCTGGAATGACAAA	GGGAGCAGCAGTGGTATCTG	-956,+130	164.15	21.00
PPR_0110	NM_002793	PSMB1	AGGTCACTTCCTGTGTTTCCA	GCCGAATACATGGCTGTAGA	-975,+79	164.07	22.19
PPR_0111	NM_000687	AHCY	TCCACAGAGGTCCTGAAACC	CACCGACTTTGTAGGGCAGT	-989,+97	163.88	21.37
PPR_0112	NM_015414	RPL36	CTGCCACCCGATTCAGTTAT	ATCCTCCAACCTGCACAGAG	-929,+134	162.82	15.32
PPR_0113	NM_032177	PHAX	GCCCTGGCATGCTTTTACTA	CCTTTCACACTCACTGGCAA	-969,+125	162.38	10.00
PPR_0114	NM_017953	ZNHIT6	AAACCCATCATGATTCCCAG	GCCCCTGCTAAGTCCCTTAC	-970,+191	161.97	10.20
PPR_0115	NM_003756	EIF3H	TTTCATATACACTTGAAATGAGTGGA	CTTGCTTCACGGCTGAATCT	-981,+131	161.45	13.40
PPR_0116	NM_012433	SF3B1	TCATCGTCGAAGTCAAAGACC		-91/,+1/1	157.55	9.05
PPR_0117	NM_017841				-983,+130	157.01	12./1
PPR 0119	NM 017769	G2E3	TGCTGTCATGGTTTGGTTTG	CACGGTCCTGCTTCTCTCTC	-922 +163	149.81	14.47
PPR 0120	NM 018471	ZC3H15	CATATAGGCTGAAGCCGGAC	GGGTGGGTACTCACTTCGAT	-921 +187	147.60	17.81
PPR 0121	NM 004757	AIMP1	AGGGCCAGAAACAAACCAA	GAGAAGGAAGACCCCTACGA	-944.+120	147.21	35.81
PPR_0122	NM_004236	COPS2	AAGACACAGGATCTTTGGAA	ACTGAGAGAGGCTGTAAACG	-951,+194	146.84	50.15
PPR_0123	NM_014610	GANAB	GATGCAGCTGGTGCAGAG	GGAAGGAGTGGAATGGGACT	-980,+142	145.43	9.02
PPR_0124	NM_004147	DRG1	CATGGATACATTCGTCTTGTAAAAA	TGCTTCTATCTCCGCGATCT	-957,+124	145.35	25.39
PPR_0125	NM_000947	PRIM2	TCATTCCAGCACATTTGTAA	GTCTGTCCTTCTGCTACTGC	-979,+186	144.96	48.31
PPR_0126	NM_006292	TSG101	GCCAACTTTGAAGGGAATCA	CCTCACCTTGGACACCATTT	-976,+129	144.95	15.38
PPR_0127	NM_015176	FBXO28	AAAGTGATTCTCCCGCTTCA	GAGGCTGTCGCTGGGTAG	-929,+117	143.15	4.87
PPR_0128	NM_018040	GPATCH2	ACCATGTTGTCCTGGTTGGT	CACACCCTTCCCTGACCTC	-933,+199	141.87	12.71
PPR_0129	NM_003757	EIF3I			-999,+164	141.24	6.56
PPR_0130	NM_005809				-943,+110	139.97	11.48
DDD 0132	NM 016067	MPDS18C		GTGAGTCCCCGCGATGTGTAA	-902,+120	139.55	4.03
PPR 0133	NM 007363	NONO	GCGAGTTAGGCATTACTGAA		-920 +146	136 78	57.34
PPR 0134	NM 003191	TARS	AGCAGATTGCCGTGATCATA	GACGAAGCGATGAGAGAACC	-938.+120	136.37	17.07
PPR_0135	NM_001219	CALU	TGCCACAGGTTTACATTCCA	TGGGCATCACCGTACTTACC	-982,+129	135.93	11.19
PPR_0136	NM_002553	ORC5	GATCCTTTTGACCATCACAAATC	AAAGCACCACGTTTTCCAAG	-947,+148	135.85	3.92
PPR_0137	NM_003564	TAGLN2	CAGCAGGTAAAGGGTAGAGCA	CTTTCTACACAGCACGCACA	-945,+142	135.11	11.00
PPR_0138	NM_005319	HIST1H1C	CCTACAATTTTCATGGGCTGA	CTTTTTGGCCGCCTTCTT	-950,+121	134.68	23.74
PPR_0139	NM_002716	PPP2R1B	TCCAAGCTGCTTAAATTCCA	TACCTGCACGTCTTCATTGC	-948,+131	134.15	14.96
PPR_0140	NM_006447	USP16	ACCTCTGCCTCCAGACTTCA	ATAACTGCATCCCCTCATGG	-989,+90	132.70	44.92
PPR_0141	NM_012087	GTF3C5	CTGGCCAACATGGTGAAAC	CATGTCTTCGGGAAAACGAC	-920,+128	131.62	3.47
PPR_0142	NM_006899	IDH3B	GCAGGAGAATGGGGTGAAC	GCTTTGAGACATCCAGACCC	-974,+168	130.40	12.57
PPR_0143	NM_017670	UTUB1			-940,+120	129.91	4.53
PPR_0144	NM 022353	VP525			-9/9,+19/	127.51	4.53
PPR_0145	NM 006351			CCATGTTGGAGAGATCGTGTG	-909,+105	127.10	8.38 10.40
PPR 0147	NM 018195	C11orf57	TTGTGGATCAGCACCACTTT	CGGTAACCTTCCCTCCAAA	-965 +118	125.12	9.06
PPR 0148	NM 005008	SNU13	TAGAGACGGGGGGTTTCTCC	AGTGAACGCAACCCTGAGTC	-917.+161	124.35	28.82
PPR 0149	NM_018116	MST01	GTCGCCTGGCTAACTTTTTG	GGGACTGTAGATCCCGAAGG	-951.+148	123.40	8.00
PPR_0150	NM_004461	FARSA	CATGGCCAAAACCCATACTT	CTGAAGGCTCTTCACGGC	-989,+152	123.25	6.52

表 3.1 (続き):転写活性化能を測定した 472 遺伝子のプロモーター領域の詳細

Der Not 1 Multissis Description Description <thdescription< th=""> <thdescription< th=""> <th< th=""><th>PPR ID</th><th>NM ID</th><th>Gene</th><th>primer (fw)</th><th>primer (rev)</th><th>Amplified position</th><th>転写活性化能</th><th>標準偏差</th></th<></thdescription<></thdescription<>	PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	標準偏差
PR01918 M00180 APRIL TotalControl acconductors -38.118 19.22 19.22 PR0191 M018021 LALL Control Control acconductors -38.118 19.24 19.24 PR0191 M018021 LALL Control Control acconductors -38.118 19.24 19.24 PR0191 M018015 VIRED Control Cont		NM 002004	Name			(-xx to +yy: TSS=0)	121.20	0.16
PR9159 NK01252 LACIT TACARATOGAMANCTAK ACTTTOCIN ACCORDANCE -94.112 116.94 7.07 PR91616 NK05821 HEGS TOCTACATACATOGACATOCA 98.1141 116.94 7.07 PR91616 NK05821 HADE CCTATACATACADA CCGGACACTTTOCATAGATOCACTOCA 98.1141 116.14	DDD 0152	NM 001668	ADNT		CTTAGTTGTCAGCCCCCTTCG	-940,+121	121.20	9.10
PRF195 MM 00521 IESE TOTCTOCTAGATAGACTTOT -443-112 118.8 3.9 PRF155 MM 00515 ATBOIT TOCCACTAGATGACAGAC CCAAGTCACTAGATGACAGAC -443-112 118.4 18.1 PRF155 MM 00515 ATBOIT TOCCACTAGATGACAGAC CCAAGTCACTAGATGACAGAC -443-112 118.4 18.1 PRF155 MM 00515 ATBOIT TOCCACTAGATGACAGAC CCAAGTCACTAGACAGAC -433-112 115.6 15.8	PPR 0153	NM 031206	LASI		ACTITCCGTACCACGCACTC	-934 +130	120.02	7.76
PRE016 MUGUEN PARIS CONTROL CONCOUND	PPR 0154	NM 000521	HEXB	TGGTCTGCCTAGCGTTTTCT	CAGTGTCGCCAACAGCAG	-943.+182	119.98	3.04
PHR015 MM 0515 ATBCD TITCCCCCDAACGGATAAC CLAMETCACTCCCTC 116.12 111.64 116.15 15.16 PHR015 MM 0168 ATBP CAACATCTGAOGTAAC TOTCAOGCGAAACC 97.12 111.64 118.15 9.73 PHR015 MM 0168 ATBP CAACATCTGAOGTAAC TOTCAOGCGTAAACTCCAACC -98.143 115.07 15.74 PHR015 MM 0168 ATBP CAACATCTGAOGTAAC COCTTAAGGTCAACCC -92.1-14 113.40 16.35 PHR015 MM 0107 PSK GOCCATTTGCACACACCC -92.1-14 113.41 15.20 15.21 113.41 15.21 113.21 113.41 15.21 113.21 113.41 15.21 113.21 113.41 15.21 113.41 113.41 15.21 113.41 113.41 15.21 113.41 113.41 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51 113.51	PPR_0155	NM_004218	RAB11B	CCTATCACTACCTGACAATACAGCA	CCGCACCTTTGAATAGGTAGT	-985,+141	119.58	1.98
PR-0151 MODIE2 AVEL CATTEGGGTAGGAGAGAC -P27.11 11.16 6.84 PR0158 MODEA EASTTEGGGTAGGAGAGA ACAGCOGAAACCCTTTA -P38.148 116.66 5.85 PR0158 MODEA ESSTTEGGCTAGGAGAAA ACAGCOGAAACCCTTTA -P38.148 116.16 5.85 PR0158 MODEA ESSTTEGGCAGAAACCCTCCCCAGAACCCCTCAGATT -P38.142 114.19 11.11 12.11 PR0158 MODEA ESSTTEGGCAGAAACCCCCTCAGATTACCCCCCCCCCCTAATTACCCCCCCC	PPR_0156	NM_005175	ATP5G1	TTTCCCCCGAGACGGAAT	CCAAGTCACCTGCACTCCTA	-918,+127	118.14	19.13
PR1818 MUSIBE ATFRUIS MUSIDE ATFRUIS MUSIDE TEST STA PR1818 MUSIDE CALAGACITACIONACIACIONACIANACIONACIONACIONACIONAC	PPR_0157	NM_001628	AKR1B1	GCAGTTGGGGTGAGGTAGAG	CGTTGTTGAGCAGGAGACG	-975,+129	117.16	6.68
PRE 188 MM 00588 HSPR 10 CADITAGECARATECTGARAGE CADACCONTRACTOR -951.158 115.68 98.88 PRE 188 MU05197 RCG TTTCCCCARADCONCOLAR GEOCTTRACCONCOLAR -982.118 111.10 111.1	PPR_0158	NM_001688	ATP5F1	CAACACTCTCAGGCTCCTCC	TGTCACCCCTAGATTCGCTT	-988,+169	116.57	9.78
PR0101 MM 00123 CDCL CCACAMATCTTCTGAAAA CTGACTATCCTCCTAAGCG -984:131 115.02 15.13 PR0101 MM 00107 PR34 TOCCACAMAAC COCTATAGGCTAAGAC -984:131 115.02 15.33 PR0101 MM 00107 PR34 COCACATACACTACACAGAC -981:172 112.1 23.01 PR0101 MM 00107 PR34 TOCCACATACACTACTACTACACAGACGACACTACTACCACACACCTACTACACACAC	PPR_0159	NM_006948	HSPA13	CAGTGACCAAGATGCGAGAA	ACAGCCGAAAACCGTCTCTA	-951,+195	115.66	9.66
PPR1018 MUST THOCKADALANATGUAAAA OCCUTTADAGUAGAGA 18.12	PPR_0160	NM_001253	CDC5L	GCCAGAGATGTTCTGGAAGG	CTCGGTATTCCTCCATACGC	-925,+163	115.10	14.31
PHY181 MULBERZ S131 PHX181 H141 P112 H1418 H1418 <t< td=""><td>PPR_0161</td><td>NM_019071</td><td>ING3</td><td>TTTCCCCAGAAAATCGAAAA</td><td>GCCCTTAGAGCTGAGGGAAC</td><td>-988,+131</td><td>115.02</td><td>16.78</td></t<>	PPR_0161	NM_019071	ING3	TTTCCCCAGAAAATCGAAAA	GCCCTTAGAGCTGAGGGAAC	-988,+131	115.02	16.78
PERDIS NUMBER CONCOLUMENTATION CONCOUND SEL	PPR_0162	NM_006842	SF3B2	GGGAAAAGGGCCTGAGTTTA	CTGTGTTCCTCACCCTGGAT	-928,+162	114.19	9.13
PR01018 NULLI333 TH2A TORACTTACACAGOGCIANA OLTGOCTANTACCOGCI HE1-12 IDBA IDSA IDSA PPR01018 MUGDIZZ SEG2 ADTTGOCACATATAGAGO CHTTGOCTAGACOTTGTATATAGAGO HE35-H72 D122 B130 PPR01018 MUGDIZZ SEG2 ADTTGOCACATATAGAGO CHTTGOCTAGACOTTGACATAGAGO HE35-H72 D128 B130 PPR01018 MUGDI314 CTSC CAMAGAGOCTAGACATAGAGOC HE35-H72 D128 HE35 D128 HE34 D128 D	PPR_0163	NM_006245	RP54X			-921,+144	113.40	10.95
PR0101 NUM01224 EFEX TAAACDICTOCTUGUIGUTUGUTUGUTUGUTUGUTUGUTUGUTUGUTUGUT	PPR 0165	NM 013293	TRA2A		GATGGCCTAATTAACCCGCT	-991+124	108.98	17.56
PPR018 NM 02222 SE02 ACCTTGGCCATTTAACACCD CTTTGCTGCCCTTTAA -987.142 107.38 11.43 PPR018 NM 091814 CTSC CAAGGAGGACCTGGAAAT CAAGGAGGCACCTGGAAAT CAAGAAGGCTCACACTGGAA -987.142 107.38 11.43 PPR018 NM 091814 CTSC CAAGGAGGACCTGGAAAT CAAGGAGGCACCTGACACTGCACCTGCA -987.142 105.01 11.43 PPR017 NM 02833 LPPR017 MGCGAGGACCTGCAGGCTCATTATCA CAGCTGCAGCACGCACCACCA -987.141 101.64 104.65 11.83 PPR017 MGCGAGGACGACGCAGCCACCACCCACCACCACCACCACCA	PPR 0166	NM 013234	EIF3K	TAAACCTCTGCTGGGTGCTT	GCTCAGACCTGTCGATACCC	-905.+175	107.92	9.16
PPR018 NU.00459 MUST22 COADQUICAGAATTAGGAAMA TAGAAAACCITACCTGCAA	PPR_0167	NM_003262	SEC62	AGCTTGGGCAATATAGAGCG	CTTTCGCTCGCCCTTTTAG	-967,+142	107.89	13.09
PHPR101 NM_001814 CTSC CAAQGAQGCACCTQAATA CAAQGAQGCACTTGACAACT CAAQGAQGCACTTGACAACT P18.11 N10.22 N1.41 PPR101 NM_02333 LPRPA AGATGCACAAGTTATTGC CAGCTGACAACTGCACACCC -98.418 105.21 11.43 PPR1017 NM_02331 LPRPA AGATGCACAAGTGCAGTTATTGC CAGCTGACACACCC -98.418 104.63 31.86 PPR1017 NM_02381 HST1H280 GGTGTACACACGGCACCCACC -98.4114 101.61 5.75 PPR1017 NM_02885 REST CAACLTACACTGCACATACTCCC CAGCCACACCTCCCTCATACACCTC -98.4146 101.11 2.52 PPR1017 NM_02855 REST CAACLTACCGCATACTCCCATACCCCTCCCCTCA -98.4146 98.11 10.21 10.44 PPR1018 NM_04385 REST CTGCCATAGCACCTCCCCATACCCCTCTCA -98.4166 98.11 2.82 PPR1018 NM_04385 FRS CTGCCATACCCCCCCCCACACCTCCCAAACCCTCA -98.412 98.11 2.82 PPR1018 NM_04385 FRS CTGCCATACCCCCCCCCCCAA -98.414 98.11	PPR_0168	NM_004550	NDUFS2	CCAGGCTCAGAGTTGGAGAG	TGAGAAACCCTAGCCTTGGA	-983,+162	107.88	11.63
PPR1911 NM.91288 COMMOH GARTGOCAGAGGITTATTICC TCCCTACCAGACTCACAGACC -919188 105.21 11.43 PPR1011 NM.023114 CEP290 GARTGOCAGACCTATTGCACGA CTCTACCTACCTACCACACC -924.+180 104.53 11.84 PPR1017 NM.02314 CEP290 GARTGOCAGACCTACTGCACCAC -924.+180 104.53 13.03 PPR1017 NM.02086 EF280 GARTGOCAGACCACACTCACTGOCATTCA -934.+141 103.47 15.73 PPR1017 NM.02086 EF280 CACACTGOCATOCACACAC CACACTGOCATOCACCACACTCACTGOCATTCA -934.+151 101.42 104.44 PPR0114 NM.020141 EXECCS CACACTGOCATOCACACACACTCACTGOCACTCA -944.+151 101.34 101.44 PPR0114 NM.020141 EXECCS CACACTGOCATOCACACACACTCACTCACACACTCACACTCA -944.+151 101.45 11.84 PPR0114 NM.00481 STRIN COTTGOCACACACTCACTCACACTCACTCACACTCACTCACACTCACTCACACTCACTCACACTCA	PPR_0169	NM_001814	CTSC	CAAGGAGGCACCTGGAAATA	CAAGATAGGTGCAGTTGGCA	-886,+197	107.00	16.34
PPR1911 NM.02337 LEPAP1 ADATGSCCAGGETGTATTAG CAGCTGGTTCAACTGCAGC -920-1197 105.00 0.11 PPR1012 NM.03518 HEITHEBG GGTTGAACGCTGGTTTAGCAG -930-118 104.50 3.30 PPR1017 NM.003518 HEITHEBG GGTTGAACGCTGGTTGTTGCGC -933-117 103.11 42.57 PPR1017 NM.0203518 HEITHEBG CACATAACGCAACACTCCC -040-118 101.51 62.77 PPR1017 NM.020351 HEITS CACATAGCTGAACACTGCGCAACAC -050-118 101.51 103.01 62.71 PPR1017 NM.020351 GUTT TGGATGGGGATATGCATA CCACTAGCTGTGTGTGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG	PPR_0170	NM_017828	COMMD4	GGATGTGCACAGGTTATTTGC	TCCCTACCAGACTCACAGCC	-919,+188	105.21	11.43
PPR1012 NM028114 EP290 GATGAGCAAAACTTGCAGGA CDTGACTACGCGAACC -984-1180 104.53 11.8 PPR1017 NM03085 EP280 GATGAGCACCOCQUTTC GAGGTGACACCCACCT -983-114 103.47 15.8 PPR1017 NM03085 EP280 GATGACACCACCACCACCA ACCCTTCCATCACCCCTTCC -983.117 103.17 <td>PPR_0171</td> <td>NM_002337</td> <td>LRPAP1</td> <td>AGATGCCCAGGCTCTATTCA</td> <td>CAGCTGGTTCAACTTCTCCA</td> <td>-920,+197</td> <td>105.09</td> <td>0.41</td>	PPR_0171	NM_002337	LRPAP1	AGATGCCCAGGCTCTATTCA	CAGCTGGTTCAACTTCTCCA	-920,+197	105.09	0.41
PHR111 NM.00318 HistIPage GGGTTAACCTGUTTTAGAC -980-118 (004.50 33.0 PHR0117 NM.00318 HEB11428 CACATACCATGOCAACTCOC CACATACCATGOCAACTCOC -983.117 103.11 4229 PHR0117 NM.00385 EFB3 CACATCACATGOCAACTCOC CACATACCATGOCAACTCOC -983.117 103.11 420 PHR0117 NM.00385 EFB3 CACATCACATGOCAACTCATAGOTA CCCAATGOCATACTATGOTA -983.117 103.11 421 PHR0117 NM.00316 MES1 CACATCACATGOCATACTATGOTA CCCAATGOCATACTATGOTA -984.148 101.95 111 129 PHR0118 NM.001641 APEXI CATACTAGGTATACTATGOTA CACATGOCATACTACATACTATA AAGACCAGATAGATCACATA -980.115 91.13 856 PPR0118 NM.001641 APEXI ATTCACAGGTATACTATA AAGACCAGAGATCCACAGA -980.115 91.78 81.83 PPR018 NM.001424 PB040 GCTTGATAACTCOTA AAGACCAGAGATCCACAGA -980.115 91.71 93.44 91.83 PPR018 NM.00144 <	PPR_0172	NM_025114	CEP290	GATGAGCAAAACTTGCACGA	CTCTCACTACCGCAACCACC	-954,+160	104.53	11.96
PHR0117 NM014082 NM014082 CACADARAGCARAQUIACUCUC CACADCTACCTORCOCTTCG -938.111 103.47 PHR0117 NM02015 MER2015 CACADCTACCTORCOCTCG -938.112 103.47 PHR0117 NM02015 MER2015 MER2015 MER2016 -938.113 103.47 PPR0117 NM01428 DESOSC GTCALTGEGGARTACCTOC CCATACTGEGGARTACCTOC -948.145 103.47 PPR0118 NM00183 GTTCACGAGCTCOCCAAA AAAAGCCAAACTACCCAACTC -948.145 891.1 35.9 PPR0118 NM00183 GTTCACGAGCTCOCCAAA AAAAGCCAAACTACACCAACTC -948.145 891.1 35.9 PPR0118 NM00183 STERT GTCGAGTCOCTCOCTA AAAACCCAACTACACCAACTCAA -980.147 77.13 35.8 PPR0118 NM00184 STERT GCGGTCGAGTCAACTAACTACACCAACTA -980.147 77.13 35.8 PPR0118 NM00184 STERT GCGTCGAGTCAACTAACTACACCAACTA -980.117 73.73 13.00 PPR0118 NM001845 STERT GCGTCGAGTCAACTAACACACCAACTACACTACACACACGACA	PPR_0173	NM_003518	HIST1H2BG	GGTGTCACAACCTCGGTTTC	GGGGTGAACCTGTTTTAGCA	-960,+198	104.50	3.30
PPR010 NM_00055 E2235 CAUCH AUGURAD ACCOLOR CONCOUNT -193,+1/1 100,11 4229 PPR010 NM_00151 MPS22 CACATGGGGTCATAGGTA CCUAGTCGGGTCATAGGTA -111,+138 101,55 515 PPR010 NM_00151 MPS22 CACATGGGGTCATAGGTA CGUAGTGGGGTCATAGGTA -111,+138 101,21 101,44 PPR010 NM_00151 GRTA TATCGAGGTCACATAGGTA CGUAGTGGGGTCATAGGTA -111,139 1399 PPR0115 NM_00151 GRTA TATCGAGGTCAGTGCCCTC CGUAGTGGTGGTCATGGCCCCTA CGUAGTGGTGGTGGTGGTGGCGGTA -112,122 1318 PPR0115 NM_00141 APEL TATCGAGGTGGATGAGGTGATA CGUTGGTGGTGGTGGCGTATAGGTGGGAGA -90,+117 93,39 130 PPR0115 NM_00495 STR#2 CGUGTGGAGGGGAGATAGGGGGAGGA AAGTGGAGGAGGAGA -90,+117 93,39 130 PPR0115 NM_00495 STR#2 CGUGTGAGGGAGGAGAGGAGG -91,+14 94,14 94,14 94,14 94,14 94,14 94,14 94,14 94,14 94,14 94,14 </td <td>PPR_01/4</td> <td>NM_014062</td> <td>NOB1</td> <td></td> <td></td> <td>-993,+114</td> <td>103.47</td> <td>15.87</td>	PPR_01/4	NM_014062	NOB1			-993,+114	103.47	15.87
PRD 01119 MID0219 CABLA DOTION LAG COMARCE CO	PPR_0175	NM_020365	EIF2B3			-953,+177	103.11	42.29
PPR:0119 NU012825 EVX3622 GT06ATGG0GAGTTACCOCAC COATGATGCTGTTGTGTGCCTA -918+118 10121 104 PPR:0119 NU031455 FINO1 GTT0GCAGGTTGCGTTCGCA CAATGATGGGTAGACGAGTGG -938+103 981 11329 PPR:0118 NU031455 FINO1 GTT0GTAAAGCATGTGAC GGATGGTAAAGCAGTGGAC -948+198 981 2222 PPR:0118 NU01811 APX1 ATTGGGGGCAGCAGGAAGTGGAAGAC GGATGGTAAAGCAGTGGAC GGATGGTAAAGCAGTGGACA -938+101 981	DDD 0177	NM 020101	MPDS22			-920,+131	103.07	0.71
PPR 0119 NM 000581 GPX1 TATCOAGGTCCCTCCCAAA ACMAGGATASAOCOACTGG -958.+103 957.11 158.55 PPR 01161 MM 004585 STX8 CGTGGTAAAACCATCTAC GGACTCTTCGTGGTGTAGA -943.+165 951.1 252.2 PPR 0151 MM 004585 STX8 CGTGGTAAAACCATCTAC GGACCTTTGCGGCGTTTAGGACAAA -942.+127 97.23 1388 PPR 0152 MM 004584 STX8P2 CGGGGTGTGATACACCOCTA GAAACCCACGATGCGAAAG -950.+167 97.13 88.99 PPR 0158 MM 004584 STX3 CGACGTTGCGCCTAAAAACGAACCTA -AAGCCACGACGACGTGGAAT -970.+117 46.39 1333 PPR 0158 MM 004545 STX3 CCAGGTATGCTGGCCTAAAAGGAAGG CCAAACCTACGGGATGAAGGAAGGAAGGAAGGAAGGAAGG	PPR 0178	NM 014285	FXOSC2	GTGCATGGGGGGGGTTACCATC	GCATGAATCCTGTGTCCGTA	-919+138	101.30	10.44
PPR.018 NM.031465 FHNO1 CTTCCCAGGCTTCCTTCT CGTCCCAAACTOTCGT -943.+165 99.17 85.3 PPR.018 NM.06453 STMS GGTGGTAAAACCATGTGAC GGAGCTGTATGAGGAAGTGGGAAG -952.+162 97.2 13.8 PPR.018 NM.001454 STMP2 GGGGTGTGATACACTCCTCA GAAGCCCTCTTGGGGGAGG -950.+167 97.13 8.98 PPR.018 NM.001472 PPR0 GGGGTGTGAGGAGGAC AAGCCACTCAGGAGGAGGAG -974.+114 463.1 33.3 PPR.018 NM.00544 SMG CCTGGTTGAGGAGGAGGAC CCAGCTATGTGGAGGAGGAGGAGGACCACG -974.+114 463.1 35.4 19.2 31.35 PPR.018 NM.00544 SMG CCTGGTTAGGAGGAGGACACG -989.151 34.4 13.3 13.3 PPR.018 NM.01580 SERIP1 TAACGGAGAAGACAGGGAAACGG -989.151 34.4 31.35 13.3 19.3 13.3 PPR.018 NM.00388 TPM2.2 GGGGAAACACAGCACACGTAA CGGGAAACACAGCACACGTAA -989.158 19.3 13.3 PPR.0191 NM.00388 <td>PPR 0179</td> <td>NM 000581</td> <td>GPX1</td> <td>TATCCAGGTTCCCTCCCAGA</td> <td>AGAAGGCATACACCGACTGG</td> <td>-956.+103</td> <td>99.71</td> <td>13.99</td>	PPR 0179	NM 000581	GPX1	TATCCAGGTTCCCTCCCAGA	AGAAGGCATACACCGACTGG	-956.+103	99.71	13.99
PFR.0181 MD.04653 STX8 GCTGGTAAAAACCATCTCAC GGACTCTTCGTCTTTAGC -984.196 98.11 282.2 S7.2 S7.2 <td< td=""><td>PPR_0180</td><td>NM_031465</td><td>RHN01</td><td>CTTTCCAGGCTTCCCTCTCT</td><td>CGTCCCCAAACTCTCCCT</td><td>-943,+165</td><td>99.17</td><td>8.53</td></td<>	PPR_0180	NM_031465	RHN01	CTTTCCAGGCTTCCCTCTCT	CGTCCCCAAACTCTCCCT	-943,+165	99.17	8.53
PPR.018 MO01641 APEX.11 ATTCAGGGCAACTGGAATC GAAGCCCCOTTTATGAGCAA -992122 97.22 13.88 PPR.0183 MO01724 PPG GGGTGTGATCACTCCOT GAAACCCACACGTGCCACAGAG -900152 96.76 99.0 PPR.0158 MO01724 PPG GGACCGTGACAGGGGAACG -970117 96.39 13.03 PPR.0158 MO08745 PHB CAOCTTATCGGGGGGAGG -974114 96.116 84.40 13.23 PPR.0158 MO08745 PHB CAOCGTACAGGGGAAGG -984.117 93.44 14.24 442 PPR.0158 MO.03288 TPD52.12 GGGCACGAGGAAGGGGAAGAGG -984.115 91.23 13.33 131 PPR.0158 MO.03288 TPD52.12 GGGGACGAGGAAGAGGGAAGAGGG -984.116 91.73 77.74 PPR.0158 MO.03288 TPD52.12 GGGGACGAGGAGAAGAAGG -984.116 91.33 131 131 131 131 132 133 131 131 131 131 131 131 131 131	PPR_0181	NM_004853	STX8	GCTGGTAAAAACCATCTCAC	GGACTCTTCCTGCTCTTAGC	-964,+196	98.11	28.22
PPR.0181 MU008949 STKEP2 CGGGTGTGATTCACTCCGTA GAAACCCAGATCCCAGAG -980-167 97.13 8.86 PPR.0181 MU01724 PPG GGACCCTTGCACAACCT ACACCTACCCGGCAACAGT -970-117 96.39 130.30 PPR.0185 MU04782 PPG GGACCTTTCGCACAACCT CACCTACTCCGGCACACAGT -974-114 96.11 83.49 182.7 PPR.0186 MU06843 PBE CACCTATTCCGCACCACCTACGGACAGTCACCAGACGT -987-1108 93.49 182.7 PPR.0188 MU018120 AMO TAACCGACAACGAGAGGAGC -989-1121 93.42 4.42 PPR.0198 MU018206 PFN AACGTAGAATAGCACAGGGAGA -981-1159 91.31 131 PPR.0198 MU018206 CFH AACGTAGAATAGCCACACCTCAA AAGGTAGAATAGCACACGCACACT -926.1169 98.41 81.83 131 PPR.0198 MU01823 CCHTGATAGGGTATCAA AGGAACCACACCTCGCAGACACA -931.116 91.71 7.73 7.23 PPR.0198 MU01823 CCHTGATAGGGTATCATA CAGGCGAAGACCACACACTGCAGAGGGACT -984.110	PPR_0182	NM_001641	APEX1	ATTCAGGGCAACTGGAATCT	GAAGCCCCTCTTATGAGCAA	-992,+122	97.22	13.98
PPR.0184 MM.001724 PPG.015 MO.001724 PPG.015 MO.001724 PPG.015 MO.001724 PPG.015 MO.001724 PPG.015 MO.001724 PPG.0117 66.39 13.33 PPR.0155 MO.002845 PHB CACGCTATCTGGGGCGTTAAAT CACGCTACGCACTACGGATGGCGA -974.+114 96.31 83.49 19.27 PPR.0158 MO.002845 PHB CACGCTACGCATACGGATGGCAGA CCACACCTACGGATGAGGAG -984.+167 93.48 13.55 PPR.0188 MM.018260 SERBP1 TCAATATTCGCTCCACCACAGGTGA CCACACCTACGGAAACAAGG -984.+158 92.37 43.4 PPR.0198 MM.018260 SERBP1 TCAATATTCGCTCACCACAGTGGA CGACAACCTACCTCCGGAAACAGG -984.+158 91.37 43.4 PPR.0191 MM.022806 GPHN AACGCTGTGACCTCA AGGGAAACAACCCCCGGAAAA -991.+165 91.19 13.19 PPR.0191 MM.01320 CCHTCATAGTGGTGACTTTTG CACGCCGGAGACACA -984.+108 84.12 12.22 PPR.0191 MM.01320 CCHTGACTTGGTGGCTTTTTGACG -984.+103 60.10 15	PPR_0183	NM_006949	STXBP2	CGGGTCTGATTCACTCCCTA	GAAACCCAGGATCCCAGAG	-950,+167	97.13	8.96
PPR.0188 MM.008732 PPIG GGACCCTTGCCCTTAAAAT CACCTACCCCGGACACGT -970.+117 96.39 13.03 PPR.0188 MM.008732 PPIG.018 MM.008734 PPIG.018 MM.008734 PPIG.018 MM.008743 PS7.+114 96.11 83.48 31.35 PPR.0188 MM.01820 AFMC TAACCGACACAGAGGACAGAC CCAACCTACGCATCAGTGAG -993.+121 93.42 13.42 4.42 PPR.0198 MM.01580 SEREP1 TCAATATTCCCCCCCCTCA CCGAACGCACACAGAG -993.+151 93.42 14.42 PPR.0191 MM.02886 GPS2.12 CCCCTCAACAGCACAGAGTGAA -981.+165 91.73 7.37 PPR.0192 MM.01383 DKC1 CACCTTTACATGGTCTTCATAGT CACGCTCACAGACAGAGTAA -984.+166 88.12 12.82 PPR.0193 MM.01383 DKC1 CACCTTTACATGGGCTTTTCAGGCAGGCAGAGGTAA -984.+167 93.43 18.36 PPR.0194 MM.01383 DKC1 CACCTTTACAGGCCACACTAAGTAGGGGCTT -924.+157 83.43 18.36 PPR.0194 MM.01383 DKC1	PPR_0184	NM_001724	BPGM	GCTTGCGTGTCACAAACCTA	AAAGCCACTCACCTGCAAAG	-930,+152	96.76	9.90
PPR,018 NM.00254 SMC COTGGTTAGCAGGGGAGGTGA AAGTGCACATCATGGGAGG -974.114 98.11 89.349 PPR,018 NM.018120 ARMCI TAACCGAGAGCAAGGGAACG CCCACACCTGCGGATGAG -989.1127 93.44 93.45 93.42 PPR,018 NM.018120 ARMCI TAACCGAGAAGTAGGGAGGTGA CCGAAGCCTCTGTGTAAGTG -989.121 93.42 4.42 PPR,0191 NM.002865 FPH. CACATATCCCCACAGAGGGA -981.165 91.33 1.51 PPR,0192 NM.002865 GFH. AAGTGCAGCAACAAGCGAAACAAGCG -984.158 91.33 1.51 PPR,0193 NM.001285 TCMATGGTGCTTTTTTGCACAGCGCGAACAACGC -984.168 88.12 1.22 PPR,0193 NM.001382 CCTGTGATGATGATGATGGGGAT CACGCGCGAAGATGAAACC -984.167 3.88 2.04 PPR,0195 NM.001382 CCHM ACCTGTGGGTAGTCAGTGACTGACCACA -982.118 87.30 4.62 PPR,0195 NM.001380 CCHCGAACACTGACGCGCGACCTGTCCCCCTGTCTCCCCCGGGGGCT -982.118 87.30 4.64 7.48 PPR,0195	PPR_0185	NM_004792	PPIG	GGACCCTTGCCCCTTAAAAT	CACCTACCCCGCAACAGT	-970,+117	96.39	13.03
PPR0181 NM.000445 SMG3 COINGETTACCAGAGUAGAG COCACACCTAGCAGGATAGTAG -99/.109 93.48 13.55 PPR0188 NM.01580 SERBP1 TCAATATTTCCCTCCCCTCA CCGAAAGCAGGAACAGGG -939.121 93.42 4.24 4.24 PPR0198 NM.001580 SERBP1 TCAATATTTCCCTCCCCTCA CCGAAAGCAGAAGGAGG -939.121 93.42 4.24 PPR01918 NM.002886 GPRN AAGCTAGAACAGGAACTGAGA CAAGTCAGACGAGAGGG -939.121 93.42 4.24 PPR01918 NM.002886 GPRN AAGCTAGAACAGGAAGTGAAA CAAGTCAGACGAACAGCGACAGCG -948.158 91.33 131 PPR01918 NM.001850 GCGGAAACACCACACACTCACAACAGCGGAAACA -961.+165 91.79 7.37 PPR01918 NM.001236 CHA CACCTGTGGGCTTTTCAAG CACCAGTCGACAACCGCACACCT -924.157 8.75 18.70 PPR01918 NM.001236 CHA ACCTGTGTGTCTCAACGAGACTCACCACACTACCACCACCACCACCACCACCACCACCA	PPR_0186	NM_002634	PHB	CAGCTATTCTGGGAGGGTGA	AAGTGCACATCATGGAGCAG	-974,+114	96.11	8.94
Previsition NMULTICAL TextCollargencomand/address Collargencomand/address Solves Solves <td>PPR_0187</td> <td>NM_005445</td> <td>SMC3</td> <td></td> <td>CGAAGGCCTTACCTGCTTTA</td> <td>-99/,+109</td> <td>93.49</td> <td>19.27</td>	PPR_0187	NM_005445	SMC3		CGAAGGCCTTACCTGCTTTA	-99/,+109	93.49	19.27
FIRSTOR DEDL	DDD 0180	NM 015640	SERRD1			-990,+107	93.40	31.30
PPR.0191 NM.020806 GPHN AACGTAGAATAGCCACAGGTGA CAAGTCCGGCAAGAAGGAG -943,+136 91,93 1,91 PPR.0192 NM.01353 CSTE7T GGGAAACACACTGAAT CAGGACCACACGGGAAAA -991,+165 17,7 7,77 PPR.0193 NM.01353 CC CACTTACAGGCTCACCTGA AGGAACACCCGGAGACAAGG -945,+106 88,12 12.92 PPR.0194 NM.01529 CHM ACCTGTGGGGTTTTTGAG GACCAGGCCGAAAGGC -982,+157 87,51 10.79 PPR.0196 NM.015599 PGM3 CCCGGACATAGATAGGGGAAT AGAATCTGACCGGCT -982,+157 87,51 10.79 PPR.0196 NM.015599 PGM3 CCCGGACTAGATAGGCCTGCT CCAGGAGGACGACAGG -952,+158 88,70 11.11 11.71	PPR 0190	NM 003288	TPD5212	GCCCTGAACAGGAAGTGAGA	GGGAGACGGAGAACAACG	-989 +159	92.37	4 34
PPR.0192 NM.015235 CSTF2T GGGAAACACACACACTGAAT CAGAACCACACACTGAA -991,+165 91,79 7.37 PPR.0193 NM.001820 DKC1 CACCTTTACAGGCTCACTCA AGGAACGACACACACACAC -928,+159 89,43 18.36 PPR.0194 NM.018125 TMEM33 COTCTGATTGGTTGGTTTTTCAA GACCAGGTCCAGACGACGACT -988,+107 87.98 2.04 PPR.0195 NM.01559 FORM ACCGATGATAGGGGGAT TAGACTGACCGTGACGCGT -982,+157 87.10 17.17 PPR.0198 NM.001559 FORM CCGGGACACATAGATAGGGGGAT TCTGTGGGACACTGACGACGTGACGCTGCT -982,+167 87.13 11.17 PPR.0198 NM.001878 CRBC2 GTGACACCTGGAGCCTTGC CGATGGATAGTTGGAGCTTC -935,+176 87.13 11.17 PPR.0201 NM.04819 SYMPK GGTGAGACCTGGAGCGTTCC CAGTGTGACAGG -958,+120 88,44 7.48 PPR.0201 NM.04030 BMP2 AAATAACCGAGCGTTCC CAGTGTGCACAGG -970,+192 85,26 5.53 PPR.0202 NM.001359 NPIF6 GCGCAGAGTAAGTC	PPR 0191	NM 020806	GPHN	AACGTAGAATAGCCACAGGTGA	CAAGTCCGGCAAGAAGGAG	-943.+136	91.93	1.91
PPR 0193 NM 00133 DKC1 CACCTTTACAGGCTCACCTCA AGGGAAGCACCCAGACT -926.+159 89.43 18.36 PPR 0194 NM 0113126 TMEM33 CCTCTGATTGGTGGCTTTTTG CACCGCCGAGATCAAGC -945,+106 88.12 12.32 PPR 0195 NM 01239 CCM ACCTGTGTGGGCTTTTCAAG GACCACGTCCCGAGAGGCTC -984,+107 87.93 2.04 PPR 0195 NM 01579 PGM3 CCCGCACTAGATCATGGCTAT TTCTGTGGGACACTCACCAG -922,+183 87.30 462 PPR 0198 NM 001878 CRABP2 GTGACACCTGAGCCTTT GAGCACTCACCAG -922,+183 86.70 18.15 PPR 2019 NM 004305 SINFE GGTCAGAAGCATGTGGAGCCTTT GAGCACACGG -958,+120 86.44 7.48 PPR 2020 NM 018304 IFT52 AATTGTGGAAACACGG -976,+197 86.19 3.30 PPR 2020 NM 01831 NOP16 GAGGGATAAGTCCACGGT CCTCGCAAAGAGGCTTCCACG -976,+197 86.19 3.80 PPR 2020 NM 01831 NOP16 GAGGGATAAGTCCACGGT AGACGCTTGCACGAT -	PPR_0192	NM_015235	CSTF2T	GGGGAAACACCACACTGAAT	CAGAACCAACCTCCGAGAAA	-991,+165	91.79	7.37
PPR0194 NM_018126 TMEM33 CCTCTGATTGGTTGGTTGTTTTG CACCGCGGAAACC -945,106 88.12 12.92 PPR0195 NM_001239 CGNH ACCTGTGGGGGCTTTGAAG GACCAGGTCCAAGAGGGGCT -988,1107 87.98 2.04 PPR0195 NM_001259 CGGCACATAGATAGGGGAAT AGAACTGTGACCGGCT -924,1157 87.51 10.79 PPR0198 NM_001878 CRAP2 GTGACACCTGAGACCCTGC CGACTGGACACCTGGACCCTGCT -922,1158 87.00 11.11 PPR0198 NM_001801 STMPK GGTCAGAACTCTGGAGCCTTT GAGCCGGCTCTTTGGTCC -922,1158 86.40 18.15 PPR0200 NM_001800 IFTS AATTGGAAAGCAACAGA CCCTGGCATAGAACAGGA -958,120 86.44 7.48 PPR0201 NM_018301 NOP16 GAGGAGTAAGTCCACAGGT -984,125 86.40 7.48 PPR0202 NM_002339 IHF6 GCCTAGGCATTATCGTGTGTA ATCACTGGTGGGCTGCTT -970,192 85.22 5.53 PPR0202 NM_002339 IH1 GCTTTAAGTCCCAGGCA GGCAACACAGTGGTCGTGT -984,+125	PPR_0193	NM_001363	DKC1	CACCTTTACAGGCTCACCTCA	AGGGAACGACCGCAGACT	-926,+159	89.43	18.36
PPR 0195 NM 001258 CONH ACCTGTGTGGGCTTTTCAAG GACCAGGTCCAAGAGGGTCT -988.+107 87.88 2.04 PPR 0195 NM 001559 POM3 CCGGCACTAGATAGGGGAAT AGAATCTGACCTGCCGCGT -924.+157 37.51 10.79 PPR.0197 NM 003759 NRBF2 GTGCGGTAGCCTGACGCCTGCT CGATCGAGTAGTTTTCCAGC -932.+183 87.30 4.82 PPR.0198 NM 004818 SYMFK GGTCAGAACCTGAGACCTTGCT CGATCGGATAGTCCTCTTT GGCGGTGTGCAAAAGGAGAGG -932.+158 86.70 18.15 PPR.0200 NM 004819 SYMFK GGTCAGACACGGA CCCTGGGTGTGTGTGTGTCTCCG -976.+197 86.19 3.00 PPR.0201 NM 018323 PHF6 GCCTAGGCATAAGTCCCACGGT CCCTGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	PPR_0194	NM_018126	TMEM33	CCTCTGATTGGTTGCTTTTTG	CACCGCCGAGATCAAAGC	-945,+106	88.12	12.92
PPR.0196 NM.01559 PCM3 CCCGCACTAGATAGGGGAAT AGAATCTGACCGTCC -924.+157 87.51 10.79 PPR.0197 NM.0030759 NRSP2 GTGACACCTGAGACCTAGCTT TTGTGGGACACTCACCAC -992.+183 87.30 4.82 PPR.0198 NM.001878 CRABP2 GTGACACCTGAGACCTGAGACCTGC CGATCGGATAGTTCCC -935.+176 87.13 11.71 PPR.0199 NM.004303 BNP2 AAATAACCGACCGCCTC CCAGGAGGACAAGAGG -958.+120 86.44 7.48 PPR.0201 NM.016004 IF52 AATGTGGAAAGCAACAGA CCCTGGATGCTATATGACGG -976.+197 86.19 3.30 PPR.0202 NM.016301 ND166 GGGAGATAATCCACCGAGGA CCCTCGGACGACACACAGA -958.+159 83.98 5.82 PPR.0204 NM.0103157 NEK4 GCACACACTGTATAAGGGCA CCCCTCGTACACACT -924.+131 80.91 2.007 PPR.0205 NM.001418 ISPA9 GTGCACCACCTGTCTC ACCATGGCACATAATGGGG -937.+12 83.89 5.22 7.80 PPR.0205 NM.001418 RPA92 GTGCAC	PPR_0195	NM_001239	CCNH	ACCTGTGTGGGGCTTTTCAAG	GACCAGGTCCAGAGGGTCT	-988,+107	87.98	2.04
PPR.0197 NM.03075 NRBF2 GTGGGTAGCTCATGCTCATGCTAT TTGTGTGGGACACTGAGCACGTGAGCCTAT -992,+183 87.30 4.62 PPR.0198 NM.001878 CRABP2 GTGCACCTGACACCGTGAGCCTTT GAGCCTCCTCTTTGGTCT -922,+158 86.70 18.15 PPR.0199 NM.004818 SYMPK GGTCAGAACCTGAGCACCTGC CAGGTGCACAAACGCAG -922,+158 86.70 18.15 PPR.0200 NM.004819 SYMPK GGTCAGACACTGAGCACCCGA CCCTGGATGTTCTGGTGCC -922,+158 86.44 7.48 PPR.0201 NM.016004 IFT2 AAATAAACGAACCGAG CCCTGGATGTTCTGCACCG -970,+192 85.26 5.53 PPR.0202 NM.018319 NOP16 GAGGGATAAGTCCCAGGT ACCTCTGGTTGACACT -984,+125 84.49 3.60 PPR.0202 NM.001315 NEK4 GCACACCTGTAATAACGCACGTGC CCTCCGTGACTGCTCACT -984,+127 83.88 5.82 7.60 PPR.0206 NM.00414 HSD1784 TGTGTCACCACCTTCTGT AACCTTGGCATGACTAGTGACC -927,+187 79.53 7.01 PPR.0206 NM.004134 <t< td=""><td>PPR_0196</td><td>NM_015599</td><td>PGM3</td><td>CCCGCACTAGATAGGGGAAT</td><td>AGAATCTGACCTGTCCCGCT</td><td>-924,+157</td><td>87.51</td><td>10.79</td></t<>	PPR_0196	NM_015599	PGM3	CCCGCACTAGATAGGGGAAT	AGAATCTGACCTGTCCCGCT	-924,+157	87.51	10.79
PPR.0199 NM.001878 CRABP2 GTGACACCTGGAGCCCTGCT CGATCGGATACTTTCGGTCT -935.+176 87.13 11.71 PPR.0199 NM.004818 SYMPK GGTCAGAACTGGAGCCTTGGAGCCTTT GAGCCTCCTCCTTCTGGTC -922.+158 86.44 7.48 PPR.0200 NM.016430 BNIP2 AAATTAACCGAACAGA CCCTGGGATAGTTTTGGTCA -958.+120 86.44 7.48 PPR.0201 NM.016391 NOP16 GAGGGAGTAAGTCCCACGGT AGCCTCTGTGTCTCTCCC -970.+192 85.26 5.53 PPR.0202 NM.0016391 NOP16 GAGGGAGTAAGTCCCACGGT -984.+125 84.49 3.60 PPR.0204 NM.003157 NEK4 GCACACCTGTAACAGTCGCTG -958.+159 83.98 5.22 7.60 PPR.0205 NM.003157 NEK4 GCACACCTGTATATACGGCA GCAACACCTGTACCACTTCAA -958.+159 83.98 5.22 7.60 PPR.0205 NM.004114 HSD1784 TGGTGTACCACTTCTCGTG ACCTTGGCAGCACCTGCGTGCT -926.+133 80.91 20.07 PPR.0205 NM.024137 RPAP2 TGCAAGCAGTTTGTGTTT	PPR_0197	NM_030759	NRBF2	GTGCGGTAGCTCATGCCTAT	TTCTGTGGGACACTCACCAG	-992,+183	87.30	4.62
PPR.0199 NM.004819 SYMEX GGTGAGACT CTGGAGCTTT GAGCOTTCOC CAGGTGCGAAAAGCAGG -952,+158 86.0 18.15 PPR.0201 NM.016004 IFT52 AATTGTGGAAAGCAGGA CCCTGGATGTTCTATGACCG -976,+197 86.19 3.30 PPR.0201 NM.016301 NOP16 GAGGAGTATATTCTGTGTGA ATCCTCCTCCTCTCTCTCTCCCG -970,+192 85.26 5.33 PPR.0202 NM.016310 NOP16 GAGGAGTAGAGCCCTGGGT ACCCTCGGTGTGACACT -984,+125 84.49 3.60 PPR.0204 NM.000249 MLH1 GCTTAAAGTCCCTGGGT CCCTCGGTGCCACCT -958,+159 83.98 5.82 PPR.0205 NM.003157 NEK4 GCACACCGCTTCTCTG AACCTTGCGCAGGTTCACAT -958,+159 80.91 20.07 PPR.0205 NM.004134 HSD1784 TGTGTCACCCCACTCTCTG ATCATGGCAAAATAGGAG -987,+172 80.43 19.73 PPR.0208 NM.004136 RPAP TGGAAAGTTTTGTGTTTTGTGTTT CTGACAGGGG -977,+196 79.03 70.11 PPR.0201 NM.014676 PUM1 TT	PPR_0198	NM_001878	CRABP2	GTGACACCTGAGACCCTGCT	CGATCGGATGATTTTCCAGT	-935,+176	87.13	11.71
PPR.2020 NMU.016004 IF52 AATTGGGAAAGCAACAGCAG CCCTGGATGTTCTATGACCG 936,+120 86,14 7.48 PPR.2021 NMU.016004 IF52 AATTGTGGAAAGCAACACGA CCCTGGATGTTCTATGACCG -970,+192 85,26 5.53 PPR.0203 NMU.018391 NOP16 GAGGGAGTAAGTCCCACGGT AGACGCTTTCGTTCTCCCG -970,+192 85,26 5.53 PPR.0204 NMU.000249 MLH1 GCCTTGAGTCCCACGGT -984,+125 84,49 3.60 PPR.0205 NM_003157 NEK4 GCACACCGTGTAATAACGGCA GCCTCGGATGCACCT -926,+133 80.91 20.07 PPR.0205 NM_004141 HSD1784 TGTGACGCGCTTCTCCTG ATCATGGCGGATGAAATGGAG -927,+127 80.43 19.73 PPR.0209 NM_014676 PUM1 TTGCGCACGCTTCTCTGG ATCATGGCGACATTCTGCGGG -937,+196 79.09 10.65 PPR.0210 NM_021431 RPAP2 TGGAAAGTTTTCCA ATGAAGGAGCAGG -937,+196 79.09 10.65 PPR.0211 NM_01425 COROIC AGCAGCGTGAGCATTATCCA ATTGCAGGACATGAACCAA <td>PPR_0199</td> <td>NM_004819</td> <td>SYMPK</td> <td>GGTCAGAACICIGGAGCCIII</td> <td></td> <td>-922,+158</td> <td>86.70</td> <td>18.15</td>	PPR_0199	NM_004819	SYMPK	GGTCAGAACICIGGAGCCIII		-922,+158	86.70	18.15
Integration Integration Constraint Gaload Joint Galo	PPR_0200	NM_004330	BNIP2 IET52			-958,+120	80.44	7.48
PPR 2020 NM_016331 NOP16 GAGGGAGTAAGTOCACAGGT AGACGCTTTCGGTTGACACT -984,+125 84.49 3.60 PPR 2020 NM_000249 MLH1 GCTTTAAAGTCCCACGGT CCTCCGTACCAGTTCTCAA -958,+159 83.98 5.82 PPR 2020 NM_001157 NEK4 GCACACACGTTAAAGGCCA GCACACAGGAGTCACACT -926,+133 80.91 20.07 PPR 2020 NM_004134 HSDA9 GTTCACGCCGTTCTCTG AACCTTGGCAGATGCTACACCT -926,+133 80.91 20.07 PPR 2020 NM_004134 HSPA9 GTTCACGCCGTTCTCTG ATCATGGCGATAAATGGAG -927,+187 79.53 7.01 PPR 2020 NM_014676 PUM1 TTGCGATTTGTCTTTTCAA ATGAAGGGACATCTGCTGG -937,+160 78.20 3.08 PPR 2010 NM 024313 RPA2 TGGAAGCAATAATACTCATCATCATCATCTCC ATTGTTTTTTTTTGTGTGTTTTTTGTTGTGTTTTTCAA ATGAAGGACAATCTGCTGG -937,+160 78.20 3.08 PPR 2011 NM 014325 CORO1C AGAGCTGAGTCAAGGGT -937,+160 78.20 3.08 PPR 2011 NM 014325 CORO1C	PPR 0202	NM 032335	PHF6	GCCTAGGCATTATTCTGTGTGA	ATCCTCCTTGTCTTCTCCCCG	-970 +192	85.26	5.50
PPR.0204 NM.000249 MLH1 GGCTTTAAAGTCCCTGGCTC CCCTCCGTACCAGTTCTCAA -958,+159 83.98 5.82 PPR.0205 NM.003157 NEK4 GCACACCTGTAATAACGGCA GGCAACAAGAAGCTCGGTT -974,+127 83.82 7.60 PPR.0206 NM.00141 HSD17B4 TGTGTCCCACCACTCTG ACCTTGGCGGTCACCCT -926,+133 80.91 20.07 PPR.0207 NM.001434 HSD17B4 GTGCACCACGCTTCCTG ATCATGGCGGATAATAGGAG -987,+72 80.43 19.73 PPR.0208 NM.024813 RPAP2 TGGAAAGTTTTTGTGTTTTCAA ATGAAGGGACAATGTGGCG -938,+153 79.18 15.05 PPR.0210 NM.025103 IFT74 GCAAGCAATATACTCATGTCCC ATTGTTTTGGAGGG -977,+196 79.09 10.65 PPR.0211 NM.014325 COROIC AGAGCTGGAGCTCAAATTCC CACATGCTCAGAGGACATATGCAAC -922,+129 77.80 64.8 PPR.0213 NM.032120 RBM4 ACTACAGCTGTATTCCAG TTGCGCAGGACATAGCAAC -922,+129 77.80 64.8 PPR.0214 NM.002109 STT3A GAGTGCGCCA	PPR_0203	NM_016391	NOP16	GAGGGAGTAAGTCCCACGGT	AGACGCTTTCGGTTGACACT	-984,+125	84.49	3.60
PPR.0205 NM.003157 NEK4 GCACACCTGTAATAACGGCA GGCAACAAGAAGCTCGGTT -974,+127 83.82 7.60 PPR.0206 NM.000414 HSD17B4 TGTGTTCCCACCCTGTG AACCTTCGCATGCTCACCT -926,+133 80.91 20.07 PPR.0207 NM.004134 HSPA9 GTTCACGCCGTTCTCCTG ATCATGGCGGATAAATGGAG -987,+72 80.43 19.73 PPR.0208 NM.01413 RPAP2 TGGAAAGTTTTGTGTGTGTTGTC CTGAAGCAGCACTTCACGGG -987,+72 80.43 19.73 PPR.0209 NM.014676 PUM1 TTGCACGCAGTTGTCTGTGTTTCAA ATGAAGGGACAACTCTGCTCG -938,+153 79.18 15.05 PPR.0210 NM.025103 IFT74 GCAAGCAATATACTCATGTCCC ATTGTTTGTGTGTGTCG -977,+196 79.09 10.65 PPR.0211 NM.006743 RBM3 GGGTCAAGCGATTTCCAG TTCGCAGGACATGAACCAA -996,+164 77.75 15.71 PPR.0213 NM.005740 Cb55 AGCTCCCACGTGTATTCAA CTGCCGCTGATATTCCAG -923,+127 77.53 23.29 PPR.0214 NM.000574 Cb55 AGCTCCC	PPR_0204	NM_000249	MLH1	GGCTTTAAAGTCCCTGGCTC	CCCTCCGTACCAGTTCTCAA	-958,+159	83.98	5.82
PPR.0206 NM_000414 HSD17B4 TGTGTTCCCACCACTCTCG AACCTTCGCATGCTCACCT -926,+133 80.91 20.07 PPR.0207 NM_004134 HSPA9 GTTCACGCCGTTCTCCTG ATCATGGCGGATAAATGGAG -987,+72 80.43 19.73 PPR.0208 NM_014876 PUM1 TTGCGAAGTTTTGTTGTTGTTGTTTTCAA ATGAAGGACAATCTGCTCG -938,+153 79.18 15.05 PPR.0210 NM_025103 IFT74 GCAAGCATAATACTCATGTCC CACATGCTCAGAGGAGG -977,+196 79.09 10.65 PPR.0211 NM_014325 CORO1C AAGCTTGAGGCGCAATTCC CACATGCTCAGAGGACAGGT -937,+160 78.20 3.08 PPR.0212 NM_006743 RBM3 GGGTTCAAGCGATTTCCAGG TTTCGCAGGACATAGCAA -996,+164 77.75 15.71 PPR.0213 NM_00574 CD55 AGCTCCCCACGTGATCA CTGCCGCTGATTTCAAGCAC -923,+127 77.53 23.29 PPR.0215 NM_000574 CD55 AGCTCCCCACGTGATATA ACAACAGCACAGCAC -978,+153 77.18 5.99 PPR.0216 NM_004328 BCS1L ACGTGGAGAAG	PPR_0205	NM_003157	NEK4	GCACACCTGTAATAACGGCA	GGCAACAAGAAGCTCGGTT	-974,+127	83.82	7.60
PPR.0207 NM.004134 HSPA9 GTTCACGCCGTTCTCCTG ATCATGGCGGATAAATGGAG -987,+72 80.43 19.73 PPR.0208 NM.024813 RPAP2 TGGAAAGTTTTGTGTTGTTGTGTTT CTGAAAGCACCTTTCAGGAG -927,+187 79.53 7.01 PPR.0209 NM.014676 PUM1 TTGCGATTGTGTTTTCAA ATGAAGGACACTCTGCTGG -938,+153 79.18 15.05 PPR.0210 NM.014575 CORO1C AGAGCGATAATACTCATGTCCC ATTGTTTTGTTGAGGGG -977,+196 79.09 10.65 PPR.0211 NM.014325 CORO1C AGAGCGAATAATACTCATGTCCC CACATGCTCAGAGGACAGGT -937,+160 78.20 3.08 PPR.0212 NM.006743 RBM3 GGGTTCAAGCGATTTTCCAG TTTCGCAGGACATGATAACCAA -996,+164 77.75 15.71 PPR.0213 NM.032120 RBM48 ACTACACGTGTGTCCCA CTGCCGCTGATTTTCAAG CACACAGCACAGCAA -996,+164 77.75 15.71 PPR.0215 NM.00219 STT3A GATGATGGAATGCTGCTCA CTGCCGCGTATATGTACCACGG -978,+153 77.18 5.99 PPR.0215 NM.004402	PPR_0206	NM_000414	HSD17B4	TGTGTTCCCACCACTCTCTG	AACCTTCGCATGCTCACCT	-926,+133	80.91	20.07
PPR.0208 NM.024813 RPAP2 TGGAAAGTTTTGTGTGTTT CTGAAAGCACCTTTCAGGAG -927,+187 79.53 7.01 PPR.0209 NM.014676 PUM1 TTGGAATAGTCGTGTTTTCAA ATGAAGGACAATCTGCTGC -938,+153 79.18 15.05 PPR.0210 NM.014676 PUM1 TTGGAATAATACTCATGTCC ATTTGTTTGTGAGGCG -937,+160 79.09 10.65 PPR.0210 NM.0014676 COROIC AGAGCGAATAATACTCATGTCC CACATGCTCAGAGGAG -937,+160 78.20 3.08 PPR.0212 NM.006743 RBM3 GGGTTCAAGCGATTTTCCAG TTTCGCAGGACATAGCAAC -922,+129 77.80 6.48 PPR.0213 NM.032120 RBM48 ACTACAGCTGTGTCCGCGT AGGAGAGCACATCAAACCAA -996,+164 77.75 15.71 PPR.0215 NM.00219 STT3A GATGATGGAATTGCTGCTCA CTGCACGTGATTTTCAAGTT -922,+129 77.63 23.29 PPR.0216 NM.00219 STT3A GATGATGGAGCTCAAGATTA GAACACCACCAGCACA -978,+153 77.18 5.99 PPR.0216 NM.004428 BCS1L ACGTGGAGAGGCGAG	PPR_0207	NM_004134	HSPA9	GTTCACGCCGTTCTCCTG	ATCATGGCGGATAAATGGAG	-987,+72	80.43	19.73
PPR,0209 NM_014676 PUMI TTGCGATTTGTCGTTTCAA ATGAAGGGACAATCTGCTCG -938,+153 79.18 15.05 PPR,0210 NM_025103 IFT74 GCAAGCAATAATACTCATGTCC ATTTGTTTGGAGCGG -977,+196 79.09 10.65 PPR,0211 NM_005103 IFT74 GCAAGCAATAATCCCATGTCC CACATGCTCAAGGGAC -937,+196 78.20 30.80 PPR,0212 NM_006743 RBM3 GGGTTCAAGCGATTTTCCAG TTTCGCAGGACAATGCAAC -936,+164 77.75 15.71 PPR,0213 NM_002219 STT3A GATGATGGAATTCCTGCTCA CTGCCGCTGATTTTCAAGT -922,+127 77.53 23.29 PPR.0215 NM_00219 STT3A GATGATGGAATTCATA GAACACCACCAGCAGCA -978,+153 77.18 5.99 PPR.0216 NM_005749 DBK4 CACTTGGCAGAGATGA GACTCCCCCCTGGAAGCT -922,+124 76.68 11.91 PPR.0216 NM_00440 EPHA7 CTTGCGAAGAGAGGCGC TACCAGGGCCACCCTACTTTG -972,+121 75.68 11.91 PPR.0218 NM_005789 PSME3 TTGCCTTATTGGAAG	PPR_0208	NM_024813	RPAP2	TGGAAAGTTTTTGTTGTTGTGTTT	CTGAAGCAGCCTTTCAGGAG	-927,+187	79.53	7.01
PPR.0210 NM.01325 COROL AGGAGGAAIAAIACICAIGICCC ATTIGITTIGITIGGAGGGG -97,+196 79.09 10.65 PPR.0211 NM.01325 COROIC AGGCTGAGGCCGAAATTCC CACATGCTCAGGGACAGGT -937,+160 78.20 3.08 PPR.0212 NM.008743 RBM3 GGGTTCAAGGGATTTCCAG TTCGCAGGACAACC -922,+129 77.80 6.48 PPR.0213 NM.032120 RBM48 ACTACAGCTGTGTTCCGCGT AGGAGGCAAAGACCAA -996,+164 77.75 15.71 PPR.0214 NM.00219 STT3A GATGATGGAATTCCTGCTCA CTGCCGCTGATTTTCAAGTT -923,+127 77.53 23.29 PPR.0216 NM.000574 CD55 AGCTCCCCACGTGATTCTAA ACAACGCACCAGCAGCA -978,+153 77.18 5.99 PPR.0216 NM.005749 BME3 CTGCGAGAAGTGCAAGC TACCAGGGCCCCCCACCT -922,+134 76.25 8.76 PPR.0218 NM.004440 EPHA7 CTTGCGAAGAGTGCAGC TACCAGGGCCCTCCAGCATC -938,+125 75.26 2.35 PPR.0218 NM.005789 PSME3 TTGCCTTATGGAAGTGGAAC	PPR_0209	NM_014676	PUM1	TTGCGATTTGTCTGTTTTCAA	ATGAAGGGACAATCTGCTCG	-938,+153	79.18	15.05
PPR.0211 NM_001323 CONTC AGAGE IGAGGE IGAGGE IGAGGE IGAGATICE CACATGE IGAGGAGET -937,+160 78.20 3.08 PPR.0212 NM_005743 RBM3 GGGTCAAGGGATTTTCCAG TTCGCAGGACATGAAACC -922,+129 77.80 6.48 PPR.0212 NM_003210 RBM48 ACTACAGCGTGTTTCCGCGT AGGAGAGGAATGAAACCAA -996,+164 77.75 15.71 PPR.0214 NM_000574 CD55 AGCTCCCCAGGGATTCTAA ACAACAGCAGCAGCAGCAA -978,+153 77.18 5.99 PPR.0216 NM_000574 CD55 AGCTCCCCAGGTCAAGATTA GAACCCCCCCCTGAACCTC -922,+134 76.25 8.76 PPR.0216 NM_001204 DHRS4 CACTTGCGAGAAGTGCAGC TACCAGGGCCACCTTATTG -972,+121 75.68 1.17 PPR.0218 NM_004440 EPHA7 CTTGCGAAGAGAAAGTGCAGC TACCAGGGCCCTCGCAACCT -972,+121 75.68 1.35 PPR.0219 NM_005789 PSME3 TTGCCTTATGGAAGATGTGCAG TGACAACTCGGCTGACCT -950,+135 74.08 7.61 PPR.0221 NM_005789 PSME3	PPR_0210	NM_025103	IF1/4	GCAAGCAATAATACTCATGTCCC	ATTIGTTTGTTTGGAGCGG	-9//,+196	/9.09	10.65
PPR.0212 NM.000743 RBMS GGGTTGAAGGATTTCCGGGT AGGACAGGAATTGCAAG -922,+129 77.60 6.50 PPR.0212 NM.002219 RBM4 ACTACAGCTGTGTTCCGCGT AGGACAGCGAAGTGAAACCAA -996,+164 77.75 12.30 PPR.0214 NM.002219 STT3A GATGATGGAATTGCGCGTCA CTGCCGCTGATTTTCAAGTT -923,+127 77.53 23.29 PPR.0215 NM.000574 CD55 AGCTCCCCACGTGATTCTAA ACAACAGCACCAGCAGCA -978,+153 77.18 5.99 PPR.0216 NM.004328 BCS1L ACGGTGAGCGTCAAGATTA GAACCCCCCTCTGAACCTC -922,+134 76.25 8.76 PPR.0217 NM.004328 BCS1L ACGCTGGAGAGGAATGGCAGCA TACCAGGGCCCCCCCTTGTTG -972,+121 75.68 11.19 PPR.0218 NM.004440 EPHA7 CTTGCGAAGAGTATGCAGC TACCAGGGCCCCTTGCATCG -972,+121 75.68 1.35 PPR.0219 NM.005789 PSME3 TTGCCTTATGGAAGTGGAGC TGCAGGAATCTCGGCT -950,+135 74.08 7.61 PPR.0221 NM.005190 CCNC CACGTGGCACAC	PPR_0211	NM_014325	DBM2			-937,+160	78.20	3.08
THICOID MIL STT3A GATGATGGAATTGCTGGTGA CTGCCGCGGATTTTTCAAGTT -923,+127 77.53 23.29 PPR.0215 NM_000574 CD55 AGCTCCCCACGTGATTCTAA ACAACAGCACCAGCAGCA -978,+153 77.18 5.99 PPR.0215 NM_001328 BCS1L ACGCTGAGCCGTCAAGATTA GAACCACCCCCCCTGAACCTC -922,+134 76.25 8.76 PPR.0216 NM_004328 BCS1L ACGCTGGAGCGTCAAGATTA GAACCACCCCCCCTGGAACCTC -922,+134 76.25 8.76 PPR.0217 NM_01021004 DHRS4 CACTTGGCAAGAGTGCAGAC TACCAGGGCCCCTTGGACCTC -922,+121 75.68 11.91 PPR.0218 NM_004440 EPHA7 CTTGCGAAGAGAGAGGTCTTG TTATTGTGCTCTTGCATCG -952,+121 75.68 1.91 PPR.0219 NM_005789 PSMB3 TTGCCTTATTGGAGTGGAG TGAGAAATCTCGGCTGACCT -950,+135 74.08 7.61 PPR.0221 NM_005190 CCNC CAGACCAGCCAAGAAT GAGGAGCAAAGTGGGTCCAGA -938,+167 73.27 11.64 PPR.0222 NM_006601 PTGES3 AGCTAGG	DDD 0212	NM 032120	RDIVIS			-922,+129	77.80	0.40
PPR.0215 NM_000574 CD55 AGCTCCCCAGGTATTCTAA ACAACAGGACCAGCAGCA -978,+153 77.18 52.99 PPR.0216 NM_004328 BCS1L ACGCTGAGCCGTCAAGATTA GAACCAGCACCAGCAGCAC -978,+153 77.18 52.99 PPR.0216 NM_004328 BCS1L ACGCTGAGCCGTCAAGATTA GAACCACCCTCCTGAACCTC -922,+134 76.25 8.76 PPR.0217 NM_002404 DHRS4 CACTTGGCAGAAGTGCAGAC TACCAGGGCCACCTTATTTG -972,+121 75.68 11.91 PPR.0218 NM_004440 EPHA7 CTTGCGAAGGAGAAGGTCTTG TTATTGTGCTCTTGCACTG -983,+125 75.26 2.35 PPR.0219 NM_005789 PSME3 TTGCCTTATTGGAGTGGCAG TGAGAAATCTCGGTGACCT -951,+135 74.08 7.61 PPR.0220 NM_005190 CCNC CAGACCAGCCACACAATAG GAACTTTCCCTCCTCCTCGCGT -955,+192 73.94 8.63 PPR.0221 NM_0065190 CCNC CAGACCAGCCAGGAAATC CACAGGTTCGCGCTTGGACT -938,+167 73.21 11.84 PPR.0222 NM_006601 PTGES3 AGCTAG	PPR 0214	NM 0022120	STT3A	GATGATGGAATTGCTGCTCA	CTGCCGCTGATTTTCAAGTT	-923 +127	77.53	23.29
PPR.0216 NM_004328 BCS1L ACGCTGAGCCGTCAAGATTA GAACCCCCTCCTGAACCTC -922,+134 76.25 8.76 PPR.0217 NM_0021004 DHRS4 CACTTGGCAGAAGTGCAGAC TACCAGGGCCACCTTATTTG -972,+121 75.68 11.91 PPR.0217 NM_002400 EPHA7 CTTGGCAAGAGGAAGGTCTTG TTATTGTGCTCTTGCATCG -983,+125 75.26 2.35 PPR.0219 NM_005789 PSME3 TTGCCTTATTGAGATGTGCAG TGAGAAATCTCGGCTGACCT -955,+132 73.94 8.63 PPR.0220 NM_018491 CBWD1 GCCGTGTAGCCACACAATAG GAACTTGCCTCGTCCTCGCTC -955,+192 73.94 8.63 PPR.0221 NM_005190 CCNC CAGCAGCCAGCAAAAGT CACAGCTTGCCCTGATAAAA -938,+167 73.27 11.64 PPR.0222 NM_006601 PTGES3 AGGTAGGGTCCAGA CTGAGGAGAAGAGGAAAGT -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGGTAGGGTCCAGA CTGGGGGAGAAGAGGAAAGT -932,+134 71.86 4.35 PPR.0225 NM_000895 LTA4H CCCCCCAGCATCT	PPR_0215	NM_000574	CD55	AGCTCCCCACGTGATTCTAA	ACAACAGCACCAGCAGCA	-978,+153	77.18	5.99
PPR.0217 NM_021004 DHRS4 CACTTGGCAGAAGTGCAGAC TACCAGGGCCACCTTATTTG -972,+121 75.68 11.91 PPR.0218 NM_00440 EPHA7 CTTGCGAAGAGAAGTGCAGAC TTATTGTGCTCCTTGCATCG -983,+125 75.26 2.35 PPR.0219 NM_005789 PSME3 TTGCCTTATTGGAATGTGCAG TGAGAAATCTCGGCTGACCT -950,+135 74.08 7.61 PPR.0220 NM_018491 CBWD1 GCCGTGTAGCCACACAATAG GACTTTGCCTCGTCCTCGCT -955,+192 73.94 8.63 PPR.0221 NM_005190 CCNC CAGACCAGCCAAGGGAAACC CAGAGCTTGCCGTGATAAAA -938,+167 73.27 11.64 PPR.0222 NM_006501 PTGES3 AGGTAGGGTCCAGA CTGAGGAGAAGAGGAAAGT -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGCTAGGGTCCAGGTTTCGT GTCGGGGAGAAGAGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000857 LTAH CCCCCAGCATCTTCTGATT ATCACACAGCACAGGACT -932,+134 71.86 4.35 PPR.0225 NM_019067 GN14 CCCCCCAGCA	PPR_0216	NM_004328	BCS1L	ACGCTGAGCCGTCAAGATTA	GAACCCCCTCCTGAACCTC	-922,+134	76.25	8.76
PPR.0218 NM_004440 EPHA7 CTTGCGAAGAGAAAGGTCTTG TTATTGTGCTCCTTGCATCG -983,+125 75.26 2.35 PPR.0219 NM_005789 PSME3 TTGCTTATTGAGATGTGCAG TGAGAAATCTCGGCTGACCT -950,+135 74.08 7.61 PPR.0219 NM_005789 PSME3 TGCGTTATTGAGATGTGCAG GACATCTCGCTCGCT -955,+192 73.94 8.63 PPR.0220 NM_0059190 CCNC CACAGCCTAGGGAAATC GACATTTCCCCTGCTGATAAA -938,+167 73.27 11.64 PPR.0222 NM_006501 PTGS GAGAGCAAAGTGGGTCCAGA CTGAGGAGAGAGAGAAGTG -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGS3 AGCTAGGGTCCAGGTTCGT GTCGGGGAGAAGGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000895 LTAH CCCCCAGCATCTTCTGATT ATCACACAGAGCAACGGACT -930,+69 71.86 3.69 PPR.0224 NM_000895 LTAH CCCCCAGCATCTTCTGAGATGGGCTCAG GGCGCGTTGAGCTTAG -9424,131 71.24 3.99 PPR 0225 NM_0190675 GNU13 GGCTCGTGCT	PPR_0217	NM_021004	DHRS4	CACTTGGCAGAAGTGCAGAC	TACCAGGGCCACCTTATTTG	-972,+121	75.68	11.91
PPR.0219 NM_005789 PSME3 TTGCCTTATTGAGATGTGCAG TGAGAAATCTCGGCTGACCT -950,+135 74.08 7.61 PPR.0220 NM_018491 CBWD1 GCCGTGTAGCCACAATAG GACTTTTCCTCCTCTCGCT -955,+192 73.94 8.63 PPR.0221 NM_005190 CCNC CAGACCAGCCTAGCGAAATC CACAGCTTGCCCTGATAAAA -938,+167 73.27 11.64 PPR.0222 NM_004551 NDLFS3 GAGAGCAAAGTGGTCCAGGA CTGAGGAGCTCTCTGCACTG -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGCTAGGGTCCAGGTTCGT GTCGGGGGAGAGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000895 LTA4H CCCCCAGCATTCGTGATT ATCACACAGCGACCT -980,+69 71.86 3.69 PPR.0225 NM 019067 GNI 31 GCTCCTTGAGGTTCAG GGAGCGACCT -922,+134 71.24 3.69	PPR_0218	NM_004440	EPHA7	CTTGCGAAGAGAAAGGTCTTG	TTATTGTGCTCCTTGCATCG	-983,+125	75.26	2.35
PPR.0220 NM_018491 CBWD1 GCCGTGTAGCCACAATAG GACTTTTCCTCCTCCTCGCT -955,+192 73.94 8.63 PPR.0221 NM_005190 CCNC CAGACCAGCCTAGCGAAATC CACAGCTTGCCCTGATAAAA -938,+167 73.27 11.64 PPR.0222 NM_004551 NDLFS3 GAGAGCAAAGTGGTCCAGA CTGAGGAGGCTCTCTGCACTG -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGCTAGGGTCCAGGTTCGT GTCGGGGAGAGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000895 LTA4H CCCCCAGCATCTTCTGATT ATCACACAGCGACCT -980,+69 71.86 3.69 PPR.0225 NM 019067 GNL 31 GCTCCTTGAGGTTCAGG GGAGCGCACCT -922,+131 71.4 3.09	PPR_0219	NM_005789	PSME3	TTGCCTTATTGAGATGTGCAG	TGAGAAATCTCGGCTGACCT	-950,+135	74.08	7.61
PPR.0221 NM_005190 CCNC CAGAGCCAGCCAGCGAAATC CACAGCTTGCCCTGATAAAA -938,+167 73.27 11.64 PPR.0222 NM_004551 NDLFS3 GAGAGCAAAGTGGGTCCAGA CTGAGGAGGCTCTGGCACTG -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGCTAGGGTCCAGGTTCGGT GTCGGGGGAGAGGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000895 LTA4H CCCCCAGCATCTTCGACT -980,+69 71.86 3.69 PPR.0225 NM_019067 GNL 31 GCTCCTTGAGGTTCAGG GGAGCGGACCT -922+131 71.24 3.09	PPR_0220	NM_018491	CBWD1	GCCGTGTAGCCACACAATAG	GACTTTTCCTCCTCCTCGCT	-955,+192	73.94	8.63
PPR.0222 NM_004551 NDUFS3 GAGAGCAAAGTGGGTCCAGA CTGAGGAGCTCTCTGGACTG -937,+167 73.21 18.18 PPR.0223 NM_006601 PTGES3 AGCTAGGGTCCAGGTTTCGT GTCGGGGAGAGGGAAAGT -932,+134 71.86 4.35 PPR.0224 NM_000895 LTA4H CCCCCAGCATCTTCTGATT ATCACACAGCGACCT -980,+69 71.86 3.69 PPR.0225 NM_019067 GN1.31 GCTCCTTGAGCATCGGCTTCAG GGAGCGCACCT -922,+131 71.24 3.09	PPR_0221	NM_005190	CCNC	CAGACCAGCCTAGCGAAATC	CACAGCTTGCCCTGATAAAA	-938,+167	73.27	11.64
PPR_0223 NM_000895 LTA4H CCCCCAGCATCTTGATT ATCACACAGCGACAGCGACCT -982,+134 71.86 4.35 PPR_0224 NM_000895 LTA4H CCCCCAGCATCTTGATT ATCACACAGCGACCT -980,+69 71.86 3.69 PPR 0225 NM 019067 GN131 GCTCCTTGACATGGCTTCAG GGACGCGCTCCTCCTGCTTTTA -929,+131 71.74 3.09	PPR_0222	NM_004551	NDUFS3	GAGAGCAAAGTGGGTCCAGA	CIGAGGAGCTCTCTGCACTG	-937,+167	73.21	18.18
FFT_0224 NW_0000535 LIA4H CUCUCAGGATOTIUTUTGATI ATGACAGGAGGAGGAGCI −980,459 /1.86 3.69 PPR 0255 NM 019067 GNL31 GCTCGTGAGATGGCTTCAG GGAGGGATCGTCGTGTTTA −9029.131 7174 309	PPR_0223	NM_006601	PIGES3			-932,+134	/1.86	4.35
	PPR 0225	NM 019067	GNL3I	GCTCCTTGAGATGGCTTCAG	GGAAGGGATCCTGCTGTTTA	-980,+69	71.80	3.09

表 3.1 (続き):転写活性化能を測定した 472 遺伝子のプロモーター領域の詳細

PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	爆進信券
		Name			(-xx to +yy: TSS=0)		***
PPR_0226	NM_006429	CCT7	TCTGCGCCTTAGCCTACTTC	GTCCTACAGAGCAAGCCCAG	-952,+166	71.47	8.74
PPR_0227	NM_006467	POLR3G			-956,+156	/1.44	3.65
	NM_022103				-960,+195	71.14	2.//
	NM 005762		CCCACTCCCCTACCAACTC		-927,+119	70.18	4.02
PPR_0230	NM 003090				-932,+190	68.34	5.04
PPR 0232	NM 032178	SI C746OS	TGCCCTCCAAGAGCTTAGACT	GCCACCAAGTGGAAGACATT	-995 +194	67.81	5.76
PPR 0233	NM 005870	SAP18	TTGCCAATCTAGTGAGTGTGG	ATCGGTTTCTCTGGCTCCTT	-927 +129	67.53	4 5 9
PPR 0234	NM 005470	ABI1	CCCAGTTACTCTGGAGGCTG	CCCGAGTCAGGTTCTGGTAA	-912.+191	66.80	3.57
PPR 0235	NM 012341	GTPBP4	CCTCTGCTGCCTGTTAGCTT	CTGAGGAGAACGCGAAAGTT	-954.+140	66.75	10.31
PPR_0236	NM_031480	RIOK1	CGCAAAGGCCTTGTTTCTTA	CCGGTAGTCCATGACTGGAG	-939,+196	66.34	5.46
PPR_0237	NM_002358	MAD2L1	TGGTAATTCGTTATGCAGCAA	ATGGCCAGGGACACAAAC	-933,+118	64.97	1.88
PPR_0238	NM_004893	H2AFY	GGGTGGGGGTCTCTAATTACC	CTTTTCTCTCCGCGCTCCT	-924,+133	64.25	9.79
PPR_0239	NM_004275	MED20	TGGATACATGCTAGGAGCACTT	CCCTGCAGTCCTACCAAGTC	-955,+133	63.58	12.78
PPR_0240	NM_032390	NIFK	TGCCCTCAGGCTGTAAGTTC	GCCTGCTCACCTGGGTTAT	-972,+145	63.17	2.30
PPR_0241	NM_016185	HN1	ATGCAAGACATGAGAAGGGC	GAGCTATTCCTGCTGTTGGG	-935,+137	62.81	27.85
PPR_0242	NM_014186	COMMD9	TTCACAAATGGGCATTCTTTC	CCAATTCCTGCTCCGTCTAA	-950,+138	62.67	11.72
PPR_0243	NM_018403	DCP1A	AAGAGCGAGACTCCGTTTCA	GGGCAGAAGGTGTACAGAGC	-995,+136	62.15	7.95
PPR_0244	NM_003093	SNRPC	GGTGCGATCACGACTCACTA	CCCAGATACTCTCCCATCCC	-935,+153	61.67	4.21
PPR_0245	NM_004371	COPA	AAACAATGTGAATTGGGGGGA	TCTCCACTACCTTTGACCCG	-915,+153	61.58	21.67
PPR_0246	NM_025132	WDR19			-988,+132	60.65	6.14
PPR_0247	NM_002100	PSMD/			-932,+132	60.26	14.20
	NM 002299	MCM2			-955,+104	50.15	14.50
DDD 0249	NM 005610	RBBD/			-971,+100	59.13	2 16
PPR 0251	NM 006594		CAGCTCTCGGGGGGGCCGGGCT		-874 +174	58 79	3.32
PPR 0252	NM 014828	TOX4	AGCAGTTATGCTTTCGTGGG	CTCTCTCTCCTCTCCCGTCA	-987 +171	58 40	4 79
PPR 0253	NM 019040	ELP4	CCACTGTCCCTGCTCAGTTT	CTCTAGGACCCCTCCTCTGG	-968.+133	58.39	3.22
PPR 0254	NM 024908	WDR76	GGACAAATCTCAGGCAAGGA	CCGCATAACCCTCACAAAAA	-933.+157	58.27	3.28
- PPR_0255	NM_012333	MYCBP	TGGGAAAATCACATGTTCAGA	GACCAGCGGCTTGCTACC	-925,+136	58.04	10.44
PPR_0256	NM_005906	MAK	TGGTTTTCCACGCCTGTATT	AGATTGGCCCTGGTAGCAC	-980,+187	57.72	2.13
PPR_0257	NM_006083	IK	GCCCAGCTCTATGTGCAAAA	GGATGGCCTGAGCCTTACTA	-922,+131	57.44	3.64
PPR_0258	NM_016311	ATPIF1	TACTGCATTGCACCACATTG	GGCTTGCATGGTCCTCAC	-994,+113	56.78	14.19
PPR_0259	NM_032796	SYAP1	TCCTGACCTTGTGATCCTCC	CAGACTCAGCCACCGTCTC	-953,+196	56.35	47.31
PPR_0260	NM_003341	UBE2E1	GCTAAAGAAAGAGAAAAATGGCTTA	TCCCCGTACCTCTCTTTGTG	-957,+144	56.25	4.82
PPR_0261	NM_032364	DNAJC14	GGGAGCAAGGGAAATAGGAG	GCACGGAGAAGACGTAGGAG	-997,+157	55.24	5.10
PPR_0262	NM_003932	ST13	AGCAAGCTCTCACGCCTAAC	ACACATTTTCACAAAGGCCC	-966,+144	55.17	4.91
PPR_0263	NM_031280	MRPS15	GTTAGGCTCCTACCCTCCCA	GTCCGAATCAAACTCAGCGT	-978,+95	54.88	4.02
PPR_0264	NM_018492	PBK	GGGGCGGAGAGGTAAAAA	GGAAAGGTCGGAGGTGAAA	-908,+132	54.87	15.25
PPR_0265	NM_003086	SNAPC4	ATTTGTGGCGCGCGGTATTTAG	CCTCAGTTTCCCCCGACTTT	-951,+179	54.26	3.57
PPR_0266	NM_005370	RAB8A	GATAGGACCCAGCATCCTCA	GCCCCTTATIGGCTCCAG	-925,+168	54.25	16.64
PPR_0267	NM_0005158	NEFL			-942,+128	53.67	8.70
PPR_0208	NM_030579			GACATOGTAGACTOGCOCAT	-9/4,+194	52.84	22.13
	NM 004796				-020+152	51.44	4.20
PPR 0270	NM 000988	RPI 27	TTCTGGTGAGTGATGGGGAAA		-925 +128	51.36	4 29
PPR 0272	NM 012124	CHORDC1	GGTAGGAGGACGTGAGCAGA	TCCTCTTACCGTCGGAATTG	-947 +181	51.35	1.23
PPR 0273	NM 000373	UMPS	TCCTGTTCCTGGCTTGTTTC	GATGTAGATGGGGGGGGGGAGGAAAG	-915.+144	50.73	15.91
PPR 0274	NM 003134	SRP14	GTTGGCTAGTGGCAGAGAGG	GGCACAGGTCTCGAGTAACG	-935.+121	50.51	3.18
PPR_0275	NM_006384	CIB1	ACTTCCTCCTCCCAGCAGTT	CTGCTCCCGAGAAGAGGC	-987,+159	49.32	4.04
PPR_0276	NM_004299	ABCB7	GTTGGAGAATGCAGCAGTGA	GACTAAAGGCCGGATCAGAA	-920,+133	48.71	7.02
PPR_0277	NM_001240	CCNT1	AAGTTGGATCACTGGCGAAC	TTCTTTATCTGGGTCCACGC	-937,+162	47.60	1.24
PPR_0278	NM_006812	OS9	TGGTGAGATTCCCCAGAGAG	ACTCAGCTCCTCCAGGTTCA	-944,+145	47.59	9.12
PPR_0279	NM_014167	CCDC59	TAGAGCCAAGCCTAGCCTGC	CGCCATGTCTTCTGTCTCAC	-961,+136	47.57	4.31
PPR_0280	NM_002389	CD46	TTACCGGTCATTCCGGTTTA	GCGGAAGACGCTGTTATTTC	-943,+129	47.03	5.56
PPR_0281	NM_002915	RFC3	CCTTACCTGCAGGAGTAATTCA	CGCCTGCTCCTTGTGATAGT	-896,+169	46.82	9.40
PPR_0282	NM_004649	C21orf33	GGGATCTTCACACTGACCGT	ACAGGGACGTGAATGCAGAT	-937,+141	46.78	6.02
PPR_0283	NM_004099	STOM	TTGCAGGCTGTAACCCCTTA	GCTGTCAGACCTCGGAGC	-968,+184	46.53	8.83
PPR_0284	NM_018248	NEIL3	TGAAAATGAAAAACAGAATGGCT	GCGCGAATCTTCTCTCCA	-905,+164	45.61	5.81
PPR_0285	NM_014771	RNF40	TACGCGAGCACAGTAACCAC	CACAGAGCAGAGATGTGGGA	-938,+141	45.55	4.14
PPR_0286	NM_018428	01P6	CAATATIGCCTCCAAGCTGT	GCCAIGAGGICCGAAGICIA	-959,+84	45.39	10.03
PPR_0287	NM_015904	EIF5B	GIGICCGACCCIIGCIIIC		-914,+180	45.22	0.62
PPR_0288	NM_006009				-943,+165	44.35	2.22
PPR_0289	NM_021203				-9/0,+181	44.01	3.84
DDD 0201	NM 012222				-022+111	43.34	12.12
DDD 0202	NM 016940	ESMIJ BWDD2B			-035+115	43.20	0.60
PPR 0293	NM 004563	PCK2	GTGGGCAGATGAGTTTCCTC	AGGCCAGGGCGGTACAAT	-965 +117	42.97	7 20
PPR 0294	NM_001230	CASP10	TTGTTGGGATGGTGAAATGA	GGGAAATTGCCTGAAAACAA	-943.+139	42.86	4.95
PPR 0295	NM_000454	SOD1	CAGGTACTTGGGAGGCTGAG	GCCTTCGTCGCCATAACTC	-957,+85	42.57	4.37
PPR_0296	NM_005500	SAE1	CTCCCGGATTCAAGCAATTA	GGATCTGCCGGTCATACTGT	-969,+126	42.30	5.34
PPR_0297	NM_015966	ERGIC3	TGTTAACCTTGGATAGCTGCTT	GGGTAGGCATCGAACTGCT	-959,+86	42.11	6.88
PPR_0298	NM_001786	CDK1	GGATATGATGGATGGCAATG	CCCTAGACACGACCCTGACC	-920,+122	41.81	17.48
PPR_0299	NM_000449	RFX5	GCTGCGCAAAACAAAATACA	TTTTTCTGCTCTCCCCAA	-959,+157	41.26	16.62
PPR_0300	NM_014860	SUPT7L	CTCCAAAGCGAACAACATGC	GACCTGAACCGAGACAAGGA	-920,+146	40.94	7.55

表 3.1	(続き):	転写活性化能を測定し	た 472 遺伝子のフ	プロモーター領域の詳細
-------	-------	------------	-------------	-------------

PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	標準偏差
PPR 0301	NM 004208	AIFM1	CCATTGTGAGGGGGTAAGTCG	ACCTCCTCCTTCCCTTCCT	-929 +147	40.90	4 08
PPR 0302	NM 022916	VPS33A		CACTTGTCCAGGAACTCGC	-958 +131	40.30	6.48
PPR 0303	NM 007048	BTN3A1		GCATTCCCCTCTCAAAAATCA	-916 +142	40.77	3 78
PPP 0304	NM 002013	EKBD3	GGAAGTGAACGTGGTCTGGT	GCCTCTGGTACCGAATCTGA	-903 +172	40.15	5 3 9
DDD 0305	NM 017807	OSGED		CTGGCAATGTCAGGAGCTG	-903, 172	40.15	9.39 8.94
DDD 0300	NM 020357		GGTAGCTCTGTAGGCAGTAAGCA		-932,1110	39.29	1.00
PPR_0300	NM 017707				-922, 108	20.50	1.00
DDD 0200	NM 002205		CCTACCATCCACCACCTCCT		-932,1141	27.04	6.60
PPR_0308	NM 004191				-979,101	37.54	2.40
PPR_0309	NM 014749	SNV17		CCCAATCCAAAACTCCATCT	-917,1130	37.04	2.40
PPR_0310	NM 014202	DES1			-950,1100	37.81	15 20
PPR_0311	NM 015160	PD01			-950,1199	37.20	15.20
PPR_0312	NM 004914	CNDND40			-944,+148	30.03	0.00
PPR_0313	NM_004814	SINRINP40			-927,+180	35.95	3.23
PPR_0314	NM_017686	GDAP2			-920,+137	35.90	10.50
PPR_0315	NW_002796	PSIVID4		ATGAAGGAATCGGGAGTGG	-922,+122	34.90	12.09
PPR_0316	NM_018605	RDIVI20		ATCTCTGGGTCCGCCTATCT	-940,+172	34.79	3.30
PPR_0317	NM_016221	DCTN4	TTOTOCOATGOTOCAGGACA		-941,+180	34.30	1.28
PPR_0318	NM_004280	EEFIEI			-975,+131	34.07	5.47
PPR_0319	NM_001168	BIRCS	AGIGAGIGGAIGIGAIGUUU	AAGGGCCAGTTCTTGAATGT	-923,+127	33.99	1.69
PPR_0320	NM_015907	LAP3	GCACCIGIGGAACAGAIGAA	AGCGGACGTGCGTCTAGG	-920,+150	33.90	1.03
PPR_0321	NM_003825	SNAP23	IGGGGIIICICIAIGIIGGC	GACCCCACCAACIIIICAAC	-935,+177	33.82	2.99
PPR_0322	NM_005872	BCAS2	GCAGCAGCIIGAGIGGIIC	CIACAAAGACACCCCCGCACI	-960,+145	33.36	9.72
PPR_0323	NM_004184	WARS	CAGCICAICICCAAIGGAAC	CACICCCICCCIIGIIICCI	-948,+119	33.17	7.50
PPR_0324	NM_001064	IKI	GIICAAGACCIGCCIGGGIA	CAGGCIIGIGGIAGCICICC	-968,+90	33.06	9./1
PPR_0325	NM_003174	SVIL	GAGCTCGCCACTGGCTCT	GGAGGGACTTTGCTCACCTA	-963,+191	32.53	5.41
PPR_0326	NM_000016	ACADM	TCCCTTTTCCGAATTTTCCT	ACAATACCCATGTTCCAGCC	-998,+145	32.52	7.04
PPR_0327	NM_002394	SLC3A2	CGCTGGCTTTGCATAAAGAT	GTCGTGACCGTCAGTCCAG	-927,+119	31.77	2.44
PPR_0328	NM_017897	OXSM	GCCTGGGATAGCATGTGAAA	AGCATGGCGAGAGAAAAAGA	-994,+195	31.44	5.01
PPR_0329	NM_016147	PPME1	CTTGCCCACAATCACACAAC	GCACGCACGTAGTCAAACAG	-933,+122	31.19	4.65
PPR_0330	NM_003678	THOC5	TCAGTACTGGTTGGGTGCAG	CGGGTAGTGAGGGAGGAGA	-945,+187	31.11	3.27
PPR_0331	NM_016437	TUBG2	GCCAGACCCAAAAAGACAAA	CTCGCTTGCTCACTCTGGTT	-955,+150	31.06	1.86
PPR_0332	NM_017812	CHCHD3	CACTGACTCACTCAGGGCAA	ATGTTCTCATTCTCGTCCGC	-949,+195	30.96	2.44
PPR_0333	NM_019023	PRMT7	CGCCTCCTTACATCCCTTATC	CGGAGGAGTCCAAGTAGGC	-978,+200	30.94	2.54
PPR_0334	NM_003522	HIST1H2BF	GTCAGGCTGTCCTGGAACTC	CACGGAATAGCTCTCCTTGC	-961,+177	30.74	0.49
PPR_0335	NM_014706	SART3	GGCTCGCTGAGTCTGAATCT	GTCCTAGCCGCCTTAACCTC	-944,+116	30.70	12.56
PPR_0336	NM_017425	SPA17	TGTCCAGCCTAGGGTATTCG	TGTGTCTGGGATGCTGAGAG	-936,+123	29.92	1.53
PPR_0337	NM_032365	ATAD2	TTATTATGTGCAAGCACGGC	TGTGCTCCAGACTGAGGAAG	-993,+190	29.49	3.50
PPR_0338	NM_006924	SRSF1	CGGTATTTTCAAAACCTGGTG	CCACGAATCACACCACCTC	-990,+101	28.64	4.59
PPR_0339	NM_006824	EBNA1BP2	TGGTGTGCTCAGGAAAACTG	CTGCCTTCAGCCCCCTACT	-938,+118	28.07	3.56
PPR_0340	NM_018157	RIC8B	CGGGTTCCTTTTTATTTCCA	TCGCTGTAATCCCTCAGGAC	-999,+143	27.52	1.16
PPR_0341	NM_014175	MRPL15	GCCCTCCAAAAATTGTCTCA	CCATTTACCGGTTTCTTGGA	-987,+146	27.42	1.77
PPR_0342	NM_003336	UBE2A	TTATTGCTTTTGCAGGTCCA	ATACACTGGGGTCTCGGGTT	-924,+133	26.75	3.67
PPR_0343	NM_031292	PUS7L	CGCCACTATGCCAGCTAAAT	TGTCCAAAGGCACGACACTA	-964,+196	26.26	4.50
PPR_0344	NM_001610	ACP2	CCCCAGGACCTATGATCTGA	CAGGGAAGTCTTTGGTGAGC	-920,+176	26.21	2.15
PPR_0345	NM_004135	IDH3G	CTGGAGTTCAGACCTCAGCC	ACTCCAGACTGCTTCGGGT	-961,+197	26.18	1.69
PPR_0346	NM_015434	INTS7	TAACAGGGGTCATCTCTGGC	GTTGGCATCCAGTTCCTGTT	-988,+172	25.45	0.05
PPR_0347	NM_012429	SEC14L2	TCCTGGACCTAGCTCTGCAT	CAGGGCTACAGCTCACCTTG	-981,+158	25.32	1.05
PPR_0348	NM_015472	WWTR1	CGCACCCTCTCTACTTCCAG	AGGCTTGGCTGACAAATCC	-929,+144	25.29	1.95
PPR_0349	NM_000981	RPL19	TTCGCAGATAATGGGAGGAG	CAGGTACTCACGGGAGTTGG	-929,+121	25.08	1.59
PPR_0350	NM_005452	WDR46	GGATGAGAGGAAAGGCAATTT	CAGGGAGGCCTCTACCTTTC	-931,+151	24.31	2.45
PPR_0351	NM_022374	ATL2	AGCTGTTTGTACACCCGGAC	GTACCTAGGGAGGTCGTGGA	-931,+141	24.28	7.20
PPR_0352	NM_006623	PHGDH	AGGAAGTGGAGGGAAAGGAA	AAAAGCCATTGCTGGAGTTG	-973,+172	24.20	7.53
PPR_0353	NM_003537	HIST1H3B	GATTATGCCGCCCATAAAGA	CGGTAACGGTGAGGCTTTT	-961,+167	24.17	2.86
PPR 0354	NM 016297	PCYOX1	TCCTGCTTTTAGGCAAATGG	GATTTTATCTGGCGGAGCAC	-988.+151	24.02	2.79
PPR 0355	NM 004450	ERH	ATGTGTTCACGAGGCACCTT	GGGAGGGGAAAACGTATGG	-928.+154	23.96	2.50
PPR 0356	NM 002805	PSMC5	CCAGCTCAGAACCCAGAAAG	TCTCCACTCAGATCACGCTC	-898.+177	23.57	2.73
PPR 0357	NM 005760	CEBPZ	ACCCACCATCAGCCAAGTAG	GAGCCGTAACACTTCCTCCA	-973.+163	22.66	4.34
PPR 0358	NM 006280	SSR4	GTGGGAGAAGTCAGCATCGT	GTGCGGAGGCTCTCACTTT	-939.+122	21.41	4.12
PPR 0359	NM 031488	L3MBTL2	TTTGCAAAGCTCCACAACAG	GTTTATCCATCCTCCCACCC	-991 +190	21.33	2.08
PPR 0360	NM 015710	GLTSCR2	GAAGTAGCCCGCTCAAGATG	AGCCCCGCTTCTTATTTCTT	-987 +154	20.89	1.35
PPR 0361	NM 001188	BAK1	AGACATGGTCTCACTTIGTTGC	GGCATCTGGATGTAGCCTTT	-927 +122	20.61	3.05
PPP 0362	NM 001412	FIF1 AY	TGGCCATATGTGGCTACTAAC	CGCCGTCTCTCACTTCTTC	-021 +178	20.01	1 72
PPR 0363	NM 014750	DI GAP5	GAGTGGTTGCTGATGTGGTG	GIGITCICCGICCACCICIC	-900 +161	19.27	1.67
PPR 0364	NM 006407	ARI 6IP5	GCCACTTAGGGGGCTTAGAGA	CGGAGTGGGGGCGATATTAAC	-990 +136	18.40	1.07
PPR 0365	NM 004050	BCI 21 2	CTCTTTCTGGCCTTTGGTTG	CCTGCCGACACCATCTCTAT	-975 +151	17 /6	1 40
DDD 0365	NM 007067	KAT7			-973,7131	17.40	1.43
PPR_0300	NM 024045				-899,+195	17.34	2.37
PPR_030/	NM 004020				-928,+166	17.30	1.00
PPR_0368	NM_004939				-968,+96	17.30	0.38
PPR_0369	NM_004982			GAAAAGTUGATUGATUAUTG	-9/8,+188	17.12	6.00
PPR_03/0	NM_005104	BRD2			-926,+155	17.11	4./2
PPR_03/1	NM_0156/9	I RUB2			-966,+199	16.99	1.44
PPR_0372	NM_018010	1-15/	CAGGUATCUACCACTTACCT	GACCIAGGCACCCCATCTTC	-993,+148	16.19	1.17
PPR_03/3	NM_002946	RPAZ	GUAGGAAGAAGAAGGCATAA		-933,+124	16.06	4.99
PPR_0374	NM_002697	POU2F1	GUGIGAAGGCAGAAAGGA	AGCCGGGGTTGAGTATGAAT	-923,+119	15.80	2.99
PPR_0375	NM_005005	NDUFB9	ACTACCGGCCATGAACACTC	GICCCCAICCCTTACCTCTG	-963,+156	15.18	1.16

表 3.1 (続き):転写活性化能を測定した 472 遺伝子のプロモーター領域の詳細

PPR ID	NM ID	Gene	primer (fw)	primer (rev)	Amplified position	転写活性化能	標準偏差
DDD 0276	NM 002125	SPD10	CCAACCAACTTCTTCACCC		(-xx to +yy: TSS=0)	14.07	1.60
PPR_0370	NM 015057		CCAAGCAACTTCTTTCAGGC		-934,+134	14.97	2.01
PPR 0378	NM 015510	DHRS7B		CTCGACCACTACACCGCTTC	-945 +148	14.92	1 4 9
PPR 0379	NM 004493	HSD17B10	TTATGGCCTGAAGACCTTGG		-943 +150	14.75	3.83
PPR 0380	NM 002413	MGST2	CACCATGCCCTGCTAATTTT	GCTGACCTTCCTTATCGGGTA	-938 +140	13.95	1.66
PPR 0381	NM 033084	FANCD2			-940 +199	13.87	1.00
PPR 0382	NM 012465		CAGGGCCATTITACTICCAT	GGACTCGGTGGTTACACAGG	-997 +131	13.53	0.35
PPR 0383	NM 002787	PSMA2		CCAACTCCATTCCCTACTGG	-934 +180	13.45	2.66
PPR 0384	NM 003958	RNF8	GGCGAGACCCCTGTCTGTAAT		-971 +179	12.42	1.01
PPR 0385	NM 014267	C11orf58	CCAAAATGCTGGGGATTACA	GCATACTGGCCCGAATAAAA	-935 +176	12.42	3 40
PPR 0386	NM 017979	UNC45A	CCTCACTTGTGCCAGACCAC	CTCATGGATGGGGGGGGAGAGG	-992 +108	12.46	2.85
PPR 0387	NM 024102	WDR77	CAAGGGAAGGTCACAAAGGA	CTCCAACTGCCGTTCCAT	-942 +140	11.65	1.08
PPR 0388	NM 003142	SSB	TGGGGATTATGGGGGATTACA	AGCTTCTCATTAGCCACCGA	-982.+143	11.56	1.62
PPR 0389	NM 024094	DSCC1	TTTAGCTCTCAGGGACAGCC	GCATTCAGCTTGGCGATCT	-931.+139	11.53	1.07
PPR 0390	NM 005174	ATP5C1	TAAGTGGCCCTGCTTGACTT	AAGCTCTTCCATCCCTTGC	-922.+141	11.35	2.11
- PPR 0391	NM 014764	DAZAP2	GGCTCAAGTGATCCTCCTTC	AGCCTGAGAAAGATGCAAGG	-922.+136	11.03	0.98
PPR 0392	NM 006460	HEXIM1	TCCTGAAACAGAATGGTACGG	TTGCTAGTTTGAGGCTGGTG	-934.+147	10.33	0.25
PPR_0393	NM_002913	RFC1	CCAGATTTACAGGTTGGGATG	GGCCTTGGGAGAAGAGACTT	-967,+138	10.10	0.83
PPR_0394	NM_016059	PPIL1	GCTCCTCTCAAGGAGCTG	CGTTCAACCCTTTCGATACC	-942,+135	10.07	0.12
PPR_0395	NM_022839	MRPS11	CCTCACACAGATAGCCCCAT	AAGGGACACGAGTAGGAGCA	-952,+158	10.07	0.97
PPR_0396	NM_001757	CBR1	ACAATTGCCTGATGCCTGTT	GTCACCAGCGCTACATGGAT	-966,+161	9.86	0.92
PPR_0397	NM_012450	SLC13A4	GACTCTGCTCAGCATCTCCC	GGCTCGCTGTTGGTAAGACT	-951,+196	9.85	0.53
PPR_0398	NM_003594	TTF2	CCTTCTGTGGTTTCCACGTT	GCTCTTTCCTTTATTCGGGC	-929,+190	9.69	1.16
PPR_0399	NM_015497	TMEM87A	GGAGTCCCCTCCAGATTCTC	ATACTCACCGACGGTATCGG	-919,+189	9.59	0.40
PPR_0400	NM_007054	KIF3A	AATGGAGGGTTTTGAGCAGA	ACTCTCCTCACCGGCATCTT	-960,+129	9.51	2.29
PPR_0401	NM_006209	ENPP2	GCCCCTTCCCTTTTGTTTAG	GTAGAGAGAGGCGCATACCG	-996,+151	8.92	0.71
PPR_0402	NM_012138	AATF	CTAGGCTGATTACCGTTGGG	AACTGTTCCAGTTGCAGCG	-969,+144	8.70	0.27
PPR_0403	NM_000466	PEX1	CGCAAATAAGCCTAGGACGA	TGGTGAAGGCCACAGTCAC	-951,+123	8.63	1.77
PPR_0404	NM_003287	TPD52L1	TCGTGGGAGGAAGTCAAAAC	ACCACTCACCTTGTGCCTG	-967,+176	8.26	0.80
PPR_0405	NM_018206	VPS35	GTGCTGTTTTCCTTGCCTTC	CTAGATGGACGGACCTGAGC	-921,+185	7.76	0.38
PPR_0406	NM_002914	RFC2	ATGACAATTTGGGCTATGGG	AAACGCGCCCATTCTTTAC	-999,+177	7.56	1.36
PPR_0407	NM_031299	CDCA3	AATACTGACAGCAGCGCCTC	TGCGGAGTTAATGACTGCTG	-935,+153	7.48	1.32
PPR_0408	NM_014666	CLINT1	AGATCCTCCTGCCTCAACCT	GCTGGTTCAGGTGACTGACA	-920,+178	7.16	0.47
PPR_0409	NM_002916	RFC4	GCGTGGACATTCTGTAAGCA	GTTCCTCCAGCAGGTTACCA	-935,+188	7.10	0.65
PPR_0410	NM_005032	PLS3	TCCCACAAGTCAGTCTCTTGA	GCTGAGCTTAACCGAGATGC	-925,+186	6.82	1.88
PPR_0411	NM_004199	P4HA2	TTTGTGTTTCAACCTCCTTGG	CAAGACTCGTGACCACTGGA	-923,+122	6.74	0.99
PPR_0412	NM_021800	DNAJC12	TGGAGTCTTGCTCTGTAGCG	AATCAGTCCTTCTTCCCTCG	-958,+85	6.54	0.55
PPR_0413	NM_015361	R3HDM1	ACTTCCAGCCAGTCACACCT	TTACCCGCGTTACTGAGGAG	-961,+168	5.87	0.43
PPR_0414	NM_006626	ZBTB6	GGTGCAGGAACACAGATGC	CCCCTGGAACTCAGTGTCAT	-929,+147	5.25	0.44
PPR_0415	NM_003754	EIF3F	AAAAATGGAGTAACAACACCCA	GTCTGAGGATGAGGCTGGAG	-949,+168	5.11	1.89
PPR_0416	NM_014673	EMC2	CCAATAACTTTCGGCTGCAT	GACACCAGAGAACCCAGCTC	-974,+153	4.94	0.34
PPR_0417	NM_018290	PGM2	CCCCTGACCAAAACTACTGG	GTGCCCCTCACCTTGTCC	-922,+140	4.62	1.26
PPR_0418	NM_014814	PSMD6	TGCAATCATGTTTGTTGAATGA	CATCTTCATGCTGCGAGGTA	-965,+153	4.49	1.02
PPR_0419	NM_018061	PRPF38B	TTCCATAATTTTGCATCACAAG	GATCTGTAGGGGGGCTGTGTA	-975,+201	4.37	2.10
PPR_0420	NM_016047	SF3B6	GGGACGGAGATTCTGGGTAT	GCGGGCTGATGAAGTTACC	-976,+107	4.29	1.31
PPR_0421	NM_006109	PRMT5	CTCAGGACTCCTTGCCAGTC	GCCGGGATTCCTTGATACTA	-992,+55	4.18	0.57
PPR_0422	NM_006090	CEPT1	GGTGGCTCTCGCCTGTAAT	TCAACCCTTTCCCACAAAAG	-923,+123	3.70	0.81
PPR_0423	NM_020165	RAD18	TTGCAATTGGTGAAAACTGG	AGGACATCCTCCTCAAAGGG	-932,+187	3.61	0.43
PPR_0424	NM_004990	MARS	TGGAGAGAAAGGGTGATGGA	CTCCACCTGGCAAAGACATC	-921,+122	3.56	0.16
PPR_0425	NM_004637	RAB7A	AGCGGCAAAACCAGAATAGA	TCCACAGCAGAGAGGCTTAG	-944,+122	3.28	0.31
PPR_0426	NM_006431	CCT2	CGCCCGGCTAATTTTTGTAT	GCAAGAGGCAGGGGAGTC	-968,+117	3.24	1.91
PPR_0427	NM_012255	XRN2	GGGACCACCAGAAAACAAAA	GCCTCCTCACCTTCTCTTCC	-911,+161	3.15	0.19
PPR_0428	NM_007317	KIF22	CCCCAGTTAAGAAATGGAGGT	ATCACTTGCTCCCGCTGTT	-923,+120	3.15	0.30
PPR_0429	NM_017749	AMBRA1	AAGGGTGTTCACAGCAGTGTT	CCCTCATTACCCTTCCAAGC	-950,+121	3.03	0.58
PPR_0430	NM_012245	SNW1	CIGGACAGIIIAICCCIGAAGI	GIACGGGGGGGGGGGGGIICICIC	-980,+119	2.86	2.//
PPR_0431	NM_018685	ANLN		ACGCATCATCAGCACTTGAG	-931,+134	2.83	1.13
PPR_0432	NM_033018	CDK 16	GAGCCTGTTCTATGCCAAGG	CCCCTACTCGGTCTCACTTG	-968,+168	2.83	0.11
PPR_0433	NM_006183	NIS	AACAGGGAAAGAAAGCCGAT	IGGATITICATICCIGCCAT	-955,+132	2.46	0.32
PPR_0434	NM_005758				-983,+118	2.08	0.53
PPR_0435	NM_002118	HLA-DMB		GGGTAGCAGCGAGAGAGTG	-928,+151	2.02	0.71
PPR_0430	NM_015425	POLRIA			-920,+135	1.98	0.01
PPR_0437	NM_004643	PABPINI		GGTGTACCTGCACCCAGTCT	-962,+122	1.85	2.07
PPR_0438	NM_012474				-949,+150	1.//	1.00
PPR_0439	NW1_000163				-946,+130	1.71	0.01
PPR_0440	NM 004992				995,1105	1.08	0.91
	NM 004060				-827,+125	1.00	0.39
DDD 0442	NM 022074				-922,+144	1.01	0.23
DDD 0443	NM 006004				-900,7139	1.1	0.07
PPR 0444	NM 001380	DOCKI			-011 +120	1.41	0.04
PPR 0449	NM 002605	POL R2F			-07/ +100	1.39	0.09
PPR 0447	NM 005493	RANBPO	ATGCAGTCCTTTTGGGGGATA	CCAGGATTCCAACTTTCCAA	-909 +199	1.39	0.05
PPR 0448	NM 018140	SMG8	CTCTCTTTCGCCACCAAGAT	TTCAAAATGGGAAGGCTGTG	-955 +135	1.31	0.10
PPR 0440	NM 002802	PSMC1	TTCCATTCTCAACCAGGTCTC	CAGCATCTGGTCCCTTTGTT	-923 +157	1.20	0.40
PPR_0450	NM_012343	NNT	TTGGATACATGATATGTGGGTAGG	CAGTGGTGAGTGGAGAGCAG	-993,+126	1.24	0.38

表 3.1 (続き):転写活性化能を測定した 472 遺伝子のプロモーター領域の詳細

PPR ID	NM ID	Gene Name	primer (fw)	primer (rev)	Amplified position (-xx to +yy: TSS=0)	転写活性化能	標準偏差
PPR_0451	NM_014003	DHX38	CTTAAGGGGAGATGGGGAAG	TGCAACAAGAAAAAGGCTGA	-931,+123	1.23	0.31
PPR_0452	NM_001752	CAT	CATGGGGAGAACATGCAGAC	ACCAATCACGCCAATAAACC	-920,+139	1.22	0.57
PPR_0453	NM_005087	FXR1	GTGGGCAAAGTGAACAGACA	CCTGGATGCCAAACAAGAAC	-948,+126	1.17	0.10
PPR_0454	NM_005891	ACAT2	GCTGGTGTCAAACTGCTGAC	TGATGGGTCCTTTTGCTCTC	-962,+121	1.14	0.19
PPR_0455	NM_001879	MASP1	TGTTGTTGTGGAGGGGGTAA	ATTTGACACTGGTCCCCAAA	-921,+126	1.11	0.15
PPR_0456	NM_006819	STIP1	CCAAACTTTCCCGCACTTT	ATACCGCTGCTTGATTGGTA	-921,+119	1.09	0.20
PPR_0457	NM_014742	TM9SF4	GGAGCCCTGAGGTTGTTTTT	GCTCCAAAAATCCAGGAACA	-982,+143	1.06	0.40
PPR_0458	NM_015387	MOB4	CCTTCCCTCAGCATTCTCAA	CCTAGTTGCCCGACAAGAAA	-987,+118	0.89	0.16
PPR_0459	NM_001398	ECH1	TTGAGATCTTGCTCTGTCGC	CCCATAAGGCAAGAGGTGAC	-935,+130	0.86	0.19
PPR_0460	NM_002810	PSMD4	AATACAAAATTAGCCGGGCA	GTCCAGCGGGCTCCTTAC	-956,+200	0.86	0.07
PPR_0461	NM_000972	RPL7A	ATGAGCATCTGGGCTCTTTC	CAAACAGGGGATTCACCACT	-920,+119	0.83	0.30
PPR_0462	NM_004526	MCM2	CTGGGCGTGACTCATTCTTC	CACACACCCCCCTGAGTC	-950,+129	0.80	0.04
PPR_0463	NM_006659	TUBGCP2	CCCACTTGGGTGTCTGTGA	TGTAGACCTCAGCCCCATCT	-919,+124	0.77	0.19
PPR_0464	NM_002567	PEBP1	TGTGTGGAGAAAACGGACAA	GCTCCCTGGCCTCTGATT	-957,+151	0.77	0.40
PPR_0465	NM_024658	IPO4	CAACTTGGCAAAGACCCTGT	ACAGGGAAGGAGAGTCCCAG	-978,+126	0.68	0.26
PPR_0466	NM_000108	DLD	GCCCTTAGGAAATGGTAGCC	GAAAGGAACTGTCAGCTAATGTGA	-951,+135	0.63	0.05
PPR_0467	NM_030877	CTNNBL1	GAGTGTTGGGAGAGTCTGAGATG	CCCCATGCCTGAAGACTTT	-931,+197	0.63	0.03
PPR_0468	NM_001863	COX6B1	CCCTGGATGATGGAGAAAAA	TTGTTACTGGTTGGGGTGAA	-964,+160	0.61	0.06
PPR_0469	NM_024725	CCDC82	GATCTCCCTGCATCTTTCCA	TTCTCGCTTTTGTGCAGCTA	-991,+133	0.57	0.06
PPR_0470	NM_012086	GTF3C3	TGGGCAACAATGTGTAGTAACC	CCTAGCATCGCCTCACTTTC	-953,+191	0.48	0.04
PPR_0471	NM_006153	NCK1	GAAACCCCGTCACTGCTAAA	ACAAGGCCGTCTCACCTTC	-924,+133	0.33	0.05
PPR_0472	NM_007344	TTF1	CCACAAGGTGGGGCTAATAA	GAGACCTCAGGCCAAAAGG	-918,+163	0.30	0.07

(図 3.3) に測定された 472 遺伝子のプロモーター領域の転写活性化能のヒストグラム を示す。図はランダム領域(後述)が有する転写活性化能の測定値の平均を基準(10⁰)と した。(図 3.3)に示すように、各遺伝子のプロモーター領域が有する転写活性化能の分布 は転写活性化能 10^{0.8} を境界とする二峰性の分布様式を示すように考えられた。転写活性 化能の値が 10^{0.8} 以上の強い転写活性化能を有するプロモーター領域群を P1(遺伝子のプ ロモーター領域群全体に対し 87%)、転写活性化能の値が 10^{0.8} 未満の弱い転写活性化能を 有するプロモーター領域群を P2(遺伝子のプロモーター領域群全体に対し 13%)として、 以下の解析を行った(表 3.4)。

プロモーター領域群 P1 および P2 に対し、転写活性化能の分布様式における差異を統計的に調べるため、Kolmogorov-Smirnov 検定および chi-square 検定を行なった(表 3.3)。 ひとつの正規分布からなる一峰性の分布であることが否定された。統計的に二峰性の分 布であることが示された(表 3.3)。

プロモーター領域以外のヒトゲノム配列中からランダムに抽出した、遺伝子のプロモ ーター領域と同等の長さの DNA 断片に対しても遺伝子のプロモーター領域と同様の方 法を用いて、転写活性化能の測定を行った(ランダム領域、と称する)。クローニングさ れたランダム領域の配列を決定し、ゲノム配列との配列相同性を比較した。既存のプロ モーター領域と重複するプラスミド DNA を除去し、ヒトゲノム配列中からランダムに抽 出され、遺伝子のプロモーター領域同様の約 1.0kb の DNA 断片であるものを選択した。 最終的に 251 種類のランダム領域が有する転写活性化能を測定することができた(図 3.2)。 測定に用いたランダム領域の詳細を(表 3.2)に示す。 表 3.3:遺伝子のプロモーター領域群 P1 および P2 が有する転写活性化能の分布の差異

(P1+P2)プロモーター領域群 P1、P2 を含めた転写活性化能の分布がひとつの正規分布に所属するか Kolmogorov-Smirnov 検定および chi-square 検定による p 値を示した。(P1) (P2)プロモーター領域群 P1 および P2 が有する転写活性化能の分布がそれぞれひとつの正規分布に所属するか Kolmogorov-Smirnov 検定および chi -square 検定による p 値を示した

	K. S. test	chi-sq test
P1+P2	5.6E-05	<1.0e-200
P1	0.85	0.55
P2	0.54	0.92

図 3.2: ランダム配列の転写活性化能

転写活性化能の測定を行なうことができた 251 種類のランダム領域が有する転写活性化能の測定値を、転写活性 化能の強い順に左から並べた。

表 3.2:ランダム配列の転写活性化能

Genomic fragment ID	Gene Location	Amplified length	転写活性化能	標準偏差
Random 0001	cbr15 35590094 35591033 +	940	27 383	4 293
Random 0002	chr8 4078000 4077123 -	878	25.680	1 1 / 0
Random_0002		1150	11 100	1.140
Random_0003	chrig 7022234 7,9424032,1	1072	0.761	1.098
Random_0004	chr2 50080600 50070520 -	1072	0./01	0.200
Random_0005	chr3,50960009,50979539,-	10/1	0.113	0.362
Random_0006	chr3,1385/9032,1385/9998,+	967	7.477	2.363
Random_0007	chr17,36401439,36400570,-	870	5.950	0.325
Random_0008	chr6,34055810,34056719,+	910	5.6/6	0.731
Random_0009	chr10,31/13/44,31/126/8,-	1067	4.042	0.718
Random_0010	chr9,69636078,69637141,+	1064	3.983	0.549
Random_0011	chr18,7525872,7524792,-	1081	3.343	0.500
Random_0012	chr1,17777280,17778327,+	1048	3.228	0.145
Random_0013	chr10,109842571,109843520,+	950	3.131	0.261
Random_0014	chr8,30426631,30427734,+	1104	3.099	0.246
Random_0015	chr7,78744649,78743599,-	1051	2.991	0.066
Random_0016	chr2,18015555,18014700,-	856	2.914	0.238
Random_0017	chr14,89108498,89109455,+	958	2.736	0.332
Random_0018	chr17,13415383,13416421,+	1039	2.683	0.279
Random_0019	chr4,93883061,93882047,-	1015	2.416	0.118
Random_0020	chr18,7524793,7525873,+	1081	2.256	0.328
Random_0021	chr4,150560397,150561283,+	887	2.253	0.682
Random 0022	chr8,9422944,9424086,+	1143	2.160	0.775
Random 0023	chr1.64743892.64742850	1043	2.118	0.305
Random 0024	chr12.109063555.109062644	912	1.989	0.308
Random 0025	chr13.105386498.105385484	1015	1.980	0.615
Random 0026	chr3 99562555 99561526 -	1030	1 907	0 2 1 1
Random 0027	chr12 39036693 39037632 +	940	1 850	0 191
Random 0028	chr1 67029525 67030514 +	990	1 687	0 264
Random 0029	chr11 64202879 64203817 +	939	1.683	0 145
Random 0030	chr21 28986440 28987384 +	945	1.660	0.140
Random 0031	chr14 16268811 16267870 -	033	1.000	0.103
Random 0032	chr5 171465160 171466190 +	1031	1.000	0.150
Random 0033	chr12 2508525 2509408 +	884	1.542	0.076
Random 0034	chr1 64742851 64743893 +	1043	1 480	0.240
Random 0035	chr9 115881822 115880862 -	961	1 480	0.240
Random 0036	chr17 40653879 40654839 +	961	1 474	0 465
Random 0037	chr1 211893852 211894882 +	1031	1 4 3 9	0.081
Random 0038	chr6 45949582 45950494 +	913	1 4 2 4	0 107
Random 0039	chr3 184093542 184094513 +	972	1.370	0.099
Random 0040	chr9 107653477 107652312 -	1166	1 297	0 134
Random 0041	chr12 39036694 39037633 +	940	1 187	0 140
Random 0042	chr6 168991558 168992717 +	1160	1 093	0.075
Random 0043	chr17.27291470.27292342.+	873	1.056	0.156
Random 0044	chr7.147232508.147231463	1046	1.048	0.093
Random 0045	chr8.97583412.97584608.+	1197	1.047	0.074
Random 0046	chr17.57675488.57676558.+	1071	1.010	0.261
Random 0047	chr1.31123646.31122469	1178	0.981	0.183
Random 0048	chr18 5774633 5775787 +	1155	0.969	0.080
Random 0049	chrX 31888240 31887377 -	864	0.959	0.066
Random 0050	chr1 25097460 25096441 -	1020	0.946	0 113
Random 0051	chr3 84426552 84427550 +	999	0.010	0 174
Random 0052	chr12 26530719 26529886 -	834	0.002	0.055
Random 0053	chr7 2883037 2881994 -	1044	0.860	0 154
Random 0054	chr14 56467624 56468526 +	003	0.000	0.063
Random_0054	oby1 67020526 67020515 ±	000	0.055	0.003
Random_0056	chr12 61015097 61017004 +	1010	0.000	0.007
Random_0050	chr13,01913987,01917004,+	1120	0.043	0.133
Random_0057	chr3,194851983,194853120,+	1138	0.841	0.180
Random_0058	chr17,68269645,68270599,+	955	0.831	0.086
Random_0059	chr5,/8253375,/8254366,+	992	0.825	0.022
Random_0060	chr9,98901353,98900417,-	937	0.825	0.115
Random_0061	chr20,58893940,58892840,-	1101	0.822	0.077
Random_0062	chr3,188609139,188610122,+	984	0.819	0.381
Random_0063	chr6,166//1950,166771034,-	917	0.805	0.068
Random_0064	cnr6,138/48164,138747238,-	927	0.780	0.099
Random_0065	chr3,84426553,84427551,+	999	0.777	0.156
Random_0066	chr4,/8546652,/8545607,-	1046	0.768	0.070
Random_0067	chr10,3262701,3263683,+	983	0.753	0.143
Random_0068	chr14,49006331,49005317,-	1015	0.735	0.042
Random_0069	chr3,194851982,194853119,+	1138	0.711	0.128
Random_0070	chr12,125350037,125350848,+	812	0.685	0.126
Random_0071	chr10,117838397,117839597,+	1201	0.685	0.143
Random_0072	chr6,45949583,45950495,+	913	0.680	0.056
Random_0073	chr2,141769918,141770944,+	1027	0.661	0.059
Random_0074	chr5,145442232,145441048,-	1185	0.661	0.031
Random 0075	chry 11/525322 117526216 +	895	0.632	0 0 2 5

表 3.2 (続き): ランダム配列の転写活性化能

Genomic	Gene Location	Amplified	転写话性化能	煙淮信羊
fragment ID	Gene Eccation	length	ᅕᆦᅭᅻᄱᇆᆙᇟ	1家牛腩左
Random_0076	chr21,29687700,29688550,+	851	0.625	0.042
Random_0077	chr3,58008950,58009870,+	921	0.623	0.215
Random_0078	chr5,1/1465234,1/1466151,+	918	0.613	0.164
Random_0079 Random 0080	chr11,122348497,122347310,-	1061	0.605	0.052
Random 0081	$chr^2 206006006 206007880 +$	001	0.000	0.088
Random 0082	chr5 45823982 45824957 +	976	0.585	0.049
Random 0083	chr1 36284480 36285464 +	985	0.568	0.040
Random 0084	chr1 23552615 23553715 +	1101	0.553	0 1 1 2
Random 0085	chr6.7185303.7184323	981	0.548	0.047
Random 0086	chr9,108709197,108710066,+	870	0.544	0.063
Random_0087	chr8,75114785,75113796,-	990	0.531	0.030
Random_0088	chr22,44770179,44771306,+	1128	0.528	0.110
Random_0089	chr12,93356395,93357244,+	850	0.516	0.045
Random_0090	chr3,27922735,27923574,+	840	0.516	0.198
Random_0091	chr9,115880863,115881823,+	961	0.507	0.169
Random_0092	chr6,47657861,47658877,+	1017	0.507	0.022
Random_0093	chr20,5/6563/1,5/65/303,+	933	0.499	0.188
Random_0094	chr/,1394/3298,1394/2344,-	900	0.491	0.035
Random_0095	chr11,130///81,130/8908,+	1017	0.487	0.083
Random 0090	chr0,47037002,47030870,+	950	0.479	0.070
Random 0098	chr3 12444331 12445416 +	1086	0.474	0.035
Random 0099	chr4 2378533 2379627 +	1095	0.469	0.076
Random 0100	chr17.68269658.68270593.+	936	0.464	0.122
Random 0101	chr22,37126691,37125788,-	904	0.459	0.151
Random_0102	chr14,68808129,68809119,+	991	0.458	0.099
Random_0103	chr6,33671148,33672260,+	1113	0.458	0.041
Random_0104	chr12,130550130,130551050,+	921	0.444	0.088
Random_0105	chr10,26957677,26956756,-	922	0.441	0.013
Random_0106	chr9,87357107,87358231,+	1125	0.439	0.024
Random_0107	chr10,31713679,31712745,-	935	0.436	0.035
Random_0108	chr3,110212732,110213735,+	1004	0.433	0.116
Random_0109	chr15,54382959,54382033,-	927	0.420	0.022
Random_0110	chr15,32030703,32029838,-	866	0.419	0.045
Random_0111 Pandom_0112	cnr3,100083431,100084542,+	047	0.415	0.040
Random 0113	chr1 153266139 153267294 +	1156	0.414	0.031
Random 0114	chr2 66135844 66136742 +	899	0.409	0 104
Random 0115	chr1.13628440.13627389	1052	0.405	0.048
Random_0116	chr10,20765002,20766008,+	1007	0.403	0.066
Random_0117	chr14,16267863,16268812,+	950	0.401	0.076
Random_0118	chr11,36023409,36024376,+	968	0.396	0.056
Random_0119	chr11,106098182,106097050,-	1133	0.394	0.042
Random_0120	chr9,5538611,5539699,+	1089	0.390	0.013
Random_0121	chr18,5774635,5775788,+	1154	0.387	0.161
Random_0122	chr2,50675556,50674390,-	1167	0.384	0.017
Random_0123	chr6,155592633,155593624,+	992	0.382	0.049
Random_0124	chr22,20880391,20881284,+	894	0.380	0.021
Random_0125	chr9,125100057,125101505,+	909	0.378	0.031
Random 0127	chr4 72337174 72336255 -	903	0.370	0.028
Random 0128	chr11.106098182.106097074	1109	0.365	0.020
Random 0129	chr4,4844389,4843206,-	1184	0.363	0.035
Random_0130	chr9,114672083,114673059,+	977	0.363	0.028
Random_0131	chr9,123160658,123161566,+	909	0.346	0.011
Random_0132	chr8,81741625,81740527,-	1099	0.343	0.024
Random_0133	chr4,93365632,93364606,-	1027	0.338	0.025
Random_0134	chr12,15639018,15639970,+	953	0.335	0.052
Random_0135	chr12,22189035,22189927,+	893	0.331	0.026
Random_0136	chr13,61917002,61915976,-	1027	0.328	0.036
Random_0137	chr3,126115008,126116017,+	1010	0.326	0.051
Random_UI38	cnr1,38828320,3882/362,-	965	0.321	0.048
Random_0139	chr4,111521043,111520111,-	933	0.320	0.032
Random 01/1	chr8 108936804 108035057 -	015 Q 1 0	0.318	0.002
Random 0147	chr3 45338387 45337383 –	1005	0.314	0.024
Random 0143	chr16.29636005.29634831 -	1175	0.311	0.030
Random 0144	chr16,88053439.88052469	971	0.310	0.051
Random 0145	chrX,29436543,29437652,+	1110	0.308	0.045
Random_0146	chr12,129530303,129531305,+	1003	0.306	0.033
Random_0147	chrX,65926946,65927824,+	879	0.306	0.026
Random_0148	chr7,143834673,143835481,+	809	0.306	0.032
Random 0149	chr3.12444331.12445416 +	1086	0 305	0.038

表 3.2 (続き): ランダム配列の転写活性化能

Genomic	• • • •	Amplified		
fragment ID	Gene Location	length	転写沽性化能	標準偏差
Random_0150	chr18,2230034,2231080,+	1047	0.304	0.057
Random_0151	chr15,18616521,18617275,+	755	0.300	0.040
Random_0152	chr1,152674897,152675878,+	982	0.291	0.029
Random_0153	chr12,109062645,109063556,+	912	0.291	0.039
Random_0154	chr13,59835160,59834144,-	1017	0.290	0.050
Random_0155	chr15,50888152,50889065,+	914	0.285	0.046
Random_0156	chr8,/0215386,/0214368,-	1019	0.284	0.033
Random_0157	chr12,11238804,11239629,+	826	0.282	0.038
Random_0158	chr18,39930407,39931230,+	830	0.280	0.080
Random_0159	$chr20.40250252.40260229 \pm$	909	0.279	0.038
Random 0161	chr14 68809124 68808120 -	1005	0.278	0.020
Random 0162	chr9 114603112 114602294 -	819	0.267	0.037
Random 0163	chr7 118017457 118018508 +	1052	0.250	0.008
Random 0164	chr8.72163693.72164655.+	963	0.249	0.028
Random_0165	chr14,90549392,90550489,+	1098	0.249	0.033
Random_0166	chr3,141000512,140999588,-	925	0.247	0.035
Random_0167	chr2,49485074,49486218,+	1145	0.245	0.019
Random_0168	chr9,121462084,121463158,+	1075	0.243	0.034
Random_0169	chr2,200936234,200937265,+	1032	0.243	0.019
Random_0170	chr2,173110787,173111922,+	1136	0.238	0.034
Random_0171	chr3,49978242,49979159,+	918	0.238	0.045
Random_0172	chr9,29642003,29642915,+	913	0.235	0.016
Random_0173	chr21,28986441,28987385,+	945	0.235	0.034
Random_0174	chr1,157976003,157977122,+	1120	0.234	0.032
Random_0175	chr2,207414071,207415111,+	1041	0.231	0.010
Random_01/6	chr4,23/9626,23/8531,-	1096	0.227	0.026
Random_01//	chr19,29923445,29924295,+	851	0.226	0.014
Random_0178	chr/,1029/6086,1029//086,+	1001	0.222	0.044
Random_0179	chr11,83903240,83904312,+	10/3	0.221	0.021
Random 0181	chr21,32030020,32034971,-	906	0.214	0.034
Random 0182	chr20.19165117.19166165 +	1049	0.214	0.040
Random 0183	chr1 118094193 118093109 -	1045	0.203	0.024
Random 0184	chr3 157187460 157188324 +	865	0.202	0.010
Random 0185	chr8.72164654.72163692	963	0.200	0.004
Random 0186	chr18,39930406,39931235,+	830	0.199	0.018
Random_0187	chr1,33062335,33063236,+	902	0.199	0.013
Random_0188	chr3,191927960,191928999,+	1040	0.199	0.029
Random_0189	chr6,34525191,34526273,+	1083	0.198	0.014
Random_0190	chr13,18704170,18705029,+	860	0.198	0.036
Random_0191	chr6,130816506,130817438,+	933	0.196	0.014
Random_0192	chr15,87401162,87400122,-	1041	0.195	0.028
Random_0193	chr13,36110970,36112020,+	1051	0.192	0.009
Random_0194	chr4,136431/5/,136432569,+	813	0.191	0.016
Random_0195	chr3,111285533,111284469,-	1065	0.191	0.040
Random_0190	chr10, 67400123, 67401103, +	1041	0.100	0.027
Random 0198	chr20,31348001,31347794, chr1 25096442 25097461 +	1020	0.185	0.023
Random 0199	chr3 55530689 55531669 +	981	0.184	0.025
Random 0200	chr1 77973824 77974798 +	975	0 183	0.008
Random 0201	chr6.155592632.155593623.+	992	0.179	0.014
Random_0202	chr6,159758884,159759936,+	1053	0.178	0.015
Random_0203	chr21,40008229,40009152,+	924	0.177	0.032
Random_0204	chr16,68475827,68474966,-	862	0.173	0.013
Random_0205	chr1,212049559,212050576,+	1018	0.172	0.020
Random_0206	chr2,5426753,5427908,+	1156	0.166	0.043
Random_0207	chr1,172359536,172360620,+	1085	0.164	0.014
Random_0208	chr17,49214221,49215244,+	1024	0.161	0.015
Random_0209	chr13,105386565,105385435,-	1131	0.158	0.041
Random_0210	chr20,330/2349,330/32/0,+	922	0.155	0.015
Random_0211	cnr/,8090/814,80900903,-	910	0.153	0.008
Random 0212	chr5,111204477,111205525,+	1049	0.152	0.114
Random 0211	chr13 103480279 103481359 +	109	0.149	0.013
Random 0215	chr2.207414072 207415112 +	1041	0.149	0.020
Random 0216	chr16,51367095.51368078.+	984	0.148	0.017
Random_0217	chr13,46529117,46530042.+	926	0.148	0.023
 Random_0218	chr15,54565558,54566729,+	1172	0.147	0.024
Random_0219	chr2,141769908,141770943,+	1036	0.146	0.031
Random_0220	chr6,129489324,129490175,+	852	0.145	0.002
Random_0221	chr20,11928613,11929766,+	1154	0.145	0.009
Random_0222	chr13,37885372,37886519,+	1148	0.137	0.011
Random_0223	chr6,67472457,67473454,+	998	0.136	0.023
Random_0224	cnr18,29144186,29143002,-	1185	0.134	0.041
表 3.2 (続き): ランダム配列の転写活性化能

Genomic	Gene Location	Amplified	転写 活性化能	還進信兰
fragment ID	Gene Location	length	私子冶住化能	惊竿调左
Random_0226	chrY,9560073,9561189,+	1117	0.132	0.021
Random_0227	chrX,65926945,65927824,+	880	0.131	0.021
Random_0228	chr16,6522055,6521060,-	996	0.131	0.007
Random_0229	chr9,89301760,89302767,+	1008	0.131	0.009
Random_0230	chr17,22976294,22977162,+	869	0.130	0.019
Random_0231	chr17,36948122,36949226,+	1105	0.128	0.020
Random_0232	chr10,32319629,32318589,-	1041	0.127	0.008
Random_0233	chr3,45337394,45338388,+	995	0.117	0.018
Random_0234	chr6,3331380,3332517,+	1138	0.117	0.023
Random_0235	chr18,24972366,24973291,+	926	0.116	0.014
Random_0236	chr16,29634832,29636006,+	1175	0.116	0.019
Random_0237	chr3,123462548,123463551,+	1004	0.114	0.020
Random_0238	chr7,34063962,34064997,+	1036	0.109	0.023
Random_0239	chr6,144340326,144341259,+	934	0.107	0.021
Random_0240	chr13,101659429,101660482,+	1054	0.106	0.004
Random_0241	chr20,59920738,59921836,+	1099	0.106	0.033
Random_0242	chr6,5731876,5732697,+	822	0.104	0.014
Random_0243	chr3,28955643,28954674,-	970	0.099	0.005
Random_0244	chr14,89108497,89109455,+	959	0.098	0.017
Random_0245	chr21,32634979,32636025,+	1047	0.094	0.014
Random_0246	chr14,22915173,22916154,+	982	0.088	0.012
Random_0247	chr4,37610540,37611563,+	1024	0.087	0.031
Random_0248	chr7,118570410,118571419,+	1010	0.082	0.023
Random_0249	chr8,104432116,104433308,+	1193	0.082	0.010
Random_0250	chr11,13678929,13677773,-	1157	0.069	0.008
Random_0251	chr21,33700085,33701164,+	1080	0.012	0.001

ランダム領域の転写活性化能(図 3.2)を、その平均値を基準(10⁰)としたヒストグラムを (図 3.3)として示した。(図 3.3)から、ランダム領域群が有する転写活性化能の分布のち、 転写活性化能 10⁰ 以上のランダム領域群が有する転写活性化能の分布が、プロモーター 領域群 P2 の転写活性化能の分布と重なっていることが明らかになった。

ランダム領域について、プロモーター領域群 P2 と転写活性化能の分布が重なるもの (転写活性化能 10⁰以上のもの)を R1(ランダム領域群全体おける 18%)、残りを R2(ラン ダム領域群全体おける 82%)とした(表 3.4)。

転写活性化能	Promoter	P1	P2	random	R1	R2
>10 ³	2	2	0	0	0	0
$10^{3}-10^{2}$	175	175	0	0	0	0
10 ² -10 ¹	217	217	0	3	3	0
10 ¹ -10 ⁰	63	17	46	43	43	0
10 ⁰ -10 ⁻¹	15	0	15	196	0	196
<10-1	0	0	0	9	0	9
Total	472	411	61	251	46	205

表 3.4:各領域群の転写活性化能とクローン数

Fold luciferase activities

図 3.3:遺伝子のプロモーター配列とランダム配列の転写活性化能の分布 転写活性化能を測定できた、472 遺伝子のプロモーター領域(青)、251 種類のランダム領域(赤)が有する転写活 性化能をヒストグラムとして示した。このとき、ランダム領域の転写活性化能の平均値を1とした。また、コン トロールとして、強い転写活性化能を有することが知られる EEF1A1 および空ベクターである pGL3 basic vector

についてそれぞれ矢印で示す。

3.1.2 遺伝子のプロモーター配列の転写活性化能の確認

弱い転写活性化能を有したプロモーター配列群 P2 が、誤って抽出されたプロモーター 配列であるため、強い転写活性化能を示していない可能性について検討した。既報の論 文で解析されたプロモーター領域および完全長 cDNA が少なくとも3クローン以上対応 するプロモーター領域 445 種について、転写活性化能の分布および配列解析を行った(図 3.4、表 3.5、3.6)。その結果は全体のプロモーター領域を用いて行ったものと同様であっ た(図 3. 表 3.5、3.6)。

Fold luciferase activities

図 3.4: ヒト完全長 cDNA1 クローンおよび 3 クローンにサポートされた遺伝子のプロモーター領域における転写 活性化能の分布

少なくとも 1 クローンのヒト完全長 cDNA クローンにサポートされる 472 遺伝子のプロモーター領域(黒)、少な くとも 3 クローンのヒト完全長 cDNA クローンにサポートされる 445 遺伝子のプロモーター領域(白)が有する 転写活性化能をヒストグラムとして示した。このとき、ランダム領域の転写活性化能の平均値を 1 とした。

表 3.5: 少なくとも 3 クローン以上のヒト完全長 cDNA にサポートされる遺伝子のプロモーター

領域群 P1 および P2 が有する転写活性化能の分布における統計的な差異

(P1+P2) プロモーター領域群 P1、P2 を含めた転写活性化能の分布がひとつの正規分布に所属するか Kolmogorov-Smirnov 検定および chi-square 検定による p 値を示した。(P1) (P2) プロモーター領域群 P1 および P2 が有する転写活性化能の分布がそれぞれひとつの正規分布に所属するか Kolmogorov-Smirnov 検定および chi -square 検定による p 値を示した

	K.S. test	chi-sq test
P1+P2	2.2E-04	4.4E-16
P1	0.88	0.76
P2	0.37	0.42

*Promoters with >3 supporting oligo-cap cDNAs were used

表 3.6: 少なくとも 3 クローン以上のヒト完全長 cDNA にサポートされる遺伝子のプロモーター 領域群が有する配列上の特徴

	Р	P1	P2
CpG island	262 (59%)	254 (64%) * ²	8 (17%) * ²
TATA box: strict	29 (7%)	28 (7%)	1 (2%)
TATA box: less strict	94 (21%)	79 (20%) * ³	15 (32%) * ³
Average G+C content	53%	55%* ¹	48% ¹
TOTAL	445	398	47

*Promoters with >3 supporting oligo-cap cDNAs were used

*1p<2.0e-7 *2p<7.0e-5 *3p<8.0e-2

3.1.3 TATA box の探索、GC 含有率、CpG island の探索

遺伝子のプロモーター領域群全体とプロモーター領域群 P1、P2 のそれぞれに対し、遺 伝子のプロモーター領域に存在するエレメントである CpG island および TATA box を有す るプロモーター領域の存在率と、GC 含有率を計算した。結果を表 3.7 に示す。TATA box の検索については strict TATA box(TATA[T/A] [T/A]配列の完全マッチを求めた厳しい検索 条件)と less-strict TATAbox(マトリックス検索を用いた緩やかな検索条件)の2種類の方法 で行った。

遺伝子のプロモーター領域群全体に対する配列解析の結果では、解析対象となった遺 伝子のプロモーター領域群の GC 含有率は 53%であった。ヒトゲノム配列の GC 含有率 (41%)より高い値を示していた。これは先行研究のプロモーター領域に対する解析結果と 一致していた[10]。プロモーター領域群 P1 および P2 について比較したところ、GC 含有 率は P1 が 54%、P2 が 47%と P1 のほうが高かった(p<6.0e-10)。CpG island を有するプロ モーター領域の存在率は、P1 が 63%、P2 が 13%と CpG island を有するプロモーター領 域も P1 が多かった (p<1.0e-6)。TATA box を有するプロモーター領域の存在率は、strict TATA box は P1 および P2 共に 7%と同等であったが、less-strict TATA box を有するプロモ ーター領域は P1 が 20%、P2 が 36%と P2 に多かった(p<1.0e-2)。二峰性の転写活性化能 の分布様式を形成するプロモーター領域群 P1 および P2 の間には、配列上の特徴にも差 異が存在していることが明らかとなった。

ランダム領域群全体、ランダム領域群 R1 と R2 のそれぞれに対し、同様に、CpG island および TATA box を有するランダム領域の存在率、GC 含有率について配列解析を行った (表 3.7)。ランダム領域群の GC 含有率は 45%とヒトゲノム配列全体における GC 含有率 (41%)と類似していた。CpG island を有しているランダム領域群は存在しなかった。ラン ダム領域群 R1 と R2 を比較したところ、strict TATA box を有するランダム領域の存在率 は R1 が 24%、R2 が 16%、less-strict TATA box を有するランダム領域の存在率は R1 が 70%、 **R2** が 51%と、TATA box を有するランダム領域が R1 に多かった。GC 含有率および CpG island を有するランダム領域の存在率については、R1 と R2 の間に差異はみられなかった(%)。

表 3.7:遺伝子のプロモーター領域及びランダム領域の配列上の特徴

	promoter	P1	P2	Random	Rl	R2
CpGisland	267 (57%)	259 (63%) *1	8 (13 %) *1	0 (0%)	0 (0%)	0 (0%)
TATA box: strict	34 (7%)	30 (7%)	4 (7 %)	47 (19%)	11 (24%)	32 (16%)
TATA box: less strict	103 (22%)	81 (20%) * ²	22 (36%) * ²	140 (56%)	32 (70%)	104 (51%)
Average G+C content:	53%	54%* ³	47%* ³	45%	44%	45%
クローン数	472	411	61	251	46	205

 $*^{1}p < 1.0e-6$ $*^{2}p < 1.0e-2$ $*^{3}p < 6.0e-10$

3.1.4 転写因子結合配列の探索

遺伝子のプロモーター領域群全体とプロモーター領域群 P1、P2 及びランダム領域群全体とランダム領域群 R1、R2 のそれぞれに、転写因子結合配列候補となる既知モチーフの検索を行った。モチーフの検索には、転写因子結合配列ソフトウェア MATCH[48]を利用した。転写因子のデータベースとして TRANSFAC 2008.3 の

vertebrate_non_redundant_minFP.prf を用いた。220 種類の position weight matrix (PWM) で 構成され、False Positive を最小にするパラメーターセットである[49]。

遺伝子のプロモーター領域では平均 27.1 個(P1: 27.4 個、P2: 24.9 個)、ランダム領域 全体では 22.0 個(R1: 21.1 個、R2: 22.2 個)の既知モチーフが検出された。転写因子結合 配列が P1 に濃縮されている可能性が示唆された。

遺伝子のプロモーター領域群 P1、P2 間又はランダム領域群 R1、R2 間で存在割合に差 が検出されたモチーフの一覧を示した(表 3.8)。モチーフの存在割合の差は Fisher 正確 確率検定の p値 0.05 未満を指標とした。P1、P2 の比較で、P1 に濃縮されているモチー フが 10 個、P2 に濃縮されているものが 6 個検出された。R1、R2 の比較で、R1 に濃縮 されているモチーフが 2 個検出された。R2 に濃縮されたものはなかった。

P1、P2、R1のそれぞれに濃縮された各モチーフについて、モチーフがマッピングされた配列のGC含有量を算出した(表 3.8)。各群に濃縮されたモチーフがマッピングされた配列のGC含有量は、平均してP1:68.7%、P2:36.5%,、R1:41.8%であった。転写活性化能の強いプロモーター領域群P1にはGC含量の高い転写因子結合配列が濃縮されている可能性が考えられた。

表 3.8:遺伝子のプロモーター領域及びランダム領域と既知モチーフ

遺伝子のプロモーター領域及びランダム領域に対し既知モチーフを検索し、P1、P2 間又は R1、R2 間で既知モチ ーフの存在割合に差が検出されたモチーフを一覧として示した。既知モチーフの存在割合の差は Fisher 正確確率 検定の p 値=0.05 を閾値として判断した。既知モチーフが検索された配列の平均 GC 含量(%)も算出した。

	Promoter(n=472)	P1 (n=	411)	P2 (n=	:61)	P1-P2	Random	(n=251)	R1 (n=	:46)	R2 (n=	205)	R1-R2	平均GC
モチーフ名	度数	%	度数	%	度数	%	p-value	度数	%	度数	%	度数	%	p-value	含量(%)
V\$ZF5_B	277	58.7	263	64.0	14	23.0	1.E-09	33	13.1	6	13.0	27	13.2	1.E+00	75.6
V\$PAX5_02	195	41.3	183	44.5	12	19.7	2.E-04	20	8.0	2	4.3	18	8.8	5.E-01	64.1
V\$CETS1P54_03	208	44.1	194	47.2	14	23.0	3.E-04	25	10.0	4	8.7	21	10.2	1.E+00	61.7
V\$KID3_01	426	90.3	377	91.7	49	80.3	8.E-03	183	72.9	32	69.6	151	73.7	6.E-01	80.0
V\$RFX1_02	66	14.0	64	15.6	2	3.3	9.E-03	18	7.2	3	6.5	15	7.3	1.E+00	55.7
V\$VMYB_02	171	36.2	158	38.4	13	21.3	1.E-02	26	10.4	6	13.0	20	9.8	6.E-01	56.0
V\$AP2_Q6	83	17.6	79	19.2	4	6.6	1.E-02	6	2.4	1	2.2	5	2.4	1.E+00	87.2
V\$E2F_03	34	7.2	34	8.3	0	0.0	1.E-02	1	0.4	0	0.0	1	0.5	1.E+00	64.3
V\$CACD_01	94	19.9	89	21.7	5	8.2	2.E-02	37	14.7	8	17.4	29	14.1	6.E-01	82.8
V\$RFX_Q6	114	24.2	106	25.8	8	13.1	4.E-02	30	12.0	5	10.9	25	12.2	1.E+00	59.7
V\$HNF4ALPHA_Q	12	2.5	6	1.5	6	9.8	2.E-03	6	2.4	2	4.3	4	2.0	3.E-01	42.1
V\$FOXJ2_02	69	14.6	53	12.9	16	26.2	1.E-02	43	17.1	8	17.4	35	17.1	1.E+00	18.1
V\$POU3F2_01	76	16.1	59	14.4	17	27.9	1.E-02	76	30.3	16	34.8	60	29.3	5.E-01	21.4
V\$TTF1_Q6	55	11.7	42	10.2	13	21.3	2.E-02	35	13.9	3	6.5	32	15.6	2.E-01	55.9
V\$TST1_01	158	33.5	129	31.4	29	47.5	2.E-02	58	23.1	12	26.1	46	22.4	6.E-01	29.4
V\$SMAD3_Q6	16	3.4	11	2.7	5	8.2	4.E-02	20	8.0	1	2.2	19	9.3	1.E-01	52.3
V\$YY1_Q6	88	18.6	78	19.0	10	16.4	7.E-01	14	5.6	6	13.0	8	3.9	3.E-02	48.2
V\$MRF2_01	15	3.2	14	3.4	1	1.6	7.E-01	12	4.8	5	10.9	7	3.4	5.E-02	35.5

*p-value: Fisher 正確確率検定

3.2 プロモーター配列の塩基レベルの差が転写活性化能へ与える影響の解析

3.1の体系的なルシフェラーゼアッセイによる測定系により、数百の規模でプロモーター配列と転写活性化能の相関データを取得することが可能となった。しかし、構築した測定系で得られたデータでは、プロモーター配列中約1000塩基について、どの塩基がその全体の差異にどのように影響しているのかを解析するには不十分であった。より高精細にDNA配列としてのプロモーター配列が転写活性化能へ与える影響を解析するためには、プロモーター配列内のそれぞれの塩基について1塩基単位のDNA配列の差異が全体として転写活性化能へ与える影響を測定する実験系を構築する必要があった

3.2.1 効率的な変異プロモーター配列の取得、配列決定、転写活性化能の測定系の構築

本研究では、エラーの入りやすい PCR 条件 (error prone PCR)を用いた効率的な変異 プロモーター配列の取得、次世代シーケンサーを応用した変異プロモーターの配列決定 及び転写活性化能の測定の一連の実験系を構築した。(図 3.5)以下の項において、構築 した各工程の詳細について示す。一連の実験系の構築及びその後の解析には、8 遺伝子 のプロモーター配列を用いた(表 3.9)。これらの遺伝子は、前章の体系的なルシフェラ ーゼアッセイにおいて転写活性化能が高値を示す遺伝子より選択した。TATA box の有無、 GC 含有量、CpG island 有無の配列上の特徴についても、それぞれの群に典型的なものを 選択した。

図 3.5:多様な変異プロモーターの取得、配列決定、転写活性化能の測定の全体像 本研究で構築した実験系の全体像を示した。error prone PCR による効率的な変異プロモーター配列の取得、次世 代シーケンサーを利用した変異プロモーターの配列決定及び転写活性化能の測定の一連の実験系の概要。

表 3.9:本研究に用いた 8 遺伝子のプロモーター配列

NM ID	GeneName	ChrNo	Direction	Start	End	Promoter Length	log10(Luc)	TATA box	CpG is land	GC content
NM_006407	ARL6IP5	chr3	+	69133098	69134224	1127	1.26	-	+	0.44
NM_004396	DDX5	chr17	-	62503385	62502275	1111	2.75	+	+	0.63
NM_001402	EEF1A1	chr6	-	74231684	74230582	1103	2.52	+	+	0.59
NM_002046	GAPDH	chr12	+	6642712	6643769	1058	1.83	+	+	0.65
NM_006183	NTS	chr12	+	86267117	86268204	1088	0.39	+	-	0.38
NM_000291	PGK1	chrX	+	77358751	77359829	1079	2.25	-	+	0.57
NM_005057	RBBP5	chr1	-	205092071	205091026	1046	2.81	-	-	0.46
NM_001016	RPS12	chr6	+	133134776	133135901	1126	3.19	-	+	0.55

3.2.1.1 変異プロモーター配列の取得

本研究にて構築した、 error prone PCR およびランダムタグ配列を指標として次世 代シークエンス技術を駆使する、ハイスループットな変異プロモーター配列解析方 法の概略を図 3.6 に示す。

図 3.6:多様な変異プロモーター配列の効率的な取得方法

野生型プロモーター配列に、error prone PCR を用いてランダムに変異を導入した。12 塩基のランダムタグ配列 を連結することで個々の断片に識別性を与えた。 変異プロモーターは配列には DNA 融合に用いる 15 塩基の DNA 配列を挿入し、In-Fusion クローニングにて、プラスミド DNA へ挿入した。

> 変異プロモーター配列の取得のために、野生型プロモーター配列をテンプレート とし、error prone PCR を行った。PCR は、error prone PCR 条件として、Taq ポリメラ ーゼを利用し、不均衡な dNTP 濃度(2mM dCTP 及び dTTP、10mM dGTP 及び dATP)、 50mM MgCl2 及び 5mM MnCl2 を用いて、95℃ 15 秒、55℃ 15 秒、72℃ 2 分で 40 サ イクルの反応を行った。非特異な DNA 断片の増幅を防ぐため、PCR による増幅は 2 段階で実施した。利用するテンプレート量を最小限にする目的で、テンプレートと する DNA 断片を 1/4 希釈ずつ7 階段の希釈を行い、8 種類の濃度で PCR を実施した。 PCR 後、電気泳動を行い、最もバンドの薄い増幅産物を選択した。

> 作成した変異プロモーターに識別性を付与するため、12 塩基のランダムタグ配列 を作成した。変異プロモーターと Overlap extension PCR 法にて連結して pGL3 Basic ベクターに挿入した。転写活性化能の測定時には GFP 遺伝子を用いることとした。 変異プロモーター配列とランダムタグ配列の間に GFP 遺伝子を挿入した形で、pGL3 Basic ベクターへと導入した。作成した変異プロモーター配列-GFP 遺伝子-ランダム タグ配列の DNA 断片の 5'端及び 3'端に In-Fusion クローニングに用いる 15 塩基の 配列を付与し、In-Fusion クローニングシステムを用いて、変異プロモーターを一括 してクローニングできるようにした。作成したプラスミド DNA ライブラリーで、 NEB 5-alpha Competent E. coli を形質転換した。LB 培地で培養する際、形質転換後の サンプル 4400µL から 20µL を LB 寒天培地で一晩培養しコロニー数が 45 を超えるこ

とを確認した。これによりプラスミド DNA ライブラリーの多様性が 10000 種類を 超えることを保証した

3.2.1.2 変異プロモーター配列の配列決定

図 3.7 にプロモータークローンの塩基配列決定のスキームを示す。トランスポゾン配列とランダムタグ配列を利用した 3'端側及び 5'端側双方のシーケンス用ライブラリーを用い、多様な変異プロモーター配列について、一括で配列決定を行った。 変異プロモーター配列にランダムにトランスポゾン配列を挿入し、PCR でトランスポゾン配列とランダムタグ配列を保持した変異プロモーター配列の 3'端側、5'端側の多様な deletion mutant を作成した。作成した deletion mutant をシーケンスライブラリーとして Hiseq2000 にてシーケンシング、野生型プロモーター配列へマッピングすることで、変異塩基の同定を行った。

HiSeq2000, Paired End 101 bp Sequencing HiSeq2000, Paired End 101 bp Sequencing

図 3.7:多様な変異プロモーター配列の一括した配列決定

本研究で構築した変異プロモーター配列決定方法の全体像を示す。変異プロモーター配列にランダムにトランス ポゾン配列を挿入し、PCR にて効率的にトランスポゾン配列とランダムタグ配列を保持した変異プロモーター配 列 3'端側、5'端側の多様な deletion mutant を作成した。作成した多様な deletion mutant をシーケンシングし、野 生型プロモーター配列へマッピングすることで、野生型プロモーターからの変異の検出を行った。

> 変異プロモーター配列の 3'端側及び 5'端側シーケンスライブラリーのシーケンス 結果を表 3.10 に示した。解析に用いる上で十分量かつ高品質のリードが得られてい ることを確認した。

遺伝子	ライブラリー	Yield (Mbases)	% PF	# Reads	% of raw clusters per lane	% of >= Q30 Bases (PF)	Mean Quality Score (PF) Max =40
EEF1A1	3'端側	14409	93.28	152,933,498	36.06	91.34	34.84
EEF1A1	5'端側	7471	93.00	79,534,614	18.75	85.49	33.21
GAPDH	3'端側	14285	90.82	155,731,370	31.29	84.50	33.14
GAPDH	5'端側	7829	90.78	85,388,600	17.16	85.71	33.36
RPS12	3'端側	9,109	93.74	96,214,584	21.95	87.22	34.23
RPS12	5'端側	8,796	93.20	93,438,094	21.32	90.10	35.01
PGK1	3'端側	11,080	93.19	117,722,910	26.05	87.39	34.26
PGK1	5'端側	8,918	93.18	94,757,298	20.97	89.66	34.95
DDX5	3'端側	10,894	85.00	126,892,972	27.92	83.72	33.52
DDX5	5'端側	6,624	92.31	71,046,288	15.63	79.10	32.56
ARL6IP5	3'端側	12,265	89.52	137,005,190	31.29	88.74	34.76
ARL6IP5	5'端側	7,395	94.51	78,241,882	17.87	90.14	35.20
NTS	3'端側	8,277	93.57	88,460,050	22.35	92.17	35.67
NTS	5'端側	7,562	96.11	78,680,214	19.88	92.33	35.93
RBBP5	3'端側	11,635	89.39	130,160,264	28.24	87.23	34.35
RBBP5	5'端側	20,845	96.20	216,680,594	57.42	81.87	33.50

表 3.10 変異プロモーター配列の 3'端側及び 5'端側ライブラリーのシークエンスサマリー

本研究で確立した測定系では、1度の実験で平均22538種類の変異プロモーターに ついて配列決定及び転写活性化能データの取得が可能であった。これは1000変数の 重回帰分析で偏相関係数0.05の結果を、有意水準5%で検出する際、検出力が99% 以上となるデータ量に相当した。配列決定及び転写活性化能を測定できた変異プロ モーターは平均して1.6~2.0%の変異を有していた(表3.11)。プロモーター配列 内の各塩基レベルでの変異は平均387のデータが得られた(表3.12)。配列が決定さ れ転写活性化能が測定(詳細は以下に示す)された変異プロモーター配列について、 遺伝子ごとにそのプロファイルを表3.11に示す。プロモーター配列の各塩基に挿入 された変異の平均頻度を表3.12に示した。

表 3.11:各遺伝子の変異プロモーター配列のプロファイル

	ARL6IP5	DDX5	EEF1A1	GAPDH	NTS	PGK1	RBBP5	RPS12
promoter_length	1127	1111	1103	1058	1088	1079	1046	1126
GC_content	0.44	0.63	0.59	0.65	0.38	0.57	0.46	0.55
# of mutatnt promoters	20486	17139	20575	24335	28833	21902	23809	22366
total_mutation	376678	354770	396252	436298	534168	471617	404006	516061
mutation rate	1.60%	1.90%	1.70%	1.70%	1.70%	1.90%	1.60%	2.00%
A>T, T>A	99,046(26.3%)	51,389 (14.5%)	79,802 (20.1 %)	84,800 (19.4%)	127,501(23.9%)	97,723 (20.7%)	99,469(24.6%)	78,888 (15.3%)
A>G, T>C	75,350(20.9%)	64,270 (18.1%)	64,674 (16.3%)	64,255 (14.7%)	147,400(27.6%)	74,374 (15.8%)	104,005(25.7%)	93,477 (18.1%)
A>C, T>G	71,677(19.0%)	45,846 (12.9%)	65,085 (16.4%)	68,881 (15.8%)	109,917(20.6%)	74,004 (15.7%)	100,963(25.0%)	71,160 (13.8%)
G>A, C>T	47,038(12.5%)	99,419 (28.0%)	80,943 (20.4%)	99,875 (22.9%)	55,736(10.4%)	119,436 (25.3%)	39,224(9.7%)	120,748 (23.4%)
G>T, C>A	24,522(6.5%)	52,129 (14.7%)	54,799 (13.8%)	50,617 (11.6%)	23,930(4.5%)	53,631 (11.4%)	21,809(5.2%)	67,705 (13.1%)
G>C, C>G	15,920(4.2%)	20,520 (5.8%)	21,004 (5.3%)	24,252 (5.6%)	16,125(3.0%)	25444 (5.4%)	11,052(2.7%)	61,124 (11.8%)
deletion	24,387(6.5%)	20,510 (5.8%)	29,189 (7.4%)	37,625 (8.6%)	34,247(6.4%)	26245 (5.6%)	16,383(4.1%)	22,136 (4.3%)
insertion	18,738(5.0%)	687 (0.2%)	756 (0.2%)	5993 (1.4%)	19,312(3.6%)	760 (0.2%)	11,821(2.9%)	823 (0.2%)

表 3.12:プロモ-	-ター配列の	各塩基に挿入	された変異の)平均頻度
-------------	--------	--------	--------	-------

	ARL6IP5	DDX5	EEF1A1	GAPDH	NTS	PGK1	RBBP5	RPS12
promoter_length	1127	1111	1103	1058	1088	1079	1046	1126
GC_content	0.44	0.63	0.59	0.65	0.38	0.57	0.46	0.55
# of mutatnt promoters	20486	17139	20575	24335	28833	21902	23809	22366
mutation	334.2(1.632 %)	314.8(1.863 %)	351.6(1.746 %)	387.1(1.695 %)	474(1.703 %)	418.5(1.996 %)	358.5(1.622 %)	457.9(2.049 %)
A>T, T>A	87.9(0.429 %)	45.6(0.223 %)	70.8(0.346 %)	75.2(0.367 %)	113.1(0.552 %)	86.7(0.423 %)	88.3(0.431 %)	70.0(0.342 %)
A>G, T>C	66.9(0.326 %)	57(0.278 %)	57.4(0.28 %)	57(0.278 %)	130.8(0.638 %)	66.0(0.322 %)	92.3(0.450 %)	82.9(0.405 %)
A>C, T>G	63.6(0.310 %)	40.7(0.199 %)	57.8(0.282 %)	61.1(0.298 %)	97.5(0.476 %)	65.7(0.321 %)	89.6(0.437 %)	63.1(0.308 %)
G>A, C>T	41.7(0.204 %)	88.2(0.431 %)	71.8(0.351 %)	88.6(0.433 %)	49.5(0.241 %)	106.0(0.517 %)	34.8(0.170 %)	107.1(0.523 %)
G>T, C>A	21.8(0.106 %)	46.3(0.226 %)	48.6(0.237 %)	44.9(0.219 %)	21.2(0.104 %)	47.6(0.232 %)	19.4(0.094 %)	60.1(0.293 %)
G>C, C>G	14.1(0.069 %)	18.2(0.089 %)	18.6(0.091 %)	21.5(0.105 %)	14.3(0.070 %)	22.6(0.110 %)	9.8(0.048 %)	54.2(0.265 %)
deletion	21.6(0.106 %)	18.2(0.089 %)	25.9(0.126 %)	33.4(0.163 %)	30.4(0.148 %)	23.3(0.114 %)	14.5(0.071 %)	19.6(0.096 %)
insertion	16.6(0.081 %)	0.6(0.003 %)	0.7(0.003 %)	5.3(0.026 %)	17.1(0.084 %)	0.7(0.003 %)	10.5(0.051 %)	0.7(0.004 %)

1 塩基あたりの変異データが10以上又は50以上データの観測された塩基を表3.13 に示す。各遺伝子のプロモーター領域において、平均99.4%の塩基で変異プロモー ターが10以上、平均91.8%の塩基で変異プロモーターが50以上対応していた。各 塩基について、10以上の変異プロモーターが対応したものの割合は、A:86.2%、T: 85.1%、G:72.6%、C:69.4%、deletion:24.7%であった(表3.13)。プロモーター 領域の約70%以上の領域で、野生型の塩基から他の種類の塩基へ置換したプロモー ター活性のデータが取得された。deletionについては、24.7%と限られた領域での情 報集積であった。

表 3.13-1: 変異データが 10 以上集積された塩基数と割合

各遺伝子のプロモーター配列中に野生型の配列から、変異(mutation)又はそれぞれの変異パターン(toA:Aに 変異、toT:Tに変異、toG:Gに変異、toC:Cに変異、del:delに変異)に10以上データが集積された塩基数 とその割合を示した。

		Mutaton(>=10)	ToA(>=1	0)	toT(>=10)	toG(>=10	D)	toC(>=10)	del(>=10))
GeneName	length	度数	%	度数	%	度数	%	度数	%	度数	%	度数	%
ARL6IP5	1127	1115	98.9	630	79.0	671	80.9	652	72.2	547	64.2	242	21.5
DDX5	1111	1101	99.1	768	86.0	776	84.3	504	69.0	543	68.7	230	20.7
EEF1A1	1103	1098	99.5	758	87.8	766	85.8	556	72.9	524	66.3	288	26.1
GAPDH	1058	1057	99.9	790	90.4	763	87.6	550	73.6	512	75.1	320	30.2
NTS	1088	1088	100.0	632	88.5	692	88.3	670	78.1	658	72.5	297	27.3
PGK1	1079	1076	99.7	780	90.2	711	85.6	551	72.3	571	73.3	267	24.7
RBBP5	1046	1027	98.2	612	78.6	607	80.8	547	68.0	556	69.2	242	23.1
RPS12	1126	1123	99.7	751	88.9	794	87.8	589	75.0	557	66.0	268	23.8

表 3.13-2: 変異データが 50 以上集積された塩基数と割合

各遺伝子のプロモーター配列中に野生型の配列から、変異(mutation)又はそれぞれの変異パターン(toA:Aに 変異、toT:Tに変異、toG:Gに変異、toC:Cに変異、del:delに変異)に 50以上データが集積された塩基数 とその割合を示した。

		Mutaton(>=50)	ToA(>=5	0)	toT(>=50)	toG(>=50))	toC(>=50))	del(>=50))
GeneName	length	度数	%	度数	%	度数	%	度数	%	度数	%	度数	%
ARL6IP5	1127	984	87.3	366	45.9	416	50.2	364	40.3	343	40.3	85	7.5
DDX5	1111	997	89.7	484	54.2	477	51.8	283	38.8	266	33.7	67	6.0
EEF1A1	1103	1009	91.5	515	59.7	499	55.9	315	41.3	279	35.3	97	8.8
GAPDH	1058	998	94.3	540	61.8	559	64.2	291	39.0	277	40.6	107	10.1
NTS	1088	1053	96.8	455	63.7	478	61.0	453	52.8	397	43.7	108	9.9
PGK1	1079	1003	93.0	522	60.3	470	56.6	309	40.6	355	45.6	82	7.6
RBBP5	1046	911	87.1	397	51.0	382	50.9	304	37.8	300	37.4	64	6.1
RPS12	1126	1063	94.4	502	59.4	502	55.5	359	45.7	298	35.3	77	6.8

表 3.14 に、導入された変異が 50 又は 10 未満であった塩基の特徴を示す。変異の 導入が 50 未満であった塩基は 90.5 %が GC であった。これは taq polymerase を用い た error prone PCR が GC に対する変異導入が低効率であるとする先行研究の結果[51] と一致していた。本研究では、プロモーター配列中の平均 99.4 %の塩基で変異が 10 以上、平均 91.8 %の塩基で変異が 50 以上観測され、十分量のデータが蓄積されたも のと考えているが、より効率的にデータを集積するためには塩基によって変異を導 入する割合の偏りの少ない手法を用いる必要があると考えられた[52]。

表 3.14: 変異データの集積が 50 又は 10 未満であった塩基の特徴

			<50		<10					<50		<10	
GeneName	塩基		度数	%	度数	%	GeneName	塩基		度数	%	度数	%
ARL6IP5	А	1	20	14.0	1	8.3	NTS	А	1	2	5.7	0	0.0
ARL6IP5	Т	2	13	9.1	0	0.0	NTS	Т	2	1	2.9	0	0.0
ARL6IP5	G	3	60	42.0	8	66.7	NTS	G	3	17	48.6	0	0.0
ARL6IP5	С	4	50	35.0	3	25.0	NTS	С	4	15	42.9	0	0.0
DDX5	А	1	5	4.4	1	10.0	PGK1	А	1	4	5.3	0	0.0
DDX5	Т	2	0	0.0	0	0.0	PGK1	Т	2	3	3.9	0	0.0
DDX5	G	3	59	51.8	5	50.0	PGK1	G	3	38	50.0	0	100.0
DDX5	С	4	50	43.9	4	40.0	PGK1	С	4	31	40.8	0	0.0
EEF1A1	А	1	0	0.0	0	0.0	RBBP5	А	1	6	4.4	2	10.5
EEF1A1	Т	2	2	2.1	0	0.0	RBBP5	Т	2	22	16.3	4	21.1
EEF1A1	G	3	54	57.4	2	40.0	RBBP5	G	3	52	38.5	5	26.3
EEF1A1	С	4	38	40.4	3	60.0	RBBP5	С	4	55	40.7	8	42.1
GAPDH	А	1	0	0.0	0	0.0	RPS12	А	1	2	3.2	2	66.7
GAPDH	Т	2	0	0.0	0	0.0	RPS12	Т	2	3	4.8	0	0.0
GAPDH	G	3	30	50.0	0	0.0	RPS12	G	3	42	66.7	1	33.3
GAPDH	С	4	30	50.0	1	100.0	RPS12	С	4	16	25.4	0	0.0

3.2.1.3 変異プロモーター配列の転写活性化能の測定

次世代シークエンサーを駆使したランダムタグ配列カウントによる高効率レポー ターアッセイ系のスキームを図 3.8 に示す。変異プロモーターについて、HEK293 細 胞ヘプラスミド DNA ライブラリーをトランスフェクションした。48 時間後、細胞 中の mRNA を回収、GFP 遺伝子-ランダムタグ配列の cDNA を合成した。次世代シ ーケンサーを用いてランダムタグ部分の配列を決定した。基準として用いたトラン スフェクション前のプラスミド DNA ライブラリーについても同様に、ランダムタグ 配列を決定した。

Promoter Activities = cDNA-Tags/Plasmid-tags

図 3.8:変異プロモーター配列の転写活性化能の測定

変異プロモーター配列を一括して HEK293 細胞ヘトランスフェクションし、48 時間後の GFP 遺伝子-ランダムタ グ配列を mRNA として回収。逆転写による cDNA 合成後、次世代シーケンサーにてランダムタグの検出を行った。 各変異プロモーター配列の基準となるトランスフェクション前のプラスミド DNA のランダムタグ配列も同様に検 出した。

> 表 3.15 に、GFP 遺伝子-ランダムタグ配列の mRNA 由来の cDNA およびトランス フェクション前のプラスミド DNA のランダムタグ配列の決定について、そのシーケ ンス結果を示す。十分量かつ高品質なリードが得られていることを確認した。

表 3.15: ランダムタグ配列のシーケンスサマリー

遺伝子	ライブラリー	Yield (Mbases)	% PF	# Reads	% of raw clusters per lane	% of >= Q30 Bases (PF)	Mean Quality Score (PF) Max =40
EEF1A1	cDNA	278	81.57	9,472,022	12.49	82.98	34.19
EEF1A1	plasmid DNA	125	81.11	4,283,935	5.65	82.84	34.15
GAPDH	cDNA	309	81.66	10,495,358	13.84	83.07	34.21
GAPDH	plasmid DNA	227	81.59	7,711,689	10.17	83.12	34.23
RPS12	cDNA	1,812	96.38	52,214,000	32.32	72.64	31.11
RPS12	plasmid DNA	790	97.3	22,562,937	13.97	72.71	31.13
PGK1	cDNA	1,113	98.61	31,366,805	23.16	81.1	33.22
PGK1	plasmid DNA	1,225	98.49	34,548,459	25.51	81.22	33.23
DDX5	cDNA	603	97.5	17,188,125	13.88	92.65	37.01
DDX5	plasmid DNA	517	97.48	14,721,002	11.88	92.71	37.02
ARL6IP5	cDNA	1,030	88.01	32,497,328	23.23	61.56	29.22
ARL6IP5	plasmid DNA	1,164	87.80	36,840,409	26.34	61.48	29.20
NTS	cDNA	1,254	98.51	35,350,906	26.77	97.38	38.13
NTS	plasmid DNA	1,185	98.47	33,416,511	25.30	97.34	38.12
RBBP5	cDNA	1,007	94.19	29,692,552	20.32	58.95	28.84
RBBP5	plasmid DNA	1,053	94.09	31,078,148	21.27	59.06	28.87

図 3.9 に、トランスフェクション前のプラスミド DNA のランダムタグ配列数の分 布を示す。本研究で作成した各遺伝子の変異プロモーター配列ライブラリーは、10 ~30 ppm をピークとした分布を示した。

図 3.9: プラスミド DNA のランダムタグ配列の分布

トランスフェクション前のプラスミド DNA のランダムタグ配列数の分布について、X 軸にプラスミド DNA のランダムタグ配列数、Y 軸にクローン数とした、ヒストグラムを示した。プラスミド DNA のランダムタグ配列数は ppm (parts per million) 値として表記した。

図 3.9 (続き): プラスミド DNA のランダムタグ配列の分布

トランスフェクション前のプラスミド DNA のランダムタグ配列数の分布について、X 軸にプラスミド DNA のラ ンダムタグ配列数、Y 軸にクローン数とした、ヒストグラムを示した。プラスミド DNA のランダムタグ配列数は ppm (parts per million) 値として表記した。

> 表 3.16 及び図 3.10 に、測定された変異プロモーター配列の分布を示す。鋳型 となった野生型プロモーター配列の転写活性化能も図中に示した。変異プロモ ーター配列の転写活性化能は、野生型プロモーター配列の転写活性化能に比し て、2.07~4.16 倍に変動していた。その平均値は野生型のものとほぼ一致して いた。プロモーター配列に変異を導入することで、転写活性化能に影響があり、 その影響は転写活性化能が強くなる方向及び弱くなる方向の両方に及ぶことが 明らかになった。野生型プロモーター配列の転写活性化能の平均値を基準とし たときに、基準以下の活性を示す変異型プロモーター配列は平均 56.1%であっ た。

表 3.16:転写活性化能の要約

各遺伝子の変異プロモーター配列(Mutant)及び野生型プロモーター配列(Wild Type)の転写活性化能について 要約統計量を算出した。N:クローン数、Mean:平均値、Std:標準偏差、Median:中央値、Min:最小値、Max: 最大値

Gene	Promoter	Ν	Mean	Std	Median	Min	Max
ARL6IP5	Mutant	20486	-0.163	0.829	-0.063	-3.592	4.034
ARL6IP5	Wild Type	34157	0.076	0.262	0.089	-3.497	3.380
DDX5	Mutant	17139	-0.238	0.781	-0.127	-6.030	2.523
DDX5	Wild Type	5328	0.042	0.292	0.049	-1.999	1.298
EEF1A1	Mutant	20575	-0.239	1.086	-0.044	-7.069	2.466
EEF1A1	Wild Type	22765	0.110	0.525	0.120	-4.419	2.520
GAPDH	Mutant	24332	-0.432	0.999	-0.316	-6.309	4.554
GAPDH	Wild Type	38233	-0.086	0.419	-0.073	-4.433	5.266
NTS	Mutant	28833	-0.342	1.062	-0.090	-4.405	4.262
NTS	Wild Type	26620	-0.015	0.316	0.002	-3.337	2.011
PGK1	Mutant	21902	-0.421	1.050	-0.282	-4.892	4.417
PGK1	Wild Type	5129	0.000	0.289	0.018	-3.446	1.948
RBBP5	Mutant	23809	-0.137	0.937	0.127	-5.056	2.467
RBBP5	Wild Type	42635	0.097	0.225	0.112	-3.198	1.115
RPS12	Mutant	22366	-0.286	1.095	-0.118	-5.138	2.085
RPS12	Wild Type	18835	0.025	0.284	0.042	-4.533	0.999

図 3.10:変異プロモーター配列の転写活性化能の分布

各遺伝子の変異プロモーター配列及び野生型プロモーター配列について、転写活性化能の強さ(X 軸)と存在割 合(Y 軸)を示した。赤は野生型のプロモーター配列の転写活性化能、青は変異プロモーター配列の転写活性化 能 。

3.2.2 構築した測定系の確認

3.2.2.1 再現性の確認

本研究で構築した変異プロモーター配列の転写活性化能の測定方法について、その再現性を検証した。EEF1A1 遺伝子の変異プロモーターライブラリーについて、

その作成から、転写活性化能の測定まで、独立した2回の実験(Library1及びLibrary2) を行った。表 3.17及び表 3.18に、変異プロモーターの配列決定および転写活性化能 測定時の概略を示す。

表 3.17:独立した2回の実験の変異プロモーター配列の配列決定時のシーケンスサマリー

遺伝子	library ID	ライブラリー	Yield (Mbases)	% PF	# Reads	% of raw clusters per lane	% of >= Q30 Bases (PF)	Mean Quality Score (PF) Max =40
EEF1A1	library1	3'端側	14409	93.28	152,933,498	36.06	91.34	34.84
EEF1A1	library1	5'端側	7471	93.00	79,534,614	18.75	85.49	33.21
EEF1A1	library2	3'端側	10000	91.03	108,767,056	22.76	89.53	34.40
EEF1A1	library2	5'端側	8330	90.97	90,670,790	18.98	84.26	32.92

表 3.18: 独立した 2回の実験の変異プロモーター配列の転写活性化能測定時のシーケンスサマリー

遺伝子	library ID	ライブラリー	Yield (Mbases)	% PF	# Reads	% of raw clusters per lane	% of >= Q30 Bases (PF)	Mean Quality Score (PF) Max =40
EEF1A1	library1	cDNA	278	81.57	9,472,022	12.49	82.98	34.19
EEF1A1	library1	plasmid DNA	125	81.11	4,283,935	5.65	82.84	34.15
EEF1A1	library2	cDNA	606	97.39	17,963,560	13.96	92.64	37.00
EEF1A1	library2	plasmid DNA	285	97.64	8,116,061	6.55	92.80	37.05

表 3.19 に、配列決定および転写活性化能の測定を行った変異プロモーター配列に 関する情報を示す。独立して作成した Library1 及び Library2 から得られた変異プロ モーター配列数はそれぞれ 20575、13121 と約 1.6 倍の差異があった。これはプラス ミド DNA ライブラリーを大腸菌へ形質転換する際の効率が影響したものと考えら れた。いずれのライブラリーにおいても 10000 クローンの多様性を有していた。

表 3.19 及び図 3.11 に、得られた変異プロモーター配列内に挿入された変異数およ び変異パターンを示す。Library1 と Library2 について、取得した変異プロモーター 配列中に導入された変異およびその変異パターンは、同様のものであった。塩基ご とに生じる変異パターンの割合は Library 間で高い相関(r=0.816、p<0.0001)を示し た(図 3.11)。 表 3.19:2回の独立した実験間で得られた変異プロモーター配列数と挿入された変異パターン 2回独立して作成した EEF1A1 遺伝子の変異プロモーター配列ライブラリーにおいて、各塩基に挿入された変異 の有無及び各変異パターン(野生型プロモーター配列からA、T、G、C、deletion への変異)の数及び割合の平均 値を示した。

	Library1	Library2
promoter length	1103	
GC content	0.59	
# of mutant promter	20575	13121
#mutation	358.4(1.74 %)	241.5(1.84 %)
#toA	110.2(0.57 %)	73(0.60 %)
#toT	87.6(0.52 %)	59.7(0.56 %)
#toG	66.4(0.46 %)	45.3(0.49 %)
#toC	67.9(0.45 %)	45.4(0.48 %)
#del	26.3(0.12 %)	18.1(0.13 %)

図 3.11:各塩基の変異パターン構成割合の実験間比較 2 回独立して作成した EEF1A1 遺伝子の変異プロモーター配列について、各塩基に含まれる野生型プロモーター 配列からの変異パターンの構成割合を比較した。青:A への変異、赤:T への変異、緑:G への変異、紫:C への 変異、橙:欠損をそれぞれ示した。相関係数は Pearson の積率相関係数を用いて算出した。

> 2回の独立した EEF1A1 遺伝子の変異プロモーター配列について、転写活性化能の測定結果を比較した(表 3.20、図 3.12)。独立した 2回の実験で測定した転写活性 化能の測定結果は相互に類似しており、相関係数は 0.95(P<0.001)であった。

> これらの結果から、本研究にて確立した多様な変異プロモーター配列の取得、配 列決定、転写活性化能の測定を実施する一連の実験系が、再現性のある測定系とし

て構築されたものと考えられた。

表 3.20:2 回独立した実験間で得られた転写活性化能の要約統計量の比較

2回の独立した EEF1A1 遺伝子の変異プロモーター配列ライブラリーである Library1 及び Library2 の転写活性化 能について要約統計量を算出した。N:クローン数、Mean:平均値、Std:標準偏差、Median:中央値、Min:最 小値、Max:最大値

Gene	Library	Promoter	N	Mean	Std	Median	Min	Max
EEF1A1	Library1	Mutant	20575	-0.239	1.086	-0.044	-7.069	2.466
EEF1A1	Library2	Mutant	13121	-0.296	1.050	-0.091	-6.304	2.782

図 3.12:独立に2回測定した EEF1A1 遺伝子の変異プロモーターの転写活性化能 独立して2回測定した EEF1A1 遺伝子の変異プロモーター配列ライブラリーより得られた転写活性化能データを、 X 軸に測定1、Y 軸に測定2としてプロットした。相関係数は Pearson の積率相関係数を用いて算出した。

3.2.2.2 従来のルシフェラーゼアッセイとの比較

本研究の実験系が従来の実験系と同様の精度が得られるかを検証した。本研 究手法を用いて測定した転写活性化能データと従来の測定方法であるルシフェ ラーゼアッセイにより測定した転写活性化能データを比較した(図 3.13)。比較 には、本研究にて転写活性化能を測定した遺伝子の変異プロモーター配列から、 3 遺伝子(EEF1A1、GAPDH、DDX5)、66 種類の変異プロモーター配列を選択 した。これらについてルシフェラーゼアッセイにより転写活性化能を個別に測 定した。本研究手法で測定した転写活性化能とルシフェラーゼアッセイで測定 した転写活性化能の相関係数は 0.816 (P<0.001) と高い相関を示した。このこ とから、本研究にて確立した転写活性化能の測定系は、従来のルシフェラーゼ アッセイによる転写活性化能データと同様の結果が得られる手法である考えら れた。

Promoter Activities by the new methods Log2(cDNA-tag/plasmid-tag)

図 3.13:次世代シークエンス技術を用いた手法とルシフェラーゼアッセイの比較

測定した変異プロモーター配列の転写活性化能を、ルシフェラーゼアッセイで確認した。緑は EF1A1, 青は GAPDH, 黄は DOX5 の変異型プロモーター。相関係数は Pearson の積率相関係数を用いて算出した。

3.2.3 プロモーター配列の塩基レベルの差が転写活性化能へ与える影響の解析

測定した変異プロモーター配列と転写活性化能のデータより、各塩基に導入された変 異又は変異パターンが転写活性化能へ与える影響を、重回帰モデルの偏回帰係数として 推定した。重回帰分析は、目的変数は変異プロモーターの転写活性化能、説明変数は各 塩基の変異有無又は各変異パターンの有無とした。変異パターンとは、野生型塩基から それぞれ A、T、G、C、deletion 変異を指す。1 塩基レベルの差が転写活性化能に与える 影響を解析する上で、プロモーター配列中すべての塩基に対応する偏回帰係数を算出す ることが可能であるため、重回帰モデルを採用した。

3.2.3.1 重回帰分析を利用した各塩基の変異が転写活性化能へ与える影響の推定 3.2.3.1.1 各塩基の変異が転写活性化能へ与える影響の推定

各塩基に変異が導入された際に、その変異が転写活性化能へどの程度の影響 を与えるのかを解析した。本研究にて測定した転写活性化能を目的変数に、各 塩基の変異有無を説明変数とした重回帰分析にて、各塩基の転写活性化能へ与 える影響を偏回帰係数として推定した(図 3.14)。

ARL6IP5

1		-
0.5	089 - 989 - 889 - 789 - 689 - 559 - 489 - 389 - 111 - 111	_
-0.5	■p>=0.05 ■p<0.	-

DDX5

EEF1A1

	1.				
	0 .			1.10,	
-0	-1(.5	00 -900 -800 -700 -600 -500 -400 -300 -200 -100	I	-	0 100 200
	-1			-	
-1	.5				■p>=0.05 ■p<0.05

GAPDH

図 3.14: プロモーター配列の変異が転写活性化能へ与える影響

遺伝子ごとに転写開始点を基準(0)としたときの、プロモーター配列中の位値(X軸)とその位値の塩基に変異が 導入されることで転写活性化能へ与える影響(Y軸)を棒グラフとして示した。転写活性化能へ与える影響は正 であれば positive な影響、負であれば negative な影響。棒グラフの色は推定された転写活性化能が0か否かの検 定結果として赤: p<0.05、青:p>=0.05を示した。

NTS

1			
0.5	al de services en en el compositor en el contrator en el contrator de servicio destrico en el contrator de ser	n h h alt att or distances who	
-1	00 -900 -800 -700 -600 -500 -400 -300 -200 -100	0 100	200
-1			
-15			
-2		■p>=0.05 ■p<	<0.05

PGK1

1	-								
0.5	-								
	, 🔔	pate le provide consecute de co	. a. a. a. du			an an an an Idale ad a	tagi da ka sadia di	Like al strategion of the	
	1000	-900 -800) -700 -600	-500 -4	100 -300	-200	-100 0	100	200
-0.5	·								
-1									
-1.5								■p>=0.05	p<0.05

RBBP5

	1 -).5 -			
-(0 - 0.5	00 -900 -800 -700 -600 -500 -400 -300 -200 -100 0	100	200
	•1 •			
-1	-2		n>=0.05	n<0.05
-2	2.5		= p>=0.03	

RPS12

	5 -	
1	~	
	0,1	
	-10	0 -300 -000 -000 -300 -300 -300 -200 -20
-0.	5 -	
	,	
1.	11	
-1.	5 1	

図 3.14 (続き): プロモーター配列の変異が転写活性化能へ与える影響

遺伝子ごとに転写開始点を基準(0)としたときの、プロモーター配列中の位値(X軸)とその位値の塩基に変異が 導入されることで転写活性化能へ与える影響(Y軸)を棒グラフとして示した。転写活性化能へ与える影響は正 であれば positive な影響、負であれば negative な影響。棒グラフの色は推定された転写活性化能が0か否かの検 定結果として赤: p<0.05、青:p>=0.05を示した。

> 各塩基に変異を導入した際、野生型の塩基からそれぞれA、T、G、C、deletion の変異パターンごとに、転写活性化能へどの程度の影響を与えるのかを解析し た。本研究にて測定した転写活性化能を目的変数に、各塩基の変異パターンを 説明変数とした重回帰分析にて、各塩基の変異パターンが転写活性化能へ与え る影響をその偏回帰係数として推定した(図 3.15)。

ARL6IP5

図 3.15: プロモーター配列の変異が変異パターンごとに転写活性化能へ与える影響 遺伝子ごとに転写開始点を基準(0)としたときの、プロモーター配列中の位値(X 軸)とその位値の塩基に変異が 導入されることで転写活性化能へ与える影響(Y 軸)をヒートマップとして示した。転写活性化能へ与える影響 は正であれば positive な影響(赤)、負であれば negative な影響(青)

NTS

PGK1

RBBP5

RPS12

図 3.15 (続き): プロモーター配列の変異が変異パターンごとに転写活性化能へ与える影響 遺伝子ごとに転写開始点を基準(0)としたときの、プロモーター配列中の位値(X軸)とその位値の塩基に変異が 導入されることで転写活性化能へ与える影響(Y軸)をヒートマップとして示した。転写活性化能へ与える影響 は正であれば positive な影響(赤)、負であれば negative な影響(青)

3.2.3.1.2 推定された塩基レベルの転写活性化能へ与える影響の再現性

本研究での各塩基の変異が転写活性化能へ与える影響の推定値に再現性があ るか確かめた。2回独立して作成した EEF1A1 遺伝子の変異プロモーター配列 ライブラリーの転写活性化能データを用い、重回帰分析にて変異の導入が転写 活性化能へ与える影響を解析した。(図 3.16、図 3.17)。

2回の独立した実験データから算出された各塩基への変異が転写活性化能へ 与える影響の推定値について、相関係数 0.693 (p<0.0001)の相関が認められた。 特に、偏回帰係数が p<0.05の塩基では、相関係数は 0.972 (p<0.0001)で、高い 相関を示した(図 3.18)。各塩基の変異パターンごとに転写活性化能へ与える影 響の推定値については、2回の推定値間で相関係数として 0.543 (p<0.0001)、 p<0.05 で推定された値のみを用いると相関係数として 0.914 (p<0.0001) であっ た(図 3.19)。

本研究で構築した実験系及び重回帰分析を利用した、プロモーター配列の1 塩基レベルの配列差が転写活性化能へ与える影響の解析結果は、再現性が得ら れたものと考えた。

図 3.16:2回の独立した実験データから得られた変異有無が転写活性化能へ与える影響 独立して2回作成した EEF1A1 遺伝子の変異プロモーター配列ライブラリーより得られた転写活性化能データを 用い、各塩基への変異が転写活性化能へ与える影響を重回帰分析の偏回帰係数として推定した。X軸:転写開始点 を基準としたときのプロモーター配列内の位値、Y軸:各塩基に変異が入った際の転写活性化能への影響。

図 3.17:2回の独立した実験データから得られた変異パターンごとの転写活性化能へ与える影響 独立して2回作成した EEF1A1 遺伝子の変異プロモーター配列ライブラリーより得られた転写活性化能データを 用い、各塩基に変異が入った際、変異パターンごとの転写活性化能への影響を重回帰分析の偏回帰係数として推 定した。X 軸:転写開始点を基準としたときのプロモーター配列内の位値、Y 軸:各塩基に変異が入った際の転写 活性化能への影響。

図 3.18:2回独立したデータから推定した変異有無の転写活性化能への影響の比較 独立して2回作成した EEF1A1 遺伝子の変異プロモーター配列ライブラリーより得られた転写活性化能データを 用い、各塩基に変異が入った際の転写活性化能への影響を重回帰分析の偏回帰係数として推定し、X 軸に Library1、 Y 軸に Library2 をプロットした。橙:推定値が p<0.05、青:推定値が p>=0.05。相関係数は Pearson の積率相関 係数を用いて算出した。

図 3.19:2回独立したデータから推定した変異パターンの転写活性化能への影響の比較

独立して2回作成した EEF1A1 遺伝子の変異プロモーター配列ライブラリーより得られた転写活性化能データを 用い、各塩基に導入される変異パターンによる転写活性化能への影響を重回帰分析の偏回帰係数として推定し、X 軸に Library1、Y 軸に Library2 をプロットした。A.推定された全ての偏回帰係数のプロット、B.p<0.05 で推定さ れた偏回帰係数のプロット。青:A への変異、赤:T への変異、紫:G への変異、橙:C への変異、緑:deletion。相 関係数は Pearson の積率相関係数を用いて算出した。 3.2.3.1.3 塩基レベルの配列差が転写活性化能へ与える影響の特徴

本研究で推定された各塩基の変異が転写活性化能へ与える影響について、その特徴を示す。

表 3.21 に、プロモーター配列中の変異が転写活性化能へ影響を与える影響を 推定できた塩基数とその割合を示す。塩基に変異が入ることで転写活性化能へ 与える影響を推定できた塩基は平均して全体の 99.5 %であった。そのうち、変 異が導入されることで転写活性化能に正(positive)又は負(negative)に影響す ると推定された塩基はそれぞれ平均して 49.0 %、51.0 %と、ほぼ同程度であっ た。偏回帰係数が 0 か否かの検定結果である p 値 0.05 及び 0.01 を閾値とし、変 異が導入されることで転写活性化能に正負の影響があると推定された塩基を抽 出した。抽出された塩基はそれぞれ平均して、プロモーター配列中の 17.5 % (p<0.05)、10.8 % (p<0.01)であった。抽出された塩基のうち正、負のそれぞ れに影響を与える塩基数は、平均して全体の 7.6 %、10.0 % (p<0.05)、4.3 %、 6.6 % (p<0.01)で、負の影響が推定された塩基が多かった。

表 3.21:変異が転写活性化能へ与える影響を推定できた塩基数とその割合 各塩基の変異が転写活性化能へ与える影響を推定できた塩基数とその割合を示す。影響の方向性別の塩基数と割 合を示す。推定値である偏回帰係数が0か否かの検定結果を基に p<0.05 及び p<0.01 を閾値とした際の、それぞ れの塩基数及び割合も示す。

		推定可能	能であっ	た塩基数			p<0.05		p<0.01	
Gene Name	length	度数	%	効果の方向	度数	%	度数	%	度数	%
ARL6IP5	1127	1117	99.1	positive	504	45.1	70	6.3	44	3.9
				negative	613	54.9	95	8.5	52	4.7
DDX5	1111	1106	99.5	positive	572	51.7	104	9.4	57	5.2
				negative	534	48.3	100	9.0	61	5.5
EEF1A1	1103	1101	99.8	positive	551	50.0	79	7.2	50	4.5
				negative	550	50.0	99	9.0	68	6.2
GAPDH	1058	1057	99.9	positive	453	42.9	71	6.7	36	3.4
				negative	604	57.1	140	13.2	94	8.9
NTS	1088	1088	100.0	positive	535	49.2	95	8.7	64	5.9
				negative	553	50.8	118	10.8	67	6.2
PGK1	1079	1078	99.9	positive	516	47.9	87	8.1	55	5.1
				negative	562	52.1	120	11.1	85	7.9
RBBP5	1046	1026	98.1	positive	591	57.6	72	7.0	31	3.0
				negative	435	42.4	82	8.0	57	5.6
RPS12	1126	1122	99.6	positive	535	47.7	82	7.3	38	3.4
				negative	587	52.3	118	10.5	85	7.6

遺伝子ごとの変異の転写活性化能へ与える影響の要約統計量を表 3.22 に示 した。P<0.05 で推定された変異が転写活性化能へ与える影響は、正 (Positive) の影響として 0.042~0.823、負 (Negative) の影響として-0.049~-1.941 の範 表 3.22:変異の転写活性化能へ与える影響の要約統計量

推定された変異の転写活性化能へ与える影響について要約統計量を算出した。N:塩基数、Mean:平均値、Std: 標準偏差、Median:中央値、Min:最小値、Max:最大値。効果の方向性は、偏回帰係数が0か否かの検定結果が p<0.05の推定値うち、正のものを Positive、負のものを Negative とした。

Gene	効果の方向	Ν	Mean	Std	Median	Min	Max
ARL6IP5	Positive	70	0.141	0.089	0.110	0.042	0.464
ARL6IP5	Negative	95	-0.181	0.162	-0.129	-0.821	-0.054
ARL6IP5	Others	952	-0.006	0.067	-0.006	-0.326	0.290
DDX5	Positive	104	0.124	0.055	0.116	0.051	0.507
DDX5	Negative	100	-0.190	0.141	-0.144	-0.896	-0.057
DDX5	Others	902	0.002	0.062	0.004	-0.305	0.418
EEF1A1	Positive	79	0.188	0.116	0.155	0.050	0.669
EEF1A1	Negative	99	-0.321	0.305	-0.203	-1.699	-0.087
EEF1A1	Others	923	0.006	0.078	0.002	-0.407	0.422
GAPDH	Positive	71	0.175	0.137	0.123	0.045	0.823
GAPDH	Negative	140	-0.264	0.262	-0.168	-1.562	-0.052
GAPDH	Others	846	-0.006	0.067	-0.008	-0.441	0.308
NTS	Positive	95	0.144	0.089	0.123	0.045	0.463
NTS	Negative	118	-0.239	0.371	-0.126	-1.816	-0.049
NTS	Others	875	-0.001	0.051	0.001	-0.385	0.201
PGK1	Positive	87	0.147	0.073	0.130	0.059	0.506
PGK1	Negative	120	-0.254	0.201	-0.194	-1.036	-0.054
PGK1	Others	871	-0.001	0.064	-0.001	-0.289	0.271
RBBP5	Positive	72	0.150	0.090	0.117	0.051	0.443
RBBP5	Negative	82	-0.303	0.349	-0.160	-1.944	-0.054
RBBP5	Others	872	0.011	0.072	0.013	-0.369	0.369
RPS12	Positive	82	0.174	0.061	0.170	0.067	0.330
RPS12	Negative	118	-0.301	0.227	-0.223	-0.990	-0.064
RPS12	Others	922	0.000	0.070	-0.002	-0.286	0.418

3.2.3.1.4 塩基レベルの配列差が転写活性化能へ与える影響と配列長

各遺伝子のプロモーター配列中の位置と塩基レベルの配列差が転写活性化能 ヘ与える影響から、転写活性化能へ影響の大きい塩基が転写開始点近傍でクラ スターとして存在していることが示された(図 3.14)。これは、転写因子結合配 列を検出していることが考えられるため、詳細に解析をした。

変異の導入が転写活性化能へ影響があると推定される領域の配列長とその存 在割合を明らかにするため、偏回帰係数のp値が0.05未満を示した塩基が、連 続する塩基長を集計した(表3.23)。その結果、転写活性化能へ影響があると推 定された領域の平均2.7%が6塩基以上のクラスターを形成していることが明 らかになった。転写因子結合部位の共通配列の長さは典型的には6~10塩基[4]、 転写因子結合配列検索ソフトウェアで用いられるモチーフの長さとして5~30 塩基程度[65]である。一方、平均して 97.3 %で5 塩基以下の配列長であった。 配列長が短い領域は、クラスター間に偶然 p<0.05 で影響が推定されなかったこ とで本来は長い配列長になる領域が、過小評価されている可能性が考えられた。 この問題を調べるため、効果の推定された2塩基の間に5塩基まで間隔があっ ても連続とみなす緩やかな条件で集計した。この集計においても5塩基未満の 配列長となる領域は94.0%存在した。

表 3.23: 変異の導入が転写活性化能へ影響があると推定された領域の連続する配列長

8遺伝子		ARL6IP5		DDX5		EEF1A1		GAPDH		
塩基数	度数	%	度数	%	度数	%	度数	%	度数	%
1	898	77.6	116	80.0	125	79.1	104	80.0	123	79.9
2	131	11.3	20	13.8	15	9.5	11	8.5	15	9.7
3	54	4.7	6	4.1	10	6.3	5	3.9	7	4.6
4	25	2.2	1	0.7	3	1.9	1	0.8	2	1.3
5	19	1.6	1	0.7	0	0.0	4	3.1	1	0.7
6	8	0.7	0	0.0	2	1.3	1	0.8	1	0.7
7	8	0.7	0	0.0	2	1.3	1	0.8	2	1.3
8	5	0.4	0	0.0	0	0.0	2	1.5	1	0.7
9	2	0.2	0	0.0	0	0.0	1	0.8	1	0.7
10	2	0.2	1	0.7	0	0.0	0	0.0	0	0.0
11	3	0.3	0	0.0	1	0.6	0	0.0	0	0.0
12	1	0.1	0	0.0	0	0.0	0	0.0	0	0.0
13	1	0.1	0	0.0	0	0.0	0	0.0	0	0.0
16	1	0.1	0	0.0	0	0.0	0	0.0	1	0.7

	NTS		PGK1		RBB	P5	RPS12		
塩基数	度数	%	度数	%	度数	%	度数	%	
1	122	76.3	103	71.0	96	78.7	109	75.7	
2	15	9.4	25	17.2	13	10.7	17	11.8	
3	9	5.6	4	2.8	7	5.7	6	4.2	
4	7	4.4	6	4.1	1	0.8	4	2.8	
5	3	1.9	2	1.4	3	2.5	5	3.5	
6	1	0.6	1	0.7	1	0.8	1	0.7	
7	2	1.3	1	0.7	0	0.0	0	0.0	
8	1	0.6	0	0.0	0	0.0	1	0.7	
9	0	0.0	0	0.0	0	0.0	0	0.0	
10	0	0.0	1	0.7	0	0.0	0	0.0	
11	0	0.0	0	0.0	1	0.8	1	0.7	
12	0	0.0	1	0.7	0	0.0	0	0.0	
13	0	0.0	1	0.7	0	0.0	0	0.0	
16	0	0.0	0	0.0	0	0.0	0	0.0	

変異が転写活性化能に影響のある塩基が連続する配列長と、そのプロモータ ー配列中の位置を解析した。転写活性化能に影響する塩基の連続する配列長ご とに、転写開始点を0とした際の位置を解析した(図 3.20)。各連続塩基の位置 はその中央値とした。転写活性化能へ影響のある配列の長さが6塩基以上連続 する領域は、転写開始点の近傍領域(-143~+43)に集中していた。5塩基以下 の配列長となる領域についても、配列長が長くなるほど、転写開始点近傍に位置していることが示された。一方、1塩基又は2塩基の配列長で転写活性化能への影響が推定された塩基は、プロモーター配列中の広範囲に位置していた。

図 3.20: 転写活性化能に影響のある領域の配列長とプロモーター配列中の位値 プロモーター配列中の塩基置換について、転写活性化能への影響が p<0.05 で推定された塩基が連続する領域の配 列長(X 軸)ごとに、転写開始点を基準(0)としたプロモーター配列中の位値(Y 軸)をプロットした。各連続塩 基の位値はその中心とした。各色は、各遺伝子のプロモーター配列を示す(赤:ARL6IP5、紺: DDX5、緑: EEF1A1、 紫: GAPDH、青:NTS、橙: PGK1、水色: RBBP5、ピンク: RPS12)。

> 各塩基の変異が転写活性化能に影響のある塩基の連続する配列長と、変異が 導入されることで転写活性化能へ与える影響の方向(正負)を比較した(図 3.21、 表 3.24)。連続する塩基の転写活性化能へ与える影響はその平均値を用いた。連 続する転写活性化能へ影響のある塩基が 5 塩基以下の領域では、転写活性化能 へ影響する方向性として、正 47.0%、負 53.0%とほぼ同程度であったのに対し、 6 塩基以上連続する領域では正 4.4%、負 95.7%と負の影響のある領域が濃縮さ れていることが明らかとなった(p<0.0001)(表 3.24)。

> 各遺伝子のプロモーター配列に対し転写因子結合配列検索ソフトウェア MATCH にて転写因子結合配列を探索し、連続する転写活性化能へ影響のある 塩基が6塩基以上の領域と比較した(表 3.25)。TATA ボックスを有するプロモ ーター領域では、転写開始点上流30塩基程度の6塩基以上連続する領域とTATA ボックスの検索結果が一致した。その領域への変異は転写活性化能への負の影 響が推定された(詳細は以下に示す)。このように連続する転写活性化能へ影響 のある塩基が6塩基以上の領域は、転写因子結合配列を検出したものと考えら

れた。遺伝子発現に影響のある cis-eQTL が転写開始点近傍にエンリッチされる という推定結果が報告されている[63]。プロモーター領域の広い範囲に分布した 変異が転写活性化能へ影響を与える短い領域が、転写活性化能への影響を介し た潜在的な cis-eQTL を検出したものだとすると興味深い。

図 3.21: 各塩基の変異が転写活性化能に影響のある領域の配列長と影響の方向と強さ

プロモーター配列中の塩基置換について、転写活性化能への影響が p<0.05 で推定された塩基が連続する領域の配 列長(X軸)ごとに、変異が転写活性化能へ与える影響の推定値(Y軸)にプロットした。連続する塩基の転写活 性化能へ与える影響は平均値を用いた。各色は、各遺伝子のプロモーター配列を示す(赤:ARL6IP5、紺: DDX5、 緑: EEF1A1、紫: GAPDH、青:NTS、橙: PGK1、水色: RBBP5、ピンク: RPS12)。

表 3.24:転写活性化能に影響のある領域の配列長と影響の方向性

プロモーター配列中の塩基置換について、転写活性化能への影響が p<0.05 で推定された塩基が連続する領域の配 列長が 6 塩基以上又は 6 塩基未満で、転写活性化能への正又は負の影響が推定された数を集計した。連続する塩 基の転写活性化能へ与える影響は平均値を用いた。また、検定は chi-square test を実施した。

	positive		negati	ve	
	度数	%	度数	%	
6塩基未満		411	47.0	464	53.0
6塩基以上		1	4.4	22	95.7

P<0.0001 (chi-square test)

表 3.25:転写活性化能への影響が6塩基以上連続する領域と転写因子結合配列

各遺伝子のプロモーター配列に対し検索された転写因子結合配列候補のうち、変異が転写活性化能へ影響のある 塩基が6塩基以上連続する領域と重複するものを一覧に示す。

	6塩基以	上連続	して影響のある配列		転写因子結合配列検索結果			
Gene	Start	End	配列	偏回帰係数平均値	モチーフ名	配列	strand	
ARL6IP5	-143	-134	CGCCCGCCCA	-0.312	V\$GKLF_Q4	CCGCCca	+	
ARL6IP5	-143	-134	CGCCCGCCCA	-0.312	V\$ZFP161_04	ccCGCCCactc	+	
ARL6IP5	-143	-134	CGCCCGCCCA	-0.312	V\$NKX25_Q6	ccCACTCccaa	+	
DDX5	-106	-101	CTATGC	0.149	V\$ZFP161_04	ggcctatG	-	
DDX5	-106	-101	CTATGC	0.149	V\$AP2ALPHA_	tgcgcgag	-	
DDX5	-82	-77	AGGTCA	-0.235	V\$ERALPHA_Q	taGGTCA	-	
DDX5	-82	-77	AGGTCA	-0.235	V\$RHOX11_01	aggtcatA	-	
DDX5	-82	-77	AGGTCA	-0.235	V\$CREBP1_01	ttaGGTCA	-	
DDX5	-82	-77	AGGTCA	-0.235	V\$REVERBALP	cgattaGG	-	
DDX5	-82	-77	AGGTCA	-0.235	V\$CRX_Q4_01	GATTAg	-	
DDX5	-71	-61	CGGCTCCCAGC	-0.111	V\$IK_Q5	ggCTCCCa	-	
DDX5	-71	-61	CGGCTCCCAGC	-0.111	V\$PAX_Q6	gcggctCC	-	
DDX5	-71	-61	CGGCTCCCAGC	-0.111	V\$RHOX11_01	gcggctcC	-	
DDX5	-32	-26	ACTATAA	-0.293	V\$RHOX11_01	gactataA	-	
DDX5	-32	-26	ΑCTATAA	-0.293	V\$CDX2_Q5_0	tATAAA	-	
DDX5	-32	-26	ACTATAA	-0.293	V\$HOXC13_01	agacTATA	-	
DDX5	-32	-26	ACTATAA	-0.293	V\$HMX1_02	agactaTA	-	
DDX5	-32	-26	ACTATAA	-0.293	V\$SMAD4_Q6_	cCAGACt	-	
DDX5	37	43	TCGGCTG	-0.097	V\$BEN_01	ttcGGCTG	-	
DDX5	37	43	TCGGCTG	-0.097	V\$HDX_01	tcggcTGG	-	
DDX5	37	43	TCGGCTG	-0.097	V\$CPHX_01	gcTGGTGt	-	
EEF1A1	-99	-92	CGCGGGGT	-0.257	V\$HMX1_02	cggggtAAACT	-	
EEF1A1	-99	-92	CGCGGGGT	-0.257	V\$E2F_Q6_01	aggTGGCGcgg	-	
EEF1A1	-76	-71	TGTCGT	0.044	V\$CPHX_01	agTGATGtcgt	-	
EEF1A1	-61	-54	CCGCCTTT	-0.750	V\$MAF_Q6_01	cTGGCTccgcc	-	
EEF1A1	-61	-54	CCGCCTTT	-0.750	V\$HOXD12_01	cctttTTCCCg	-	
EEF1A1	-61	-54	CCGCCTTT	-0.750	V\$HOXC13_01	ctttTTCCCga	-	
EEF1A1	-61	-54	CCGCCTTT	-0.750	V\$NFAT1_Q4	tTTTCC	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$HMX1_02	cgtataTAAGT	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$HOXC13_01	accgTATATaa	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$HOXB13_01	aaccgTATATa	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$RUSH1A_02	atATAAGtgc	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$NKX25_Q6	atatAAGTGca	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$GRE_C	gAGAACcgtat	-	
EEF1A1	-32	-24	CGTATATAA	-0.418	V\$TATA_01	gagaaccgTAT	-	
EEF1A1	7	13	GCAACGG	-0.056	V\$RFX_Q6	tcGCAACgg	-	
EEF1A1	7	13	GCAACGG	-0.056	V\$MYB_05	ttcgcAACGGg	-	
EEF1A1	7	13	GCAACGG	-0.056	V\$CEBPA_Q6	ttTTTCGcaac	-	
EEF1A1	7	13	GCAACGG	-0.056	V\$NF1_Q6	acgggtttgcc	-	
GAPDH	-134	-126	TTTACGGGC	-0.324	V\$CHCH_01	CGGGCg	+	
GAPDH	-134	-126	TTTACGGGC	-0.324	V\$RHOX11_01	ctagcGGTTTt	+	
GAPDH	-134	-126	TTTACGGGC	-0.324	V\$HOMEZ_01	ctactaGCGGT	+	
GAPDH	-93	-87	GGACTGG	-0.267	V\$CTF_01	CTGGCt	+	
GAPDH	-93	-87	GGACTGG	-0.267	V\$PAX_Q6	CTGGGactggc	+	
GAPDH	-93	-87	GGACTGG	-0.267	V\$IK_Q5	gctGGGACtg	+	
GAPDH	-93	-87	GGACTGG	-0.267	V\$RHOX11_01	cttggGCTGGg	+	
GAPDH	-93	-87	GGACTGG	-0.267	V\$P53_04	ggaCTGGCtga	+	
GAPDH	-72	-66	AGGCGGG	-0.692	V\$CHCH_01	CGGGGt	+	
GAPDH	-72	-66	AGGCGGG	-0.692	V\$AP2ALPHA_03	ctGGCGGgagg	+	
GAPDH	-72	-66	AGGCGGG	-0.692	V\$IK_Q5	ggcGGGAGgc	+	
GAPDH	-72	-66	AGGCGGG	-0.692	V\$CHCH_01	CGGGAg	+	
GAPDH	-33	-18	TTTCTATAAATTGAGC	-0.397	V\$CDPCR1_01	tATAAAttga	+	
GAPDH	-33	-18	TTTCTATAAATTGAGC	-0.397	V\$HOXB13_01	gtttctATAAA	+	
GAPDH	-33	-18	TTTCTATAAATTGAGC	-0.397	V\$HMX1_02	ggtttcTATAA	+	
GAPDH	-33	-18	IITCTATAAATTGAGC	-0.397	V\$TATA_01	ctATAAAttga	+	
GAPDH	-33	-18	TITCTATAAATTGAGC	-0.397	V\$HMX1_02	tctataAATTG	+	
GAPDH	-33	-18	TTTCTATAAATTGAGC	-0.397	V\$MEF2_03	ccggtttctat	+	
GAPDH	-33	-18	TTTCTATAAATTGAGC	-0.397	V\$SIX1_01	cccccggTTTC	+	
GAPDH	-16	-11	CGCAGC	-0.084	V\$RNF96_01	gCCCGCagcc	+	
GAPDH	-16	-11	CGCAGC	-0.084	V\$ZIC1_05	gcccgCAGCCt	+	
GAPDH	-16	-11	CGCAGC	-0.084	V\$AP2ALPHA_03	gcAGCCTcccg	+	
GAPDH	2	9	ICTCTGCT	-0.112	V\$ZFP161_04	ttCGCTCtctg	+	
GAPDH	2	9	ICICTGCT	-0.112	VSHOMEZ 01	cccactTCGCT	+	

	6塩基じ	し上連続	して影響のある配列	転写因子結合配列検索結果					
Gene	Start	End	配列	偏回帰係数平均値	モチーフ名	配列	strand		
NTS	-137	-131	AAAGGGG	-0.058	V\$IK_Q5	aagGGGAG	+		
NTS	-137	-131	AAAGGGG	-0.058	V\$FPM315_01	aggGGAGG	+		
NTS	-137	-131	AAAGGGG	-0.058	V\$NFAT1_Q4	GGAAAa	+		
NTS	-137	-131	AAAGGGG	-0.058	V\$HELIOSA_0	gggAGGAG	+		
NTS	-78	-72	CTGCAAA	0.113	V\$LEF1_Q5_0	gCAAAGa	+		
NTS	-78	-72	CTGCAAA	0.113	V\$KAISO 01	atCCTGCa	+		
NTS	-78	-72	CTGCAAA	0.113	V\$CEBPA Q6	acatccTG	+		
NTS	-53	-48	AATGAC	-1.095	V\$CPHX 01	tcaatgaC	+		
NTS	-53	-48	AATGAC	-1.095	V\$HDX 01	tcaatgaC	+		
NTS	-53	-48	AATGAC	-1.095	V\$SIX1_01	tcaatgaC	+		
NTS	-53	-48	AATGAC	-1.095	V\$CPHX 01	atgacatC	+		
NTS	-53	-48	AATGAC	-1.095	V\$HNF6_Q4	aaTCAATq	+		
NTS	-53	-48	AATGAC	-1.095	V\$CDPCR1 01	aATCAAtg	+		
NTS	-53	-48	AATGAC	-1.095	V\$CREBP1_01	TGACAtca	+		
NTS	-53	-48	AATGAC	-1.095	V\$HOXB13_01	caatcaAT	+		
NTS	-30	-23	ATATATAG	-0.047	V\$TATA 01	atATATAg	+		
NTS	-30	-23	ATATATAG	-0.047	V\$CDPCR1_01	tATATAta	+		
NTS	-30	-23	ATATATAG	-0.047	V\$CEBPA 06	atataoGG	+		
NTS	-30	-23	ATATATAG	-0.047	V\$TATA 01	atATATAt	+		
NTS	-30	-23	ATATATAG	-0.047	V\$TATA_01	ttATATAt	+		
NTS	-30	-23	ATATATAG	-0.047	V\$IRX2 01	cttatATA	+		
PGK1	-95	-89	GGACAGC	-0.359	V\$BEN 01	CAGCGcca	+		
PGK1	-83	-72	GGAGCAATGGCA	-0.271		AGCAAta	+		
PGK1	-83	-72	GGAGCAATGGCA	-0.271	V\$CTE_01	ATGGCa	+		
PGK1	-83	-72	GGAGCAATGGCA	-0 271	V\$CDPCR1_01		+		
PGK1	-83	-72	GGAGCAATGGCA	-0.271		astaaCAGCG	_		
PGK1	-03	-72	GGAGCAATGGCA	-0.271		ccaGGGAGca	+		
PGK1	-83	-72	GGAGCAATGGCA	-0.271		ccaGGGAGca	_		
PGK1	_19	-40	TGGCCAATAG	-0.381		GTGGCc	_		
PGK1	-40	-40	TGGCCAATAG	-0.301	V\$NEV 01	tataaCCAAT	т _		
PGK1	-7	-2	CCCCCC	0.001		CCCCA	_		
PGK1	-7	-2	600000	0.102			+ +		
PGK1	-7	-2	600000	0.102	V\$REN 01	CAGCGacc	т _		
PGK1	1/	26	ACCCCCCCCTCTCC	-0.102		CGGGGGt	_		
PGK1	14	20	AGGCGGGGGTGTGG	-0.127		COOCOL	т _		
PGK1	14	20	AGGCGGGGGTGTGG	-0.127		agegeGTGTGT	_		
PGK1	14	20		-0.127		ageGCCCCan	+ +		
PGK1	14	20	AGGCGGGGGTGTGG	-0.127		tacGGGAGac	т _		
PGK1	14	20		-0.127		CCCCAn	+ +		
DBBD5	-106	-06	GTCAGCCATAT	-0.127			т _		
RBBP5	-100	-96	GTCAGGCATAT	-0.097			_		
RDS12	-100	-30	CCCCCCCA	-0.097	V\$7EP161_0/	acCCGGCacta	_ _		
DDQ12	-99	-92	CCCCCCC	-0.404		CCCCCCootacty	т		
DDQ12	-99	-92		-0.404			т _		
DDQ12	-99	-92		-0.404	V\$F35_04		т +		
DDQ12	-99	-92	CCCCCCC	-0.404			т		
DDQ12	-99	-92	CCACATECECA	-0.404	V #AFZALF HA_ \/\$IP Y2 01	addreetedayy	+		
DDC12	-09	-49	CACATOCOCA	-0.378	V \$1K72_01	agiguACATGU	+		
DDC10	-59	-49	COACATOCOCA	-0.378			+		
RESIZ	-59	-49	CACCCC	-0.378	V 92FF 101_04	atCCCCCccccc	+		
RESIZ	29	34		0.050		gicococoggag	+		
DDQ12	29	34		0.050	V 925 F 101_04		+ +		
DDQ12	29	34 24		0.050		ateaCCCCCcc~	т -		
INF UTZ	29	34	070000	0.050	י ע⊏∠ו_ע0_01	gicycocooag	T		

表 3.25 (続き):転写活性化能への影響が6塩基以上連続する領域と転写因子結合配列

3.2.3.1.5 TATA ボックスへの変異と転写活性化能への影響

プロモーター領域に TATA ボックスが存在した 4 遺伝子(DDX5、EEF1A1、 GAPDH、NTS)について、本研究にて推定したプロモーター配列の各塩基の変 異が転写活性化能へ与える影響を精査した。TATA ボックスは転写開始点を基準 とした-90-+27 の領域に転写因子結合配列検索ソフトウェア MATCH を用いた V\$TATA_01の検索及び配列 TATA[T/A][T/A]を検索した結果を TATA ボックスと した。DDX、EEF1A1、GAPDH、NTS はそれぞれ-30~-25。-38~-28、-30~-19、 -30~-23 に TATA ボックスを有した。

図 3.23 に、各遺伝子のプロモーター配列中の TATA ボックスについて、各塩 基に変異が入った際の転写活性化能への影響を示す。遺伝子 DDX、EEF1A1、 GAPDH のプロモーター配列は、TATA ボックスに該当する領域に変異が入るこ とで、転写活性化能には大きな負の影響があると推定された。このことは、従 来の研究結果の通り、TATA ボックスに変異が入ることで、基本転写因子である TATA ボックス結合タンパク質(TBP)の結合が阻害され、転写活性化能に負の 影響があることを検出できたものと考えられた。また、NTS 遺伝子のプロモー ター配列中の TATA ボックスにおいても、-27、-25 の塩基を除いて、変異が入 ることで転写活性化能に負の影響があることが検出された。

このように、本研究で確立した測定系及び測定データの解析結果より、既知の転写因子結合配列が検索可能であることが示された。

転写開始点を基準としたプロモーター配列中の塩基位値

図 3.23: 既知の転写因子結合配列である TATA ボックスと推定された転写活性化能への影響 遺伝子 DDX5、EEF1A1、GAPDH、NTS のプロモーター配列について、TATA ボックスの各塩基に導入される変 異が転写活性化能へ与える影響を示した。X 軸は転写開始点を基準としたときのプロモーター配列中の位値、Y 軸 は変異が転写活性化能に与える影響を示している。赤の棒は推定された偏回帰係数が p<0.05、青は p>=0.05 を示 した。

NTS 遺伝子について、-27、-25 の塩基に変異が入ることで、転写活性化能へ

正の影響があると推定された。この領域について、より詳しく解析を行った。 当該領域について各塩基に導入される変異パターンごとに転写活性化能へ与え る影響を解析した(図 3.24)。

-27 の塩基について、野生型の塩基配列 T から A に置換された場合に、転写 活性化能に対して、0.231 の正の影響があることが p<0.05 で推定された。-25 の 塩基について、野生型の塩基配列 T から A に置換されることで、転写活性化能 に 0.105 の正の影響があることが p<0.05 で推定された。-27 の塩基 T が A に変 異すると、31~-27 の領域の野生型プロモーター配列 TATATA が TATAAA へ、 -25 の塩基 T が A に変異すると-29~-24 の領域の野生型プロモーター配列 TATATA が TATAAA へ変化する。

これは、TATA ボックスが5塩基目の影響で構造が変化し、5塩基目がTの場合にTBPとTATA ボックスの結合及び乖離の回転が速まることで、転写が抑制されるとの報告と一致する[64]。本研究により新たなシス因子の生成を予測できたとすれば興味深い。

図 3.24: NTS 遺伝子の TATA ボックスへの変異が転写活性化能へ与える影響

NTS 遺伝子のプロモーター配列について、TATA ボックスの各塩基に導入される変異が転写活性化能へ与える影響 (上段)、その変異パターンごとの転写活性化能に与える影響(下段)を示した。上段:X軸は転写開始点を基準 としたときのプロモーター配列中の位値、Y 軸は変異が転写活性化能に与える影響を示している。赤の棒は推定 された偏回帰係数が p<0.05、青は p>=0.05 を示した。下段:横軸は転写開始点を基準としたときのプロモーター 配列中の位値、縦軸は野生型塩基から各塩基又は欠損の変異パターンが生じた時に転写活性化能へ与える影響を 示した。正の影響は赤、負の影響は緑。黄色枠で囲まれた値は、p<0.05 で偏回帰係数が推定されたことを示した。 3.2.3.1.6 各塩基の変異が転写活性化能へ与える影響の実験的確認

重回帰分析により推定した各塩基の変異が転写活性化能へ与える影響を実験 的に検証した。野生型プロモーター配列に点変異を導入した点変異プロモータ ー配列を作成し、ルシフェラーゼアッセイによる転写活性化能の測定を行った。 以下に示すように、各塩基の変異が転写活性化能へ8塩基連続して正に影響 していると推定された EEF1A1 遺伝子のプロモーター配列の+31~+38 領域につ いて測定を行った。変異が転写活性化能へ7塩基連続で影響を与えると推定さ

れ、その配列内で転写活性化能への影響が正負に変化している領域として、 GAPDH 遺伝子のプロモーター配列の-93~-87 領域についても同様に測定を行 った。実験的に確認を行った領域の、各塩基の変異が転写活性化能に与える影 響の推定値を図 3.25 に示す。

31

A

33

G т

34

35

A A

32

G

変異の転写活性化能/

B. GAPDH(-93~-87) 0.8 0.45 0.6 ■p>=0.05 ■p<0.05 0.4 0.4 0.35 0.2 0.3 0 0.25 の影響 -93 -90 0.2 -0.2 0.15 -0.4 変異の転写活性化能へ 0.1 -0.6 0.05 -0.8 0 32 33 34 35 36 38 -0.100 -0.621 -0.394 -0.636 А 0.462 -0.122 -0.662 -0.567 -0.598 0.473 0.111 0.009 0.247 0.408 т G -0.456 т 0.403 0.399 0.280 0.659 0.580 -0.628 0.457 G 0.308 0.004 0.491 0.340 С 0.163 P03 0-С 0.633 0.306 0.415 0.269 0.353 0.421 del 0.124 -0.654 del 0.410 0.024 0.091 -87

プロモータ配列中の位値(TSS=0) プロモータ配列中の位値(TSS=0)

36

図 3.25: EEF1A1+31~+38 領域、GAPDH-93-87 領域の変異が転写活性化能への影響

37

G

38

(A) EEF1A1 遺伝子の+31~+38 領域に変異及びその変異パターンが転写活性化能へ与える影響(B) GAPDH 遺 伝子の-93~-87 領域に変異及びその変異パターンが転写活性化能へ与える影響。

上段:X軸は転写開始点を基準としたときのプロモーター配列中の位値、Y軸は変異が転写活性化能に与える影響 を示している。赤の棒は推定された偏回帰係数が p<0.05、青は p>=0.05 を示した。下段:横軸は転写開始点を基 準としたときのプロモーター配列中の位値、縦軸は野生型塩基から各塩基又は欠損の変異パターンが生じた時に 転写活性化能へ与える影響を示した。正の影響は赤、負の影響は緑。黄色枠で囲まれた値は、p<0.05 で偏回帰係 数が推定されたことを示した。

> 各領域について、inverse PCR による点変異導入法を用い、点変異プロモータ ー配列をクローニング、ルシフェラーゼアッセイによる転写活性化能の測定を 行った。点変異プロモーター配列クローンを作成する際に用いたプライマーを 表 3.26 に示す。

-93

G

-92

G

-91

-90

С

-89

т

-88

G

G
表 3. 26: 点変異プロモーター配列のクローニングに用いたプライマー

GAPDH

Gene Name	location from TSS	mutation	primer sequenses
GAPDH	-9387	7bp deletion	CTGAGCCTGGCGGGAGGCGG
GAPDH	-93	1 G deletion	GACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-91	3 A deletion	GGCTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-90	4 C deletion	GGATGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-89	5 T deletion	GGACGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-88	6 G deletion	GGACTGCTGAGCCTGGCGGGAGGCGG
GAPDH	-93	1 G -> A	AGACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-93	1 G -> T	TGACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-93	1 G -> C	CGACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-92	2 G -> A	GAACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-92	2 G -> T	GTACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-92	2 G -> C	GCACTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-91	3 A -> T	GGTCTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-91	3 A -> G	GGGCTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-91	3 A -> C	GGCCTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-90	4 C -> A	GGAATGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-90	4 C -> T	GGATTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-90	4 C -> G	GGAGTGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-89	5 T -> A	GGACAGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-89	5 T -> G	GGACGGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-89	5 T -> C	GGACCGGCTGAGCCTGGCGGGAGGCGG
GAPDH	-88	6 G -> A	GGACTAGCTGAGCCTGGCGGGAGGCGG
GAPDH	-88	6 G -> T	GGACTTGCTGAGCCTGGCGGGAGGCGG
GAPDH	-88	6 G -> C	GGACTCGCTGAGCCTGGCGGGAGGCGG
GAPDH	-87	7 G -> A	GGACTGACTGAGCCTGGCGGGAGGCGG
GAPDH	-87	7 G -> T	GGACTGTCTGAGCCTGGCGGGAGGCGG
GAPDH	-87	7 G -> C	GGACTGCCTGAGCCTGGCGGGAGGCGG
GAPDH	_	共通プライマー	CAGCCCAAGGTCTTGAGGCC

EEF1A1

Gene Name	location from TSS	mutation	primer sequenses
EEF1A1	31-38	8bp deletion	GCCGTGTGTGGTTCCCGCGG
EEF1A1	31	1A deletion	GGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	32	2G deletion	AGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	34	4T deletion	AGGAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	35	5A deletion	AGGTAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	37	7G deletion	AGGTAATGCCGTGTGTGGTTCCCGCGG
EEF1A1	38	8T deletion	AGGTAAGGCCGTGTGTGGTTCCCGCGG
EEF1A1	31	1 A -> T	TGGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	31	1 A -> G	GGGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	31	1 A -> C	CGGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	32	2 G -> A	AAGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	32	2 G -> T	ATGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	32	2 G -> C	ACGTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	33	3 G -> A	AGATAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	33	3 G -> T	AGTTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	33	3 G -> C	AGCTAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	34	4 T -> A	AGGAAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	34	4 T -> G	AGGGAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	34	4 T -> C	AGGCAAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	35	5 A -> T	AGGTTAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	35	5 A -> G	AGGTGAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	35	5 A -> C	AGGTCAGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	36	6 A -> T	AGGTATGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	36	6 A -> G	AGGTAGGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	36	6 A -> C	AGGTACGTGCCGTGTGTGGTTCCCGCGG
EEF1A1	37	7 G -> A	AGGTAAATGCCGTGTGTGGGTTCCCGCGG
EEF1A1	37	7 G -> T	AGGTAATTGCCGTGTGTGGGTTCCCGCGG
EEF1A1	37	7 G -> C	AGGTAACTGCCGTGTGTGGTTCCCGCGG
EEF1A1	38	8 T -> A	AGGTAAGAGCCGTGTGTGGTTCCCGCGG
EEF1A1	38	8 T -> G	AGGTAAGGGCCGTGTGTGGTTCCCGCGG
EEF1A1	38	8 T -> C	AGGTAAGCGCCGTGTGTGGTTCCCGCGG
EEF1A1	_	共通プライマー	GTGTTCTGGCGGCAAACCCG

点変異プロモーター配列について、ルシフェラーゼアッセイを用いて転写活 性化能を測定した結果を図 3.26 に示す。

EEF1A1 (+31~+38) では、全ての点変異プロモーター配列で野生型プロモー ター配列に比べて転写活性化能が増加していた。これは、重回帰分析で推定さ れた各塩基の変異が転写活性化能へ与える影響と一致した。EEF1A1 遺伝子の プロモーター配列に対し、転写因子結合配列検索ソフトウェア MATCH にて転 写因子結合配列を検索すると、転写を抑制する転写因子である HMX1 が検索さ れた。HMX1 の結合配列に変異が入ることで、転写活性化能に正の影響があっ た可能性が考えられた。

GAPDH(-93~-87)では、塩基に変異が入ることで転写活性化能に正の影響が 得られると推定された-93 及び-90 の塩基で、点変異プロモーター配列の転写活 性化能が野生型プロモーター配列に比べて増加していた。変異パターンの転写 活性化能へ与える影響の推定値から、-93 及び-90 ではそれぞれ G から T 及び C から T への変異することで、転写活性化能への正に影響すると推定されていた。 点変異プロモーター配列の転写活性化能の測定結果は、-93 及び-90 ともに T へ の点変異プロモーター配列のみ転写活性化能が野生型プロモーター配列より上 昇する結果で、重回帰分析による解析結果と一致していた。(図 3.26)

推定された各塩基の変異パターンが転写活性化能へ与える影響とそれぞれの 点変異プロモーター配列の転写活性化能を比較した(図 3.27)。その結果、 EEF1A1(+31~+38)及びGAPDH(-93~-87)では、相関係数としてそれぞれ 0.601 (p<0.001)、0.857(p<0.001)と高い相関を示した。

これらの結果から、本研究で測定した多様な変異プロモーター配列の配列情 報及び転写活性化能のデータから、重回帰分析にて推定した各塩基の変異が転 写活性化能へ与える影響が、1 塩基レベルの情報粒度にて、実験的にも確認で きたと考えられた。

73

EEF1A1 (+31~+38)

図 3.26; 点変異プロモーター配列の転写活性化能

野生型プロモーター配列及び EEF1A1+31~+38 領域、GAPDH-93-87 領域の各塩基に塩基置換又は欠損を挿入した点変異プロモーター配列のルシフェラーゼアッセイで測定した転写活性化能を示した。転写活性化能は n=3 で 測定し、野生型プロモーター配列の平均値を1とした。棒グラフは平均値±標準偏差で示した。

図 3.27:推定された転写活性化能への影響と点変異クローンを用いた変異導入後の転写活性化能 重回帰分析の偏回帰係数として推定された各塩基への変異パターンが転写活性化能へ与える影響(X 軸)と実験 的に点変異を挿入した点変プロモーター配列の転写活性化能の平均値(Y 軸)を散布図で示した。(A) EEF1A1+31 ~+38 領域、(B) GAPDH-93-87 領域。各プロットの色は、青:A への変異、赤:T への変異、緑:G への変異、 紫:C への変異、水色: deletion を示した。相関係数は Pearson の積率相関係数を用いて算出した。

3.2.3.1.7 5 塩基ごと GC 含量と変異が転写活性化能へ与える影響

プロモーター配列中の各塩基周辺の GC 含量の違いによって、各塩基の変異 が転写活性化能に与える影響が異なるのかを検証した。プロモーター配列中の 連続する 5 塩基ごとの GC 含量と変異が転写活性化能に与える影響について解 析した(表 3.27、図 3.28、図 3.29)。変異が転写活性化能に与える影響について、 p<0.05 で負の影響があるもののうち、偏回帰係数の中央値(-0.160)より小さい 値を Negative1、それ以外を Negative2 とした。p<0.05 で正の影響があるものの うち、偏回帰係数の中央値(0.128)より大きい値を Positive1、それ以外を Positive2 とした。

5 塩基ごとの GC 含量と変異が転写活性化能に与える影響を表 3.27 に示す。 遺伝子のプロモーター配列ごとに 5 塩基ごとの GC 含量と変異が転写活性化能 に与える影響について図 3.28、図 3.29 に示す。これらの解析結果から、5 塩基 あたりの GC 含量 20-100 %については、GC 含量が高くなると変異が入ること で影響の大きい塩基が濃縮される傾向があった(表 3.27、図 3.28)。GC 含量の 高い領域は、CG メチル化の影響にもかかわらず進化的に保存されてきた領域で あって、転写活性化能においても進化的に保存された領域であることを反映し ている可能性が示唆された。これは CpG island を有するプロモーター領域で転 写因子の結合割合[3]や推定された cis-eQTL の存在割合[64]が上昇するという先 行研究の内容とも一致する。

GC含量0%については、変異の転写活性化能への負の影響が大きい塩基が濃

縮されていた。TATA ボックスを有する遺伝子においては、GC 含量が低い TATA ボックスに変異が入れば転写活性化能に大きな負の影響があることを反映して いるのかもしれない(図 3.28)。各塩基の変異が転写活性化能へ与える正の影響 は、負の影響とは異なり、GC 含量が中程度の領域(5 塩基あたりの GC 含量 40 %、 60%)に濃縮されていた(表 3.27)。

表 3. 27:5 塩基ごとの GC 含量と変異が転写活性化能に与える影響

5 塩基あたりの GC 含量ごとに、変異が与える転写活性化能への影響を示した。変異が与える転写活性化能への影響は、次のカテゴリで示した。p<0.05 で負の影響があるもののうち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中央値より大きい値を Positive1、それ以外を Positive2。

	5塩基あたりの	Negat	ive1	Negat	tive2	Posit	Positive2		Positive1		Others	
	GC含量(%)	度数	%	度数	%	度数	%	度数	%	度数	%	
8遺伝子	0	19	5.9	15	4.7	7	2.2	4	1.3	275	85.9	320
	20	39	3.1	40	3.2	30	2.4	29	2.3	1120	89.0	1258
	40	82	3.6	82	3.6	79	3.5	87	3.9	1930	85.4	2260
	60	124	4.9	138	5.4	100	3.9	123	4.8	2063	81.0	2548
	80	124	6.8	116	6.3	89	4.9	72	3.9	1433	78.1	1834
	100	51	9.9	42	8.1	23	4.4	17	3.3	385	74.3	518
ARL6IP5	0	1	2.1	4	8.5	1	2.1	1	2.1	40	85.1	47
	20	4	1.7	6	2.5	4	1.7	7	2.9	221	91.3	242
	40	7	1.7	18	4.4	15	3.7	10	2.4	360	87.8	410
	60	10	3.2	19	6.2	15	4.9	12	3.9	253	81.9	309
	80	4	4.2	17	17.9	4	4.2	1	1.1	69	72.6	95
	100	4	16.7	1	4.2	0	0.0	0	0.0	19	79.2	24
DDX5	0	3	42.9	0	0.0	0	0.0	0	0.0	4	57.1	7
	20	4	5.3	3	4.0	3	4.0	4	5.3	61	81.3	75
	40	10	4.6	4	1.8	12	5.5	9	4.1	183	83.9	218
	60	8	2.2	20	5.6	19	5.3	18	5.0	295	81.9	360
	80	14	4.2	20	6.0	24	7.2	8	2.4	266	80.1	332
	100	4	3.4	10	8.4	5	4.2	2	1.7	98	82.4	119
EEF1A1	0	4	33.3	0	0.0	0	0.0	1	8.3	7	58.3	12
	20	7	6.4	3	2.8	2	1.8	4	3.7	93	85.3	109
	40	14	5.8	4	1.6	6	2.5	18	7.4	201	82.7	243
	60	17	4.7	12	3.3	10	2.7	16	4.4	310	84.9	365
	80	17	5.8	10	3.4	8	2.7	9	3.1	249	85.0	293
	100	7	8.6	4	4.9	2	2.5	3	3.7	65	80.2	81
GAPDH	0	5	35.7	0	0.0	0	0.0	0	0.0	9	64.3	14
	20	7	13.7	3	5.9	0	0.0	1	2.0	40	78.4	51
	40	8	5.0	14	8.7	6	3.7	6	3.7	127	78.9	161
	60	18	4.8	20	5.4	13	3.5	12	3.2	310	83.1	373
	80	24	6.7	19	5.3	14	3.9	10	2.8	289	81.2	356
	100	12	11.7	10	9.7	6	5.8	3	2.9	72	69.9	103
NTS	0	2	1.9	6	5.8	5	4.9	1	1.0	89	86.4	103
	20	4	1.3	16	5.3	10	3.3	5	1.6	269	88.5	304
	40	14	3.7	18	4.7	19	5.0	19	5.0	311	81.6	381
	60	14	6.3	26	11.6	8	3.6	12	5.4	164	73.2	224
	80	8	11.6	10	14.5	8	11.6	5	7.2	38	55.1	69
	100	0	0.0	0	0.0	1	14.3	2	28.6	4	57.1	7
PGK1	0	0	0.0	0	0.0	0	0.0	0	0.0	40	100.0	40
	20	3	2.5	3	2.5	0	0.0	2	1.7	111	93.3	119
	40	8	3.4	6	2.6	6	2.6	4	1.7	209	89.7	233
	60	23	6.9	20	6.0	14	4.2	20	6.0	254	76.7	331
	80	18	6.6	20	7.3	17	6.2	15	5.5	203	74.4	273
	100	14	16.9	5	6.0	5	6.0	4	4.8	55	66.3	83
RBBP5	0	1	1.5	4	6.0	1	1.5	1	1.5	60	89.6	67
	20	2	1.0	4	1.9	9	4.3	5	2.4	190	90.5	210
	40	5	1.5	12	3.6	14	4.2	7	2.1	294	88.6	332
	60	16	6.0	7	2.6	13	4.9	12	4.5	218	82.0	266
	80	12	9.2	7	5.4	4	3.1	4	3.1	103	79.2	130
556/5	100	4	9.8	8	19.5	1	2.4	1	2.4	27	65.9	41
KPS12	0	3	10.0	1	3.3	0	0.0	0	0.0	26	86.7	30
	20	8	5.4	2	1.4	2	1.4	1	0.7	135	91.2	148
	40	16	5.7	6	2.1	1	0.4	14	5.0	245	86.9	282
	60	18	5.6	14	4.4	8	2.5	21	6.6	259	80.9	320
	80	27	9.4	13	4.5	10	3.5	20	7.0	216	75.5	286
	100	6	10.0	4	6.7	3	5.0	2	3.3	45	75.0	60

図 3.28:5 塩基ごとの GC 含量と変異が転写活性化能に与える影響

プロモーター配列中の 5 塩基ごとの GC 含量(X 軸)と各塩基への変異が転写活性化能へ与える影響の割合(Y 軸)を示す。変異が与える転写活性化能への影響は、次のカテゴリにて示した。p<0.05 で負の影響があるものの うち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中央値よ り大きい値を Positive1、それ以外を Positive2 とした。

図 3.29:5 塩基ごとの GC 含量と変異が転写活性化能に与える影響 プロモーター配列中の5 塩基ごとの GC 含量(X 軸)と各塩基への変異が転写活性化能へ与える影響(Y 軸)に 示した。赤:p<0.05 で推定された転写活性化能への影響、青:p>=0.05 で推定された転写活性化能への影響

3.2.3.1.8 配列保存度と変異が転写活性化能へ与える影響

各塩基の配列保存度の違いにより、各塩基の変異が転写活性化能に与える影響が異なるのか調べるため、配列保存度の指標として PhastCons Score[50]を用い、 塩基レベルの PhastCons Score と変異が転写活性化能に与える影響について解析 した。変異が転写活性化能に与える影響について、p<0.05 で負の影響があるも ののうち、偏回帰係数の中央値(-0.160)より小さい値を Negative1、それ以外 を Negative2 とした。p<0.05 で正の影響があるもののうち、偏回帰係数の中央値 (0.128)より大きい値を Positive1、それ以外を Positive2 とした。表 3.28 及び 図 3.30、3.31 に、配列保存度ごとの変異が転写活性化能に与える影響を示す。

配列保存度が低い塩基と高い塩基で、変異が入った場合の転写活性化能への 影響強度の分布は異なっていた(p<0.0001)。配列保存度が低い塩基では、変異 が転写活性化能へ影響を与える塩基は13.1%(Negative1 2.5%、Negative2 4.1%、 Positive1 3.1%、Positive2 3.4%)であったのに対し、配列保存度の高い塩基では 41.4%(Negative1 18.5%、Negative2 9.5%、Positive1 7.6%、Positive2 5.9%)と 濃縮されていた(表 3.28、図 3.30)。特に、負の強い影響を示す Negative1の存 在割合が18.5%であった。すべての遺伝子のプロモーター配列において、配列 保存度の低い塩基と比較して、配列保存度の高い塩基で Negative1、Positive1の 存在割合が増加していた(表 3.28)。

表 3.28: 配列保存度と変異が転写活性化能へ与える影響

各塩基の配列保存度を示す PhastCons Score ごとの、変異が与える転写活性化能への影響を示した。変異が与え る転写活性化能への影響は、次のカテゴリにて示した。p<0.05 で負の影響があるもののうち、中央値より小さい 値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中央値より大きい値を Positive1、 それ以外を Positive2。

			Negat	ive1	Negat	ive2	Posit	ive2	Posit	ive1	Othe	ers	合計
		PhastCons	度数	%	度数	%	度数	%	度数	%	度数	%	
8遺伝子	8738	>0.5	252	18.5	130	9.5	80	5.9	103	7.6	799	58.6	1364
		<=0.5	187	2.5	303	4.1	248	3.4	229	3.1	6407	86.9	7374
ARL6IP5	1127	>0.5	13	8.1	17	10.6	10	6.2	8	5.0	113	70.2	161
		<=0.5	17	1.8	48	5.0	29	3.0	23	2.4	849	87.9	966
DDX5	1111	>0.5	30	9.7	19	6.1	17	5.5	22	7.1	223	71.7	311
		<=0.5	13	1.6	38	4.8	46	5.8	19	2.4	684	85.5	800
EEF1A1	1103	>0.5	45	23.2	12	6.2	5	2.6	23	11.9	109	56.2	194
		<=0.5	21	2.3	21	2.3	23	2.5	28	3.1	816	89.8	909
GAPDH	1058	>0.5	35	23.2	12	8.0	8	5.3	9	6.0	87	57.6	151
		<=0.5	39	4.3	54	6.0	31	3.4	23	2.5	760	83.8	907
NTS	1088	>0.5	26	10.4	40	16.0	24	9.6	19	7.6	141	56.4	250
		<=0.5	16	1.9	36	4.3	27	3.2	25	3.0	734	87.6	838
PGK1	1079	>0.5	22	40.7	6	11.1	4	7.4	4	7.4	18	33.3	54
		<=0.5	44	4.3	48	4.7	38	3.7	41	4.0	854	83.3	1025
RBBP5	1046	>0.5	27	23.9	12	10.6	9	8.0	9	8.0	56	49.6	113
		<=0.5	13	1.4	30	3.2	33	3.5	21	2.3	836	89.6	933
RPS12	1126	>0.5	54	41.5	12	9.2	3	2.3	9	6.9	52	40.0	130
		<=0.5	24	2.4	28	2.8	21	2.1	49	4.9	874	87.8	996

図 3.30: 配列保存度と変異が転写活性化能へ与える影響

各塩基の配列保存度と変異の転写活性化能へ与える影響を棒グラフで示した。配列保存度は、PhastCons Score>0.5、PhastCons Score <=0.5 を用いた。変異が与える転写活性化能への影響は、次のカテゴリにて示した。 p<0.05 で負の影響があるもののうち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の 影響があるもののうち、中央値より大きい値を Positive1、それ以外を Positive2 とした。

遺伝子のプロモーター配列ごとに、塩基ごとの配列保存度を示す PhastCons Score (X 軸)と変異が与える転写 活性化能への影響(Y 軸)を散布図として示した。赤:p<0.05 で推定された転写活性化能への影響、青:p>=0.05 で推定された転写活性化能への影響。 3.2.3.1.7 では、5 塩基あたりの GC 含量が高い又は低いグループで Negativel が濃縮されていた。これは、GC 含量が高い又は低いグループでは、配列保存度 が高く、進化的に転写活性化能にも重要な影響を有しているためと考えられた。 そこで、配列保存度が高く、GC 含量が高い又は低いグループに、変異が転写活 性化能へ与える負の影響の大きい塩基が濃縮されているか調べた(図 3.32)。

その結果、期待していた通り、配列保存度の高い塩基では、配列保存度の低い塩基と比較して、GC含量の高い又は低い塩基に、変異の転写活性化能への負の影響が大きい塩基が濃縮されていた。配列保存度の低い塩基では、GC含量が高い塩基に、変異の転写活性化能への影響が大きい塩基が濃縮されていた。

PhastCons Score<=0.5

図 3.32: 配列保存度別の 5 塩基あたりの GC 含量と変異の転写活性化能へ与える影響

各塩基の配列保存度別に、5 塩基あたりの GC 含量と変異の転写活性化能へ与える影響を棒グラフで示した。配列 保存度は、PhastCons Score>0.5、PhastCons Score <=0.5 を用いた。5 塩基あたりの GC 含量は、GC%: Low: GC 含量として 0 %又は 20 %、GC%: Middle: GC 含量として 40 %又は 60 %、GC%: High: GC 含量として 80 % 又は 100 %とした。変異が与える転写活性化能への影響は、次のカテゴリにて示した。p<0.05 で負の影響がある もののうち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中 央値より大きい値を Positive1、それ以外を Positive2 とした。

> プロモーター配列中の塩基の位置ごとに配列保存度と変異の転写活性化能へ 与える影響を評価した(図 3.33)。配列保存度の高い塩基のうち、各塩基の変異 が転写活性化能に与える影響の大きい塩基は、プロモーター配列中の転写開始 点を基点(0)としたとき、-200 塩基程度から下流に主に分布していた。

> これは、転写開始点近傍に存在するコアプロモーター領域及び転写開始点上 流 200 塩基程度までに存在する近位プロモーター領域に TATA ボックスや GC ボックスなどの進化的に保存されている配列が存在し、転写制御に重要な役割 を担っているとするこれまでの通念と一致する。また、eQTL が転写開始点近傍

のコアプロモーター領域にエンリッチされていることが推定され、その領域の 配列保存度が高いことを示した報告とも一致した[63]。

一方で、-200よりも上流では、配列保存度は高い塩基は存在しているが、そのうち各塩基の変異が転写活性化能へ与える影響が大きい塩基は少なかった (図 3.33)。配列保存度から、これらの塩基も重要な生物学的機能を担っている 可能性が考えられるが、それは一次配列がコードする転写活性化能の観点から のものではないと思われた。

図 3.33. クロモーター配列内の谷塩蒸におりる配列保存度と変異の転与活性化能への影響 プロモーター配列内の塩基の位値(X軸)ごとに、変異が入った場合の転写活性化能への影響(Y軸上段)と配列 保存度(Y軸下段)に棒グラフとして示した。配列保存度は PhastCons Score を用いた。赤:p<0.05 で推定され た変異の転写活性化能への影響、青:p>=0.05 で推定された変異の転写活性化能への影響

GAPDH

図 3.33(続き): プロモーター配列内の各塩基における配列保存度と変異の転写活性化能への影響 プロモーター配列内の塩基の位値(X軸)ごとに、変異が入った場合の転写活性化能への影響(Y軸上段)と配列 保存度(Y軸下段)に棒グラフとして示した。配列保存度は PhastCons Score を用いた。赤:p<0.05 で推定され た変異の転写活性化能への影響、青:p>=0.05 で推定された変異の転写活性化能への影響

保存度(Y軸下段)に棒グラフとして示した。配列保存度は PhastCons Score を用いた。赤:p<0.05 で推定された変異の転写活性化能への影響、青:p>=0.05 で推定された変異の転写活性化能への影響

3.2.3.1.9 dbSNP との比較

dbSNP[53]に登録されている遺伝子のプロモーター配列内の既知の SNP について、転写活性化能に影響が強い塩基に生じている可能性を検討した(表 3.29、図 3.34)。dbSNP に登録された SNP であるか否かで、変異が転写活性化能へ与える影響強度の分布に有意な差は検出されなかった(p<0.293)。ただし、dbSNP に登録されてない塩基では、変異が転写活性化能へ影響を与える塩基は 17.4 %(Negative1 5.0 %、Negative2 4.9 %、Positive1 3.8 %、Positive2 3.7 %)であったのに対し、SNP として登録のある塩基では 22.4 %(Negative1 7.5 %、Negative2 6.1 %、Positive1 3.7 %、Positive2 5.1 %)と濃縮される傾向があった(表 3.29、図 3.34)。dbSNP に SNP として登録されている塩基は、転写活性化能へ影響を与えている可能性が考えられた。

dbSNP でプロモーター配列中に位置していた SNP のうち、転写活性化能へ強 い負の影響のある Negative1、転写活性化能に強い正の影響がある Positive1 に位 置するものも見出された(表 3.30)。rs1991401 は DDX5 の-28 の逆鎖に A/G と 登録された SNP である。この塩基に変異が入ることで偏回帰係数として-0.583 (p=1.25E-39)、T より C の変異パターンで-0.467 (p=5.96E-17)の転写活性化能 への影響があった。rs1991401 は The Genotype-Tissue Expression (GTEx) [62]デ ータを用いた Single-Tissue eQTL 解析より、各組織中で DDX5 遺伝子の発現に 負の影響を与える cis-eQTL と考えられた(表 3.31)。組織中においても、rs1991401 が転写活性化能へ影響を与え、遺伝子発現の変化に寄与する可能性が示唆され た。rs45461995 は GAPDH の-130 に C/T と登録された SNP である。この塩基に 変異が入ることで転写活性化能への影響は偏回帰係数として-0.678(p=1.62E-40)、 C より T の変異パターンの転写活性化能への影響は-0.512(p=7.90E-19)であった。 rs45461995 は、rs1991401 と同様の解析では、cis-eQTL として特定されなかった。

表 3.29: dbSNP に登録のある SNP と変異が転写活性化能に与える影響 dbSNP に SNP の登録がある塩基か否か別に、変異が与える転写活性化能への影響を分割表として示した。変異 が与える転写活性化能への影響のカテゴリは、p<0.05 で負の影響があるもののうち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中央値より大きい値を Positive1、そ れ以外を Positive2 とした。

		Nrgative1	1	Negative2		Positive2		Positive1		Others		,
		度数	%	度数	%	度数	%	度数	%	度数	%	合計
8遺伝子	SNP有	16	7.5	13	6.1	11	5.1	8	3.7	166	77.6	214
	SNP無	423	5.0	420	4.9	317	3.7	324	3.8	7040	82.6	8524
ARL6IP5	SNP有	1	5.0	1	5.0	0	0.0	2	10.0	16	80.0	20
	SNP無	29	2.6	64	5.8	39	3.5	29	2.6	946	85.5	1107
DDX5	SNP有	2	6.3	2	6.3	1	3.1	1	3.1	26	81.3	32
	SNP無	41	3.8	55	5.1	62	5.8	40	3.7	881	81.7	1079
EEF1A1	SNP有	2	8.3	0	0.0	0	0.0	1	4.2	21	87.5	24
	SNP無	64	5.9	33	3.1	28	2.6	50	4.6	904	83.8	1079
GAPDH	SNP有	2	7.1	1	3.6	2	7.1	1	3.6	22	78.6	28
	SNP無	72	7.0	65	6.3	37	3.6	31	3.0	825	80.1	1030
NTS	SNP有	0	0.0	5	26.3	0	0.0	0	0.0	14	73.7	19
	SNP無	42	3.9	71	6.6	51	4.8	44	4.1	861	80.5	1069
PGK1	SNP有	2	9.1	1	4.6	1	4.6	1	4.6	17	77.3	22
	SNP無	64	6.1	53	5.0	41	3.9	44	4.2	855	80.9	1057
RBBP5	SNP有	0	0.0	2	9.5	2	9.5	1	4.8	16	76.2	21
	SNP無	40	3.9	40	3.9	40	3.9	29	2.8	876	85.5	1025
RPS12	SNP有	7	14.6	1	2.1	5	10.4	1	2.1	34	70.8	48
	SNP無	71	6.6	39	3.6	19	1.8	57	5.3	892	82.8	1078

図 3.34 各塩基の dbSNP 登録有無と変異が転写活性化能へ与える影響

dbSNP に SNP の登録がある塩基か否か別に、変異が与える転写活性化能への影響を棒グラフとして示した。変 異が与える転写活性化能への影響のカテゴリは、p<0.05 で負の影響があるもののうち、中央値より小さい値を Negative1、それ以外を Negative2。p<0.05 で正の影響があるもののうち、中央値より大きい値を Positive1、そ れ以外を Positive2 とした。 表 3.30: p<0.05 で変異が転写活性化能に与える影響が推定された塩基と dbSNP に登録のある SNP p<0.05 で変異が転写活性化能に与える影響が推定された塩基のうち、dbSNP に SNP として登録のある塩基を一 覧として示す。

0		16 ++	変異の転与		- <i>i</i> =	SNP	
Gene	position	塩基	活性化能へ の影響	カテゴリー	p1值	Strand	RSID
ARL6IP5	-202	A	-0.152	Negative2	1.349E-04	+	rs375096389
ARL6IP5	-168	A	-0.453	Negative1	1.800E-26	+	rs185429527
ARL6IP5	-153	G	0.249	Positive1	4.064E-04	+	rs79392449
ARL6IP5	-65	Т	0.129	Positive1	6.200E-06	+	rs146642345
DDX5	-215	А	0.134	Positive1	2.328E-03	+	rs78841668
DDX5	-141	С	0.096	Positive2	2.601E-02	+	rs9905596
DDX5	-77	А	-0.336	Negative1	1.010E-31	+	rs374811154
DDX5	-28	Т	-0.573	Negative1	1.270E-39	+	rs1991401
DDX5	65	С	-0.084	Negative2	1.779E-02	+	rs377373286
DDX5	124	G	-0.126	Negative2	6.501E-04	+	rs201924128
EEF1A1	-476	А	-0.201	Negative1	1.048E-02	+	rs376145722
EEF1A1	26	А	0.240	Positive1	1.600E-05	+	rs188135961
EEF1A1	93	С	-0.161	Negative1	8.888E-03	+	rs148339214
GAPDH	-613	Т	0.092	Positive2	2.318E-02	+	rs45612631
GAPDH	-130	С	-0.678	Negative1	1.620E-40	+	rs45461995
GAPDH	-64	Т	0.241	Positive1	3.780E-06	+	rs111720901
GAPDH	-44	С	-0.162	Negative1	1.130E-07	+	rs45561238
GAPDH	30	С	-0.143	Negative2	5.560E-08	+	rs367946267
GAPDH	37	Т	0.114	Positive2	1.886E-03	+	rs3199979
NTS	-117	G	-0.082	Negative2	2.366E-02	+	rs367713513
NTS	-21	G	-0.099	Negative2	2.216E-02	+	rs117953598
NTS	67	G	-0.090	Negative2	3.233E-02	+	rs142420800
NTS	82	G	-0.144	Negative2	4.840E-11	+	rs369679972
NTS	83	G	-0.119	Negative2	2.651E-02	+	rs373597970
PGK1	-931	т	-0.068	Negative2	1.508E-02	+	rs181500091
PGK1	-305	С	-0.221	Negative1	2.502E-04	+	rs372898993
PGK1	3	G	-0.651	Negative1	3.680E-155	+	rs377286545
PGK1	21	G	0.223	Positive1	2.660E-09	+	rs182927805
PGK1	95	С	0.081	Positive2	4.449E-02	+	rs192936390
RBBP5	-627	А	0.094	Positive2	4.607E-02	-	rs6698188
RBBP5	-161	т	0.094	Positive2	1.025E-02	+	rs189633547
RBBP5	-2	С	0.357	Positive1	3.050E-23	+	rs12033568
RBBP5	29	G	-0.067	Negative2	4.598E-02	+	rs11240362
RBBP5	44	С	-0.075	Negative2	2.332E-03	+	rs375728850
RPS12	-675	C	-0.093	Negative2	1.328E-02	+	rs112447165
RPS12	-279	G	0.277	Positive1	1.642E-02	+	rs188213983
RPS12	-204	C	-0.244	Negative1	1.180E-05	+	rs58748092
RPS12	-62	A	0.116	Positive2	3.545E-02	+	rs57172226
RPS12	-12	Т	0.067	Positive2	2.420E-02	+	rs41286194
RPS12	-3	G	-0.257	Negative1	9.890E-06	+	rs113122367
RPS12	0	C.	-0.500	Negative1	1 100E-09	+	rs145134922
RPS12	Q	- T	0 109	Positive?	5.491F-03	+	rs112860722
RPS12	13	G	-0 213	Negative1	8.900E-12	+	rs11543926
RPS12	10 <u>1</u> 8	A	-0 362	Negative1	3 890F-42	+	rs146445896
RPS12	0 57	Δ	0.002	Positive?	7 789F-03	+	rs149114330
RPS12	156	Т	0.111	Positive2	3.630E-10	• +	rs12202302
RPS12	161	Δ	-0 258	Negative1	1 318 -04	• •	rs112352320
RPS12	170	C	-0 317	Negative1	4 082E-02	• +	rs188597053
11012	119		0.017	reguirer	1.0026-02	•	1010001000

表 3.31: GTEx データを用いた Single-Tissue eQTL 解析結果

GTEx データの Single-Tissue eQTL 解析で cis-eQTL であった SNP のうち、p<0.05 で変異が転写活性化能に与え る影響が推定された塩基と一致した SNP を一覧として示す。

Gene Symbol	SNP Id	Tissue	P-Value	Effect Size
DDX5	rs1991401	Whole Blood	2.30E-13	-0.23
DDX5	rs1991401	Artery - Tibial	2.00E-11	-0.26
DDX5	rs1991401	Testis	3.80E-07	-0.22
DDX5	rs1991401	Skin - Sun Exposed (Lower leg)	6.50E-07	-0.20
DDX5	rs1991401	Lung	9.50E-07	-0.19
DDX5	rs1991401	Adipose - Subcutaneous	6.10E-06	-0.19

3.2.3.1.10構築された重回帰モデルの転写活性化能の予測精度の評価

本研究で構築されるモデルがどの程度の精度で変異プロモーターの一次配列 からその転写活性化能を予測できるかを検討した。10分割交差検証を実施し、 得られた転写活性化能の予測値と測定された実測値を比較した。その相関図を (図 3.35)に示す。

遺伝子ごとに構築された重回帰モデルより予測された転写活性化能と実際に 測定された転写活性化能の相関係数は、説明変数を各塩基の変異有無とした場 合に0.443~0.668、説明変数を各塩基の変異パターンとした場合に、0.455~0.693 であった。

本研究で用いた重回帰モデルによる予測精度は、同種先行研究に比して同程 度であった[54]。先行研究では、説明変数に塩基配列情報以外の情報を加味する ことや、変数選択を実施することで、予測精度の向上を図っている。本研究で 得られた各塩基が転写活性化能へ与える影響についても基盤情報としてモデル に加味することで、転写活性化能の予測精度を向上させた予測モデルの構築が 可能になるものと期待される。

説明変数:各塩基の変異の有無

予測された転写活性化能

予測された転写活性化能

図 3.35:10 分割交差検証で得られた予測値と観測値の比較

遺伝子ごとに目的変数を測定された転写活性化能、説明変数を各塩基の変異又は各塩基の変異パターンとして構築した重回帰モデルについて10分割交差検証を実施し、得られた転写活性化能の予測値と測定された実測値を散 布図として示した。 3.3 遺伝子のプロモーター配列の転写活性化能と RNA-seq の発現量の比較

本研究で体系的なルシフェラーゼアッセイにて測定した遺伝子のプロモーター配列の転写 活性化能と、RNA-seqにより測定された HEK293 細胞内での遺伝子の mRNA の発現レベルを 比較した(図 3.36)。転写活性化能と mRNA の発現レベルは Spearman の相関係数 0.163 と弱 い相関にとどまった。転写活性化能の強い P1 は 0.184、転写活性化能の弱い P2 は 0.004 であ った。

一次配列の転写活性化能が低いが、mRNA の発現レベルが高い遺伝子は、本研究で用いた 約 1000bp のプロモーター領域以外に存在するエンハンサーや、プロモーター配列以外の転写 制御機構の影響により、mRNA の発現レベルを高めている可能性が考えられた。転写活性化 能は高いが、mRNA の発現レベルが低い遺伝子は、遺伝子のプロモーター領域のメチル化や クロマチン構造によりプロモーター配列自体は転写活性化能を有するものの実際の転写は開 始されていない可能性があると考えられた。あるいは転写は開始されているが、mRNA の分 解などの転写開始後の転写制御機構により、mRNA レベルが低下しているのかもしれない。 特に転写活性化能の弱い遺伝子のプロモーター配列は、mRNA の発現レベルが転写活性化能 以外の制御機構に強く影響される可能性が考えられた。

本研究で得られた遺伝子のプロモーター配列の有する転写活性化能、遺伝子のプロモーター配列内の塩基レベルの転写活性化能への影響を起点に、ChIP-Seq[29]によるヒストン修飾の状態,NET-Seq[56]によるRNAの伸長の状態,BRIC-Seq[57]によるRNAの分解の状態等を加味することで、遺伝子の転写制御機構の全体像が詳解できるのかもしれない。

図 3.36: 遺伝子のプロモーター配列の転写活性化能と mRNA の発現レベルの比較

本研究で体系的なルシフェラーゼアッセイで測定した遺伝子のプロモーター配列の転写活性化能(X 軸)と、 RNA-seq で測定した遺伝子の mRNA の発現レベル(Y 軸)を散布図に示した。青:転写活性化能高い P1、緑: 転写活性化能の低い P2、赤:本研究で変異プロモーター配列の作成及び転写活性化能の測定に用いた遺伝子。

4 総括

本研究では、遺伝子のプロモーター配列に一次配列として内在的にコードされている転写 活性化能の解析を試みた。その基盤となる測定技術を確立し、データ収集およびデータ解析 の方法論の開発を行った。

前半では、HEK293 細胞において、体系的なルシフェラーゼレポータージーンアッセイを 用いた実験系を構築した。ヒト遺伝子の転写に関わる遺伝子のプロモーター領域群の配列、 転活性化能における全体像を初めて示すことができたものと考えている。遺伝子のプロモー ター領域以外の領域であるランダム領域についても、遺伝子のプロモーター領域と同様の解 析を行った。遺伝子のプロモーター領域以外の領域についても、その潜在的な転写活性化能 について全体像を記載できたと考えている[15]。

後半では、前半で課題と考えられた、プロモーター配列中の1塩基レベルの配列差が転写 活性化能へ与える影響を解析することを目的に、大規模測定が可能な実験系の構築を行った。 Erroe prone PCR とランダムタグ配列を用いた多様な遺伝子の変異プロモーター配列の取得、 次世代シーケンサーを駆使して効率的な変異プロモーターの配列決定及び転写活性化能の測 定を行うことのできる実験系を構築することができた。さらに、一連の実験系を用いて取得 した8遺伝子の変異プロモーター配列と転写活性化能データを解析し、遺伝子のプロモータ ー配列中の1塩基レベルの配列差が転写活性化能に与える影響について評価した。

興味深いことに、予想に反し、体系的なルシフェラーゼアッセイにより得られた遺伝子の プロモーター配列の転写活性化能と mRNA レベルの発現は Spearman の相関係数として 0.163 という弱い相関であった(図 3.36)。これは、転写制御機構全体を解明するためには、本研究 で得られた一次元の DNA 配列が有する転写活性化能のデータを基盤に、ChIP-Seq[29]による ヒストン修飾の状態、NET-Seq[56]による RNA の伸長の状態、BRIC-Seq[57]による RNA の分 解の状態、RNA-Seq[25]による mRNA レベルの発現などの各転写制御段階が、最終的な mRNA 発現量の決定に大きく寄与している可能性を示していた。

本研究では HEK293 細胞を利用し、転写活性化能のデータを蓄積した。本研究は細胞内で の遺伝子発現制御、特にその近位プロモーター塩基配列要素を精査しようという基盤的な基 礎研究である。しかし、疾患解析研究へと本研究を発展させることも可能かもしれない。す なわち、利用する細胞として、疾患由来及び正常細胞由来の初代培養細胞を用い、プロモー ター配列の1塩基レベルの配列差が転写活性化能へ与える影響を推定、比較解析を行う。こ れにより、疾患の発症メカニズムに関わるプロモーター配列上の原因配列が特定できれば興 味深い。ゲノム編集により、疾患病態への介入も可能となるかもしれない[61]。

また、本研究では、転写活性化能の予測モデルを構築した。本研究で構築された重回帰モ デルは、予測値と観測値の予測精度が相関係数として 0.443~0.693 であった(図 3.35)。先行 研究においてもその予測精度は依然として十分でなく[54,55]、さらなる改善が求められる。 モデルの予測精度の向上のためには、モデルに含める変数の選択、転写因子結合配列マトリ クスや GC 含量などの情報、非線形モデルの適応などが考えられる。予測精度の高い転写活 性化能予測モデルが構築できれば、多数の実験を実施せずとも、1 塩基ごとの配列差が転写 活性化能へ与える影響を知ることができるかもしれない。さらに、予測精度の高い予測モデ ルが構築できれば、目的とする転写活性化能を実現するための、人工的なプロモーター配列 の設計などにも利用可能かもしれない。

本研究で構築した、プロモーター領域やプロモーター領域中の1塩基レベルの配列差が転 写活性化能に与える影響を解析する一連の実験系及び解析方法が、幅広い分野で利用され、 該当分野の研究の発展に繋がることを期待する。

5 参考文献

- 1. Levine M, Tjian R., Transcription regulation and animal diversity., Nature. 2003 Jul 10;424(6945):147-51.
- 2. International Human Genome Sequencing Consortium., Finishing the euchromatic sequence of the human genome., Nature. 2004 Oct 21;431(7011):931-45.
- 3. Birney E, et al, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project., Nature. 2007 Jun 14;447(7146):799-816.
- 4. Wittkopp, P. J., et al., Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 2012. 13 (1), p.59-69.
- 5. Lander, E. S. et al. Initial sequencing and analysis of the human genome. *Nature* **409**, 860-921 (2001).
- 6. Venter, J. C. et al. The sequence of the human genome. *Science* **291**, 1304-51 (2001).
- 7. Lincoln D. Stein. End of the beginning. *Nature* **431**, 915-916(2004)
- 8. Suzuki, Y. & Sugano, S. Construction of a full-length enriched and a 5'-end enriched cDNA library using the oligo-capping method. Methods Mol Biol 221, 73-91 (2003).
- Imanishi T, et al, Integrative annotation of 21,037 human genes validated by full-length cDNA clones., PLoS Biol. 2004 Jun;2(6):e162. Epub 2004 Apr 20.
- 10. Suzuki, Y. et al. Identification and characterization of the potential promoter regions of 1031 kinds of human genes. *Genome Res* **11**, 677-84 (2001).
- 11. Suzuki Y, et al, Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites., EMBO Rep. 2001 May;2(5):388-93.
- 12. Yamashita R, et al, DBTSS provides a tissue specific dynamic view of Transcription Start Sites., Nucleic Acids Res. 2010 Jan;38(Database issue):D98-104
- 13. Carninci P, et al, The transcriptional landscape of the mammalian genome., Science. 2005 Sep 2;309(5740):1559-63.
- 14. Kimura K, Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes., Genome Res. 2006 Jan;16(1):55-65.
- 15. Sakakibara, Y., et al., Intrinsic promoter activities of primary DNA sequences in the human genome. DNA Research, 2007. 14 (2), p.71-7
- 16. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31, 374-8 (2003).
- 17. Khodursky AB, et al, Life after transcription--revisiting the fate of messenger RNA., Trends Genet. 2003 Mar;19(3):113-5.
- 18. Sanger F, et al, Nucleotide sequence of bacteriophage phi X174 DNA., Nature. 1977 Feb 24;265(5596):687-95.
- 19. Mardis, E. R., The impact of next-generation sequencing technology on genetics. Trends in Genetics, 2008. 24 (3), p.133-41.

- 20. Bentley, D. R., et al., Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008. 456 (7218), p.53-9.
- 21. Margulies M, Genome sequencing in microfabricated high-density picolitre reactors., Nature. 2005 Sep 15;437(7057):376-80.
- 22. Bentley DR, et al, Accurate whole human genome sequencing using reversible terminator chemistry., Nature. 2008 Nov 6;456(7218):53-9.
- 23. Metzker ML, et al., Sequencing technologies the next generation., Nat Rev Genet. 2010 Jan;11(1):31-46.
- 24. Wilhelm BT, et al., RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing., Methods. 2009 Jul;48(3):249-57.
- 25. Wang Z, et al, RNA-Seq: a revolutionary tool for transcriptomics., Nat Rev Genet. 2009 Jan;10(1):57-63.
- 26. Sultan M, et al., A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome., Science. 2008 Aug 15;321(5891):956-60.
- 27. Tsuchihara K, et al, Massive transcriptional start site analysis of human genes in hypoxia cells., Nucleic Acids Res. 2009 Apr;37(7):2249-63.
- Barski A, et al., High-resolution profiling of histone methylations in the human genome., Cell. 2007 May 18;129(4):823-37.
- 29. Park PJ, et al., ChIP-seq: advantages and challenges of a maturing technology., Nat Rev Genet. 2009 Oct;10(10):669-80.
- 30. Patwardhan, R. P., et al., Massively parallel functional dissection of mammalian enhancers in vivo. Nature Biotechnology, 2012. 30 (3), p.265-70.
- 31. Sharon, E., et al., Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 2012. 30 (6), p.521-30.
- 32. Kwasnieski, J. C., et al., Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proceedings of the National Academy of Sciences, 2012. 109 (47), p.19498-503.
- 33. Dickel, D. E., et al., Function-based identification of mammalian enhancers using site-specific integration. Nature Methods, 2014. 11 (5), p.566-71.
- Akhtar, W., et al., Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell, 2013. 154 (4), p.914-27.
- 35. Melnikov, A., et al., Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nature Biotechnology, 2012. 30 (3), p.271-7.
- Arnold, C. D., et al., Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq. Science, 2013. 339 (6123), p.1074-7.
- 37. Kent, W. J. BLAT--the BLAST-like alignment tool. Genome Res 12, 656-64 (2002).
- 38. Florea, L., Hartzell, G., Zhang, Z., Rubin, G. M. & Miller, W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. *Genome Res* **8**, 967-74 (1998).
- 39. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat

Genet **36**, 40-5 (2004).

- 40. Carninci, P. & Hayashizaki, Y. High-efficiency full-length cDNA cloning. *Methods Enzymol* **303**, 19-44 (1999).
- 41. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. *Nature* **420**, 563-73 (2002).
- 42. Suzuki, Y., Yamashita, R., Sugano, S. & Nakai, K. DBTSS, DataBase of Transcriptional Start Sites: progress report 2004. *Nucleic Acids Res* **32 Database issue**, D78-81 (2004).
- 43. Florea, L., Hartzell, G., Zhang, Z., Rubin, G. M. & Miller, W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. *Genome Res* **8**, 967-74 (1998).
- 44. Leung DW, Chen E, Goeddel DV (1989). A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1(1):11-15.
- 45. Li, H., et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 25 (14), p.1754-60.
- 46. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25 (16), p.2078-9.
- 47. Ross Ihaka and Robert Gentleman (1996) R: A Language for Data Analysis and Graphics. Journal of computational and graphical statistics 5: 299-314.
- 48. Kel, A. E., et al., MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Research, 2003. 31 (13), p.3576-9.
- 49. Wingender, E., The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics, 2008. 9 (4), p.326-32.
- 50. Siepel A, et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes., Genome Res. 2005 Aug;15(8):1034-50.
- 51. Cadwell, R.C. and Joyce, G.F. (1992) PCR MethodsAppl.
- 52. McCullum EO, et al., Random mutagenesis by error-prone PCR., Methods Mol Biol. 2010;634:103-9.
- 53. Sherry ST, et al., dbSNP: the NCBI database of genetic variation., Nucleic Acids Res. 2001 Jan 1;29(1):308-11.
- 54. Landolin, J. M., et al., Sequence features that drive human promoter function and tissue specificity. Genome Research, 2010. 20 (7), p.890-8.
- 55. Irie, T., et al., Predicting promoter activities of primary human DNA sequences. Nucleic Acids Research, 2011. 39 (11), p.e75.
- Churchman, L. S., et al., Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature, 2011. 469 (7330), p.368-73.
- 57. Imamachi, N., et al, BRIC-seq: A genome-wide approach for determining RNA stability in mammalian cells. Methods, 2014. 67 (1), p.55-63.
- Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. *Genome Res* 13, 1998-2004 (2003).

- 59. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. *Mol Biol Evol* **19**, 1991-2004 (2002).
- 60. Wakabayashi-Ito N, et al., Characterization of the regulatory elements in the promoter of the human elongation factor-1 alpha gene., J Biol Chem. 1994 Nov 25;269(47):29831-7.
- 61. Nelson CE, et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy., Science. 2016 Jan 22;351(6271):403-7
- 62. GTEx Consortium., Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans., Science. 2015 May 8;348(6235):648-60.
- 63. Veyrieras JB, et al., High-resolution mapping of expression-QTLs yields insight into human gene regulation., PLoS Genet. 2008 Oct;4(10):e1000214.
- 64. Ravarani CN, et al., Affinity and competition for TBP are molecular determinants of gene expression noise., Nat Commun. 2016 Feb 2;7:10417.
- 65. Stewart AJ, et al., Why transcription factor binding sites are ten nucleotides long., Genetics. 2012 Nov;192(3):973-85.

6 論文目録

原著論文

Intrinsic Promoter Activities of Primary DNA Sequences in the Human Genome

<u>Yuta Sakakibara</u>, Takuma Irie, Yutaka Suzuki, Riu Yamashita, Hiroyuki Wakaguri, Akinori Kanai, Joe Chiba, Toshihisa Takagi, Junko Mizushima-Sugano, Shin-ichi Hashimoto, Kenta Nakai, Sumio Sugano

DNA Res (2007) 14 (2): 71-77.

7 謝辞

本研究の遂行に当たり、修士課程より長年ご指導頂きました、東京大学大学院新領域創成科学 研究科 メディカル情報生命専攻 ゲノムシステム医療科学分野 菅野純夫教授、生命システム観測 分野 鈴木穣教授に御礼申し上げます。常日頃からの温かいご指導のおかげで、研究を遂行するこ とができました。心より感謝申し上げます。

お忙しい中、本論文の審査をお引き受けくださり、貴重なご助言をいただきました。東京大学 大学院新領域創成科学研究科 中井謙太 教授、松田浩一 教授、佐藤均 准教授、九州工業大学 大 学院情報工学研究院 矢田哲士 教授に心より御礼申し上げます。

本研究において、共同研究者として多大なるご協力をいただきました。 菅野研究室 入江琢磨 特任助教、鈴木研究室 劉 瑩 様、菅野研究室卒業生 門城 拓 様、心より感謝申し上げます。

鈴木研究室 今村聖実 様をはじめ、実験補助員のみなさま、株式会社ダイナコム 若栗 浩幸 博 士、堀内 映実 様には、次世代シーケンサーのデータ取得及び情報解析を主に大変なご協力をい ただきました。深く感謝申し上げます

博士論文の審査過程において、様々なご助言をいただき、大変お世話になりました。菅野研究 室 特任研究員 関本 登 様、心より御礼申し上げます。

研究生活を送る上で、お世話になりました、東京大学大学院新領域創成科学研究科 メディカル 情報生命専攻 ゲノムシステム医療科学分野並びに生命システム観測分野に所属するみなさまに 感謝いたします。

最後に、大学院進学に快く賛成し、支えてくれた家族に感謝いたします。

平成 28 年 9 月