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1 Introduction

The DNA sequence is a fascinating and inherently complicated information carrier
with more functional features than originally anticipated.

We already know that genomic variants in a person’s DNA sequence, with single
nucleotide polymorphisms (SNPs) being the most intensely studied ones, regulate
the emergence of phenotypic traits.

When speaking of phenotypic traits we can mean readily observable traits like eye
color, measurable traits like the blood cholesterol level, or even experimentally
determinable traits like the expression activity of a gene.

Due to the Human Genome Project and the accompanying sequencing technolo-
gies that were specifically developed for that enormous undertaking, the first
layer of genomic information that has become accessible is the DNA sequence
itself and the variations it contains.

From person to person the DNA sequence varies slightly and it is this observation
that researchers believe to be responsible for the biological diversity we see in this
world. The manifold of variations in the DNA sequence can encode a huge variety
of phenotypes.

As a consequence, a great deal of research has gone into discovering the various
links between genome variants and phenotypes. Genome wide association studies
(GWAS) created an extensive map which depicts the relationships between SNPs
and phenotypic traits. Among the most heavily investigated phenotypic traits
are disease related GWAS.

Yet, despite the great efforts of GWAS, there remains a gap in our understanding
of how the trait associated SNPs actually form the phenotype or influence disease
pathogenesis. Unless the disease related SNP falls into a coding region of the
genome and as a non-synonymous mutation alters the protein coding sequence
of that gene resulting in a defective protein product which could possibly have
existential impacts on an organism, the effect of a disease or phenotype related
SNP is not so clear. Much less can be said about the molecular mechanisms that
particular SNP is involved in.

Unfortunately, most of the SNPs discovered by GWAS fall into non-coding regions
of the genome. Thanks to advances in sequencing technology, a second layer of
genetic information has become accessible, namely the transcriptomic landscape.
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Recent scientific studies have switched their focus of attention from genome varia-
tion studies to the analysis of the transcriptome, which captures the gene expres-
sions of a person. It soon became clear that the space of potential phenotypic
traits for which the transcriptomic landscape can code for is not only larger
than that of the genotype, but also the connection between a phenotype and its
transcriptomic landscape is stronger. According to several recent studies, the
transcriptomic landscape is much more informative regarding a phenotype than
the genotype data alone.

As a consequence, a new analytical paradigm is being advocated which tries to
link both layers of genomic data, namely the genotype and the transcriptome.
The many SNPs discovered by GWAS which were located in non-coding regions
of the genome might actually play a vital role in controlling and regulating the
gene expression patterns of the transcriptomic landscape.

These novel insights spurred the emergence of a new field of genetic study that
tries to investigate the functional relations between genetic variations, transcrip-
tome variability, and disease susceptibility by identifying the associations between
those three entities which make up the molecular mechanisms in the form of an
interaction network that underlies disease susceptibility. This emerging field is
named expression quantitative trait locus (eQTL) study.

Identifying the regulatory SNPs that are responsible for altering the transcrip-
tomic landscape leading to the onset of disease might prove very helpful in ex-
panding our knowledge about the underlying mechanisms of phenotype formation
and disease pathogenesis.

The knowledge we gain about the intrinsic systems related to the onset of disease
by discovering the relationships between genotype, transcriptome, and phenotype
in eQTL data, can be used to facilitate the development of new diagnostic strate-
gies and optimize the treatment of disease, a goal that is broadly understood to
fall under the domain of personalized medicine.

The contribution of this thesis is the analysis program qMAP (quantitative MDL
Association Program) which extracts the various associations between genotype
variants and gene expressions present in eQTL data based on normalized max-
imum likelihood (NML) encoding, the latest instantiation of Jorma Rissanen’s
information theoretic minimum description length principle (MDL).

As it is well known in information theory that data compression and knowledge
acquisition in machine learning are equivalent concepts, we discover the various
connections of the interaction network by encoding the eQTL data using the
normalized maximum likelihood code and then look for associations between
genomic and gene expression variants that yield short codelengths, i.e. minimum
description lengths of the eQTL data.

This is accomplished by proposing an MDL-score for reporting the interaction
association strengths. The MDL-score is constructed by building NML-codes for
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eQTL data based on dynamic grid optimization techniques originally put forward
by Kontkanen and Myllymäki.

Associations between SNPs and gene expressions are assigned an MDL-score that
indicates the strength of the statistical functional relation between that feature
pair.

The way of reasoning according to the MDL principle is that a SNP which regu-
lates the expression of a gene can be used as a model to explain the phenomenon
of the gene expression pattern. If the SNP turns out to be a good ground for accu-
rately predicting the gene expression pattern, then the resulting NML-codelength
of the gene expression, which uses the SNP as a statistical predictive model, will
be short.

Interactions in eQTL data are identified by qMAP on the premise that prime
candidates exhibiting functional and regulatory capability are those SNPs which
produce short NML-codes during the encoding procedure of gene expressions and
simultaneously have a short NML-code for themselves resulting in a minimum
total description length for that interaction pair.

qMAP was benchmarked against the popular genome analysis toolkit PLINK,
state-of-the-art information theoretic data exploration approach MIC, and Shan-
non’s mutual information.

The ability to accurately and completely extract all the interactions in an eQTL
datasets was assessed using a simulated eQTL study based on a synthetic dataset
that was created and provided to the author by Bartlett and Ray. This was
achieved in the form of measuring the detection rates, i.e. the success in iden-
tifying correct SNP-gene associations in the data, and the reconstruction of the
interaction network.

Compared to MIC and PLINK, qMAP was able to considerably improve the
detection rates. Existing methods delivered detection rates for correct genotype-
transcript associations of the magnitude 57.3% for PLINK and 52% for MIC.
qMAP raised those detection rates to 78%, an improvement of roughly 20 per-
centage points. The especially adapted approach using mutual information and
kernel density estimates, abbreviated as MI-KDE, could be tuned to deliver de-
tection rate results comparable to those of qMAP.

The main strength of qMAP which surfaced during our study was its robustness
and reconstruction capability of the interaction network that was contained in
the synthetic eQTL data. Among all tested approaches, qMAP delivered the
most complete image of associations between SNPs and gene expressions of the
interaction network.

Consequently, with qMAP the reconstructed interaction networks are more ac-
curate and complete than would be possible if using existing analysis tools.
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Hopefully, qMAP will prove useful to the biomedical community and physicians
who aim to learn more about disease through the study of big eQTL datasets.



5

2 Paving the way towards better
understanding of disease:
From GWAS to eQTL studies

2.1 Introducing the road from gene mapping to

integrated genomic interaction studies

What kind of new knowledge about the mechanisms of disease pathogenesis can
be revealed by analyzing the huge amounts of genomic data which are being
generated by next-generation sequencing machines? The answer to that question
is that the development of our understanding of genetic mechanisms responsible
for human diseases is an ongoing process and that technological advances help us
reveal one piece at a time of that interesting puzzle.

Of particular interest is the functional understanding of the information encoded
in the DNA and the various mechanisms it influences in an organism. Therefore,
a lot of effort has been invested in developing new sequencing technologies that
enable us to open new frontiers in genomic analysis.

After completion of the first big milestone, namely the assembly of a human
reference genome by the Human Genome Project [1, 2], it became clear that the
phenotypic diversity of traits in a population can be traced back to differences in
the DNA sequence.

A phenotype is a broad concept that describes an observational trait like for
example eye or hair color, the body mass index, or even a disease like diabetes
or asthma. It is well known that our genetic code is composed of the 4 bases
A,T ,G,C which stand for Adenine, Thymine, Guanine, and Cytosine. When two
genome sequences are compared with each other it is possible to detect genome
variation.

There are several types of genome variation present in a DNA sequence; when
only one base is altered we speak of single nucleotide polymorphism, in short
SNP. Apart from SNPs, many other variations have been observed in the hu-
man genome, like insertions and deletions, referred to as InDels, tandem repeats,
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translocations, inversions, and copy number variations (CNV) [3]. All those alter-
ations in the genomic sequence of the DNA could have an effect on the phenotype
and in particular play an important role in disease pathogenesis.

With the costs for genetic sequencing steadily falling, it becomes possible to
obtain many genomic datasets which can be used in an analysis to identify the
associations between a genetic variant and a specific phenotype. In many studies
the phenotype under investigation is a disease, like e.g. cancer or Alzheimer,
and the aim is to identify genetic markers, usually SNPs, that are linked to
the disease. The finding and identification of such markers through analytical
methods is referred to as genetic mapping and genome wide association studies
(GWAS) try to elucidate the underpinnings of disease [4].

Manolio [4] gives an excellent review about the current status of genome wide
association studies. After the success of the Human Genome project, researchers
around the world made use of sequencing technologies in order to gain a better
understanding of the relationship between genetic variants and disease.

When a single nucleotide polymorphism occurs in the exonic, i.e. protein coding
sequences, region of a genome, it can have severe effects depending on whether
is a synonymous or non-synonymous mutation. While synonymous mutations do
not alter the transcribed protein for which the gene codes for, a non-synonymous
mutation can have a devastating effect, because it changes or even stops the
protein sequence which is encoded by the gene. This can have adverse effects on
the organism and even result in disease pathogenesis as outlined in the review by
Lathrop [5] and Manolio [4] .

Although countless studies have revealed associations between SNPs and dis-
ease phenotypes over and over again [4], the functional complexity of the DNA
has been largely underestimated. Despite the fact that many studies success-
fully proved the impact of SNPs [4, 6] on phenotypic traits, questions about the
molecular interaction mechanisms which lead to the onset of disease could not be
answered by GWAS alone [4, 5, 7, 8].

As pointed out by Manolio in [4] most SNPs identified by GWAS fall into regions
in the DNA sequence which are not known to code for any protein. According
to Manolio [4], the present distribution of GWAS reported SNPs is as follows:
12% seem to occur in exonic regions which means that there potentially exists a
direct influence on the protein sequence that could lead to disease pathogenesis
resulting in a pathogenic state. In those cases, the underlying disease mechanisms
can readily be traced to malicious effects of the SNPs on protein coding sequences.
The remaining SNPs fall into intergenic and non-coding regions of the genome, a
fact which points towards a more indirect effect of SNPs on disease, namely that
the route of effect transmission might be as follows; genetic variants in non-coding
regions of the genome have an impact on the regulation of transcription activity,
which is the gene expression activity. In turn, modifications in gene expression
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patterns result in disease onset [5, 8]. This observation hints on the importance
of expanding genome-wide association studies into studies that also take other
traits, like for example variation in gene expression, into account.

Several recent studies have revealed that SNPs originating from non-coding re-
gions of the genome can have a strong impact on the transcription activity of a
gene (an excellent overview is given in [5, 7]). In other words, the DNA’s func-
tional repertoire can use SNPs as a tool to regulate gene expression.

Pritchard [7] suggested that the magnitude of divergence observed in gene expres-
sions results in a much larger set of phenotypic traits, which could not be attained
by genomic variation alone. It seems that according to several authors [5, 7, 8],
differences in transcript abundances have a stronger association with disease and
that interaction networks of SNPs and gene expressions play an important role
in disease pathogenesis. This statement is enforced by the observation that SNPs
which fall into non-coding regions in GWAS, are shown to have a regulatory effect
on genes which have strong evidence of association with a disease [9].

This has lead to the emergence of a new type of study, namely expression Quanti-
tative Trait Loci (eQTL) which tries to bridge the gap in understanding between
GWAS results and the actual functional repertoire of the DNA. Lathrop [5] and
Bartlett [8] suggest that perturbations in gene expression activity are involved
in disease susceptibility and therefore the study of interaction networks might
reveal further insights into disease pathogenesis.

Interaction networks are composed of regulatory SNPs and genes whose tran-
script abundance is modified by the presence of genetic variation. The aim of an
eQTL study is to identify those SNPs which are associated with gene expression
patterns, thus hinting at a regulatory mechanism.

When combined with GWAS data, eQTL becomes a very powerful tool for dis-
cerning potential interaction forces involved in disease susceptibility and patho-
genesis [5, 8]. This feat was demonstrated in [10] showing that cholesterol levels
are affected by a gene whose activity is influenced by a SNP. Consequently, eQTL
studies can deliver intriguing new insights regarding our understanding of disease.

2.1.1 ”Data deluge” in next-generation sequencing

One peculiar observation regarding the development of next-generation sequenc-
ing is that the reduction in cost for obtaining a sequenced sample and the ex-
plosion in the quantity of data obtained from a sample has outstripped Moore’s
Law [11–13].

This technological development has both advantages and disadvantages. Let us
begin with mentioning the benefits that cost reduction in sequencing technology
bring. First, it becomes possible for more laboratories to utilize this technology
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in order to study the mechanics of genomic systems. Hopefully, the more labora-
tories make use of sequencers the faster we will get a deeper understanding of the
functioning of the DNA and use genetic data to combat disease. Genetic markers
identified to be associated to disease pathogenesis or disease susceptibility might
be used to improve clinical diagnostic tests and even aid in disease treatment.

Another bright side of this development is that it becomes feasible to study rare
diseases [14,15]. Although the study of rare disease might not get enough financial
support because it falls below the radar of public interest, reduced sequencing
costs enable moderately funded institutions to perform genetic studies on rare
diseases. Despite the fact that the pool of affected persons might be small and
that it was previously prohibitively costly to perform such a study, nowadays
laboratories can perform sequencing studies on subjects with a rare disease. As a
consequence, the circle of beneficiaries is expanded in society. Individuals whose
disease status could not be genetically examined in the past, might benefit from
the results of new studies that are underway.

Recently, genetic analysis services have started to enter the consumer market with
23andMe [16] and DeNA in Japan offering genetic variant screening tests whose
results show known risk factors for a variety of conditions. The implications of
these genetic testing companies are vividly discussed in academic and business
circles as ethical as well as practical issues surrounding the topic still need to
be resolved. Since genetic analysis studies point out that genomic variants are
not the only source that contribute to disease and that lifestyle and epigenetic
factors also play an important role, screening results from the above mentioned
companies should be interpreted with caution. In my opinion it is advisable to
consult a genetics expert or a medical doctor when trying to make sense out of
the results delivered by commercial services.

A disadvantage of the ”data deluge” [12,13] is on the other side, that sequencing
machines output more and more data while data processing systems and analyti-
cal methods cannot keep pace [12]. This not only leads to rising demands in disk
drive capacity for storing all those genomic datasets but also a sharp increase
in computation time for processing and analyzing genomic data. Without the
use of supercomputers like the one at the Human Genome Center [17], it would
be virtually impossible to extract useful information out of the vast amounts of
data.

Supercomputers in combination with proper analytical tools can help researchers
obtain answers to their questions regarding the complex functional interactions
exerted by the DNA.

As a consequence, this has led Hagenauer [18, 19] to suggest that new analytical
algorithms are needed to deal with genomic data and because genomic analysis
resembles analysis of information, why not try to introduce analytical tools based
on information theory for the analysis of next-generation sequencing data to the
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biomedical research society.

2.1.2 Insights into Mendelian disease with next-generation

sequencing

Several studies employing DNA-sequencing, especially the more cost effective
exome-sequencing method, are already uncovering a plethora of information about
disease associated SNPs.

In [15] Ng et al. used a method called exome-sequencing in order to clarify for
the first time the genetic causes of Miller syndrome, which is a rare Mendelian
disease. The attribute ”rare” is used to signify that the number of affected persons
among the general population is quite low. The disease manifests itself as a series
of multiple physiological deformations which can be examined along with further
details about the Miller disease in Ng’s study [15].

The achievement of Ng’s group was to pinpoint the genetic causes of the Miller
syndrome to mutations in the DHODH gene, a feat the was not possible according
to [15] with discovery approaches not relying on DNA-sequencing. The responsi-
ble mutations were found in a protein coding gene that produces an enzyme which
acts in the biosynthesis pathway [15]. These results explain the motivation be-
hind using exome-sequencing instead of the much more expensive whole-genome
sequencing.

With exome-sequencing it is possible to capture most of the protein coding genes
of a human genome and since non-synonymous mutations in protein coding genes
can have severe impacts on the organism, exome-sequencing is a cost effective
method for identifying causes of Mendelian disease as outlined in [14]. Current
toolkits capture only a fraction, hovering around 5%, of the entire human genome,
thus making it possible to spend the saved money on increasing the read coverage
of the sequenced regions in order for the SNP calling algorithms to deliver more
reliable results.

After sequencing the exons and performing SNP calling on the obtained sequence
data, the analysis pipeline of Ng et al. consisted of consecutive filtering against
databases of known variants like dbSNP [20] and HapMap [21] and then using
an inheritance model to pinpoint the remaining SNPs as the causes of Miller
Syndrome. The identified mutations were then confirmed using another sequenc-
ing method called Sanger sequencing, which produces much more reliable results
than shotgun sequencing methods, but has a lower throughput.
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2.1.3 Achievements of GWAS: Uncovering the genetic map

of complex disease

Now we leave the world of Mendelian disease and focus on the class of complex
disease [22] like Diabetes. In contrast to Mendelian disease, complex disease are
said to be the outcome of several factors occurring together like genetic disposition
combined with environmental influences and lifestyle [22].

As a consequence, the analysis of complex disease is much more difficult and
challenging than that of a Mendelian disease, but the advent of genome-wide
association studies (GWAS), an important tool for identifying associations be-
tween phenotypic traits and genomic variants [24], paved the way towards gaining
a better understanding of the genetic workings responsible for the development
of traits like hair and eye colour, a person’s body mass index (BMI), and diseases
like Asthma and Diabetes [4, 23].

Most of the traits that we can observe in a human being cannot be traced back
to one single gene or SNP in our genome. They are rather the result of a com-
bination of several genetic and non-genetic factors. Hair color for example is not
determined by a single mutation in a person’s genome and it has been shown that
many SNPs and genes are responsible for determining the hair color of a person.

For this reason in a GWAS study, a multitude of SNPs is tested for association
with a specific trait. In a simple setup, a case-control study is performed where
the trait is present in one group but not in the other.

A nice way to visualize the results of such an association study are Manhattan
Plots. On the horizontal axis there are the SNPs, possibly sorted by chromosome
and on the vertical axis their association strength with the trait. The plot re-
sembles a city skyline, with strongly associated SNPs rising from the ground like
skyscrapers. By setting a certain threshold value, or visually speaking, setting
a certain minimum height to define a skyscraper, SNPs that are thought to be
related to the trait are thus filtered from the dataset.

As is the case with traits like height, which is the outcome of an interplay between
several genetic, environmental and lifestyle factors, the same is true for several
disease. In such cases it is not possible to pinpoint the onset of the disease to
just one or a few genetic markers. Examples of those cases are Alzheimer’s, Scle-
roderma, Asthma, Parkinson’s, Diabetes and many more other diseases. Because
a majority of disease falls into this category, where multiple factors contribute to
pathogenesis, these diseases are termed complex disease [4, 23].

Because a complex disease is characterized as an accumulation of various combi-
nations of genetic factors plus environmental influences, physicians hardly ever
speak of that a patient will get for example Alzheimer’s when a genetic test that
scans the genome for known Alzheimer associated genetic variants turned out to
be positive [25]. Instead, phrases like ”elevated risk” are used to describe the
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uncertainty associated with the results of the genetic test and to assert the im-
portance of lifestyle and environmental factors, both of which a patient can have
more or less control of and thus has the possibility to influence his or her risk of
contracting a disease.

To understand how GWAS extracts information from DNA-sequence data and
how it helps us to better understand the development of physical traits and disease
pathogenesis, we will take a look at recent findings of GWAS publications.

The basic methodology used in GWAS is called gene mapping. By using an
association measure, may it be Spearman correlation or mutual information, the
”strength” of an association between a genetic marker, usually a SNP, and a trait
is quantified. Since there are so many genetic markers and each of them is tested
for association, a sufficiently large sample size is required for producing good (i.e.
correct or reliable) results.

An excellent review by Manolio [4] about GWAS appeared in The New England
Journal of Medicine and the reader is referred to his article about a survey of in-
triguing recent GWAS discoveries in medicine. Only a few selected examples will
be presented here, enough to give the reader an impression about the discovery
power of GWAS.

With DNA-sequencing it is possible to capture the genetic variation present in an
entire genome. Ongoing advancements in sequencing technology alleviate former
problems of DNA-sequencing studies, namely of not being able to produce a large
enough sample size due to cost restrictions. As a consequence, studies whose
sample size is not large enough have difficulties outputting ”meaningful” results,
but technology improvements have leveled this barrier.

Outside the academic literature, it is often reported that certain mutations are
causing a trait or disease. While this might be true in a common sense, there ex-
ists no mathematical framework of analysis for identifying causalities yet. There-
fore, we will try to avoid talking about ”disease causing genes or mutations” in
this thesis, and if a sentence states or implicates that a causality exists, it is
meant that only a statistical association between a genetic marker and a trait
exists. This is to prevent any misunderstandings when reporting results in this
thesis.

Some of the more recent interesting uncovering results of GWAS are a magnitude
of associates between genetic markers and traits like intelligence, BMI, and body
height.

A Nature Genetics study by Yang et al. [23] reports that it has found 87 multiple
associated SNPs for body height out of which 49 have not been published before.
The authors of [23] argue that the effect sizes of single associations are usually
very weak because as we have already explained, complex traits are the outcome
of a complex orchestration between many genetic factors (not to forget other
non-genetic influences).
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Consequently, on top of just looking for single associations, a SNP-trait associ-
ation has to be analyzed in context. This means that the joint impact of SNPs
has to be tested for their association with the trait.

The expression of a phenotypic trait can depend on the joint presence of multiple
SNPs in a person’s genome as well as a conditional combination of SNPs. If one
were to perform association tests between all potential combinations of SNPs and
a phenotypic trait, this would lead to an almost incomputable explosion of the
potential search space.

As a countermeasure, several algorithms have been proposed in the literature to
deal with this problem and some of them will be explained in subsequent part of
the thesis in Section 3.2.

One interesting observation that was made by Yang et al. in [23] is that several
SNPs are strongly associated with body height, but no such statement could be
made for the body mass index (BMI) yet. The authors suggest the explanation
that phenotypic trait of height has more to do with inheritance than BMI, which
means that it is more likely that you inherit your height from your parents rather
than the shape of your body (talking of mass, of course). Furthermore, although
both height and BMI are traits not free from environmental influences (nutrition,
eating and lifestyle habits), it looks like that non-genetic factors have a stronger
impact on our BMI than our genetic make up; meaning the way we exercise (or
not) basically influences our weight.

This result exemplifies that we are not completely bound to our DNA and that
our actions (or in-actions) have a very strong influence on our health and well-
being. Although we can say that persons with certain mutations in their genome
are predisposed towards a condition, it is not certain that this risk will ever ma-
terialize. Genetic testing in combination with counseling together with a decisive
lifestyle action can alleviate or prevent health care problems. Thus, instead of
undergoing a gene therapy to reduce the BMI it might be more advisable to just
visit the treadmill a few more times a week.

Another important finding of [23] is the illustration of the complexity of the
genetic mechanisms of ”complex” traits [22, 26]. Even though body height and
BMI appear to be regulated by many SNPs, the contribution of a single SNP
to the phenotypic trait quantified via the association measure is rather small.
By looking at the quantified contribution and combinations of SNPs, Yang et al.
argue that the ”genetic architecture” [23] of both traits is inherently different.

What does ”genetic architecture” according to Yang mean [23]? It was observed
for both height and BMI that there are strong associations between a leading
array of gene variants and the studied trait. On top of that array there exists
another layer of SNPs which control the height trait in humans. These SNPs
appear to exert control via either a jointly or conditionally depended functional
relationship.
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Those layered levels of genetic control are becoming an intensively studied topic.
Due to the interesting findings of sequencing studies, it is becoming more and
more apparent that the genetic mechanisms of trait expression (and disease patho-
genesis) are more dynamic and complex than originally anticipated. This has led
to the science of ”systems biology” [27], which studies genetic interactions as a
dynamic, cybernetic system. We will have more to say about this topic when we
reach RNA-seq studies about gene expression and eQTL studies. For now it is
sufficient to keep in mind that complex traits are regulated by more than one
single SNP and that a complicated interaction network controls and governs the
onset of traits and disease pathogenesis.

In [4], Manolio surveyed several GWAS publications and found several disease
conditions that share genetic markers, despite the fact, that from an outside
observer’s standpoint, those disease might seem to be totally unrelated.

This point of view is contrasted by the facts reported by Manolio [4], namely that
presumably independent and unrelated traits, share a common base of associated
SNPs between them. This really sheds a new light on our understanding of those
traits. Furthermore, it also opens up several new questions about the relation
between those traits, questions that need to be answered by future studies.

For example, one intriguing observation by Manolio [4] is that type 2 diabetes
seems to have shared genetic markers with several other disease conditions. The
implications of these findings are slowly beginning to surface. About the conse-
quences that type 2 diabetes has 2 common genetic markers with prostate cancer
and 1 with height as well as coronary disease can only be speculated at this
moment.

2.1.4 The road ahead: eQTL and beyond

Recently, another layer of complexity was introduced to genetic studies. Whereas
the first DNA-sequencing studies concentrated on finding associations between
genetic mutations and traits, according to several studies [5,7,28,29] the pheno-
typic diversity that we see amongst organisms, especially amongst individuals of
the same species, might not be the direct consequence of genetic variety in an
organism’s genetic code per se, but rather a multitude of gene expression patterns
which allow for a much larger phenotype spectrum.

The technological developments that enable researchers to screen both the genome
for genetic variations and the expressed genes for alterations in transcriptional
activity are DNA-sequencing and RNA-sequencing [30]. With RNA-sequencing
it becomes possible to capture the entire gene expression profile at once, also
called the transcriptome, which includes expression values for both coding and
non-coding regions [31]. A gene’s expression value hints at the transcriptional
activity of a gene, which means that there are more transcript copies of an active
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or highly expressed gene in a cell whereas there are fewer RNA copies of a lowly
expressed gene.

As was already mentioned in Section 2.1, evidence is mounting in favour of the
hypothesis that DNA sequence variations alone cannot explain the vast and di-
versified manifestation of phenotypes and that rather the flexibility of the tran-
scriptome is producing the magnitude of observable traits [5, 7].

As a consequence, the studies of genome wide association, which link genetic
variants in the genome to phenotypic traits like disease, were extended to include
an additional layer of information, namely the gene expression patterns obtained
via a method like RNA-sequencing.

In contrast to SNP mutations, which in their simplest case consist of switching
one of the 4 nucleotides and therefore are considered to be a discrete trait, the
expression range of a gene’s activity is measured on a continuous scale and is
therefore referred to as a quantitative trait. For this reason, studies which aim
to map a discrete trait like SNPs to a continuous trait like gene expression are
called quantitative trait locus (QTL) studies.

A set of quantitative traits suitable for QTL could be for example height, blood
pressure, cholesterol levels, or even the body mass index (BMI). To highlight
the importance of association studies that try to link genetic variants to gene
expression patterns an ”e” is prefixed to QTL to distinguish those studies, thus
obtaining eQTL for expression quantitative trait loci study.

According to Lathrop [5] and Pritchard [7] the benefit of conducting eQTL stud-
ies lies in the hope to uncover more knowledge about the underlying molecular
mechanisms of disease and disease susceptibility by linking the SNPs previously
identified in GWAS studies (but found to be located in non-coding regions with
thus an unknown effect on the disease) with gene expressions whose activity could
be involved in disease pathogenesis.

This elevates the importance of the previously thought to have no function
”junk”-DNA (therefore the name ”junk”). About the reason for the existence
of these non-coding regions of the genome has been speculated a lot and recent
developments support the hypothesis that non-coding parts of the genome like
long non-coding RNAs actually have a major role in gene expression control.

This helps us reveal another level of functional complexity of the DNA, because
links between SNPs, gene expressions, and phenotype (disease or trait), form a
kind of interaction network.

Bartlett et al. [8] claim that an integrated analysis approach is required to fully
reap the benefits of modern sequencing technologies for gaining a better un-
derstanding of disease and more importantly, find new methods to cure them.
Especially, the areas of personalized medicine, better biomarkers for novel drugs
and clinical tests, as well preventive screening are pointed out in [8].



2.1. Introducing the road from gene mapping to integrated genomic interaction studies 15

A first step towards achieving the goal of integrated analysis, i.e. the simultaneous
study of a patient’s genetic and transcriptomic profile, a large enough number of
datasets have to be collected in order to be able to establish links between the
three entities phenotype, gene expression profile, and genetic code.

Before presenting some recent examples collected from the literature that clearly
show the benefits of extending GWAS with eQTL and mapping SNPs to gene
expressions, let us first state how a SNP associated with the transcription activity
of a gene can ”interact” with it.

One well understood mechanism described in [5] is SNPs that fall into the tran-
scription start site (TSS) of a gene and thus dampen or enhance its transcriptional
activity. Moreover, a study by Ogawa et al. [32] recently revealed by using next-
generation sequencing, that mutations in cancer affect the splicing machinery of
cancer related genes and alter their expression activity.

As a consequence, in order to be able to clarify the effects of SNPs on gene
expression, SNPs found to be associated with certain genes are labeled as either
cis-acting or trans-acting. It should be noted that the terminology regarding cis-
and trans- effects in eQTL studies is different from other genetic studies, as was
pointed out by Pritchard in [7].

Although the definition of cis- and trans- acting SNPs in eQTL studies is some-
what arbitrary and could be different in various studies, both Lathrop [5] and
Pritchard [7] state that in general a cis-acting SNP is understood to be located
in close proximity to the gene it is associated to. The distance on the DNA
strand is measured in base pairs (or nucleotides). This means that the distance
between cis-acting regulatory SNPs and the gene being regulated is short. In con-
trast, trans acting SNPs have a large distance from the gene they are influencing.
Therefore, in eQTL studies cis and trans are terms indicating the distance of a
gene associated SNP in genomic coordinates on the DNA.

Simply speaking a cis-acting SNP is ”near” or ”close” to the associated gene
whereas a trans-acting SNP is ”far” or ”distant” from the gene it influences. The
term trans-acting SNP even includes the possibility of the SNP being located on
a totally different chromosome.

According to [5, 7], a cis-acting SNP is most of the time classified to be within
range of 100kb upstream or downstream of the gene that it is associated to. All
other SNP effects are categorized as trans-acting SNPs.

Despite the fact that the effect of cis-acting SNPs on the actual gene expression is
stronger than that of trans-acting SNPs (shown in several studies), trans-acting
SNPs seem to be on the other hand more numerous. Because trans-acting SNPs
are equipped with the ability to influence the transcriptional activity of many
genes, they have become known in the literature as ”master regulators” [5, 7].

The merit of emerging eQTL studies is twofold; One, novel insights into suscep-
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tibility to and pathogenesis of disease are promised to be revealed. Two, a better
understanding and interpretation of the results of GWAS can be attained.

Let us first present some studies that shed new light on potential disease mech-
anisms utilizing eQTL.

A study conducted at the San Antonia Family Heart Hospital took a closer look
at the genetic underpinnings of the various cholesterol levels of its patients and
found that the expression level of a gene linked to cholesterol is influenced in a
cis-acting manner by a SNP [10].

Another study [33] revealed by analyzing post-mortem brain tissue of Alzheimer
patients that SNPs are associated with the genes MAPT and APOE, both of
which are thought to have major involvements in disease pathogenesis of Alzheimer’s.
Thus, an important connection between genetic variants of a patient and the
molecular mechanism of Alzheimer disease is drawn in [33].

To come back to the topic of how eQTL helps surface knowledge about molecular
mechanisms of disease pathogenesis, it also shows us how disease are related with
each other on a molecular level.

Although it is known that several genomic variants are simultaneously associated
with several disease, as can be concluded from the overview tables provided by
Manolio in [4], it was unknown in what kind of fashion those SNPs have the
ability to induce disease pathogenesis. This changes with the advent of integrated
genotype, gene expression, and disease status information analysis.

Manolio points out that Asthma shares many genetic variants with other disease,
all of which have been uncovered by GWAS, but it was totally unclear how those
SNPs interact in order to have an effect on disease until eQTL studies came
along. [4].

Asthma has been studied by many researchers [4,5,9], and the studies concluded
that there is strong evidence that the gene ORMDL3 has an important function
regarding Asthma.

The first parts of a molecular mechanism that is involved in Asthma were uncov-
ered by Moffatt et al. in [9], who showed that several cis acting SNPs appear to
regulate the expression of the ORMDL3 gene in Asthma patients.

Integrated genome and transcriptome studies also have the potential to iden-
tify relationships between disease on a molecular level, as was already done for
Asthma and Crohn’s disease.

On the same standing regarding the importance of ORMDL3 to Asthma, the
gene PTGER4 is believed to have a strong role in Crohn’s disease [5].

A connection of molecular mechanisms between Asthma and Crohn’s disease
was discovered in [34, 35]. The researchers observed that there is a concurrent
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correlation between SNPs and both the expression levels of PTGER4 in Crohn’s
disease and ORMDL3 in Asthma.

From these results it can be concluded that there seems to be shared or common
biological mechanisms that underlie both disease. The notion of several disease
sharing genomic interaction networks is not new and has already been reported
several times, as for example by Manolio in his GWAS review in [4].

The novelty of eQTL is its ability to shine light on the molecular mechanisms of
disease which manifest themselves via genetic variants exerting an effect on tran-
scriptome variation whose regulatory interaction networks play a role in disease
pathogenesis and susceptibility.

What lies beyond eQTL is the observation that other genetic variants and even
lifestyle factors have and could have an influence on the function of the DNA.
Except SNPs there are other genetic variants like CNVs and InDels that could
alter and perturb the regulatory mechanisms of the DNA. On top of that, evidence
of epigenetic mechanisms influencing the activity of genes is beginning to emerge
with histone modifications and methylation patterns playing an active part in
genome regulation. Last but not least, the effect of our lifestyle on our well-being
should not be underestimated.
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3 Applications of information
theory in eQTL analysis

3.1 Information theoretic approaches to the gene

mapping problem

Because of the importance of gene mapping to further our understanding of the
genetic basis of traits and complex disease, a lot of work has went into the devel-
opment of tools and algorithms to accurately extract associations between SNPs,
gene expression, and phenotypic traits.

Especially in the field of biomedicine the results of association studies that either
link genomic variations to phenotypes (GWAS) or discover connections between
genetic variants and gene expressions (eQTL) have a big impact on our under-
standing of how phenotypes emerge and disease progress.

Discovery of novel biomarkers can help researchers devise non-invasive genetic
tests for pre-screening patients for potential disease risks. Even though medica-
tions based on gene therapy have not reached market potential yet, an intrinsic
understanding of the dynamic interactions between SNPs and gene expressions
and how they influence disease progression is of vital importance for the creation
of such therapies. Therefore, in this chapter we will discuss some selected applica-
tions of information theoretical analysis methods in the domain of gene mapping
and DNA sequence information analysis.

At this time it is necessary to introduce some basic formalism and concepts of
information theory in order to better apprehend the following work. We will
explain the methodology that will be used to analyze the eQTL datasets, define
the random variables that are necessary to work with the datasets, and provide
a compact outline of information theoretic concepts in the context of DNA- and
RNA-sequence analysis.

3.1.1 Mathematical representation of eQTL data

When performing gene mapping using DNA- and RNA-sequence data in case-
control studies, we are usually presented with a dataset that contains the geno-
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types, i.e. SNPs, of the sequenced population, gene expression profiles for a
number of genes, and information about a phenotype, may it be a specific trait
or a disease status.

The task of an analysis is to extract ”relevant” or ”meaningful” association from
such a dataset that can be used to further our understanding of the genetic
principles that govern the creation of a specific phenotype.

Let us start with the genotype information. Via DNA-sequencing we identified
a total number of L SNPs at various locations in the genome. Since a person
inherits at each genomic locus l one allele from the mother and the other allele
from the father, a single nucleotide polymorphism (SNP) is defined to be any
genomic locus l that experiences nucleotide variations.

It has been reported [18] that at each locus l usually no more than two major
alleles are present, which means that only a combination of two bases out of the
4 letter DNA alphabet A, T , C, and G appears as a SNP.

Let us name the random variable for SNPs S and genetic variation in a dataset is
represented as a chain of tuples that hold the discovered nucleotide combinations,
which is illustrated in Table 3.1.

Subject SNP 1 SNP 2 · · · SNP L

Patient 1 (A,A) (C,G) · · · (T, T )
. . . . . . . . . · · · . . .

Patient N (T,A) (C,C) · · · (T, T )

Table 3.1: Representation of genetic variation discovered in N patients for a total
number of L SNPs.

Furthermore, current sequencing technologies make it difficult to distinguish the
gametic phase which means that it is not clear from the SNP data which SNP
was contributed from the father’s side and which one was contributed from the
mother’s side.

As a consequence, we assume throughout this work, that at any locus l containing
a SNP in the genome, we can only distinguish two homozygous cases and one
heterozygous case.

To illustrate this concept with an example, let us assume that we sequenced a
person’s DNA and obtained the following SNP (A,G). For our analysis to work, a
coding concept needs to be established that transforms this SNP into a numerical
value. A coding scheme was suggested by Hagenauer et al. in [18, 36] which we
will apply in this thesis to map SNPs to numerical values.

Since we can effectively only distinguish between 3 states, namely the two ho-
mozygous cases (A,A) and (G,G) and one heterozygous case which can either be
(A,G) or (G,A), the SNP state (A,A) is mapped to 0, (A,G) and (G,A) to 1,
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and (G,G) to 2. The SNP encoding mechanism of [18, 36] is illustrated in Table
3.2.

Genotype SNP Variation Encoded Numerical Value
(A,A) 0
(A,G) 1
(G,A) 1
(G,G) 2

Table 3.2: The encoding procedure for bi-allelic SNPs according to Hagenauer et
al. [18].

With the coding scheme of Hagenauer [18] it is possible to convert the SNPs into
numerical values and make the data accessible to analysis.

Hence, the SNP dataset can be represented as a numerical vector S = [S1, · · · , Sl, · · · , SL]
of length L with the SNP random variables Sl taking one of the values from the
alphabet AS = {0, 1, 2}, i.e. Sl ∈ {0, 1, 2} l = 1, · · · , L.

In addition to gene variants, we must also introduce random variables for the
gene expressions, which are part of eQTL data.

Via RNA-sequencing (RNA-seq) we obtained gene expression values for a total
number of G genes. Their expression values are represented by the random
variable Eg and since gene expressions are continuous Eg ∈ R g = 1, · · · , G,
with G being the total number of genes for which we have expression values in our
dataset. We summarize the RNA-seq data in a vector E = [E1, · · · , Eg, · · · , EG].

Finally, we treat the phenotype trait random variable T of the eQTL dataset.
Although the phenotype trait can either be a discrete random variable in the
case of discrete traits like disease affection status of a patient or a continuous
random variable if we are dealing with phenotypic traits like a person’s height,
in this thesis the focus is on disease affection status. Therefore, the phenotype
trait random variable T is discrete in nature.

Under the simple assumption of a case-control study in a cohort consisting of
N individuals, the phenotype trait random variable for each individual Ti is a
binary random variable, i.e. T ∈ {0, 1}, which describes if an individual falls into
the case-category 1 or control-category 0. Therefore, the affection status data is
given as a binary sequence vector T = [T1, · · · , Ti, · · · , TN ].

We finally arrive at the representation of an eQTL data set which is comprised
of SNPs S, gene expressions E and phenotype trait T.
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3.1.2 Claude Shannon’s information theory and its rela-

tion to genetics

Claude Shannon, the founder of information theory [37], introduced several im-
portant concepts which prove to be very useful when trying to extract useful
information from genomic datasets. Although Claude Shannon is mostly known
for his fundamental contributions to the field of information technology, without
which modern computers and algorithms would not be possible, the reader of
this thesis might be surprised to discover that Claude Shannon actually wrote
his PhD thesis about genetics [38].

Of practical importance to medical doctors and biomedical researchers is the
concept of entropy that Shannon introduced in his groundbreaking work. When
performing an association study, entropy can not only measure the amount of
information that is contained in a phenotypic trait, but also gauge the amount
of information that the analysis reveals about it.

The outline in this Section of how information theory can be applied to analyze
genomic data obtained from next-generation sequencing machines follows the
work of Hagenauer et al. who investigated many potential use cases of information
theoretic applications to genetics in a series of papers [18,19]. Therefore, the main
ideas regarding the connections between information theory and genetic analysis
are due to Hagenauer [18].

An example from a case-control study that investigates SNP associations with
a complex disease, shows that the trait T can either indicate that a patient
is affected or not. Assuming that the same number of affected and unaffected
patients were sequenced, the maximum amount of information that physicians
can uncover about the disease trait is 1 bit. This stems from the fact that the
entropy [39] of a random variable, the trait T in our case, is defined as

H(T ) = −
∑

t∈AT

P (t)log2P (t), (3.1)

where P (t) is the probability that an individual in our dataset has the specified
trait t and AT is the range of values that the realization t of the random variable
for traits T can take. In our example of a simple case-control study the trait T
is the disease affection status with AT = {0, 1} and P (T = 0) = P (T = 1) = 0.5,
thus making the entropy H(T ) = 1bit, since the logarithm is taken to base 2.
Unless otherwise stated, in this thesis we agree upon that the logarithm is always
taken to base 2 and delivers by definition results in bits.

Should one wish to measure the impact of SNPs on a trait in an association study,
the mutual information needs to be calculated. This can be easily achieved by
introducing some more concepts from information theory (for a detailed treaty
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about information theory refer to the book by Cover and Thomas [39] or MacKay
[40] whose book is also freely available online: [41]).

The joint entropyH(S, T ) measures the combined information in a SNP-phenotype
trait pair (S,T ), which can be obtained with the formula

H(S, T ) = −
∑

s∈AS

∑

t∈AT

P (s, t)log2P (s, t). (3.2)

In this case P (s, t) is the joint probability of the SNP and the trait occurring
together. The probabilities are obtained by counting the occurrences, i.e. the
number of times the SNP and the trait appear together, and then dividing the
number by the sample size N .

Although with the two equations above we have the basic ingredients to define
the mutual information, we will show also another type of entropy, namely the
conditional entropy, because it will ease the interpretation of results and make
the findings of information theory based association studies more comprehensible
to the general audience.

In the case we know the information about a SNP at a certain locus in the genome,
we can ask ourselves how much uncertainty remains in our estimate about the
trait T . The remaining information regarding the phenotypic trait T is calculated
via the conditional entropy

H(T |S) = −
∑

s∈AS

∑

t∈AT

P (s, t)log2P (t|s) =
∑

s∈AS

P (s)H(T |S = s) (3.3)

leading to the chain rule of entropy

H(S, T ) = H(S) +H(T |S) = H(T ) +H(S|T ) (3.4)

which means that the combined joint information in a SNP-trait tuple (S, T ) is
the information content of the SNP plus the remaining information content of
the trait. Of course, a corollary is that given a certain trait, the joint entropy
H(S, T ) can also be expressed as the information content of the trait plus the
remaining uncertainty of the SNP.

This leads us finally to the definition of mutual information, also abbreviated as
MI throughout this thesis:

I(S;T ) =
∑

s∈AS

∑

t∈AT

P (s, t)log2
P (s, t)

P (s)P (t)
; (3.5)

an association measure with many important properties regarding gene mapping.
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First of all, in contrast to measures like correlation, mutual information catches
any kind of statistical relationship between SNPs, gene expressions, and pheno-
typic traits [19, 39, 40], thus enhancing any genomic analysis because it enables
the analysis to go beyond detecting only simple linear associations.

Another interesting property of mutual information is that it is 0 iff (if and only
if) there is no statistical association present.

Mutual information is also referred to as ”shared information” [40], because it
tells us how much information a trait and a certain SNP share. An interesting
corollary of that observation is, that a person’s genotype information tells us as
much about its phenotype (trait) as does the phenotype (trait) tell us about its
genome.

3.2 Related work

3.2.1 Mutual information relevance networks

One of the very early attempts of applying Shannon’s concept of mutual infor-
mation to the analysis of gene expression data was the pioneering work of Butte
et al. [42]. The motivation behind his work was to understand how and if genes
can influence the behaviour of each other by means of either suppressing or up-
regulating their activity.

In order to discover those relationships, Butte et al. [42] measured the expression
activity of several genes under various conditions and used mutual information
as a dependency measure. Since the gene expressions were continuous random
variables, a quantization, i.e. digitalization, had to be performed for making
the analysis computational accessible. Although a simple quantization based on
histograms was used, the initial study yielded satisfactory results [42].

Butte faced the problem of an exploding search space when considering joint and
multiple associations between gene expressions. In his work [42] he introduced a
solution to this dilemma, a concept known as relevance chains.

Let us say that we are looking within a pool of candidate genes for associations
with a target gene expression Etarget. In a first step, the relevance chains algorithm
calculates the ordinary mutual information between our target Etarget and all the
other gene expressions E = [E1, · · · , EG] in the data set, i.e I = (Etarget, Eg) for
g = 1, · · ·G. That is the process for obtaining a list of genes which are most
associated with the target gene according to the amount of mutual information.
If one is only interested in single associations the relevance chain algorithm can
be terminated here.

On the other hand, if an analyst wants to discover joint or multiple associations,
this can be accomplished by continuing with the relevance chain algorithm.
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The first link of a relevance chain is the gene with the highest mutual infor-
mation that was discovered in step #1. Let us denote this gene expression as
E#1. In order to look for joint associations, the detected gene expression E#1

is taken as the first input to be appended to the tuple of joint gene expressions
which are to be tested for association with the target gene expression Etarget. To-
gether with the remaining gene expressions in the dataset E the tuple (E#1, Eg)
is tested for association with the target Etarget by calculating the mutual infor-
mation I(Etarget, (E#1, Eg)).

The gene expression yielding the highest mutual information in combination with
E#1 in step #2 is denoted as E#2 and forms the next link in the relevance chain.
Then again, the process of step #2 is repeated by appending E#2 to the list, i.e.
the list becomes (E#1, E#2), and checking the mutual information for the remain-
ing gene expressions with the target by forming the combination (E#1, E#2, Eg)
and calculating the mutual information I = (Etarget, (E#1, E#2, Eg)).

By concatenating the gene expressions with the highest mutual information value
in each step, the relevance chain is extended until a terminating condition is met.

3.2.2 Gene mapping with Shannon’s mutual information

Hagenauer et al. refined the work of Butte et al. in [19] and also contributed a
formula that allows the calculation of mutual information between discrete and
continuous random variables.

In contrast to Butte’s work [42], Hagenauer and Dawy et al. [18, 19] focus on
extracting SNP-trait associations in case-control studies using Shannon’s mutual
information as a dependency measure. Some of the several advantages of using
mutual information are mentioned in their paper [19].

Apart from the benefits of using mutual information as a dependency measure,
which have been mentioned in Section 3.1.2, it is argued in [19] that mutual
information gives quantitative results that allow the physician or researcher who
is performing the analysis to evaluate the importance of SNP-trait associations
based on the amount of information that the SNP contributes to the trait.

Furthermore, a link between mutual information and the p− value based on the
χ2-statistic is presented in [43] that allows attachment of p − values to mutual
information values, if the analyst deems this necessary.

When Dawy et. al. applied their method to the autoimmune disease dataset of
Ueada et al. [44], their information theoretic method delivered the same results
as the logistic regression method that was used in the original paper for analysis
plus one potential novel marker that was not reported in [44] by the authors but
brought to light in [19].
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For finding associations between SNPs and the affection status of patients re-
garding the autoimmune disease dataset of Ueada et al. [44], Dawy et al. [19]
calculated the mutual information as outlined in Section 3.1, and reported those
SNPs as significant which have a higher mutual information value than a certain
threshold.

Another important result of [19] is the derivation of a formula for calculating the
mutual information between a discrete SNP random variable and a quantitative
trait like gene expressions.

We will use this mathematical approach later in combination with kernel density
estimates for analyzing eQTL data and finding associations between SNPs and
gene expressions.

The method for calculating the mutual information for discrete S and continuous
T in this case according to [19] is

I(S;T ) =
∑

s∈AS

∫

AT

f(s, t)log2
f(s, t)

P (s)f(t)
(3.6)

where f(·) are the continuous probability density functions which have to be
estimated from the available sample via kernel density estimators. The complete
derivation of the above formula is given in [19].

Mutual information has also been applied in other successful works that use
information theoretic methods to analyze genomic data [42, 45–48].

Practical implementation for calculating the mutual information in a
mixed environment of discrete and continuous random variables

We use a slightly different approach for calculating the mutual information be-
cause it simplifies the implementation in Python and the computation of the
kernel density estimate (KDE) of f(·).

Cover [39] already introduced the concept of differential entropy in order to mea-
sure the information content (or amount of uncertainty) [39, 40] of a continuous
random variable. Thus, using Cover’s definition of differential entropy h, we
obtain the information content h(T ) of quantitative traits T as

h(T ) = −

∫

AT

f(t)log2f(t)dt (3.7)

with AT being the realm of realizations or support set of the random variable T
and f(t) the probability density function of T .
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By utilizing the chain rule property of entropy, we first show how to calculate the
conditional entropy between SNPs S and phenotypic traits T before proceeding
to present our calculation formula for mutual information.

The motivation behind our approach is that it is easier to compute the kernel den-
sity estimate if the continuous random variable T is conditioned on the discrete
random variable S. Experiments where the mutual information between SNPs
and gene expression was calculated in eQTL datasets showed that our compu-
tation approach seems to be more stable in contrast to the method described
in [19].

Therefore, instead of directly calculating the mutual information, we bypass it
using a two-step approach that uses the conditional entropy, which is estimated
according to

h(T |S) = −
∑

s∈AS

P (s)

∫

f(t|S = s)log2f(t|S = s)dt. (3.8)

By combining the computation results of the differential entropy of the trait plus
the conditional entropy of the trait given the SNP, our implementation computes
the mutual information according to

I(S;T ) = h(T )− h(T |S) (3.9)

in order to obtain the degree of association between SNP S and trait T .

3.2.3 ARACNE: Reconstruction of gene regulatory net-

works

Of particular relevance to our work is the ARACNE algorithm by Margolin et
al. [48]. Margolin et al. developed an interesting algorithm to reconstruct gene
regulatory networks from gene expression datasets. The authors show that their
algorithm outperforms other gene network estimation algorithms that either use
relevance chains mentioned in Section 3.2.1 or Bayesian networks.

When dealing with MI-values that have been estimated from a limited sample
size, either via frequency counts in discrete cases or kernel density estimates in
continuous cases, the quality of the estimate of P (·) and f(·) greatly influences
the quantitative value of mutual information, as outlined in [48]. Furthermore,
Margolin et al. [48] point out that there is yet no way to automate this process,
but an important result is given by the authors in their paper regarding mutual
information ranked lists.
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Even though it might not be possible to accurately calculate the absolute amount
of mutual information, the impact on ranked lists of MI-values is small accord-
ing to [48]. This means that if we calculate the MI between all pairs of gene
expression values in a dataset and rank those MI-values, then, if we change the
parameters for obtaining the kernel density estimates of the underlying prob-
ability density functions necessary for the computation of mutual information,
the relative rank of a gene expression pair’s MI-value remains approximately the
same. This theorem was empirically proven in [48].

Thus, ARACNE proceeds constructing a gene network by first calculating the
pairwise mutual information between all combinations of gene expressions and
drawing an edge between gene pairs that share information with each other.
After the first step has been completed, an interesting application of the data
processing theorem [39, 40] of information theory reduces the amount of false
positive (or weak connections) in the dataset and only edges between gene pairs
with ”strong” MI-values are kept whereas weak edges are discarded.

3.2.4 Maximal information coefficient

A recent promising development in finding useful associations between SNPs and
traits, consequently extracting ”useful” information from eQTL datasets, is the
introduction of the maximal information coefficient (MIC) by Reshef et al. [49].

The paper of Reshef et al. tackles the problem of obtaining a good estimate of
mutual information between a pair of random variables by trying to maximize
the amount of MI via a dynamic grid partitioning method. According to the
authors, by maximizing the mutual information value in this way it is possible to
perform data mining on any kind of dataset and extract novel associations from
the data [49].

Before presenting the claimed benefits of the MIC method, we will briefly outline
the MIC calculation methodology when applied in the context of eQTL analysis.

Let us assume we have an eQTL dataset comprised of N patients in the form
of Section 3.1 and we are interested in obtaining the MIC of a SNP-trait pair,
where the trait in this case are the gene expressions. Consequently, the MIC
computation method of Reshef et al. [49] proceeds as follows.

The vectors S and T span a two-dimensional area with each scattered point being
a tuple (Si, Ti) for i = 1, · · · , N . In order to find the mutual information, a grid
is laid on the area and the obtained cells induce a probability mass function
from which a mutual information value can be calculated. The grid structure is
dynamically morphed and for each grid configuration the obtained MI-value is
recorded. The multitude of grid structures form a surface plot of MI-values, with
each MI-value representing a different grid configuration. Hence, the maximal
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information coefficient is defined as the maximum MI-value that can be found on
the generated surface plot.

Among the beneficial properties of MIC the authors of [49] claim:

• Generality: ability to capture a wide range of functional relationships.

• Equitability: similar strength associations get similar scores regardless of
functional relationship.

Like mutual information, MIC is in principle sensitive to any kind of functional
relationship between pairs of random variables. Therefore, as long as some sort
of statistical dependency exists, MIC should detect that association.

Among the alleged advantages of information theoretic dependency measures
like MI or MIC, the one reported in the literature quite often is the ability to
identify associations in a dataset that exhibit non-linear functional relationships,
in contrast to classical measures like Pearson or Spearman correlation which are
only able to cope with linear functionality. For a detailed comparison the reader
may take a closer look at Reshef’s paper [49].

The summary of this chapter is that with respect to genomic analyses, frame-
works that are based on information theory have an edge over other classical
and state-of-the-art methods. Although there are some computational challenges
when trying to calculate the mutual information in a mixed environmental setting
consisting of both discrete and continuous random variables, the works of other
authors clearly show the advantages of applying information theory to genomic
analysis.
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4 Introducing the
MDL-principle to eQTL analysis

4.1 Analyzing genomic data with the MDL-principle

The main contribution of this thesis is the analysis tool qMAP which enables
biologists and physicians to accurately extract important associations between
SNPs and gene expressions in eQTL datasets. It is implemented as a Python
software module and utilizes ideas and concepts of Rissanen’s minimum descrip-
tion length principle (MDL) [50] in order to identify SNP-trait/gene expression
associations in eQTL data.

Rissanen’s approach to statistical modeling of data is grounded in the belief that
a good model delivers accurate predictions which can be used to encode, i.e. to
compress, the data [50]. According to Rissanen, the optimal statistical model is
determined by measuring the amount of bits necessary to encode the explanatory
model of the data plus the number of bits resulting from encoding the data using
the explanatory model.

The mathematical tools and concepts surrounding the MDL principle were es-
tablished and refined in a series of published articles [51–56].

Several authors delivered significant contributions to the MDL principle by ei-
ther presenting novel theoretical concepts [57–59] or interesting applications to
practical problems [60, 61].

The entire mathematical theory around the MDL concept has a long history of
development and accumulated a large corpus of publications around the topic
with many contributing authors. Because this thesis concentrates on genomic
analysis with the MDL-principle, a few selected examples in the context of genome
research will be briefly mentioned which only constitute a tiny fraction of the
spectrum of MDL related research activities.

The notion of the MDL-principle has been applied to infer relations in transcrip-
tome activity between genes in [62] by Tabus and Astola. In a branch of systems
biology [27] that deals with inferring gene regulatory networks from gene expres-
sion data sets, Dougherty et al. [63] as well as Zhao et al. [64] created inference
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approaches utilizing MDL. Furthermore, applications of MDL have also under-
taken inroads into the clustering of gene expressions, exemplified by the article
of Jörnsten and Yu [65].

Before introducing our algorithm, we will explain the basics behind the MDL-
principle, give a small overview of related work, and outline the motivation behind
the development of our tool.

4.1.1 MDL eQTL analysis

When looking for associations between SNPs and gene expressions in eQTL data,
the effect of individual SNPs on a gene’s expression value is usually very weak
(see Section 2.1). Furthermore, the functional relationship between SNPs and
gene expressions is unknown.

The purpose of qMAP is to alleviate some of the shortcomings current tools like
PLINK [66] have.

If we wish to know more about the mechanisms of the genomic function of the
DNA, we have to go beyond single SNP analysis, but start analyzing SNPs as
well as gene expressions in a joint context.

Although it can be possible that there is a master regulator SNP that single-
handedly controls a gene’s activity, literature has shown [5, 7, 8] that several
SNPs jointly influence the gene activity. On top of that, the notion emerges that
networks of interacting SNPs govern transcriptome activity.

Moreover, the mRNA products of various genes have an effect on each other
resulting in gene-gene interaction networks where one gene is being regulated by
the expression of another gene.

From the above explanations it becomes obvious that gaining a complete under-
standing of all the involved genomic mechanisms that lead to a specific phenotypic
trait or are responsible for disease pathogenesis is very challenging.

Our focus for the eQTL data analysis algorithm will be in identifying SNP-gene
transcript associations and draw up the interaction network.

Given the above statements, a suitable analysis algorithm should have at least
the following properties:

• Natively handle a mixture of discrete and continuous random variables.

• Be sensitive to and identify a broad spectrum of functional relationships.

• With increasing sample size, converge to the correct solution.
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Current information theoretic approaches which have been introduced in Section
3.2 are promising candidates for an algorithm to extract useful information from
an eQTL dataset.

In this thesis we introduce another approach based on the minimum description
length principle and benchmark it against current methods; including the recently
developed maximal information coefficient (MIC) [49], mutual information mea-
sures between discrete and continuous random variables using kernel density esti-
mators (MI-KDE) (extended from the works of [19,48]), and the genome analysis
toolkit PLINK [66].

Discovering important associations in eQTL data is in essence a learning task
and several authors like Rissanen [51,57] and Grünwald [60] have shown that the
MDL principle is well suited for such tasks.

As Hagenauer promoted the use of information theory in genomic analysis [18],
Rissanen puts forward the idea that any underlying structure of a dataset can be
leveraged to find a more compact representation of that dataset [51].

Using regularities in a dataset is usually how a compression algorithm works
[39, 40] in order to shrink the size of the dataset. By establishing a link between
data compression and machine learning, Rissanen showed for the MDL principle
that an efficient learning algorithm is also an efficient compression algorithm
[50–54].

Putting this into the context of eQTL analysis, we can say that the more under-
lying regularities of the interaction network between SNPs and gene expressions
we can discover, the more we learn about the data and the better we can find a
compact description of the data, i.e. a compressed version of the eQTL dataset
that requires less disk space than the original file.

As a consequence, this implies that our understanding of disease susceptibility
increases as well, since we identify the associated interaction networks that make
up the molecular machinery of disease. Thus, by finding all correct associations
between SNPs and gene expressions, we can get an optimal compressed rep-
resentation of the eQTL dataset and hence a good understanding (descriptive
statistical models) of underlying disease pathogenesis mechanisms. A corollary
of this statement is of course, that if an algorithm is able to automatically dis-
cover the shortest description length of an eQTL dataset, then we can say that
we have learned all relevant interactions between SNPs and gene expressions in
that dataset. Based on Rissanen’s MDL principle we will introduce the qMAP
tool that thrives towards achieving that goal.
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4.1.2 Basics of MDL

Given our eQTL dataset Q = [S,E] consisting of the data vectors for both SNPs
and gene expressions, let us denote the description length Λ of Q for the case
when no code is used by ΛeQTL, if another encoding scheme is used by ΛCode, and
the description length via MDL coding by ΛMDL. Then, the essence of the MDL
principle is to find a code of the eQTL data that satisfies:

ΛMDL ≤ ΛCode ≤ ΛeQTL. (4.1)

In order to find this code, we have to introduce an optimization criterion. In
the MDL framework, this optimization criterion is called the stochastic com-
plexity [53, 54] of the data, which is the joint description of the mathematical
model that was used to encode the data plus the encoded data itself. The joint
description is usually denoted in bits, which is the amount of space the mathe-
matical formulation of the model and the encoded data would require on a storage
medium.

The description length of the model used for encoding the data is also referred to
as the parametric complexity [60]. One can imagine that mathematical models
that have more parameters which can be tuned, consequently have more degrees
of freedom which can be used to capture and offer explanations to a wider range
of phenomena.

Speaking in mathematical terms this means that statistical models with a larger
number of freely tunable parameters show the behaviour of being able to fit a
great variety of data.

On the other hand, the encoded data is also referred to as the ”likelihood of the
data given the parameters and the model” by MacKay [40]. This means that
if our model of the data is correct, most predictions that we make about the
data will be correct. Therefore in coding terms, the description length Λ of the
data will be short because the probability of our predictions to fit the observed
data are high. Generally speaking, elements of a dataset that occur with a
high probability need less bits during the encoding process whereas in contrast,
improbable or incorrectly modeled elements require much more bits during the
encoding procedure.

Combining the two above statements it is said that the stochastic complexity
(SC) [60] of a dataset is:

Stochastic Complexity = Encoded Data + Parametric Complexity. (4.2)

Intensive research [56, 60, 61] has led to the conclusion that the mathematical
definition of stochastic complexity should be based on Shtarkov’s normalized
maximum likelihood distribution (NML) [67].
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Although the NML code by Shtarkov has a phalanx of properties which are
of utmost importance for proper statistical modeling of data, acknowledged and
reviewed in Grünwald’s book [60], for our work it is sufficient to mention only one
property of the NML code which is of relevance to the eQTL analysis algorithm.

Like the case for mutual information, the feature of the NML code most inter-
esting to us is its property to find a natural balance between model complexity
and prediction accuracy. Hence, an MDL model based on the NML code of a
dataset has the benefit of simultaneously giving good encoding results for the
present data as well as being able to offer good coding performance on future,
unseen data.

Putting the above explanation in simple terms results in the statement that the
MDL principle using the NML code protects the algorithm from overfitting (see
e.g. [57, 60]).

Let us build the basic NML code for our eQTL datasetQ by starting with the first
building block, namely the model class M . The model class is the spectrum of
statistical models which we consider for modeling the data. Since we are dealing
with a great variety of potential manifestations of data distributions in eQTL
data, we require a model class that is able to cope with this situation.

In the case of the random variable for SNPs S using the coding scheme described
in Section 3.1, S has 3 realizations while the random variable for traits T only
has two realizations. Both distributions p(s) and p(t) can be elegantly described
by the multinomial distribution [60, 61].

Because the multinomial distribution can easily be expanded to accommodate
cases where the random variables S and T have more realizations and due to its
flexibility as well as the ability to reasonably approximate other distributions,
we use multinomial distributions as the primary model class M in the qMAP
algorithm.

The flexibility of the multinomial model class M can be seen in the size of the
parameter space Θ which holds the parameters θ that describe the realization
probabilities of the various random variables in our dataset:

M = {P (·|θ) : θ ∈ Θ}. (4.3)

When employing one of the available models in the model class M to encode the
dataset Q, the likelihood of the parameter(s) θ have to be estimated from the
available data by means of the maximum likelihood (ML) estimator θ̂(Q,M). A
good introduction to probabilities and inference procedures is given in MacKay
[40]. The ML-estimator is the estimator that finds the parameter θ which maxi-
mizes the likelihood:

θ̂(Q,M) = argmaxθ∈ΘP (Q|θ). (4.4)
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As the name already implies, the normalized maximum likelihood distribution
[60, 61, 67] is the ordinary likelihood distribution divided by a normalizing term.

The normalizing term R(M) is defined according to Shtarkov [67] as the sum
of all potential likelihood distributions that can be generated with the current
model class M for all possible realizations Q̃ of the original data Q:

R(M) =
∑

Q̃

P (Q̃|θ̂(Q̃,M)). (4.5)

Calculating the above sum gives us the number of bits necessary to mathemati-
cally describe the model class M . Obviously, calculating this sum in practice is
more than challenging.

Luckily due to Kontkanen and Myllymäki [60,61,68,69], an elegant and efficient
computation method for exactly calculating the parametric complexity R(M) for
the multinomial model class M exists. As an integral part of qMAP, Kontkanen
and Myllymäki’s algorithm will be explained in Section 4.1.3.

After having confirmed that the normalization term R(M) can be computed in
practice, we give Shtarkov’s definition of the NML-distribution as

PNML(Q|M) =
P (Q|θ̂(Q,M))

R(M)
. (4.6)

The stochastic complexity SC of the data, which is more precisely the NML-code,
which in theory produces the shortest description length of the eQTL data Q, is
simply the negative logarithm of the NML-distribution:

SC(Q|M) = −log PNML(Q|M)

= −log P (Q|θ̂(Q,M)) + log R(M),
(4.7)

4.1.3 Kontkanen and Myllymäki (KM) calculation method
for NML codes

Our approach for estimating the shortest description length of a SNP-gene ex-
pression pair is going to be based on finding an NML-code for the eQTL data.

Akin to the method used by MIC to find the maximum information coefficient
between two pairs of random variables by optimizing a grid partitioning that in-
duces a joint distribution from which the mutual information can be derived, our
approach utilizes Kontkanen and Myllymäki’s algorithm [70] in order to obtain
the normalized maximum likelihood code of a SNP-gene pair association via dy-
namic grid optimization using the stochastic complexity from the MDL-principle
as the optimality criterion.
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The methodology for finding such an optimal MDL-grid has been invented by
Kontkanen and Myllymäki [70] in the context of obtaining MDL-optimal his-
togram densities from continuous probability distributions. They demonstrated
in their paper that depending on the available sample size, the MDL-histogram
density estimator automatically selects the total number of histogram bins and
a variable bin size for each bin that optimizes the stochastic complexity of the
data [70].

Due to the importance of the dynamic programming algorithm that was presented
in their paper for solving the problem of efficiently calculating the NML code, we
will outline Kontkanen and Myllymäki’s grid optimization algorithm for the 1D-
case, i.e. obtaining the NML code for the distribution p(e) of one gene expression
random variable E. To honor Kontkanen and Myllymäki’s contribution we will
refer to their optimization method as the KM-method. Kameya in his time-series
quantization paper [71], which builds upon Kontkanen and Myllymäki’s work,
also refers to their algorithm as the KM-method.

When we want to obtain the MDL-optimal code for one gene expression value,
the KM-method for the one dimensional case works as follows.

We have gathered expression values for one gene from N patients in our eQTL
dataset Q. They are recorded with finite precision ε, let us say 6 decimal points
after the comma. Therefore, our data vector for which we would like to obtain
the MDL-optimal shortest description is E = eN = [e1, · · · , eN ], containing each
patient’s measured gene expression values e.

When the grid is laid on the data, the grid’s boundaries have to be set. This can
be done by looking at the maximum and minimum expression values emax and
emin in our dataset E. Furthermore, the fact that the data are stored with finite
precision ε is used by the KM-method as a technical assistance construct to not
only derive the boundaries of the overlay grid but also the incision points for the
grid optimization procedure.

If we assume that the data have been recorded with precision ε then all gene
expression values e in our dataset eN will be draws from the set E defined as

E = emin + δ · ε (4.8)

for δ in range from 0 to emax−emin

ε
. Hence, the boundaries of the grid are defined

to be emin −
ε
2
as the lower and emax +

ε
2
as the upper grid boundary.

Since the KM-method will be used to select both the optimal grid granularity
and the location of grid points, the set of putative grid points has to be defined.

Note that we use a slightly different terminology than in the original KM-paper
[70], where the grid points are referred to as cut points. The set of putative grid
points Υ contains the upper and the lower boundary of the grid as well as all
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points that fall in between neighbouring values of a sorted list of expression values
e contained in eN . Thus, a grid point ξ separates two consecutive e-values in the
sorted list, which leads to the mathematical definition of the grid point set Υ, i.e.

Υ = emin +
ε

2
+ δ · ε for δ ∈ [0, · · · ,

emax − emin

ε
− 1]. (4.9)

The grid points ξκ belonging to the set Υ give us a grid layout consisting of at
most K grid intervals which are stored as an increasing sequence in the vector
Ξ = [ξ1, · · · , ξK−1].

Through optimization of the NML-code the KM-method is going to select an
MDL-optimal grid partitioning, i.e. that it delivers the MDL-optimal number of
grid intervals K and also the grid points ξκ that span the grid Ξ.

Since the grid borders are static, only the grid points ξκ falling into the interval
[emin, emax] are considered in the optimization procedure, i.e. ξ1 = emin + ε

2
and

ξK−1 = emax −
ε
2
.

Recall that the family of multinomial distributions is used as the model class M
and that a grid Ξ consisting of K intervals can have parameters θκ to model the
induced data distribution φΞ of the grid Ξ. Those parameters θκ belong to the
parameter set Θ satisfying:

Θ = (θ1, · · · , θK) : θκ ≥ 0,
K
∑

κ=1

θκ = 1. (4.10)

A grid Ξ with the lower boundary ξ0 = emin−
ε
2
, the upper boundary ξK = emax+

ε
2

and the grid points Ξ = [ξ1, · · · , ξK−1] gives rise to the multinomial distribution
φΞ of gene expressions defined via

φΞ(e|θ,Ξ) =
εθκ

λκ
(4.11)

with λκ = ξκ − ξκ−1 giving us the lengths of the grid intervals κ = 1, · · · , K.
Via this basic definition we can see that the grid partitions the data, in our
case the gene expression values, so that the grid induced density φΞ gives us the
probability of the data point e falling into the grid interval ]ξκ−1, ξκ] of length λκ.

For the entire data sample eN , the grid produces the probability distribution

φΞ(e
N |θ,Ξ) =

K
∏

κ=1

(

εθκ

λκ

)hκ

. (4.12)

In accordance to Kontkanen and Myllymäki [70], the NML-code for the grid
density φΞ is derived in the following way. As the parameters θκ denote the
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probability of a value e falling into the grid interval denoted by κ, the maximum
likelihood estimate θ̂ML of those parameters is

θ̂κ =
hκ

N
, (4.13)

which are just the relative frequencies. Replacing the parameters θκ in Equation
4.12 with relative frequency counts, we arrive at an expression for the maximum
likelihood estimate of the grid density φ̂Ξ that can be computed straightforward
from the available data:

φ̂Ξ(e
N |θ,Ξ) =

K
∏

κ=1

(

εhκ

λκN

)hκ

. (4.14)

After having obtained an expression for the maximum likelihood estimate of the
grid intensity, we proceed in calculating the normalizing constant R(M) in order
to get the NML-distribution induced by the grid.

For this the sum of Equation 4.5 has to be evaluated for every thinkable dataset
realization Q̃ of size N . Evaluating Equation 4.5 really is a herculean task, but
since we are using multinomial distributions to model eQTL data, it is possible
to apply Kontkanen and Myllymäki’s recursive algorithm to obtain not only an
exact solution to the computation of the parametric complexity, but on top of
that achieve it in a speedy manner [61, 68–70].

The straightforward but computationally intractable approach for calculating the
normalizing constant of the NML distribution for a grid Ξ with K intervals and
a total of N data points

R(N,K,M) =
∑

q̃N∈Q̃N

K
∏

κ=1

(

εhκ

λκN

)hκ

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

κ=1

(

λκ

ε

)hκ K
∏

κ=1

(

ε · hκ
λκN

)hκ

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

κ=1

(

hκ

N

)hκ

(4.15)

is reduced to the recursive formulation [61, 68–70]

R(N,K,M) = R(N,K − 1,M) +
N

K − 2
R(N,K − 2,M). (4.16)

The initialization parameters for the recursion are set according to [61,68–70] as
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R(N, 1,M) = 1 (4.17)

and

R(N, 2,M) =
∑

h1+h2=N

N !

h1!h2!

(

h1

N

)h1
(

h2

N

)h2

. (4.18)

For grids Ξ that have K > 2 intervals, the parametric complexity is obtained by
calculating the initial values of the recursion, plugging them into Equation 4.16
and then running the recursion step K − 2 times to arrive at the final solution
for the parametric complexity R(N,K,M).

With both a maximum likelihood expression for the grid induced density and an
exact solution for the normalization constant, the NML-code can be computed.
Thus, the MDL grid optimization criterion given by the stochastic complexity
SC is formulated as:

SC(Q|M) = −log

∏K

κ=1

(

εhκ

λκN

)hκ

R(N,K,M)

=
K
∑

κ=1

−hκ (log (εhκ)− log (λκ ·N)) + log R(N,K,M).

(4.19)

4.1.4 The KM-dynamic programming algorithm for opti-

mizing the stochastic complexity of a grid Ξ

Solving the MDL grid partitioning problem by minimizing the stochastic com-
plexity of the data requires a sophisticated algorithmic approach for making the
calculation of an exact solution to the NML-code of Equation 4.19 computation-
ally feasible.

An elegant solution for this problem has been described by Kontkanen and Myl-
lymäki in [70]. In the case of estimating a binned histogram version of a one
dimensional probability density function, Kontkanen and Myllymäki presented
an algorithm in [70] which automatically selects both the number of bins and
their elastic boundaries in a data depended fashion using the MDL stochastic
complexity as the optimization criterion.

Their algorithm can be adapted to also calculate stochastic complexities of the
data for various grid configurations. Since exact solutions are attainable, it is
possible to acquire the MDL-optimal grid configuration via minimization of the
NML-code with Kontkanen and Myllymäki’s algorithm.
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The MDL-optimal solution gives us the grid partitioning that defines the stochas-
tic complexity of the data and that will allow us later to discover associations
between SNP and gene expressions by declaring those associations as relevant
which yield short description lengths of the eQTL data. As has already been
stated in Section 4.1.1, in the MDL framework, good data compression can be
interpreted as the same thing as finding good explanations of the eQTL data, i.e.
SNPs which ”explain” the expression profile of a gene quite well.

SNPs that achieve this are utilized by the MDL-principle to further reduce the
stochastic complexity of the eQTL data by yielding shorter NML-code lengths,
therefore revealing to us the underlying structure of eQTL data in the form of
interaction networks between SNPs and gene expressions.

Each grid configuration yields different scores for the stochastic complexity of the
data, which are expressed through the code length in bits via the eQTL data’s
NML code of Equation 4.19. Since the software implementation adhered to the
notation of Kontkanen and Myllymäki’s paper [70], the same symbol for the grid
optimization score will be used, namely B. According to the KM-method, the
score which has to be optimized in order to obtain the NML code of the data is
given by

B(eN |Z,K,Ξ) = SC(Q|Ξ) + log

(

Z

K − 1

)

=

K
∑

κ=1

−hκ (log (εhκ)− log (λκN))

+ log R(N,K,M) + log

(

Z

K − 1

)

.

(4.20)

Let us give some clarifying explanations regarding the above formula. The pa-
rameter K specifies the number of grid intervals. The chosen partitioning points
ξκ are contained in the vector Ξ. Because the optimization goal is to find the
optimal placement of the grid points ξκ and their optimal number K, we have to
compare all grid configurations that can possibly arise via combinations of pu-
tative candidate grid points from the manifold set indicated by Kontkanen and
Myllymäki as

Υ̂ =
(

{eτ −
ε

2
: eτ ∈ eN} ∪ {eτ +

ε

2
: eτ ∈ eN}

)

∋ {emin −
ε

2
, emax +

ε

2
} (4.21)

with emin−
ε
2
and emax+

ε
2
being the grid’s borders ξ0 and ξK , which are excluded

from the candidate grid point set because they are present in all potential grid
configurations and need not be selected for.
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Thus, the optimization procedure has to retrieve a vector Ξ ∈ Υ̂ that minimizes
the NML code of the data in the form of the MDL-score B(eN |Z,K,Ξ) with Z
being the size of the candidate grid point set Υ̂, i.e. Z = |Υ̂|.

The term log ( Z
K−1

) encodes the grid point set and assists in forming the MDL-
score because it is argued in [60] by Grünwald and [70] by Kontkanen and Myl-
lymäki, that ”In practical model selection tasks, however, the stochastic complex-
ity criterion itself may not be sufficient” [70]. Therefore, several authors have
concluded that the model index should also be somehow encoded [60, 70]. The
authors Kontkanen and Myllymäki show in [70] that for the grid optimization
problem this encoding reduces to the term log ( Z

K−1
).

The elegant dynamic programming solution of [70] for calculating the MDL-scores
B for various grid configurations starts by first sorting the candidate grid point
set Υ̂ in ascending order:

Υ̂ = {ξ̂1, · · · ξ̂Z} with ξ̂1 < ξ̂2 < · · · < ξ̂Z . (4.22)

The gird point ξ̂Z+1 is defined as the upper boundary of the grid, namely ξ̂Z+1 =
ξK = emax +

ε
2
. In oder to calculate a final solution for the score B(eN |Z,K,Ξ),

the KM-method makes an ingenious step by restricting the data set eN to a
smaller subset eNζ and calculating the score for that subset first. Then, the
calculated score for that smaller subset is used as a basis to recursively calculate
MDL-scores for increasing data ranges.

The reduced data set eNζ consists of the gene expression values eτ falling into the
interval outlined by [emin, ξ̂ζ]. For an increasing sequence of ζ from 1 to Z+1 the
data subset is represented by the vector eNζ = [e1, · · · , eNζ

] and the MDL-score
which optimizes the stochastic complexity for that data subset is denoted by

B̂K,ζ = min
Ξ∈Υ̂

B(eNζ |Z,K,Ξ) (4.23)

The KM-method’s elegance is expressed in the observation [70] that the final
MDL-score of a grid configuration for the data can be obtained in a successive
manner. Namely, if one obtained the MDL-optimal score B̂K,ζ for a grid configu-
ration whose number of intervals is fixed to K, then the final solution will be the
MDL-score B̂K,Z+1 because it encompasses the entire data range of [emin, ξ̂Z+1]
of gene expression values in eN .

Therefore, the final solution can be sequentially build up from previous partial
solutions. This means that the MDL-score for a grid configuration Ξ consisting
of K intervals can be obtained in a successive manner by making use of the
previously MDL-score for a grid consisting of K − 1 intervals.
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A grid configuration Ξ is defined by its number of intervals K and the separating
grid points ξ̂ζ resulting in the characteristic grid point vector Ξ = (ξ̂ζ1 , · · · ξ̂ζK−1

).

This grid configuration imposes a limit on the data set given by [emin, ξ̂ζK ].

The main point of the KM-method is that the MDL-score B(eNζK |Z,K,Ξ) for
ξ̂ζK > ξ̂ζK−1

is obtained by building upon the K− 1 MDL-score B(eNζK−1 |Z,K−

1,Ξ′) with the grid points Ξ‘ = (ξ̂‘ζ1, · · · ξ̂‘ζK−2
) via the relationship:

B(eNζK |Z,K,Ξ) = B(eNζK−1 |Z,K − 1,Ξ‘)

−
(

NζK −NζK−1

)

·
(

log
(

ε
(

NζK −NζK−1

)))

− log
(

(ξ̂ζK − ξ̂ζK−1
)N
)

+ log
R

NζK

hK

R
NζK−1

hK−1

+ log
Z −K + 2

K − 1

(4.24)

Consequently, the KM dynamic programming recursion equation for calculating
the MDL-optimal NML-code of the data for the currently used grid configuration
becomes

B̂K,ζ = min
ζ‘

{B̂K−1,ζ‘ − (Nζ −Nζ‘) · log (ε(Nζ −Nζ‘))

− log
(

(ξ̂ζ − ξ̂ζ‘) ·N
)

+ log
R

Nζ

hK

R
Nζ‘

hK−1

+ log
Z −K + 2

K − 1
}

(4.25)

with the index ζ ‘ ranging from K − 1 to ζ .

The recursion’s starting conditions are initialized with the following procedure.
First, the MDL-score is calculated in a ζ dependent fashion for a grid whose
boundaries are defined by ξζ0 and ξζK . Data points of the subset of gene expres-
sions eNζ fall in ascending order into the above defined grid interval leading to
the MDL-scores

B̂1,ζ = −Nζ ·
(

log (ε ·Nζ)− log
((

ξ̂ζ − (emin −
ǫ

2
)
)

·N
))

. (4.26)

By increasing the index ζ to the maximum range Z+1 that includes all data points
of the dataset, the first partial solutions of the dynamic programming solution



42 4. Introducing the MDL-principle to eQTL analysis

are obtained. The implementation details will be explained in subsequent Section
5 and this will make understanding of the calculation procedure much easier. It
is basically a double for-loop that is applied to solve the KM-method’s dynamic
programming approach. The outer for-loop takes care of the index ζ running
from K to Z +1 while the inner for-loop increases the index ζ ‘ in the range from
K − 1 to ζ − 1.

The only parameter the user has to set is the maximum number of allowed grid
intervals Kmax to provide the recursion with a break point if taking too long to
determine the MDL-optimal grid granularity. Each recursion step records the
MDL-scores B̂K for different grid configurations Ξ in a table and the minimum
score among them is chosen to be the solution of the NML-code.

Among all potential grid configurations the one with the shortest description
length, i.e. best MDL-score B̂, is selected as the final grid Ξ upon which the
NML-code for the eQTL dataset is determined.

Through a technique called back-tracking [70], the grid shape, i.e. the placement
of intersections ξ between consecutive grid intervals, can also be conveniently
recovered from the above dynamic programming recursion. The details will be
explained in the implementation Section 5.

4.2 Extending the KM-method for eQTL appli-

cability

As we have seen in the previous Sections 4.1.3 and 4.1.4, the KM-algorithm is
able to obtain the NML-code for one dimension of an eQTL dataset, namely for
the data eN of continuous gene expression random variables E.

In order for the KM-algorithm to work in a heterogeneous setting consisting of
both discrete random variables for SNP genotypes S and continuous gene ex-
pression random variables E, which are the basic building blocks of any eQTL
dataset, we have to extend the current KM-algorithm to make it applicable to
those kind of data. Based on our extensions, which will be presented in this
section, we will later proceed to create an algorithm that identifies important as-
sociations between SNPs and gene expressions via minimization of the stochastic
complexity of the eQTL data.

In the area of time series analysis, Kameya [71] created a dynamic two-dimensional
time series discretization approach based on the expansion of the KM-method into
two dimensions for continuous data.

The achievement of Kameya’s approach was to show that by simultaneously opti-
mizing both axis of a 2D-grid, the grid was able to dynamically adapt to the time
series data and give a simplified, compartmentalized representation of the time
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series, even in the presence of noise, that could be used to highlight important
characteristics of the data set [71].

Compared to Kameya’s algorithm of [71], our goal is different in the sense that we
want to extract useful information from eQTL data by discovering associations
between SNP-gene pairs. In contrast to Kameya’s method, our algorithm needs
to function in a mixed environment that consists of both discrete and continuous
random variables. As a consequence, we cannot directly apply the KM-algorithm
but have to extend it appropriately.

We utilize the knowledge that for discrete SNP data the grid configuration is
determined by Hagenauer’s haplotype encoding procedure [18] and statically set
accordingly. This property has to be incorporated into the KM-method to make
it work in a mixed setting.

Furthermore, we also present an efficient approach for calculating the NML-
distribution after the SNP encoding process has been combined with the KM-
algorithm. This modification enables a speed-up in calculation time when com-
pared to [71] because only the grid axis responsible for compartmentalizing gene
expression data needs to be optimized.

A side note on this topic is, that by determining the grid configuration for SNPs
in the haplotype coding process, our extension of the KM-algorithm can be aug-
mented to deal not only with 3-dimensional grids but also N -dimensional grids
that would allow the detection of epistatic and epigenetic effects by testing joint
ensembles of SNPs for important associations with gene expressions. Through
this approach it becomes possible to detect interaction contexts of SNPs and
their influence on genes. Our current implementation’s main focus is the discov-
ery of association pairs between single SNPs and gene expressions. Detection of
epigenetic and multi-factorial SNP effects remains future work.

4.2.1 ThemKM-algorithm for associating quantitative traits
with discrete genotypes

Given our eQTL dataset Q that contains G gene expression vectors eNg and SNPs
sNl with L genotyped genomic locations for N patients, our goal is to obtain
the NML-code for a SNP-gene pair from which the association strength can be
inferred.

The first step is to lay a 2D-grid over the data. Then, our extended version of
the KM-algorithm is applied to determine the optimal grid configuration for the
gene expressions under the assumption that the grid configuration for the SNP
axis is given via the haplotype coding step outlined in Section 3.1.1.

We name the method mKM-algorithm, with the letter m implying that it is an
extension of the KM-algorithm for the mixed setting of continuous gene expression
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and discrete SNP random variable pairs.

As is the case for the 1D-KM-algorithm, the mKM-algorithm defines the grid
boundaries for the gene expression axis in the same way as outlined in Section
4.1.3, with the grid point set being Υ̂.

What changes compared to the 1D-KM is the definition of the induced grid
distribution φ̇Ξ. Let us assume that the haplotype coding mapped the genotyped
SNP to 3 symbols. Therefore, the grid axis for the SNP vector has 3 intervals K̃.
With the grid configuration K̃ set for the SNP axis, the mKM-algorithm only
needs to optimize the remaining axis for the gene expression values.

For both dimensions we use the multinomial distribution of Section 4.1.2 as the
model class M . The parameter θκ,κ̃ is now defined to be the probability of a
SNP-transcript value pair (sν , eτ ) to fall in a grid area outlined by its border
]ξκ−1, ξκ] on the gene expression axis ξE and ]ξ̃κ̃−1, ξ̃κ̃] on the SNP axis ξ̃S.

Assuming the SNP encoding scheme of Section 3.1, with a mapping into the
alphabet AS = {0, 1, 2}, the 3 intervals κ̃ = 0, 1, 2 are defined by the borders

ξ̃0 =]− 0.5, 0.5]

ξ̃1 =]0.5, 1.5]

ξ̃2 =]1.5, 2.5].

(4.27)

The new parameter set Θ̇ induced by the two dimensional grid becomes

Θ̇ = (θ1,0, · · · , θK,K̃) : θκ,κ̃ ≥ 0,
K
∑

κ=1

2
∑

κ̃=0

θκ,κ̃ = 1. (4.28)

Let the data for which we wish to determine the association strength be the two
vectors containing the encoded SNP values and gene expressions qN = [eN , sN ].
Then, the distribution φ̇Ξ induced by the grid for this 2D-dataset is given by

φ̇Ξ

(

[eN , sN ]|θ̇,Ξ
)

=

K
∏

κ=1

2
∏

κ̃=0

(

εθ̇κκ̃

λκ

)hκκ̃

(4.29)

with λκ being the length of the grid interval on the axis for the gene expressions
ξE and hκκ̃ the number of data points (sν , eτ ) falling into the lot denoted by the
index κ̃ for SNP data points and the interval ]ξκ−1, ξκ] for gene expression data
points.

Because the interval lengths λκ̃ are set to 1 by definition for the grid axis ξ̃S
for the SNP data, the term does not appear in Equation 4.29. From the above
considerations follows that in order to obtain the maximum likelihood estimate
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˙̂
θML for the 2D-grid parameters θ̇κκ̃ we simply have to divide the number of
data points falling into the grid location indicated via coordinates (κ, κ̃) by the
available sample size N , i.e.

˙̂
θκκ̃ =

hκκ̃

N
. (4.30)

This leads us to the maximum likelihood equation for the 2D grid distribution

φ̇Ξ

(

[eN , sN ]|θ̇,Ξ
)

=
K
∏

κ=1

2
∏

κ̃=0

(

εhκκ̃

λκN

)hκκ̃

. (4.31)

The greatest difference in the definition of the stochastic complexity for a 1-
dimensional and a 2-dimensional grid is the normalizing term R, since in the
2D-case it has to account for a mixture of multinomial models.

In [61] on pp. 342− 344 Kontkanen et al. derived a recursive formula for calcu-
lating the parametric complexity for multinomial mixtures that yields an exact
solution without having to resort to approximations or time consuming brute-
force computation approaches.

Similar in concept to the formulation for the one dimensional multinomial model
class given in Equation 4.16, the normalization term R for a 2D-grid with intervals
numbering K and K̃, i.e. the parametric complexity R(N,K, K̃,M), is given as

R(N,K, K̃,M2) =
∑

r1+r2=N

N !

r1!r2!

(r1

N

)r1
(r2

N

)r2

·R(r1, K̃,M2) ·R(r2, K − K̃,M2)

(4.32)

which combines the easily obtainable results for the parametric complexity for
the 1D-case to form the result for the 2D-case. M2 indicates the case where a
mixture of 2 multinomial distributions is used in order to simultaneously describe
a SNP-gene pair. In contrast, M indicates the multinomial model class known
from Section 4.1.3 for the one dimensional case which is used e.g. to describe a
vector of gene expressions in the eQTL dataset.

Since the encoding procedure for the SNP values already gives us the number
of intervals K̃ = 3 for the SNP-axis ξ̃S of the grid as well as the multinomial
model which will be used to obtain the NML-code for the SNP-data, in the case
that the expression-axis ξE of the grid contains K = 1 intervals, the normalizing
parameter R(N, 1, 3,M2) is reduced to R(N, 3,M). By applying the calculation
procedure for the 1-dimensional case of the parametric complexity from Section
4.1.3, R(N, 3,M) is obtained in a straightforward manner.
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In case where no data points are available, R(N,K, K̃,M2) is defined according
to [61] to be:

R(0, K, K̃,M2) = 1. (4.33)

The above conditions can be used to initialize the recursion and obtain the para-
metric complexity for any 2D-grid configuration Ξ defined via K. Thus, we are
able to calculate the NML-code for a grid that captures and describes the sta-
tistical relationship between genotypes and gene expressions via its stochastic
complexity by

SC
(

[eN , sN ]|M2

)

= −log
φ̇Ξ([e

N , sN ]|θ̇,Ξ)

R(N,K, K̃,M2)

= −log

K
∏

κ=1

2
∏

κ̃=0

(

εhκκ̃

λκN

)hκκ̃

+R(N,K, K̃,M2).

(4.34)

The score that needs to be optimized for the 2-dimensional grid is an extended
version of Section 4.1.3 which includes the grid labels of the SNP-axis, that were
already obtained by the SNP encoding procedure. The MDL-optimal partitioning
of the expression-axis dependent on the SNP-axis is acquired by

B
(

[eN , sN ]|Z,K, K̃,Ξ
)

= SC
(

[eN , sN ]|M2

)

+ log

(

Z

K − 1

)

= −log
φ̇Ξ([e

N , sN ]|θ̇,Ξ)

R(N,K, K̃,M2)
+ log

(

Z

K − 1

)

= −log
K
∏

κ=1

2
∏

κ̃=0

(

εhκκ̃

λκN

)hκκ̃

+ log R(N,K, K̃,M2) + log

(

Z

K − 1

)

.

(4.35)

What changes when compared to the 1D-KM-algorithm is the way of counting
the frequencies hκκ̃. With K̃ = 3 each interval κ̃ of the grid’s SNP-axis ξ̃S can
also be interpreted as a label representing the corresponding encoded SNP. By
dividing the expression axis ξE intoK intervals, hκκ̃ is equal to the number of gene
expression data points falling into ]ξκ−1, ξκ] whose corresponding SNP genotype
has label κ̃.

To start the dynamic programming recursion for obtaining the MDL-score B̂ we
first calculate the score for the grid if the expression-axis ξE just has K = 1
intervals
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B̂1,K̃,ζ =
K̃
∑

κ̃=1

−Nζκ̃ ·
(

log (εNζκ̃)− log
((

ξ̂ζ − (emin −
ε

2
)
)

·N
))

, (4.36)

with K̃ = 3 and Nζκ̃ giving the frequency counts for each SNP label κ̃ ∈ K̃ of
data point pairs [s, e] ∈ [eN , sN ] for the data range restricted to ζ .

Because we only need to optimize one axis of the grid, namely the gene expression
axis ξE , the optimization procedure for any κ number of intervals proceeds as

B̂κ,K̃,ζ = B̂κ−1,K̃,ζ‘−
K̃
∑

κ̃=1

hζκ̃·log
εhζκ̃

λζκ̃N
+log

R(Nζ, K, K̃,M2)

R(Nζ, K − 1, K̃,M2)
+log

Z −K + 2

K − 1

(4.37)

with an enclosing double loop ζ = K · · ·Z + 1 and ζ ′ = K − 1 · · · ζ − 1 which
calculates the final solution in a consecutive way.

The mKM-algorithm enables us to compute the stochastic complexities for en-
sembles of SNP-gene pairs. With the mKM-algorithm in place, we proceed to
explain our MDL-analysis algorithm for eQTL datasets.

4.2.2 MDL-score for assessing association strengths be-
tween genotype and transcriptome in eQTL data

via the mKM-method

The mKM-algorithm is the core function for obtaining an MDL-optimal grid
layout that minimizes the stochastic complexity of a SNP-gene expression data
pair [eN , sN ] originating from the eQTL data Q.

For finding important associations, we derive a score based on these three quan-
tities:

• stochastic complexity score of the gene expression data vector HE = B(eN)

• stochastic complexity score of the SNP data vector HG = B(sN)

• stochastic complexity score of the joint gene expression-SNP data pair
HGE = B([eN , sN ])

A pragmatic approach for obtaining an estimate of the resulting stochastic com-
plexity of an eQTL data pair, when a patient’s genotype is used as an explanatory
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model for a gene expression profile, is to compare the 3 scores and calculate the
amount of ”obtained knowledge” in terms of the resulting NML-code length.

Intuitively speaking, if we contrast the 3 description lengths, we obtain an MDL-
score telling us how good a SNP model fits or explains the observed gene ex-
pression profile of a patient. Good, predictive SNP models should yield good
predictions of the gene expression values, leading to a grid layout that better
describes the data resulting in an NML-code using fewer bits.

If the NML-code indicates that we need HE bits to describe the gene expression
independently, i.e. without any further knowledge about the patient’s genotype,
and HG bits to describe the patients genotype, then the amount of knowledge we
gain by using the patient’s genotype as a model for explaining the gene expression,
is equivalent to the score

scoreMDL = HE +HG−HGE (4.38)

with HGE being the MDL-optimal joint description of the SNP-transcript pair
which is obtained through grid optimization via the mKM-algorithm.

Therefore, the importance of SNP-gene expression associations is ranked accord-
ing to the amount of ”shared knowledge”, i.e. the better a genotype profile can
be utilized to further compress a gene expression profile and drive down the
stochastic complexity manifested through the NML-code, the stronger and more
important is the association.
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5 Making of qMAP - The
MDL-analysis software for eQTL

5.1 Implementing qMAP in python

The software qMAP for discovering associations between SNPs and gene expres-
sions in eQTL data is implemented in Python. Because publicly available eQTL
datasets are usually distributed in a PLINK [66] compatible format consisting of
three files, qMAP also takes as input those three files. Each file contains different
data with a separate file for the genotype data and the gene expression data, as
well as a mapping file containing auxiliary information about each SNP.

5.1.1 PLINK input file format

The three files that make up the eQTL dataset are the *.pheno-file containing
the gene expression values, the *.ped -file containing the genotypes, i.e. SNP-
data, and the *.map-file containing information about each SNP, e.g. its dbSNP
record.

Each file adheres to the formatting that is explained on the website of the PLINK
toolkit software found at [72]. For creating eQTL data files compatible with both
PLINK and qMAP, please adhere to the formatting instructions of the PLINK
website.

The *.map-file is the simplest to create as each row contains annotation informa-
tion about each SNP present in the *.ped -file.

The *.ped -file containing the genotype information is a tab- or space-delimited
file with each row describing one sample, e.g. the genotype profile of one patient
and each column containing the following information:

Family ID Individual ID Paternal ID Maternal ID Sex Genotypes

where the ”Genotypes” column is expanded accordingly to include the SNP se-
quence of length L, i.e.
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Genotype 1 · · · Genotype L

Each genotype column corresponds to one entry in the *.map-file via the map-
ping relation: Row ν of the *.map-file is the annotation information of SNP ν

in the *.ped -file, i.e. the ”Genotype ν” column. Some mapping examples would
be Genotype 5 in the *.ped -file and row 5 in the *.map-file or Genotype L corre-
sponding to row L.

Care should be taken when creating a *.ped -file because the first 6 columns,
which contain information about the patient, are mandatory whereas the geno-
type columns are flexible. Furthermore, the genotypes are stored using letters
from the nucleotide alphabet G,A, T, C and each genotype is stored as a bi-allelic
marker:

G C T T A T · · ·

The phenotype data, which is in the case of eQTL the gene expressions, are
stored in the *.pheno-file with each row representing a patient. The *.pheno-file
contains a header-row that includes the ”Family ID” , ”Individual ID”, and the
names for the phenotypes, usually the gene names or the name of the disease for
the affection status. Thus, the file is formatted as

Family ID Individual ID Affection Status Phenotype 1 · · · Phenotype G

with Phenotype 1 to G representing the names of the G genes whose gene expres-
sion values were recorded. For a proper analysis it is mandatory that the Family
ID and Individual ID of the same patient to be the same in both the *.pheno-
and *.ped -file.

5.1.2 Flowchart of the Python program

The Python analysis software qMAP consists primarily of two modules for obtain-
ing the NML-code of a SNP-gene pair and consequently the association strength
via the MDL-score; namely the grid optimization modules for the 1-dimensional
and 2-dimensional case.

The program flowchart in Figure 5.1 depicts the main parts of the analysis algo-
rithm and highlights the steps necessary to obtain the MDL-score as a measure
of association strength between SNPs and gene expressions in eQTL data.

5.1.3 Data initialization module

As input qMAP requires three files which have been formatted according to the
rules outlined in Section 5.1.1. The genotype data in the *.ped -file as well as the
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Input:    Genotypes    Annotation Data    Gene Expressions

              *.ped-file         *.map-file                 *.pheno-file

Data Parsing Module

 Data pre-processing Module

Genotype Encoding Module

Computation of Parametric Complexities 

Tables Module

MDL 1D Grid Optimization Module 

NML codelength of Gene Expressions

MDL Genotype Encoding Module

NML codelength of SNP

MDL 2D Grid Optimization Module

Joint NML codelength of SNP-Gene Pair

MDL Score for SNP-Gene Pair 

Association Strength

Output:              MDL Score for Association Strength

                        between SNP - Gene Expression Pairs

 qMAP Program Flowchart

Figure 5.1: The data processing and analysis flowchart of qMAP.
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gene expression data in the *.pheno-file are parsed into Python NumPy-arrays
by qMAP’s parser-module. Contents of the *.map-file are kept in a Python-
dictionary that uniquely maps SNP IDs to their respective annotation informa-
tion, which will be used later when the program outputs the obtained association
test results for each SNP-gene pair.

As the input data are from real experiments, there is always the possibility of
data contamination, failed experiments, incorrect read-outs of genotype and gene
expression data, as well as another multitude of factors that could introduce
artifacts into the data.

To cope with this situation, the raw data is pre-screened and filtered according
to user defined quality assurance criteria. By default, qMAP incorporates the
threshold criteria of [33, 73] for filtering the raw data.

The allele checker module scans through the genotype and confirms if each geno-
typed locus is bi-allelic. If more than 2 alleles are present at a locus, that position
is masked and excluded from further analysis.

Depending on the user defined error rate tolerance, for each genotyped locus
all samples are scanned for missing or incorrect entries in the eQTL data. If
the number of either missing or incorrect values exceeds the allowable tolerance
for the error rate, those data entries are also masked and excluded from further
analysis.

Moreover, SNPs can also be filtered with respect to the minor allele frequency.
In [33] it was suggested to drop SNPs from the analysis if their minor allele
frequency is less than 1%. The data initiation module has the option to tag
SNP loci with minor allele frequencies which do not pass the filtering criteria and
exclude them from downstream analysis.

Gene expression data are also pre-processed in order to remove genes from the
analysis where it was not possible to obtain robust transcript counts for all sam-
ples. This is achieved via a user defined threshold value. Suggestions about
reasonable filtering values can be found for example in [33, 73].

Nonetheless, should a data entry be found to contain missing gene expression
values, but the total number of incorrect entries does not surpass the user defined
threshold, then in that case, the missing data entries are filled with placeholder
values, namely the median value of the gene expressions estimated from the
available samples.

In a first preprocessing step, each SNP in the *.ped -file is tagged with an internal
running SNP ID number and the genotype is converted to a numerical value via
the encoding procedure outlined in Section 3.1. This coding step also determines
the SNP axis grid interval ξ̃S.

Then, the gene expression values are loaded and each gene obtains a unique
gene ID number which will be used by qMAP for internal processing steps when
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calculating association strengths between various pairs of SNPs and genes.

By scanning through the data we obtain the resolution parameter ε. Currently,
the implemented procedure sorts the gene expression values and then calculates
the difference between adjacent value pairs.

Algorithm 1 Get data resolution ε Module

1: Differences = []
2: Sort input data vector
3: for All adjacent value pairs do
4: Calculate difference
5: Append calculated value to Differences-vector

6: ε = min(Differences)

Since qMAP will evaluate many SNP-gene pairs, we can speed up the computa-
tion by pre-calculating the values for the parametric complexities R for the 1D
and 2D grid optimization case and store all necessary results in tables, includ-
ing intermediate results which will be accessed during the dynamic programming
procedure.

Implementing the KM-algorithm’s recursive formula for calculating parametric
complexities for the class of multinomial models, for both the 1-dimensional and
2-dimensional case, qMAP builds the necessary tables pc1 and pc2 that store the
parametric complexity values R(N,K,M) and R(N,K, K̃,M2) for 1D multino-
mial model classes M and 2D multinomial model classes M2 respectively and
keeps them ready in memory.

Instead of having to recalculate the parametric complexity value R in each loop
of the dynamic programming equation in 4.25, the values are calculated once and
then just accessed on demand when optimizing the grid layout.

Although it is costly to pre-build the tables, this step saves computation cost
if the MDL-score is calculated for many SNP-gene pairs because it replaces the
time consuming recursive calculation of the parametric complexity in each step
with a simple table query.

5.1.4 1D grid optimization module for obtaining NML-
codelengths of gene expression quantitative traits

The MDL-scoring function for obtaining the NML-codelength for the gene ex-
pressions implements the 1-dimensional KM-algorithm for the grid optimization
of Section 4.1.3 and 4.1.4.

Although the module is implemented in a general way, i.e. it can determine the
NML-code of any kind of continuous input data, e.g. continuous trait variables
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like BMI or blood pressure and thus perform association studies between SNP and
continuous traits, the main focus of this application is to perform association tests
between SNPs and gene expressions in eQTL data and therefore, the explanations
mainly focus on gene expression data.

The input vector e is sorted in rank ascending order and the set of putative grid
points Υ is obtained.

Algorithm 2 Get grid points Υ Module

1: Grid points vector Υ = []
2: for All data points e in e do
3: ξl = e− ε

2

4: ξr = e+ ε
2

5: if ξl ∋ Υ then
6: Append ξl to Υ

7: if ξr ∋ Υ then
8: Append ξr to Υ

9: Return Υ

To speed up computation, several modifications to the mathematical formulation
of the original KM-algorithm have been made in this Python implementation.

Instead of counting the number of data points Nζ of e that fall into the interval
defined by the grid boundaries ξζ in each iteration of the dynamic programming
procedure, the counts Nζ are obtained in an initial for-loop and stored in a table.
Since the dynamic programming recursion re-uses previous results, by storing the
counts for later retrieval in a table the program’s execution time is accelerated.

In order to obtain both the MDL-optimal number of grid intervals K and the
respective placing of the borders ξκ, the back-tracking procedure requires us to
store for each iteration step the MDL-score B̂κ,ζ and the grid configuration Ξ =
Υκ,ζ which achieves the MDL-optimal score. Therefore, we declare two Python
dictionaries that hold those values for each (κ, ζ)-key tuple. Via the unique key
(κ, ζ), the back-tracking procedure is able to reconstruct the placement of grid
points ξκ for the MDL-optimal grid interval number K, which defines the NML-
code of the gene expression dataset e.

Another speed-optimization is to store all combinations of B̂ζ,ζ′-subscores in the
K = 2 case so that those subscores do not have to be laboriously recalculated in
each iteration step for higher K, i.e. K > 2.

The code example of the 1D grid optimization Python module 9 shows the im-
plementation of the original KM-algorithm including all speed-up modifications.

Algorithm 9 shows how we obtain a grid layout Ξ for calculating the NML-
codelength of one gene expression data vector e. The KM-method outputs a
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Algorithm 3 1D-grid optimization Module for NML-coding (adapted from [70])

1: Input: data e, ε, parametric complexities table R, K = Kmax

2: Υ = getGridPoints (e) via Algorithm 2
3: N is number of data points in e
4: Dictionary nCounts = {} for data points Nζ in the interval [emin −

ε
2
, ξζ]

5: Z + 1 = |Υ|
6: for ζ in range(1, Z + 1) do
7: nCounts[ζ ] = Nζ

8: Dictionary for MDL-scores Bκ,ζ = {}
9: Dictionary for MDL-subscores Bscζ,ζ′ = {}
10: Dictionary for grid configurations Υκ,ζ = {}
11: for κ in range(1,K + 1) do
12: if κ > 2 then
13: for ζ in range(κ, Z + 1) do
14: Bmin = []
15: Zmin = []
16: for ζ ′ in range(κ− 1, ζ) do
17:

score = Bκ,ζ[(κ− 1, ζ ′)] +Bscζ,ζ′[(ζ, ζ
′)] + log (Z + 1− κ)

− log (κ− 1) + log R(nCounts[ζ ], κ− 1)− log R(nCounts[ζ ′], κ− 1− 1)

18: Append score to Bmin

19: Append ζ ′ to Zmin

20: Bκ,ζ[κ, ζ ] = min(Bmin)
21: Υκ,ζ[κ, ζ ] = Zmin[argmin(Bmin)]

22: else if κ == 1 then
23: for ζ in range(1, Z + 1) do
24: Bκ,ζ[(κ, ζ)] = nCounts[ζ ]·(log (ε · nCounts[ζ ])− log (|ξζ − ξ0| ·N))

25: else if κ == 2 then
26: for ζ in range(κ, Z + 1) do
27: Bmin = [], Zmin = []
28: for ζ ′ in range(κ− 1, ζ) do
29:

Bscζ,ζ′[ζ, ζ
′] = − (nCounts[ζ ]− nCounts[ζ ′])

· (log (ε · (nCounts[ζ ]− nCounts[ζ ′]))− log (|ξζ − ξζ′| ·N))

30:

score = Bκ,ζ[(κ− 1, ζ ′)] +Bscζ,ζ′[(ζ, ζ
′)] + log (Z + 1− κ)

− log (κ− 1) + log R(nCounts[ζ ], κ− 1)− log R(nCounts[ζ ′], κ− 1− 1)

31: Append score to Bmin, Append ζ
′ to Zmin

32: Bκ,ζ[κ, ζ ] = min(Bmin)
33: Υκ,ζ[κ, ζ ] = Zmin[argmin(Bmin)]

34: Return Bκ,ζ, Υκ,ζ
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dictionary containing the best MDL-scores for all grid configurations defined by
the number of grid intervals K and the corresponding borders of those intervals
ξκ ∈ Υ.

Before continuing to calculate the NML-codelength of e we first have to extract
the MDL-optimal grid layout for the data. The achievable granularity of the
grid layout not only depends on the complexity of the data, which we model
with multinomial distributions from the model class M , but also on the available
sample size N . In order to obtain the layout we apply the backtracking algorithm
of the KM-method. Details about the backtracking algorithm are explained in
Kontkanen and Myllymäki’s original paper [70]. Nonetheless, the reader might be
interested in another easy to follow mathematical formulation by Kameya in [71].

Although the backtracking procedure might be difficult to understand at first
sight, the implementation is quite easy. The dictionary Bκ,ζ, which is the output
of the 1D-grid optimization algorithm 9 utilizing the KM-method, is used to-
gether with the grid point set Υ as input for the backtracking algorithm. Since
Z + 1 encompasses all data points of e, the MDL-score Bκ,ζ[κ, Z + 1] is the
grid optimization solution for each number of grid intervals κ = 1, · · · , Kmax.
Therefore, for each κ the best score Bκ can be obtained from the dictionary
Bκ,ζ. Consequently, among all the scores Bκ we get for different grid configura-
tions, the minimum score minκ(Bκ) defines the best κ, i.e. Kopt, and hence, the
MDL-optimal grid configuration.

Algorithm 4 Back-tracking Module (adapted from [70])

1: Input: Bκ,ζ, Υ, K = Kmax

2: Optimal MDL-scores Bopt = []
3: for κ in range(1, K) do
4: Append Bκ,ζ[(κ, Z + 1)] to Bopt

5: MDL-optimal Kopt = argmin(Bopt) + 1
6: Return MDL-optimal number of grid intervals Kopt

With the MDL-optimal number of grid intervals Kopt and grid layout ΥKopt
we

finally obtain the NML-code of the gene expression data e from the dictionary
Bκ,ζ via Bκ,ζ[(Kopt, Z+1)]. This is the shortest description of the gene expression
data according to the KM-algorithm and thus the stochastic complexity score
HE becomes

HE = Bκ,ζ[(Kopt, Z + 1)]. (5.1)

This concludes the implementation of the 1-dimensional grid optimization Python
module and we move on to the 2D-module necessary for obtaining the joint
NML-code of a SNP-gene expression pair before being able to acquire the final
MDL-score for the association strength.
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5.1.5 2D grid optimization module for obtaining the NML-

code of the joint description of genotype and tran-
scriptome

The 2D-grid optimization module extends the structure of the 1D-module. Of
both the grid axes, one for the gene expression data and one for the SNP data,
only the partitioning of the gene expression axis has to be optimized. By making
use of the SNP encoding scheme, the partitioning of the SNP axis of the grid
is already given. Yet, similar speed optimizations that were introduced in the
1D-grid implementation also apply in the 2D-case. What needs to be taken into
account when implementing the 2D-grid module is the preset SNP axis whose
number of intervals K̃ = 3 are also called labels. The use of those labels will
make the dynamic programming computation more efficient through the use of
efficient auxiliary data structures.

Like in the 1-dimensional case, the set of putative grid points Υ is obtained from
the input gene expression data e via Algorithm 2.

The first difference between the 1D-grid and 2D-grid module is the way of count-
ing the frequencies of data points falling into a grid interval. By using the labels
̺ for referring to the grid intervals K̃ of the SNP axis, the dictionary nCounts is
extended to hold for every ζ a vector nζ̺ containing the counts Nζ,̺ for ̺ = 1, 2, 3
of data points (s, e) falling into the grid area defined by the interval [emin −

1
2
, ξζ]

on the gene expression axis and the label ̺ on the SNP axis; see Algorithm 5.

Algorithm 5 2D-grid frequency counter

1: Input: [e, s]
2: nζ̺ = []
3: for ̺ in range(3) do
4: nζ̺ = Nζ,̺

5: Return nζ̺

With the extended counting method, the 2D-grid optimization method proceeds
in a similar fashion like the 1D-method for obtaining the MDL-optimal grid
layout, but incorporates different parametric complexities because the 2D grid
points are now modeled via a mixture of multinomial models.

Before proceeding in laying out the entire implementation of the mKM-method
for optimizing a 2-dimensional grid, we will first define some helper functions
that aid in the dynamic programming procedure.

The first function is the calculation of the initial score of the recursion, i.e. the
case for K == 1. The second function that will be defined is the table construc-
tion function that records all MDL-subscores for ζ ,ζ ′, and ̺ when K == 2.
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When initializing the grid optimization function, since the SNP axis ξ̃S has al-
ready been compartmentalized according to the genotype encoding process of
Section 3.1, the MDL-optimal placement of grid interval points ξκ and the MDL-
optimal number of total grid intervals has to be obtained in a SNP dependent
fashion only for the remaining gene expression axis ξE via the mKM-algorithm.

In contrast to the 1D-method, the initialization of the dynamic programming
recursion uses a slightly modified scoring function that takes the grid labels ̺ of
the SNP axis ξ̃S into account.

Algorithm 6 2D initial scores Module

1: Input: ζ , nCounts, ε, Υ, N
2: nζ̺ = nCounts[ζ ]
3: score = 0
4: for ̺ in range(3) do
5: score + = −nζ̺[̺] · (log (ε · nζ̺[̺])− log (|ξζ − ξ0| ·N))

6: score + = R(
∑3

̺=1 nζ̺[̺], 3)
7: Return score

Algorithm 7 2D MDL-subscore Module

1: Input: ζ , ζ ′, nCounts, ε, Υ, N
2: nζ̺ = nCounts[ζ ]
3: nζ′̺ = nCounts[ζ ′]
4: subscore = 0
5: for ̺ in range(3) do
6:

subscore + =− (nζ̺[̺]− nζ′̺[̺])

· (log (ε · (nζ̺[̺]− nζ′̺[̺]))− log (|ξζ − ξζ′| ·N))

7: Return subscore

The 2D MDL-subscore Module is applied during the second recursion step for
K == 2 of the dynamic programming procedure to help construct the table
Bscζ,ζ′ that holds all MDL-subscores for various combinations of ζ and ζ ′.

Since we run through all possible combinations of ζ and ζ ′ with the double for-
loops ζ in range(κ, Z + 1) and ζ ′ in range(κ − 1, ζ), it is wise to store those
intermediate scoring results in the table Bscζ,ζ′ so that they do not have to be
re-calculated in subsequent recursions.

Another technical assistance is the function that computes the MDL-score of each
particular grid configuration. It sums up the information contained in the tables
for MDL-subscores Bscζ,ζ′ and parametric complexities for the 2-dimensional case
R2D.
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Algorithm 8 2D MDL-score Module

1: Input: ζ , ζ ′, nCounts, κ, Bscζ,ζ′, Bζ,ζ′, Υ, R2D

2: nζ̺ = nCounts[ζ ]
3: nζ′̺ = nCounts[ζ ′]
4: Nζ =

∑3

̺=1 nζ̺[̺]

5: Nζ′ =
∑3

̺=1 nζ′̺[̺]
6: score = Bζ,ζ′[(κ − 1, ζ ′)] + Bscζ,ζ′[(ζ, ζ

′)] + log (Z + 1 − κ) − log (κ − 1) +
R2D(Nζ , κ− 1)− R2D(Nζ′ , κ− 2)

7: Return score

With the initialization function Algorithm 6 and MDL-subscoring function Algo-
rithm 7 in place, we can proceed with the implementation of the mKM-algorithm
for obtaining the NML-code of a joint SNP-gene expression data pair via 2D-grid
optimization.

The final step for obtaining the MDL-optimal grid layout is to use the back-
tracking Algorithm 4 to obtain the number of grid intervals Kopt and the place-
ment of interval points for the gene expression axis of the grid. Together with the
SNP axis, the MDL-partitioning of the gene expression axis is used to calculate
the NML-code for the joint description of the dataset [e, s]. The resulting code
length is the MDL-optimal description of a SNP-gene expression data pair when
using multinomial distributions to model the statistical properties of the data.

Consequently, the NML-code of a SNP-gene pair delivers the description length
HGE

HGE = Bκ,ζ[(Kopt, Z + 1)], (5.2)

with Bκ,ζ holding the MDL-scores for the 2-dimensional grid configurations and
Kopt being the number of grid intervals on the gene expression axis.

5.1.6 MDL association score module

For each tested SNP-gene pair a MDL association score is calculated based on the
achieved compression by the NML coding procedure of the previous sections. The
MDL-score reflects the codelengths necessary to describe the relation between the
SNP and gene expression profile. High MDL-scores indicate a strong association
whereas lower scores point towards weaker associations.

The final MDL-score outputted by this Python module is made up of three com-
ponents, namely the NML-codes for describing the genotype SNP, the description
of the gene expression, and the joint description of the SNP-gene pair.
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Algorithm 9 mKM 2D-grid optimization Module for NML-coding

1: Input: data [e, s], ε, K = Kmax, parametric complexities table R1D, R2D

2: Υ = getGridPoints (e) via Algorithm 2
3: N is number of data points in [e, s]
4: Dictionary nCounts = {} for grid area frequency counts obtained with Al-

gorithm 5
5: Z + 1 = |Υ|
6: Dictionary for MDL-scores Bκ,ζ = {}
7: Dictionary for MDL-subscores Bscζ,ζ′ = {}
8: Dictionary for grid configurations Υκ,ζ = {}
9: for κ in range(1,K + 1) do
10: if κ > 2 then
11: for ζ in range(κ, Z + 1) do
12: Bmin = []
13: Zmin = []
14: for ζ ′ in range(κ− 1, ζ) do
15: score calculated with 2D MDL-score Algorithm 8
16: Append score to Bmin

17: Append ζ ′ to Zmin

18: Bκ,ζ[κ, ζ ] = min(Bmin)
19: Υκ,ζ[κ, ζ ] = Zmin[argmin(Bmin)]

20: else if κ == 1 then
21: for ζ in range(1, Z + 1) do
22: Bκ,ζ[(κ, ζ)] = initial scores via Algorithm 6

23: else if κ == 2 then
24: for ζ in range(κ, Z + 1) do
25: Bmin = [], Zmin = []
26: for ζ ′ in range(κ− 1, ζ) do
27: Create Bscζ,ζ′[ζ, ζ

′]-table using MDL-subscore Algorithm 7
28: Calculate score with 2D MDL-score Algorithm 8
29: Append score to Bmin, Append ζ

′ to Zmin

30: Bκ,ζ[κ, ζ ] = min(Bmin)
31: Υκ,ζ[κ, ζ ] = Zmin[argmin(Bmin)]

32: Return Bκ,ζ, Υκ,ζ
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Each NML-code can be obtained by utilizing the 1D grid and 2D grid optimiza-
tion modules contained in qMAP. In general, short NML-codes indicate inherent
functional relationships between genotype and transcriptome. For obtaining a
measure of importance of those functional relationships, the NML-code of the
joint description of a SNP-gene pair has to be contrasted against the individ-
ual description lengths of the genotype and the gene expression, obtained by
NML-coding respectively.

Consequently, the MDL-score which shows the strength and importance of an
association between a SNP and a gene expression pattern is defined as:

scoreMDL = HE +HG−HGE (5.3)

with HE being the NML-codelength provided by the qMAP Python module of
Section 5.1.4 for describing the gene expression, HG being the NML-codelength
of the genotype, and HGE the NML-codelength of the SNP-gene pair.

In order to obtain all the MDL-scores between a range of SNP loci and a quan-
titative gene expression trait in an eQTL dataset, the following loop is applied:

Algorithm 10 MDL-score calculation module

1: Input: SNP loci, gene expression
2: Calculate NML-code HE for the gene expression
3: for each SNP do
4: Calculate NML-code HG for the genotype SNP
5: Calculate NML-code HGE for SNP-gene pair
6: Obtain MDL-score via scoreMDL = HE +HG−HGE

After obtaining the MDL-scores for all SNP loci, the list of scores is ranked from
the highest MDL-score at the top to the lowest MDL-score at the bottom.
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6 Performance evaluation results

6.1 Evaluating qMAP using a synthetic simu-

lated eQTL dataset

For the theoretical evaluation of the analysis approaches we are going to use the
synthetic eQTL dataset that was created by Bartlett and Ray [8]. Although
testing analysis algorithms on real datasets is paramount, with the help of a
simulated dataset that tries to capture as many characteristics of a real eQTL
dataset it is possible to study the performance of our qMAP algorithm and com-
pare the results to the other state-of-the-art eQTL analysis methods PLINK [66],
MI-KDE [19, 48], and MIC [49] under a fair and controlled environment.

Bartlett and Ray argue that eQTL analysis is an upcoming field of study in
molecular biology and medicine because technological progress in the area of
sequencing machines make it relatively cost effective to obtain both a genotype
and transcriptome, i.e. gene expression activity, readout from a patient [8] and
hence use those data to improve the diagnostic and treatment capabilities.

Adhering to ethical and data security standards it becomes possible to bundle
data about genotypes, gene expressions, and disease status information in large
databases. As has already been mentioned in the introduction, the main goal of an
analysis should be to draw clear-cut associations between those three entities [8].

Because eQTL data are quite novel, analysis algorithms that can deal with the
complexity of those data have to be designed. According to Bartlett and Ray,
eQTL is such an ”information dense” domain [8], that it is both challenging
and very rewarding to create an analysis approach that can extract ”useful”
information out of eQTL-data.

When we directly apply an analysis algorithm to a real dataset without prior
testing on a simulated dataset, the problem is how to discern ”useful” informa-
tion from noise or other unrelated interactions in which we are not particularly
interested in, if we do not a priori know what is in the data (see further explana-
tions in [8]). Therefore, any analysis approach should first be evaluated using a
good simulated dataset in which the associations between SNPs, gene expression,
and potentially a disease phenotype are known so that we can test if an analysis
tool is able to reveal those basic interaction networks.
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As has been argued by Bartlett and Ray in [8], creating a simulated eQTL dataset
is quite difficult because one must be careful not to oversimplify the complexities
of biological nature. One the one hand, the synthetic dataset should mirror
the characteristic properties of real eQTL data. On the other hand, the synthetic
dataset should contain a known set of associations between its entities forming the
”interaction network” which should be detectable by capable analysis algorithms.

The authors Bartlett and Ray, by using an sophisticated simulation technique
which will briefly be described in Section 6.1.1, created a synthetic eQTL dataset
which balances the opposing poles of natural complexity vs. necessary simpli-
fication and thus has the potential to serve as a kind of ”gold standard” for
benchmarking eQTL analysis algorithms [8].

The eQTL dataset of Bartlett and Ray provides an excellent basis for benchmark-
ing our MDL qMAP tool against the established gene analysis toolkit PLINK [66],
our implementation of Shannon’s mutual information dependency measure from
information theory based on the paper by Dawy et al. [19] using kernel den-
sity estimates for acquiring the underlying statistical distributions in the data
(MI-KDE), and the Maximal Information Coefficient (MIC), a novel dependency
measure for pairs of random variables that can be used in exploratory data anal-
ysis settings [49].

All four analysis approaches are evaluated first on the synthetic eQTL data of
Bartlett and Ray [8].

6.1.1 Simulating eQTL data

In order to preserve as much as possible from the complexity of real biological
eQTL data, Bartlett and Ray developed a method that enabled them to mix
several real eQTL dataset into a large synthetic one and simultaneously introduce
an artificial network of associations between SNP, gene expressions, and disease
status [8]. They refer to their methodology for aggregating various real eQTL
datasets into a single dataset as ”data shuffling technique” [8] and the ability
to introduce artificial relationships into the synthetic eQTL dataset while at the
same time preserving much of its real biological complexity as ”spiking in” [8].

The artificial associations in the simulated eQTL dataset are simply referred to as
”the interaction network” by Bartlett and Ray [8] and we adopt their terminology
here.

The real biological eQTL dataset upon which Bartlett and Ray’s simulated eQTL
data is based upon are Liu’s data from a human brain eQTL association study
in [74] and Myers’ investigation into human cortical gene expression [33].

Myers’ data consists of 193 patients whose gene expression profile and genotype
was determined after their death by following strict ethical rules [33]. It consists
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of gene expression values for the database of all known genes at that time and a
total of 500.000 SNPs for each of the 193 patients.

Liu’s data contains 164 brain samples from both healthy and ill patients. The
definition of ill patients in Liu’s study [74] were persons who were diagnosed to
have one of the following psychological disorders: Schizophrenia, Bipolar Disor-
der, Major Depression. On the opposite, the definition of healthy patients were
those persons who were diagnosed not to have such a disease and therefore la-
beled as normal samples for the case-control study [74]. The brain samples for
the eQTL dataset were obtained after each patient’s death.

As has been pointed out in [8], a ready-to-use simulated dataset needs to undergo
some quality assurance procedures. In contrast to real datasets, where the analyst
has to preprocess the data in order to filter out for example failed experiments or
missing data points, e.g. when it was not possible to obtain a patients genotype
at a specific locus, a simulated dataset need not have missing or ambiguous data
points in it. Therefore, the real datasets of Myers [33] and Liu [74] were filtered
by Bartlett and Ray before using them as a basis to create a simulated eQTL
data set [8].

Data shuffling technique

In this Section we briefly explain the ”data shuffling technique” of Bartlett and
Ray [8].

For simulation purposes, several real datasets need to be integrated into a unified
data repository. It is not easy to mix data from several eQTL studies, but it
is possible to obtain a general idea about the correspondence of genotypes with
gene expression patterns in each patient according to [8].

These basic correlations are utilized by the ”data shuffling” technique to integrate
the information of several real eQTL datasets and generate a simulated one which
keeps the biological complexity of real data [8].

By learning and establishing the various correlations between a genotype and an
expression pattern, the data shuffling technique first proceeds by generating a
random genotype for a simulated person.

Essentially, each simulated SNP is just a random draw from a database of existing
variations. Furthermore, haplotype information is also included by specifying
which allele comes from the maternal and which from the paternal chromosome.
The database which Bartlett and Ray used to act as a pool of SNP variants are
the two real eQTL datasets from Myers [33] and Liu [74] plus phased data from
the 1000 genomes project [75, 76].

While compiling such a virtual genome for each patient in the simulated dataset,
one has to make sure that the virtual genotype produces a gene expression pattern
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which could be expected from a real genome. The data shuffling technique ensures
that the correspondence between virtual genotypes and virtual gene expression
patterns matches the observations in real datasets. This is achieved by applying
a filter which checks if the correlations between SNPs and gene expressions in
real data, i.e. the underlying statistical structure or model of the eQTL data,
is similar to the obtained patterns between virtual genotype and simulated gene
expression data [8].

After a virtual genome, which passed all the filtering criteria, has been assigned
to our virtual patient, a virtual gene expression pattern that corresponds to the
virtual genome has to be created.

This is achieved by utilizing statistical relationships which arise from mapping
genotypes to gene expression patterns in real eQTL datasets. The obtained dis-
tributions were used by Bartlett and Ray to separate each SNP’s effect on the
gene expression via linear regression.

Consequently, the basic building blocks for constructing a virtual gene expression
profile from a virtual genome were obtained; namely the statistical relationship
between a SNP and its induced transcript expression of a gene. Now it becomes
possible to simulate the gene expression pattern of a combination of many SNPs
originating from a virtual genome. By comparing the simulated gene expression
patterns against the patterns found in real eQTL data, Bartlett and Ray’s filter
rules only allow consistent virtual patterns to pass and henceforth be used as a
virtual gene expression pattern in the synthetic eQTL data [8].

The data shuffling enables the creation of virtual patients having a virtual geno-
type and a virtual transcriptome. Thus, an arbitrary number of virtual patients
can be created which make up the sample size of the synthetic eQTL data set.

The data shuffling technique delivers the ground work for the eQTL simulation
by sampling real datasets and conveying as much as possible of the biological
complexity into the simulated data. As a consequence, statistical relationships
between virtual genomes and simulated gene expression patterns mimic the be-
haviour of real data. This establishes the first part of Bartlett and Ray’s eQTL
simulation procedure.

Spike-In of artificial interaction network

In a next step, some artificial associations between SNPs and gene expressions
have to be incorporated into the simulated data. The purpose is to create a
”ground truth” [8] which should be recoverable by analysis algorithms.

By overlaying a network of interactions between various SNPs and gene expres-
sions on top of the data produced by the data shuffling technique, according to
Bartlett and Ray [8], real biological data get mixed with a user defined model
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of known associations so that the resulting simulated dataset both preserves the
biological complexity inherent in real eQTL data and maintains the ability to
benchmark algorithms against it because it uses a known data generating model.

The basis of Bartlett and Ray’s artificial interaction network are 15 genes from
the cadherin protein superfamily. Since it has been reported in the literature [8]
that there is evidence for those genes interacting with each other in an ensemble,
they are a good candidate to hide an overlaid artificial interaction network in a
set of already existing biological interactions.

Using the data shuffling technique, virtual genotypes and gene expression patterns
were created for those 15 genes.

Although the SNPs and their identifiers from the dbSNP database [20] originate
from real datasets, it should be noted here that their biological interpretation
is lost in the simulated eQTL dataset. The same is true for the gene expres-
sions. While the SNPs and genes retain their known names from the literature,
the detectable interactions in the simulated dataset only resemble and mimic
the complexity of associations in real eQTL data. Therefore, analysis results
of the simulated eQTL data cannot be interpreted as having any real biological
meaning. In other words, the associations detected between SNPs and gene ex-
pression patterns by an analysis algorithm in the simulated eQTL dataset cannot
be interpreted as real biological associations. The interpretations and conclu-
sions resulting from such an analysis cannot be transferred to mean that such
an association between SNP and gene expression actually exists in the original
real eQTL dataset. After all, this is a simulated dataset devoid of true biological
interpretations and its main purpose is to test the efficiency of eQTL analysis
algorithms.

To highlight the differences between real and simulated eQTL data, gene names
and dbSNP identifiers will be used when reporting the results for real datasets.
As for the results regarding simulated eQTL data, internal gene ID and SNP ID
numbers will be used.

Given the set of both virtual genomes and virtual gene expressions, Bartlett and
Ray defined that the expression of each of the 15 genes is controlled and regulated
by only one primary SNP in the virtual genome [8].

Modeling this interaction was accomplished by first calculating the correlations
between virtual genomes and virtual gene expressions as well as between the
virtual expressions of all 15 genes. The obtained correlations were stored in
matrices.

A statistical model for the interaction network was created which models the
influence of the SNP random variable with its 3 possible genotype outcomes on
the gene expression [8].

The correlation matrices are altered accordingly in order to incorporate the sta-
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tistical model for the interaction network.

After having defined the underlying statistical structure of the spike-in network,
Bartlett and Ray proceed by creating the simulated eQTL dataset with their
R-implementation of the simulation algorithm which is explained in detail in [8].

The resulting gene expression patterns were z-transformed to facilitate smoother
analysis, which means that the distribution of the gene expression patterns are
normalized to 0 mean and variance 1.

According to Bartlett and Ray [8], the above procedure has the effect that real
biological signals are interwoven with artificially spiked-in signals. This ensures
a ”balance between real biological complexity and simulation specificity” [8] which
enables the assessment of various eQTL analysis frameworks.

Simulated disease status

The eQTL dataset of Bartlett and Ray [8] comes with another interesting feature.
It further contains a simple disease model that defines a disease status for all
virtual patients. This feature enables to check analysis frameworks regarding their
ability to not only detect associations between SNPs and gene expressions, but
to also detect associations between disease status, genotype, and gene expression
patterns as well, which is one of the main purposes of eQTL studies as outlined
in Section 2.1.

Initially, the simulated eQTL dataset was created for a contest [8] in order to
find analysis frameworks which are well suited to deal with eQTL data, i.e. assist
physicians in gaining a better understanding of the data by extracting valuable
information and provide interaction models that explain the onset and pathogen-
esis of disease.

To facilitate the above mentioned goal, an analysis approach should first identify
all the SNPs and gene expressions which convey important information about the
disease. Physicians are then able to gain a better understanding of the disease’s
molecular mechanisms. Based on the acquired knowledge, diagnostic methodol-
ogy and/or treatment approaches might be improved.

The contest initiators and authors of [8] put great hopes into the analysis of
eQTL, because they believe that personalized medicine might benefit a lot from
eQTL by potentially optimizing the treatment strategy depending on personal
genetic information.

Although the disease model used in this simulated dataset is simple in nature,
it points to future directions of what analysis approaches ought to extract from
eQTL data and what kind of results they should deliver to physicians.

For creating a virtual disease which affects the virtual patients of the synthetic
eQTL dataset, Bartlett and Ray utilized Wright’s liability-threshold model [77]



68 6. Performance evaluation results

to assign a disease status to each patient depending on their gene expressions.

Out of the available 15 genes, 8 genes were chosen to determine the outbreak of
the virtual disease. Especially the numerical values of the gene expressions, i.e.
the transcriptomic activity of those 8 genes, determine in a probabilistic way if a
virtual patient gets the disease or not.

Wright’s liability-threshold model [77] requires two parameters to work, namely
a threshold value and an outbreak probability. Given a user defined threshold
ψ and the outbreak probability, in this case 80%, a virtual patient contracts the
disease with a probability of 80% if and only if the sum of the 8 gene expressions
is above the threshold ψ and always 0 if it is below [8].

Therefore, given the user defined threshold ψ and a vector e = [e1, · · · , e8]
containing the 8 gene expression values, the mathematical model employed by
Bartlett and Ray for assigning a virtual disease status to the virtual patients in
the simulated eQTL dataset can be expressed as

Pr{Disease affected} = 0.8 if
8
∑

i=1

ei ≥ ψ

Pr{Disease unaffected} = 0 if

8
∑

i=1

ei < ψ.

(6.1)

The 8 genes, which are used in Wright’s liability-threshold model to determine the
affection status of a virtual patient as a function of their gene expression values,
together with the 8 primary SNPs, which regulate the gene activity, make up the
”interaction network” [8] that characterizes the virtual disease of the synthetic
eQTL dataset.

Despite the fact that there are 15 genes in the eQTL dataset, only 8 are actually
related to the virtual disease whereas the remaining 7 genes are not. Nonetheless,
for all 15 genes exactly one SNP was chosen by Bartlett and Ray to control the
gene expression. These relationships between SNPs, gene expression, and disease
are summarized for the synthetic eQTL data in Table 6.1. Since the synthetic
data is based on real eQTL datasets, the table contains both the real gene names
and the dbSNP identifiers for the SNPs, which were obtained from the *.map-file,
alongside their internal IDs, which were assigned to them during our analysis.

It should be noted that the entire synthetic eQTL dataset consists of 500 virtual
patients, with 193 subjects being affected with the above defined virtual disease
and 307 unaffected. Furthermore, we have genotype information of 7555 SNPs
for each patient together with gene expression values for 15 genes.

Moreover, a visualization of the entities which make up the interaction network
in the simulated eQTL dataset is given in Figure 6.1.
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Gene Name Internal Associated SNP Associated SNP Virtual Disease
Gene ID dbSNP ID Internal ID Status

CDH1 Gene 1 rs12920590 278 Associated
CDH10 Gene 2 rs13188622 406 Associated
CDH11 Gene 3 rs1345863 1243 Associated
CDH19 Gene 4 rs12955865 2475 Associated
PCDH1 Gene 5 rs713079 2745 Associated
PCDH10 Gene 6 rs28401388 3125 Associated
PCDH17 Gene 7 rs12583519 3177 Associated
PCDH19 Gene 8 rs7060516 3639 Associated
PCDH8 Gene 9 rs4456399 3786 Unassociated
CDH2 Gene 10 rs11083166 3904 Unassociated
CDH22 Gene 11 rs2425729 5049 Unassociated
CDH5 Gene 12 rs35143 5555 Unassociated
CDH6 Gene 13 rs34510977 5757 Unassociated
CDH7 Gene 14 rs11662394 6832 Unassociated
CDH9 Gene 15 rs1007588 7134 Unassociated

Table 6.1:

The entities are arranged in concentric layers with the virtual disease being in
the center surrounded by 8 genes, whose gene expressions determine the disease
status via the functional relationship described in Equation 6.1, and with the
SNPs, which regulate the gene activity, arranged in the outer layer.

We chose different geometrical shapes to represent the various entities of the
interaction network:

• ellipsis (disease status)

• square (gene expression)

• diamond (SNP)

Associations in the interaction network of the simulated eQTL dataset are de-
picted with edges.

6.1.2 Evaluation approach

For assessing the performance of our MDL-analysis program qMAP, we made a
benchmark study using the simulated eQTL dataset as a testing ground. The
benchmark includes state-of-the-art information theoretic analysis frameworks
MI-KDE [19] and MIC [49] as well as the popular tool for genetic analysis called
PLINK [66].
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Figure 6.1: The interaction network characterizing the virtual disease in the
synthetic eQTL dataset, which consists of 8 genes together with their primary
SNP regulators.

The two analysis frameworks which are based on information theory are: The
dependency measure of mutual information using a custom implementation of
the formalism of Dawy et al. [19] together with kernel density estimators for
obtaining the probability density functions necessary to calculate the mutual
information. The novel framework MIC for ”explorative data analysis” of Reshef
et al. [49] which tries to maximize the mutual information between two pairs of
variables through a grid optimization approach.

Since the mutual information is calculated based on kernel density estimates, we
will abbreviate this method as MI-KDE. To summarize the abbreviations we use
for the various programs that are evaluated in this study we present them in
Table 6.2.
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Program Name Program Description

qMAP MDL-based eQTL analysis framework minimizing the NML-code
MI-KDE Uses kernel density estimates to calculate the mutual information
MIC Calculates the maximal information coefficient

PLINK Used by geneticists for case-control studies

Table 6.2: The 4 evaluated programs in this study which were benchmarked using
the simulated eQTL dataset.

For all four analysis approaches we want to assess some basic performance mea-
sures. First of all the detection rate of the algorithms, which is their ability
to detect the correct associations between SNPs and gene expressions in the
simulated eQTL dataset. Moreover, we were also interested in evaluating the
performance of each method for various sample sizes. This could help medical
practitioners assess their confidence in the obtained analysis results.

If the sample size is small and a method shows a low detection rate for that sample
size, then the obtained results should be interpreted with care, because they
might not be very reliable. On the other hand, it is expected of a good analysis
framework to approach the correct solution with increasing sample size. Naturally
we would expect that the more data we feed into our analysis program the more
precise the results about detected gene-SNP associations should become. With
increasing sample size a good method should deliver more robust and reliable
results.

That is the reason why we performed sub-sampling of the synthetic eQTL dataset,
creating a sequence of 38 simulated eQTL datasets with increasing sample sizes
from N = 10 to N = 380 with 20 subsamples for each N , resulting in a total of
760 synthetic datasets available for benchmarking.

Although the distribution of cases and controls regarding the virtual disease was
a little bit skewed towards the direction of unaffected patients in the synthetic
eQTL dataset originally created by Bartlett and Ray [8], the subsamples were
compiled to contain an equal number of both affected and unaffected virtual
patients from the original simulation eQTL dataset of [8].

The range of sample sizes, i.e. the virtual patients making up the simulated eQTL
dataset, reaches from a total of 10 subjects to a total of 380 virtual patients. The
step size between sample sizes was chosen to be 10 so that the sequence of sample
sizes N becomes

N = [10, 20, 30, · · · , 360, 370, 380]. (6.2)

For each sub-sample of size N , we created a multitude of 20 simulated eQTL
datasets by random sampling the original simulated eQTL data of Bartlett and
Ray [8].
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To ensure the balance of affected and unaffected cases, N
2
patients were randomly

chosen from the pool of 307 unaffected cases and N
2
patients were randomly chosen

from the pool of 193 affected cases, with the result that each sub-sample eQTL
study consists of a total of N virtual patients.

During the sub-sampling process, where virtual patients were drawn from the pool
of available candidates, the sampling of patients was done without replacement.
This means that in each subsample no two identical patients exist.

Thus, the 20 mini-eQTL studies for each sample size N will help us in determin-
ing the detection rate, with the putative interpretation of accuracy or sensitivity
and the assigned median ranks to the correct results in a ranked list, with the
putative interpretation of specificity, for each analysis program. Furthermore, the
simulated data also enable us to study the convergence behaviour of each algo-
rithm, i.e. the question if an algorithm is able to detect the correct associations
in eQTL data with increasing sample size and how fast it approaches that goal.

6.1.3 Evaluated analysis tools

We evaluated the analytical performance of the 4 frameworks by applying them
to the simulated datasets. For each sample size, the algorithms had to extract
SNP-gene transcript associations from the eQTL data for all randomly sampled
sub-studies and report the strength of a detected association in a ranked list.

The program PLINK was run with default parameters in ”quantitative association”-
mode. In this mode PLINK outputs for each quantitative phenotype in the
.pheno-file, in our case the expression patterns of the 15 genes, the association
with every SNP found in the .ped -file and attaches this information to the anno-
tation .map-file.

Each association test is accompanied by a p-value. The test results were ranked
according to their p-value with the lowest p-value at the top of the ranked list
indicating the best association detected between a SNP and a gene expression.
For all 760 experiments ranked lists of p-values were obtained for every of the 15
genes with the 7555 SNPs.

The program MIC is relatively simple to run if the user adheres to the formatting
procedure outlined on the program’s website [78].

In order to make MIC accessible to eQTL analysis, a Python transformation script
first converts the PLINK formatted .ped -genotype and .pheno-gene expression
data into a suitable representation for the MIC software. To mimic the behaviour
of PLINK, the gene expression patterns of each gene were combined in a matrix
with the 7555 SNPs and written in a comma separated value list (.csv -file) to
disk. Then it was indicated to the MIC software to compare the first column
(containing the gene expression pattern) of the .csv -file to all other remaining
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columns (containing the SNPs) and report the association strength in terms of
the maximal information coefficient.

If the MIC-score is below a certain threshold, those SNP-gene pairs are not
reported in the final output. Since the MIC-score indicates the strength of a
detected association between SNPs and gene expression in the eQTL data, we
ranked the MIC-scores, with the highest MIC-score indicating the best association
test result between a SNP and a gene expression in the ranked list. Lower MIC-
scores indicate weaker associations.

The program MI-KDE, which is our implementation of [19], accepts the same
input files as PLINK. In contrast to PLINK and MIC, which can start analyzing
the data immediately without further user input, the MI-KDE-program requires
some manual adjustments before being able to process the data. Those adjust-
ments are explained in the following paragraphs.

By inspecting the raw input data of the gene expression patterns, integration
boundaries for the integral in Equation 3.6 have to be determined. Moreover, a
sensible sampling rate for the continuous gene expression profile needs to be set
manually before being able to obtain the probability density functions via kernel
density estimates.

In our implementation Gaussian kernels are used, which are provided by the sci-
entific Python library SciPy [79–81]. The SciPy kernel density estimator is able
to automatically determine a proper kernel width for the estimation procedure
according to the algorithms of [82–84]. Although the obtained probability den-
sity functions vary with different kernel widths and hence the obtained absolute
mutual information values vary too, it was argued by Margolin et al. in [48] that
the influence of this variation on ranked lists of mutual information values is not
so large. For this reason, the standard implementation of kernel density esti-
mates in SciPy seems to be sufficient for our analysis. While the absolute values
of mutual information for SNP-gene pairs might change, the ranked ordering of
mutual information scores remains for the most part unaffected according to [48].
Although not as extensive in scope as the experiments of Margolin et al. for their
ARACNE software [48], initial experiments with ranked mutual information lists
for eQTL data confirmed the observations made by Margolin et al. in [48].

Our implementation calculates the mutual information value in a different man-
ner to the formula reported in [19] and instead uses the mathematical formula
outlined in Equation 3.8 in Section 3.2. Nonetheless, it is still necessary to eval-
uate the integral in order to obtain the mutual information value for a SNP-gene
pair. This is achieved using the trapz-algorithm of SciPy [79–81].

The above mentioned pre-analysis steps highlight some of the drawbacks when
using mutual information as a measure of association strength in a mixed hetero-
geneous setting consisting of discrete random variables for SNPs and continuous
random variables for gene expressions. These difficulties of a straightforward
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application of mutual information to eQTL analysis were also a motivating fac-
tor in developing the MDL-based framework for extracting SNP-gene expression
associations from eQTL data.

Despite the pre-processing drawbacks of MI-KDE, mutual information in itself is
still a very powerful measure of association as will become clear in the subsequent
results Sections 6.1.4 and 6.1.5.

For all the 15 genes in the dataset, we created ranked lists of mutual information
using MI-KDE. In contrast to the p-values of PLINK and MIC-scores outputted
by the MIC algorithm, ordinary mutual information values can be interpreted in
an information theoretic way, which means that we can quantify the amount of
information shared between each SNP and the respective gene expression pattern
as well as evaluate in a quantitative manner how much information each SNP
contributes to the gene expression pattern. This enables users of the analysis
program MI-KDE to gauge how much they learn about the disease when looking
at a patient’s genotype and gene expression patterns.

The program qMAP is able to immediately analyze eQTL data in the same fash-
ion as PLINK and MIC. Because qMAP was mainly designed for extracting use-
ful information out of eQTL datasets it naturally parses PLINK formatted eQTL
files. Like MIC, no further user input is required, making qMAP an efficient,
easy-to-use analysis tool.

Adhering to the MDL-philosophy (see e.g. [50, 60]), all necessary parameters re-
quired for the eQTL analysis are obtained from the dataset automatically.

The obtained MDL-scores show the association strength of a SNP-gene transcript
pair, measuring the influence a SNP has on the transcription activity of a gene.
As is the case with MIC-scores, higher MDL-scores indicate stronger influences
while smaller MDL-scores indicate weak influences.

MDL- and MIC-scores are not only obtained using different algorithms, but also
their interpretation is different.

MIC-scores are based on the assumption that by maximizing the mutual infor-
mation between random variables via a grid optimization approach, associations
between entities in a dataset are revealed. According to the MIC way of thinking,
the bigger the amount of shared information between entities is, the stronger the
association between those entities should be.

In contrast to MIC-scores, MDL-scores are based on the NML-codelength of the
data. Via a dynamic grid optimization procedure it is attempted to compress the
gene expression patterns as much as possible on the supposition that the gene
expression is regulated by a SNP. Consequently, the SNP showing the strongest
regulatory influence to the gene expression should provide a good predictive model
regarding the expression profile and thus yield short NML-codelength of the data.
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Association between two entities in an eQTL dataset implies underlying func-
tional relationship or structure. One of the selling arguments of the MDL-
principle is that NML-coding exploits this underlying structure in order to find
a more compressed representation of the data [50, 60].

MDL-score and NML-codelength are inversely proportional in qMAP; higher
compression rates resulting in shorter NML-codelengths yield higher MDL-scores.
From this line of thinking it is concluded that SNP-gene pairs yielding high MDL-
scores are implied to have a strong association and an underlying functional re-
lationship between each other.

The four programs qMAP, MI-KDE, MIC, and PLINK were fed with the simu-
lated eQTL data as input and tasked to output ranked lists showing the associ-
ation strength for each SNP-gene pair.

6.1.4 Measurement of detection rates for correct SNP-
gene transcript associations

Let us first take a look at the overall detection performance of the algorithms.
Here, the detection performance is the ability of each algorithm to identify correct
associations between SNPs and gene expression in the synthetic eQTL dataset
for various sample sizes.

Since the output of each algorithm is a ranked list of detected associations, we
define that a true positive association has been detected if and only if the asso-
ciation appears on top of the list, which means that it is the first ”search result”
a potential user sees on the list.

The rank of such an association result is said to be 1, i.e. the first result when
counting from the top of the ranked list. Intuitively, like Internet search engines,
good analysis algorithms should output relevant results of an eQTL association
study on the first search page the user sees. To put the previous sentence in
perspective, ideally, correct associations in eQTL data, i.e. SNPs that definitely
have an influence and/or statistical relationship with the transcription activity of
a gene, should be assigned a score that ranks them close to the top of the ranked
list.

Since we defined a true positive or a hit as correctly identified associations ranked
as the first top result, we obtain the detection rate (also known as hit rate) of each
algorithm as the number of correctly identified associations in the sub-samples
divided by the total number of sub-samples.

We used random sub-sampling with N = 20 for this purpose. The detection
rate (or hit rate) measure can be used to measure the accuracy of the evaluated
programs, with higher detection rates implying higher accuracies of the algorithm.
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We evaluated the detection rate of each eQTL analysis algorithm, i.e. its ability
to extract correct associations between SNPs and gene expressions out of eQTL
data.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Sample size of simulated eQTL data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et
ec
tio
n 
R
at
e

Detection Rate for correct SNP-gene associations

qMAP
MI-KDE
MIC
PLINK

Figure 6.2: The overall detection rate of each algorithm for correct SNP-gene
transcript associations in the simulated eQTL dataset depending on the sample
size.

As can be seen in Figure 6.2, which depicts the detection rate of each tested
algorithm for varying sample sizes, both the qMAP and MI-KDE algorithm out-
perform PLINK and MIC for increasing sample sizes. MI-KDE and qMAP almost
deliver comparable detection rates. Both MI-KDE and MDL-qMAP more or less
assign equal ranks to the associations detected in the eQTL data and consequently
display a similar performance.

In contrast, PLINK seems to be geared to better deal with smaller sample sizes,
because up to a sample size of 70 it shows, despite being low, the best detection
rate among the tested algorithms. Yet, for sample sizes in that range the detection
accuracy for all algorithms is less than 50%.

For eQTL studies containing around 70 to 110 patients, PLINK, MI-KDE and
MDL-qMAP show a similar performance in terms of detection rates. In that
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operating range the ability to detect correct associations in eQTL data is almost
equal regardless which of the three algorithms is used.

The better performance of information theoretic analysis methods begins to sur-
face for eQTL studies consisting of at least 110 samples according to our synthetic
dataset. This is the point were a pure information theoretic measure like mutual
information and our MDL-association measure begin to diverge from classical
but popular approaches like PLINK and state-of-the-art association measures
like MIC.

An interesting observation in Figure 6.2 is the similar performance of qMAP
and MIC for small sample sizes, especially for eQTL studies with only up to 40
patients. The low detection rate and the slope in the increasing detection rate
might be attributed to the grid optimization procedure both approaches employ
in obtaining their final association strength scores, the MIC-coefficient for the
MIC-algorithm and the MDL-score based on the NML-codelength for the qMAP
program.

Although both algorithms use a completely different approach for optimizing the
grid partitioning and a different optimization criterion, the resulting performance
regarding the achievable precision is comparable. A hypothesis for this behaviour
is presented in the following paragraph.

Regarding the dynamic programming algorithm of the KM-method for obtaining
the MDL-optimal grid layout, an explanation for the low performance of qMAP
can be given.

For small sample sizes only a low grid resolution is attainable via the MDL-
principle in general and the KM-algorithm in particular. Because finer grid
resolutions yield more detailed probability densities, in turn described by more
complex statistical models of the multinomial model class, the MDL-principle
adjusts the attainable model complexity depending on the available sample size.
As a consequence, smaller sample sizes do not allow instantiations of complex
models and hence the KM-grid optimization algorithm cannot distinguish the
various gene expression patterns of the eQTL dataset. Consequently, lower grid
resolutions as dictated by the MDL-principle fail to distinguish gene expression
patterns and genetic profiles. Therefore, a lot of SNP-gene expressions are as-
signed equal or similar MDL-scores for association strength and thus, the correct
SNP-gene expression is lost within the noise of the low grid resolution.

The MDL-grid resolution can be imagined as the resolution of a digital image.
A correct SNP-gene expression association in an eQTL dataset can be thought
of as a detail of the image we wish to see. If the resolution of the image is low,
then the area containing the interesting information we wish to know is blurred
and consequently, we cannot uncover that interesting part of the image.

In contrast, if we see a high-resolution image, it is possible to discern even the
tiniest details. The same is true for the KM-grid optimization algorithm and the
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NML-codelength of SNP-gene associations. With larger sample sizes, we obtain
better grid resolutions that allow us to distinguish more gene expression and
genotype patterns from each other, thus leading to the correct identification and
recovery of the associations making up the interaction network in the eQTL data.

This observation directly leads us to another property of a good analysis algo-
rithm. With increasing sample size, it is desirable that an analysis algorithm
converges to the correct result, which in our case are the correct SNP-gene asso-
ciations of the interaction network in the eQTL data. Judging from Figure 6.2,
both the MI-KDE and the MDL-qMAP algorithm show signs of such a behaviour.
With increasing sample sizes their detection rates get better and better whereas
PLINK and MIC seem to plateau and then increase their detection rates only
slowly.

Another interpretation of the detection rate curves in Figure 6.2 is the learning
rate. Not only do we wish an algorithm to converge to the correct solution with
increasing sample sizes, but we also want to arrive at that solution fast, using as
less samples as possible.

Current experiments using the maximum available sample size in our synthetic
eQTL dataset cannot forecast if PLINK and MIC will attain improved detection
rates with much larger sample sizes. Projections from Figure 6.2 suggest that
this might not be the case.

What is clear from Figure 6.2 is that MI-KDE and qMAP have faster learning
rates than PLINK and MIC. Their detection rate (accuracy) improves much
faster with increasing sample sizes when compared to PLINK and MIC. Since
the learning rate can be defined as the slope of the curves in Figure 6.2, we
identify three learning stages.

For small sample sizes all algorithms show a huge improvement in detection rate
(accuracy) when slightly increasing the sample size. Then follows a stabilization
plateau, where adding more samples to the eQTL data set does not pay off in
terms of achievable detection rate until we reach a point of divergence. At that
point the algorithms MI-KDE and qMAP show a better learning behaviour than
PLINK and MIC. Increasing the sample size of an eQTL study pays off when
analyzing the data with either MI-KDE or qMAP, because the detection rate,
i.e. the accuracy of the algorithms, increases. While PLINK and MIC learn and
approach the correct solution slowly, MI-KDE and qMAP display better learning
performance, i.e. have faster learning rates, and thus converge to the correct
solution more quickly.

An interesting property of the simulated eQTL dataset is the separation of strong
and weak SNP-gene interactions. For the 8 genes associated with the virtual
disease, the effect of each SNP on the gene expression pattern was simulated to
be rather subtle and weak, whereas the non-disease associated gene expressions
have strong ties with their primary regulatory SNPs. This property enables us to
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check the ability of the analysis algorithms to uncover subtle effects. Therefore,
we split-up the measured detection rate into a group containing strong effects,
which consists of the 7 gene expressions not associated with the disease and into
a group of weak effects, which is comprised of the 8 gene expressions associated
with disease.

Consequently, we obtain detection rate performance measures for the 4 tested
algorithms for their ability to detect both subtle and weak effects as well as
strong influences of SNPs on gene expression patterns.

The detection rate results for weak associations are given in Figure 6.3 whereas
the results for strong associations are depicted in Figure 6.4.
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Figure 6.3: Each algorithm’s detection rate of correct SNP-gene transcript as-
sociations depending on the sample size. Results for the 8 disease associated
genes are shown whose primary regulatory SNPs exhibit weak control on the
gene expression.

When comparing Figure 6.3 with Figure 6.4 an interesting effect emerges regard-
ing the characteristic of each algorithm.

The first striking but expectable observation is that the overall achievable detec-
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Figure 6.4: Each algorithm’s detection rate of correct SNP-gene transcript as-
sociations depending on the sample size. Results for the 7 disease unassociated
genes are shown whose primary regulatory SNPs exhibit strong control on the
gene expression.

tion rate is much higher for strong associations between SNPs and gene expression
patterns. Strong effects are easier to detect by any algorithm and thus all 4 algo-
rithms can recover correct associations of the interaction network in eQTL data
with a high detection rate.

For relatively small sample sizes from 10 to 60 samples, the detection rate of
all algorithms rapidly increases. At an eQTL study with only 10 participants,
PLINK has the highest detection rate with 32.9% followed by MIC with 17.1%,
MI-KDE with 12.1% and 0% for qMAP. Nonetheless, for a sample size of 60 the
achieved detection rate values are from best to worst; 90.7% for MI-KDE and
PLINK, 85.0% for qMAP, and 73.6% for MIC.

Afterwards, the detection rate values stabilize and only improve slightly but
steadily with qMAP, MI-KDE and PLINK having faster learning rates than MIC.
Thus, all algorithms can correctly identify the strong SNP-gene interactions with
increasing sample size reaching a final detection rate of 98.6% (qMAP), 100.0%
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(MI-KDE), 100.0% (PLINK), and 83.6% (MIC) for a sample sizeN = 380. As can
be seen in Figure 6.4 the achieved detection rates of the three algorithms qMAP,
MI-KDE and PLINK are almost similar, which shows that the performance of
the two information theoretic analysis approaches and the classical statistical
approach of PLINK is comparable.

In contrast to the result for strong associations is the performance for much
weaker effects. Not only is the detection rate lower than for strong effects, but
also the behaviour of each algorithm is different.

When comparing the performance for large sample sizes (e.g. 380 samples), strong
effects have detection rates of around 99% (cf. Figure 6.4) whereas weak effects
can only be detected at a much lower rate of around 59% (cf. Figure 6.3).

It should also be noted that in order to achieve modest detection rates for weak
SNP-gene expression associations large sample sizes are needed. Even a study
that is comprised of 260 samples detects the correct associations in the simulation
37.5% (qMAP), 31.3% (MI-KDE), 13.8% (MIC), 13.1% (PLINK) of the time,
while for strong associations the detection rates are 94.3% for qMAP, MI-KDE,
PLINK and 78.6% for MIC.

While the detection rate for weak effects remains below 40% for all four algorithms
until sample size 280, qMAP and MI-KDE show a stark increase in detection rate.
On the other hand, although the detection rates improve for both PLINK and
MIC as well, they remain well below those of qMAP and MI-KDE. PLINK and
MIC achieve detection rates of 20.0% and 24.4% respectively for N = 380. qMAP
and MI-KDE have detection rates of 60.0% and 58.8% for that sample size, more
than triple the detection capability of PLINK.

For sample sizes 60 to 110, MDL qMAP is the algorithm that shows the highest
ability for detecting putatively weak effects in eQTL data and for larger sam-
ple sizes outperforms PLINK and MIC, and furthermore displays an improved
detection rate over MI-KDE.

This result shows that qMAP has a performance comparable to those of PLINK
and MI-KDE for strong associations in the eQTL data and an improved ability
over the other algorithms to identify correct associations in the data even when
the influence of the SNP on the gene expression is subtle.

As a consequence, qMAP can help physicians to uncover more information from
eQTL data. Compared to PLINK, MI-KDE and MIC, the reconstructed interac-
tion network that depicts the associations between SNPs and gene expressions in
the eQTL data is more accurate and includes also subtle effects that would have
been missed by other algorithms.

To summarize the above results about the detection rate performance of the 4
tested algorithms, it can be stated that the two information theoretic approaches,
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namely MI-KDE and qMAP outperform PLINK and MIC with respect to detect-
ing the correct SNP-gene associations hidden in the simulated eQTL dataset.

Moreover, they show a faster learning rate than PLINK and MIC, which means
that MI-KDE and qMAP need on average fewer samples in order to identify the
correct associations.

Let us summarize the detection rate performance of the 4 tested algorithms by
presenting the detection rates in percent at select sample sizes in Table 6.3.

Sample Size qMAP MI-KDE MIC PLINK
30 27.3 33.0 27.7 37.0
60 40.0 43.0 34.7 42.7
120 48.3 47.7 40.7 46.0
200 57.3 56.7 41.0 51.0
250 59.7 60.7 45.0 51.0
300 70.7 74.3 46.3 54.0
350 76.7 74.0 50.3 56.3
380 78.0 78.0 52.0 57.3

Table 6.3: Detection rates of correct SNP-gene transcript associations in the
simulated eQTL dataset depending on the sample size. (Displayed values are in
percent [%]).

The advantage of qMAP over MI-KDE is that not only are all necessary parame-
ters automatically obtained from the given data, so that no further user input is
required, but qMAP has better detection rate results for weak SNP-gene associ-
ations than MI-KDE. For strong associations between SNPs and gene expression
MI-KDE and MDL qMAP have equivalent detection rates.

The tables containing the numerical values of the detection rates for each exper-
iment can be found in Appendix A.

For the overall detection rate regarding the entire interaction network consisting
of 15 genes please refer to Table A.1. Results for the 8 disease associated genes
with weak effects between SNP-transcript associations are depicted in Table A.2.
Detection values for SNPs exerting a strong influence on the gene expression
activity, which is the case for the 7 disease unassociated genes, are shown in
Table A.3.

Moreover, the detection rates are plotted separately for each of the 15 genes in
Appendix A.
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6.1.5 Measurements of assigned ranks for correct SNP-

gene transcript associations

In this section we will evaluate another behaviour of the eQTL analysis algo-
rithms, namely how they rank correct associations between SNPs and gene ex-
pressions in the eQTL dataset.

Even if an algorithm does not output the correct association on the top of the list,
the assigned rank can be used to assess how well each algorithm can distinguish
true positive associations from false ones or its ability to separate the signal
containing the correct SNP-gene pair from the rest of the data, which could be
referred to as noise.

Thus, the assigned rank of the correct SNP-gene pair assesses the specificity of
each algorithm.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Sample size of simulated eQTL data

0

200

400

600

800

1000

M
ed

ia
n 

R
an

k

Median Rank of the correct SNP-gene associations

qMAP
MI-KDE
MIC
PLINK

Figure 6.5: The median assigned ranks as a specificity measure obtained via
the ranking of correct SNP-gene transcript associations in the simulated eQTL
dataset depending on the sample size.

At each sample size, the ranks of the correct SNP-gene transcript pair for all 15
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genes in the random sub-samples of the simulated eQTL dataset were recorded
in a list and hence the median rank was calculated and plotted in Figure 6.5.

It can be observed in Figure 6.5 that for all 4 algorithms the assigned median
rank, i.e. the definition of the algorithm’s specificity in this context, increases
with increasing sample size.

Yet, the algorithms qMAP and MI-KDE show a much higher affinity to rank
the correct SNP-gene associations towards the top of the list than PLINK and
MIC. For a sample size N = 380, the median rank of the true association is 3 for
qMAP, 4 for MI-KDE. 154 for MIC, and 320 for PLINK. At lower sample sizes,
e.g. N = 140, the median ranks are 49 for qMAP, 52 for MI-KDE. 314 for MIC,
and 576 for PLINK.

This result shows, that although PLINK shows higher detection rates for smaller
sample sizes than qMAP and MI-KDE, its assigned median rank to correct inter-
actions is always lower than that of the information theoretic algorithms. Even
for comparable detection rate values that are obtained in the range of 60 to 110
samples, qMAP and MI-KDE far outperform PLINK with regard to the median
ranking of correct results, i.e. the ability to separate correct SNP-transcript sig-
nals from noise and accordingly assign a high rank to them in a ranked list of
putative associations. This behaviour can be verified by comparing Figure 6.2
with Figure 6.5.

As has already been mentioned in Section 6.1.4, at very low sample sizes the
grid optimization technique of the KM-method has a too low resolution so that
it is not possible to obtain meaningful results and therefore the median rank
at sample size 10 cannot be displayed for qMAP in Figure 6.5. From N = 20
onwards median ranks of qMAP are shown in the figures.

The faster learning rates of qMAP and MI-KDE over PLINK and MIC leads to
higher specificity values at lower sample sizes. This characteristic of the infor-
mation theoretic approaches can be observed in Figure 6.5 with the curves of
qMAP and MI-KDE approaching faster the ideal rank of 1 for correct SNP-gene
expression associations.

Since the performance gap regarding the median ranking is quite huge between
qMAP and MI-KDE on the one side and PLINK and MIC on the other side,
a zoomed version of Figure 6.5 highlights the better median ranking results of
qMAP over MI-KDE.

The median ranks for sample sizes ranging from N = 150 to N = 380 are
displayed in Figure 6.6, but only the results for qMAP and MI-KDE can be seen.

Not only assigns qMAP lower median ranks to the correct SNP-gene pair associa-
tion results, but it does so much faster than MI-KDE. Therefore, qMAP displays
a higher specificity than its competitor MI-KDE. The grid optimization based
on the KM-method in conjunction with NML-coding shows higher aptitude in
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Figure 6.6: The median assigned rank of the correct SNP-gene expression pair
in the simulated eQTL data depending on the sample size. Zoomed-in for larger
sample sizes in order to show the performance difference between qMAP and
MI-KDE.

discerning true signals, i.e. correct SNP-gene transcript associations, from back-
ground noise in eQTL data, yielding the best overall specificity for all tested
algorithms.

Another observation derived from Figure 6.6 is that the assigned median ranks of
the qMAP program do not fluctuate when compared to MI-KDE. An explanation
for this behaviour might be, that the NML-coding via KM-optimization is more
robust than other methods. This robustness of qMAP is an important asset.

For all the 15 genes of the simulated eQTL dataset the median ranking of the
correct associations between SNP and gene transcript in the ranked list as out-
putted by the analysis program for selected sample sizes is presented in Table
6.4.

We also separated the median rank results into the group containing the 8 genes
with weak associations to their controlling SNPs and the group of 7 genes whose
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Sample Size qMAP MI-KDE MIC PLINK
30 650 936 496 841
60 343 456 588 809
120 83 147 325 717
200 13 53 247 508
250 6 17 190 404
300 5 23 174 378
350 3 5 233 333
380 3 4 154 320

Table 6.4: Median ranks of correct SNP-gene transcript associations in the sim-
ulated eQTL dataset depending on the sample size.

gene expression patterns are controlled by a strong association with their respec-
tive SNPs. Again, like in the case for the detection rate performance measure-
ments of the 4 tested algorithms, a stark gap in performance can be observed in
Figures 6.7 and 6.8.

To begin with, the specificity performance of qMAP outperforms MI-KDE, PLINK,
and MIC in both scenarios. This underlines the usefulness of qMAP as a com-
petitive alternative for eQTL analysis.

Let us first study the behaviour of the 4 methods for weaker SNP-gene asso-
ciations because it highlights the advantages of the two information theoretic
methods qMAP and MI-KDE over the methods of PLINK and MIC.

For weakly associated SNP-gene pairs the median ranks interpreted as specificity
performance for each of the 4 algorithms are shown in Figure 6.7.

Lower values indicate better rankings of the correct results in each algorithms
output with the ideal ranking being at the top of the list which corresponds to a
rank of 1. We can observe in Figure 6.7 that qMAP and MI-KDE achieve higher
specificity results at lower sample sizes and attain very high specificity values for
large samples. PLINK and MIC cannot reach the performance results of qMAP
and MI-KDE. Although a trend is visible for both algorithms which shows that
with increasing sample size the specificity improves, there is a huge performance
discrepancy when compared to qMAP and MI-KDE. MIC has better specificity
values than PLINK, but is still far away from the values achieved by qMAP and
MI-KDE.

Moreover, the rankings for qMAP and MI-KDE are more consistent than those
of PLINK and MIC for increasing sample sizes. This means that the variance of
the sample size of an eQTL study does not have such a strong influence on the
rankings of the correct SNP-gene associations for the algorithms qMAP and MI-
KDE. Given an arbitrary sample size N and varying it by ±ε samples, the ranks
assigned to the correct SNP-gene associations in the simulated eQTL dataset do
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Figure 6.7: The median assigned rank of the correct SNP-gene expression pair
in the simulated eQTL data depending on the sample size for weak associations
between SNPs and gene expressions.

not vary much for qMAP and MI-KDE, whereas stronger fluctuations for PLINK
and MIC can be seen in Figure 6.7.

Thus, the results of the methods qMAP and MI-KDE are less sensitive with
regard to the total sample size and reveal a more consistent behaviour in ranking
correct results than PLINK and MIC.

The higher specificity and more robust and consistent ranking of correct SNP-
gene expression associations is an advantageous feature of the information theo-
retic algorithms qMAP and MI-KDE when compared to PLINK and MIC.

In particular, qMAP even displays better specificity than its direct competitor
MI-KDE. This feature can only be visualized if we zoom into Figure 6.7 and
concentrate at the median ranks for larger sample sizes. The zoomed-in area of
Figure 6.7 is depicted in Figure 6.9.

The real advantage of the MDL qMAP method over all the other tested methods
can best be seen in Figure 6.9, where it displays the best specificity performance
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Figure 6.8: The median assigned rank of the correct SNP-gene expression pair
in the simulated eQTL data depending on the sample size for strong associations
between SNPs and gene expressions.

and continuously shows a robust and consistent ranking of the correct SNP-gene
associations in the simulated eQTL dataset.

Despite the fact that qMAP shows outstanding specificity, robustness and consis-
tency performance for weakly associated correct SNP-gene expression pairs, let us
also compare the results for correct SNP-gene expression associations exhibiting
a strong controlling influence of the SNP on the gene expression pattern. The
median ranks for those associations are plotted in Figure 6.8.

In contrast to the weakly associated results of Figure 6.7 the median ranking of
all algorithms are better for strong associations as can be seen in Figure 6.8.

All 4 algorithms start assigning high ranks to the correct SNP-gene associations
quite quickly, with MIC performing much better in this case than for weakly
associated results. For strong associations the specificity of MIC is comparable to
those of MDL qMAP and MI-KDE, which implies that the MIC algorithm works
better if an association between a SNP and a gene expression is strong. Also the
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Figure 6.9: The median assigned rank of the correct SNP-gene expression pair
in the simulated eQTL data depending on the sample size for weak associations
between SNPs and gene expressions zoomed-in for larger sample sizes.

performance of PLINK is much better compared to weak associations. It should
also be noted that all algorithms require much less samples in order to achieve
good specificity values expressed as the ranking of correct SNP-gene associations.
This result indicates that if the purpose is to look for strong associations only in
eQTL datasets, one can achieve a certain specificity value with much less samples
than would be needed, if one were to look for weak, subtle influences of SNPs on
gene expressions.

If we compare the median ranking curve of each algorithm in Figure 6.8 with
the detection rate curve in Figure 6.4, we can extract for each algorithm its
performance characteristic and come to the conclusion that for strong effects in
eQTL data, all algorithms have comparably well performance values for both
detection rate and median ranking of correct associations.

For example consider an eQTL study containing 200 subjects and we want to
extract SNPs from the data exerting a strong influence on gene expression pat-
terns. Then, all algorithms have a detection rate of over 90% (except MIC) and
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the correct result appears on top of the ranked list. The performance values are
depicted in Table 6.5.

Program Name Detection Rate Median Ranking
(in [%])

qMAP 94.3 1
MI-KDE 95.0 1
MIC 78.6 2
PLINK 94.3 1

Table 6.5: The detection rate and median ranking values for 4 algorithms applied
on the simulated eQTL study with 200 samples.
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Figure 6.10: The median assigned rank of the correct SNP-gene expression pair
in the simulated eQTL data depending on the sample size for weak associations
between SNPs and gene expressions zoomed-in for larger sample sizes.

Tables depicting the measured median rank in each experiment are in Appendix
A. For the entire dataset, the measured median ranks are shown in Table A.4. A
separation between ranks assigned to weak associations for the disease associated
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genes and ranks assigned to strong associations for the disease unassociated genes
is done and the results are displayed separately in Table A.5 and Table A.6
respectively.

6.1.6 Recovered interaction networks

The ability to detect correct associations between SNPs and gene transcripts is
directly related to the ability to reconstruct the interaction network.

In order to visualize the analysis results of the simulated eQTL dataset, the
results of each algorithm are processed as follows. For the genes related to the
simulated virtual disease, i.e. genes 1 to 8, an edge is drawn between the SNP and
the gene if the algorithm identified that SNP to have the strongest association
with the gene, i.e. the association strength of the SNP appears as the top scoring
result.

It can be concluded from the detection rate analysis of Section 6.1.4 that the
algorithms qMAP, MI-KDE, MIC, and PLINK will have completely different
performances when it comes to the reconstruction of the interaction network.

Since the effects of the SNPs on the genes that are associated to the disease
are very spurious and thus difficult to detect, we are going to report the recon-
struction results when using the entire sample size of N = 380 patients. Even
at that sample size, all algorithms are far from perfect from a comprehensive
reconstruction of the network.

Correctly identified interactions will be reported as an edge between SNP and
gene, whereas incorrectly identified interactions will be omitted in order to high-
light the contrast between reconstructed and spiked-in interaction network.

Figures 6.11(a), 6.11(b), 6.11(c), 6.11(d) depict the visualizations of the recon-
structed interaction networks for the algorithms qMAP, MI-KDE, MIC, and
PLINK respectively. From the achieved detection rates of each algorithm, an
edge was drawn between a SNP and a gene transcript if for that particular pair
the detection rate was greater than the threshold of 70%.

The overall best performance delivers the qMAP algorithm because it achieves
the most complete and accurate reconstruction of the interaction network that
was spiked-in into the simulated eQTL data. At sample size N = 380 qMAP
reliably identifies 5 of the 8 SNP-gene interactions which are associated with the
virtual disease (detection rate yields of over 70%). This is the most comprehensive
reconstruction amongst all the tested algorithm.

In second place comes the algorithm MI-KDE, detecting 3 of the 8 disease asso-
ciated interactions.

PLINK and MIC have similar reconstruction ability but cannot achieve the per-
formance of qMAP or MI-KDE. The reconstructed interaction network by MIC
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Figure 6.11: The reconstructed interaction network for N = 380 samples by the
analysis program: (a) qMAP, (b) MI-KDE, (c) MIC, (d) PLINK

and PLINK can reliably identify the association between gene 1 and SNP 278,
but for the other genes the detection rates are below the threshold of 70%.

Although showing a good detection rate for strong gene-SNP associations, PLINK’s
ability in reconstructing the interaction network that involves subtle functional
impacts of the SNPs on the gene expression patterns that determine the patho-
genesis of the virtual disease is quite limited. From the 8 genes whose expression
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patterns decide if a patient gets the virtual disease or not, only the association
between gene 1 and SNP 278 could be recovered while the other 7 were missed.

Especially, the connection between gene 3 and SNP 1243 is hard to detect for
any of the four tested algorithms. The impact of the SNP on the transcription
activity is too low to be confidently detected as it is missed by all algorithms.

The above results show that with the help of qMAP, the MDL-based analysis
program for associating quantitative traits with discrete genotypes, it becomes
possible to extract more useful information out of eQTL data. A more complete
map depicting more correctly identified molecular mechanisms between SNPs and
gene expression is more useful than an incomplete image of those interactions.

Even though the information theoretic MI-KDE approach is able to identify al-
most as much interactions as qMAP, the higher detection rates of qMAP make
it possible to acquire a better understanding of the underlying interactions in-
volved in disease by delivering a more complete and comprehensive map of the
interaction network. This feature of qMAP is a real advantage when it comes to
gaining a better understanding of disease by extracting more useful information
out of the available data.

6.1.7 Analysis of a real human cortical eQTL dataset

Since qMAP has shown superior theoretical performance compared to existing
algorithms, rivaled only by the information theoretic MI-KDE approach, it is
time to demonstrate the utility of qMAP by applying it on a real dataset.

The website seeQTL [85] offers an online collection of links to resources hosting
publicly available eQTL datasets. Via seeQTL the dataset of Myers et al. [33]
was downloaded and re-analyzed using qMAP.

Before submitting the data to the analysis programs, genotypes and gene expres-
sion data were pre-processed according to the filtering rules that were employed
in the original paper of Myers et al. [33].

SNPs with a minor allele frequency (MAF) of less than one percent (MAF ≤ 1%)
were not further processed during the analysis. The classification of cis- and
trans-effects of SNPs was done according to the definition that cis-acting SNPs
are located at maximum 1Mb away from the 5′ or 3′ end of the gene or are directly
located in the gene whose expression they influence. If the detected SNP does
not adhere to the above definition of a cis-effect, it is classified as a trans-acting
SNP (see Myers et al. [33]).

We focused on the SNPs that were reported in the study to be associated with
gene expressions. In the study a total of 8 genes with 23 cis-acting SNPs were
presented.
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A particular focus was on the microtubule-associated protein tau (MAPT) gene
in the study of Myers et al. [33], because there is mounting evidence that the
gene expression pattern of MAPT is influenced by several SNPs residing in a
haplotype block [86].

After obtaining the MDL-scores for each SNP-transcript pair, we confined our
search to potential cis-acting SNPs around the MAPT gene by only reporting
those MDL-scores whose SNP fall withing 1Mb from either the 5′ or 3′ end of the
MAPT gene. All reported SNPs had on average an MDL-score of 154.6, among
them the SNP rs17571739 of the original study with an association score of 154.4.

Since no fluctuations in the MDL-score for the reported SNPs could be observed,
the hypothesis of Myers et al. [33] delivers an explanation for that phenomenon.

As was shown in [33], the SNP rs17571739 associated in cis with MAPT is in
linkage disequilibrium with various other SNPs in an area of roughly 620kb in
size and forms a haplotype block. Therefore, MDL-scores between SNPs located
in that haplotype block and the target gene MAPT have similar values.

Although the MDL-scores of qMAP show subtle differences for the association
strength of each SNP, the small variation in scores makes the reported SNPs vir-
tually indistinguishable, which means that the cis-acting effect of that haplotype
block on the MAPT gene expression cannot be traced to a single genetic variant
yet.

Our re-analysis of the eQTL dataset with qMAP confirmed the validity of the
original results initially reported by Myers et al. in [33]. Consequently, qMAP de-
livers consistent results with other state-of-the-art statistical analysis approaches.

For the remaining other genes, the concordance of results between qMAP and
Myers’ study was evaluated. It was confirmed that qMAP successfully detected
the reported cis-acting associations. In general, if a detected cis-acting SNP
lies in a haplotype block, qMAP assigns similar MDL-scores to SNP-transcript
interactions originating from that haplotype block.

The analysis results for the cortical eQTL dataset are summarized in Table 6.6,
showing a selection of the concordance between the results of Myers et al. [33]
and qMAP.
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Gene Name Associated cis-acting SNP qMAP MDL-score
(reported by Myers et al. [33]) Detection

MAPT rs17571739 positive 154.4
B3GTL rs1005824 positive 164.6
SQSTM1 rs10277 positive 168.9

rs1065154 positive 169.6
PTD004 rs10930638 positive 174.6

rs10930654 positive 173.7
rs11674895 positive 173.8

KIF1B rs10492972 positive 163.0
rs12120042 positive 162.5
rs12120191 positive 162.5

HBS1L rs1590975 positive 166.0
rs2150681 positive 165.7

CHST7 rs760697 positive 147.6

Table 6.6: Comparison of the reported results of the cortical gene expression study
by Myers et al. [33] and the SNP-gene transcript pairs detected by qMAP. SNPs
residing in a haplotype block with similar MDL-scores were grouped together and
represented by one SNP (for ease of comparison the representative SNP ID was
chosen to be the same as in Myers et al. [33]).
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7 Conclusion and Outlook

From ongoing research in genomics it is becoming apparent that phenotypic traits
are not only the mere result of genomic variation which manifests itself via single
nucleotide polymorphisms (SNPs) in a person’s genome, but that a dynamic reg-
ulatory system that includes among other factors the extremely diverse landscape
of the transcriptome, which is the realization space of gene expression activity.

By phenotypic trait we understand a multitude of an organisms’s features, may
it be the hair color, a disease, or even the cholesterol levels.

The relationship between SNPs and phenotypes have already been studied in
depth by so called genome-wide association studies (GWAS).

Due to better sequencing technologies, the focus of scientific analysis is shifting
towards studying the transcriptome, which promises to unlock more knowledge
about disease and the molecular workings of the DNA. An approach which is
trying to integrate both genotype and transcriptome data in order to improve
our understanding of the underlying mechanisms of disease pathogenesis are ex-
pression quantitative trait locus (eQTL) studies.

Despite of the excellent work of GWAS, there remains an information gap in our
understanding of how genomic variations actually influence or control the devel-
opment of a specific phenotypic trait. This knowledge gap could be alleviated by
studying the transcriptome because recent studies have revealed that there is a
stronger link between a gene expression pattern and a phenotype than there is
between a genotype and a phenotype.

This means that changes in the transcriptomic landscape have a more severe
influence on a phenotype. Since GWAS found many phenotype associated SNPs
that fall into non-coding regions of the genome, a hypothesis put forward by many
geneticists is that those SNPs might actually regulate gene expressions which in
turn alter the transcriptomic landscape leading to the onset of disease.

Therefore, it is important to discover those vital relationships between SNPs and
gene expressions. Emergence of eQTL data offers a great opportunity to iden-
tify these interacting entities. SNPs which are found to be statistically associated
with certain gene expressions and the transcriptomic landscape of a disease which
consists of gene expression patterns associated with the disease, offers the possi-
bility to increase our knowledge of the biological systems that underlie phenotype
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development and disease pathogenesis.

For this purpose, we developed a novel information theoretic eQTL analysis tool
in this thesis called qMAP (quantitative MDL Association Program) that iden-
tifies associations between SNPs and gene expressions based on the minimum
description length.

Since it is important to acquire an accurate and complete landscape of the as-
sociations between SNPs and gene expression activity making up the interaction
networks involved in disease susceptibility, qMAP is geared towards a high and
robust detection rate of SNP-gene expression associations.

Compared to the analysis toolkit PLINK the detection rate of correct SNP-
transcript pairs in the interaction network of a synthetic eQTL dataset improves
by 20 percentage points to 78% when using qMAP. Consequently, qMAP deliv-
ers a more complete picture of the transcriptomic landscape and the associated
regulatory SNPs that constitute the interaction network. It enables analysts to
draw more knowledge out of eQTL data.

This dramatic improvement in detection ability is due to an analysis approach
based on NML-coding that utilizes a dynamic grid optimization algorithm, orig-
inally invented by Kontkanen and Myllymäki, and referred to the KM-method
here. In this thesis we further developed the excellent results of Kontkanen and
Myllymäki by extending the KM-method to obtain a coding scheme for eQTL
data, i.e. for a combination of discrete genotype random variables and continuous
gene variation random variables.

Based on the NML-codelengths we obtained from the extended KM-method’s
dynamic grid optimization approach, we created an MDL-score which tells us the
association strength between a SNP and a gene expression in the eQTL data.

The MDL-scores proposed in this thesis have an interpretation which is rooted in
Rissanen’s MDL-principle. The working hypothesis is that SNPs which regulate
gene expressions could serve as a statistical model to predict the gene expression
pattern. Therefore, according to the MDL-principle, those SNPs that yield short
NML-codes of the gene expression, when used as a model, and have short NML-
code self descriptions themselves, are prime candidates for regulating the gene
expression and are said to be strongly associated with that gene.

To test the robustness and the performance of the novel algorithm, qMAP was
employed to analyze a simulated eQTL dataset, created by Bartlett and Ray
and gracefully made available to the author, that contains known statistical as-
sociations between genotype and transcriptome which make up the interaction
network in the data. The obtained results were benchmarked against another
array of potential analysis tools, including PLINK, the maximal information co-
efficient (MIC), and an implementation using kernel density estimates to calcu-
late the mutual information between a discrete and continuous random variable
(MI-KDE).
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Vast improvement gains in detection rates could be observed when comparing
qMAP to MIC and PLINK, yielding an average detection rate for all the en-
tities making up the interaction network of the eQTL data of 78% for qMAP
compared to 57.3% for PLINK and 52% for MIC when applied to the simulated
eQTL dataset for sample size N = 380. Furthermore, the results between both
information theoretic approaches MI-KDE and qMAP are consistent, yielding
equivalent detection rates for N = 380.

In addition to the detection rates, the specificity of each algorithm was investi-
gated and it was found that qMAP shows the highest specificity among all tested
algorithms. It displayed a robust behaviour in continuously ranking the correct
associations towards the top of ranked lists and proved to be a more sensitive
method than MI-KDE.

When it came to reconstruct the interaction network of the virtual disease in
the synthetic eQTL data, which consists of 8 genes and their primary regulatory
SNPs, qMAP detected on average 5 SNP-gene pairs of the interaction network,
outperforming MI-KDE with 3, MIC and PLINK with 1 detected interaction
respectively in our simulation study.

We also applied qMAP to a real human cortical eQTL dataset that was created
by Myers et al. and performed a re-analysis. Our results which were obtained
by qMAP confirmed the findings of Myers. An interesting observation was that
qMAP assigns similar MDL-scores to SNPs of a haplotype block.

The extension of qMAP to assign MDL-scores to joint interactions of SNPs on
the transcriptome and the ability to include more data sources, like for example
methylation patterns into the analysis, remains future work.

Nonetheless, in its current state, qMAP is able to extract equivalent or more
information from eQTL data than other state-of-the-art approaches. The high
detection rate, robustness, and sensitivity of qMAP make it a useful information
theoretic tool for knowledge discovery in eQTL data.
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Figure A.1: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 1.



100 Appendix A Figures & Tables

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Sample size of simulated eQTL data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et
ec
tio
n 
R
at
e

Detection Rate for correct SNP-gene associations

qMAP
MI-KDE
MIC
PLINK

Figure A.2: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 2.
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Figure A.3: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 3.
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Figure A.4: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 4.
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Figure A.5: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 5.
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Figure A.6: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 6.
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Figure A.7: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 7.
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Figure A.8: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 8.
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Figure A.9: Each algorithm’s detection rate depending on the sample size for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset consisting
of an interaction network of 15 genes. Displayed gene: Gene 9.
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Figure A.10: The detection rate depending on the sample size of each algorithm
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 10.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Sample size of simulated eQTL data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et
ec
tio
n 
R
at
e

Detection Rate for correct SNP-gene associations

qMAP
MI-KDE
MIC
PLINK

Figure A.11: Each algorithm’s detection rate depending on the sample size for
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 11.



105

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Sample size of simulated eQTL data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et
ec
tio
n 
R
at
e

Detection Rate for correct SNP-gene associations

qMAP
MI-KDE
MIC
PLINK

Figure A.12: Each algorithm’s detection rate depending on the sample size for
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 12.
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Figure A.13: Each algorithm’s detection rate depending on the sample size for
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 13.
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Figure A.14: Each algorithm’s detection rate depending on the sample size for
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 14.
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Figure A.15: Each algorithm’s detection rate depending on the sample size for
correct SNP-gene transcript associations in the simulated eQTL dataset consist-
ing of an interaction network of 15 genes. Displayed gene: Gene 15.
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Sample Size qMAP MI-KDE MIC PLINK
10 0.0 5.7 8.3 15.3
20 18.3 22.7 17.3 33.7
30 27.3 33.0 27.7 37.0
40 31.7 37.0 30.7 39.3
50 38.3 40.3 33.3 41.0
60 40.0 43.0 34.7 42.7
70 43.7 42.7 34.0 43.3
80 44.0 44.0 33.7 43.3
90 44.3 43.3 37.7 43.3
100 45.0 46.0 37.0 45.3
110 44.3 45.3 37.7 44.3
120 48.3 47.7 40.7 46.0
130 45.3 46.3 39.0 44.3
140 51.0 50.7 42.3 47.0
150 47.3 49.0 43.0 45.7
160 54.0 54.0 41.3 48.3
170 54.0 52.3 42.7 49.3
180 51.3 55.0 44.7 49.0
190 55.0 57.0 43.7 49.3
200 57.3 56.7 41.0 51.0
210 57.7 62.0 45.0 52.3
220 58.7 60.7 47.0 50.3
230 58.3 60.3 42.0 52.3
240 59.3 59.3 45.0 52.0
250 59.7 60.7 45.0 51.0
260 64.0 60.7 44.0 51.0
270 64.3 63.0 45.7 51.7
280 66.7 69.3 45.0 53.7
290 64.7 70.0 47.0 54.7
300 70.7 74.3 46.3 54.0
310 73.7 72.3 46.3 55.3
320 72.7 73.0 49.0 54.0
330 73.3 73.3 50.7 56.3
340 76.0 74.3 49.0 57.0
350 76.7 74.0 50.3 56.3
360 77.3 77.7 49.7 57.0
370 77.3 74.3 48.3 56.3
380 78.0 78.0 52.0 57.3

Table A.1: Detection rates of correct SNP-gene transcript associations in the sim-
ulated eQTL dataset consisting of an interaction network of 15 genes depending
on the sample size. (Displayed values are in percent [%]).
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Sample Size qMAP MI-KDE MIC PLINK
10 0.0 0.0 0.6 0.0
20 1.9 0.0 1.3 0.0
30 1.9 1.3 3.8 0.0
40 0.6 1.3 0.6 0.6
50 1.9 1.9 1.3 0.6
60 0.6 1.3 0.6 0.6
70 5.6 1.3 1.9 2.5
80 6.9 1.9 2.5 1.3
90 8.8 3.1 5.0 3.1
100 8.1 3.8 1.3 3.1
110 5.6 5.6 3.8 3.1
120 10.6 8.1 5.6 3.8
130 6.3 7.5 5.0 5.6
140 14.4 12.5 6.3 6.9
150 11.3 13.1 11.9 6.3
160 16.3 15.6 4.4 5.0
170 19.4 15.0 9.4 10.0
180 15.6 20.0 11.3 8.8
190 21.9 23.1 8.8 8.8
200 25.0 23.1 8.1 13.1
210 22.5 30.6 11.3 13.1
220 26.9 30.0 15.0 10.6
230 25.6 28.1 10.0 13.1
240 29.4 28.1 15.0 14.4
250 28.1 30.0 10.6 11.3
260 37.5 31.3 13.8 13.1
270 37.5 35.6 13.8 15.0
280 39.4 43.8 15.0 15.0
290 38.8 45.6 15.0 16.9
300 48.1 53.1 16.9 15.0
310 51.9 50.6 17.5 17.5
320 51.9 50.0 20.6 16.3
330 53.8 51.9 20.0 19.4
340 56.9 52.5 20.0 20.0
350 58.7 53.1 21.3 19.4
360 58.1 58.1 22.5 20.0
370 61.9 54.4 20.0 19.4
380 60.0 58.8 24.4 20.0

Table A.2: Detection rates for weak associations (disease associated genes) in
the interaction network obtained from the detection rate of correct SNP-gene
transcript associations in the simulated eQTL dataset depending on the sample
size. (Displayed values are in percent [%]).
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Sample Size qMAP MI-KDE MIC PLINK
10 0.0 12.1 17.1 32.9
20 37.1 48.6 35.7 72.1
30 56.4 69.3 55.0 79.3
40 67.1 77.9 65.0 83.6
50 80.0 84.3 70.0 87.1
60 85.0 90.7 73.6 90.7
70 87.1 90.0 70.7 90.0
80 86.4 92.1 69.3 91.4
90 85.0 89.3 75.0 89.3
100 87.1 94.3 77.9 93.6
110 88.6 90.7 76.4 91.4
120 91.4 92.9 80.7 94.3
130 90.0 90.7 77.9 88.6
140 92.9 94.3 83.6 92.9
150 88.6 90.0 78.6 90.7
160 97.1 97.9 83.6 97.9
170 93.6 95.0 80.7 94.3
180 92.1 95.0 82.9 95.0
190 92.9 95.7 83.6 95.7
200 94.3 95.0 78.6 94.3
210 97.9 97.9 83.6 97.1
220 95.0 95.7 83.6 95.7
230 95.7 97.1 78.6 97.1
240 93.6 95.0 79.3 95.0
250 95.7 95.7 84.3 96.4
260 94.3 94.3 78.6 94.3
270 95.0 94.3 82.1 93.6
280 97.9 98.6 79.3 97.9
290 94.3 97.9 83.6 97.9
300 96.4 98.6 80.0 98.6
310 98.6 97.1 79.3 98.6
320 96.4 99.3 81.4 97.1
330 95.7 97.9 85.7 98.6
340 97.9 99.3 82.1 99.3
350 97.1 97.9 83.6 98.6
360 99.3 100.0 80.7 99.3
370 95.0 97.1 80.7 98.6
380 98.6 100.0 83.6 100.0

Table A.3: Detection rates for strong associations (disease unassociated genes)
in the interaction network obtained from the detection rate of correct SNP-gene
transcript associations in the simulated eQTL dataset depending on the sample
size. (Displayed values are in percent [%]).
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Sample Size qMAP MI-KDE MIC PLINK
10 1000000 756 637 918
20 787 766 641 964
30 650 936 496 841
40 527 694 531 843
50 525 626 509 767
60 343 456 588 809
70 376 435 559 769
80 252 279 364 763
90 124 214 376 647
100 163 134 429 768
110 132 145 361 687
120 83 147 325 717
130 54 103 387 539
140 49 52 314 576
150 59 72 280 653
160 42 62 272 568
170 30 55 278 496
180 26 60 295 523
190 14 54 167 548
200 13 53 247 508
210 8 25 245 369
220 12 19 213 372
230 6 14 194 605
240 7 19 211 457
250 6 17 190 404
260 5 8 173 437
270 4 13 190 344
280 5 16 208 457
290 5 17 160 380
300 5 23 174 378
310 5 12 150 399
320 4 7 159 360
330 3 9 186 399
340 3 16 137 342
350 3 5 233 333
360 3 8 245 313
370 3 6 191 259
380 3 4 154 320

Table A.4: Median ranks of correct SNP-gene transcript associations in the sim-
ulated eQTL dataset consisting of an interaction network of 15 genes depending
on the sample size.
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Sample Size qMAP MI-KDE MIC PLINK
10 1000000 1359 1156 1710
20 1454 1434 1198 1807
30 1217 1754 928 1575
40 988 1301 995 1579
50 983 1173 952 1438
60 642 854 1102 1516
70 704 815 1047 1441
80 472 523 681 1430
90 232 401 703 1212
100 304 249 804 1439
110 247 272 675 1287
120 156 275 608 1344
130 101 191 725 1009
140 91 97 588 1080
150 111 134 524 1224
160 78 115 508 1064
170 54 101 519 928
180 48 111 551 979
190 25 100 313 1027
200 24 98 461 951
210 15 47 458 691
220 21 35 398 697
230 11 25 363 1133
240 11 35 394 855
250 11 31 354 757
260 8 13 323 818
270 7 24 355 644
280 9 29 389 856
290 8 31 298 711
300 8 41 325 709
310 8 22 280 748
320 6 13 297 674
330 5 16 348 747
340 5 29 256 640
350 4 9 435 623
360 4 14 457 585
370 4 10 356 485
380 4 7 286 600

Table A.5: Median ranks of weak associations (disease associated genes) for cor-
rect SNP-gene transcript associations in the simulated eQTL dataset depending
on the sample size.
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Sample Size qMAP MI-KDE MIC PLINK
10 1000000 66 44 12
20 25 2 6 1
30 2 1 2 1
40 1 1 1 1
50 1 1 1 1
60 1 1 1 1
70 1 1 1 1
80 1 1 2 1
90 1 1 1 1
100 1 1 1 1
110 1 1 2 1
120 1 1 1 1
130 1 1 2 1
140 1 1 1 1
150 1 1 1 1
160 1 1 1 1
170 1 1 2 1
180 1 1 1 1
190 1 1 1 1
200 1 1 2 1
210 1 1 1 1
220 1 1 1 1
230 1 1 2 1
240 1 1 2 1
250 1 1 2 1
260 1 1 2 1
270 1 1 2 1
280 1 1 2 1
290 1 1 2 1
300 1 1 2 1
310 1 1 2 1
320 1 1 1 1
330 1 1 2 1
340 1 1 2 1
350 1 1 2 1
360 1 1 2 1
370 1 1 2 1
380 1 1 2 1

Table A.6: Median ranks of strong associations (disease unassociated genes) for
correct SNP-gene transcript associations in the simulated eQTL dataset depend-
ing on the sample size.
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