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ABSTRACT 

 

Bacteria are widely distributed in aquatic and terrestrial environments and their 

community structure is one of the most fundamental information to understand their 

roles in the environments, evolutionary processes and characteristics of the 

environments they live. At any environments, multiple factors including 

physicochemical and biological ones are involved in the formation of specific 

community structures. The objective of this thesis was to clarify mechanisms 

controlling bacterial community structure in the environment. For this investigation, 

several strategies were taken. Firstly, research was conducted by combining three 

approaches, namely, field surveys, DNA sequence analyses by using newly developed 

bioinformatics approach, and laboratory culture experiments. This is because each 

approach has advantages and disadvantages. The combination of them should give us 

new information. Secondly, for the field survey, community structural analyses were 

conducted at two closely located stations in the coastal area, because the subtle 

difference in environmental conditions may show the similarity and dissimilarity of the 

community structures. If there is any particular OTU that appears only one of them, it 

indicates the presence of a strain uniquely adapted to the environment, and also it may 

lead to the formation of unique community structures. Thirdly, specific attention was 

given not to all phylogenetic groups, but to three major classes, Flavobacteriia, 

Alphaproteobacteria, and Gammaproteobacteria. This is because it is practically 

impossible to cover whole phylogenetic groups for investigation, and these three have 

been reported as dominant ones in marine environments. It is assumed that members 
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belonging to these three phylogenetic groups respond to the environments in different 

ways. So, different mechanisms may actually control their structures and biomass.  

     The field surveys were conducted for five times at two closely located stations, the 

port side and sea side in Oarai, Ibaraki Prefecture from March 2013 to July 2014. In 

order to see the differences between particle-associated (PA) bacteria and free-living 

(FL) bacteria, seawater samples were filtrated through 3.0 m and 0.22 m filters, 

followed by DNA extraction and sequencing of 16S rRNA gene by using 454 GS Junior 

sequencer. The followings were clarified. First, the classes Flavobacteriia, 

Alphaproteobacteria, Gammaproteobacteria contributed about 78 to 98% of the relative 

abundance in the port side station while about 62 to 92% of the relative abundance in 

the sea side station, and there was no apparent difference between the two stations. Top 

25 most abundant OTUs contributed about 24 to 73% of the relative abundance in 

different samples at port side and about 12 to 56% of the relative abundance at sea side 

station; 23 of these most abundant OTUs belonged to these three major classes. Second, 

differences appeared at family or genus level between the two stations. In addition, 

there was some unique OTU, most of which belong to Gammaproteobacteria. This 

means that although the three classes steadily appear in the environments, phylogenetic 

groups or OTUs belonging to them may dynamically change depending on the 

environmental conditions, especially those in Gammaproteobacteria. Third, there was 

no apparent difference between PA and FL bacterial community structures, suggesting 

that there might be rather frequent exchanges of bacterial cells between the two 

fractions in the area investigated. Fourth, species richness was similar among the three 

major classes whereas the evenness of Flavobacteriia was significantly higher than 

those of Gammaproteobacteria and Alphaproteobacteria, indicating that members 
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belonging to Flavobacteriia have different way or mechanism to distribute or adapt to 

the environments. Because information on the bacterial community structures in marine 

environments in western Pacific or Asian area is quite limited, these results are one of 

the very few attempts conducted by using NGS. In order to further clarify the difference, 

habitability was analyzed for OTUs appeared to the environments.  

     Habitability is defined as the ability of any organism to inhabit different 

environments. The recently developed database, the MetaMetaDB (http://mmdb.aori.u-

tokyo.ac.jp/) enables us to check habitability, or from which environments any 16S 

rRNA sequence in question has been so far obtained and deposited. Analyses at 

different phylogenetic levels from 97% (species) and 85% (order) level of identity were 

conducted. The results showed the followings. First, at stations with the lower salinity 

(salinity 0.5 to 5.0; riverine and estuarine stations), sequences with “freshwater-

groundwater”, “human” and “wastewater” habitabilities dominated, while at the stations 

with higher salinity (salinity 32 to 35; Oarai coastal, Kuroshio Current stations), most 

sequences were “marine”. Second, among three classes, the members of Flavobacteriia 

were abundantly present in both more saline and less saline stations, while those of 

Alphaproteobacteria and Gammaproteobacteria mostly in more saline stations. This 

indicates that members in Flavobacteriia are more diverse and distributed to both 

freshwater and seawater environments, while those in other two classes are more 

specified to marine environments. The diverged groups may be constantly present in 

varieties of environments, although the biomass may not be too high. Because the 

information of habitability is only available through MetaMetaDB and this site is still 

not yet widely used, this is the first knowledge about the habitability of bacteria in 

coastal environments.  

http://mmdb.aori.u-tokyo.ac.jp/
http://mmdb.aori.u-tokyo.ac.jp/
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Habitability shows that members of the class Flavobacteriia are widely adapted to 

various environments, indicating they are reactive to the environmental changes and 

more stable. This may at least partly explain the high evenness of Flavobacteriia in 

coastal environments. Although habitability shows that Flavobacteriia is possibly 

different from other two classes, there may be other factors controlling their biomass 

and community structures in the environments. In addition, the difference between 

Alphaproteobacteria and Gammaproteobacteria was not clear from the habitability 

analyses. As various types of organic materials, in terms of molecular size, element 

composition and quantity are present in seawater, it is assumed that members in three 

classes show different utilization pattern of such materials in the sea. In order to answer 

this question, several seawater culture experiments were conducted with the 

amendments of different monomeric and polymeric organic substances. Seawater 

samples were taken from Oarai coast or from off-shore Kuroshio Current, north station 

(NBD) and south station (SBD) of the Pacific, filtrated and incubated after addition of 6 

different organic materials. The community structures were followed during the course 

of incubation. The results showed the followings.  

First, the patterns of increases were different among three classes. Second, some 

members of the class Gammaproteobacteria, more specifically the genera Vibrio and 

Alteromonas generally reacted quickly and used the low molecular weight substances 

and proliferated massively. Pseudoalteromonas was involved in degradation of high 

molecular weight substances like starch. Because the biomass of Gammaproteobacteria 

in the environments is generally about a half of those of other classes, it is suggested 

that members of Gammaproteobacteria may be susceptible to top-down control such as 

predations and viral lysis. Third, members of Alphaproteobacteria showed a similar 
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tendency in utilizing monomers, but become abundant at the end in some cases 

especially in the polymer treated samples, indicating the presence of polymer degraders 

in this class. Finally, the relative abundances of members of Flavobacteriia were 

maintained at a minimum level but showed a steady growth. Some of them seem to be 

polymer degraders as well. Although similar culture experiments had been conducted, 

this research is the most extensive one with the combination of different sets of organic 

matter and also community structure analyses by using NGS.   

In conclusion, although apparent community structures, especially the relative 

abundance of Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were 

rather consistent in two closely located coastal environments, the constituent 

phylogenetic groups in each show much more variations depending on location and 

time. By combining field survey, habitability analyses by using MetaMetaDB and 

culture experiments with different organic materials, the different mechanism to 

maintain their biomass and community structures were clarified. In short, 

Gammaproteobacteria is characterized as the fast grower, monomer utilizer and higher 

sensitivity to changes. Compared with Gammaproteobacteria, members in 

Alphaproteobacteria grow slowly and some of them are polymer degraders that make 

them possible for maintaining their biomass and wide distribution.  Flavobacteriia is 

characterized as slow grower and polymer utilizer. Further investigation on distribution 

pattern, physiology, phylogeny and elaborate experiments may further clarify the 

characteristics of each group and help understand the mechanism of community 

structure formation more clearly in future.   
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1.1 Microorganisms, microbial communities, and diversity 

In general, because of their extraordinary adaptation ability and diversity, 

microorganisms distribute almost everywhere on the earth surface environments 

including those where other groups of organisms cannot live (Oren 2009, Sunagawa et 

al. 2015). Microorganisms are the most numerous and diverse organisms on the planet 

and doing almost all biological functions (Kirchman 2012). In natural microbial habitats, 

any microbial population may interact with other populations of living organisms and 

form assemblages called microbial communities. Those processes are controlled by the 

availability of resources (such as food) and environmental conditions (temperature, pH, 

oxygen content, and so on) (Madigan et al. 2009). Because of competition for the 

resources and fluctuations in environmental conditions, some microbes may become 

obligate inhabitants to a particular environment while some acquire adaptability to 

diverse habitats and/or environmental conditions. They respond to the environmental 

changes either for short term or long term basis. To evaluate the short-term responses of 

microbes, we usually consider their gene expression pattern, and for a long term, their 

community structure. All the ecosystems of the earth are under dynamic and constant 

changes due to living organisms, and in some cases, totally controlled by the 

microorganisms because any other living organisms cannot thrive and/or only microbes 

have the ability to change them. So, studying the microbial communities, their 

contributions to the ecosystem and their diversity is always a matter of interest for not 

only microbiologists but also the ecologists or those who are investigating on natural 

processes on the planet.  

Microbial diversity has been a focused part of microbiology, including a broad 

range of variability of all types of microorganisms such as Bacteria and Archaea (the 

prokaryotes), algae, fungi, protozoa, viruses, and so many others. The diversity of 
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microorganisms is still an unexplored area, even the right order of magnitude is 

unknown and in fact, an issue of controversy (Finlay and Esteban 2004, Hedlund and 

Staley 2004, Whitfield 2005, Pedros-Alio 2006). Although several attempts have been 

made, estimations of actual species numbers are thought to be inexplicable at any scale 

in any environment (Curtis et al. 2002). But, it is necessary to explore the community 

structure and the diversity of microorganisms in different ecosystems and observe their 

variability for time and space scale to select specific model of global change, explore 

potential genes for medicine and biotechnology, and to understand the evolutionary 

process (Baldauf 2003, Pedros-Alio 2006). 

Among different members in the microbial world, prokaryotes represent the 

greatest biomass with high phylogenetic and metabolic diversifications. They are 

grouped into two domains of life, Bacteria, and Archaea. The former is more diversified 

and has more biomass than the latter. Moreover, the former distributes much widely and 

are sensitive to environmental changes than the latter. Some members in Archaea are 

known as extremophiles (Madigan et al. 2009). So, in this research, community 

structures of bacteria are mostly considered. 

The community structure of bacteria is one of the most fundamental information to 

understand the microbial processes in the environments and also characteristics of 

environments, because of the following reasons. First, the community structure is a sum 

of different species, which possesses a unique set of genes. Once we know the 

community structure and whole genome of each species in it, we will be able to know 

what kind of functional genes are present in the environment in question. This enables 

us to know their functions in nature at the genetic level. Second, the apparent 

community structures are results of the interactions between microorganisms and the 

environment. In addition, this reflects long-term evolutionary processes and also short-
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term ecological processes. Therefore, to know the community structure is the first step 

of knowing microbial processes and also to know the characteristics of environments.  

1.2 Utilization of molecular techniques in aquatic environmental microbiology and 

the concept of “majorities” and “minorities”  

The analyses of bacterial community structures had been hampered by 

methodological limitations, mainly due to the difficulty to cultivate prokaryotic cells. 

Recent developments of molecular techniques, however, considerably overcome this 

problem by directly obtaining the genetic information without cultivation (DeLong et al. 

1993, Giovannoni et al. 1995, Acinas et al. 1997, Hiorns et al. 1997). Furthermore, the 

introduction of the sequencing techniques, especially the next generation sequencing 

(NGS) made it possible to obtain by far more sequence data within a short period of 

time. Previous techniques such as fingerprinting or gene cloning methods give us 

typically up to one hundred of the operational taxonomic unit (OTU), whereas, NGSs 

up to several to a hundred thousands of reads in one sample. This made it possible to 

show the presences of few species of “majorities” and a huge number of species present 

as “minorities” (Sogin et al. 2006). The latter usually appear once (singleton) or twice 

(doubleton) in one sample (Figure 1-1).  

 As apparent individual numbers are controlled by the relative balance between the 

growth and death, the “majorities” may have high growth rate and/or high protective 

mechanisms against predation or death. Even if a particular group has high growth rates, 

they cannot maintain high individual numbers if they don’t have efficient protective 

mechanisms against predators. The “minorities” may be those with low growth rate and 

certain protective mechanisms, or those with high growth rate and with low protective 

mechanisms. The actual maintenance mechanism is, however, not clear. The concept of 

these “majorities” and the “minorities” lead to the following questions: In what kinds of 
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environments, how are “minorities” distributed? What controls their distribution? 

Whether the “minorities” are always staying as minor or can they turn into the major? If 

so, what control such transitions? What controls the relative proportion of the major and 

minor fractions? These questions are important to clarify to assess how bacterial 

community structures are formed. In order to answer these questions, intensive field 

investigations using NGS analyses are required. In addition, information on the isolates, 

especially whole genome sequence data are quite helpful to discuss the possible factors. 

For this reason, the present research was focused on Bacteria, especially some major 

classes, the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria, that have 

been investigated intensively.  

1.3 The majorities and minorities (major groups and minor of bacteria)  

    At present, so far 50 to 100 phyla are known in different natural environments 

and only a few are seen  in many different environments while others show fluctuations 

depending on the types of habitats (Kirchman 2012). In surface seawater, the 

“majorities” included Alphaproteobacteria and Gammaproteobacteria of the phylum 

Proteobacteria (Fuhrman & Davis 1997, Lopez-Garcia et al. 2001, DeLong et al. 2006, 

Pham et al. 2008, Barberan and Casamayor 2010), and the Flavobacteriia of the phylum 

Bacteroidetes (Glöckner et al. 1999, Kirchman 2002, Amaral-Zettler et al. 2010, 

Barberan and Casamayor 2010, Kirchman 2012), are generally ubiquitous, while the 

“minorities” tend to vary with spatiotemporal and environmental changes. 

  In freshwater, the class Betaproteobacteria is the most abundant followed by the 

Gammaproteobacteria and Alphaproteobacteria (Hiorns et al. 1997, Glöckner et al. 1999, 

Kirchman et al. 2005, Kirchman 2012).  In seawater, the classes Alphaproteobacteria 

(mostly SAR11), (Fuhrman and Davis 1997, Lopez-Garcia et al. 2001, DeLong et al. 

2006, Pham et al. 2008, Gilbert et al. 2012) and Gammaproteobacteria are widely 
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distributed, while the class Betaproteobacteria is relatively less abundant (Kirchman 

2012). The second most abundant is the phylum Bacteroidetes, dominant in both 

freshwater and saltwater (Glöckner et al. 1999, Kirchman 2002, Amaral-Zettler et al. 

2010, Kirchman 2012); and within the phylum, the class Flavobacteriia is reported to be 

abundant in the oceans, while the Sphingobacteriia in lakes (Barberan and Casamayor 

2010, Kirchman 2012). In the coastal marine environments Bacteroidetes usually cover 

between 10 to 30% of the total bacterioplankton counts (Alonso-Saez and Gasol, 2007). 

Further lower pahylogenetic level analyses of these three major classes, the 

Alphaproteobacteria, Gammaproteobacteria and Flavobacteriia of the coastal seawater 

environments also showed dominancy by some typical groups. For example, within the 

class Alphaproteobacteria, the SAR11 clade (Giovannoni et al. 1990, Field et al. 1997, 

Morris et al. 2002, DeLong et al. 2006, Gilbert et al. 2012, Giovannoni and Vergin 2012, 

Kirchman 2012, Sunagawa et al. 2015) and the marine Rhodobacterales are widespread, 

abundant, and metabolically versatile groups in oceanic surface environment especially 

the the members of marine Roseobacter clade (Dang et al. 2008, Gilbert et al. 2012, Fu 

et al. 2013).  Within the class Gammaproteobacteria, the clade SAR86 of the order 

Oceanospirillales is known as the most abundant uncultivated constituent of bacterial 

assemblages at the ocean surface (Dupont et al. 2012, Giovannoni and Vergin 2012, 

Sunagawa et al. 2015); the SAR92 clade (Sting et al. 2007, Giovannoni and Vergin 

2012) as well as the order Vibrionales and Pseudomonadales (Gilbert et al. 2012). 

While in the class Flavobacteriia, the order Flavobacteriales is mostly dominant (Gilbert 

et al. 2012) and the pyrotags NS2b, NS4 and NS5 of this order usually appear with high 

frequencies (Korlević et al. 2015); the members of the genus Flavobacterium of the 

same order are also distributed in soil and freshwater habitats (Bergey et al. 1923). In 
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the North Atlantic Ocean, the genus Polaribacter was found to be the most abundant 

(Gomez-Pereira et al. 2010).  

Based on this knowledge, this research was focused on three major groups, i.e., 

Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. These three groups 

share a considerable part of populations in coastal seawater, and there have been many 

isolates together with information of genetics, physiology, and phylogeny. Therefore, 

the question is how distributions of these three groups are fluctuating depending on 

environmental conditions and how minor ones belonging to these three groups are 

behaving in the coastal environments. Moreover, we do not have enough knowledge 

about the richness and evenness of these three major classes as well as what determine 

their degree of abundance and biodiversity, especially in case of coastal marine habitats. 

These types of information can be possible to obtain by the intensive investigations 

emphasizing to the lower phylogenetic levels. 

1.4 Coastal environment 

The coastal environments are fluctuating habitats because of the influences of 

terrestrial, freshwater and oceanic conditions. Some areas are also affected by 

anthropogenic activities. Organic materials, nutrients, pollutants and microorganism 

may be brought into coastal environments depending on the geographical characteristics, 

season, local weather, currents and so on. Being a dynamic environment, the 

communities of the coastal environments required a higher level of adaptability as the 

community structure of the coastal bacteria is formed as a result of complex interactions 

between many inner and outer factors. Bacterial members are mainly increased as 

results of growth and inflow from the surrounding freshwaters, estuarine and marine 

waters. The growth rate of the coastal bacteria is mainly influenced by different 

physical and chemical factors, availability of nutrients and intra and/or interspecies 
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interactions. On the other hand, bacterial members of the coastal areas are declined by 

death, grazing and viral lysis; and due to outflow to the oceanic environments because 

of the wind and oceanic currents (Figure 1-2).  

In the seawater as well as on the ocean floor, microorganisms are widely distributed 

and they influence the physical, chemical, geological and biological conditions of those 

habitats (ZoBell 1946). Like in other ecosystems, bacteria share the largest biomass 

among all living organisms here. Hence, it is essential to understand their functions in 

order to clarify how marine ecosystems are functioning and maintained. Different 

surveys conducted on diversified habitats of marine environments suggested that 

bacteria are widespread with complex community structures including many unknown 

members. So among different major habitats of the earth, studying the geographic 

distributions, community structure and diversity of the bacteria in marine ecosystem is 

of special attention to the microbial ecologists. Although, lots of works are yet to do but 

we do know the “majorities” of the bacterial community of the marine habitats.  

The diversity of any environment is assessed considering two main features such as 

the richness, considered the total number of species/phylotypes in a community and, the 

evenness, considered the total number of species as well as the number of individuals in 

each species. The uniformity in the presence of “minorities” will ultimately determine 

the evenness as well as the degree of biodiversity of the marine ecosystem while 

dominating by the “majorities” will make it uneven. So, the bacterial diversity of the 

coastal marine ecosystem will be changed by the relative proportion between major and 

minor groups.  

1.5 Factors influencing community structures 

Unlike other ecosystems, bacterial community structure and diversity of the coastal 

marine environments is modified by many environmental conditions (Ruan et al. 2006, 
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Gilbert et al. 2009, Gilbert et al. 2012); influences by the environmental changes as well 

as by the surrounding habitats. The influencing factors can broadly be divided into 

physical e.g. temperature, light, pressure, water current, tide, solar radiation etc.; 

chemical e.g. salinity, organic matter, inorganic matter, pH etc.; and biological e.g. 

density, growth, interaction with other microbes, competition, predation, symbiosis, 

relative growth and death rates etc. Among these influencing factors, temperature 

(physical); salinity, nutrients, oxygen concentration, pollution, etc. (chemical); and 

predation, competition, plankton bloom (biological) were reported as more influencing 

to the bacterial diversity of the coastal marine environments (Fuhrman et. al. 2006, 

Andersson et al. 2010, Gilbert et al. 2010, Du et al. 2013). However, many of these 

important influencing factors are more or less dependent on the following aspects. 

1.5.1 Spatiotemporal fluctuations  

The community composition of bacteria is usually modified by the seasonal 

changes and biogeographical distributions (Treusch et al. 2009). It is well documented 

that the coastal bacterial community composition is usually changed seasonally 

(Andersson et al. 2010, Gilbert et al. 2012, Du et al. 2013). By assessing the changes in 

bacterial community structure due to the seasonal changes, we are able to identify the 

microbial sensitivity to different conditions i.e. which group/gene responds to what 

situation or environmental changes. Moreover, as specific bacteria possess a particular 

set of genes, examination of bacterial community structures together with 

environmental parameters offers information to understand what kinds of functions are 

being performed by them to that environment. Previous investigations conducted to 

evaluate the changes in bacterial lifestyle and community structure due to the seasonal 

influences were mainly concentrated to the major phylogenetic levels, mostly because 

of the methodological limitations. Now a day, invention of molecular techniques and 
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utilization in the environmental microbiology made it possible to look at the finer scale, 

as it is expected that the seasonal influences will be much more prominent to the lower 

taxonomic levels (Mary et al, 2006). Although the community structures of major 

groups at large spatiotemporal scales in coastal seawater have been documented, 

analyses of minor groups have seldom been accomplished (Du et al. 2013). So, 

sampling at two closely located areas in different seasons and intensive observations of 

the bacterial community structure at the finer scale, giving more emphasis one the 

minor groups, may enable us to have a clearer concept regarding the formation of 

bacterial community in an environment which is lacking in previous reports mostly due 

to methodological limitations possible to address now (Giovannoni et al. 1995, Acinas 

et al. 1997, Hiorns et al. 1997, DeLong et al. 1999). 

Another example of advantages of finer scale intensive observations is the 

identification of some unique groups. Bacteria respond to environmental changes by 

changing their gene expression patterns over a short period of time and over a long 

period, some of them adapt to that environment. So, some bacteria are evolutionary well 

adapted to a particular environment which made them unique/ location specific 

inhabitants of a particular environment while some have the adaptability to diverse 

habitats and/or environmental conditions and thus, bacterial community structure can be 

different even at two closely located points. Local scale similarity analysis showed that 

there is a unique association between different groups and between bacteria and 

environment (Ruan et al. 2006). If two closely located areas are sampled repeatedly at 

different seasons and the bacterial community structure is investigated intensively, 

especially considering the lower phylogenetic levels, it is expected that the sites will 

share majority bacterial populations while some taxa will appear in one of the two sites 

only, or consistent differences in the minor groups at each site may appear. Here, the 
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groups found in one of the two closely located areas in most of the samplings were 

termed as “unique groups.” These unique groups may be regarded as potential 

indicators of subtle differences in environmental changes. Alternatively, the presence of 

such groups may indicate certain environmental conditions that have been overlooked 

by common oceanographic analytical methods. 

Fuhrman et al. (2006) showed that bacterial composition is highly repeatable over 

season and their diversity is predictable considering the spatiotemporal changes in the 

environmental factors. They found that the OTUs were mostly from among the 

members of the Alteromonas (Gammaproteobacteria), Bacteroidetes, 

Alphaproteobacteria (including members of the SAR11 and SAR116 clusters), and 

Verrucomicrobia.  In a study in the coastal waters of the South China Sea, Du et al. 

(2013) reported that the spring and summer samples were predominated by the 

Alphaproteobacteria, followed by  Cyanobacteria and  Gammaproteobacteria. In coastal 

waters, another study showed that the Sphingobacteria-Flavobacteria of the phylum 

Bacteroidetes dominated numerically in spring and early summer while the 

Alphaproteobacteria from late summer to winter (Mary et al. 2006). The SAR11 and 

SAR116 clade of Alphaproteobacteria, and SAR86 of Gammaproteobacteria exhibited 

stronger increases at the ocean surface during summer periods (Morris et al. 2005, 

Treusch et al. 2009). These overall findings proved that the members of the class 

Alphaproteobacteria, Gammaproteobacteria and Flavobacteriia showed seasonal 

dominancy although the patterns may vary according to the spatiotemporal conditions.  

1.5.2 Influences by the adjacent habitats 

Introduction and mixing of the exogenous bacterial groups from the adjacent 

terrestrial and riverine as well as from the estuarine and marine habitats influence the 

bacterial community structure of the coastal environment (Crump et al. 1999). The 
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coastal waters receive a substantial amount of bacterial and nutritional supply from 

terrestrial sources (Danovaro and Pusceddu 2007), which result higher diversification 

and production. The coastal environments are usually subjected to pollutions by the 

surrounding habitats and human activities. There is evidence that less pollution and 

better water quality i.e. better ecological conditions usually influence the bacterial 

diversity positively (Halliday et al. 2014); and the higher level of anthropogenic 

activities (sewage disposal and port activity) influence negatively in coastal 

environments (Cury et al. 2011).  

We are not certain about the relative proportion of bacterial populations from the 

surrounding habitats especially, how much from the non-marine sources. Studying the 

spatiotemporal changes in coastal bacterial community structure emphasized mostly on 

the bacterial response to the variability in space and time. These studies were 

overlooked or totally ignored the probable introduction of bacterial populations from 

other habitats. Because, it is difficult to assess the origin or sources of bacteria by the 

commonly applied physiological or genetical approaches. This important aspect can 

now be possible to evaluate by studying the adaptability or “habitability” (please see 

below) of the available bacterial phylotypes, which can ultimately be used to assess the 

influences by the surrounding habitats to the bacterial community structure of the 

coastal environments.  

1.5.3 Organic matter 

1.5.3.1 Particulate organic matter (POM) 

In the aquatic environments, the production, processing, and utilizations of the particle 

organic matter (POM) is a major concern to the microbial ecologists (Simon et al. 2002). 

The heterotrophic bacterial groups are known to play the major role in remineralization 

or breaking down the particles to make the nutrients available for reuse in the pelagic 
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waters (Cotner and Biddanda 2002) and to convert the particle organic carbon (POC) to 

dissolved organic carbon (DOC) (Smith et al. 1992, Martinez et al. 1996). These 

concepts divided the aquatic bacteria into two fractions, the particle-associated (PA) 

groups, those remained attached to the particles to process it and the free-living (FL) 

groups, those remain free in the waters and used up the nutrients dissolved and available 

for them (Foreman and Covert,  2003).  

1.5.3.2 Dissolved organic matter (DOM) 

Bacterial metabolic activities are much more diverse than those of eukaryotes in 

aquatic environments and thus, various chemical compounds especially dissolved 

organic compounds are utilized solely by bacteria (Figure 1-3). Bacterial cells are 

composed of various elements, but carbon (C), nitrogen (N), and phosphorus (P) share 

the most.  Bacterial cells require these elements for their growth and survival; especially 

the C and N. Heterotrophic bacteria require organic compounds as their source of 

carbon and energy. Different types of bacteria utilize different types of amino acids, 

fatty acids, organic acids, sugars, nitrogen bases, aromatic compounds, and other 

organic compounds (Madigan et al. 2009).  

The dissolved organic matter (DOM) in seawater are viewed as a mixture of two 

different fractions based on the size: low molecular weight (<1 kDa) and high molecular 

weight (HMW, ⩾1 kDa) (Sosa et al. 2015). The low molecular weight substances can 

also be termed as the “monomeric substances or monomers”, and the high molecular 

weight substances as “polymeric substances or polymers”. The polymers have to be 

hydrolyzed to monomers prior to being taken up by the microbes. The monomers can be 

quickly used and sustain high bacterial biomass, whereas polymers are slowly degraded 

by the certain group(s) with less increase of biomass because they have to synthesize 

degrading enzymes. Considering the utilization of the nutrients, the bacterial 
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populations may be broadly divided into two major groups (Stuart and Robert, 2003) (a) 

the polymer degraders and (b) the monomer utilizers. The latter group does not have 

certain degradation enzymes and thus, act as scavengers, or take up “spilled” degraded 

materials. The community structure should be formed at least as result interactions 

between these two groups.  

The members of the class Alphaproteobacteria were reported to be involved in 

utilization of LMW organic substances (Cottrell and Kirchman 2000, Malmstrom et al. 

2004, Elifantz et al. 2005), while the phylum Bacteroidetes in HMW organic substances 

(Cottrell and Kirchman 2000, Elifantz et al. 2005, Fuhrman and Hagstrom 2008, 

Fernandez-Gomez et al. 2013). From a study conducted in Delaware Bay, Cottrell and 

Kirchman (2000) reported that utilization of organic matter varied among the major 

phylogenetic groups, including LMW DOM. Cytophaga-like (Bacteroidetes) took up 

the chitin and protein (polymers) as well as N-Acetylglucosamine (NAGA, monomer), 

and Alphaproteobacteria preferred amino acids (monomers) to proteins. The members 

of Beta and Gamma-proteobacteria were noted as the bacterial group consuming less 

chitin and NAGA, as well as less protein and amino acids. The members belonging to 

class Alphaproteobacteria, typically SAR11 seem to prefer monomers including amino 

acids and sugars (Morris et al. 2002). It was also reported that utilization of organic 

materials, both monomers, and polymers, differed according to the salinity (Elifantz et 

al. 2005). They reported that, for monomers such as in glucose assimilation, 

Actinobacteria contributed mostly in freshwater, while the Alphaproteobacteria in saline 

water. But, for extracellular polymeric substances (EPS) assimilation, various bacterial 

groups contributed, i.e., Actinobacteria and Betaproteobacteria in the freshwater, 

whereas Cytophaga-like Bacteria (Bacteroidetes) as well as Alpha- and 

Gammaproteobacteria in the relatively higher saline waters (Elifantz et al. 2005).  
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These polymer degrading groups can be distinguished from the monomer utilizers 

by conducting culture experiments using different doses of some candidate chemicals, 

comprising of both low and high molecular weight substances. Therefore, the 

combination of general physiological information available from the literature, genetic 

information, and culture experiments may show us how organic compounds may 

possibly control the community structure in the sea.  

1.6 Particle-associated (PA) and free-living (FL) bacterial community 

The community composition and diversity of PA and FL bacteria have been 

comparing in various environments and reported they are different (Crespo et al. 2013, 

Mohit et al. 2014). Generally, it was observed that the particle-associated groups have 

enhanced rates of cell-specific activities compared to the bacteria of the surroundings 

(Kirchman 1993). Because, the composition of the organic materials in the suspended 

particles and those dissolved in waters is different, it is also expected that the seasonal 

influence will be different between the PA and the FL fractions of bacteria (Allgaier et 

al. 2006, Ghiglione et al. 2007, Rösel et al. 2012). However, most of the previous 

studies were conducted in either offshore saline water or in freshwater, relatively less in 

the coastal brackish water. The coastal environment is relatively fluctuating in terms of 

salinity and a mixing environment included suspended particle from both freshwater as 

well as marine water, should have an influence on these two fractions, unlike the other 

stable environments. Thus, it is also necessary to differentiate these two groups for 

better assessment of the spatiotemporal variations and influences by the adjacent 

habitats in bacterial diversity and community structure of the coastal environments. 

1.7 Bacterial habitability  

A primary question in environmental microbiology is how bacteria adapt to 

diversified environments and expand or stay in their possible habitats. Although the 
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community structure at one particular space and time offers an important clue to 

understand those process, sole genetic data offers no meaningful information. If the 

information on the habitability, which is defined as the ability to inhabit in different 

environments, is available for each OTU or phylogenetic group in coastal environments, 

we may be able to infer whether the OTU or group may be indigenous one or brought 

from other environments. For example, the habitability of one particular OTU turns out 

to be terrestrial, the OUT is assumed to be originated from terrestrial environment and 

temporally staying or surviving in the coastal zone. The idea on the habitability has 

never been addressed in previous community structure analyses because there was no 

suitable way to infer habitability of prokaryotes or any living organisms based on 

genetic information. The recently developed database, MetaMetaDB (Yang and Iwasaki 

2014) (http://mmdb.aori.u-tokyo.ac.jp/) has made it possible to check the habitability of 

prokaryotes. It contains data set of 16S rRNA sequences derived from 454 platforms in 

DDBJ Sequence Read Archive (DRA) and offers environmental categories that indicate 

in what kind of environments each sequence is obtained and recorded. It is noteworthy 

that the lack of a record doesn’t mean the absence of the corresponding sequence, and 

that there may be some biases of habitable environments depending on the relative 

amount of deposited sequence data. Nevertheless, this can be a new tool to infer 

habitability of prokaryotic organisms in natural environments. Hiraoka et al. (2015) 

checked the habitabilities of two soil prokaryotic communities by MetaMetaDB and 

showed that the soil affected by the tsunami in 2011 tend to contain more sequences of 

marine habitat compared with the one unaffected. It is assumed that this approach may 

be particularly useful for coastal microbial populations because they may originate from 

various sources.  
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1.8 Objectives and outlines of this study 

The study was contacted with the aim to clarify the mechanism controlling bacterial 

community structure in the coastal marine environments. Following research questions 

were raised. 

1. How does the bacterial community structure fluctuate due to spatiotemporal 

fluctuations? 

2. To what extent do the adjacent environments influence the coastal community? 

3. How do the bacteria respond to different organic matter? 

So, the objectives of this study were as follows- 

1. To appraise the spatiotemporal fluctuations in bacterial abundance and 

community structure of the coastal marine environments with special emphasis 

on three major classes, the Flavobacteriia, Alphaproteobacteria and 

Gammaproteobacteria. 

2. To evaluate the mechanisms adopted by these three major classes to maintain 

their populations and assess the similarity between two closely located sampling 

stations and between PA and FL fractions. 

3. To identify any predominant and unique members, and evaluate the biodiversity 

(species richness and evenness) of the bacterial community giving emphasis on 

these three major classes.  

4. To assess the formation of community structure and possible influences by the 

adjacent habitats to the bacterial community composition of the coastal marine 

environments in Japan.  

5. To evaluate bacterial response to different organic matter for the assessment of 

their life-style and nutritional preferences. 
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The following hypotheses were made for this investigation. 

1. Three major phylogenetic groups, Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria have different adaptation mechanisms by which each 

group is continuously present in marine environments.   

2. The differences in their adaptation mechanisms may appear by repeated 

samplings and community structure analyses at two closely located sampling 

stations in coastal environments.  

3. Some OTUs belonging to these three phylogenetic groups appear consistently, 

whereas some minor groups appear at a limited time and/or space. Some of the 

OTUs/ groups are appeared as unique to certain environment or condition.  

4. The community structure formation processes and possible influences by the 

adjacent habitats may be partly explained by the habitability analyses.  

5. Certain phylogenetic groups tend to associate with particles and use polymeric 

substances in the sea, while other as the free-living state and prefer mostly the 

monomeric dissolved matter. Such characters can be confirmed by laboratory 

culture experiments with the addition of different organic monomeric and 

polymeric compounds.  

In order to verify these hypotheses, following investigations were made, which were 

described into 5 chapters including General Introduction (Chapter 1) and Discussion 

(Chapter 5). Chapter 2 was for the hypotheses 1~3. The fluctuation patterns of bacterial 

community structures in coastal marine environments were clarified with special 

emphasis on the three major phylogenetic groups, i.e., Flavobacteriia, 

Alphaproteobacteria and Gammaproteobacteria. Considering local and seasonal 

fluctuations, 5 times seawater samplings were conducted at two closely located coastal 

stations, the port side and the sea side, of Oarai, Ibaraki, Japan. Bacterial samples were 
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separated into the particle-associated (PA) and free-living (FL) fractions to see the 

possible differences. Prokaryotic community structures were analyzed by next 

generation sequencing (454 GS Junior).  Some indices such as species richness or 

diversity index were calculated for comparisons among the three major phylogenetic 

groups.   

Chapter 3 was to prove the 4
th

 hypothesis and the “habitability” of OTUs obtained 

in the previous chapter was examined. Habitability is defined as the ability to inhabit in 

different environments.  Recently developed database, MetaMetaDB (Yang and Iwasaki 

2014) (http://mmdb.aori.u-tokyo.ac.jp/) is the database that systematically combines 

16S rRNA sequences data from 46 different database.  MetaMetaDB has made it 

possible to search in which environments a particular 16S rRNA sequence is present. 

Series of sampling points were targeted from river, brackish, coastal port and shore, and 

offshore environments.  

Chapter 4 was for the 5
th

 hypothesis. It was expected that different organic material 

stimulate the growth of different phylogenetic group. Also, monomers and their 

comparable polymers also show different growth patterns because not all 

microorganisms possess degradation enzymes. Laboratory experiments were conducted 

with seawater collected from coastal environment (Oarai, Ibaraki Prefecture) or offshore 

environment (Kuroshio Current area, North station-NBD and South station-SBD of the 

Pacific). As monomers, glucose, glutamic acid and N-acetylglucosamine (NAGA), and 

as polymers, starch, Bovine Serum Albumin (BSA), and chitin were added prior to 

incubation experiment.   
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Figure 1-1. A typical taxa-abundance curve (Curtis et al. 2002) of prokaryotes, sowing 

the existence of abundant groups or “the majorities” with a huge diversity or a long tail 

of rare groups or “the minorities” in the environment. 
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Figure 1-2. Schematic diagram showing the formation of bacterial community structure in coastal marine environments. 



 

Chapter 1 

22 | P a g e  

 

 
Figure 1-3. Schematic diagram showing the sources and flow of nutrients and utilization by different bacterial  

populations in the coastal environments. 
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5.1 Aims and major findings 

The community structures of bacteria are formed depending on various factors, i.e., 

physicochemical ones such as temperature, light, pressure, water current, tide, solar 

radiation, salinity, quantity and quality of inorganic and organic compounds, pH and 

biological ones such as density, interaction among microorganism and with higher 

organisms, competition, predation, symbiosis, relative growth and death rates, and so on. 

Although it is thus complicated, community structures are basic information when 

understanding microbial roles and also environmental characteristics.  

The aims of this investigation were to evaluate the mechanisms controlling 

bacterial community structure in the coastal habitat, one of the most fluctuating marine 

environments. Specific attention was given to three major phylogenetic groups, 

Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria, and samplings were 

repeated at two closely located points in Oarai coastal area.  Furthermore, habitability 

and utilization pattern of different organic materials were investigated. Bacteria were 

chosen because, compared with Archaea, much more information on the community 

structure, phylogeny, physiology and functions is available and suitable for this research.   

  The major findings of different studies included in this thesis can be summarized 

as follows- 

1. At phylum level, Bacteroidetes and Proteobacteria and at class level 

Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were consistently 

dominant, contributing about 62 to 98% of the total populations (Figure 2-5). 

2. Average contributions of Flavobacteriia and Alphaproteobacteria to the total were 

similar, about 27 to 35%, while that of Gammaproteobacteria was about 15 to 

17% (Figure 2-5). Average numbers of OTUs of Flavobacteriia were higher than 

those of Gammaproteobacteria while average numbers of genera, families, and 

orders of Flavobacteriia were lower than those of Gammaproteobacteria (Figure 
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2-13). The species richness of Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria were similar, while evenness of Flavobacteriia was 

significantly higher than those of two classes (Figure 2-12).   

3. The apparent difference of the community structures between the two stations 

became more apparent at lower phylogenetic levels (Figures 2-5, 2-7 to 2-8 and 2-

10). Some locations specific OTUs or genera appeared at one of the two stations 

and most of them are members of the Gammaproteobacteria (Table 2-7). Some 

condition-specific unique groups were also identified (Table 2-8). Except in some 

cases, there were no consistent differences between PA and FL fractions (Figure 

2-5 and 2-22) although, the percentage of overlapping OTUs between the 

fractions was about 13.2% in the port side and about 16.5% in the sea side station 

(Figure 2-23).  

4. Habitability analyses of seasonally obtained phylotypes, at both the 97% (species) 

and 85% (order) level of identity showed that most of the phylotypes are assigned 

to “marine”, indicating the identified bacterial groups are mostly distributed to 

marine environments and their distribution is driven by the salinity. At 85% 

(order) level of identity, OTUs from the non-marine sources contributed about 

24.6% to 58.5% of the total at the port side station and about 17.4% to 41.2% of 

the total at the sea side station, indicating the port side station is subjected more 

influences by the freshwater, terrestrial and anthropogenic activities. 

5. Habitability analyses also showed that the members belonging to Flavobacteriia 

were composed of multiple groups assigned to different environments (Figure 3-2 

and Table 3-5 to 3-9). Alpha- and Gammaproteobacteria did not clearly indicate 

the co-occurrence of members of different habitabilities.  MetaMetaDB did not 

show any distinct difference between the PA and FL fractions.  
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6. Culture experiments showed that members in Gammaproteobacteria always react 

quickly and utilize the monomeric substances (Figure 4-14 to 4-18, 4-20 to 4-21, 

4-23 to 4-26 and Table 4-4). Some of the members in Gammaproteobacteria may 

also involve in degradations of certain polymeric substances (Figure 4-24 to 4-26). 

Members in Alphaproteobacteria show similar tendency utilizing monomeric 

substances but react at slower mode than the members in Gammaproteobacteria 

(Figure 4-14 to 4-16, 4-20, 4-24 and 4-26). However, the tendency varied 

according to the type of organic substances. Members in Flavobacteriia showed a 

minimum but steady growth without any quick response like the members in 

Alphaproteobacteria and Gammaproteobacteria and maintained relatively higher 

abundance in the polymer treated tanks (Figure 4-24).  

5.2 Spatiotemporal fluctuations of bacterial community structure 

Since the introduction of NGS for the microbial community structure analyses in 

aquatic environments (Sogin et al. 2006), relatively few investigations were conducted 

in western Pacific and Asian area (Du et al. 2013). This research is one of the few such 

works.  The results showed that Alphaproteobacteria, Gammaproteobacteria, and 

Flavobacteriia constantly shared a major part of the communities, regardless of the 

sampling points and time. This is consistent with former works in other environments 

(Treusch et al. 2009, Anderson et al. 2010, Gilbert et al. 2012). However, if the 

community structures are analyzed at the lower phylogenetic level, this is not always 

the case. This research shows that even at two very closely related environments, the 

community structures can differ considerably. In addition, the appearance of “unique 

groups”, which was found in one of the two areas in most of the samplings or at a 

particular sampling period, show the presence of sensitive groups that can be regarded 

as potential indicators of subtle differences in environmental changes (Tables 2-7 and 2-

8). Some genera such as Hellea and Nerida were identified from Mediterranean Sea 
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(Alain et al. 2008, Lekunberri et al. 2014). Although extensive comparative works are 

required, the presence of such a rare or unique group may indicate some characteristics 

of the environment, and help clarify how unique community structures are formed (Lee 

et al. 2006, Peeler et al. 2006).  

Among the three classes, Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria, Flavobacteriia showed higher numbers of OTUs and also 

significantly higher evenness. This indicates that Flavobacteriia is composed of many 

OTUs with relatively constant and few individual numbers. Although further works are 

necessary, this may be consistent with the followings. First, there may not be fast 

growers in the class Flavobacteriia, and if any, those are quite minor. Second, each OTU 

may be utilizing organic matter supplied to the environments rather steadily. Third, the 

members may have relatively high tolerance to environmental change and/or defense 

mechanisms against predators. This makes them possible to expand their distribution 

and maintain their populations even if the condition is not perfectly favorable for them. 

In contrast, Alphaproteobacteria and Gammaproteobacteria may include fast grower that 

are rather sensitive to environmental conditions.  

5.3. Habitability analysis of bacteria 

In order to verify the possibilities stated above and assess the possible adaptation 

and influences by the adjacent habitats, the habitability analyses were conducted for 

bacterial populations in Oarai coastal areas, Naka River, and offshore environments by 

using the MetaMetaDB (Yang and Iwasaki, 2014). To my knowledge, this research is 

the first case to apply the data in coastal environments. Although simple sequence data 

doesn’t offer any information on their distribution or origin, this database enables us to 

find out the habitats of a particular sequence by consulting multiple 16S rRNA sequence 

databases. The results show that sequences from lower saline stations were dominated 

by “freshwater and groundwater”, “human”, or “wastewater” while those from higher 
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saline stations were dominated by “marine” (Figure 3-8). These results indicate that the 

port side station is subjected to more influences by the freshwater, terrestrial and 

anthropogenic port activities. The sea side station is subjected to more influences by the 

offshore oceanic waters, which may result higher salinity compare to port side (Table 2-

1). So, the salinity may determine the relative proportion between the marine and non-

marine OTUs of any coastal water. These types of evaluation to assess the possible 

influences by the adjacent habitats have never been conducted before. 

The MetaMetaDB also indicate that although the class Flavobacteriia were present 

at all the stations (Figure 3-2), members with different habitabilities are coexisting 

(Table 3-5 to 3-9). A considerable percentage of phylotypes were assigned to 

“sediments-soil”, “wastewaters”, “plants-roots” and “fish” at 85% level of identification. 

This suggests that the members of class Flavobacteriia are specifically present and 

maintained in particular locations. The present result is consistent with the previous 

studies showing the wide distribution of class Flavobacteriia in both freshwater and 

marine habitats (Glockner et al. 1999, Kirchman 2002, Amaral-Zettler et al. 2010, 

Kirchman 2012).  It may also partly explain the reasons of higher evenness of 

Flavobacteriia compare to others. Alphaproteobacteria and Gammaproteobacteria, 

however, did not clearly indicate the presence of populations of different habitabilities.   

Because MetaMetaDB is still a newly developed database, some precautions are 

necessary for the interpretation. First, it depends on the data previously deposited to 

related database. So, it is expected that data from extreme environments may be much 

less compared with environments that are easily accessible. Therefore, the lack of 

apparent habitat information does not necessarily indicate the absence of the particular 

OTU in the habitat. Second, the quality and reliability of MetaMetaDB depends on the 

primary data deposited. Ambiguous description of original data leads to the less reliable 

examinations. With all these possible drawbacks, however, it is evident that 
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MetaMetaDB offers new information on the habitability, which is otherwise not 

available from simple sequence data.  

5. 4. Bacterial response to organic matter 

Among various physicochemical and biological factors controlling bacterial growth 

(Madigan et al. 2009), the limiting factor is generally the availability of organic matter. 

It is expected that depending on the quantity and quality of organic matter, different 

bacterial group utilize them preferentially and increase their biomass (Kirchman 2008, 

Nagata 2008). The present culture experiments were conducted with the addition of 

three different sets of monomers and polymers. In addition, change of bacterial 

community structures was continuously monitored by NGS for several days. Although 

there have been similar culture experiments (e.g. Cottrell and Kirchman 2000, Elifantz 

et al. 2005), this works should be most extensive one, making it possible to compare the 

utilization patterns among different organic compounds and different bacterial 

phylogenetic groups simultaneously.  

The ranges of utilizable organic compounds have been examined by other methods. 

Firstly, when new species or taxonomic groups are first described, the utilization ability 

of different organic compounds is usually considered. Therefore, general utilization 

patterns are accumulating for each phylogenetic group. Secondly, recent whole genome 

information shows the presence of genes for certain metabolic pathways that indicate 

the utilization of particular compounds. These two methods, however, show potential 

ability and do not offer data whether those cells actually utilized them in the 

environments.  The third method is to combine micro-autoradiography and FISH 

(Cottrell and Kirchman 2000). In short, a radiolabelled compound is added to sample 

seawater, incubated and then filtered. Cells are transferred to the glass slide, probed 

with fluorescent oligonucleotide and coated with an autoradiographic film emulsion. 

This method enables the researcher to identify the cells taken up the added radiolabelled 
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compound at single cell level under the microscopy. However, the only broad 

phylogenetic grouping is possible because of the limited specificity range of probes for 

FISH. In addition, there is a possibility that slow utilizers may be below the detection 

level. Among them, the culture experiment enables us to assess the influences by some 

controlling factors on the coastal community structure such as bacterial response to the 

qualitative and quantitative supply of organic matter, growth rate, competition etc. It is, 

however, noteworthy that the culture cannot completely mimic the natural condition. 

For instance, before the incubation, seawater samples were filtrated to remove the 

predators, typically flagellates to see the growth of each phylogenetic group. Viruses are 

still in the medium.  Also, some cautions are needed for the case of polymer utilization. 

From the apparent growth pattern, it is not completely clear which groups are polymer 

degraders and which are monomer utilizers. Nevertheless, marked differences in the 

growth pattern among the members in Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria strongly indicate differences in their responses to organic 

compounds.   

5.5. Future research 

      Although present investigation offered some new information on how community 

structures are formed in marine environments, there still remain many questions and 

works.  In order to further progress the research in this field, followings will be required. 

First, it is still needed to clarify the microbial community structure in various 

environments using the latest techniques. Our knowledge in western Pacific and Asian 

areas is especially limited. There may be unknown or unique groups of microorganisms 

in such environments. Statistical and bioinformatics analyses of the data together with 

environmental parameters will show more details how the community structures are 

controlled by the environment. Second, it is already evident that major phylogenetic 

groups are present everywhere in marine environments. However, there seem to be 
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some minor groups that are unique to small scale environments. Integrated knowledge 

of such minor groups around the world may clarify the unique characteristics of those 

groups and also the environments. Third, although recent molecular techniques are quite 

a powerful tool, there are limitations of those techniques. Approach for culturing target 

microorganism for taxonomical, genetic and physiological analyses will be critical to 

evaluate the data obtained by molecular techniques. Finally, culture experiments that 

mimic environmental conditions should be a very effective approach, especially for 

observing the effect of particular environmental effects or looking at particular 

biological processes. In any case, it will be important to obtain all the possible data 

using various newly available techniques for extensive comparative works.  

 5. 5.  Conclusion 

In order to clarify how microbial communities are formed and maintained in 

aquatic environments, investigations with special reference to three classes, 

Flavobacteriia, Alphaproteobacteria, Gammaproteobacteria were conducted. By 

combining three approaches, i.e., field observations of community structures of bacteria 

at two closely located coastal environments, habitability analysis and laboratory culture 

experiments with different monomers and polymers were taken into considerations for 

comparative works among these three phylogenetic groups. The three groups were 

Flavobacteriia, Alphaproteobacteria, Gammaproteobacteria appeared constantly as the 

three most dominant classes, whereas much more variations were noted at the family or 

genus level assessments. The distribution of each family or genus is generally variable 

in terms of space and time, and there are some groups unique to the local environmental 

condition. The communities in PA and FL did not show clear differences. 

Flavobacteriia is characterized by high evenness and diversification into many OTUs 

specific to environments. They are probably polymer degraders. Gammaproteobacteria 

are generally quickly responding mostly to monomers as well as polymers. Compared 
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with members in Flavobacteriia, those in Alphaproteobacteria usually react to 

environmental change quickly. However, compared with Gammaproteobacteria, there 

are more polymer degraders in Alphaproteobacteria and steadily distribute in the 

environment.    

So, like the other marine habitat coastal environments are predominated by the 

members of the class Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. 

The similarities between the fractions (PA and FL) indicating the exchange of 

populations between them is rather quick in the coastal waters compare to other habitats. 

The members of the Flavobacteriia are relatively stable, probably has higher 

adaptability and protection against adverse situations, which make them more even. 

Their preferences to some polymers indicate they may prefer the particle-associated life 

style. In contrast, the members of the Gammaproteobacteria are more sensitive, 

fluctuating and probably has less protective mechanisms, which make them uneven and 

less abundant compare to the Flavobacteriia and Alphaproteobacteria, although, they are 

efficient utilizers of nutrients and fast growers. Their preferences especially to the 

monomers indicate they may prefer free-living state. In Alphaproteobacteria, the 

members are medium growers; more stable compare to the Gammaproteobacteria but 

less compare to the Flavobacteriia. 
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Appendices  

Appendix 1. Total bacterial community structure of the port side and sea side stations. 

 

For total community, seawater samples were filtered directly through 0.2 m pore sized 

Sterivex filter units. The obtained samples were processed and sequenced as the same 

methods described in Chapter 2. The groups “Others” referred to the sum of those phyla 

did not individually contributed 1% of the sequences in at least one sample and 

“Unclassified” were the unidentified/unknown members. 
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Appendix 2. Rarefaction curves of the total bacterial community structure showing the 

number of observed OTUs at 0.03 cut-off levels for different samples. 

 

For total community, seawater samples were filtered directly through 0.2 m pore sized 

Sterivex filter units. The first and the second part of the sample IDs’ is expressing the 

sampling periods (Ma=March, Oc= October, Fe= February, Ap= April and Ju= July), 

and the sampling stations (PS= port side, SS= sea side) respectively. 
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Appendix 3. ANOVA: single factor test for the species richness (Chao index) among 

the three major classes, the Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria. 

SUMMARY 
      

Groups Count Sum Average Variance 
  

Flavobacteriia 20 8092.769 404.6384 15265.61 
  

Alphaproteobacteria 20 6697.278 334.8639 11487.84 
  

Gammaproteobacteria 20 6244.826 312.2413 31687.47 
  

       

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 92783.35 2 46391.67 2.381466 0.101552 3.158843 

Within Groups 1110377 57 19480.3 
   

       
Total 1203161 59 
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Appendix 4. ANOVA: single factor test for the richness-evenness (inv Simpson index) 

among the three major classes, the Flavobacteriia, Alphaproteobacteria, and 

Gammaproteobacteria. 

SUMMARY 
      

Groups Count Sum Average Variance 
  

Flavobacteriia 20 544.5443 27.22721 297.9005 
  

Alphaproteobacteria 20 244.6542 12.23271 142.3619 
  

Gammaproteobacteria 20 343.2469 17.16235 398.0108 
  

       

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 2336.254 2 1168.127 4.180475 0.020224 3.158843 

Within Groups 15927.19 57 279.4244 
   

       
Total 18263.44 59 
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Appendix 5. Photos of the tanks used for culture experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A: empty 

 

Sub-samples 

collection pore  

Seaming to avoid 

direct air  



Appendices 

F 

 

Appendix 5. (continued) 

 

 

B: with seawater 
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Appendix 6. Calculation of the cell volume. The length and width was measured by 

using Atomic Force Microscopy (AFM).  
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Appendix 7. Bacterial cells imaged by using atomic force microscopy (AFM) A. control and B. glutamic acid treated tanks after 36 hours of 
treatments.  
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Appendix 8. Rarefaction curves of the set 1 culture experiment showing the number of observed OTUs at 0.03 cut-off levels. 
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Appendix 9. Rarefaction curves of the total, particle-associated and free-living community structures of water samples from different 

locations used in the set 2 culture experiments showing the number of observed OTUs at 0.03 cut-off levels.  
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Appendix 10. Rarefaction curves of the Oarai coastal and Kuroshio Current water samples used the set 2 culture experiments showing the 

number of observed OTUs at 0.03 cut-off levels.  
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Appendix 11. Rarefaction curves for the seawater samples of NBD used in the set 2 culture experiments showing the number of observed 

OTUs at 0.03 cut-off levels.  
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Appendix 12. Rarefaction curves for the seawater samples of SBD used in the set 2 culture experiments showing the number of observed 

OTUs at 0.03 cut-off levels.  

 

 

 



Appendices 

N 

 

Appendix 13. Pretreatment bacterial community structures of different fractions of seawater samples used in the set 2 culture experiments.  

 
Total, obtained after direct filtration of the water with 0.22 m pore sized Sterivex filter; particle-associated, obtained after filtration with both 

1.6 m pore sized GF/A and 0.8m pore sized membrane filters; and free-living, obtained after filtration of the pre-filtered (removed particle-

associated groups as mentioned above) water with 0.22 m pore sized Sterivex filter 
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Appendix 14. Rarefaction curves of the set 3 culture experiment showing indicating the number of observed OTUs at 0.03 cut-off levels.  

 
Culture experiment was conducted by treating the filtered seawater with some monomers e.g. glucose, N-acetyle glucosamine (NAGA) and 

glutamic acid (GA) and, polymers e.g. starch, chitin and bovine serum albumin (BSA) considering 20 mg of carbon per liter according to the 

Table 4-3. 
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Appendix 15. Categories of the microbial habitats obtained after combining different 

similar types of microbial habitats classified in the MetaMetaDB. 

Categories of habitats used Classification of microbial habitats in the 

MetaMetaDB 

Fish  fish 

Freshwater-groundwater  freshwater, groundwater, hot springs 

Human  

human, human_gut, human_lung, human_oral, 

human_skin  

Marine  

aquatic, beach_sand, coral, hydrothermal_vent, 

hypersaline_lake, marine, marine_sediment  

Oil production facilities  oil_production _facility 

Plants-roots  phyllosphere, rhizosphere, root  

Sediments -soil  fossil, sediment, soil 

Wastewaters  wastewater 

Others  

ant_fungus_garden, bioreactors, bioreactor_ 

sludge, bovine_gut, compost, epibiont, food, 

food_fermentation, gut, ice, mouse_gut , pig 

 


