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Chapterl. Introduction 

1.1. Introduction 

Development of computers enables us to solve numerically even complicated nonlinear 

differential equations which do not possess analytical solutions. It should be noted, how-

ever, that simple discretization of given continuous equation does not always preserve the 

original properties, or sometimes it causes even numerically induced chaos. A simple but 

famous example is the discretization of the logistic equation[!], 

dy 
dx = y(l- y), (1.1.1) 

whose general solution is given by 

(1.1.2) 

One possibl e discretization of eq.(l. l.l ) is given by 

Yn+l - Yn-1 _ (l ) 
2€ - Yn - Yn ' (1.1.3) 

where € is the lattice parameter. It is known that numerical solution of eq.(l.l.3) is chaotic, 

even though that of original differential equation is not. Another discretization of eq.(l.l.l) 

is given by 

Yn+l- Yn = Yn(l- Yn+J) 
€ 

whose solution does not show chaotic behavior. 

More practical example is the case of the nonlinear Shriidinger equation[2] , 

(1.1.4) 

(1.1.5) 

which is one of the typical nonlinear integrable systems. One simple discretization is given 

by 

._,_ + cPn+l - 2¢,. + cPn-1 21"- 12 "- Q 
Z'l'n,t €2 + 'l'n 'l'n = , (1.1.6) 
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whose numerical solutions behave chaotically. However , if we take another discretization , 

(1.1.6) 

then its numerical solution seems to have good property. Actually, it is known that 

eq.(1.1.6) is "integrable" as a differential-difference equation. 

These examples shows the importance of discretization. In the above cases, we know 

the properties of the solutions of given continuous equation, and we could check whether 

the numerical solution are true to original continuous one or not. In most cases, however, 

we do not have the information of the solutions of the original equation. If the numerical 

solutions behave chaotically, we cannot make out that this phenomena is essential to the 

original equation or it is induced by bad discretization at a glance. Hence, the studies of 

discrete system itself should be done more systematically. In general, however, it is quite 

difficult to seek for "good discretization", and we have to consider it case by case. It is 

then reasonable to study at first the case of nonlinear integrable systems, which may be 

considered to be the easiest case. 

Besides the standard discretization, there exist a special kind of discretization. It 

is called "q-cli screte" and has been studied from quite different point of view, namely, 

q-analogue of special functions[3] . We consider the Bessel function, 

xv+2k 

Jv(x) = {; (v + k)!k!2v+2k ' (1.1.7) 

as an example. Here we fo cus on the case of v being an integer. Even if we replace an 

integer n by so-called q-integer , 
1- qn 

[n]=-1- , 
-q 

(1.1.8) 

still many of t he properties of the Bessel function are preserved. Note that [n] tends to n 

in the limit q -+ 1. 

The q-Bessel function is given by 

00 xv+2k 

lq,v(x) = {; {2v + 2k }!{2k }! ' (1.1.9) 
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where 

{2n} = [2n][2n- 2]· · · [2] . (1.1.10) 

We have the contiguity relations for the Bessel function, 

(l.l.lla) 

(l.l.llb) 

Those for the q-Bessel function are given by 

(1.1.12a) 

(1.1.12b) 

where Dq ,x is t he q-difference operator defined by 

8 xf (x) = f (x) - f (qx) . 
q , (1- q)x (1.1.13) 

We also note that Dq,x reduces to fJx in the limit q --+ 1. We see that the forms of the 

con t iguity relations are preserved by the replacement n --+ [n]. Besides the Bessel function, 

it is known that most of special functions have their q-analogue, which have the similar 

properties to the original ones. The reason has been left unknown until quite recently. 

After the discovery of quantum groups[4], it has been revealed that q-special functions 

appear in the representation theory of quantum groups, while ordinary special functions 

does in that of classical groups [5]. Moreover , q-difference equations appear in the theory 

of solvable lattice models in statistical mechanics, which has a close relationship with 

quantum groups. Hence, studies of nonlinear q-difference equa tions arises as an interesting 

and important problem. 

So far we have used the word "integrabili ty" without defini t ion. Let us now define 

the notion of integrability. We start from the case of the Hamilton systems of N degree of 

freedom. Suppose we have the following Hamiltonian, 

H (q,p, t ) = H (q!, ... , qN, PI, ... ,pN, t ). (1.1.13) 
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If there exist N independent integrals I 1 , · · · , IN such that they are involutive, 

{I; ,lj} = 0 for i fc j , (1.1.14) 

then this system is completely integrable, namely, we can solve the initial value problem 

in principle (Liouville-Arnold). Let us next proceed to the case of dynamical system of 

infinite degrees of freedom. Typical example is given by the Korteweg-de Vries (KdV) 

equation, 

u, + 6uux + Uxxx = 0, (1.1.15) 

which was the first equation recognized as the nonlinear integrable system of infinite degrees 

of freedom. It has been shown that this equation can be solved exactly by means of 

the so-called inverse scattering method[6,7]. The finding was a great breakthrough for 

mathematical sciences, since no such result has been known for nonlinear partial differential 

equations before this discovery. In this method, the Lax formalism[8] plays a crucial role. 

First we consider the following linear system; 

L,P = >. ,P , .p, = B,P, 

L =a;- u, 

Compatibility condit ion to eq.(l.l.16) with >.., = 0 gives the Lax equation, 

L, = [B , L], 

(1.1.16a) 

(1.1.16b) 

(1.1.17) 

which recovers the KdV equation (1.1.15). Conversely, it is proved that if Land B satisfy 

the Lax equation, then >. does not depend on t. Operators Land B are called the Lax pair. 

Once given equation is rewritten in tllis form , we can reduce the initial value problem to 

solving some linear integral equation. In this sense, the KdV equation (1.1.15) is integrable. 

Moreover , it has also been shown that the KdV equation admits quite wide class of exact 

solutions called soliton solutions, which describe the interaction of particle-like solitary 

waves. 
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After the discovery of the inverse scattering method, it has been revealed that many 

equations can be solved by using this method, and extensive studies have been done from 

various poin ts of view. Among them, there is a way to obtain N-soliton solu tion system­

atically by elementary calculations, which is called Hirota's direct method[7,9]. Let us 

take the KdV eq. (1.1.15) again as an example. We first apply the dependent variable 

transformation, 
d2 

u = 2-2 log T, 
dx 

on eq.(1.1.15). Then it yields the quadratic equation, 

where Dx etc. are Hirota's bilinear operators defined by 

(1.1.18) 

(1.2.19) 

(1.1.20) 

We call eq.(1.1.19) the bilinear form, and the dependent variable the T function. To obtain 

N-soliton solution, we adapt a perturbational technique. Namely, we put 

T = 1 + Efi + E2 h + · · ·, 

and take ft as the sum of exponential functions, 

N 

JI = L eP•x+q•t . 

k=l 

(1.1.21) 

(1.1.22) 

Remarkably, it is shown by simple calculations that we can truncate the perturbation by N 

terms, which yields N -soliton solution. Moreover, it is shown that T function is expressed 

in terms of determinant. This fact is a key to reveal the algebraic structures behind the 

nonlinear integrable systems. We will discuss this point more in the next section. Here we 

only remark that this method plays an essential role throughout this thesis. 

Several essential properties are now extracted from "integrable equations" through 

such studies, and the followings are accepted as the definitions of integrability for contin-

uous systems; 
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(1) Existence of the Lax pair , 

(2) Existence of an infinite number of conserved quantities or symmetries, 

(3) Existence of N -soliton solu tion, 

(4) Existence of hi-Hamilton structure, 

(5) Satisfaction of Painleve property. 

8 

It is believed (not proved in rigorous sense) that t he properties listed above are all equiv-

alent. 

Here we give a brief comment on the Painleve property, which is an important notion 

in the chapter 3. This property can be stated as "nonexistence of movable branch point 

" . For the ordinary differen tial equations of second order, it is known that there are 

essentially six nonlinear equations which possess this property[10] . These equations are 

called the Painleve equations. Curiously, t he Pain! eve equations often appear in the theory 

of integrable systems in wider sense, e.g. solvable lattice models, conformal field theory, etc. 

P a.inleve property is involved in integrability through the conjecture proposed by Ablowitz 

et.al[ll] , "A nonlinear pru·tia.l differential equation is solvable by the inverse scattering 

method only if every nonlinea.t· ordinary differential equation obtained by exact reduction 

possess the Painleve property." 

So fru·, we have discussed the integrability for continuous systems. To consider (q-) 

discretization preserving integrability, we have to cla.t·ify the notion of integrability for 

(q- )discrete systems. Unfortunately, the notion is not established yet at this moment. The 

main reason is that successful studies of discretization have not been done so much yet, 

which is because of the difficulty in analysis of the discrete systems in itself, especially from 

the analy tical point of view. This situation is symbolica.lly expressed in ref. [12]: "Intelli­

gent space-time discretization of integrable systems is a. notoriously difficult problem ... ". 

Hirota noticed the importance of discretization already in 70 's, and developed a sys­

tematic method of discretization based on t he direct method[13,14]. Several pioneer works 

have also been done[15,16], but the number of the successful examples have not been 
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enough to establish "integrability". We need much more studies from various points of 

view in order to extract common, essential properties from "integrable equations". 

Now the situation is changing. Quispel et.al have proposed a large fan1ily of "integrable 

mappings" (ordinary difference equations)[l7]. Stimulated by this study, Grammaticos 

et .al have succeeded to extract common property called "singularity confinement"from 

them, which may be considered as the discrete analogue of the Painleve property, Moreover, 

they have proposed this notion as a criterion to detect integrable discrete systems[l8]. 

They have also presented the discrete version of the P ainleve equations by using this 

criterion[l9]. Singularity confinement provides us with a powerful and useful method to 

detect "integrability", which is quite different from already known ones. Although its 

mathematical meaning or validity have not been established yet, it may be possible to 

get further understandings for discrete nonlinear integrable systems by investigating its 

essence or comparing the results with those obtained through other methods. 

Now we are in the position to explain the theme and purpose of this thesis. The first 

theme is to extend the method of discretization developed by Hirota to q-discrete system, 

and present "integrable q-discrete systems". In particular, we take the two-dimensional 

Toda lattice(2DTL) equation and the two-dimensional Toda Molecule(2DTM) equations 

as examples, and present the q-2DTL and q-2DTM equations. The reasons why we take 

these equations are as follows; 

(1) These equations are typical examples of integrable systems. Moreover, Toda equations 

seem to appear more often in other fields such as the conformal field theory or theory 

of solvable lattice models, than other integrable systems such as KdV equation etc. 

(2) There is a close relationship between several types of Toda equations and special 

functions. Relation between q-discretized equations and q-special functions may be a 

check of validity of our method. 

(3) The discrete 2DTL equation proposed by Hirota[20] has a similar form to the original 

2DTL equation, while other discretized equations such as the discrete KdV equation 
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are not. Similar situation is expected to the q-discrete case. 

The second purpose is to investigate the solution of the discrete Painleve equations. 

As mentioned above, these equations have been proposed by the method based on the 

singularity confinement, which is quite different from other methods. Now the studies 

on these equations is developed actively, and several properties has been discussed. For 

example, La.x pairs of some of them has been obtained. However, that these Lax pairs 

are still formal, since almost no further result has been obtained from such Lax pairs. On 

the other h<utd, the Lax pairs are originally used to solve the initial value problem or to 

obtain various exact solutions. Hence, it may be a good test for the validity of singularity 

confinement to examine their solutions. Moreover, it is known that the Painleve equations, 

except for that of the first kind, admit par·ticular solutions expressed by special functions. 

It is expected that discrete Painleve equations admit those expressed by discrete analogue 

of special functions. 

Our plan is as follows; In the section 1.2, we give a review of the direct method which 

is a key throughout t his thesis. In the chapter 2, we discuss the q-discretization of Toda 

equations. In the chapter 3, we study the solution of the second ar1d third discrete Painleve 

equations. Moreover, based on the study of solutions, we can show that the discrete 

Painleve III equation can be regarded as the q-discrete system by a slight modification. 

We also propose a q-dift"erence analogue of the Painleve III equation . The chapter 4 is 

devoted to the concluding remarks. 

1.2. Direct Method 

In this section we discuss one method to obtain the solution of nonlinear· integrable systems, 

called the direct method. This method is convenient not only for obtaining exact solutions, 

but also for investigation of the algebraic structure, and in particular, for the extension of 

the integrable systems. We demonstrate the essence of this method by taking the 2DTL 
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and 2DTM equations as examples. 

Let us first consider the 2DTL equation, 

OVn ( ) {i; = Vn Jn - Jn+! ' 

OJn 
8y = Vn-! - Vn ' 

n E Z. 
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(1.2.1a) 

(1.2.1b) 

(1.2.1c) 

The key idea of this method is to apply suitable dependent variable transformation and 

reduce the original equation to some quadratic equation called the bi linear form. In this 

case, we introduce the new dependent variable T n by 

which yields the bilinear form, 

J _ 8 I T n-! 
n - ax og --;;:::- , (1.2.2) 

(1.2.3) 

The essential point is t hat eq.(1.2.3) is nothing but some identity of determinant (Plucker 

relation). In fact, the solution of eq.(1.2.3) is given by 

~~!) ll) 
n+! fl~N -! 

'Tn = 
~~2) pl 

n+! 
/2) 
n+N-! (1.2.4a) 

~~N) lN) (NJ 
n+! f n+N-! 

where f~k), k = 1, · · · , N, are arbitrary functions satisfying "dispersion relation" , 

(1.2.4b) 

Let us prove that eq.(1.2.4) really give the solution of the bilinear form (1.2.3). For the 

purpose, we introduce a notation, 

T n = [0 , 1, · · ·, N- 2, N -1[ , (1.2.5) 
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where "k" is a column vector given by 

By using the dispersion relation (1.2.4b), we have 

Bx T n = - IO, · · · N - 2, N l, 

8yT n =I- 1, 1, · · · N - 2, N- 11, 

Bx8yT n = -1-1,1 , · · ·, N - 2, Nl 

-10, 1, · · · N - 2, N - 11, 

Tn+! =I1 ,···N -1,N I, 

Tn-1 =I-1,0, · · ·N -21. 

12 

(1.2.6) 

(1.2.7) 

(1.2.8) 

(1.2.9) 

(1.2.10) 

(1.2.11) 

It is important that "shifted" determinru1ts can be expressed by the differentiations or the 

shifts of suffix ofT. 1ow we consider the following identity of determinru1t, 

I 

. . . I 
0 = ~ ~- -~ J- ~ - _ ·_·~- -~- ~-~ _:_---- --~- -- -- -! -~-~-1-- ~ . 

- 1 0 : 0 i 1 · · · N- 2 iN - 1 N 
' ' ' 

Applying the Laplace expa11sion on the right hand side, we obtain 

0 =l-1 ,0, · · · ,N- 2111,· · · ,N- 2,N -1,N I 

-I-1,1,···, N -2,N -1IIO, ··· ,N- 2,NI 

+I- 1, 1, ... 'N - 2, N IIO, ... 'N- 2, N- 11 ' 

which ca11 be rewritten in terms ofT by using eqs.(1.2.5) ru1d (1.2.7)-(1.2.11) as 

(1.2.12) 

(1.2.13) 

(1.2.14) 
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Equation (1.2 .14) is nothing but the bilinear form of the 2DTL equation (1.2.3) itself. 

Thus we have proved eq.(l.2.4) gives the solution of eq.(1.2.3). Here we remark that N ­

soliton solution is obtained from eq.(1.2.4) by choosing f~k) as the sum of two exponential 

functions , 

where Pk and qk are arbitrary constants. 

We next introduce the 2DTM equation, 

8V,. ( ) & = V,. J,. - Jn+l ' 

8J,. 
8y = Vn-1 - V,. ' 

Vo = VM = 0. 

(1.2.15) 

(1.2.16a) 

(1.2.16b) 

(1.2.16c) 

Note that only the difference from the 2DTL equation is the boundary condition (1.2.16c). 

We apply the same dependent variable transformation as (1.2.2), but we slightly modify 

the decoupling to obtain the bilinear form, 

EPT ,. 8T,. 8T,. 
-8 8 Tn- -8 -8 = Tn+ITn-1 > 

X y X y 

T -1 = TM+ I = 0. 

The solution of eq.(1.2.17) is given by the following determinant, 

f(x ,y) 
8yf(x,y) 

8xf(x,y) 
8x8yj(x, y) 

The boundary condition is satisfied if we put 

M 

8':- 1f(x,y) 
8;:- 18yf(x,y) 

f(x , y) = L fk(x)gk(y), 
k=l 

(1.2.17a) 

(1.2.17b) 

(1.2.18) 

(1.2.19) 

where fk (x) and gk(Y) are arbitrary functions of x and y, respectively. Note that the 

structures of the T functions of the 2DTL equation and the 2DTM equations are quite 
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different. In the former case, the lattice site n appears in the suffix of the most upleft 

ent ry of its T function wllile in the latter case, it appears as the size of its T function. 

It is possible to prove that eq.(l.2.18) actually gives the solution of eq.(1.2.17) in 

sinlilar manner to the case of the 2DTL equation except that we use the Jacobi identity 

instead of the P lucker relation. Before going to the proof, we comment on the Jacobi 

identity. Let D be a determinant, and D (~) is the deternlinant with i-th column and 

j-th column being neglected. T hen the J acobi identity is given by 

(1.2.20) 

Let us putT n+l =D. T hen we have 

(
n + 1) 

Tn =D n+ 1 , (1.2.21) 

(1.2.22) 

(1.2 .23) 

(1.2.24) 

(1.2.25) 

Now it is easi ly checked that eq.(1.2. 17a) is nothing but the J acobi identity (1.2 .20) of 

the case i = j = n, k = l = n + 1. T hus we have proved that eq.( l. 2.18) really gives 

t he solution of the bilinear form of t he 2DTM equation (1.2.17). We note that t he J acobi 

identity can be regarded as a special case of the Plucker relation. 

We have demonstrated the essence of the direct method. It is known that most of the 

nonlinear integrable systems have such structure that their solution is expressed by some 

determinant or Pfaffian[21,22]. We remark that Sato noticed t his fact for the Kadomtsev­

Petviashivilli equation and developed a grand theory which gives the unified view to nonlin­

ear integrable systems and mathematical meaning to the direct method[23,24] . Moreover , 

it is p ossible to extend the class of integrable systems based on this fact . One of such 
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extensions is the main theme of this thesis, namely, extensions to discrete or q-discrete 

system. Some other results have been reported in re£.[25-28]. 
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Chapter 2. 

q-Discretization of the Nonlinear Integrable Systems 

In this chapter , we propose a method to extend nonlinear integrable systems to q-

discrete systems, based on the bilinear formalism. In fact , this method is quite similar 

to the method of discretization. In the section 2.1, we demonstrate the method of dis-

cretiza.tion by taking the 2DTL equation as an example. In the section 2.2, we propose 

q-discrete versions of the 2DTM and 2DTL equations, and their reductions to cylindrical 

Toda. equations. For the q-2DTM equation, Backlund transformation and Lax pair are 

also discussed. Moreover, for the q-2DTL equation, it is shown that a. reduced equation 

admits the solution expressed by the Ca.sora.ti determinant whose entries are the q-Bessel 

functions. 

2.1 Discretization of the Nonlinear Integrable Systems 

In this section we give a. review of the method to discretize a. given nonlinear integrable 

system preserving integrablity proposed by Hirota.[l3,14] . We demonstrate the case of the 

2DTL equation as an example. We have the 2DTL equation again, 

avn ( ) Bx = Vn Jn - Jn+l ' 

8Jn 
By = Vn-1 - Vn ' 

n E Z, 

which is reduced to t he bilinear form, 

(2.l.l a.) 

(2. l.lb) 

(2 .1.1c) 

(2. 1.2) 
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through the dependent variable transformation, 

Vn = Tn-1Tn+l 

T~ 
0 T n-1 

J, =-log--. 
OX T n 

(2.1.3) 

The solution of eq.(2.1.2) is given by the Casorati determinant, 

/~1) / 1) 
n+1 ~~~N-1 

T n = 
/~2) /2) 

n+1 ~~~N-1 (2.1.4a) 

lN) lN) (Nj 
n+1 f n+N-1 

(2. 1.4b) 

Hirota has proposed a systematic method of discretization of nonlineru· integrable systems 

based on the direct method. The key point is that we discretize a given equation on the 

level of the T function, instead of discretizing itself. This procedure is illustrated in fig.2.1. 

Continuous ??? Discrete 
Integrable Integrable 

System ==> System 

1 l 
Dep. Var. Trans£. Dep. Var. Trans£. 

1 l 
Bilinear Form Bilinear Form 

1 l 
Solution: ==> Solution: 

T Function Discretization T Fw1ction 

Figure 2.1. Procedure of discretization 

Following the procedure illustrated in fig. 2.1, we first discretize the T function (2.1.4) 
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as 
/~1 )(l,m) 

T,.(l,m) = 
/~2)(1, m) 

(N)i ) j,. l ,rn 

/,~~ 1 (l,m) 
~~~ 1 (l,m) 

(N)i ) fn+l l ,m 

~~~N-i(l,rn) 
~~~N-1 (l, rn) 

(N) . ( ) 
f n+N-1 l,m 

D. f(k) _ !~kl(z + 1, m)- f~kl(z, rn) __ pl 
l n - a - n+l ' 

D. f(k) = f~k)(l,m + 1)- /,~kl(z, m) = f(k) k = 1, .. . 'N ' 
Tn n b n-1 ' 

18 

(2.1.5a) 

(2.1.5b) 

(2. 1.5c) 

where a and b are arbitrary constants which play a role of lattice interval. Let us next 

construct the bilinear form for Tn(l,m) . For the purpose, we in troduce a notation, 

T n(l , m ) = JO, 1, · · · , N - 2, N - 1J , 

where "k" stands for 

Using eqs.(2. 1.5b) and (2.1.5c), we have 

= JO, · · · N -2, N -11-I J, 

= JO , · · · N - 2, N - 1m-J J, 

= JO, · · · N - 2, N - 21- d , 

bTn (l ,m -1) =Jb xDm-!,O, · ··,N -1m- d 

= J1 m-!, 1, ··· N -1J , 

(1 + ab)T n(l- 1, m- 1) = JDm-1• 1, · · · , N - 2, N - 11-1 J 

(2. 1.6) 

(2. 1.7) 

(2.1.8) 

(2.1.9) 

(2.1.10) 

(2.1.11) 
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Now we consider the following identity of determinant, 

. . . I 
0 =I ~ __ o_,:~~ J_ ~ __ ·_·:_ -~-~- ~ _: ______ -~ ____ __ ! -~-~-1- _!:_~ _1:~~ . 

0 Om-1 i 0 i 1 ··· N-2 i N -1 N-11-1 
(2.1.12) 

Applying the Laplace expansion on the right hand side of eq.(2.1.12), we have 

0= IOm-1,0,···,N-21 X I1,· .. ,N-2,N-1,N-11-d 

-IOm-1, 1, · · · ,N- 2, N -11 X 10,1,· .. ,N- 2,N -11-d 

+ IOm-1> 1,· · · ,N -11-d X 10,1,· · · N- 2,N -1 1, (2.1.13) 

which can be expressed in terms ofT by using eqs .(2.1.7)-(2.1.11 ) as 

0 =- abT n-1(l,m- 1)T n+1 (l-1,m)- T n(l , m -1)T n(l- 1,m) 

+(1 + ab)T n(l- 1, m- 1)T n(l, rn), (2.1.14) 

or 

0 =- abTn-1(l + 1,m)Tn+l(l,m + 1)- Tn(l + 1,m)Tn(l,m + 1) 

+(1 + ab)T n( l,m)T n(l + 1,m + 1). (2.1.15) 

Equation (2.1.15) can be rewritten as 

(2.1.16) 

Thus we have obtained a discrete version of the bilinear form (2.1.2). Now we introduce 

the dependent variable transformation by 

V.( )- Tn+l(l+1,rn)Tn-1(l,m+1) 
n x,y - Tn(l , m + 1)Tn(l,m) ' (2.1.17a) 

J ( ) 1 {( b) Tn( l + 1,m)Tn-l(l,m) xy -- 1+a 
n ' -a Tn(l,rn)Tn-1(1 + 1,m) 

(2.1.17b) 
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Then we obtain the discrete 2DTL equation, 

t.. IVn( l ,m) = Jn(x,y)Vn(l + l ,m) - ln+t(l,m)Vn(l,m), 

t..nJn(l , m ) = Vn-t( l + l ,m) - Vn( l,m + 1). 
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(2.1.18a) 

(2.1.18b) 

Discretization of t he 2DTM equation can be done by similar procedure, namely, simply 

by replacing differential operators in the T function (1.2.18) by difference operators, and 

introducing suitable dependent variable transformation [20]. It is also possible to construct 

the Lax pair and the conserved quantit ies for discrete 2DTM equation. 

2.2 q-Discretization of the Two-dimensional Toda Molecule Equation 

In this section, we extend the method of discretization discussed in t he previous section 

to q-discretization, and propose q-discrete version of the 2DTM and 2DTL equations. From 

our p oint of view, t he difference between discrete system and q-discrete system is that 

lattice intervals of t he latter depend on independent variables while they are constants in 

the former. T his difference might cause difficulties when we construct shift operators of T 

funct ions. Despite of such difference, we show that it is possible to perform q-discretization 

in similar manner. 

2.2a q-Discret e Two-dimensional Toda M olecule Equation and Its Solution 

We propose a system given by 

89a,xVN(x, y) = VN(q"x,y)JN(x,qf3 y ) - VN(x, y )JN+t(x,y), 

8q.,y JN(x, y) = VN-t(q"x, y ) - VN(x ,y) , 

Vo(x ,y) = VM (x, y) = 0, 

where 89a ,x and 89 , ,y are the q-difference operators defined by 

(2 .2.1a) 

(2 .2. 1b) 

(2.2 .1c) 
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8 • -f(x) = f(x)- f(q"x) ' 8 • f(y) = f(y)- f(qPy) . ( ) 
q ·- (1 _ q)x qe,y (1 - q)y 2.2.2 

The operators 8q•,x and 8q.,y tend to o:fx and f3#y in the limit q-+ 1, respectively. In 

this limit, eqs.(2.2 .1 ) are reduced to the 2DTM equation eqs.(l.2.16) . We call eqs.(2.2.1) 

the q-discrete 2DTM equation. 

Equations (2.2.1) are transformed into the bilinear form, 

8q•,x 8q.,y TN(X, y) · T N(X, y)- 8q•,x T N(x, y)8q~,y T N(x, y) 

= TN+l(x,y) TN-l(q"x,q13 y), 

through the dependent variable transformations, 

J ( ) 
_ 1 { TN-l(x,y)TN(q"x,y) } 

N x,y ---- " -1 , 
(1- q)x TN-l(q x,y)TN(x,y) 

V ( ) 
TN+l(x,y)TN-l(x,qf3y) 

N x,y = f3 
TN(x,y)TN(x,q y) 

(2.2.3) 

(2.2.4a) 

(2.2.4b) 

A solution of the bilinear form (2.2 .3) is given by the two-directional Wronski-type deter-

minant, 

f(x,y) 

8q•,yf(x, y) 
TN(x ,y) = 

8q•,x f (x, y) 
8q.,x8q~,y/(x, y) 

8;'.~; f(x,y) 
8;'-~x1 8q~,y f(x, y) 

(2.2 .5) 

where f (x, y) is chosen to satisfy the boundary condition (2.2.1c) as eq.(l.2.19). 

Let us prove that eq. (2.2.5) really gives the solution of the bilinear form (2.2.3). We 

have for example, 

f (q-"x,y) 

8q•,v f (q-"x,y) 
TN(q-"x,y) = 

8q•,x f (q-"x,y) 
8q.,x8q•,vf(q-"x, y) 

8;'.~Y1 f(q -"x,y) 

f( x,y) 

8q.,y/(x, y) 

8q•,x8;'.~Yl f(q -"x, y) 

8q•,x f(x , y) 
8q.,x8q~,y/(x, y) 

8;'.~; f (q-"x,y) 
8;'.~;8q~,yf(q-"x, y) 

8;'.~;8:'-~v1 f(q-"x, y) 

8;'-~x1 f(q -"x , y) 
8;'. ~; 8q~ ,y/(q-" x, y) 

. (2.2.6) 

~ --- --

-



2.2 q-Discretization of the Two-dimensional Toda Molecule Equation 22 

In deriving the second determinant from the first, we have subtracted (k + 1)-th column 

multiplied by (1- q)q-<>x from k-th column fork= 1, · · · N -1, to confine the shift of the 

independent variable x to the most right column of the determinant. Moreover, we note 

that 8;'-~x1 f(q -"'x, y) means 8;'-~xl f( x, y)l x~q-"x · Multiplying N-th column by (1-q)q-"'x 

and adding (N -1)-th column to N-th column in the second determinant of eq.(2.2.6), we 

get 

(1- q)q-"'x TN(q-"'x,y) 

f(x, y) 8qo,x f (x, y) 
8qP,y f (x, y) 8q" ,x8q~ ,y f (x, y) 

Similarly, we obtain 

(1- q) 2q-(a+/3lxy T N(q-"'x, q-13 y) 

f(x, y) 8;'-~x2 j (x, y) 

8~~Y2 f(x , y) 
8~~~Y2 f(x, q- !3 y) 

8;'-~x2 f(q-"'x,y) 
8;'-~x28q~ ,y / (q-<> x, y) 

Applying Jacobi's identity on eq.(2.2.8) with N replaced by N + 1, we obtain 

(2.2.7) 

(2.2.8) 

(2.2 .9) 

which is nothing but the bilinear form (2.2.3) with x andy replaced by q-"'x and q-!3y, 

respectively. T hus we have proved that eq.(2.2.5) gives the solution of eq. (2.2.3). 

We now discuss a reduction of the q-2DTM equation. Putting x y = 1· 2 and a = f3 = 2, 

and imposing the condition that TN ( x, y) depends only on r, we find that the bilinear form 

(2.2.3) and its solution (2.2.5) are reduced to 

(2.2.10) 

~ - ~ -- . - - - - ~ - - ~ 

-
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and 

TN(,·) = q-fsN(N-1)(N-2) ,.-N(N-1) 

f(r) 7'6q,r /(r) 
7'6q,r f(r) (r6q ,r )2 /(r) 

X (2.2.11) 

respectively. Equation (2.2.10) tends to the cylindrical Toda molecule (cTM) equation[29] , 

1 a a2 aTN(r) 2 
(--a + - 2)TN(r) · TN(r)- {-a-} = TJV+1(r)TN-1(7'), 

7' 1' ar 7' 
(2.2.12) 

in the limi t q -+ 1, and hence we call eq.(2.2.10) the q-cTM equation. Note that eq.(2.2.10) 

is transformed to 

6q,rVN(7') = qJN(qr)VN(qr)- JN+1(r)VN(1·), 

1 
(q6q,r + ;:)JN(r) = VN(r) - VN-1(qr), 

Vo(r) = VM(r) = 0, 

through the dependent variable t ransformations, 

2.2b. Backlund Transformation and Lax Pair 

(2 .2.13a) 

(2.2.13b) 

(2.2.13c) 

(2.2.14a) 

(2.2.14b) 

By using the fact that the solution of the q-2DTM equation (2.2.1) is given by (2.2.5), 

we here propose the Backlund t ransformation. It is written by 

6q.,y T N(x, y) ·T:V(x,y)- TN(x,y) 6q.,y T:V(x,y) 

= -TN+1(x,y)T:V_ 1(x,qliy), 

-~ -- - ----.c-- ---~ - ---

(2 .2.15a) 

(2.2.15b) 

-
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which transforms a solu tion of the q-2DTM equation, 

f (x, y ) Oqa,x f (x, y) o;:,~; f(x, y) 

TN (x,y) = 
Oqo ,yf (x, y) Oqo,xOq•,y f (x, y) o;'a~x1 8qo , y f (x, y) 

(2.2.16) 

o;'.~y1 f (x, y) 6q",xo;'.~Y1 f (x, y) .s;;,-x18tv,-1 j (x, y ) 
I q tY 

to another solution, 

Oqo,x f (x, y) oia,x f (x, y) o:;:. ,xf (x, y) 

T~ (x,y ) = 
Oqa ,xOqo,y ](x , y) oi".A• ,yf( x, vl .s:;:.,A•,y f (x , vl 

(2.2.17) 

Oqa xDtv,- 1 j( x, y) 
1 q ,y oia x.stv,- 1 f (x , y) 

I q ,y o:;:. x.s rv,- 1 f (x , y ) ' q ,y 

In other words, eqs. (2.2.15a) and (2.2.15b) are the identities for the determinants (2.2.16) 

and (2.2.17) . This fact is shown by the Plucker relation as follows. 

Let us prove the second equation (2.2.15b ). First , we introduce notations 

TN(x,y) = I0, 1, .. · , N -11 , (2.2.18) 

T~(x,y) = I1,2, .. ·,NI. (2.2.19) 

Namely, the number "k" in eqs.(2.2.18) and (2.2.19) means a column vector 

(2.2.20) 

Then we have 

TN-1 (x , y) = I0, 1, .. · , N- 2, ¢ 1, (2.2.21) 

(2.2.22) 

(2.2.23) 

and 

(2.2.24) 
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where 

(2.2.25) 

and 

(2.2.26) 

which is inserted to equalize the size of the determinant. 

We now consider an identity of 2N x 2N determinant, 

I 

. . . I 
0 = ~! -~ __ ·_·~- -~- ~-~ _: __ ---- ~--- -- _: !"_ -~ _1 __ ~ ~ ~~~~~- -~ 

0 : 0 : 1 .. · N- 2 : N- 1 N- 1q-" x </> 
' ' ' 

(2 .2 .27) 

Applying the Laplace expansion to the right-hand side, we obtain an identity ( the Plucker 

relation) , 

0 =I0, 1, ···,N- 2,N -1q-"xii1,· · ·,N - 2,N -1, </> l 

-I0, 1, ··· ,N- 2,N -1II1,·· · ,N - 2,N -1q-" x,¢> 1 

-11, .. · ,N - 2,N -1, N -1q-"xll0,1,· · · ,N- 2,¢>1, (2.2.28) 

or equivalently, 

T N(q-" X, y)T'tv_ 1 (x, y)- T N(x, y)T'tv_1 (q-" x, y) 

(2.2.29) 

which is nothing but eq.(2.2.15b) with x replaced by q-"x. Thus we have completed the 

proof. The first equation (2.2. 15a) is proved in a similar way. 

It is possible in general to construct the Lax pair from the Backlund transformation. 

Following the method developed by Hirota et. al.[14], we derive the Lax pair for the q-2DTM 

equation (2 .2.1) from eqs. (2.2.15). Introducing 'ljJ by 

(2.2.30) 
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we have from eqs .(2.2.15), 

Let us define two matrices L and R by 

( V1 ~x,y) o 
L(x,y)= · 

R(x,y) =-

0 

(

JI(x,y) 1 
h(x,y) 

0 

Then eqs.(2.2.31) are rewritten as 

VM-I(x,y) 

0 J 
Oqo,x llt(x,y) = R(x,y)llt(x,y), 

where 

w(x,y) = ( 1/! 1 (~, y)) . 

1/!M(x, y) 
The compatibility condition of the linear system (2.2.34) yields 

Oq o ,xL(x, y) - Dq~,yR(x, y) = R(x, y)L(x, y)- L(q"'x, y)R(x, qf3y) , 
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(2.2.31a) 

(2.2 .31b) 

(2.2.32) 

(2.2.33) 

(2.2.34) 

(2.2 .35) 

(2 .2.36) 

which recovers the q-2DTM equation (2 .2.1). Consequently, eqs.(2.2.32) and (2.2 .33) give 

the Lax pair of the q-2DTM equation. 

2.3 q-Discretization of the Two-Dimensional Toda Lattice Equation 

In this section we propose a system given by 

(2.3.la) 

(2.3.1b) 
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which reduces to the 2DTL equation in the limit q-+ 1. We call eqs.(2.3.1) the q-discrete 

2DTL equation. Equations (2 .3.1) are transformed to bilinear form, 

through the dependent variable transformation, 

( ) 
Tn+I(q"x,y) Tn- I(x, q13 y) v. x, y = 

13 
, 

T.(x, q y)T.(x, y) 

J.(x,y) = __ 1_{{1 + (1- q)2xy} T.(q"x,y)Tn-I(x,y) -1} , 
(1- q)x T.(x,qi3y)Tn-1(q"x,y) 

and the solution of eq.(2.3.2) is given by 

~~~~(x, y) 
~~~~ (x, y) 

where f~k), k = 1, · · ·, N, satisfy the dispersion relation 

~~~N-l(x, y) 
~~~N-I (x, y) 

(N) . ( ) 
fn+N-! x, y 

(2.3.2) 

(2.3.3a.) 

(2.3.3b) 

(2.3.4) 

(2.3.5) 

In the following, let us prove that eqs(2.3.4) and (2.3.5) give the solution of the bilinear 

form of the q-2DTL equation (2.3.3). We introduce a. notation 

Tn(x,y) = j0, 1, ··· ,N -11 , (2.3.6) 

where "j" is a column vector given by 

(
f~~j(x, y) l 

, .,_ 1,\~j(x,y) 
J - . 

(N).( ) 
fn+j X, Y 

(2.3.7) 
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Using the dispersion relation (2.3.5), we have 

= IO, • · •, N- 2, N- 1q-nx l , (2.3.9) 

(1 - q)q-f3y T n(x, q-f3y) = l1q-~y> 1, · · · , N- 11 , (2.3.12) 

{1 + (1-q)2q-(<>+f3lxy} Tn(q-"'x,q- f3y) = IOq-~y,1,···,N- 2,N -1q-nxl, (2.3.13) 

where 

"jq-nx" = (;]~;:::::::: ) · 
f (N)( :_"' ) 

n+j q x,y 

(2.3 .14) 

Now we consider the following identity of 2N x 2N determinant, 

I 

. . . I 0 = o __ ?:~~~-:-~ __ ·_· _·_ -~ ~- ~_: ______ -~- __ __ _ ! -~_-__1 __ :'__-_ _1:~:~ . 
0 Oq-~y : 0 : 1 · · · N- 2 : N - 1 N- 1q-n x 

' ' ' 

(2.3.15) 

Applying the Laplace expansion on the right hand side of eq.(2.3.15) and using eqs.(2.3.6), 

(2.3.9)-(2 .3.13), we have 

+(1 - q)q-<> X T n+l (q-<> X, y) (1- q)q-f3y T n-1 (x, q-f3y) = 0, (2.3.16) 

which is nothing but eq.(2.3.2) with x and y replaced by q-"'x and q- f3 y, respectively. 

Thus we have proved that eqs.(2.3.4) and (2.3.5) actually gives the solu tion of eq.(2 .3.2). 

We next discuss the reduction of the q-2DTL equation. Similar to the case of q-2DTM 

equation, we impose the condition that T depends only on xy = r 2 , and a = (3 = 2, then 

the bilinear form (2.3. 2) is reduced to 
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Equation (2.3.17) reduces to the cylindrical Toda Lattice (cTL) equation[30] in the limit 

q ..... 1, 

(2.3.18) 

We call (2.3.17) the q-cTL equation. It is known that cTL equation (2.3.18) has a solution 

expressed by the Casorati determinant whose entry is the Bessel function. 

Let us discuss the solution of eq.(2.3.17). We impose the above constraint on the 

solution of q-2DTL equation (2.3.4), (2.3.5). We put 

(2.3.19) 

where Pk is arbitraty constants. Substituting eq.(2.3.19) into (2.3.3)(note that a = /3 = 2), 

we have the equation for <l>n+p• (1·), 

( -(n+p• )< [-(n+pk)]) " () _ -~. (·) q Uq,r + '+'n+pk T - -tf'n+pk+l 1 ' 
1' 

( n+p• < [n + Pk]) -~. ( ) _ -~. ( ) q Uq,r + --- '+'n+p~.: T - '+'n+p~.:-1 T ' 
r 

where [n] is the q-integer, 
1-qn 

[n]=--. 
1-q 

(2.3.20) 

(2.3.21) 

(2.3.22) 

Equations (2.3 .20) and (2.3.21) are nothing but the contiguity relations of the q-Bessel 

function. Moreover, noticing that q-2DTL equation is invariant if we replace Tn(x,y) by 

xc,n+c,yc,n+c ,T n (x, y), where c1-c4 are arbitrary constants, we find that 

l q,n+p 1 (r) lq ,n+p 1 +1(r) Jq,n+p 1+N-1 (1·) 

7,.(7·) = 
Jq,n+p2 (7· ) l q,n+p2 +1 (r) lq ,n+p2 +N-1 (r) 

(2.3.23) 

Jq ,n+pN(7·) l q,n+PN+1(r) Jq,n+P N+N-1(7·) 

where lq, k{1·) is the q-Bessel function of degree k, gives the solution of the q-cTL equation 

(2.3.17). This result recovers that for cTL equation in the limit q -t 1. 
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Chapter3. Solutions of the Discrete Painleve Equations 

In this chapter we inves tigate the solutions of the discrete Painleve equations. Before 

going to this subj ect, we first give a brief review on the Painleve equations and the discrete 

Painleve equations in the sections 3.1 and 3.2, respectively. In the sections 3.3 and 3.4, 

we discuss the solutions of the discrete Painleve II and III equations, respectively. In the 

section 3.4, we propose a q-difference analogue of the P ainleve III equation based on the 

results obtained in the section 3.3. 

3.1 Painleve Equations 

As mentioned in the chapter 1, there are several definitions for integrability, all of which 

are believed to be almost equivalent . Painleve property is one of them, which can be 

expressed as "nonexistence of movable singular points except for poles" . This property 

looks somewhat curious , and it is not obvious to understand what tllis property means for 

the integrabili ty. One in tui tive explanat ion is as follows. For linear ordinary equations , 

every singular points are determined by the coefficients, which means they have no movable 

singular points . For nonlinear equations, however, this property is lost . For example, even 

the simple equation, 

dy 2 
dz = -y ' (3 .1.1 ) 

do not have this property. In fact, the general solu tion of eq.(3.1.1) is written as 

1 
y = z - C' (3.1.2) 

where C is a constant , wllich means that eq.(3.1. 1) has a. movable p ole. Hence, Painleve 

property can be considered to be a. detector of comparably good nonlinear ordinary differ-

entia! equation . But the reason why this property is deeply connected to the integrability 

nlight not be understood fully yet. 
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It is known for the ordinary differential equations of second order that there are 

essen tially only six equations which possess Painleve property[lO], These equations are 

called the Painleve equations PI - Pv1. first four of which are written as 

PII: 

P m : 

d2w - - = 6y2 +X 
dx 2 

' 

d2w 
--2 = 2w3 + xw + a , 
dx 

d
2
w = ~ (dw)2 _ ~ dw + ~(aw2 + (3) 

dx 2 w dx x dx x 
0 

+ 1w3 + - , 
w 

dw 2 1 3 3 2 
dx2 = 2w + 2 w + 4xw 

+ 2(x 2
- a)w + !!__ • 

w 

(3.1.3) 

(3.1.4) 

(3.1.5) 

(3.1.6) 

Now the Painleve equations are of very common occurrence in the t heory of integrable 

systems. Nonlinear evolution equations, integrable through inverse scattering method, have 

been shown to possess one-dimensional (similarity) reductions that are just the P ainleve 

equations. For example, the modified KdV equation, 

is reduced to PII (3.1.4) through the similarity reduction , 

w(z) 
u(x,t) = ~13 , 

(3t) 

X 

z = (3t)2/3 . 

(3.1.7) 

(3.1.8) 

Tlus feature of integrable partial differen tial equations eventually evolved into an inte­

grability criterion[12] . In this sense, the P ainleve equations are the most fundamental 

nonlinear integrable systems. 

The Painleve equations have many aspects . Among them, Jet us summarize the prop-

erties of their solutions. It is known in general t ha t the solutions of the Painleve equa tions 

cannot be expressed by those of linear equations. In this sense, their solutions are called 
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the PainleYc transcendents. However ,they admits the solutions written by special functions 

for some special values of parameters. For example, Pu 

w,, - 2w3 + 2xw + a = 0 , 

has a solution for a = - (2N + 1) [31 ,32], 

( 
TN+l) w= log-- , 

TN X 

where TN is given by an N x N Wronskian of the Airy function, 

Ai 

d A' axz 

( d ).N Ai ax 
Note that Ai is the Airy function satisfying 

( d ) 2iv-2 Ai ax 

(3.1.9) 

(3.1.10) 

(3. 1.11) 

(3.1.12) 

We also note that we have slightly changed the scale from the original P 11 for the simplicity 

of the expression of the solutions. The other Painleve equations except for P 1 have similar 

solutions. The corresponding special functions are the Bessel function for P 111 , the Hermite-

Weber function for Prv , the confluent hypergeometric function for Pv and hypergeometric 

function for Pvr, respectively. In this sense, the Painleve transcendents can be regarded 

as nonlinear Yersions of t he special functions. 

Let us finally remark on the direct relationship with Toda molecule equation[31] , which 

is one of the most typical nonlinear integrable systems. The Painleve equations can be 

rewritten in the Hamilton formalism. For example, let us demonstrate the case of Pu. It 

is possible to rewrite eq.(3.1.4) as the equations of motion for the following Hamiltonian, 

1 1 1 
H 11 (q,p , t ; a)= zp2

- (q2 + 2x)p- z(2a + 1)q. (3.1.13) 
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The equation of motion for this Hamiltonian are given by 

dq 2 1 
-=p-(q +-x), 
dx 2 

(3.1.14) 

dp 1 
dx = 2qp + 2(2a + 1), (3.1.15) 

from which we obtain Pu for q by eliminating p. It is known that the Hamiltonian for each 

Painleve equation can be expressed by log derivative of some regular function on C, which 

is called the T function. For Pn, the T function is defined through the Hamiltonian by 

d 
H 11 (q,p , x; a) = dx log T( x; a) (3.1.16) 

Remarkably, it can be shown that the T function satisfies the bilinear form of the Toda 

molecule equation, 

(3.1.17) 

The T functions for other Painleve equations satisfy the Toda molecule equation for P~,P 1 v, 

the cylindrical Toda molecule equation for Pill , Pv and the spherical Toda molecule equa-

tion for Pv h respectively. 

3.2 Discrete Painleve Equations 

In the chapter 2, we have discussed one method for discretization or q-discretization of 

given nonlinear integrable systems, which is based on the guiding principle, "discretization 

preserving the structure of t he T function". Grammaticos et .al have proposed another 

method based on a conjecture called "singularity confinement", which can be stated as 

follows: " The movable singularities of integrable mappings are confined i. e. they are 

canceled one after a finite number of steps. Moreover the memory of the initial condition 

is not lost whenever a singularity is crossed." 
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Using this cri terion, they have proposed the discrete analogue of the Painleve equations 

P 1 - P v, the first four of which are written as 

an+ b 
Wn+1 +wn + Wn-1 = --+ c, 

Wn 

dP1v: Wn+1Wn-1 + Wn(Wn+1 + Wn-d 
1 

- (an + b)w~ + (d -
4

(an + W)w?, + m 

1 
w?, + (an+ b)wn + (c + 4(an + WJ 

(3 .2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

Indeed, th discrete Painleve equations reduce to corresponding continuous ones by tak-

ing suitable continuous limits. We note that dP1 and dP 11 appear in the theory of two-

dimensional quantum gravity.[33-35]. We here summarize known properties of the discrete 

Painleve equations. 

(1) Lax pairs are known for dPh dPu and dPru [36]. 

For example, the Lax pair of dP1 is given as follows ; We consider the following linear 

equations, 

d 
h dh <l' n = Ln(h)<l'n, 

<l' n+1 = M,.(h)<l',., 

where Ln and Mn are ma trices given by 

Ln(h) = ( ~ 
hv1 

(

d1 
Mn(h) = ~ 

(3.1.5a) 

(3.1.5b) 

(3.1.6a) 

(3. 1.6b) 

respectively. We note that a ll the variables in eqs.(3.1.6) depend on n except for the 

parameter h. Compatibili ty condition to eqs.(3.1.5) is given by 

d 
h dh M,.(h) = Ln+1 (h)Mn(h) - Mn(h)Ln(h), (3.1.7) 
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which recovers dP1 (3.1.1) for v2 = Wn . The Lax pairs for other equations are obtained by 

choosing suitable matrices. It should be noted, however, that we need slightly modified 

formulation for dPm. Namely, we have to choose the following linear q-difference- difference 

system instead of eq.(3 .1.5), 

'I>n(qh) = Ln(h)il>n(h), 

'I>n+!(h) = Mn(h)il>n(h). 

(3.1.8a) 

(3.1.8b) 

This implies that dP 111 has a different nature from other equations . We shall discuss this 

point in the section 3.4. 

(2) Coalescence cascade [17] 

It is known for the con tinuous P ainleve equations that the "lower" equations can be 

obtained from the "higher" ones through suitable limiting procedure involving dependent 

variable and free parameters in t he equations. The same situation is known for the discrete 

Painleve equations. 

(3) Backlund transformations has been obtained for dP11 [37]. 

These results seems to imply that t he discrete Painleve equations are "good" equa­

tions, but also seems not to be sufficient to state it, since almost no result has been 

obtained on their solutions yet . This observation leads us to t he study of solut ions of the 

discrete P ainleve equations, which may be a good check of the validity of t he singulari ty 

confinement. Moreover, it is expected that their solutions can be expressed in terms of the 

discrete analogue of special functions, which may be interesting from the viewpoint of the 

theory of special functions. We show the results of this problem for the case of dP 11 and 

dPm in the following sections. 



3.3 Solutions of the Discrete Pain/eve-!! Equation 36 

3.3 Solutions of the Discrete Painleve-11 Equation 

3.3.a Solutions of dPil 

In this section we consider t he Casorati determinant solutions of dP!l, 

(3.3.1) 

where a, f3 and 1 are parameters. Before going to the determinant solutions, let us seek 

for a simple one. The first step is to consider the discrete R.iccati equation, 

anWn + bn 
Wn+l = CnWn + dn ' (3.3.2) 

which was proposed by Hirota[38]. In this case, it is easy to show that if Wn satisfies the 

following equation, 

Wn- (an + b) 
Wn+l = 1 +wn ' (3.3.3) 

then it gives a solution of eq.(3.3.1) with the constraint 1 = - a/2. In fact, we have from 

eq.(3.3.3) 

Wn + (an - a +b) 
Wn-l = 

1- Wn 

Adding eqs .(3 .3.3) and (3.3.4), we obtain 

(2an - a + 2b + 2)wn - a 
Wn+l + Wn-1 = 2 ' 

1- wn 

which is a special case of eq.(3.3.1) . Now we put 

Fn 
Wn = Gn . 

(3.3.4) 

(3.3.5) 

(3.3 .6) 

Substituting eq.(3.3.6) into eq.(3.3.3) and assuming that the numerators and the denomi­

nators of both sides of eq.(3.3.3) to be equal, respectively, we have 

Fn+l = Fn- (an+ b)Gn , (3.3.7a) 
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(3.3.7b) 

Eliminating Fn from eqs.(3.3.7a) and (3.3.7b), we see that Gn satisfies 

Gn+2- 2Gn+l + Gn =-(an+ b)Gn , (3.3.8) 

which is considered to be the discrete version of the Airy equation and has a solution given 

by the discrete analogue of the Airy function. By means of the solution, Wn is expressed 

as 

(3.3.9) 

It is possible to construct a series of solutions expressed by the discrete analogue of the 

Airy function. We here give the result , leaving the derivation in the next section. Vve 

consider the r function, 

An An+2 An+2N-2 

TN= 
An+! An+3 An+2N-! 

(3.3.10) 

An+N-1 An+N+! An+3N-3 

where An satisfies 

(3.3.11) 

We can show that rJV satisfies the following bilinear forms, 

(3.3.12) 

(3.3.13) 

and 

(3.3.14) 

Applying the dependent variable transformation as 

(3.3.15) 
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we obtain a special case of dPu, 

(2pn + (2N- 1)p + 2q) Wn - (2N + 1)p 
Wn+l + Wn-1 = 2 

1- wn 
(3.3 .1 6) 

We note that eq.(3.3.5) and its solu tion is recovered by putting p = a, q = b + 1, and 

N = 0. We also remark that eq.(3.3.15) reduces to eq.(3.1.9) with a= -(2N + 1) if we 

choose p = -E3, q = 1, Wn = EW and n = t• and take the limit of E-+ 0. 

3.3.b D erivation of the Results 

In this section we show that eq.(3.3.10) really gives the solution of eq.(3.3.16) through 

the dependent variable transformation (3.3.14). 

First , let us prove that the T function (3.3.10) satisfies the bilinear forms (3.3.12)­

(3.3.14). For the purpose we show that eqs.(3.3.12)-(3.3.14) reduce to the J acobi identity 

or the Plucker relations. Before doing so, let us remind of the the J acobi identity again. 

Let D be some determinant, and D (~) be the determinant with the i-th row and the 

j-th colwm1 removed from D. Then the J acobi identity is given by 

(3.3.17) 

It is easily seen that eq. (3.3.12) is nothing but the J acobi identity. In fact, taking T;:,~i as 

D , and putting i = j = 1, k = l = N + 1, we find that eq.(3.3.12) reduces to eq.(3.3.17). 

Hence it is shown that eq. (3.3 .10) satisfies eq.(3.3.12). 

Let us next prove eq.(3.3.13). Notice that TjV is rewritten as 

An A n+2N-4 2An+2N-3- (p(n + 2N- 4) + q)An+2N -4 

TN= 
An+l A n+2N-3 2An+2N-2 - (p(n + 2N- 3) + q)An+2N-3 

An+N-1 An+3N-5 2An+3N-4 - (p(n + 3N- 5) + q)An+3N-s 

An An+2N-4 2An+2N-3 
An+l An+2N-3 2An+2N-2- pAn+2N-3 

An+N-1 An+3N-5 2An+3N-4 - (N- 1)pAn+3N-s 
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2An+l 
2An+2 -pAn+! 

2An+2N-3 
2An+2N-2 - pAn+2N-3 
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A n+N- 1 2An+N - (N- 1)pAn+N-I 2An+3N-4- (N -1)pAn+3N-s 

B~O) An+! An+2N-3 
= 2N-l (3.3.18) 

B~N-I) A n+N 

where B~k )' k = 0, 1, · ·· , are given by 

B(k) = A + kp B (k-t) for k >_ 1 
n n+k 2 n (3.3 .19) 

Similarly, we have 

(3.3.20) 

Let us introduce the notations as 

(3.3.21) 

For example, rjV and (pn + q)rjV are rewri tten by 

rjV = IO, 2, · · ·, 2N- 21 = IO, 2, · · ·, 2N - 2, </> I 

=2N-li0',1,3,···,2N - 31, 

(pn + q)rjV = 2N- l l1, 2', 3, 5, · · ·, 2N - 31 = 2N-ll 1, 2', 3, · · · , 2N- 3,</>1 , 

respectively. Now consider the following identity of (2N + 2) x (2N + 2) determinant, 

1 · · · 2N - 5 0 
(3.3.22) 

0 1 · · · 2N- 5 
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Applying the Laplace expansion on the right hand side of eq.(3.3.22), we obtain 

0 =l-1,0', 1,· .. ,2N- 51 X 11, ... ,2N- 5,2N- 3,¢1 

-l-1, 1,· .. ,2N- 5,2N- 31 X 10',1,· .. 2N- 5,¢1 

+I-1,1, .. ·,2N-5,¢I X I0',1, .. · ,2N-5,2N-31, (3.3.23) 

which is nothing but the special case of the Plucker relations. Equation (3.3.23) is rewritten 

by using eqs.(3.3.18) and (3.3.20) as 

(3.3.24) 

which is essentially the same as eq.(3.3.13). 

We next prove that eq.(3.3. 14) holds. We have the following equation similar to 

eqs.(3.3.18) and (3.3.20); 

(p(n+2N )+q)rN+2 = -J2, .. ·,2N -2,2N+21+2N-I I2',3, .. ·,2N-3,2N+11. (3.3.25) 

Then the right hand side of eq.(3.3.14) is rewritten as 

12, ... ,2N- 2,2N + 21 X J1,3, .. ·,2N -11 

-2N-ll2', 3, ... , 2N- 3, 2N + 11 X 11, 3, ... , 2N- 11 

+2N-li1,2' ,3, .. ·,2N-5,2N-31 X J3,5, .. ·2N-1, 2N+11. 

From the iden tity 

0 = 11- -~: _i- ~- -·_·:- -~~- ~-~ -i_ - - - - - -~-- -- - - _: ~!"_ -~ ~-- ~~ ~ ~ I 
1 2' i 0 i 3 .. · 2N - 3 i 2N - 1 2N + 1 

= J1,2',3, .. · ,2N -31 X J3 ,5, .. ·2N-5,2N-1,2N+11 

-11,3, ... 2N- 3,2N -11 X 12',3, ... ,2N- 3,2N + 11 

+ 11,3, ... ,2N- 3,2N + 11 X 12',3, .. ·2N- 3,2N -11, 

(3.3.26) 

(3.3.27) 
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the second and third terms of eq.(3.3.26) yield 

- 2N- 1 11,3, · · · ,2N- 3,2N + 11 x 12',3,· · · ,2N- 3,2N -11 

= - 11, 3, ... , 2N - 3, 2N + 11 X 12, 4, . . . , 2N - 2, 2NI . 

Hence, eq.(3.3.14) is reduced to 

12,4, ... , 2N - 2, 2N + 21 X 11, 3, .. . , 2N- 3, 2N- 11 

-11, 3, . . . , 2N - 3, 2N + 11 X 12, 4, . .. , 2N - 2, 2NI 

= I1,3, ·· ·,2N -1,2N +11 X I2, 4, ·· ·,2N-21, 
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(3.3.28) 

(3.3.29) 

which is again nothing but the J acobi identity (3.3.17). In fact , taking D = 11 , 3, · · · , 2N -

1,2N + 11, i = 1, j = N + 1, k = Nand l = N + 1, we see that eq. (3.3.17) is the same 

as eq.(3.3 .29) . This completes the proof that the T function (3.3.10) satisfies the bilinear 

forms (3.3.12)-(3.3.14) . 

Finally, let us derive eq.(3.3.16) from the bilinear forms (3.3.12)-(3.3.14). We introduce 

the dependent variables by 

T hen eqs. (3 .3.12)-(3 .3.14) are rewritten as 

n-1 _ n+2 (1 1 ) 
VN - VN-1 - U~-1 ' 

v~+2 - 2v~+ 1 + (pn + q)u~v'N = 0 , 

v~+ 1 = v~-+:_21 ( -(p(n + 2N) + q) + (pn + q)u'N ) , 

(3.3.30) 

(3.3.31) 

(3.3.32) 

(3.3.33) 

respectively. Eliminating UN and VN- 1 from eqs.(3.3.31)-(3.3.33) and introducing Wn by 

(3.3.34) 

we obtain eq.(3.3 .16) . 
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3.4 Solutions of the Discrete Painleve-111 Equation 

3.4.a Solutions of dP 111 

In this section we investigate the solu tions of dPm, 

QW~ + /3 AnWn + / A2n 
Wn+1Wn-1 = 2 

8 
, 

Wn + Wn + Q 

(3.4.1) 

where a , /3, /, 8, and A are parameters . Similar to the previous section, let us start from 

the discrete Riccati equation. It is shown that if Wn satisfies 

with a constraint 
a 

d+;:=/3, 

then Wn gives the particular solution of eq.(3.4.1). Putting 

we have 

Gn+! 
Wn = -c+d, 

n 

Gn+2 +(a- d)Gn+ l + (.Xn- ad)Gn = 0. 

(3.4.2) 

(3 .4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

By the analogy with the continuous case, it is expected that eq.(3.4.6) is a discrete version 

of Bessel equation, alt hough it is not trivial to see the correspondence between eq.(3.4.6) 

and the Bessel equation. Hence we should consider another parameterization to identify 

the linearized equation with the discrete Bessel equation. Instead of eq.(3.4.6) , we take 

We can shall" that if lv(n) satisfies eq.(3.4.7), then 

l v(n +l)" 
Wn = lv(n) - q 

(3.4.7) 

(3.4.8) 
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gives the solution of dPur (3.4.1) with the parameters 

1 (J ( v -v-2)(1 )2 (1- q)
4 

0 = q" _ q-", a = - , = q - q - q , I = __ q_2_' (3.4.9) 

where q = .A 2 . Continuous limit of eq.(3.4.7) is given by putting q = 1 + E, n = f and 

taking the limit of € _, 0 to yield 

(3.4.10) 

Equation (3.4.10) reduces to the Bessel equation if we put x = e'. In this sense, eq. (3.4.7) 

is regarded as the discrete Bessel equation. 

It is possible to extend this result to N x N determinant solution. Similar to the 

previous section, we here give only the results, leaving the derivation in the next section. 

We consider the following T function, 

Jv(n+2N-2) 

T'fv(n) = (3.4.11) 

Jv(n + N -1) Jv(n + N + 1) Jv(n+3N-3) 

where Jv(n) is a solution of eq.(3.4.7). We note that this T function has a similar structure 

to that of dP 11 . We can show that T'fv(n) satisfies the following five bilinear forms, 

= - (1- q)qn+2NT'fv""t\ (n)T'fv(n + 1), 

T'fv";1 (n)T'fv(n)- qv-N+l T'fv";1 (n + 1)T'fv(n) 

= (1- q)qn+2N TN+l (n)T'fv+l(n + 1) ' 

(3.4.12) 

(3.4 .13) 

(3.4.14) 

(3.4.15) 

(3.4.16) 
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Applying the dependent variable transformation 

TN+! (n + 1)T;;,+l (n) v+N 
Wn = v v+l - q ' 

TN+! (n)TN (n + 1) 
(3.4.17) 

we obtain the special case of dPm 

(3.4. 18) 

with the parameters 

3.4.b Derivat ion of the Results 

In this section we show that the T function (3.4.11 ) actually gives the solu tion of 

eq.(3.4.18) through the dependent variable transformation (3.4.17). We first note that 

eq.(3.4.18) is factorized as 

(q2NWn + (1- q)2qv+7N+2n ) (q2 NWn _ (1 - q)2q-v+SN-2+2n ) 
Wn+! Wn- ! = - ( v+N) ( -v+JN) (3.4.19) 

Wn + q Wn - q 

Substituting eq.(3.4.17) into eq.(3.4.19) and combining suitable factors, we see that 

eq.(3.4.18) is decomposed into the bilinear forms (3.4.12-16) . 

We next prove that eqs.(3.4.12-16) holds. It is possible to reduce them to the Plucker 

relation. Let us first construct the shift operator of the T function, 

Jv(n + N -1) 

(3.4 .20) 

Jv(n + 2N- 2) Jv(n + 2N - 1) Jv(n + 3N-3) 

where Jv (n) is the solution of the discrete Bessel equation (3.4. 7) and satisfies the following 

contiguity relations, 

Jv(n + 1)- q-" Jv(n) = -(1- q)qn Jv+! (n), 

Jv(n + 1)- q" Jv (n) = (1- q)qn Jv-! (n). 

(3.4.21) 

(3.4.22) 
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Using eqs.(3.4.21) and (3.4.22), it is possible to construct the shift operators for "one-

skipped direction" . For this purpose, we introduce the notation, 

(3.4.23) 

where kv stands for the column which starts from lv(n + k) . Now let us construct the 

shift operators . By adding (i + 1)-th column multiplied by -q-v to i-th column and using 

eq.(3.4.21) fori = 1 ~ N- 1, we have 

N (2n+N-2)(N-t) 
TN(n) ={ -(1- q)} -lq 2 X 

lv+l(n) 
q2 Jv+l(n+2) 

N -l (2n+3N-2)(N-l) 
={-(1-q)} q 2 X 

lv+l(n + N - 2) 
q2 lv+l(n+N) 

q2N- 2 lv+l (n + 3N- 4) 

lv(n + N -1) 
lv(n + N + 1) 

lv(n + 3N - 3) 

lv+l (n) lv+l (n + N - 2) lv(n + N - 1) 
q- 2 Jv(n+N+1) lv(n + 2) lv+l (n + N) 

lv+l (n + 2N - 2) lv+l (n + 3N - 4) q- 2N+ 2 lv(n + 3N- 3) 

where k~ stands for 

(3.4.24) 

Hence we obtain 

(3.4.25) 

We next construct another shift operator. We add (i + 1)-th column multiplied by q-" to 

i-th column fori = 1 ~ N - 2, subtract (N -1)-th column from N -th column multiplied 
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by q-v, and divide N-th column by (1 - q)qn+N-!_ Then we have 

TN(n) ={ -(1 - q) }N-2q(2n+N-23)(N-2)+(2+4+-- ·+2N-2) X 

lv+!(n+N-3) lv(n+N-2) 
lv+! (n + N - 1) q- 2 Jv(n + N) 

lv(n+N-1) 
q- 2 Jv(n + N + 1) 

={ -(1- q ) } N-2q (2n+N-23)(N-2)+N(N-!)+v (1- q)qn+N-1 X 

lv+l(n +N-3) lv(n+N-2) lv+!(n+N-2) 
l v+l(n + N -1) q- 2 Jv(n + N) lv+!(n + N) 

N-l (2n+3N-2)(N-l)+v , 

={-(1-q)} q 2 x!Ov+l····,N -2v+l,N -2vl· 

Hence we get 
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1 -N+l _ (2n+3N-2)(N-1) v+l l 
IOv,· ·· ,N-2v,N - 2v-ll ={-(1-q)} q 2 TN- (n) (3.4.26) 

By using eq.(3.4.22) instead of (3.4.21), similar calculations give the following shift oper-

ators; 

(3.4.27) 

Now we show that T function (3.4.20) satisfies the bilinear forms (3.4.12)-(3.4.15). 

Here we note that the shift operators in "two-skipped" direction are needed to derive 
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eq.(3.4.16). First we derive eq.(3.4.1 2) . For the purpose we consider the identity of deter-

minant , 

o = lo_:_1 ___ ·~:--~-~-1 __ ! ______ ~ ______ !_~--~~~: __ ~: I' 
0 i 0 i 1 · · · N- 1 i N N~_ 1 ¢ 1 

where 

Applying the Laplace expansion on the right hand side, we have 

0 = IO,···,N -1, N~-1 1 X I1 ,···,N -1 ,N,¢d 

-10,··. ,N -1, N I X 11 ,· .. ,N -1,N~-1.¢d 

- 11,·· . ,N -1,N,N~- 1 1 X IO,· .. ,N -1 ,¢1 1 

This identity is rewritten in terms ofT by using eqs.(3.4.25-28) as 

T/v-.;1 (n) T'N(n + 1)- q-v-N+1T/v-.;1 (n + 1)7 /v(n) 

= -(1- q)qn+2N TN+1 (n) T/v-1 (n + 1) ' 

(3.4.29) 

(3.4.30) 

(3.4.31) 

which is essentially the same as eq.(3.4.12) . Equation (3.4.13) is derived from the same 

identity as eq.(3 .4.29) except that N~_ 1 is replaced by N~+ 1 • 

We next derive eq.(3.4.14). We consider the identity of determinant, 

o =I: f -1-- -· ~ :0-~-~-~ -.~- -.-.--~;; ~-; -'-: --:~~~--::I· 
where 

Applying the Laplace expansion on the right hand side of eq.(3.4.32), we have 

0 = IO,··· ,N -1,N~-1 1 X I1 , ··· ,N -1,N,¢21 

-10,·· . ,N -1,NI X 11 , ... ,N -1,N~-1.¢2 1 

-IO,···,N -1, ¢2 1 X I1, ··· ,N -1,N,N~- 1 1 , 

(3.4.32) 
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which can be rewritten in terms of T again. Here we give a remark on the treatise of the 

determinant including the column c/>2· For example, let us consider 11 , · · ·, N -1, N~_ 1 , 4>21. 

Expanding by (N + 1)-th column, we have 

11 , · · · , N - 1, N~_ 1 , c/>2l 

lv(n + 1) 
lv(n + 3) 

lv(n + 2N + 1) 

l v(n + N -1) 
l v(n + N + 1) 

lv(n+ 3N -1) 

lv (n + 2N + 1) 

= q- 2(-1)N+2 I3,4, .. ·,N+1,N+2~ -1 1, 

lv- 1(n + N) 1 
q- 2 1v- 1(n + N + 2) 0 

0 

Namely, we need additional factor (-1)N+2 q- 2 . Taking this remark into account, we 

obtain 

(3.4.33) 

which is essentially the same as eq.(3.4.14). Similarly, eq.(3 .4. 15) is derived from the same 

identity as (3.4.32) except that the column N~_ 1 is replaced by N~+ 1 . 

Finally '"e derive eq.(3.4.16). In this case, we have to consider the shift operators in 

"two-skipped" direction . Vve consider the T function, 

lv(n+2 N -2) 

l v(n + N -1) lv(n + N + 1) lv(n + 3N - 3) 
(3.4.34) 

= IO , 2, ." , 2N- 4, 2N- 21 . 

We use the contiguity relation for lv(n) , 
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(3.4.35) 

and a technique similar to the derivation of eq.(3.4.25). After some tedious calculations, 

we obtain the shift operators, 

I0~-1' 1, 3, ... , 2N- 31 

w,w_,, N-1 1 
- {(1 - ) n+3v-4 }-N+! -~ II ---=----=--= - q q q 1 + 2v-2+2k 

k=O q 

11, 2~ _ 1 , 3, 5, · · ·, 2N - 31 

where 

and Kv(n ); is defined by the following recursion relation, 

{ 

Kv(n ); = 1 + i:2v+2i (q' Jv(n + i) + (1- q2i)q-v-! Kv(n) i-!), 

K v(n )o = 
1 
+ q- 2v l v(n) . 

We now consider the identity of determinant , 

fori ~ 1, 

I 

0 1~-1 i 2 4 ... 2N - 4 i 0 i 2N - 2 ¢1 I 
0 = -- --------------------------------------------------- . 

0 1~_ 1 i 0 i 2 4 · · · 2N- 4 i 2N- 2 ¢ 1 

(3.4.36) 

(3.4.37) 

(3.4.38) 

(3.4.39) 

(3.4.40) 

Applying the Laplace expansion to the right hand side of eq .(3.4.40) and using eqs .(3.4.36) 

and (3.4.37) , we get 

T N+! (n + 2)T~fl (n + 1)- q2v+2n {1 + (1 - q)2q2n }TN+! (n)TN+l (n + 3) 

=(1- q)qn+N+v+! (q2N + q2")TN-t_;! (n + 1)TN(n + 2). (3.4.41) 
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Combining eqs .(3 .4.41) and (3.4.12), we obtain eq.(3.4.16). Thus we have proved that the 

T function (3.4.11) really satisfies the bilinear forms (3.4.12-16). 

3.5. q-Difference Analogue of the Painleve- 111 Equation 

We have discussed the solution of dP 1u, and shown that it is expressed by the discrete 

Bessel fucnt.ion. It should be noted, however, that eq.(3.4.7) is essentially the same as the 

q-Bessel equation, which is given by 

(3.5.1) 

or 

(3 .5.2) 

In fact, eq.(3.4.7) yields eq.(3.5.1) by t he replacement qn -+ x. T llis fact seems to imply 

that dP rrr is a q-discrete system rather t han a discrete system in essence. More precisely, 

let us consider the fo llowing equation instead of dPrrr (3.4.1), 

(3.5.3) 

The solu tions of eq.(3.5.3) is expressed by 

(3.5.4) 

t hrough the dependent variable t ransformation, 

(3.5.5) 

Here, Jv(x) is the q-Bessel function of degree v. 

We have mentioned in the section 3.2 that t he auxiliary linear system for dPrrr includes 

a q-difference equation. It is easily shown that the linear system fo r eq.(3.5.3) is completely 
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written as a q-difference system, 

<I>(x; qh) = L(x; h)<I>(x; h), 

<I>(qx; h) = M(x; h)<I>(x; h), 

whose compatibility condition yields 

M(x; qh)L(x; h)= L(qx; h)M(x; h). 
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(3.5.6a) 

(3 .5.6b) 

(3.5.7) 

In fact, if we choose the same matrices L and M as those in [36], we obtain eq.(3.5 .3). 

Moreover, putting w = (1- q)x u and taking the limit q-+ 1, eq.(3.5 .3) reduces to P 111 , 

d2 u 1 du 2 1 du 1 2 3 8 
- = -(-) ---+-(au + {3) + -yu + -, 
dx 2 u dx x dx x u 

where a= 2v- 2N, {3 = 2v + 2N + 2, 'Y = 1, 8 = -1. These facts imply that eq.(3.5.3) 

can be one candidate for q-difference analogue of Pm. 
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Chapter4. Concluding Remarks 

In this thesis, we have discussed on two subjects, one is q-discretization of the two­

dimensional Toda equations, another is the solutions of the discrete Painleve equations . 

We first summarize the main results. 

(1) We have succeeded to extend the 2DTL and 2DTM equations to the q-discrete system 

by using a procedure based on the direct method. We have also discussed reduc­

tions of these equations to cylindrical systems. In particular, we have shown that 

the q-cliscrete cylindrical Toda lattice equation admits the solution expressed by a 

determinant whose entries are the q-Bessel functions. Moreover, we have derived the 

Backlund transformation and the Lax pair for the q-2DTM equations. These results 

may imply the validity of our method. 

(2) We have derived the particular solutions of the discrete Painleve II and III equations, 

the former of which is expressed by the determinant whose entries are the discrete 

analogue of the Airy function, and the latter of which is expressed by the determinant 

whose entries are the discrete analogues of the Bessel function. These results imply 

the validity of the singularity confinement method. It is noted that, for the case of 

the discrete Painlev&.III equation, the solution is essentially the same as the q-Bessel 

function. From such an observation, we have proposed q-difference analogue of the 

Painleve III equation. 

Let us next give two remarks. First, it is expected that the q-2DTL and the q-

2DTM equation are related with the quantum groups. However, the direct relationship 

between them has not been found yet. Recently, Nagatomo and Koga have constructed 

the q-difference analogue of the Euler-Poisson-Darboux(EPD) equation[39]. The EPD 

equation is regarded as a two-dimensional version of the hypergeometric equation, and 

closely related to the 2DTM equation. Moreover, SL(2, C) acts on the EPD equation as 

the transformation group. They have shown that the quantum group Aq (SL(2, C)) acts 
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on the q-EPD equation and the q-2DTM equation is closely related to it . At present, this 

relationship between the q-2DTM equation and the quantum group seems not to be direct . 

Secondly, it was expected that the T function of the discrete Painleve equation satisfy 

the discrete Toda molecule equation. However, our result shows it is not. Namely, the 

structure of the T function is asymmetric, while that of the discrete Toda molecule equation 

is symmetric. T he similar· situation occurs for the case of the discrete Painleve III equation. 

We do not know yet whether this structure is essential or not. 

Before concluding, we give some comments on the fu ture problems. 

(1) The physical meanings of t he q-2DT L and q-2DTM equations are still open. And the 

relationship between quar1tum groups deserves fur ther research . 

(2) It is expected that other discrete Painleve equations admit the solution expressed 

by the determinants whose entries are discrete or q-difference analogue of special 

functions. Moreover, it may be expected that t hey also admit rational solutions. 

(3) Quite recently, it has been revealed that t he discrete Painleve equations are not 

unique[40,41]. Namely, several differen t discrete equations have been ob tained which 

reduces to the sam e Painleve equations in t he continuous limit and passes the singu­

larity confinement. Their properties or solut ions ar·e still unknown. 

(4) As mentioned in the section 3.1, t he Painleve equations can be rewritten in the frame­

work of the Hamilton formalism in which t he T function plays a crucial role. T he 

similar- situation is expected to hold for the discrete case. It might be possible to 

construct t he discrete Hamilton structure through the T function . 

Let us finally remind again that we need much more studies from var·ious points of 

view to establish "integrability" for the discrete and q-discrete systems. We hope that 

the results in this thesis contribute to the theory of the discrete and q-discrete nonlinear 

integrable systems in view of fundamental understanding. 
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