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Abstract

A study was conducted to clarify the dependence of the reduction of single particle strength
on separation energy differences and to determine the proton 0p spin-orbit splitting in oxygen
isotopes.

For this purpose, we have measured the cross sections for the (p, 2p) reaction on 14,22,24O at
250 MeV/u at the RI Beam Factory at RIKEN. The solid polarized proton target was used in the
measurement of the (p, 2p) reaction in inverse kinematics for the first time.

The strengths of the single-hole states in nitrogen isotopes were successfully extracted.
The measured cross section was compared to the DWIA calculations with the global Dirac
phenomenology optical potential and the microscopic optical model. Spectroscopic factors for
the transitions from oxygen isotopes to nitrogen isotopes for the (p, 2p) reaction were determined
for the first time.

The reduction ratio Rs of the spectroscopic factor has no significant dependence on the pro-
ton/neutron separation energy difference∆S that was observed in the analysis of measurements
of nucleon knockout reaction by using heavy-ion injections. The independence of Rs from SN
implies the universality of the tensor effect affecting the single particle strength in the nuclei.

The spin-orbit splitting of 0p proton orbits in 14O was also determined to be 7.6±0.3 MeV.
This value is larger than that of 16O by 600 keV and consistent with the spin-orbit splitting for
0p neutrons evaluated from the 14C(p, d) reaction measurement. However, it is opposite to the
decrease expected from the description that the spin-orbit splitting is affected from the strong
attractive interaction between the spin-flip isospin-flip partner.
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Chapter 1

Introduction

1.1 Single-particle nature in atomic nuclei

The atomic nucleus, which is located at the core of an atom, is a quantum mechanical system
which consists of only two kinds of fermions: protons and neutrons. Because there are only
two basic components of nuclei, all the isotopes can be identified by the numbers of protons
and neutrons. The difference of the proton number (Z) determines the number of bound
electrons in a neutral atom and therefore results in the difference of the chemical property of the
atom. The number of neutron (N) is limited by the possible range of the mass-to-charge ratio
(A/Z = 1 + N/Z). In spite of only two kinds and limited number of ingredients, nuclei appear
in astonishing variety of forms.

In 1935, Weizsäcker [1] proposed a famous mass formula with an assumption of liquid drop
model and it successfully explained the mass of nuclei. This model is based on the characteristics
of the nuclear force that is so strong and works in short-range. Such characteristics are consistent
with Yukawa’s meson theory [2]. The liquid-drop model succeeded also in the description of
the mechanism of the nuclear fission [3].

Meanwhile, in early 1930’s, Elsasser [4] had pointed out that the nucleus is particularly
stable when it has a magic number, or the specific number of protons or neutrons. Currently
known magic numbers are 2, 8, 20, 28, 50, 82, and 126. The existence of these magic numbers
implies the picture that nucleons are moving independently in the mean-field as an analogy
to the atomic structure. However, this picture apparently conflicts with the strong-interacting
picture.

In late 1940’s, these empirical magic numbers are successfully reproduced independently
by Mayer and Jensen [5, 6], by introducing a simple modification to the harmonic oscillator
potential. They added an attractive term∝ l2 and a strong spin-orbit term−l⃗ · s⃗ with the opposite
sign to that of atoms. This success confirmed the effectivity of independent particle model
(IPM). What is very surprising is that strong-interacting particles behave rather independently
in atomic nuclei! The characteristics of the ground state such as energy and spin are well
explained by IPM in which non-interacting nucleons are orbiting in spherical symmetric mean-
field potential.

However, IPM could not explain the nature of excited states or open-shell nuclei. To
understand them, the idea of the shell-model configuration mixing was introduced [7, 8] and
established a great success. The configuration mixing is invoked by the residual interactions
which were not included in the mean-field potential. On the configuration-mixing basis, the
shell-model single-particle orbit in nuclear mean-field potential is not fully occupied even if
the single-particle energy is below the Fermi energy. Long-range correlations couple valence
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nucleons to surface phonons and giant resonances. On the other hand, short range correlations
which mainly originated from the nucleon hardcore, or the strong short-range repulsive NN
force, couples the strength of valence nucleons to high-momentum component. The excitation
probability to the high energy (momentum) state caused by such correlations results in the
overestimation of low-lying single-particle strengths in mean field calculations since the high-
energy states are greatly truncated in those calculations.

For the qualitative discussion of the single-particle strength, a quantity named spectroscopic
factor has been traditionally used because the occupation number of single-particle orbit is not
an observable. The definition of the spectroscopic factor is twofold. One is the experimental
spectroscopic factor which is defined as the ratio between the reaction cross section measured
in the experiment and the one calculated for unit occupation number of a single particle orbit
in some reaction theory:

C2Sexp =
σexp

σsp
theory

. (1.1)

The other is theoretical spectroscopic factor which is defined as the squared overlap of the
multi-particle wave function of A nuclei and that of the system of A − 1 nuclei plus a nucleon
in a specific single-particle orbit with certain quantum numbers:

C2Stheory =
∣∣∣∣
〈
Nnlj ⊗ (A − 1)

∣∣∣ A
〉∣∣∣∣

2
. (1.2)

This value is generally calculated by using some mean-field models.
As mentioned previously, it is known that the spectroscopic factor observed in the experi-

ment suffer a reduction from the theoretical predictions based on the mean-field calculations [9].
Figure 1.1 [10] shows the summed spectroscopic strength observed for proton knockout by the
(e, e′p) reaction from various single-particle orbits in the closed-shell nuclei as a function of the
mean excitation energy of each single-particle orbit relative to the Fermi energy; weakly-bound
states are on the right. Here the spectroscopic strength is defined as the ratio of the spectroscopic
factor obtained in the experiment to the one resulted from the mean-field calculation. The solid
line shows the fully microscopic theoretical calculation for nuclear matter and the dashed curve
shows the one including surface effects for 208Pb [11].

In this figure, the spectroscopic strength would be 1 if the mean-field theory were the
complete description. However, the actual data show the 30–40% reduction of the proton
spectroscopic strength from the theoretical calculation. Such reduction is attributed to the
residual interaction in mean-field model, namely short-range and tensor correlations, which
decrease the single-particle strength below the Fermi energy and populate the states above
it [10]. The binding energy dependence of the reduction ratio is consistent with the intuitive
understanding: the weaker binding reduces the occupation number.

Recently, Gade and Tostevin reported that the reduction ratio has strong correlation with
the difference of separation energies between protons and neutrons [12, 13] by using nucleon-
knockout reactions with heavy-ion injection. Figure 1.2 shows the correlation of the reduction
ratio Rs and the difference in separation energies of the proton and the neutron ∆S = Sp − Sn.
Rs is defined as follows:

Rs ≡
σexp

σth
=

C2Sexp

C2Stheory
, (1.3)

There is a strong negative correlation between Rs and ∆S. The authors claimed that it is due
to the increase of the correlation in the nucleus and accordingly the single-particle nature is
suppressed. However, this suggests that more deeply bound nucleons has stronger correlations.
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5. SUMMARY 

Experimental investigations of the validity of the Impulse Approximation in the reaction 
(e,e'p) have shown that in the Q-range below 500 MeV/c this Ansatz holds well, provided that 
final-state interactions and two-body currents are properly taken into account. Possible medium 
modifications of the nucleon form factors should be investigated at higher momentum transfer, 
as will be feasible with the new generation of CW facilities. At low Q we have ohser,,ed that the 
CDWIA framework is not able to describe separated longitudinal-transverse interference 
structure functions. A thorough investigation of the contributions of meson-exchange currents 
and the role of a relativistic current operator is called for. 

From measurements of the momentum distributions of various orbitals for a range of nuclei 
by the (e,e'p) reaction, it is concluded that below the Fermi momentum (-- 250 MeV/c) the these 
distributions are satisfactorily described by CDWIA calculations with bound state wave func- 
tions evaluated in a mean-field potential. However, the spectroscopic strengths for valence or- 
bitals amount to T_.S = 0.6-0.7 times the sum rule value (2j+l), to be compared with ZS = 0.9 for 
Hartree Fock plus RPA theory. This observed fractional strength for valence orbitals agrees with 
predictions from nuclear matter calculations that include sizable short-range and tensor correla- 
tions° Moreover, the ~bserved energy dependence of the measured quasi-particle strength up to 
20 MeV below the Fermi edge agrees with that of the above-mentioned nuclear-matter calcula- 
tions. This observation should be extended by new measurements of the strength in the deepest- 
lying orbitals in order to verify the nuclear-matter predictions for the sizable depletion of these 
orbitals due to short-range correlations. Such measurements, together with those of high-mo- 
mentum components well above the Fermi momentum, will be possible only with the new gen- 
eration of CW machines now being commissioned at Amsterdam, Mainz and MIT/Bates. 
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Figure 1.1: Total spectroscopic strength observed for proton knockout as a function to the
excitation energy (quoted from Ref. [10]). Em is the mean excitation energy for each orbit
and ϵF is the Fermi energy. The solid and the dashed lines show the strengths calculated for
nuclear matter with a realistic nucleon-nucleon interactions without and with surface effects,
respectively.
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As a measure of the asymmetry of the neutron and proton
binding, and that of their Fermi surfaces (that strongly affects
the absolute cross sections), we use the parameter !S. If there
is just one populated final state α, the residue ground state,
then !S = Sn − Sp for neutron removal and !S = Sp − Sn

for proton removal. When there are several residue final states
populated then the separation energy of the removed particle
in !S is replaced by the weighted average of their S∗

α , each
weighted by their calculated partial cross sections, σth(α).
With this convention, the removal of the most strongly bound
(weakly bound) nucleons from proton-neutron asymmetric
nuclei have large positive (negative) values of !S.

For each projectile, the calculation of σth involves several
inputs: (i) realistic spectra and C2S values, (ii) realistic residue-
and nucleon-target complex optical potentials and their derived
elastic scattering S matrices, that enter the eikonal model
impact parameter integrals for σ inel

sp and σ elas
sp [3] and localize

the reactions spatially, and (iii) realistic geometries for the
radial wave functions (overlap functions) for the initial bound
states of the removed nucleons in the projectile ground state.
In exotic nuclei, many of these parameters are not fully
constrained by experimental information. The strategy used
in the analyses discussed here is to employ the best available
shell-model calculations for input (i), while the shapes and
radial size parameters of the optical potentials and overlaps, for
inputs (ii) and (iii), are constrained by the use of Hartree-Fock
(HF) calculations of neutron and proton densities for the
residues and the rms radii of orbitals in the HF mean field.
The procedure used, applied to all of the data sets shown here,
is detailed in Ref. [5]. We note that, for most of the data sets,
which are for beam energies near 100 MeV/nucleon on a
9Be target, the neutron- and proton-target potentials and their
(eikonal) elastic S matrices are in fact essentially common to
the analyses of a large number of data sets for reactions for
projectiles with a wide range of nucleon separation energies.

The first consistent analyses using this approach for
data involving the removal of a well-bound nucleon, e.g.,
a neutron with separation energy Sn ≈ 22 MeV from the
proton-rich nucleus 32Ar [6], now denoted 32Ar(−n) with
!S ≈ +20 MeV, showed that the cross section ratio Rs was
unexpectedly small, with Rs = 0.24(3). Reactions involving
weakly bound nucleons, on the other hand, e.g., the 15C(−n)
reaction with Sn = 1.22 MeV and !S ≈ −20 MeV, were
consistent with Rs values near unity [7]. A first systematic
analysis and compilation of available data was presented in
2008, in Fig. 6 of Ref. [5]. This incorporated a previous
analysis [8] of existing high-energy data for the 12C(−n, − p)
and 16O(−n, − p) reactions, that showed consistency, for
these stable nuclei, with analogous Rs values deduced from
high-energy electron-induced proton knockout. These data
points, with relatively small |!S|, are clustered near the
center of Fig. 1. These suppressed Rs values, from many
electron-induced proton knockout studies on stable nuclei,
have been carefully studied and quantified; see, e.g., the review
of Ref. [9]. Principally, these result from nucleon single-
particle strengths in low-lying shell-model configurations
being depleted due to their mixing (a) with higher-lying shells,
by correlations involving the strong short-range behavior of
the nucleon-nucleon interaction, and (b) with more collective
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FIG. 1. (Color online) Compilation of the computed ratios Rs of
the experimental and theoretical inclusive one-nucleon-removal cross
sections for each of the projectile nuclei indicated. Rs is shown as a
function of the parameter !S, used as a measure of the asymmetry
of the neutron and proton Fermi surfaces. The red points are for
neutron-removal cases and the blue points those for proton removal.
The solid (black) squares, deduced from electron-induced proton
knockout data, are identical to the earlier compilation of Ref. [5].

configurations involving surface and/or volume correlations of
longer range. Exotic beam data have allowed an exploration of
the behavior of Rs for a much-extended range of |!S| values
away from the stable nuclei, and to include both neutron- and
proton-removal reactions.

A compilation of the results of the (residue bound-states-
inclusive) data and analyses, that use the common eikonal
model calculations with shell-model effective interactions
and model spaces appropriate to the (N,Z) of the system,
are shown as calculated Rs = σexpt/σth values versus !S
in Fig. 1. Here, the reaction data shown in the earlier
Fig. 6 of Ref. [5] are supplemented by the measurements
and analyses for 57Ni(−n) [10], 22Mg(−n) [11], 9Li(−n),
9C(−p), 10Be(−n,−p), 10C(−n) [12], 36Ca(−n,−p) [13],
19,20C(−n) [14], 36,38,40Si(−n,−p) [15], 28Mg(−p) [16], and
14O(−p) [17]. The value of Rs for this latter 14O(−p) data
point (measured on a carbon target), with its relatively large
error bar, was recalculated here to be consistent with the
HF methodology used for the other analyses. This single-
particle cross section is calculated to be 27.76 mb. So,
based on the reported σexpt = 35(5) mb, when using the
ground-state to ground-state spectroscopic factor C2S = 1.55
of the Warburton-Brown two-body matrix element (TBME)
shell-model Hamiltonian (WBT) (e.g., Table I of Ref. [18]),
we deduce that Rs = 0.76(11), as shown in Fig. 1. The value
is smaller than, but is consistent with, the value estimated in
Ref. [17].

It should also be noted that the 10Be, 36Ca, and 36,38,40Si
cases, as for the earlier 28S(−n, − p) and 24Si(−n, − p) data
of Ref. [5], include data for the removal of nucleons of
both the excess (weakly bound) and the depleted (strongly
bound) species from the same projectile, with experimental
(systematic uncertainty) advantages. Compared to the earlier

057602-2

Figure 1.2: Reduction of the measured nucleon knockout cross sections relative to theoretical
values as a function of the difference in separation energies of the two nucleon species, ∆S
(quoted from Ref. [13]).
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CHAPTER 1. INTRODUCTION

It is quite unnatural. This picture directly contradicts to an intuitive model that the weaker
binding reduces the occupation number.

Several studies were carried out to investigate the reduction factor by using other reactions.
Consequently, the dependence is not observed in the (p, d) neutron transfer reaction at the energy
of 33 MeV/u [14] and in the (d, t) and (d,3He) reactions at the energy of 18.1 MeV/u [15]. Figure 1.3
shows the Rs for argon isotopes obtained by using both of transfer reactions (red circles) and
knockout reaction with heavy-ion injections (blue triangles). There is clear discrepancy of Rs
between n-transfer and n-knockout measurements. Figure 1.4 shows the Rs for oxygen isotopes
obtained by using (d,3 He) and (d, t) reactions. For this time, the reason of the difference of the
correlation is not well understood. Therefore more information is needed to understand the
problem by using other reaction probes.

For this purpose, the (p, 2p) reaction would be the best probe because of its simple reaction
mechanism and reliable theoretical descriptions. In this work, the author determined Rs for the
ground states of 14O (∆S = −18.552 MeV) and 24O (∆S = 22.92 MeV) with the (p, 2p) reaction.
14O and 24O comes in the far left and the right region of Rs in Figs. 1.2, 1.3, and 1.4. Since
the reaction is well described by theoretical model, the presented data will be a large help for
understanding the reduction mechanism of the single-particle strength.

1.2 Spin-orbit splitting in nuclei

In association with the single particle nature of nuclei, the magic number is one of the hottest
topics in nuclear physics. The magic number had been considered to be constant through the
study on stable nuclei for a long period since Mayer and Jensen’s time. The development of the
experimental method using radioactive isotope (RI) beams brings the nuclear physics toward
new horizons [16]. It enables experiments with unstable nuclei and many dramatic phenomena
which cannot be predicted from the study of stable nuclei were discovered. One of those is
the disappearance of conventional magic numbers [17, 18] and the appearance of new magic
numbers [19, 20] in unstable nuclei. The change of spin-orbit coupling, which was introduced
to explain the origin of magic numbers, is cited as one of major factors.

The spin-orbit coupling arises mainly from three microscopic origins [21, 22]. Two body
LS force accounts for approximately half of the coupling. The remaining half is shared by the
two-body tensor force which dominated by one-pion exchange [23, 24, 25], and three-body
forces [26] by two-pion exchange.

Usually the spin-orbit potential is approximated to be proportional to the first derivative of
the central potential:

Vso(r) ∝ −1
r

d
dr

Ucent(r) l⃗ · s⃗. (1.4)

In unstable nuclei, the binding is weaker than the stable nuclei and as a result, the strength
of the spin-orbit coupling becomes smaller. Several theoretical calculations predicted that the
energy splitting between spin-orbit partners becomes smaller in drip-line nuclei because of the
weakening of spin-orbit coupling [27].

The spin-orbit coupling cannot be directly measured through experiments but the spin-orbit
splitting, which results from the spin-orbit coupling, is a experimentally measurable value and
directly linked to the strength of the spin-orbit coupling. The spin-orbit coupling is defined as
the energy difference between the spin-orbit partner, or the spin-doublet, in independent particle
model. As illustrated in Fig. 1.5, the single-particle orbits in extreme of the independent particle
model are generally fragmented into a bunch of shell model states through the configuration
mixing due to the residual interaction. All the states which are observed in the experiment
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Figure 1.3: Reduction factors Rs for argon isotopes as a function of the difference between
neutron and proton separation energies, ∆S (quoted from Ref. [14]). With the transfer reaction
(red circles), No significant dependence on ∆S which was observed in the knockout reaction
measurement with heavy ions (blue triangles) was not seen. The red dashed line is an eye guide
drawn by the author.

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
The authors thank N. T. Timofeyuk and N. Alamanos for

enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
study. This work was supported by LIA COPIGAL and
POLONIUM PHC under Grant No. 22470XA. Theoretical
work was supported by the UK’s STFC Grant No. ST/
J000051/1.
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Figure 1.4: Reduction factors Rs for oxygen isotopes as a function of the difference between
neutron and proton separation energies, ∆S (quoted from Ref. [15]).
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Figure 1.5: Fragmentation of single-particle orbit and effective single particle energy.

are after the fragmentation, therefore the energy of the “original” single-particle state have to
be estimated in some fashion. For that purpose, the effective single particle energy (ESPE)
is introduced. One of the definition of ESPE is the spectroscopic-factor-weighted mean of
excitation energies of the states having certain Jπ:

ESPE =
∑

ExC2Si∑
C2Si

. (1.5)

Here, Ex is the excitation energy for each state and C2Si is the spectroscopic factor which signifies
how strong the single particle nature remains in the states of atomic nuclei as mentioned in the
previous section.

In this study, the spin-orbit splitting is defined as follows:

∆Eso = ESPE j< − ESPE j>. (1.6)

j< and j> stand for the states of spin-doublet with J = L − 1/2 and L + 1/2.
The author has carried out the experiment for the determination of 0p spin-orbit splitting,

i.e. the ESPE difference between 0p1/2 and 0p3/2 orbits, in oxygen stable isotopes 16O and 18O [28]
by using the exclusive measurement of the (p, 2p) reaction in normal kinematics. The spin-orbit
splitting in 18O is reduced compared to that of 16O both in (p, 2p) and (d,3He) experiments.
The difference of (p, 2p) and (d,3He) is due to the reduction of the excitation energy acceptance
of (d,3He) above ∼ 10 MeV due to the momentum matching. There is a large change of the
spin-orbit splitting even in stable isotopes, therefore more dramatic changes are expected in
unstable isotopes. The determination of the spin-orbit splitting in unstable isotopes is one of
the goals in this study.

1.3 Reaction probes for single-particle/hole states

For the study of single-particle/hole states of nuclei, selectivity to the single-particle/hole states
is required for the reaction probes. In addition, the sensitivity to the total angular momentum
J is also needed. In this section, the reactions which are used for the study of single-particle
orbits are briefly explained.
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Figure 1.6: 0p spin-orbit splitting in oxygen stable isotopes [28]

Nucleon transfer reactions

The nucleon transfer reaction includes not only pickup reactions but also stripping reactions.
Pickup reactions such as (p, d), (t,α) or (d,3He) are applied to investigate single-particle states.
while stripping reactions such as (d, p), (3He,α), or (3He,t) are for single-hole states. For the anal-
ysis, usually Distorted-Wave Born Approximation (DWBA) method is used for the discussion
of cross sections and angular distributions [29, 30]. The angular distribution of the cross section
is used to the determination of the orbital angular momentum l. For single-nucleon orbits, J
can also be deduced from the (vector) analyzing power Ay. Ay is a quantity which indicates the
spin-asymmetry of the reaction and expressed as1

Ay(θ) =
C
P

(
σ↑(θ) − σ↓(θ)
σ↑(θ) + σ↓(θ)

)
(1.7)

where σ↑(θ) and σ↓(θ) are the cross sections of the reaction with the spin-polarized beam, P is
the polarization of the beam, and a constant factor C is 1 for spin 1/2 and 3/2 for spin 1 particles.

Figure 1.7 shows the angular distributions of the vector analyzing powers for the transitions
with p1/2 and p3/2 orbits for the 40Ca(d, p)41Ca reaction [31]. In this figure, the vector analyzing
powers have opposite signs for p1/2 and p3/2 states and thus one can determine J for the states
whose J is not determined.

The nucleon transfer reactions have large cross sections at intermediate energy region
< 100 MeV/u because of the momentum matching condition [32]. Due to the its moderate
energy, the reaction becomes more sensitive to the surface region than the (p, 2p) reaction which
favors higher energy region.

The study of transfer reaction on unstable isotopes in inverse kinematics has some difficulty
due to its kinematics conditions. In spite of the low intensity of radioactive beams, the lower
energy of the recoil particle requires thinner reaction target and the resulting reaction yields
suffer from the thin target.

1Tensor polarization for spin 1 particle is ignored here.
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Figure 1.7: The angular distributions of the vector analyzing powers for the 40Ca(d, p)41Ca
reaction (quoted from Ref. [31]). The definition of Pd is identical to Ay for spin 1 particle in the
text.

Quasi-free electron-proton scattering

The quasi-free electron-proton scattering (e, e′p) was also used to investigate the single-particle
structure of nuclei. Since electrons have little interaction with neutrons, this reaction is sensitive
to the protons inside nucleus regardless of the neutron distribution. Alternatively, the electron
scattering cannot be applied for the neutron spectroscopy. Complete Distorted Wave Impulse
Approximation (CDWIA), in which the Coulomb distortion of the electron wave functions in
addition to the proton distorted waves are used, is applied for the analysis [33].

It is currently impossible to apply this reaction for the study of unstable isotopes because no
static electron target exists. If the intensity of the radioactive beam is much increased and the
collision to the electron beam is realized, then this technique will be available also for unstable
isotopes.

One-nucleon removal from heavy-ion beam

The one-nucleon removal from the intermediate- and high-energy projectile beams have been
used to obtain the single-particle strength in nuclei [34]. Usually the energies of γ rays measured
in coincidence are used to identify the excited state of the residual nucleus. The orbital angular
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1.4. SCOPE OF THIS WORK

momentum l is determined from the longitudinal momentum distribution. The reaction is ana-
lyzed with eikonal and sudden approximation [35, 36]. Gade et al. claim the model dependence
is less than that for transfer reactions which are free from the dependence coming from the
optical potentials and bound-state potentials. As shown in the previous section, the reduction
factor Rs of 0.6–0.7 is reproduced for stable nuclei while Rs for nuclei far from β-stability has
strong dependence on the proton/neutron binding energy difference [12].

The nucleon knockout reaction

The quasi-free (p, pN) scattering at high-energy >100 MeV is also used as a spectroscopic
tool [37, 38] for the single-hole states in nuclei. At the high energy, this reaction can be
understood as a simple single-step process. A nucleon is struck out by a nucleon and the
residual nuclei is left as a spectator. The reaction analyses are carried out with the distorted
wave impulse approximation (DWIA) method. Increased degree of freedom of three-body
kinematics offers the determination of the Fermi momentum, i.e. the momentum which the
struck nucleon had in the bound nucleus. It can be determined from the measured momenta
of two scattered nucleons. In addition, model independent determination of total angular
momentum J is capable with the use of polarized protons [39, 40] by measuring Ay in similar
way as transfer reactions.

With this reaction, one can probe a more inner part of nuclei than with transfer reactions
or with nucleon removal by heavy-ion. Therefore this reaction is suited to the investigation of
single-particle wave functions.

More details of this method are described in Chapter 2.

1.4 Scope of this work

The purpose of this thesis is to discuss how the spin-orbit splitting and the reduction of single-
particle strength change in oxygen isotopes as the change of neutron number. To investigate this
correlation, we chose the oxygen isotopes as the most suitable target. The essential point is that
one can obtain all the oxygen isotopes from the proton drip-line (13O) to the proton drip-line
(24O) at the RIKEN RI Beam Factory (RIBF). Therefore one can reach the extreme area in the
Rs−∆S correlation plot in a systematic measurement of an isotopic chain. ∆S is −18.55 MeV for
14O and 22.92 MeV for 24O, and they will be plotted in Fig. 1.2 in the extremely left (14O) and
right (24O) areas.

Both of two goals requires the information of the spectroscopic factor for each state. In order
to obtain the spectroscopic factors, the exclusive measurement of the cross section of O(p, 2p)
reaction was performed.

The experiment was carried out at the SHARAQ beam line at RIKEN RIBF. The primary
beam was 48Ca at ∼250 MeV/nucleon with typical intensity of ∼100 pnA. The secondary beams
of oxygen unstable isotopes were produced through the fragmentation reaction on 9Be and
selected by BigRIPS fragment separator. The secondary beam bombarded the solid polarized
proton target. The momenta of the two scattered protons were measured by using two detec-
tor set consisting of multi-wire drift chambers (MWDC) and plastic scintillators. The residual
nuclei were analyzed by using the SHARAQ magnets SDQ and D1. The detail of the experi-
mental setup is described in Chapter 3. The (p, 2p) proton-knockout event was selected by the
particle identification of both of two scattered particles and the residual nucleus. The proton
separation energy and the excitation energy of the residual nitrogen isotopes was calculated

9



CHAPTER 1. INTRODUCTION

from the momenta of two scattered protons. In Chapter 4, the detail of the analysis procedure
is described.

The spectroscopic factors of the ground states and the low-lying excited states were de-
termined by comparing the experimental cross section to the cross section obtained by DWIA
calculations with two kinds of optical models. Then the spin-orbit splitting for 14O was deduced.
The details are written in Chapter 5.

The polarized observables such as absolute polarization of the target and the analyzing
power of the reaction will not be treated in this thesis.

1.5 Contribution by the author

In the present work, the contributions of the author are as follows.

Development of the vacuum chamber for the polarized target

The author developed a new vacuum chamber for the polarized target because the old one
has too small windows to carry out the (p, 2p) reaction measurement. This development was
necessary to perform the large acceptance measurement of the (p, 2p) reaction with the polarized
target.

Preparation of the experiment

Since there had been no precedent experiment of the exclusive measurement of the (p, 2p)
reaction with the polarized target, the author prepared a simulation code for the calculation
of cross section and analyzing power to determine the optimal experimental conditions. The
author fully organized the preparation work for the SHARAQ04 experiment.

Data reduction

All the data reduction was fully done by the author. The author developed all the analysis
routines used in the data reduction, which are written in C++ with ARTEMIS [41] libraries
based on the ROOT analysis framework [42]. They are well-equipped for the re-utilization in
the analysis of future experiments with various detector setups. The author is also a contributor
of the ARTEMIS develop team.

Reaction analysis

The reaction analysis by using a computer code THREEDEE was done by the author. It covers
from the consideration of calculation parameter to the inspection inside the THREEDEE code.
The calculation framework used for the transformation of the kinematics, the integration of the
differential cross section, and the deduction of the momentum distribution in the acceptance of
the inverse kinematics measurement was developed from scratch by the author.
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Chapter 2

Quasi-free Proton Knockout Reaction

In the present work, we used the quasi-free proton knockout reaction on oxygen unstable
isotopes to study their proton single-particle orbits. In this chapter, the characteristics of the
quasi-free proton knockout reaction will be described.

2.1 Overview

The quasi-free nucleon knockout reaction is recognized as a powerful spectroscopic tool from
the late 1950’s for the investigation of the shell model of atomic nuclei. It has a strong selectivity
to populate the single-nucleon hole states and therefore the proton separation energies and the
orbital angular momenta of the hole states in a wide range of stable isotopes have been obtained
from this reaction.

Figure 2.1 shows the energy spectrum and the angular correlations of the 6Li(p, 2p)5He
reaction. In the left panel, two peaks corresponding to 0p (proton separation energy S ∼
4.8 MeV) and 0s hole-state (S ∼ 22.4 MeV) are well separated. The angular distribution of the
differential cross section for the p state (right panel) and that for the s state (middle panel) have
a clear difference depending on the orbital angular momenta of the populated hole states.

By this means, the energies and the angular momenta of single hole states have been
systematically studied. Figure 2.2 shows the separation energies and angular momentum
assignments of the hole states obtained from the systematic measurements of the quasi-free
scattering. The increasing tendency of separation energies of the hole states for each angular
momentum has been a strong basis for the verification of the nuclear shell model.

As the development of the spectrometer equipment and the polarized proton beam, the
measurement of the (p, 2p) reaction in normal kinematics has been much sophisticated. Fig-
ure 2.3 shows the spectra of the 40Ca(p⃗, 2p) reaction at an energy of 200 MeV/u [43, 44] measured
with two spectrometers in Research Center for Nuclear Physics (RCNP), Osaka University. A
very high resolution of ∼ 200 keV and the extremely clean reaction mechanism enabled the
observation of the fine structure of single-hole states which cannot be seen before. In addition,
the utilization of the spin-polarization (p⃗ indicates that the injected proton is spin-polarized)
realized the determination of total angular momentum J for fragmented states in highly excited
region. With the multipole decomposition analysis method, J information can be extracted
even for the continuum state [43, 44]. See Appendix A for the spin asymmetry and the J
determination with this reaction.
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results" multiplied by the indicated factors.

(At the cost of some uniformity we have tried to
represent the experimental results in a way similar to
the one of the origjnal publications; absolute values
for the cross section of the energy sharing experiments
are given in the references 14—16.) At zero separation
energy one sees the peak corresponding to the scatter-
ing on free protons which were present in the target;
because these protons are at rest, they cause a relatively
high contribution for certain angles. Only one group
of protons is knocked out of the 'He nucleus, and the
angular correlation with its maximum at the angle for
scattering on free protons at rest, corrected for the
separation energy (which from now on is called the
"free" scattering angle), clearly corresponds to the
momentum distribution of an s proton. The width of
the peak in the energy spectrum equals the experi-
mental energy resolution. The separation energy is
about 20 MeV, which means that the residual 'H
nucleus is left in its ground state or in a slightly excited
state. For this very light nucleus, it is surprising that
the results are, at least qualitatively, the ones predicted
by the shell model. The measurements clearly support
the soundness of the general interpretation described
in the preceding sections.
Figures 3—6 show the energy spectra and angular

correlation curves for quasi-free scattering experiments
Lsymmetric (p, 2p) and nonsymmetric (e, e'p)$ on
some 1p shell nuclei at the energies indicated in the
figures. The dotted lines in the angular correlation
curves represent calculated results, to which we will
come back later.
In the framework of the shell model, the 'Li nucleus

is an alpha-particle with one proton —neutron pair added
in the 1p shell; this picture is clearly in agreement with
the energy spectrum and the angular correlations given
in Fig. 3. The two added particles have increased the
separation energy of the 1s proton to 22 MeV and
decreased the cross section for the quasi-free process
because of the absorption. The spectrum also shows
the group of protons from the 1p shell with 4.8-MeV
separation energy.
The angular correlation curves confirm the above

assignments. Compared to other cases, the two maxima
in the 1p correlation curve are relatively high and

rather close to each other, which causes the minimum
at about 42' to be shallow. This is qualitatively under-
standable from the low separation energy of the 1p
proton, which causes a long exponential tail in its
single particle wave function, thus reducing the absorp-
tion and also introducing additional low momentum
components.
Because the ground state of 'I.i has J=1, one

would expect the hole in the 1s shell to couple with the
1p shell to give states with J=-,' and j=—,', occurring
with a probability ratio of 2:1.. Speculating that the
deformation of the 1s peak in Fig. 3 is caused by this
splitting, one would find that the state with an anti-
parallel coupling of the two angular momenta has an
energy of about 2 MeV lower than the state with a
parallel coupling.
Also the energy spectrum and angular correlations

for "C, given in Fig. 4, agree qualitatively with the
shell model expectations. The 1s proton is bound by
36 MeV, and the hole state has a width of about 13
MeV, evidently being already quite short lived. The
knocking out of a 1p proton is expected to lead to the
—',—ground state and to the ~, 2.13-MeV erst excited
state" of "B. The intensity ratio for intermediate
coupling is expected to lie between 0:1 and 1:2, the
extreme values being the ones for pure j—j and I.—S
coupling. The splitting is clearly indicated in Fig. 4,
the mentioned ratio being about 1:3.
For comparison Fig. 5 shows the spectrum of "C

from electron scattering with the geometry indicated
in the figure. This is the first experiment of this type
on a complex nucleus; the resolution is not yet high,
but the qualitative agreement with the (p, 2p) result
is evident. Also the number of events agrees well with
the expected one, "assuming the quasi-free scattering
model.
Basically the same features as in "C are shown by

the (p, 2p) results for "0 in Fig. 6. The separation
energy and the width of the 1s peak have increased
still more, as expected. The spin —orbit splitting in the

"F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, I
(1959).» Private communication from the Istituto Superiore di Sanity.
(Rome) group. '4

Figure 2.1: Energy spectrum and angular correlations of the differential cross section for
6Li(p, 2p)5He. (quoted from Ref. [37])
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From Fig. 11 it is clear that more experiments are
called for; not only (p, 2p) and (e, e'p) but also other
types of quasi-free experiments are being presently
performed or planned at several laboratories.

4. OPEN PROBLEMS

In this Section we discuss some problems which seem
to be, at the best, only partially understood.
Existence of hole states: The knock-out of nucleons

from strongly bound shells can result in quasi-stationary
states. It is not yet established whether is hole states
have been found in nuclei with A&40, though there
are indications for such states. These should be con-
firmed by electron experiments with sufhcient resolution
and statistics. The consistency of the interpretation of

the observed inner shell peaks should be verified
through detailed calculations, as their measured. in-
tensities are considerably larger than is expected from
simple absorption arguments.
Description of hole states: Another question which

immediately arises is that of how to describe most
practically the hole states in strongly bound shells. One
possible approximation is to start from the single-
particle picture corrected with a complex rearrange-
ment energy. The more natural one is to consider
directly the wave function of a hole. In this last ap-
proximation, one could try to treat directly the hole
propagator in a finite nucleus or to start from nuclear
matter, construct effective hole potentials dependent on
binding energy and nuclear matter density, and then
make a local approximation for finite nuclei, possibly

Figure 2.2: Separation energies and angular momentum assignments of the hole states obtained
from quasi-free scattering. (quoted from Ref. [38])
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2.2. THE (P, 2P) REACTION AT INTERMEDIATE ENERGY
4.5. 得られたヒストグラム 31

θ θ

図 4.12: 40Ca(~p,2p)反応によって得られたスペクトル。上図、中図は共に基底状
態のRecoil Momentumが 96.5MeV/cのスペクトル。下図は、同様に 7.0MeV/cの
chanceイベントを引いた後のスペクトル。

Figure 2.3: Separation energy spectrum of the 40Ca(p⃗, 2p) reaction. The red line shows the
background spectrum. (quoted from Ref. [43])

2.2 The (p, 2p) reaction at intermediate energy

The quasi-free nucleon knockout reaction at intermediate energies above ∼200 MeV/u is a
powerful spectroscopic tool for the study of single-hole states in atomic nuclei [37, 38]. In this
reaction, the single-step direct process is dominant [44] as well as in the (e, e′p) reaction [45] and
therefore it selectively populates nucleon single-hole states and leave no significant disturbance
on the residual nucleus. This nature leads to the reasonable reaction analysis on the basis of the
distorted wave impulse approximation (DWIA).

The big advantage of this reaction is that it has a relatively larger cross section in the
intermediate energy region compared to other probes used for single-particle/hole states such as
transfer reactions. It is due to the absence of the momentum matching condition and somewhat
longer mean-free path of nucleons inside nuclei originating from the high NN transparency at
this energy region. Figure 2.4 shows the kinetic energy dependence of the NN total cross section
σNN. The NN system becomes most transparent in the energy region of several hundred MeV.
The total cross section monotonically reduces as the kinetic energy grows up to ∼ 300 MeV, but
the reaction cross section increases in the higher energy region. It is mainly due to the pion
production reactions such as p + p→ p + p + π0 and p + p→ p + n + π+. Their thresholds are at
around 280 MeV.

There is another merit if this reaction is applied to the study of unstable isotopes which
inevitably requires inverse kinematics measurement. In inverse kinematics, the exclusive mea-
surement of the reaction with small momentum transfer such as transfer reactions is rather
difficult because the recoil particle has a low kinetic energy in the laboratory system and is
easily stopped in the reaction target. On the other hand, the quasi-free scattering has a larger
momentum transfer and the scattered nucleons have large kinetic energies. This feature makes
the exclusive measurement of the reaction relatively easy.
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Figure 2.4: Energy dependence of the NN total cross sections. The cross section values are taken
from the SAID database [46]. In the energy region of 200–500 MeV, NN system becomes most
transparent and thus one can study most inner part of nuclei by using nucleon probes.

2.3 Kinematics

As shown in the previous section, the (p, 2p) reaction in the intermediate energy region can be
understood as a direct knockout of a proton from the nucleus by injected one. Figure 2.5 shows
a schematic view of this reaction. A proton inside a nucleus is knocked out by the injected
proton and as a result, a single-hole state is populated. Due to the effect of proton absorption
inside nucleus, this reaction tends to take place more in the surface region than in the inner
region of the nucleus.

Provided that the target nucleus is at rest and the momentum of the injected proton is
known, the kinematics has six degrees of freedom that can be represented in two ways: {⃗k, Sp,
θNN,φNN} or {p⃗1, p⃗2}. Here k⃗ is the missing momentum, Sp is the separation energy of the proton,
θNN,φNN are the scattering angles in the two-nucleon (NN) center of mass system, and p⃗1, p⃗2 are
the momenta of the scattered protons. If we take the impulse picture, the missing momentum k⃗
can be considered as the momentum of a will-be-knocked-out proton, or the Fermi momentum,
in the nucleus. Hence if p⃗1 and p⃗2 were measured through the exclusive measurement, then the
kinematics can be completely determined.

In normal kinematics, the proton separation energy strongly depends on the total energy of
two scattered nucleons:

Sp ≃ Ei +mp − (E1 + E2), (2.1)

where Ei is the energy of the incident proton. This resolution is generally limited not only by the
energy resolution of detectors but also by the energy straggling which stems from the multiple
scattering process in the reaction target.
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2.4. DETERMINATION OF THE ORBITAL ANGULAR MOMENTUM

2.4 Determination of the orbital angular momentum

As mentioned above, the Fermi momentum of a proton in nucleus can be chosen by setting the
appropriate kinematic condition. Consequently one can obtain the momentum distribution of
the knocked-out proton inside nucleus by measuring with several kinematic conditions. As
the momentum distribution has strong connection with the orbital angular momentum, we
can determine the orbital angular momentum of the single-hole state populated through the
reaction.

2.5 Description in inverse kinematics

As seen above, the (p, 2p) reaction at high energy is a very effective spectroscopic tool. How-
ever, we cannot use this reaction for the study of unstable isotopes in the normal kinematics
condition as just described because it is quite difficult or impossible to prepare the target made
of radioactive isotopes due to its short lifetime. Even for ones with relatively longer lifetime, it
is extremely difficult and expensive to treat them as a target because of their radioactivity. In
this study, unstable isotopes were extracted as a fast beam and injected to a solid polarized pro-
ton target (inverse kinematics). Thus we can avoid the aforementioned difficulty with inverse
kinematics measurement.

In inverse kinematics measurements, a target nucleus with high energy is induced on a
proton as shown in Fig. 2.6. The most different point from the case of normal kinematics is
that the residual nucleus travels at a beam-like velocity. This feature enables the identification
of residual nuclei after the reaction. Although the detection of the residual nucleus is not
necessary in the study of the knockout reaction, we can investigate the physical quantities in
the correlation with their decay properties.

As is the case with normal kinematics, the kinematics can be completely determined from
the measurement of p⃗1 and p⃗2. The method to obtain the physical observables is described in
the following part of this section.

Hereafter, the suffixes 0, 1, 2, T, R indicate the scattered protons (1 and 2), target nuclei, and
residual nuclei, respectively. The observables in the laboratory frame (LF) and the beam-rest
frame (BF) are indicated without and with primes except for k (e.g. E1 is the energy of the 1st
scattered proton in LF and E′1 is that in BF).

To begin with, let’s assume the kinematics in BF. The conservation law of energy in BF is

E′0 + E′T = E′1 + E′2 + E′R (2.2)
⇔ mp + T′0 +mT = 2mp + T′1 + T′2 +mR + T′R (2.3)
⇔ mp +mR −mT = T′0 − T′1 − T′2 − T′R. (2.4)

Separation energy can be defined as the difference of sum of masses between before and after
the reaction. Therefore,

Sp := (2mp +mR) − (mp +mT)
= mp +mR −mT

= T′0 − T′1 − T′2 − T′R

= T′0 − T′1 − T′2 −
k2

2mR
. (2.5)
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Figure 2.5: Schematic view of the (p, 2p) reaction in normal kinematics. A proton is knocked
out from the nucleus by an injected proton with high energy.

Figure 2.6: Schematic view of the (p, 2p) reaction in inverse kinematics. In contrast to normal
kinematics, the residual nucleus travels in very forward angle after the reaction.
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2.5. DESCRIPTION IN INVERSE KINEMATICS

Since we can directly measure the observables only in LF, Eq. (2.5) should be represented by
using the observables in LF by Lorentz transformation from LF to BF:

E′ = γ
(
E − βp∥

)
(2.6)

⇔ T′ = (γ − 1)m + γ
(
T − βp∥

)
, (2.7)

where γ =
(
1 − β2

)−1/2
= ET/mT. By using this,

Sp = T′0 − T′1 − T′2 −
k2

2mR

= (γ − 1)mp − (γ − 1)mp − γ
(
T1 − βp1∥

)
− (γ − 1)mp − γ

(
T2 − βp2∥

)
− k2

2mR

=
(
1 − γ) mp − γ (T1 + T2) + βγ

(
p1∥ + p2∥

)
− k2

2mR
. (2.8)

k2 can also be represented by using LF observables. The conservation law of momentum in BF
is

p′0 + p′T = p′1 + p′2 + p′R
⇔ k = p′1 + p′2 − p′0. (2.9)

By using Lorentz transformation of momentum from BF to LF

p⊥ = p′⊥, (2.10)

p∥ = γ
(
p′∥ + βE′

)

⇔ p′∥ = γ
−1p∥ − βE′, (2.11)

the components of k can be represented as

k⊥ = p1⊥ + p2⊥, (2.12)

and

k∥ = p′1∥ + p′2∥ − p′0∥
= γ−1

(
p1∥ + p2∥ − p0∥

)
− β

(
E′1 + E′2 − E′0

)

= γ−1
(
p1∥ + p2∥

)
− β

(
mT −mR −

k2

2mR

)
. (2.13)

Since k∥ includes itself implicitly in the last term, iterative method is needed to the calculation of
k2. The k2/2mR term is not negligible. For example, in 14O case, mR ≃ 13 GeV and k ≃ 100 MeV/c.
Therefore k2/2mR ≃ 0.4 MeV.

The description of physical quantities in inverse kinematics has a kind of duality relationship
to those in normal kinematics. Table 2.1 shows the most essential experimental observable for
each physical quantity in normal and inverse kinematics. For example, the magnitude of the
proton separation energy is strongly reflected in the opening angle ∆θ = θ1 − θ2 in the inverse
kinematics measurement.
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Table 2.1: Essential experimental observables for the determination of physical quantities in
normal and inverse kinematics.

Normal kinematics Inverse kinematics
Sp E1 + E2 θ1 − θ2
k∥ θ1 − θ2 E1 + E2
k⊥ E1 − E2 E1 − E2

2.6 Consideration of the beam energy in the experiment

The present experiment was proposed to measure the spin asymmetry of the (p⃗, 2p) reaction in
order to determine the spin-orbit splitting of 0p proton orbits in oxygen unstable isotopes. For
this purpose, the intermediate energy around 250 MeV/u is the most appropriate because the
spin correlation coefficient Cyy for the free NN scattering in this energy region becomes very
large in wide region of the scattering angle and it results in the large spin asymmetry.1

1However, the analysis on polarized observables will not be treated in this paper because of short of the statistics
in the present experiment. For the detail mechanism of the spin asymmetry of the (p⃗, 2p) reaction, see Appendix A.
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Appendix A

Spin Asymmetry of the (p, 2p) Reaction

The spin-parity (Jπ) of the state can be determined by the strong Jπ dependences of the cross
section and the analyzing power of the (p⃗, 2p) reaction. In energy region of 200–300 MeV, it is
known that the spin-up proton is more likely to react with spin-up protons than with spin-down
ones. Figure A.1 shows the spin correlation coefficient Cy,y for the proton-proton scattering.
Positive Cy,y indicates that scattering occurs mostly for spin-parallel protons and negative Cy,y
for spin-antiparallel protons. This fact leads the Jπ dependence of the (p⃗, 2p) reaction (Maris
effect [40]).

For example, if a proton with spin-up is injected, it is likely to react with spin-up protons in
the nucleus for aforementioned reasons. There are two possible total angular momentum for
a given orbital angular momentum l. One has the total angular momentum j> = l + 1/2, and
the other j< = l− 1/2. From a classical perspective, they revolve in the opposite direction in the
nucleus as shown in Fig. A.2. Assume the kinematics of a head-on collision with the resulted
lower-energy proton scattered to the right as in Fig. A.2. In the scattering with a j> proton
(Case (a) in Fig. A.2), the low energy proton has to travel a longer path in nucleus than in the
scattering with a j< proton (Case (b)). Since the mean free path is shorter for low energy protons,
a longer path in nucleus increases the reabsorption probability of the low energy proton and
hence reduces the differential cross section of the (p, 2p) reaction. Thus, the spin asymmetry
appears. One can determine the Jπ value from the measurement of the spin asymmetry, or
vector analyzing power Ay, in combination with the cross section. Here Ay is defined as

Ay =
1
P
σ↑ − σ↓
σ↑ + σ↓

, (A.1)

where P is the proton polarization and σ↑(↓) is the (differential) cross section of the reaction with
spin-up (spin-down) beam.

It is empirically known that the difference of the analyzing power for the spin doublet
becomes large when the scattered angles of two protons are set to the same angle. Figure A.3
shows the differential cross section and the analyzing power for the 16O(p⃗, 2p) reaction at an
incident energy of 200 MeV corresponding to the 0p1/2 and the 0p3/2 proton knockout measured
by Kitching et al. [111]. The scattering angles of two protons were set to 30◦. The analyzing
powers for the 0p1/2 and the 0p3/2 proton knockout have opposite sign and a large difference
between them. Thus one can easily identify the Jπ values of the discrete states from the
momentum dependence of the cross section and the analyzing power.

This method can be applied also to the strengths in the continuum region. The strengths are
decomposed into contributions from different orbits by the multipole decomposition analysis
(MDA) [44, 43].
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Figure A.1: Spin correlation coefficient Cy,y for the pp scattering for several kinetic energies
in the laboratory system. θcm is the scattering angle in the center-of-mass system. Large
positive/negative Cy,y indicates that the spin-parallel/antiparallel coupling is favorable.

Figure A.2: Jπ dependence of the (p⃗, 2p) reaction. In this case, the traversing path of the proton
with low energy, which will be scattered to the right, is longer in the scattering with the j>
proton (Case (a)) than in that with the j< proton (Case (b)). The difference of the traversing
paths results in that of the differential cross sections and therefore the Jπ dependence appears.
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5. Results and conclusions 

A representative sampling of the measured analyzing power and cross section 
results is shown in figs. 4 through 13. The errors shown are statistical only and where 
they are not visible, they are smaller than the data points. The systematic error in the 
analyzing powers is estimated to be *5% arising mainly from uncertainty in the 
polarization of the incident beam and from uncertainty as to where to cut the missing 
energy spectrum (energy resolution effect). The systematic error in the absolute cross 
sections stems from the uncertainty in the calibration of the ion chamber (=t5%), the 
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Figs. 4 to 13. Plots of the measured asymmetries and cross-sections for ten of the angle combinations set in 
the experiment, together with curves representing DWIA calculations using parameter set A (see table 1) 
as described in the text. The abscissa is the kinetic energy of one of the final-state protons, and the ordinate 

is the cross section as defined by expression (1) in the text. 

Figure A.3: Differential cross section and analyzing power for the 16O(p⃗, 2p) reaction measured
by Kitching et al. [111]. The abscissa is the kinetic energy of one of the final-state protons.
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Appendix B

Transformation of the Differential Cross
Section

Consider to calculate the differential cross section in inverse kinematics from that in normal
kinematics.

d3σ
dE1dΩ1dΩ2

=

∣∣∣∣∣∣
∂(E′1,Ω

′
1,Ω

′
2)

∂(E1,Ω1,Ω2)

∣∣∣∣∣∣ ·
d3σ

dE′1dΩ′1dΩ′2
(B.1)

=

∣∣∣∣∣∣
∂(E′1,Ω

′
1)

∂(E1,Ω1)

∣∣∣∣∣∣

∣∣∣∣∣∣
∂(Ω′2)
∂(Ω2)

∣∣∣∣∣∣ ·
d3σ

dE′1dΩ′1dΩ′2
. (B.2)

Firstly, let’s consider the general case. Assume the transformation between the n-
dimensional spaces (x0, · · · , xn) and (y0, · · · , yn) which can be represented by using differentiable
vector functions Ai and Bi as follows:

Ai(x0, · · · , xn) = Bi(y0, · · · , yn). (B.3)

∂yi

∂xj
is obtained by operating

∂
∂xj

on the both side of Eq. (B.3):

∂Ai

∂xj
=
∂Bi

∂xj
(B.4)

⇔ ∂Ai

∂xj
=

∑

k

∂Bi

∂yk

∂yk

∂xj
. (B.5)

In matrix form,
P = QJ, (B.6)

where

Pij =
∂Ai

∂xj
,Qij =

∂Bi

∂yj
, and Ji j =

∂yi

∂xj
. (B.7)

If Q is a regular matrix, Jacobian matrix J can be obtained as follows:

J = Q−1P. (B.8)
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APPENDIX B. TRANSFORMATION OF THE DIFFERENTIAL CROSS SECTION

The transformation from normal to inverse kinematics can be represented in the following
equations:

p′ cosθ′ = γβE + γp cosθ, (B.9)
p′ sinθ′ cosφ′ = p sinθ cosφ, (B.10)
p′ sinθ′ sinφ′ = p sinθ sinφ. (B.11)

In this case,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂E′

∂E
∂E′

∂ cosθ
∂E′

∂φ
∂ cosθ′

∂E
∂ cosθ′

∂ cosθ
∂ cosθ′

∂φ
∂φ′

∂E
∂φ′

∂ cosθ
∂φ′

∂φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.12)

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γβ +
γE cosθ

p
γp 0

E
p

sinθ cosφ −p cotθ cosφ −p sinθ sinφ

E
p

sinθ sinφ −p cotθ sinφ p sinθ cosφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.13)

and Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E′

p′
cosθ′ p′ 0

E′

p′
sinθ′ cosφ′ −p′ cotθ′ cosφ′ −p′ sinθ′ sinφ′

E′

p′
sinθ′ sinφ′ −p′ cotθ′ sinφ′ p′ sinθ′ cosφ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.14)

The determinants are

det P = −E′p, (B.15)
det Q = −E′p′. (B.16)

This det Q vanishes if and only if p′ = 0. p′ = 0 means the scattered nucleon was completely
stopped after the scattering and it will never be detected. Thus Q−1 exists whenever the scattered
nucleon is detected. Therefore,

det J = det Q−1 · det P (B.17)

= (det Q)−1 · det P (B.18)

=
p
p′
, (B.19)

Q−1 =
1

E′p′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p′2 cosθ′ p′2 sinθ′ cosφ′ p′2 sinθ′ sinφ′

E′ sin2 θ′ −E′ cosθ′ sinθ′ cosφ′ −E′ cosθ′ sinθ′ sinφ′

0 −E′ sinφ′

sinθ′
E′ cosφ′

sinθ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.20)

By using Eq. (B.8), (B.12), (B.13), and (B.20), matrix elements of J can be determined as
follows:

∂E′

∂E
=

Ep′

E′p

[
γ cosθ cosθ′ + sinθ sinθ′ cos

(
φ′ − φ

)
+
γβp
E

cosθ′
]
, (B.21)
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∂E′

∂ cosθ
=

pp′

E′
[
γ cosθ′ − cotθ sinθ′ cos

(
φ′ − φ

)]
, (B.22)

∂E′

∂φ
=

pp′

E′
sinθ sinθ′ sin

(
φ′ − φ

)
, (B.23)

∂ cosθ′

∂E
=

E
pp′

sinθ′
[
γ cosθ sinθ′ − sinθ cosθ′ cos

(
φ′ − φ

)
+
γβp
E

sinθ′
]
, (B.24)

∂ cosθ′

∂ cosθ
=

p
p′

sinθ′
[
γ sinθ′ + cotθ cosθ′ cos

(
φ′ − φ

)]
, (B.25)

∂ cosθ′

∂φ
= − p

p′
sinθ cosθ′ sinθ′ sin

(
φ′ − φ

)
, (B.26)

∂φ′

∂E
= − E

pp′
sinθ
sinθ′

sin
(
φ′ − φ

)
, (B.27)

∂φ′

∂ cosθ
=

p
p′

cotθ
sinθ′

sin
(
φ′ − φ

)
, (B.28)

∂φ′

∂φ
=

p
p′

sinθ
sinθ′

cos
(
φ′ − φ

)
. (B.29)

In present case, φ′ = φ can be assumed without losing any generality and then
∂ cosθ′

∂φ
and

∂φ′

∂ cosθ
vanish. Finally, Jacobian determinant in (B.1) is obtained by

∣∣∣∣∣∣
∂(E′1,Ω

′
1,Ω

′
2)

∂(E1,Ω1,Ω2)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂(E′1,Ω

′
1)

∂(E1,Ω1)

∣∣∣∣∣∣

∣∣∣∣∣∣
∂(Ω′2)
∂(Ω2)

∣∣∣∣∣∣ (B.30)

= det J1 ·
∂ cosθ′2
∂ cosθ2

∂φ′2
∂φ2

(B.31)

=
p1

p′1

p2
2

p′2
2

(
cosθ2 cosθ′2 + γ sinθ2 sinθ′2

)
. (B.32)

This Jacobian determinant can be both positive and negative. This fact means that
(S,E1,Ω1,Ω2) are not complete set for the specification in inverse kinematics, while (S,E′1,Ω

′
1,Ω

′
2)

are sufficient for normal kinematics: even if the separation energy (S), energy of one nucleon
(E1), and the scattering angles of two nucleons (Ω1,Ω2) are given, the energy of another nucleon
(E2) cannot always be uniquely determined in inverse kinematics.
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