性決定因子 R100 の接合伝達遺伝子 traM 及び 接合伝達開始点 oriT の周辺領域に関する分子遺伝学的解析 Molecular studies on the traM gene and the oriT region of

sex factor R100

博士論文

性決定因子R100の接合伝達遺伝子traM及び 接合伝達開始点oriTの周辺領域に関する分子遺伝学的解析

Molecular studies on the *traM* gene and the *oriT* region of sex factor R100

阿保達彦

東京大学大学院農学系研究科農芸化学専攻 平成3年度博士課程進学

指導教官 大坪栄一

論文の内容の要旨

農芸化学専攻

平成3年度博士課程進学

氏名 阿保達彦

指導教官名 大坪栄一

論文題目 性決定因子R100の接合伝達遺伝子traM及び 接合伝達開始点oriTの周辺領域に関する分子遺伝学的解析 (Molecular studies on the traM gene and the oriT region of sex factor R100)

序

細菌における有性生殖に相当する接合伝達は、供与菌細胞から受容菌 細胞へとDNAが一方向に伝達される現象である。その際、ある頻度で染 色体DNAが伝達され、受容菌内で遺伝子の組換えが起こることにより組 換え体が生じる。この接合伝達による組換えは、1946年にLederbergと Tatumによって初めて大腸菌において報告されて以来細菌の遺伝学的解析 に用いられ、そこからオペロン説、レプリコンモデルなどが生まれるな ど、今日の分子遺伝学の発展のきっかけを作った。

接合伝達においてDNAの供与菌となるのは性決定因子と呼ばれる伝達 性プラスミドを持つ菌であり、性決定因子上には接合伝達に必要な遺伝 子(tra遺伝子)が存在する。いわゆるF型プラスミドと呼ばれる一連の性 決定因子の一つであるR100は、F(F因子)とともにそのtra遺伝子の解析 が最も進んでいる伝達性プラスミドである。R100上には20以上のtra遺伝 子が約34キロ塩基対に及ぶ領域に遺伝子群をなして存在する。tra遺伝子 はその機能によって、性繊毛の形成、接合対の安定化、表面排斥、tra遺 伝子の発現制御、DNAの移動、の5つに分類することができる。このうちDNAの移動に関わるものとしてはtraM、traY、traD、traIがあり、また、シスエレメントとしてDNA伝達開始点(oriT)及びその周辺領域(oriT領域)がDNAの移動に必須である。TraY、TraI両タンパク質は協同してoriTにニックを入れる反応に関与していることが明らかとなっており、この反応には宿主タンパク質IHFも関与している。TraDタンパク質は接合伝達でDNAが通り抜ける伝達口を形成するものと考えられている。一方、traM遺伝子はDNA伝達に必須であることはわかっていたが、その具体的な機能はこれまで明らかにされていなかった。本研究は、traMが接合伝達において果たす機能を、TraMタンパク質の精製及びその性質の解析、traMの発現調節機構の解析、TraMの作用部位であるoriT領域の構造の解析を通して明らかにし、接合によるDNA伝達の開始及び制御機構を解明することを目的として行なったものである。

結果と考察

1. TraMタンパク質の精製と、その性質の解析

TraMタンパク質をTraM-コラーゲンーLacZ融合タンパク質の形で大 腸菌中で過剰生産し、LacZ(β -ガラクトシダーゼ)の基質アフィニティ ーを利用して精製した。コラゲナーゼでコラーゲンリンカーを切断する ことにより、この融合タンパク質中のTraM部分とLacZ部分とを分離する ことができた。精製したTraMはR100のoriT領域に特異的なDNA結合活性 を示した。その結合部位はoriT領域中の、プラスミドに特異性がある領域、 つまり他のF型プラスミドとの相同性が比較的低い領域内の4カ所に存在 し、それらを上流側からsbmA、B、C、Dと命名した。sbmAとB、及び sbmCとDはそれぞれ隣接するが、sbmBとsbmCとの間には宿主タンパク質 IHFの結合部位ihfBが存在した(図1)。本研究の結果とこれまでに得ら れている知見から、oriT領域には接合伝達に関わるタンパク質の結合もし くは認識部位が整然と並んで存在することが明らかとなった。最近R100 と類縁の性決定因子であるFやR1においてもR100と極めて類似したoriT領 域の構造が見られることが報告され、R100で明らかにしたこの構造が DNA伝達に重要な役割を持つことが支持されている。

TraMが膜に高い親和性を示すことは既に報告されており、それに加え てoriT領域中約150 bpにも及ぶ領域に結合することから、TraMはoriT領域 を膜近傍、おそらくはTraDによって形成されるDNAの伝達口の近傍に保 持することで一本鎖DNAの受容菌への移動を可能にする機能を果たして いるとの仮説をたて、これを、TraMのanchoring機能と名付けた。

2. traM遺伝子の発現制御

traMのプロモーターの探索を行なうためにtraMの開始コドンとlacZ遺 伝子との融合遺伝子(traM_{ATG}-lacZ融合遺伝子)を持つプラスミドを作成 し、それを保持する菌体のLacZ活性を指標にtraMの発現を調べた。その 結果、traMの上流には二つのプロモーターが存在することが明らかとな り、traM構造遺伝子に近い下流側のプロモーターを p_{M1} 、上流側のプロモ ーターを p_{M2} と命名した。 p_{M1} からの発現は p_{M2} からの発現に比べて約20%と 弱いものであった。菌体からRNAを調製し、プライマー伸長法により p_{M1} 、 p_{M2} 両プロモーターの正確な位置を決定したところ、 p_{M1} は sbm部位と traM 構造遺伝子の間に、また、 p_{M2} は sbm部位のうちの sbmC、 sbmDと重なるよ うに位置していた(図1)。 p_{M2} からの traMの発現は TraMを供給すること によってほぼ完全に抑制され、traMの発現に自己抑制が働くことが示さ れた。 p_{M2} に重なって存在する sbmC、 sbmDが存在しさえすれば抑制が起 こることから、これらの領域へのTraMの結合がRNAポリメラーゼの p_{M2} へ の結合を物理的に妨げるものと考えられる。実際にプライマー伸長法に よって調べると、in vivoでの p_{M2} からの転写産物の量はTraM存在下で大き く減少しており、自己抑制が転写レベルで行なわれることが示された。 一方、TraMが存在しない条件では、 p_{M2} のすぐ上流に存在するihfBを欠く か、または宿主菌がIHFを欠くかすると p_{M2} からの発現が増し、IHFが TraMの発現を部分的に抑制することが示された。IHFもTraM同様RNAポ リメラーゼの p_{M2} への結合を物理的に妨げるものと考えられる。 p_{M2} がTraM やIHFによって抑制を受けるのに対して、 p_{M1} はそれらによる抑制を受け なかった。

IHFに関しては、TraMの発現の抑制がその本来の機能であるとは考え にくい。むしろDNAに結合して湾曲させるというIHFの性質を考えると、 *ihfB*に結合したIHFはDNAを湾曲させることによりその両側に存在する *sbmA、BとsbmC、Dと*の間の立体配置的な距離を近づけ、その結果この 領域におけるTraM-IHF-TraM複合体の形成を可能にするものと考えられる。 この複合体形成がTraMのanchoring機能の発揮にとって重要なのであろう。

3. oriT領域の構造

oriT領域にはTral、IHF、TraYタンパク質の結合、または認識部位sbi、 ihfA、sbyAが存在し、これらのタンパク質がここにoriT-someと呼ばれる 複合体を形成することが、oriTに効率よくニックを入れるのに必要である と考えられている。一方、同様にoriT領域に存在するsbmA、B、ihfB、 sbmC、DからなるTraM-IHF-TraM領域については、それが実際にDNA伝 達に必須であるか否かといった情報はこれまで得られていない。そこで、 これらの部位が実際にDNA伝達に必要とされることをin vivoにおいて示 すために、R100のoriTの周辺を含む様々な長さのDNA断片を保持するプ ラスミドを作成し、Traタンパク質をトランスの位置から供給することに よってそれらが受容菌へと伝達されるかどうかを解析する系を構築した。 その結果、先に挙げたタンパク質の結合及び認識部位を全て含む領域が あれば伝達されること、また、TraM-IHF-TraM領域を完全に欠失させると 伝達されないことが明らかとなった。さらにTraM-IHF-TraM領域内の各結 合部位に塩基置換変異を導入したところ、どの結合部位の変異も伝達効 率を低下させたが、sbmA、ihfBに変異を導入したときに特に伝達効率が 大きく低下した。*ihfB*の変異による伝達効率の低下は、この領域で TraM-IHF-TraM複合体が形成され、それが高効率の伝達に必要とされると の仮説を支持する。また、*sbyAとsbmAと*の間に5、あるいは10 bpの塩基 配列を挿入したところphasing効果が見られ、*oriT*-someとTraM-IHF-TraM 複合体との間にはタンパク質間の相互作用が存在することが示唆された。 *sbmA*に変異を導入したときの伝達効率の低下が大きいことから、 TraM-IHF-TraM複合体中の*sbmA*に結合したTraMがその相互作用に特に重 要であろうと考えられた。

結び

本研究により、接合伝達の開始機構にはoriT-someとTraM-IHF-TraM複 合体とが共に関与していることが示された。一本鎖DNAの生成とその細 菌細胞間の移動というダイナミックな現象はこれら二つのタンパク質 -DNA複合体の高次の構造体が関わり、連関することで開始され、制御さ れていると考えられる。本研究の結果などから予想される接合伝達開始 時におけるoriT領域の模式図を図2に示す。

図2 接合伝達開始時のoriT領域周辺の模式図 ニックを入れるoriT-someと、この領域を保持するTraM-IHF-TraM 複合体とが形成される。ここには示さないが、TraDがこの近傍に DNA伝達口を形成すると考えられる。

目次	
第一章 序論	1
1. 接合伝達と性決定因子	2
2. プラスミドR100とF型プラスミド	4
3. F型プラスミドのoriT領域とDNA伝達に関与する遺伝子	10
第二章 TraMタンパク質の精製とその性質の解析	16
1. 序	17
2. 結果	17
(1) TraM*タンパク質の精製	17
(2) TraM*のoriT領域に対する結合	22
(3) TraM'のoriT領域に対する特異的結合	26
(4) oriT領域におけるTraMタンパク質の結合部位	29
3. 考察	33
(1) TraMタンパク質の精製	33
(2) TraMタンパク質のDNA結合性	34
(3) oriT領域におけるTraMタンパク質の結合部位	35
(4) TraMタンパク質の構造	36
(5) TraMタンパク質の機能	36
第三章 traM遺伝子のプロモーター領域の解析	40
1. 序	41
2. 結果	41
(1) traMのプロモーターの探索	41
(2) IHFはp _{sp} からの発現を一部抑制する	43
(3) TraMの <i>p</i> _M における自己抑制	45
(4) p _M 、 p _M の位置の決定	46
(5) TraMタンパク質はシスの位置にある自身のプロモーター	47
p _{M2} からの発現を抑制する	
(b) IraJはtraMの発現に影響を与えない 2 素 応	50
	53
(1) traMの二つのフロモーターの位置の決定	53
(2) traMの発現の抑制機構とその意味	53
第四章 oriT領域の構造と機能	56
1. 序	57
2. 結果	60
 (1) oriTプラスミド伝達系の構築 	60
(2) TraM-IHF-TraM領域はDNA伝達に必要とされる	63

(2)	65
(5) OFTI-Some こ ITAM-IFIF-ITAMI復日本との因常	70
3. 考除	70
(1) 011 / ノスミドム建示 (2) T-M HE T-M領域の機能	71
(2) ITAM-IFIF-ITAM限域の仮肥	73
(3) IHFの核能とInfilit の重要性	15
第五章 総括	76
第六章 材料と方法	82
1. 菌株とプラスミド	82
2. pABOプラスミドの構築	86
(1) TraM*の精製に用いたpABOプラスミド	86
(2) traMのプロモーターの解析に用いたpABOプラスミド	86
(3) TraMタンパク質を細胞内のトランスの位置から供給するプラスミド	87
(4) <i>oriT</i> 領域をもつpABOプラスミド	87
3. プラスミドDNAへの部位特異的塩基置換変異の導入	89
4. 合成オリゴヌクレオチド	91
5. 合成DNA断片の作成	93
6. 培地	93
7. 試薬、酵素、キット	94
8. プラスミドDNAの調製	95
9. 形質転換	95
10. DNA塩基配列の決定	95
1 1. TraM*の精製	96
12. タンパク質の定量	96
13. タンパク質のゲル電気泳動	97
14. DNAのゲル電気泳動	97
 β-ガラクトシダーゼ活性の測定 	97
16. ゲルシフト法	97
17. TraM*タンパク質のコラゲナーゼ処理	98
18. DNA断片の ³² Pによる5'末端標識	99
19. DNase 1フットプリンティング法	99
20. P1トランスダクション	100
21. RNAの調製	100
22. プライマー伸長法による転写産物の5'末端の決定	101
23. 接合伝達	101
参考文献	103
謝辞	112
	112

第一章 序論 -1-

1. 接合伝達と性決定因子

接合伝達は細菌細胞間の接合(conjugation)により一つの細菌細胞から他の細菌 細胞へとDNAが移動する現象である。接合伝達には細菌細胞内に存在する性決定因子 もしくは「伝達性」プラスミドと呼ばれる大型のプラスミドが関与し、性決定因子を 持つ菌が供与菌、持たない菌が受容菌となって、DNAの移動は常に供与菌から受容菌 への一方向に限られる。通常性決定因子は宿主菌染色体とは独立に存在し、接合によ って自身のみが伝達される。しかし性決定因子はある頻度で宿主染色体に組み込まれ る場合があり、そのような場合には宿主染色体DNAが接合によって伝達され、その結 果受容菌内において遺伝子の組換えが起こる。接合伝達は1946年にLederbergとTatum (1946a, b) によって初めて報告されたが、それはこの接合伝達による遺伝子組換え を大腸菌K-12株において検出したものであった。通常は二分裂による無性生殖を行な う細菌の異なる菌株間で遺伝子の組換えを引き起こすことから、接合伝達はまた細菌 の有性生殖とも呼ばれる。接合伝達においてどのような菌株に対しても供与菌となり 得ない菌株は稔性 (fertility) を持たないという意味でF、F-株に対して供与菌となり 得る菌株はF⁺と呼ばれて区別され、接合による遺伝子の伝達が常にF⁺株からF⁻株へ の一方向であることが示された(Lederberg et al., 1952; Hayes, 1953b)。F⁺株、F⁻株は それぞれ雄株、雌株とも呼ばれた。また、F⁺株よりもはるかに高効率で遺伝子組換え を起こす株が分離され、高頻度組換え(Hfr: High frequency of recombination)株と呼ば れた(Cavalli-Sforza, 1950; Hayes, 1953a)。接合による遺伝子の伝達の一方向性に加 えて、F⁺株がアクリジン色素処理等でF⁻株に変わり得ること(Hirota, 1960) などか ら、F⁺、F⁻の表現型の違いが性決定因子の有無によること、性決定因子がいわゆる エピソーム (episome;染色体外遺伝因子) であることが示唆され、後にMarmurら (1961)によって実際に性決定因子F(F因子)が染色体外DNA因子として同定され た。これに先立ちHfr株がF⁺株から生じることが示されており (Jacob and Wollman,

1961)、その生成機構としてはCampbell (1969)による λ ファージの染色体への組み 込みモデル (episome integration model)になぞらえたF因子の染色体への組み込みモデ ルが提唱され、後に証明されている。このモデルによればF⁺株中にはある確率でF因 子が宿主染色体に組み込まれた株が生じ、その伝達の際に宿主染色体も同時に伝達す ることで遺伝子組換えが起こるが、それに対してHfr株ではF因子が既に宿主染色体に 組み込まれている状態であるため高効率で遺伝子組換えが起こると説明できる。また、 F因子が宿主染色体上の遺伝子の一部を持つF'因子の生成も、Hfr株の染色体からF因 子が切り出される際に周囲の遺伝子を取り込んだものとして説明できる。以後、Hfr 株の接合伝達を利用することにより遺伝子のマッピングをはじめとする解析が可能と なり、それはバクテリオファージを用いる解析と共に、大腸菌の遺伝学を大きく進歩 させ、そこから細菌の環状染色体の概念や、オペロン説、レプリコンモデルといった 様々な重要な概念が提出され、現在の分子生物学の発展へとつながった。

性決定因子上には接合伝達に必要とされる遺伝子のほとんど全てが存在する。接 合伝達においてDNAは一本鎖の形で供与菌から受容菌へと移動し、それに伴い双方の 細胞内でDNAの相補鎖が合成される。そのため、接合伝達後は供与菌、受容菌ともに 性決定因子を持つことになり、その結果、DNAを受け取った受容菌は今度は供与菌と しての機能を持つこととなる。DNAの移動は常に性決定因子上の決まった点、伝達開 始点(origin of transfer: oriT)から始まり、二本鎖DNAの特定の鎖が受容菌へと移動す る。接合伝達に際しては細胞同士が直接に接触し、接合対を作ることが必要であるが、 それは細胞質の融合を伴わず、例外的なものを除き供与菌、受容菌相互間のタンパク 質の移動は無い。また、多くの場合接合伝達に先立って性繊毛と呼ばれる特殊な細胞 外器官が形成されることが必要である(総説:Willetts and Wilkins, 1984; Ippen-Ihler and Minkley, 1986; Willetts and Skurray, 1987; Ippen-Ihler and Skurray, 1987; Ippen-Ihler and Skurray, 1993)。

1946年にLederbergとTatumによって初めて発見された大腸菌の接合伝達における 性決定因子はFまたはF因子(fertility factor:稔性因子)と呼ばれ、後にその本体がブ ラスミドであることが示された(Marmur et al., 1961)。その後腸内細菌の薬剤耐性が 細菌間で伝搬されるという現象が見つかったのをきっかけにR100が(Nakaya et al., 1960)、次いでR1、R6といったR因子(resistance factor:薬剤耐性因子)が薬剤耐性 を決定する因子として分離され(Meynell and Datta, 1966; Lebek, 1963)、それらのR因 子に加えてColBなどのコリシンプラスミドも伝達性プラスミドであることが判明する (Ozeki and Howarth, 1961)など、現在までに数多くの性決定因子が発見されており

(Appendix B in Bukhari et al., 1977)、その宿主や受容菌となり得る菌の種類も多岐に わたることがわかっている。実際、自然界から分離されるプラスミドのうち全長が約 50キロ塩基対(kb)以上の大型のものは、そのほとんどが伝達性である。しかし小型 のプラスミドの中にもColE1プラスミドのように、自分自身では伝達能を持たないが、 性決定因子Fの共存下で伝達されるようなものも多い。性決定因子の自律的な伝達を transferと呼ぶのに対し、ColE1などの小型のプラスミドが性決定因子の存在下で伝達 される現象はmobilizationと呼ばれる。これまでに分離された性決定因子はいくつかの 不和合性グループ (incompatibility group: Inc) に分類され、それぞれのグループ内の もの同士は類似した接合伝達の機構を持つことが知られている(総説: Willetts and Skurray, 1980)。例えばFはIncFI、R100やR1、R6はIncFIIに属しており、これらは IncFと呼ばれるグループ内のサブグループである。その他にもIncl、IncN、IncPなど の様々な不和合性グループの存在がこれまでに示されている。これらはそれぞれ互い に異なる接合伝達機構を持ち、その中には、部位特異的な遺伝子組換えによって受容 菌の特異性を変えるR64 (Komano et al., 1987)、性繊毛を形成するかわりに性フェロ モンによって誘導される接合凝集によって伝達を行なうEnterococcus faecalisのpAD1及 びその類縁のプラスミド(Clewell, 1993)、さらには広範なグラム陽性菌の染色体中 に見られ、接合伝達によって自身のみが伝達されることによって受容菌の染色体上に 転移するTn916などに代表される接合伝達性トランスポゾン(conjugative transposon) (Clewell and Flannagan, 1993) など、様々な接合伝達様式が見られる。

2. プラスミドR100とF型プラスミド

R100は1960年に日本においてはじめてShigella flexneriから性決定因子として分離 された薬剤耐性を示すプラスミドであり、またNR1、R222等とも呼ばれる(Nakaya et al., 1960)。多剤耐性を示すShigella flexneriの薬剤耐性がそのまま一揃い同時に他の細 胞に移るという事実からこれらの薬剤耐性が一つの性決定因子に由来すると予測され (Mitsuhashi et al., 1960; Watanabe et al., 1960, 1961)、後に実際にプラスミドR100が同 定された。図1-1に示すようにR100は水銀イオン、スルフォンアミド、ストレプト

図1-1 R100及びtra遺伝子群の構造と遺伝子地図

図の下部にR100の構造が示してある (Taylor et al., 1977; Womble and Rownd, 1988) 。白抜きの四 角は挿入配列IS 1及びIS 10を表す。IS 10はtet遺伝子をはさんで二つ存在し、Tn 10を構成する。oriV、 oriTはそれぞれ複製開始点及びDNA伝達開始点である。finOは接合伝達の抑制遺伝子である。mer、 sfr、str、cml、tetとあるのはそれぞれ水銀イオン、スルフォンアミド、ストレプトマイシン、ク ロラムフェニコール、テトラサイクリンに対する薬剤耐性遺伝子を示す。merはTn 21に、tetは Tn 10に運ばれる。

R100の外側に示したta遺伝子領域(ta)を図の上部に拡大して示し、そのうちonTに近い領域に ついてはさらに拡大して最上部に示した。水平な矢印は転写単位を、数字はキロ塩基対(kb)単 位の座標を表す。矢印の下に各ta遺伝子を示してある。onTはDNAの伝達開始点、finP、finOはと もに接合伝達の抑制遺伝子である。M、J、Y、A、L等の大文字のアルファベットはそれぞれtraM、 traJ、traY、traA、traL等のtra遺伝子を表している。d、cはそれぞれ機能不明のオープンリーディン グフレームorfD、orfCを表す(Yoshioka et al., 1990)。traV、traW、traU、traUはR100では確認は されていないが、R100と相同性の高いtra遺伝子群を持つFに存在することからR100にも存在する と推定される(総説:Willetts and Wilkins, 1984)。各tra遺伝子の機能は色分けして示してある。 青は性繊毛の形成、赤はDNAの伝達、緑はtra遺伝子の発現調節、橙は表面排斥、そして黒が接合 対の安定化に関わる遺伝子である。traG遺伝子産物はN末端が性繊毛の形成に、C末端が接合対の 安定化に働くとされている(総説:Willetts and Skurray, 1980; Ippen-Ihler and Skurray, 1993)。 マイシン、クロラムフェニコール、テトラサイクリンのそれぞれに対する耐性遺伝子 と接合伝達に関する遺伝子群(tra遺伝子群)を持つ性決定因子である(Sugino and Hirota, 1962; Womble et al., 1988)。R100はその接合伝達の機構がF因子とよく似た、 いわゆるF型プラスミドと呼ばれる一連の性決定因子の一つである。F型プラスミドの 特徴としては①互いに構造的にも機能的にもよく似た性繊毛を形成する(総説; Frost, 1993)、②互いに多くのtra遺伝子を相補し得る(Ohtsubo et al., 1970; Ohtsubo, 1970; Achtman et al., 1978)③互いに高い相同性を示すtra遺伝子を持つ(Sharp et al., 1973)、などが挙げられる。また、多くのF型プラスミドによる接合伝達は好気条件 下でのみ行なわれ、その至適温度は37℃である(Harada and Mitsuhashi, 1977)といっ た特徴も共通に見られる。

R100をはじめとするR因子の薬剤耐性遺伝子は、可動性の遺伝因子トランスポゾン(transposon)の一部として存在することが多い。R100のテトラサイクリン耐性遺伝子は分子遺伝学の分野で広く用いられるトランスポゾンTn10の内部に存在する。 Tn10は可動性の遺伝因子である挿入配列(insertion sequence) IS10がテトラサイクリン耐性遺伝子の両側に位置する複合トランスポゾンと呼ばれるトランスポゾンである

(Kleckner et al., 1975)。また、R100上には水銀耐性遺伝子も存在するが、これは Tn21に含まれている(Zheng et al., 1982)。Tn21はTn10とは異なるタイプのトランス ポゾンであり、プラスミドR1上に存在するアンビシリン耐性遺伝子を運ぶトランスポ ゾンTn3と類縁のトランスポゾンである。F上にもTn3と類縁のトランスポゾンである γ & (Tn1000とも呼ばれる)が存在するが、これは薬剤耐性遺伝子を持たない。その 他、性決定因子上には種々のISも存在し、特にF上に存在するこれら可動性遺伝因子 はHfr株の成立に関与していると考えられる。また、R100の薬剤耐性遺伝子のほとん どは二つのIS1にはさまれた形で存在しており(図1-1)、この領域はr-determinant 領域と呼ばれる。この領域は両側にISを持つ複合トランスポゾンを形成し、その転移 (transposition)はゲノム間での多剤耐性の伝播に関与している。テトラサイクリン耐 性遺伝子を運ぶTn10はr-determinant領域とは独立して存在するが、水銀耐性遺伝子を 運ぶTn21はr-determinant領域内に位置し、このことはR100がこれらの薬剤耐性遺伝子 を獲得するに至った進化的な過程を解明する際の指標となるものと考えられる。 様々な伝達性プラスミドの中でもF型プラスミドは接合伝達の機構や接合伝達に 関与する遺伝子群(tra遺伝子群)の解析が特に進んでおり、Fに関してはそのtra領域 の塩基配列が1990年までに全て決定されている。R100のtra遺伝子群はR100自身の40 %にも及ぶ約34キロ塩基対(kb)にわたり、少なくとも20を越えるtra遺伝子を含んで おり、traM、traJ、traY-Iの3つの主要オペロンからなると考えられている(図1-1) (総説:Willetts and Wilkins, 1984; Dempsey, 1993)。各tra遺伝子の機能は性繊毛の形 成、接合対の安定化、表面排斥、tra遺伝子の発現制御、DNA移動、の5つに大きく分 類することができる(図1-1/総説:Ippen-Ihler and Minkley, 1986)。

性繊毛(sex pili)は接合伝達において供与菌の表面に形成され受容菌を認識する 役割を持つ細胞外器官であり、その形成には traY-Iオペロンの大半の遺伝子(図1 -1で青く示した traA、L、E、K、B、P、V、C、W、U、F、Q、H、G、Xの各遺伝 子)が関与している。性繊毛の主な構成要素はビリン(pilin)と呼ばれるタンパク質 であり、ビリンはTraAタンパク質がTraQタンパク質や宿主のタンパク質によってプロ セスされ、TraXタンパク質によってそのN末端がアセチル化されることによって生じ る(Maneewannakul et al., 1993; Moore et al., 1993)。その他のここに挙げた遺伝子はピ リンが重合して性繊毛を形成する過程に関与する。F型プラスミドの性繊毛(F-pili) はまた、繊維状一本鎖DNAファージf1、fd、M13や球状RNAファージQβ、MS2など の大腸菌への感染に必要であり、f1、fd、M13は性繊毛の先端に、Qβ、MS2はその側 面に吸着する(Caro and Schnos, 1966)。そのためこれらのファージはF型プラスミド を保持する菌体にのみ感染する性質を持ち、雄株特異的(male specific)ファージと呼 ばれる。

性繊毛によって供与菌が受容菌を認識した後、その二つの細胞は接触し、接合対 (mating pair)を形成するが、この接触しただけの接合対は不安定なものであり、こ の状態のままではDNAの伝達は起こらない。DNAが移動するにはこの接合対が安定化 される必要があり、それに関与するのは*traN及び traG*の各遺伝子である (Manning et al., 1981)。

接合伝達によりDNAを受け取った受容菌は、同じ、もしくは類縁の性決定因子を 持つ供与菌からは受容菌として認識されなくなる。この現象は表面排斥 (surface exclusion)と呼ばれ、traS遺伝子及びtraT遺伝子が関与している(Jalajakumari et al., 1987)。traT遺伝子はまた細菌が血清に対して示す抵抗性にも関与しており、Fや R100、またはクローン化したtraT遺伝子を保持する細菌は血清に対して抵抗性を示す (Pramoonjago et al., 1992)。TraTタンパク質は大腸菌外膜の外部に突出部を持つリボ タンパク質であり、その突出部に目的のエピトープを構成するアミノ酸配列を挿入し て、大腸菌の菌体表面に発現させる手段としても用いられる(Sukupolvi and O'Connor, 1990)。

発現制御に関する遺伝子としては*tral、finO、finPが*知られている。TraJタンパク 質は*traY-I*オペロンの転写を正に制御する働きを持つ(Willetts and Skurray, 1987; Inamoto et al., 1988; Ippen-Ihler and Skurray, 1993; Taki et al, unpublished result)。*finO及 UffinP*は協同して*traJ*の発現を抑制することで*traY-I*オペロンの転写を抑える(Finnegan and Willetts, 1973; Yoshioka et al., 1987)。*finPlatraJ* mRNAにハイブリダイズするアン チセンスRNAであり、TraJの翻訳を抑制する(Koraimann et al., 1991; van Biesen et al., 1993)。FinOタンパク質は*finP*RNAの安定化、*finP* RNAと*traJ* RNAのハイブリダイゼ ーションに関与する(Lee et al, 1992)。*traY-I*オペロンの転写の調節にはTraJの他にも ArcやCpxといった宿主側のタンパク質も関与していることが知られている(Silverman, 1985)。特にArcは環境中の酸素分圧を探知して呼吸系遺伝子の状況に応じ た発現を引き起こすいわゆる二成分伝達系(two component system)を構成しており(Iuchi and Lin, 1992)、接合伝達が好気的条件下でのみ行なわれることとの関連が指摘 されている。

traM、traY、traD、traIの各遺伝子はDNAの移動に直接関与すると考えられている。 これらについては後述する。

R100などのF型プラスミドの接合伝達の過程は以下のように進行すると考えられている(図1-2/総説:Willetts and Skurray, 1980)。まず、性決定因子を持つ供与菌の表面に性繊毛が形成される。この性繊毛が受容菌を認識し(図1-2、I)、接合対を形成(図1-2、II)、接合対はtraN及びtraGの働きで安定化される(図1-2、II)。あらかじめtraY、traf両遺伝子産物の働きでDNA伝達開始点(<u>origin of transfer: oriT</u>)の特定のDNA鎖に入っていたニックより、ニックの5'側を先頭にして、

-8-

図1-2 接合伝達過程の模式図

供与菌の細胞表面には性繊毛が形成され、これによって受容菌が認識される。ori7部位には受容 菌が認識される以前からニックが入ったり再結合されたりしている(I及びVI)。性繊毛によっ て受容菌が認識されると受容菌が供与菌に引き寄せられ、接合対が形成される(Ⅱ)。接合対は traN、traG両遺伝子の働きで安定化され(Ⅲ)、一本鎖DNAが受容菌へと移動する(Ⅳ)。DNA の移動が開始すると同時に供与菌内、受容菌内双方で相補鎖DNAの複製が始まり、DNAの移動が 完了するとDNA鎖が環状化する(Ⅳ~V)。接合対の解離によって接合伝達は完了し、受容菌内 でtra遺伝子が発現して供与菌となる(V)(総説:Willetts and Skurray, 1980より転載)。 tra遺伝子群が最後に受容菌に移る方向で一本鎖DNAが受容菌へと移動する(図1-2、 N) (Ohki and Tomizawa, 1968; Vapnek and Rupp, 1970, 1971)。移動するのは常に決 まった一方のDNA鎖であり、その相補鎖は供与菌内にとどまる。DNA鎖の移動が開始 すると同時に供与菌、受容菌双方において宿主菌のDNA複製系を用いて一本鎖DNAの 相補鎖の合成が行われ、全DNAが移動した後に受容菌内においてDNA鎖が再環状化さ れ、DNAの移動が完了する(図1-2、N~V)。その後供与菌と受容菌が解離して 接合伝達は完了する(図1-2、V)。性決定因子を受け取り、そのtra遺伝子が発現 すると受容菌は接合伝達能を獲得して供与菌としての性質を持つようになる。また、 そうなるとtraS、traTの働きにより、同じ性決定因子を持つ供与菌に対しては受容菌と して認識されなくなる。

3. F型プラスミドのoriT領域とDNA伝達に関与する遺伝子

R100などのF型プラスミドの接合伝達の過程は、性繊毛の形成を含む細菌細胞間の相互作用と細菌細胞内でのDNAに関する諸反応とに大別して考えることが出来る。 供与菌細胞内でのDNAに関する諸反応はoriT及びその周辺領域(oriT領域)において 様々なタンパク質が機能することによって行なわれる(図1-1)。

前述のように、接合伝達の初期反応はtra遺伝子群の最上流に位置するoriTに部位 及びDNA鎮特異的にニックが入ることで始まり、そこから二本鎮DNAが巻戻されて一 本鎖DNAが生じ、5'末端を先頭にしたDNAの受容菌への移動が始まる(Cohen et al., 1968; Ohki and Tomizawa, 1968; Rupp and Ihler, 1968; Ihler and Rupp, 1969)。これまでに R100及び類縁の様々なF型プラスミドについてoriT領域の塩基配列が報告されている が(Thompson et al., 1984; Ostermann et al., 1984; Fee and Dempsey, 1986; Finlay et al., 1986a、b、Salazar et al., 1992、Lopez et al., 1991、Di Laurenzio et al., 1991、 Graus-Goldner et al., 1990)、これらを互いに比較すると比較的良く保存されている領 域とそうでない領域とに分けることが出来る(Inamoto and Ohtsubo, 1990)。図1-3 にこれまでに報告されている主なF型プラスミドのoriT領域の塩基配列を示す。図1 -3 A でconservedとあるのがこれらのプラスミド間で保存されている領域であり、 nonconservedとあるのがそうでない領域、すなわちプラスミド特異的な領域である。

	< genex	
F	TOGCTAACATCCATTTTTTCCATTTTTTCCACCTCTGGTGACTTTATCCGTAAATAATTTAACCCACTCCAC	
n\$U316	TOGCTAACATCCATTTTTTCATTTTTCCACCTCTGGTGACTTTATCCGTAAATAATTTAACCCACTCCAC	
P307	TGGCTAACATCCATTTTTCCATTTTTCCACCTCTGGTGACTTTATCCGTAAATAATTTAACCCACTCCAC	
	TOGGTAACATCCATTITTCATTTTTCCACCTCTOGTGACTTTATCCGTAAATAATTTAACCCACTCCAC	
100233		
C0184		
RIDO		
R1	TIGCTAACATCCATTITITICATITITICCACCICICGGIGACITITATCCGIAAATAATTTAACCCACTCCAC	
PED208	GAATTCCTCCTCG	
	conserved (==	
F	AXAAAGGCTCAACAGGTTGGTGGTTGTCACCACAAAAGCACCACACCCCCCCC	
nSU316	AAAAAGGCTCAACAGGTTGGTGGTTCTCACCACCACAAAAGCACCACACCCCACGCAAAAACAAGTTTTTGCTGATTT	
P.107	AAAAAGGCTCAACAGGTTGGTGGTTCTCACCACCACACAGCACCACACCCTACGCAAAAACAAGTTTTTGCTGATTT	
pSU233	AXAAAGGCTCAACAGGTTGGTGGTTGTCACCACCACAAAAGCACCCCCACGCAAAAAACAAGTTTTTGCTGATTT	
ColB4	AXAAAGGCTCAACAGGTTGGTGGTTCTCACCACCACAAAAGCACCCCCACGCAAAAAACAAGTTTTTGCTGATTT	
B100	AXAAAGGCTCAACAGGTTGGTGGTTCTCACCACCACAAAAGCACCACACACA	
RI	AAAAAGGCTCAACAGGTTGGTGGTTGTCACCACCAAAAAGCACCACACCCCACGCAAAAACAAGTTTTTGCTGATTT	
pED208	CTGACATATTICTGTATGCCTGCTCCTTAACATC, AAAGTCCCACACCCGTCGCAAGATTTAATCTTGCATGATTA	
Passes.	><	
	orif of R100 and F	
	==> nonconserved	
F	TTCTTTATAAATAGAGTGTTATGAAAAATTAGTTTCTCTTACTCTTTATGATATTTAAAAAAGCGGTGTCGGCG	
p50316	TTCTTTATAAATAGAGAGTTATGAAAAATTAGTTTCTCTTATCTCTTTATGATATTTAAAAAAGCGOTGTCGGCG	
P307	GATTTTAATATCATGIGCTTATATTCATGAATTTATATTATTTAAAATCAGATTTATTT	
pSU233	ATCTTTAATATCATNGAGTTGTATTTGTGGGATTTATATTGTTTAAATCTGATTTATTT	
ColB4	GCTTTTTGAATCATTAGCTTATGTTTTAAATAATGTATTTTTAATTTATTT	
R100	ACGTTTTAAATCATGTAATTAACAAACGCTATTTATATTTAATAATTCTGAATTATTAAATAGAGAGTCOTTGGCG	
R1	GCTATITGAATCATTAACTTATGTTTTAAATGATGTATTTTAATTTATATTTACATTACAAAAAAGGATTCATTGGTG	
pED208	TCCTTTATTTTCAGTGTATTACGTTAATATTTTTTATTGTTATTCTATGTCCGACATAGATACTAGATTCATATGCA	
-CH216		
P30310		
n50233		
CollB4	accontendored content accontent according the transfer as a state of the transfer according to t	
8100	ATCCTGTTGCGACCCTATACCGACTCTTATTACGATCAGTACTAGTACTAGTATTCACGAAAAACATTGATATATAT	
81	A TOGO ATA TOATTOACCA A TOATTA A COCA ACTO A TACATCA TA A TAATA A A A A A A A A A	
nFD208	A TOTTA A TOTA A A GA GT CAA TOTA CATTOA TOTA CAA TO A GA DA OTA A A TA A GA T	
hearon	The set in a subject in a set of a set of the set of th	
F	GGGGTGCTGCTAGCGGCGCGGTGTGTTTTTTTATAGGATACCGCTAGGGGCGCTGCTAGCGGTG.CGTCCCTGTTTG	
pSU316	GOGGTGCTGCTAGCGGCGCGGTGTGTTTTTTTATAGGATACCGCTAGCGGCGCTGCTAGCGGTG.CGTCCCTGTTTG	
P307	COGGOOGCTOCTACCGCCGCGCGCGCGCTGTTTTTTTTTT	
pSU233	GOGGTGCTGCTAGCGGCGCGCGCTGTTTTTTTTATAGGATACCGTCAGGGGGCGCTGCTAGCGGTG.CGTCCCTGTTTG	
ColB4	GGGCCGCCCCTAGCAGCGCCGTGCGTTTTTTTTTTTTTT	
R100	GGGACGECCCTAGCGCGGATCGCATTITITTATAGGATCGTCGTAGAGGCGCTGCTAGGAGTGTCTTTCTT	
R1'	ATTGACTCTAGATTCCATGCTGATGTGATGTGATTTGCTGCATGCA	
pED208	TTCGAATGTGGATTCGAATCCCTAATTTCGGTATAACAGATTCGCCTGTATGAAGTTGGIGAATCCAGACTGACTCT	
	craM	
F	CATTATGAATTITAGTGITTCGAAATT	
pS0316	CATTATGAATTTTAGTGTTTCGAAATTAACFTTATTTTATGTTCAAA.AAAGGTAATCTCTAATG	
P307	CATTGTGAATTITAGTGTTTCGAAATTAACTITGTTTATGTTTAAA.AAAGGTAATCTCTAATG	
pSU233	CACTATGAATTCCATTGITTCGAAATT	
ColB4	AGACCAAACTATGAGTAAATGAAATAA	
R100	TAAACACTATATGCATATTTATAGTGA	
R1	ATCGATGAATTGTCATTFTTTTATATGTCAAAT	
pED208	AATAAAATAAATGGCCGATTCACATGTGACTATTGATAATCCCACAAATTTAAATTCTAATAAGGTTTTTCAAATG	

図1-3 F型プラスミドのoriT領域及びその周辺の塩基配列

これまでに報告されているF型プラスミドのoriT領域の塩基配列を示す。ビリオド(.) は塩基配列を並べて表記するに当たって相同性が高まるように挿入したギャップを示す。oriT領域の上流側にはm遺伝子とは逆向きに機能不明のオープンリーディングフレームgeneXが存在する。geneX の開始コドンATGからDNA伝達開始点oriTのやや下流にかけての塩基配列はF型プラスミド間でよく保存されている(相同領域:図中conservedと示す)。この領域に続いてtraM構造遺伝子の開始コドンATGまでには比較的相同性の低い領域(非相同領域:図中conservedと示す)が存在する。プラスミドの名称は左に示してある。ニックの入る部位oriTitR100とFとで決定されており、それはいずれも図中に示したCとAの間である(Inamoto et al., 1991)。ニックは、この位置の下側のDNA鏡に入る。ここに挙げた塩基配列は以下の論文より得た。Salazar et al., 1992 (pSU233);Lopez et al., 1984 (F);Finlay et al., 1986 (ColB4);Graus-Goldner et al., 1990 (P307);Fee and Dempsey, 1986 (R100)。pED208の*Eco*RI認識部位GAATTCの上流の配列は報告されていなない。

接合伝達における DNAの移動に直接関与する遺伝子には、traM、traY、traD、traIの四 つがあり、これらの遺伝子のどれを欠いた変異体を用いても性繊毛の形成や安定な接 合対の形成は行われるが、DNAの受容菌への移動は行われない(Ippen-Ihler and Minkley, 1986)。これら四つの遺伝子の内、traYとtraIはoriT領域におけるニッキング (nicking) に関与する遺伝子であると考えられている。 in vivoの解析から、TraYタン パク質とTralタンパク質は協同してoriTにニックを入れるが、このニッキング活性は TraY単独あるいはTraI単独では見られず、TraY-TraI複合体の形になってはじめてニッ クを入れる活性が生じるものとされていた(Everett and Willetts, 1980; Traxler and Minkley, 1988)。しかし近年R100やFを材料としたin vitroのニッキング反応系による 解析から、oriTにニックをいれるエンドヌクレアーゼがTralタンパク質であること、 Tralのみでもニッキング反応は行なわれるが、TraYタンパク質と宿主タンパク質IHF (integration host factor)を加えることで効率的なニッキング反応が起こることが示さ れている (Inamoto et al., 1991; Matson et al., 1991; Reygers et al., 1991) 。 in vivoにおい てはこれら三種類のタンパク質がoriT領域上で複合体を形成することが効率的なニッ キング反応に必要であると考えられ、この複合体はoriT-someと呼ばれる(Inamoto et al., 1991)。oriTDNAのニックの5'末端はTralと共有結合しており(Inamoto et al., 1991; Fukuda and Ohtsubo, unpublished result) 、ニックの入った状態と入らない状態とは平衡 状態にあると考えられている。最近TralがoriTにニックをいれるのにはoriT近辺の18 bpの領域sbiが必要であること、TraIは一本鎖状態のoriTに対しても働き、さらに、切 断された状態のoriT同士を再結合することでoriT間におけるDNAのつなぎ変え反応を 起こすことが示された(Fukuda and Ohtsubo, unpublished result)。このことからDNAが 受容菌に伝達された後で起こる再環状化もTralが行なうものと考えられる。Tralはま た、二本鎖DNAを巻戻す活性を持つDNAヘリカーゼI(DNA helicase I)として知られ

(Abdel-Monem et al., 1983)、ニックが入ったDNA鎖を巻戻して一本鎖にし、DNAの 移動を可能にすると考えられる。DNAヘリカーゼIによるDNAの巻戻し反応はATPの 加水分解を伴い、そのエネルギーが一本鎖DNAを受容菌へと移動させるものと推測さ れている。TraYタンパク質はorlT領域に特異的に結合し、その結合部位sbyAはプラス ミド特異的な領域に存在する (Inamoto and Ohtsubo, 1990; Nelson et al., 1993)。これは

traY遺伝子がプラスミド特異的であることとよく一致している。TraYは自身のプロモ ーターに隣接する部位sbvB、Cにも結合し (Inamoto and Ohtsubo, 1990; Nelson et al., 1993)、traY-Iオペロンの転写を抑制している(Taki et al., unpublished result)。TraIの 認識部位sbiとTraYの結合部位sbyAの間にはIHFの結合部位ihfAが存在し、これらの領 域上でoriT-someが形成されると考えられる (Inamoto et al., 1991) 。 traM、 traY、 traI各 遺伝子がプラスミド特異性を示すのに対し、traD遺伝子はプラスミド特異性が低く、 類縁の性決定因子のtraD遺伝子の変異を相補することが出来る(Ohtsubo et al., 1970; Willetts, 1971; Alfaro and Willetts, 1972; Yoshioka et al., 1990)。 TraDタンパク質は内膜に 存在し、DNAに対して非特異的に結合することが報告されており(Panicker, 1985. Ph.D. thesis: Ippen-Ihler and Minkley, 1986に引用)、加えて traDを欠いてもDNAの受容 菌への移動以外の全ての接合伝達の過程が行われることなどからTraDタンパク質は一 本鎖DNAが供与菌から受容菌へと移る際に通り抜ける伝達口を形成するものと考えら れている(総説: Ippen-Ihler and Minkley, 1986)。一方、本研究においてとりあげた traM遺伝子産物はDNA移動の開始に働いていると考えられているが、その具体的な機 能は明らかではない。図1-4にtraM遺伝子周辺の塩基配列を示す。traMはtra遺伝子 群中最も上流、oriT領域のすぐ下流に位置し、接合伝達においては一番最後に受容菌 へと移る遺伝子である。また、traM遺伝子は他のtra遺伝子とはオペロンを形成しない ことが知られてる。この遺伝子は、アミノ酸配列からの計算では14508ダルトン(Da)、 マキシセル法による解析ではSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)上 で約10キロダルトン (kDa) の分子量を示す127アミノ酸残基から成るタンパク質をコ ードし(Inamoto et al., 1988)、このTraMタンパク質はプロテオリティックなプロセッ シングを受けずに内膜に取り込まれる内膜タンパク質であるとされている(Achtman et al., 1979) o

遺伝学的な解析によりtraM遺伝子は接合伝達におけるDNAの移動に必須な遺伝子 であり、その機能はプラスミド特異性を示すことが判明しているが、その具体的な機 能や性質は現在までのところ明らかにされていない。予備的な実験によってF因子の TraMタンパク質のoriT領域に対する結合が観察されたとの報告が私信の形でされてい るが (Musgrave and Achtman, personal communication; Thompson and Taylor, 1982に引用)、

-240. -220. -200. -180. -160. -160. -140. -100 -80 -60 -40 -120. -20 TTTCATTTTCCACCTCGGTGACTTATCCGTAAAAAAATTTAACCCACTCCACAAAAAGGCTCAACAGGTTGGTGGTTCTCACCACCAAAAGCACCACTACGCAAAAAACAAGTTT conserved nonconserved -1.1 -11:1 20 .40 .60 .80 .100 TTGCTGATTTACGATCTAGGTAATTAACAAACGCTATTATATTATTATTATTCGAATTATTAAAAAGGGGCGGTGGCGGATCGTTGGCGACCCTATAGGGACCCTATTAGG traM transcript .240 .260 .300 .340 .340 .340 .340 .340 .340 traM :MetAlaArqVallleLeuTyrIleSerAsnAspValTyrAspLysValAsnAlaIleVa .360 .380 .400 .420 .440 .460 TGAACAGCGTCGTCAGGAGGGGGCAAGAGCATAAAGATATAAGTGTTTCGGGGACAGCTTCAATGGGGCTTCGTGTATATGAGGCTCAGATGGAGCGTAAAGACTCTGC IGuGInArgArgGInGUGIyAlaArgAspLysAspIleSerValSerGlyThrAlaSerMetLeuLeuGULeuGIyLeuArgValTyrGUAlaGInMetGluArgLysGiuSerAl .480 .500 .520 .540 .560 .580 GTTTAATCAGACAGAGTTTAATAAACTTCTTCTTGAATGTGTTGTAAAAACACCAGTCATCAGTAGCGAAAATTTTGGGTATTGAGTCTCTAAGTCCCCATGTCTCCGGGAATCCAAAGTT arheAsnGinThGliPheAsnLysLeuLeuCuUCuUCuUCysValValLysThrGlnSerSerValAlaLysTleLeuGlyIleGluSerLeuSerProHisValSerGlyAsnProLysPh , 620 . 640 .660 . 680 TGANTATGCCANTATGGTTGAAGATATTCCTGAGAAGGTGTCATCTGAGATGGAACGATTTTTTCCAAAAAAAGATGATGAGGAATAAAAAGATTAAAAAGTTGATTACTTGATTTACTTCAAAAAAAGA GGluTyrAlaAsnMetValGJuAspIleArqGluLysValSerSerGluKetCluArqPhePheProLysAsnAspGluGlu....

.840 SD.860 .880 CATCGACTGTCCATAGAATCCTTTGA(<u>AGGAGGA</u>TCCTATGTATCCGACCGAT --- 3* *traJ*:MetTylPioThfAsp...

図1-4 R100のtraM遺伝子及びその周辺の塩基配列

traM transcriptとあるのはDempseyによって報告されたtraM遺伝子の転写開始点と推定される部位 である(Dempsey; 1989)。また、それから推定されるプロモーター配列を示してある。traM遺伝 子のコーディングフレームの下に塩基配列から予想されるTraMタンパク質のアミノ酸配列を示す。 ****は終止コドンに対応する。また、traIの一部についても同様にアミノ酸配列を示す。SDは、リ ポゾーム結合部位となりうる配列を表す。 これまでのところそれに関する詳しい報告はされておらず、詳細は不明である。また、 その機能についても、安定な接合対の形成が刺激となってTraMタンパク質になんらか の変化が生じ、そのことがDNA伝達のひきがねを引く(triggering)という説(Everett and Willetts, 1980)や、この領域の転写産物がfinP転写産物やtraJ転写産物と共に finO-finP調節系に関与するのではないかという説(Dempsey, 1989)などが出されてい るがどれも確証はなく、詳しい解析が求められている。

このような背景の下、本研究では性決定因子R100のtraM遺伝子の機能についての 知見を得ることを目的として解析を行ない、精製したTraMタンパク質がoriT領域に特 異的に結合すること、traMの発現が自己抑制を受けることを示し、さらにその結合領 域を含むoriT領域の構造の解析を通して、oriT領域上で形成され接合伝達の開始、及 び制御に関与するタンパク質-DNA複合体の機能と構造について考察した。

第二章 TraMタンパク質の精製とその性質の解析

要約

性決定因子R100のTraMタンパク質をTraM-コラーゲン-LacZ融合タンパク質(TraM*) の形で大腸菌内で発現させ、LacZに対するアフィニティーカラムで精製し、またコラ ゲナーゼ処理によってTraM*のTraM部分(TraM)を得ることができた。TraM*、 TraM'は共にtraM構造遺伝子の上流の広い領域に特異的に結合し、その結合領域(sbm 領域)はoriT領域中、他のF型プラスミドとの間で比較的相同性の低い領域に存在し た。sbm領域にはsbmA、B、C、Dの四つの結合部位が存在し、それらは15 bpからな る相同的な配列を含んでいた。ここで得られた結果、及びTraMが膜画分に存在するこ ととを考え合わせ、TraMは膜に形成される一本鎖DNAの伝達口の近傍にoriT領域を保 持する機能を有するとの仮説を立て、これをTraMのanchoring機能と命名した。また sbmC、DはtraMのプロモーターが存在すると考えられる領域に重なっており、traMの 発現が自己抑制を受ける可能性が示唆された。

本章の内容は以下の論文によって公表した

"Specific DNA binding of the TraM protein to the *oriT* region of plasmid R100" *Journal of Bacteriology*, 173:6347-6354 (1991)

"Binding sites of integration host factor in *oriT* of plasmid R100" Journal of General and Applied Microbiology, 3 6:287-293 (1990) 1. 序

R100のtra遺伝子のうち接合伝達においてDNA伝達に直接関与するのはtraM、traY、 traD、traFである。これらの遺伝子の変異は性繊毛の形成、安定な接合対の形成、表面 排斥には影響を与えないが、接合対を形成してもDNA伝達は行なわれない。本章では 接合伝達におけるDNAの移動に必須な遺伝子であるtraM遺伝子の機能についての知見 を得ることを目的として、TraMタンパク質を精製し、その性質について解析を行なっ た。その結果TraMがoriT領域中の四ケ所に特異的に結合するDNA結合タンパク質であ ることを明らかにでき、そこからTraMの機能について考察を行なった。また、本章で の解析を通して種々のタンパク質の結合、認識部位が整然と並んだoriT領域の構造が 明らかとなった。

2. 結果

(1) TraM*タンパク質の精製

TraMタンパク質を精製するにあたっては、traM遺伝子をコラーゲン遺伝子の一部 をリンカーとして β -ガラクトシダーゼ遺伝子 (lacZ) と融合させて、TraM-コラーゲ ン-LacZ融合タンパク質を大腸菌に過剰生産させた。TraM-コラーゲン-LacZ融合タンパ ク質は β -ガラクトシダーゼ (LacZ) に対するアフィニティークロマトグラフィーに よって一段階で精製することができた。この方法 (Germino and Bastia, 1984)を用い ることで、その活性のわからないTraMタンパク質を容易に精製することができ、その 後にコラゲナーゼで処理することにより目的のタンパク質部分だけを切り離して性質 を調べることが可能であった (図2-1)。

実際にはまずR100のtraM遺伝子及びその周辺の領域を含むR100の断片をベクター pUC119にクローニングしたプラスミドpABO1に対してtraM遺伝子の54 bp上流に BamHI認識部位を、traM遺伝子のすぐ下流にBgIII認識部位をKunkelの方法によりそれ

図2-1 LacZの基質アフィニティーを利用したTraM*の精製の模式図

TraM*のLacZ部分の酵素活性を利用して、その基質アナログであるTPEGを固定化したカラムに TraM*を保持させる。他のタンパク質を除いた後にホウ酸バッファーによってpHを高めてTraM* とTPEGの結合を解離させ、TraM*を溶出する(clution)。得られたTraM*はコラゲナーゼ処理に よってTraM部分(TraM')とLacZ部分とに分離できる(collagenolysis)。

ぞれ導入してpABO12を作成した(図2-2)。次いでこのpABO12のBamHI認識部位 とBgIII認識部位とに挟まれる領域をベクタープラスミドpJG200のBamHI認識部位にク ローニングしてpABO22を得た(図2-2)。pJG200はバクテリオファージ λ のcI857 (リプレッサーcIの温度感受性変異)からpoプロモーターをへてcro遺伝子の開始コド ン(ATGcro)までの領域の下流にコラーゲン-lacZ融合遺伝子を配置し、ATGcroから コラーゲンの遺伝子が翻訳される構造をとっている(図2-2)。そのためリプレッ サーcI857が活性を保つ30℃ではppからの転写は抑制されるが、42℃ではcI857が失活 して抑制が解除され、コラーゲン-lacZ融合遺伝子が高効率で発現される (Germino and Bastia, 1984)。pJG200のBamHI認識部位はATGcroに隣接しており、pABO22上でtraM 遺伝子はtraM-コラーゲン-lacZ融合遺伝子を形成する。ATGcroとtraM-コラーゲン-lacZ 融合遺伝子(traM*遺伝子)とはコドンの読み枠がずれており、ATGcroの直後には連 続する2つの終始コドンが存在する。そのためATGcroからの翻訳はすぐに終結し、 traM遺伝子のリボゾーム結合部位を用いて traM遺伝子自身の開始コドンからあらため て翻訳が開始される。また、traM遺伝子の終止コドンに相当する位置からコラーゲン 遺伝子がin frameで続くため、pABO22にコードされるTraM-コラーゲン-LacZ融合タン パク質のTraM部分は本来のTraMタンパク質と全く同じアミノ酸配列となっている (図2-2)。このTraM-コラーゲン-LacZ融合タンパク質を以後TraM*と呼ぶ。

このようにして得たpABO22を宿主MC1000に保持させ、その培養温度を30℃から 42℃へとシフトして90分間培養すると菌体のβ-ガラクトシダーゼ活性は約1000ユニ ットから約100000ユニットへとおよそ100倍増加した。また、菌体の全タンパク質に 対してSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)を行ったところ約130 kDaの位置に新たなパンドが出現することが確認できた(図2-3)。塩基配列から 計算したTraM*の分子量が135 kDaであること、pABO22の代わりにpJG200を保持させ た菌体ではこのバンドは出現しないことからこの温度シフトで誘導されるパンドが TraM*のバンドであると考えられた。

TraM*の生産を誘導した菌体を破壊し、抽出液から膜画分を除いた後にLacZに対 するアフィニティークロマトグラフィーを行ったところ、得られた試料はSDS-PAGE 上で分子量約130 kDaの、温度シフトによって誘導されたバンドと同じ位置にバンド

図2-2 pABO22の構築

pABO1はR100のoriTからtraJの途中までを含むDNA断片(図1-4に示した領域に相当)を pUC119にクローニングしたプラスミドである。pABO1に対してプライマー1とプライマー2を用い てKunkel法を行ない、BamHI認識部位とBgII認識部位をそれぞれ図に示した位置に導入したのが pABO12である。そのBamHI-BgII 434 bp断片をベクタープラスミドpJG200のBamHI認識部位にク ローニングしてpABO22を得た。水平方向の矢印は遺伝子とその方向を表わす。MitR100のtraM を、JittraJの一部をそれぞれ示す。pIG200上に存在するcl857、 p_{k} 、ATGcroidそれぞれパクテリオ ファージ入のリプレッサーcIの温度感受性変異遺伝子、 p_{k} プロモーター及びcroi遺伝子の開始コド ン (ATG) である。同じくpIG200上に存在するcollagen-IacZ融合遺伝子は p_{k} プロモーターから転写 され、ATGcroから翻訳されて発現する。pABO22のtraMの周辺部分の塩基配列を下に抜き出して、 アミノ酸配列とともに示してある。***は終止コドンに対応する。SDはメッセンジャーRNAのリ ボゾーム結合部位と考えられる部位である。traMとcollagen-IacZ融合遺伝子との境界の部分は BamHI認識部位とBgII認識部位とのhybridになっている。

図2-3 TraM*のSDS-PAGEのパターン

pABO22を保持する宿主菌MC1000を30℃で培養したもの(レーン a)、30℃で培養した後に培養 温度を42℃にシフトして90分間発現を誘導したもの(レーン b)についての菌体の全タンパク質、 及びTPEG-Sepharoseによって精製したTraM*標品(レーン c)をSDS-ポリアクリルアミドゲル電 気泳動(SDS-PAGE)後、クマシーブリリアントブルーによって染色した。図左に分子量標準と して用いたタンパク質の位置とその分子量を示してある。図右の太い矢印はTraM*、細い矢印は その分解産物であるLacZ部分と考えられるパンドをそれぞれ示す。 を示した(図2-3、レーンc)。また、分子量マーカーとして使用しているLacZ (116 kDa)とほぼ同じ位置にもバンドがみられた。これら二つのバンドはほぼ同じ 量であり、この二つで試料中のタンパク質量のほとんどを占めていた。分子量や基質 アフィニティーカラムによって精製されたことなどから前者はTraM*、後者はTraM* が分解されて出来たLacZ部分に相当すると考えられた。なお、後者のTraM*に対する 割合はアフィニティークロマトグラフィー前と比べて大きくなっている。これは、精 製過程でTraM*が分解されたためと考えられた。以後この試料をTraM*標品として解 析に用いた。

(2) TraM*のoriT領域に対する結合

得られたTraM*標品を用いてゲルシフト法による解析を行った結果、TraM*がoriT 領域を含むDNA断片のみに特異的に結合することが示された(図2-4~2-6)。 TraM*の結合したDNA断片はゲル上にはっきり確認することはできなかったが、 TraM*の分子量が非常に大きいこと、さらにはTraM*の構成要素であるLacZが四量体 として存在することなどから、移動度が極端に遅れ、ゲルの上端に存在するものと考 えられる。また、TraM*の濃度が増すと、大きいDNA断片に泳動度の遅れが見られた (図2-4、レーン2、4)。これはTraM*の非特異的なDNA結合能によるものと考 えられる。このような非特異的な結合は特異的な塩基配列を認識して結合する他のタ ンパク質においてもよく見られることである(Ichikawa et al., 1987)。

TraM*がoriT領域に特異的に結合することが明らかとなったので、その結合条件を 解析するために反応条件を変えて結合性を調べた。まず結合に対するpHの影響を調 べるために反応液に加えるMES-KOHのpHをpH 5.0からpH 8.0までの範囲で検討した ところ、TraM*タンパク質のoriT領域への特異的結合はin vitroではpH 5.5において至適 であった(図2-5)。また、DNA結合タンパク質の解析においてDNAアナログとし てしばしば用いられるヘバリンを加えると反応液中の濃度が5 ng/ μ 1ですでに特異的 なフラグメントのバンドの消失が見られなくなり、ヘバリンがTraM*タンパク質の特 異的結合を阻害することが明らかとなった(図2-6)。

図2-4 TraM*のoriT領域に対する結合

Haell (レーン1、2) または Bbill (レーン3、4) で切断したpSI87-XE1とTraM*標品とを結合反応液中で結合させ、4% PAGE後臭化エチジウムで染色した。レーン2、4 はTraM*標品を加えた もの、レーン1、3 はTraM*標品を加えないコントロールである。TraM*標品を加えたレーンは、 モル比がTraM*/DNA=120となるように反応液を調製した。図下部に各制限酵素によるpSI87-XE1 の切断地図を示す。数字は断片の長さ (bp) を示し、太い線はTraM*を加えたことによって泳動 度が変わった断片を示す。ゲルの写真の両側に各バンドに対応する断片の長さ (bp) を示す。

図 2 - 6 TraM*のoriT領域に対する結合に与えるヘパリンの影響 及びTraM*の濃度が増すことによる非特異的結合

用いたDNAは図2-4と同じである。各レーンの反応液に加えたTraM*及びヘバリンの量は以下 の通りである。ゲルの写真の右側に各バンドに対応する断片の長さ(bp)を示す。

レーン	1	2	3	4	5	6	7	8	
TraM*/DNA	0	150	150	150	150	75	37	9	
ヘバリン	0	500	50	5	0	0	0	0	(ng / µ l)

(3) TraM'のoriT領域に対する特異的結合

TraM*をコラーゲンリンカーの部分で切断してTraM部分とLacZ部分に分離するために、TraM*標品に対してコラゲナーゼ(collagenase)処理を行った。コラゲナーゼによる切断部位であるアミノ酸配列PX↓GPX(矢印の箇所を切断する。Xはどのアミノ酸でもよいことを示す:Germino and Bastia, 1984)は、TraM*中コラーゲンリンカーの部分にのみ存在し、コラゲナーゼ処理によってTraM部分をLacZ部分から分離することが出来る。TraM*標品に対してコラゲナーゼ処理を行ない、SDS-PAGEにて調べたところTraM*のバンドが消失し、LacZと同じ移動度を示すバンド及び約10 kDaの新たなバンドが生じた(図2-7)。後者はTraMタンパク質の塩基配列から計算した分子量(14508 Da)や、マキシセル法によって示された分子量(約10 kDa: Inamoto et al., 1988)とよく一致し、コラゲナーゼ処理によってTraM*のTraM部分がLacZ部分と分離できることが確認できた。この新たに出現したTraM部分をTraM'と名付けた。TraM'が見られたことで、前節で精製した試料が実際にTraM*であることがあらためて確認できた。TraM'は本来のTraMのC末端部分にコラーゲン由来の5アミノ酸残基DPGPVが付加した形になっていると考えられる。TraM*標品にコラゲナーゼ処理を施した試料をTraM*標品として以後の実験に供した。

このようにして得たTraM'標品を用いてゲルシフト法を行ったところ、TraM' もTraM*と同じようにoriT領域に特異的に結合することがわかった(図2-8)。ま た、TraM'の方がTraM*よりも結合能が強いことが示された(図2-8、レーン2、5)。 これはTraM*のDNA結合能がLacZ部分によって部分的に阻害されていることを示唆す る結果である。TraM*の結合したDNA断片、つまりシフトした断片がゲルの上端に存 在すると考えられるのに対して、TraM'の結合した断片の泳動度の遅れは小さく、ゲ ルの上でシフトしたパンドが確認できた。TraM'の濃度が高くなるにつれて泳動度の 遅れも大きくなっており(図2-8、レーン4~7)、oriT領域内には複数のTraM結 合部位が存在することが示唆された。

-26-

図2-8 TraM'のoriT領域に対する結合

用いたDNAは図2-4と同じである。各レーンの反応液でのTraM*またはTraMとDNAとのモル比 は以下の通りである。レーン2とレーン5を比較すると、同じタンパク質量でレーン2では1179 bpのパンドのシフトがほとんど見られないのに対し、レーン5では完全にシフトしている。

レーン	1	2	3	4	5	6	7
TraM*/DNA	120	60	30	0	0	0	0
TraM'/DNA	0	0	0	120	60	30	0

(4) oriT領域におけるTraMタンパク質の結合部位

TraMタンパク質のoriT領域上の結合部位をさらに詳しく調べるために、oriTを含むDNA断片(図2-9A)を用いてDNase Iフットプリンティング法による解析を行った。その結果、TraM*存在下でoriT領域内の4つの箇所にそれぞれ30bp程度、DNase Iによる切断からの保護が見られ、TraMの結合部位が示された(図2-9B、2-10)。これらTraM結合部位をspecific binding site of the TraM proteinの略でsbmと名付け、上流側より順にsbmA、sbmB、sbmC、sbmDとした。これらsbm部位には15塩基対からなる相同的な塩基配列が存在した(図2-9C)。また、sbmB、sbmC、sbmDにはそれぞれパリンドロミックな逆向き重複配列が存在した(図2-9B)。TraM*タンパク質のsbmA、sbmBに対する結合はsbmC、sbmDに対する結合より弱く、タンパク量が2倍にならないとDNase Iに対する保護ははっきりとは見られなかった(図2-10)。

sbmAとB、sbmCとDとはそれぞれ隣接して存在するが、sbmBとCの間には20 bp程 度の間隔が有り、そこには宿主タンパク質IHFの結合部位に見られる共通配列が見ら れた。DNase Iフットプリンティング法によって解析した結果、この部位には実際に IHFが結合することが明らかとなった(図2-9 B)。IHFはR100のoriT領域中のoriT のすぐ近傍にも結合し、その結合部位をihfA、sbmBとCの間に存在するIHF結合部位 をihfBと名付けた(図2-9 B)。

TraMが個々のsbm部位を単位として認識、結合することを示すために、sbmD全体 に相当する33 bpの配列の合成二本鎖DNA断片(図2-11(A); SBMD)、ihfB中に見 られる33 bpの配列の合成二本鎖DNA断片(図2-11(B); IHFB)をそれぞれコンペ ティターとして用いてゲルシフト法を行なった。その結果SBMDはTraMの結合を阻害 したが、IHFBは阻害せず、TraMが実際に個々のsbm部位を単位として認識、結合する ことが示された(図2-11)。またコンペティターとして、四つのsbm部位にみら れる15 bpの共通配列(図2-11(C); CONSENSUS)、ihfB中に存在するIHF結合部 位に見られる共通配列を含む15 bpの配列(図2-11(D); IHFCORE)からなる合成 二本鎖DNA断片を用いたところ、CONSENSUSはTraMの結合を阻害したが、

図2-9 oriT領域におけるTraM*タンパク質の結合部位

AにDNase Iフットプリンティングで用いたDNA断片及び³²Pで標識した5⁵末端を示す。DNA断片は 横長の長方形で示してあり、上辺が上側のDNA鏡、下辺が下側のDNA鏡を表す。³²Pによる標識の 部位を*で示す。長方形全体は標識を入れた段階でのDNA断片であり、そのうち斜線の入った部 分がDNase Iフットプリンティングに用いた断片である。BにR100ののiTからtraM情造遺伝子まで の間の領域の塩基配列を示す。図中conservedとあるのはR100類似のプラスミド間でよく保存され ている領域、nonconservedとあるのは保存されていない、プラスミド特異的な領域である。塩基番 号は図1-4に従いプラスミド特異的な領域の最初の塩基を1とした。sbyAはTraYの結合部位 (Inamoto and Ohtsubo, 1990)、*ihIA及びihIB*はIHFの結合部位を表す。上向きの矢印はのiTを示す。 ニックは、oriTの下側のDNA鎖に入る。Dempseyによって報告された*traM*遺伝子の転写開始点 (Dempsey, 1989)とそれから考えられるプロモーター、及び塩基配列から予想されるTraMタン パク質のアミノ酸配列をそれぞれ示してある。TraMタンパク質の結合部位sbmA、B、C、Dをそ れぞれ示す。sbmB、C、Dに存在する逆向き反復配列を上下のDNA鎖の間に矢印で示し、sbmA、 B、C、D内に存在する保存された塩基配列、ならびにそれらに共通すると思われる塩基配列 (consensus)である。

図2-10 sbm部位のDNase Iフットプリント

EaclとあるのはEacl部位を標識した353 bp Hphl-Eacl断片、DralとあるのはDral部位を標識した288 bp Dral-Eacl断片についてのDNase 1フットプリンティングによるパターンである。DNA鎖の分離に使用したシークエンスゲルの濃度をそれぞれ示してある。Eaclのレーン1、2、3、4 はTraM*/DNAがそれぞれ340、170、85、0 (コントロール)、Dralのレーン1、2、3はそれぞれ300、150、0 (コントロール)の条件で反応させたことを示す。sbm部位をゲルの左側に示す。黒い帯がDNase Iによる切断に対して保護されている領域である。数字は各sbm部位の両端の位置を示す。sbmC、sbmDはsbmA、sbmBよりも薄いTraM*濃度でフットプリントが見られる。

図2-11 TraMの結合に対する合成二本鎖DNAによるコンペティション

TraM*の*oriT*領域に対する結合を、³³Pで標識した*Drat-Tth*HB8I 1131 bp断片に対するゲルシフト法 で調べた。3%PAGE後ゲルを真空加熱乾燥し、オートラジオグラフィーにて視覚化した。全ての レーンにおいてTraM*は0.3 pmol、標識したDNA断片は0.005 pmol用いて28℃で20分間結合反応を 行なわせた。レーン1ではコンペティターを加えない条件で、また、レーン10ではTraM*を加 えず、標識したDNA断片のみを泳動している。レーン10で見られるタンパク質の結合していな いDNA断片(図右側にfree DNAと示す)はレーン10では全てシフトしている。レーン2~9では 以下に示すコンペティターを加えて結合反応を行なっている。レーン2、23 pmolのSBMD:レー ン3、2.3 pmolのSBMD:レーン4、0.2 pmolのSBMD:レーン5、23 pmolのIHFB:レーン6、 2.3 pmolのIHFB:レーン7、0.2 pmolのIHFB:レーン8、50 pmolのCONSENSUS:レーン9、50 pmolのIHFCORE。下部にそれぞれのレーンで加えたコンペティターSBMD (A)、IHFB (B)、 CONSENSUS (C)、IHFCORE (D)の配列を示す。塩基番号は、図1-4に従った。 IHFCOREは阻害せず (図 2 - 1 1)、TraMがsbm部位に存在する相同的な15 bpの配 列を認識して結合することが示された。

3. 考察

(1) TraMタンパク質の精製

本研究ではTraMタンパク質の機能を解析するためにTraM-コラーゲン-LacZ融合タ ンパク質(TraM*)を構築し、これをLacZに対するアフィニティーを利用して精製し た。この方法では本来の形でのTraMタンパク質を得ることはできないが、機能の不明 なTraMタンパク質を一段階で精製することが可能となり、硫安沈澱やいくつものカラ ムを用いる通常の方法に比べ精製の手順と時間とが大幅に短くなり、精製過程におけ るタンパク質の変性、分解などを最小限に抑えられると考えられる。また、TraM*の 発現の様子を β -ガラクトシダーゼ活性(LacZ活性)で追跡できるという利点を持つ。 更に、ここではcI857と $p_{\rm R}$ プロモーターの発現調節系を用いており、熱誘導により目的 タンパク質を短時間のうちに大量に生産させることが期待できる。実際、traM*遺伝 子をもつプラスミドpABO22を保持する宿主菌のTraM*産生の指標となるLacZ活性は、 熱誘導により約100倍にもなった。

LacZ活性は菌体の膜画分と可溶性画分とにほぼ等しく分配されていた。本来の TraMタンパク質は膜画分に分画されることが既に報告されているが(Achtman et al., 1979)、TraM*の場合膜に親和性の強いTraM部分と可溶性のLacZ部分とが融合したタ ンパク質であるためこのようになったのだろうと考えられる。また、TraMを膜に保持 するレセプターが膜に存在するならば、TraM*の過剰生産によってTraM*に対するレ セプターの量比が低下し、その結果膜に保持しきれないTraM*が細胞質画分に遊離し た可能性もある。

TPEG-Sepharoseカラムを通して得られたTraM*標品はSDS-PAGE上で主要な二本の パンドを示した(図2-3)。培養温度のシフトによって誘導される点や分子量など から考えて、そのうちの上のパンドがTraM*であり、下のパンドはそのTraM*が分解 されて生じたLacZ部分であると推定した。TraM*標品に対してコラゲナーゼ処理を施 すと一番上と二番目のパンドが減じ、それにともなって二番目のパンドのやや下、分 子量マーカーとして用いたβ-ガラクトシダーゼとほぼ同じ位置に新しいバンドが生 じたこと、また、約10 kDaの位置にTraM'と考えられる新しいパンドが生じたこと (図2-7)は、この推定を支持する結果である。

TraM*を発現している菌体の全タンパク質をSDS-PAGEで観察するとTraM*は、 TraM部分が分解されて生じたと考えられるLacZ部分よりはるかに多量に存在する。そ れに対してTraM*標品中では両者の存在比は約1:1である(図2-3)。この説明 としてTraM*が精製過程で除かれたか、あるいは分解されたかの二つの考え方が出来 る。本研究で用いた方法ではTraM*は菌体の可溶性画分から精製されている。しかし、 先に述べたように菌体のLacZ活性は膜画分と可溶性画分とにほぼ半々に分かれている。 しかもLacZが可溶性であることから、もし菌体内でTraM*が分解を受けLacZ部分が生 じていればそれは可溶性画分に分画されると考えられる。従って膜画分のLacZ活性が ほとんどTraM*によるものであると考えられるのに対し可溶性画分のLacZ活性には分 解されて生じたLacZ部分によるものも含まれるはずである。従って、可溶性画分のみ を用いる限りTraM*の精製標品中での存在比は低くなると考えられる。TraM*の量比 を上げるためには可溶性画分だけでなく膜画分を可溶化するなどしてアフィニティー クロマトグラフィーにかける、各種のプロテアーゼ阻害剤を用いる、などの対策が考 えられる。

(2) TraMタンパク質のDNA結合性

精製されたTraM*標品及びTraM 標品を用いたゲルシフト法による解析の結果、このタンパク質はR100のoriT領域を含むDNA断片に特異的に結合することが明らかとなった。この結合はヘパリンによって阻害され、更にpH 5.5において至適であった。また、TraM*の量を増やすとoriT領域を含まないDNA断片に対する結合もみられ、TraM タンパク質は非特異的DNA結合能も持つと考えられた。 TraM 標品を用いたゲルシフト法では、タンパク量が増加するにつれてoriT領域を 含むDNA断片の泳動度の遅れが顕著となった(図2-8)。この理由としては①oriT 領域内にTraMタンパク質に対する親和性の異なる複数の結合部位が存在する、② TraMが濃度が高い状態では二量体もしくは多量体を形成しており、希釈されること でそれが解離する、などが考えられる。このうち②についてはTraM のタンパク質量 がpmolレベルであり、その希釈の度合いもたかだか四倍程度であることからも考えに くく、従って①のようにoriT領域にはTraMタンパク質の結合部位が複数存在するため であると考えられる。実際にDNase Iフットプリンティング法によって解析した結果、 TraMの結合部位が四ケ所存在することが示された。

(3) oriT領域におけるTraMタンパク質の結合部位

DNase Iフットプリンティング法によってTraM*はtraM遺伝子の上流側4つの部位に 結合することが明らかとなった。これまでにF因子のTraMタンパク質がtraM遺伝子の 上流にいくつか存在する逆向き重複配列 (inverted repeat) や順方向重複配列 (direct repeat) に結合するのではないかと想像されていた(総説: Ippen-Ihler and Minkley. 1986)。本研究においてはじめて明らかとなった結合部位sbmA、sbmB、sbmC、 sbmDのうちsbmAを除く3つの部位にはそれぞれパリンドロミックな逆向き重複配列が 存在し、sbmCとsbmDのそれは比較的よく似た配列であった。また、それとは別に四 つのsbm部位には15塩基対からなるよく保存された塩基配列が存在した。合成二本鎖 DNA断片を用いたコンペティション実験から、実際にTraMタンパク質は四つのsbm部 位に共通に見られる15 bpの配列を認識してここに結合することが示された。sbm部位 はいずれもF型プラスミド間で保存されていない、いわゆるプラスミド特異的な領域 に存在していた。これはtraM遺伝子がプラスミド特異的に働く遺伝子であることとよ く一致し、traM遺伝子の機能にはTraMタンパク質のoriT領域に対する特異的な結合が 直接関与していることを示唆している。TraM*タンパク質のsbmA、sbmBに対する結 合はsbmC、sbmDに対する結合に比べて弱く(図2-10)、またゲルシフト法によ る解析でTraM'タンパク質の量によって泳動度の遅れに違いがみられたが、これは

TraMタンパク質は濃度が低いときにはsbmC、sbmDに選択的に結合し、濃度が高くなってはじめてsbmA、sbmBにも結合するためであると解釈している。

(4) TraMタンパク質の構造

F型プラスミドのうちこれまでtraM構造遺伝子の塩基配列が報告されているF、R1、 ColB4、pSU233、pSU316、P307、pED208及びR100の塩基配列から導き出されるTraM タンパク質のアミノ酸配列をそれぞれ比較すると、それらはpED208を除きC末端側の 領域はほとんど同じであるのに対して、N末端側の領域の相同性は低い(図2-12)。 TraMタンパク質の結合領域がプラスミド特異的な領域に存在すること、traMがプラス ミド特異的であることから、TraMのDNA結合ドメインはそのN末端側の領域の中にあ ると考えられる。C末端側の領域はTraMの膜への取り込みやタンパク質同士の相互作 用に関わっていると考えられるが、C末端領域には特に疎水性の高い部位や膜貫通ド メインは存在しないことからTraMの膜との親和性はいわゆる膜貫通型の構造によるの ではないと考えられる。一つの可能性としては膜にTraMを保持する機能を持つタンパ ク質が存在することも考えられ、これに関しては今後さらに解析することが必要であ る。

(5) TraMタンパク質の機能

本研究においてTraMタンパク質がoriT領域中接合伝達の際ニックが入る部位の traM遺伝子側、つまり接合伝達において一番最後に受容菌に移動する領域に特異的に 結合することが明らかとなった。このこととTraMタンパク質が膜に親和性のあるタン パク質であるということから、TraMタンパク質がoriT領域を膜近傍、特にTraDによっ て形成されるDNA伝達口近傍に保持する機能をもつとの仮説を立て、これをTraMの anchoring機能と名付けた。この仮説によればtraM遺伝子が接合伝達に必須であるとい うことが、TraMタンパク質が存在しなければoriT領域をDNA伝達口近傍に保持するこ とができず、一本鎖DNAが受容菌へと移動することができなくなるためと説明できる

ENÖNE ANKTWIENASKAKYWGLEITKWSATNÖESIYSCHEDÄYAIKEYIDKEYKEÖASIEEEDDEDDÖE	PED208
ENÖLEENKITTEGAAKLÖSLAVKITGIESTSEHASGNEKEEKVSWADDIFEKASAEWDEEEE KADD'E	COIB4
ENÖLEENKITTECAAKLÕSZAVKIIGIEZIZEHAZGNEKEEÄVNWAEDIFEKAZZEWEKEEE KADE'E	BIOO
PROTEFRKLILLECUVKTOSSYAKTLOTESLSPHUSGNSKFETANMVEDIREKUSSEMERFFF, KUDD, E	Е
FNÖLEENKTTTECAAKLÖSSAFKITCIESTSEHASCHEKESKENWAEDIFEKASSEWEFEEF, KNDD, E	9TEnsd
ENÖVEENKITTECAAKLÖSLAVKITCIESTSEHASGAEKEEXSNMAEDIFEKASAEWEFEEE'KADD'E	E301
ENQREFNKLILECVVKTQSSVAKILGIESLSPHVSGNPKFEYANMVEDIREKVSVEMEREFP, KNDD. E	psu233
ENÖVEENKAITEGVAKIÖSIAVKIIGIESISEHASGNEKEEÄVNWAEDIKDKASSEMEKEE" ENDE E	БŢ
ζετ · · · · · τς	
MPKIQTYVVVVVYEQITDLVTIRKQEGIEE ASLSVVSSMLLELGLRVVNIQQEKREGG	ped208
WYFANTAISHEAHEKINWIAEKBEGEVEDKDISISSCLESWITETGTEALDYÖNEEKESY	COIB4
WERVILYISUDVIDKVNALVEORROEARDKDISVSSTASMLLELGLRVYERQMERKESA	BIOO
WARVULTISUDAYEKINAIIEKRROEGAREKDVSFSATASMLLELGLRVHEAQMERKESA	Е
MAKVNLYI SUDAYEK INA I TEKRROEGRAFKUVSF SATASMLLELGLRVHERQMERKEFA	9TEnsd
WYKANI'A I 2010 YAEK INYA I EKBEGEREKDA 28 ZYA ZWI TETOTYA XEYÖNEBKEZY	E301
ARKVNLYISNDAYEKINAIIEKRRQEGAREKUVSFSATASMLLELGLRVYERQMERKESA	psu233
WARVOAYVSDEIVYKINKIVERRARGARSTDVSF55ST5TMLLELGLRVYEROMERKESA	КŢ
09 T	

弾力の限備がしまての資ウパンをMbiTのドミステアの経験001月 SI-S図

(CoIB4) ': Craus-Coldner et al., 1990 (P307) ; Fee and Dempsey, 1986 (R100) . (PED208) ; Koronakis et al., 1985 (R1) ; Thompson and Taylor, 1982 (F) ; Finlay et al., 1986b から得た。Salazar et al., 1992 (pSU233) ; Lopez et al., 1991 (pSU316) ; Di Laurenzio et al., 1991 文論の不良制限語基語の子沿置Men各。た」購通で付掛牌を基契額しミアの延其とMenTのドミス そちの動。す示き限温鏡しきてのMinTされき患そらな限語悲劇のドミスそとの縁膜のうび双0018 (図2-13)。TraMタンパク質とTraDタンパク質などとの相互作用についての生化 学的な知見は得られていないが、もしTraMタンパク質がTraDタンパク質と相互作用を 持つのであれば、oriT領域を単に膜の近傍にというだけでなくDNAの通る孔の近傍に 保持するという、より直接的な役割をTraMタンパク質は果たしていることになる。こ のTraMタンパク質とTraDタンパク質との相互作用は、ぜひとも解析すべき興味深い課 題である。

図2-13 TraMのanchoring機能に関する模式図

TraMが存在すると(TraM(+))、oriT領域が膜近傍に保持されDNA伝達が開始するが、TraMが存在 しないと(TraM(-))oriT領域は膜近傍に固定されず、DNA伝達は開始されない。

第三章 traM遺伝子のプロモーター領域の解析

要約

性決定因子R100のtraMはDNAの伝達に直接関与し、その遺伝子産物であるTraMタンパク質はtraMの上流、sbmA、B、C、Dと名付けた四つの部位に結合する。TraMが自己の発現に与える影響を調べるため、traMの上流を段階的に欠失させたtraM遺伝子の開始コドンにin frameになるようにlacZ遺伝子を融合し、TraM⁻、TraM⁺の宿主菌に保持させ、その β -ガラクトシダーゼ(LacZ)活性を指標にtraMの発現を調べるとともにtraM_{Arro}-lacZ融合遺伝子の転写産物についての解析を行なった。その結果、二つのプロモーター p_{Mn} 、 p_{Mn} 存在が示された。上流側の p_{Mn} はsbmC、Dと重なって存在し、下流側の p_{Mn} はsbmDの下流に存在した。 p_{Mn} は弱いが構成的に発現するプロモーターであり、 p_{Nn} からの発現はTraMの存在下でその発現が完全に抑制され、またIHFによっても部分的に抑制された。TraM非存在下では p_{Mn} の方が強いプロモーターであった。 p_{Mn} は接合伝達の直後や細胞増殖に伴いTraMのoriT領域に対する相対濃度が低下した際に必要量のTraMを発現するために働くと考えられる。IHFはTraMの発現の部分的な抑制がその第一義的な機能ではなく、TraMともにDNA伝達に必要な機能を持つ複合体を形成する働きをするものと考えられる。

本章の内容は以下のように印刷、公表した。

"Repression of the *traM* gene of plasmid R100 by its own product and integration host factor at one of the two promoters" *Journal of Bacteriology*, 1 7 5:4466-4474 (1993) 1. 序

第二章で決定したTraMの結合部位のうち*sbmC、D*はDempsey(1989)によってマ ップされた*traM*のプロモーターと重なっていた。このことはTraMが自身の発現を転写 レベルで抑制する可能性を示唆する。*traM*は単独でオペロンを形成しており、*tra*領域 には*traM、traJ、*及び巨大な*traY-I*オペロンの三つの主要な転写単位が存在するが、*traJ* の発現がFinOP系によって、*traY-I*オペロンの発現がTraJによってそれぞれ制御されて いるのに対し、*traM*の発現に関してはTraJによって正に制御されるという結果がこれ までに報告されているのみであり、しかもそれと反する報告もあるなどその実体は不 明である。

そこで本章では実際に自己抑制機構が存在するか、また、TraJタンパク質や他の タンパク質による制御が行なわれているのかを確認するために、traM遺伝子のプロモ ーター領域の解析を行なった。解析の結果、traMの発現は自己抑制を受けること、 TraJによって活性化されないことが明らかとなった。

2. 結果

(1) traMのプロモーターの探索

traM遺伝子のプロモーター領域を β -ガラクトシダーゼ活性を指標として解析する ために、traMの上流の様々な領域をtraM遺伝子の開始コドンがベクタープラスミド pR-pMLBのlacZ遺伝子のコドンと読み枠が同じ(in frame)になるように融合した traM_{ATG}-lacZ融合遺伝子を運ぶプラスミドpABO215、49、216、217、218を構築した。 得られたプラスミドが含むtraM遺伝子の上流領域の範囲、及びそこに存在するsby、 ihf、sbmのそれぞれの部位の位置を図3-1に示す。これらのtraM_{ATG}-lacZ融合遺伝子 が発現して得られるTraM_{ATG}-LacZ融合タンパク質のアミノ酸配列は、インタクトな LacZと全く同じである。これらのpABOプラスミドをlacZの完全欠損株である宿主大腸

図3-1 プロモーターの検索に用いたtraMarg-lacZ融合遺伝子の構造

最上部にR100の oriT (\blacktriangle) からtraMまでの領域と、この領域内にマップされているタンパク質の 結合部位を模式的に示す。ihfA、BはIHFの結合部位、sbyAはTraYの結合部位、sbmA、B、C、D はTraMの結合部位をそれぞれ示す。塩基番号は図1-4に従った。 p_{AII} 、 p_{AII} は承研究で明らかに したtraMのプロモーターの位置である。中段には解析に用いたプラスミドのtraM_{AII}のtaG部合 とたtraMのプロモーターの位置である。中段には解析に用いたプラスミドのtraM_{AII}-lacZ融合遺伝 子周辺の構造の模式図を示す。pR-pMLBはtraM_{AII}-lacZ融合遺伝子を作製するのに用いたペクター プラスミドである。d857、 p_{AX} 、ATGcroはそれぞれバクテリオファージ入のリプレッサーcIの温度 感受性変異遺伝子、 p_{AX} プロモーター及び cro遺伝子の開始コドン (ATG) であり、pR-pMLB上の lacZ遺伝子はATGcroから翻訳されて発現する。図中の白抜きの矢印は遺伝子とその方向を表わす。 各pABOプラスミドは太線で示した範囲をpR-pMLBのATGcroの直後に存在するBamHI認識部位に クローニングして得た。最下部に示すのは traM_{AIII} と lacZとの連結部分の塩基配列である。SD配列 と traM_{AIII}を下線で、BamHI認識部位を太文字でそれぞれ示す。 菌MC1000に保持させ、融合遺伝子が発現して産生されるTraM_{Aro}-LacZ融合タンパク質による β -ガラクトシダーゼ(LacZ)活性を測定することで、in vivoにおけるtraMの発現の強さを調べた。これらのpABOプラスミドにおいてはtraM_{Aro}の上流にpR-pMLB上に存在するパクテリオファージ入のプロモーター $p_{\rm R}$ が位置するが、 $p_{\rm K}$ からの転写は同じくpR-pMLBにコードされる温度感受性レプレッサーcI857によって抑制され、cI857が活性を保つ30℃においては挿入したDNA断片による転写活性のみを調べることができる。

これら一連のpABOプラスミドを保持するMC1000を30℃で培養し、菌体の β -ガラ クトシダーゼ活性を調べた(図3-2A)。その結果pABO217(sbm領域を含まない)、 pABO218(sbmDのみを含む)は互いに同程度、しかしpR-pMLBよりは有意に高い β -ガラクトシダーゼ活性を示し、pABO218が含む208番目の塩基からtraMの開始コドン までの間、すなわちsbmDとtraM遺伝子との間にプロモーターが存在することが示され、 これをp_{ML}と名付けた。一方、pABO215(sbmCとsbmDを含む)、pABO49(sbmB、 ihtB、sbmC、sbmDを含む)、pABO216(全てのsbm部位とihtBとを含む)は更に高い β -ガラクトシダーゼ活性を示した。この結果からpABO216にあってpABO217には存 在しない147番目の塩基から176番目の塩基までの領域、すなわちsbmCを含む領域に はさらに強いプロモーターの存在が示され、これをp_{ME}と名付けた(図3-1)。

(2) IHFはp_{M2}からの発現を一部抑制する

 p_{AD} による tra M_{ATG} -lacZ融合遺伝子の発現が見られる pABO215、49、216のうち、 pABO216は pABO49や pABO215よりも高い活性を示した(図3-2A)。 pABO49や pABO215には IHF の結合部位 ihf Bが存在するが pABO216には存在しない(図3-1)。 これは IHF が ihf Bに結合することで p_{AD} による tra M_{ATG} -lacZ融合遺伝子の発現をある程度 抑制することを示唆する。そこで、 p_{AD} からの発現に対する IHF の影響を評価するため に、MC1000の IHF 欠損変異株TA1000を構築し、それを宿主として同様の解析を行な った。その結果、 p_{MI} のみによって tra M_{ATG} -lacZ融合遺伝子を発現する pABO217、218、 及び p_{MI} 、 p_{AD} は持つが ihf Bを持たない pABO216の示す β -ガラクトシダーゼ活性の値は

-43-

図 3 - 2 TraM_{ATG}-LacZ融合タンパク質の発現による β -ガラクトシダーゼ活性

各グラフの左側に示した $traM_{Arto-lac}$ 記念合遺伝子を持つ $pABOプラスミドまたはpR-pMLBを保持する宿主菌が30℃で示す <math>\beta$ -ガラクトシダーゼ (LacZ) 活性を測定した。Miller (1972) によるunitで 求めた各々のLacZ活性の値は三回以上の測定値の平均値であり、得られた平均値と標準偏差をグ ラフの右側に示す。各バネルで用いた宿主菌は以下の通り。

A. MC1000 (IHF⁺) 、 (□) ; TA1000 (IHF[−]) 、

B. MC1000 / pABO120 (TraM⁺) 、 (□) ; MC1000 / pHS12 (TraM⁻) 、 (■)

C. TA1000 / pABO320 (TraM⁺) 、 (□) ; TA1000 / pABO300 (TraM⁻) 、 (■)

IHFの野生株、変異株どちらの細胞中でもほぼ同程度であるのに対してpABO215、49 はIHF欠損株細胞中では野生株よりも高い β -ガラクトシダーゼ活性を示し、IHFが *ihfB*に結合して p_{M2} からの発現を約60%程度に抑制することが明らかとなった(図3 -2A)。

(3) TraMのp_{M2}における自己抑制

p_{ha}はsbmC、Dと重なっており、ここにTraMが結合して発現を抑えることが予想 された。これを調べるために共存するプラスミドからTraMタンパク質を供給して同様 の解析を行なった。TraMタンパク質を供給するプラスミドは、大腸菌*lac*オペロンの プロモーターの下流にプロモーターを欠いた*traM*構造遺伝子を配し、それをpSC101の 多コピー変異であるpHS12 (Armstrong et al., 1984) に挿入したプラスミドpABO120を 用いた。pABO120の構築については第六章,材料と方法の項で述べる。pABO120にお いては*traM*は*lac*プロモーターから発現するため、自己抑制機構が存在してもその影響 は受けず、Lacレプレッサーを持たない宿主菌MC1000中でTraMタンパク質を発現する ことが出来る。

pABO120を保持するTraM⁺のMC1000 (MC1000 / pABO120)、及び対照として pHS12を保持するTraM⁻のMC1000 (MC1000 / pHS12)をそれぞれ宿主菌として、上記 と同様にTraM_{Arc}-LacZ融合タンパク質によるβ-ガラクトシダーゼ活性を測定した(図 3-2B)。その結果、 p_{MI} のみを持つpABO217、218はTraM⁺、TraM⁻どちらの細胞 中でも同程度のβ-ガラクトシダーゼ活性を示した。これは p_{MI} からの発現はTraMタン パク質によって抑制されないことを示す。一方、 p_{MI} 、 p_{M2} 双方からTraM_{Arc}-LacZ融合タ ンパク質が発現するpABO215、49、216の場合、TraM⁺の細胞中ではTraM⁻の細胞中に 比べて示すβ-ガラクトシダーゼ活性が非常に低く、 p_{M2} からの発現がトランスの位置 から供給されるTraMによって抑制されることが示された。pABO215、49、216が TraM⁺の細胞中で示すβ-ガラクトシダーゼ活性はpABO217、218が示す値と同程度で あり、 p_{M2} からの発現はTraMタンパク質によってほぼ完全に抑制され、 p_{MI} からの発現 のみが行なわれているものと考えられる。また、pABO216においてTraMによる p_{M2} か らの発現の抑制が見られることから、この抑制はsbmC、Dさえ存在すれば完全に行なわれ、sbmA、B、ihfBは必要ないことが示された。

IHFによってPapからの発現が部分的に抑制されることから、ここで観察された TraMの自己抑制がIHFの存在によって何らかの影響を受ける可能性が考えられた。そ こで、MC1000に代えてそのIHF欠損変異株であるTA1000を宿主として同様の解析を 行なった。その際、pSC101由来のpHS12は複製にIHFを必要とするためTA1000中では 複製できず(Friedman, 1988)、この実験に用いることはできない。そこでIHF欠損株 中でも複製できるpACYC177由来のベクタープラスミドpHY300PLK (Ishiwa and Shibahara-Sone, 1986) が運ぶテトラサイクリン耐性遺伝子とアンビシリン耐性遺伝子 の内、後者を破壊したプラスミドpABO300を構築し、それにpABO120に挿入したのと 同じDNA断片を挿入してpABO320を得た。pABO300、pABO320の構築については第六 章, 材料と方法の項で述べる。pABO320を保持するTraM⁺のTA1000(TA1000/ pABO320)、及び対照としてpABO300を保持するTraM のTA1000 (TA1000/pABO300) をそれぞれ宿主菌として上記と同様に、β-ガラクトシダーゼ活性を測定した(図3 -2C)。その結果、MC1000を宿主とした際と同様、TraM⁺の細胞中でpABO215、 49、216が示すβ-ガラクトシダーゼ活性はpABO217、218が示す値と同程度であり、 p.nからの発現はTraMタンパク質によってほぼ完全に抑制されていた。この抑制の様 子がMC1000を宿主として用いたときと変わらないことから、TraMタンパク質による p_{se}からの発現の抑制はIHFには依存せず、TraMタンパク質自身のみで完全に抑制され ることが明らかとなった。

(4) p_{M1}、 p_{M2}の位置の決定

 p_{M1} 、 p_{M2} の位置を決定するために、 $traM_{ATG}$ -lacZ融合遺伝子を p_{M1} から発現するプラ スミド pABO217、及び p_{M1} 、 p_{M2} 双方から発現するプラスミド pABO215を保持する MC1000からRNAを調製し、lacZ遺伝子にハイブリダイズするプライマー(プライマ -M4 [Takara]、表 6 - 6)を用いて逆転写酵素 (reverse transcriptase)によるプライマ - 伸長反応を行なって転写開始点を調べた。MC1000/pABO217から得たRNAについ て行なったところ、プラスミドを保持しないMC1000、またはMC1000/pR-pMLBでは 見られない伸長反応物が見られ(図3-3、レーン1~3;伸長反応物のパンドはゲ ルの右に \triangle で示す)、その塩基配列上で対応する位置(塩基番号261及び262;図3 -4に▽で示す)からこれが p_{M1} からの転写産物によるものであると考えられた。そ の転写開始点から、 p_{M1} は図3-4に示す位置に存在すると考えられた。MC1000/ pABO215を用いて行なったところ、 p_{M1} からの転写産物に由来する伸長反応物の他に、 より長い伸長反応物が見られた(図3-3、レーン4;伸長反応物のパンドはゲルの 右に \triangle で示す)。そのうち最も強いシグナル(図3-3の大きい▲)の塩基配列上で 対応する位置(塩基番号197及び198;図3-4に▼で示す)からこれが p_{M2} からの転 写産物によるものであると考えられた。その転写開始点から、 p_{M1} は図3-4に示す 位置に存在すると考えられた。

TraM存在下での p_{MN} 、 p_{MD} からの転写産物を調べるために、pABO215または217に pABO120またはpHS12を共存させ、同様の解析を行なったところ、全てのレーンで p_{ML} からの転写産物に由来するシグナルが見られた(図3-3、レーン5~8)。しかし MC1000/pABO215+pABO120(図3-3、レーン7)では p_{MD} からの転写産物に由来す るシグナルはMC1000/pABO217+pHS12(図3-3、レーン6)と比較してほとんど 同じ程度にまで弱くなっていた。これは β -ガラクトシダーゼ活性を指標にして行な った際に得られた結果と一致し、ここで調べた転写産物が p_{MN} 、 p_{MD} から転写されたも のであることを確認できた。また、この結果、TraMタンパク質による p_{MD} からの発現 の抑制が転写レベルで行なわれていることが明らかとなった。

(5) TraMタンパク質はシスの位置に存在する自身のプロモーターp_{M2}からの 発現を抑制する

ここまでの解析でトランスの位置から供給したTraMタンパク質がtraM_{ATO}-lacZ融合 遺伝子の発現を抑制することが確認できたので、次に、元のプラスミドR100上で実際 にtraM遺伝子が発現するのと同じ条件、すなわち、traM遺伝子がシスの位置にあるp_M、 P_{Me}から発現してTraMタンパク質を生産するときのp_M、p_{Me}からの転写産物の状態を調

図 3-3 traM_{ATG}-lacZ転写産物に対するプライマー伸長法

A. ³²P標識されたプライマーM4を用いてプライマー伸長法を行ない、得られた逆転写反応産物を8%シークエンシングゲルにて電気泳動し、乾燥後オートラジオグラフィーにて視覚化した。 RNAを調製する際に用いた宿主菌は全てMC1000であり、MC1000/pABO217(レーン1)、プラスミドを持たないMC1000(レーン2)、MC1000/pABO217(レーン3)、MC1000/ pABO215(レーン4)、MC1000/pABO215 + pHS12(レーン5)、MC1000/pABO217 + pHS12(レーン6)、MC1000/bABO215 + pABO120(レーン7)、MC1000/pABO217 + pABO120(レーン8)から調製したRNAに対してプライマー伸長法を行なった。 p_{An} からの転写産物由来のパンドをマでそれぞれ示す。 p_{An} からの転写産物由来で最も長く、またシグナルの強いのパンドニつを大きいマで示す。右側に主なパンドの塩基配列上に対応する位置を抜き書きして示す。塩基番号は図1-4に従った。GATCはDNA鎮長を求めるためのマーカーに用いたシークエンスラダーであり、プライマー伸長法に用いたのと同じ5⁻ 末端を³²P標識したM4プライマーを用いてpABO215 DNAをテンプレートとしてdidcoxy法にて調製した。B. 上のパネルAの図のうち、宿主菌によるものと考えられるパックグラウンドのパンドと重なってまぎらわしい領域(大きい▼で示したパンドの周辺)を、露光時間を短くしてオートラジオグラフィーを行なった。

図3-4 oriT領域の塩基配列

conserved、nonconservedはそれぞれR100と類縁の性決定因子の間で相同性の高い領域、及び比較的 相同性の低い領域を示す。塩基番号はプラスミド特異的な領域の最初の塩基を1とした。上向き の矢印はoriTを示す。ニックは、oriTの下側のDNA鎮に入る。sbyAはTraYの結合部位(Inamoto and Ohtsubo, 1990)、*ihfA*及び*ihfB*はIHFの結合部位、sbmA、B、C、DはTraMの結合部位である。 プライマー伸長法で明らかにした p_{An} からの転写差物の5'末端の位置をマ、 p_{An} からの転写産物の5' 末端の位置を▼でそれぞれ示す。 p_{An} からの転写産物で最も長く、かつ量の多いものの5'末端の位 置は大きな▼で示す。それぞれの転写開始点から予想される-10、-35配列を塩基配列上に示す。 *traM*遺伝子のSD配列、塩基配列から予想されるTraMのアミノ酸配列、及び図3-5のプライマー 伸長法に用いたプライマーtraMRVの位置を下に示してある。 べた。 traMを含む DNA断片を含む 3 種類のプラスミド pSI87-XE1、 pSI87-ES3、 pSI87-XS5 (Inamoto et al., 1988) (図3-5B)を保持する大腸菌JM109からRNAを 調製し、traM構造遺伝子の5'末端付近にハイブリダイズするtraMRVプライマー (図 3-4)を用いてプライマー伸長法を行なった。traMの上流領域からその構造遺伝子 の途中までを含むプラスミド pSI87-XE1を保持するJM109から調製したRNAを用いた ところ、 p_{M1} 、 p_{M2} 双方からの転写産物によるシグナルが確認できた (図3-5A、レ ーン1)。traMの上流領域からその構造遺伝子全てを含み、TraMタンパク質を生産で きるプラスミド pSI87-ES3を用いたところ、 p_{M2} からの転写産物が示すシグナルの強度 は非常に弱くなっていた (図3-5A、レーン2)。用いた3種のプラスミドを保持 しない、もしくはtraMの上流領域を持たないプラスミド pSI87-XS5を保持するJM109の RNAによってはこれらのシグナルは見られなかった。以上の結果からtraM遺伝子の発 現には、TraMタンパク質が自身のプロモーター p_{M2} を抑制する自己抑制機構が存在す ることが示された。

(6) TraJはtraMの発現に影響を与えない

 $traY-I \pi$ ペロンの転写を活性化する正の制御因子であるTraJタンパク質がtraMの発現をも制御するという考えがあった。そこでTraJがtraMの発現に与える影響を調べるために、pABO300にtraJ構造遺伝子をクローニングしてTraJタンパク質を発現するように構築したプラスミドpTAKI301 (Taki et al., unpublished result)を保持するMC1000 (MC1000/pTAKI301)をTraJ⁺の宿主、MC1000/pABO300をTraJ⁻の宿主として用い、TraM_{ATG}-LacZ融合タンパク質による β -ガラクトシダーゼ活性を測定した。その結果TraJはtraMの発現に影響を与えないことが明らかとなった(図3-6)。

図3-5 traM転写産物に対するプライマー伸長法

A. pSI87-XE1 (レーン1)、pSI87-ES3 (レーン2)、pSI87-XS5 (レーン3)及びプラスミドを 持たない (レーン4) 宿主菌JM109から調製したRNAに対し、5'末端を³²P標識したtraMRVプライ マーを用いてプライマー伸長法を行なった。 p_{Att} からの転写産物由来のバンドをマ、 p_{Att} からの転 写産物由来のバンドを▼でそれぞれ示す。 p_{Att} からの転写産物由来で最も長く、またシグナルの強 いのパンドニつを大きい▼で示す。CTAGはDNA鎖長を求めるためのマーカーに用いたシークエ ンスラダーであり、同じ5'末端を³²P標識したtraMRVプライマーを用いて、pSI87-XE1 DNAをテン プレートとしてdideoxy法にて調製した。

B. R100のorT領域及びtraMからtraEの途中までの制限酵素地図と、pSIプラスミドが含む領域を 模式的に示した。各pSIプラスミドは太線で示した領域をpUC19にクローニングしたものである。 tra遺伝子は白抜きの四角の中に斜字体で示した。E、X、SはそれぞれEcoRI、Xmnl、Smalの認識 部位である。

図3-6 traMの発現に対するTraJの影響

TraM_{Atto}-LacZ融合タンパク質の発現によるβ-ガラクトシダーゼ活性を指標に*traM*の発現に対する TraJの影響を調べた。各グラフの左側に示した*traM_{Atto}-lacZ*融合遺伝子を持つpABOプラスミドまた はpR-pMLBを保持する宿主菌が30℃で示すβ-ガラクトシダーゼ(LacZ)活性を調定した。用いた 宿主菌はMC1000/pTAKI301(TraJ+)(\blacksquare)、及びMC1000/pABO300(TraJ-)(\Box)である。 3. 考察

(1) traMの二つのプロモーターの位置の決定

本研究により、 $traM遺伝子が、 p_{MR}, p_{MR}$ の2つのプロモーターから発現することが 明らかとなった。 p_{MR} の存在は本研究によってはじめて明らかになったものである。 また、 p_{MR} はDempsey (1989)によってマップされたものとおそらく一致するものであ るが、彼の報告した転写開始点は本研究で決定した位置の5 bp上流にマップされてい た。Dempseyは転写開始点の決定に、*in vivo*において放射標識したRNAに対してDNA プローブをハイブリダイズさせ、RNaseによる消化から保護されたRNA鎖の鎖長を7M 尿素を含むポリアクリルアミドシークエンシングゲルでの電気泳動にて調べる、いわ ゆるRNase protection assayを行なっているが、RNA鎖の鎖長を決定する際に、Maxam とGilbert (1980)の方法で化学的に調製したDNAラダーを指標に用いている。一般的 に用いられる条件では、RNA鎖は同じ長さのDNA鎖に比べ5%程度遅くシークエンシ ングゲル中を移動することが知られており(Sambrook et al., 1989)、もしこれを考慮 にいれて補正すると、彼の報告した転写開始点は本研究で示した p_{NR} からの転写開始 点と同じ位置であると考えられる。

(2) traMの発現の抑制機構とその意味

TraMタンパク質はp_{xn}からの転写を抑制し、この自己抑制によって細胞内のTraM タンパク質量は一定に保たれていると考えられる。p_{xn}からの転写はおそらくプロテ アーゼによる分解など自己抑制機構では調節できない程度のTraMタンパク質のわずか な減少を補っているのであろう。それに対してp_{xn}からの転写は、DNA伝達をうけた 受容菌細胞内や、細胞分裂に伴い細胞の体積が増加した際など、細胞内のTraMタンパ ク質濃度が大きく低下した場合に抑制が解除され、DNA伝達に必要なだけのTraMが 速やかに生産されるのであろう。接合伝達によってR因子を受け取った受容菌が、そ の直後一時的に高い接合伝達能を示すHFRT(High frequency R transfer)という現象が ある(Harada et al., 1977)。これは、Traタンパク質の発現を抑制する働きを持つ FinOP系の発現が充分でない間にtraY-Iオペロンの転写が行なわれてTraタンパク質が 発現するために起こると考えられているが、これが高い伝達能を示すためにはtraY-I オペロンとは独立に転写されるTraMの生産も速やかに行なわれる必要があり、それは p.eからの転写の自己抑制の解除によって実現されるのであろう。

TraMタンパク質による p_{xa} からの転写の抑制は、 p_{xa} がsbmC、Dと重なるためにこ こに結合したTraMタンパク質がRNAポリメラーゼの p_{xa} への結合を物理的に妨害する ことによるものと考えられる。 p_{xa} からの転写はIHFによっても約60%にまで抑制さ れたが、IHFの結合部位*ihfBは* p_{xa} に隣接して存在しており、ここに結合したIHFが RNAポリメラーゼの p_{xa} への結合を部分的に阻害するものと考えられる。Dempseyと Fee (1990) はIHF⁻の菌株では*traM*の発現が抑制されると報告しているが、本研究で 得られた結果はそれとは一致しない。彼らは*traM*にクロラムフェニコールアセチルト ランスフェラーゼ (*cat*) 遺伝子を連結し、IHF⁺、IHF⁻の菌株に保持させてクロラム フェニコール濃度の異なるプレート上でのコロニー形成能を調べ、どの濃度まで耐え られるかによって*cat*遺伝子の発現を評価している。しかし、IHFの欠損は pleiotropicな 効果を示すため、彼らの結果は*traM*の発現に対する IHFの効果のみを直接調べている とはいえず、本研究で行なったようにプロモーター領域の欠失を利用したり、また、 直接CAT活性を測定するなどして詳しく解析する必要があったと考えられる。

traY-Iオペロンの転写を活性化する正の制御因子であるTraJタンパク質がtraMの発現にどのような影響を与えるかについては、これまでに二通りの結果が報告されている。Gaffneyら(1983)はlacZ遺伝子をtraM構造遺伝子中に挿入した解析からTraJタンパク質がtraMの発現を活性化すると報告しており、一方MullineauxとWilletts(1985)はgalKをレポーターに用いた系による解析から、traMの発現がTraJタンパク質には影響を受けないと報告している。本研究で得られた結果はMullineauxとWillettsの報告と一致する。

IHFがtraMの発現を抑制したのは興味深い結果である。しかし、この部分的な抑 制がihfBに結合したIHFの第一義的な機能であるとは考えにくい。oriT領域にはtraMの 自己抑制に関与するsbmC、Dの他に、抑制には必要とされないTraMの結合部位sbmA、 Bも存在し、*ihfB*は*sbmA、BとsbmC、Dと*の間に位置する(図3-1)。*ihfB*に結合したIHFはその両側に結合したTraMタンパク質と共にこの領域に高次の構造体を形成し、 それがDNA伝達に必要なのであろう。*oriT*のすぐ近傍にはもう一つのIHFの結合部位 *ihfA*が存在する。*ihfA*はTraIの認識部位*sbiと*TraYの結合部位*sbyA*との間に位置し(図 3-1)、そこに結合したIHFは、ニッキング反応を触媒するTraIタンパク質とそれ を補佐するTraYタンパク質との相互作用を助け、*oriT*に効率的にニックを導入する装 置である*oriT*-someを形成するものと考えられている。*ihfB*においてもそれと同様に、 TraMの機能の発揮に必要な構造にIHFが関与していると考えられる。

第四章 oriT領域の構造と機能

要約

R100の接合伝達開始点oriTのすぐ近傍にはTral、IHF、TraYが結合する領域が存在 し、そこにはoriTにニックを入れるのに必要な複合体oriT-someが形成されると考えら れている。それに隣接した領域にはTraMの結合部位sbmA、B、C、Dが存在し、sbmB とCの間にはIHFの結合部位ihfBが存在する。この領域(TraM-IHF-TraM領域)に様々 な変異を導入し、oriTプラスミドのR100による可動性を指標に各結合部位の接合伝達 における機能を解析した。TraM-IHF-TraM領域を完全に欠失すると接合伝達は行なわ れず、個々のsbm部位及びihfBに変異を導入すると伝達効率が低下したことから、高 効率の接合伝達にはTraM-IHF-TraM領域が完全な形で存在することが必要であること が示された。ihfBの変異による伝達効率の低下は、ここに結合するIHFが TraM-IHF-TraM複合体の形成に関与し、それが高効率のDNA伝達を可能にしているこ とを示唆する。一方、ihfAに変異を導入しても伝達効率は低下した。これはihfAに結 合するIHFがoriT-someの形成に関与し高効率のDNA伝達を可能にするとの仮説を支持 する。また、sbyAとsbmAとの間に挿入変異を導入したところphasing効果が見られ、 oriT-someとTraM-IHF-TraM複合体との間に高次構造の形成における立体配置的な相互 の関連、おそらくはタンパク質間の相互作用が存在することが示唆された。 1. 序

接合伝達開始点oriTの周辺領域(oriT領域)は、接合伝達において、ニックの導入、 二本鎖DNAの巻戻しとそれによって生じる一本鎖DNAの受容菌への伝達及び完了とい った一連の反応が行なわれる場であり、DNAが伝達されるために必要なシスのエレメ ントである。oriT領域にはTralタンパク質の認識部位(sbi)、IHF、TraY各タンパク質 の結合部位 (ihfA、sbyA) が存在する。これらに加えてTraMタンパク質の結合部位 (sbmA~D)、IHFのもう一つの結合部位(ihfB)の存在が本研究で示されたことで、 onT領域には接合伝達に必要なタンパク質の認識、結合部位が整然と並んで存在する ことが明らかになった(図4-1、図4-2)。最近R100と類縁のプラスミドである FやR1のoriT領域がR100とよく似た構造をとることが確認されており(Schwab et al. 1991; Di Laurenzio et al., 1992) (図4-1)、F型プラスミドの接合伝達における oriT 領域のこの構造の重要性が認識されてきている(総説: Ippen-Ihler and Skurray, 1993)。 oriTにニックを導入する活性を持つのはTralであり、in vitroにおいてはTralのみでニッ クを導入できることが確認されている (Matson and Morton, 1991; Reygers et al. 1991; Fukuda and Ohtsubo, unpublished result) 。しかしTraYとIHFとが共存することでニッキ ング活性の効率が上がること(Inamoto et al., 1991)、実際のDNA伝達にはTraYが必須 であることから、in vivoにおいてはsbi、ihfA、sbyAにTral、IHF、TraYが結合すること によりoriTに効率的にニックを導入する装置、oriT-someが形成されることが接合伝達 に必要であると考えられている (Inamoto et al., 1991) 。一方sbmA、B、ihfB、sbmC、 Dの領域(TraM-IHF-TraM領域)は、第二章で考察したように、TraMタンパク質が DNAの膜通過装置の近傍にoriT領域を保持するのに重要な役割を果たすものと考えら れる。本章ではoriT領域内に存在するタンパク質の結合部位のDNA伝達における機能 を解析する目的で、これらの部位に様々な変異を導入してDNA伝達能に及ぼす影響を 調べることにより、oriT領域の構造と機能についての解析を行なった。

図4-1 oriT領域の模式図

これまでに判明しているR100、F、R1のoriT領域内に存在するタンパク質の結合、認識部位を模式的に示した。上からR100、oriTはDNA伝達開始点、sbiはTralの認識部位、sbyAはTraYの結合部位(Inamoto and Ohtsubo, 1990)、ihfA及びihfBは1HFの結合部位、sbmA、B、C、DはTraMの結合部位、Opan、pant traMのプロモーター;F、oriTはDNA伝達開始点(Matson and Morton, 1991; Reygers et al., 1991)、TraYはTraYの結合部位(Nelson et al., 1993)、IHFは1HFの結合部位(Tsai et al., 1991)、TraYはTraYの結合部位(Di Laurenzio et al., 1992)、pは予想されるtraMの プロモーター;R1、TraM(I)、(II)はTraMの結合部位(Schwab et al., 1991)、pはtraMのプロモーター (Schwab et al., 1993)を示す。それぞれの部位に作用するタンパク質を白抜きで示した。塩基 番号はそれぞれ非相同領域の始まりを1とした。R100についてはsbi、ihfA、sbyAの領域にはoriT にニックを入れる装置であるoriT-someが形成されると考えられるのでその旨示し、また、sbm及 びihfBからなる領域は、その配置からTraM-IHF-TraM領域とした。

図4-2 oriT領域の塩基配列

本研究の結果も含め、これまでに判明しているoriT領域内に存在するタンパク質の結合、認識部位を塩基配列上に示した。oriTは、DNA伝達開始点、sbiはTralの認識部位(Fukuda, unpublished result)、sbyAはTraYの結合部位(Inamoto and Ohtsubo, 1990)、ihfA及びihfBはIHFの結合部位、sbmA、B、C、DはTraMの結合部位、 $p_{\rm MR}$ 、 $p_{\rm AR}$ はtraMのプロモーターである。geneXは機能不明のORFである。塩基番号は図1-4に従った。

2. 結果

(1) oriTプラスミド伝達系の構築

R100は約90 kbの大きなプラスミドであり、このoriT領域に部位特異的な変異を導入することは困難である。そこで、oriT領域を持った小型のプラスミドを作製し、 R100-1の存在下でTraタンパク質をトランスに供給することによってそれらのプラス ミドを伝達させる系(図4-3)の構築を試みた。R100-1はR100のfinO変異体であり、 伝達抑制機構が解除されているため、元のR100の1000倍程度(Fと同程度)の伝達効 率を示す(Yoshioka et al., 1987; Womble et al., 1988)。この系を用いることにより、 oriT領域に系統的に導入した変異が伝達能にどのような影響を受けるかを調べること ができるものと考えられた。

まず、oriT領域を含むDNA断片をカナマイシン耐性(Km')のベクタープラスミ ドpHSG299(Takeshita et al., 1987)にクローニングすることにより、いくつかのoriT 領域を持ったプラスミド(oriTプラスミド)を得、これらのoriTプラスミドを NM554/R100-1(R100-1を保持する大腸菌NM554)に導入した。受容菌として大腸菌 DH1から分離したリファンピシン耐性(Rif)株であるDH1Rifを用いれば、接合伝達 によりプラスミドを受け取った菌(transconjugant)の内oriTプラスミドが伝達された ものはRif、Km'のコロニーとして選択することができる。また、R100-1が伝達され たtransconjugantはRif'とクロラムフェニコール耐性(Cm')で選択できる。

R100などのF型プラスミドにはoriTのtra遺伝子とは反対側、すなわち接合伝達に おいて最初に受容菌へと移動する領域(leading region)にtra遺伝子とは反対方向の機 能不明のORFであるgeneX(Dempsey and Fee, 1990; Koraimann et al., 1993)が存在する (図4-2)。このgeneXからtraEの途中までの約6kbのoriTを含むDNA断片を運ぶ oriTプラスミドpABO401の伝達効率は1.7 x 10²であり(図4-4)、これはR100-1と ほぼ同じ値であった。それに対してpHSG299は伝達されないことから、pABO401上の 断片に伝達活性があることが示された。この伝達活性はgeneXからtraMの途中までの 断片にも見られた(図4-4、pABO421)。sbiからtraM構造遺伝子の直前までの領域

図4-3 oriTプラスミドの接合伝達解析系

宿主菌(供与菌)には大腸菌NM554を用いた。oriTと記した白抜きの四角は、カナマイシン耐性 (Km')プラスミドpHSG299にクローニングしたoriT領域を含む様々なR100由来のDNA断片を示 す。供与菌細胞内に共存するR100-1はR100のfinO変具によって抑制が解除され、Traタンパク質が 大量に生産される脱抑制変異体である。R100-1から供給されるTraタンパク質、宿主菌から供給さ れるIHF(及び未知の宿主因子)の働きによりoriTプラスミドが伝達される。oriTプラスミドの伝 達はKm耐性が伝達されることで知ることができる。

図 4 - 4 R100のoriT領域を含むDNA断片をクローニングした oriTプラスミドの接合伝達効率

上にoriT領域内に存在する各結合、認識部位、geneX、及びtra遺伝子の一部を模式的に示す。 pHSG299はR100由来のDNA断片を持たないコントロールのプラスミドである。太線はpABOプラ スミドがもつR100由来のDNA断片の範囲を示す。プラスミド名の右にその伝達効率を示す。 を含む断片(図4-4、pABO701)ではその伝達活性は低下した。これらの結果は pABO421の持つ領域があれば伝達が行なわれること、また、その領域のうちpABO701 が持たない部分、おそらくは*oriTと geneX*との間のleading regionに何らかの接合伝達の 効率を高める働きがあることを示している。この結果、pABO421及びpABO701が充分 な伝達効率を示すことが明らかとなった。これ以降はpABO421、pABO701をもとに様 々な解析を行なった。

(2) TraM-IHF-TraM領域はDNA伝達に必要とされる

pABO701をもとに、sbi側を固定してtraM側の領域から個々のタンパク質結合部位 を欠失したoriT領域を持つプラスミドを作製し、その伝達効率を調べた(図4-5)。 sbmDを欠失したpABO731と、sbmDに加えてsbmCを欠失したpABO741は、共に pABO701の約半分の伝達効率を示した。ihfBまでを欠失するがsbmAとBを持つ pABO751は、伝達されるもののその効率は更に低下し、sbmBまでを欠失した pABO761、sbmAまで欠失したpABO771は伝達されなかった。このことから TraM-IHF-TraM領域のうちsbmAとBさえ存在すればDNAは伝達されるがその効率は低 く、それが高効率で行なわれるためには完全な形のTraM-IHF-TraM領域が必要である ことが示された。

次に、TraM-IHF-TraM領域内の個々の結合部位の役割を知るために、塩基置換変 異を導入したoriT領域を持つプラスミドを作製してその伝達効率を調べた(図4-6、 図4-7)。第二章で述べたように、四つのsbm部位には15 bpからなる共通配列が存 在し、これがTraMによる認識配列であると考えられる。そこでsbm部位については、 各sbm部位の15 bpの共通配列に対して基本的にはトランスパージョン変異になるよう に、そして一部に制限酵素部位が含まれるように塩基置換変異(図4-8)を導入し た。また、ihfBについては、これまでに報告されているIHFの結合部位に見られる共 通配列(Friedman, 1988)に対して同様に塩基置換(図4-8)を導入した。

図 4-5 pABO701の*oriT*領域を*traM*側から順次欠失したプラスミドの 接合伝達効率

上にonT領域内に存在する各結合、認識部位、及びtraM遺伝子を模式的に示す。太線は各pABOプ ラスミドがもつR100由来のDNA断片の範囲を示す。pHSG299はR100由来のDNA断片を持たない コントロールのプラスミドである。プラスミド名の右にその伝達効率を示し、pABO701の伝達効 率を100とした伝達効率の相対値をグラフに表わした。 $sbmA \sim D$ それぞれに変異を持つプラスミドpABO421MA、MB、MC、MDについてその 伝達を調べたところ、どのプラスミドにおいてもDNA伝達の効率は低下した(図4 -6)。この結果はどのsbm部位もそれぞれ高効率のDNA伝達に必要であることを示 す。特に、sbmAに変異を持つpABO421MAの伝達効率の低下は著しく、その効率は親 プラスミドpABO421の約1%であった。それに対し、sbmB、C、Dそれぞれに変異を持 opABO421MB、MC、MDの伝達効率はpABO421の約半分であった。sbmAへの変異の 導入がDNA伝達効率を大きく低下させたことは、ここに結合するTraMタンパク質が 特に重要であることを示唆する。

oriT領域に存在する二つのIHF結合部位*ihfA、ihfB*に変異を持つプラスミドについてその伝達を調べたところいずれもDNA伝達の効率は低下し(図4-7)、各*ihf*部位がそれぞれ高効率のDNA伝達に必要であることが示された。*ihfA*に変異を持つpABO421F1は、いずれもpABO421の約1%の伝達効率を示し、*ihfA、ihfB*双方に変異を持つpABO421F15はほとんど伝達されなかった(図4-7)。

sbyAに変異を持つpABO421Y2は伝達されなかった(図 4 - 6)。これはoriT領域にriT:someが形成されることが接合伝達に必要であるとの仮説を支持する。

(3) oriT-some領域とTraM-IHF-TraM領域との関係

TraM-IHF-TraM領域とoriT-some領域との関係を調べるためにsbyAとsbmAとの間に 5 bpまたは10 bpからなる塩基配列の挿入を持つプラスミドを作製し、その伝達効率を 調べた(図4-9)。その結果、5 bpの配列の挿入を持つpABO4212G5では伝達効率 がpABO421の約1%にまで低下したが、10 bpの配列の挿入を持つpABO421G10ではそ の低下は約10%にとどまった。このことはTraM-IHF-TraM複合体とoriT-someとの間の 距離にphasing効果が見られることを示す。

図4-6 pABO421の*oriT*領域中の*sbm、sby*部位に変異を導入したプラスミド の接合伝達効率

上にoriT領域内に存在する各結合、認識部位、及びtraM遺伝子を模式的に示す。各pABOプラスミドはpABO421に対して図中に示す部位に塩基置換変異を導入して得た。pHSG299はR100由来の DNA断片を持たないコントロールのプラスミドである。プラスミド名の右にその伝達効率を示し、 pABO421の伝達効率を100とした伝達効率の相対値をグラフに表わした。

図 4 - 7 pABO421の*oriT*領域中の*ih*部位に変異を導入したプラスミドの 接合伝達効率

上にoriT領域内に存在する各結合、認識部位、及びtraM遺伝子を模式的に示す。各pABOプラスミドはpABO421に対して図中に示す部位に塩基置換変異を導入して得た。pHSG299はR100由来の DNA断片を持たないコントロールのプラスミドである。プラスミド名の右にその伝達効率を示す。 CTTCGCAGATCCCATTTATAAACATCAGGCAGATTGCTAACATCCATTTTTCATTTT -121 CGAAGCGTCTAGGGTAAATATTTGTAGTCCGTCTAACGATTGTAGGTAAAAAAGTA <-- geneX

図4-8 pABO421のoriT領域に導入した塩基置換変異

oriTは、DNA伝達開始点、sbilt Tralの認識部位、sbyAはTraYの結合部位 (Inamoto and Ohtsubo, 1990) 、ihfA及びihfBは1HFの結合部位、sbmA、B、C、DはTraMの結合部位である。geneXは機能 不明のORFである。塩基番号は図2-9に従った。pABO421の各変異プラスミドに導入した変異 を塩基配列の上に小文字で示す。pABO421G5、pABO421G10については図に示した位置に小文字 で示した5 bp、10 bpの塩基配列を挿入して得た。

図4-9 sbyAとsbmAとの間の距離と接合伝達効率の関係

上にoriT領域内に存在する各結合、認識部位、及びtraM遺伝子の大体の位置を示す。 pABO421G5、pABO421G10はpABO421に対して図に示した位置にそれぞれ5 bp、10 bpの塩基配列 を挿入して得た。pHSG299はR100由来のDNA断片を持たないコントロールのプラスミドである。 プラスミド名の右にその伝達効率を示す。 3. 考察

(1) oriTプラスミド伝達系

oriT領域には接合伝達に必要なタンパク質の結合、認識部位が整然と隙間なく並んで存在する。そのうちsbi、ihfA、sbyA上ではTral、IHF、TraYがoriT-someを形成し、 それが効率的にoriTにニックを導入するのに必要とされることは、これまでにin vitro での解析の結果から示唆されていた。一方、TraMタンパク質に関しては第二章におい てoriT領域を膜に保持するとの仮説を立てていたが、実際にoriT領域内に四ケ所存在 する結合部位sbm上でTraMタンパク質がどのように働くのか、その結合部位が四ケ所 ではなく二ケ所、三ケ所になった場合どうなるのか、また、IHFによるTraMの発現の 部分的な抑制に必要なihfBが接合伝達においてどの程度重要なのか、など不明な点が 残されていた。そこで本章ではこれらの点を解明するため、oriTプラスミドの伝達系 を構築し、これを用いてoriT領域内に複数の結合部位を持つタンパク質の個々の結合部位 の機能を解析する際には、各結合部位に系統的に変異を導入する必要があるが、oriT プラスミドの伝達系はそのような解析に適した系であると考えられる。

本章で開発したoriTプラスミドの伝達の系では、Traタンパク質を供給するために 共存させたR100-1は伝達能を有するため、R100-1の伝達も行なわれる。実際、Km耐 性で選択した transconjugant中には oriTプラスミドの他にR100-1を持つものも多く見ら れた。oriT領域を持たないベクタープラスミドpHSG299を用いた場合、10⁶程度の頻 度でKm耐性の伝達が行なわれたが、そのtransconjugantはいずれもpHSG299を保持し ておらず、R100-1を保持していた。おそらくR100-1上に存在するトランスポソンやIS の働きなどによってpHSG299がR100-1に組み込まれた形で伝達されたものと考えられ る。一方、oriTプラスミドを用いた場合には、Km耐性で選択したtransconjugantはoriT プラスミドを保持しており、これはR100-1への組み込みを介して伝達されたのではな く、oriTプラスミドが独立に伝達されたものと考えられる。この系における伝達効率 の検出限界は10⁶程度であり、この程度まで効率が低下すると上記のR100-1への組み 込みを介したKm'の伝達が影響するようになる。

(2) TraM-IHF-TraM領域の機能

oriTプラスミドの伝達の系を用いて、oriT領域に導入した変異のDNA伝達への影響を調べることによって以下の結果と示唆が得られた。

- DNA伝達が行なわれるためには少なくともsbmA、Bが必須であるが、それだけでは伝達の効率は低く、TraM-IHF-TraM領域全体が存在することによって初めて高効率のDNA伝達が実現する。
- TraM-IHF-TraM領域に存在するIHFの結合部位*ihfB*は高効率のDNA伝達に必要で ある。このことと上述の1.とから、おそらく*ihfB*に結合するIHFはDNAに湾 曲を導入することでTraM-IHF-TraM複合体を形成するものと考えられる(図4 -10)。
- oriTのすぐ近傍に存在するihfAは高効率のDNA伝達に必要である。これはおそらくoriT-someの形成に関わる影響であると考えられ、oriTにおける高効率のニッキングにoriT-someの形成が必要であるとの仮説を支持する。
- TraM-IHF-TraM領域とoriT-some領域との間にphasing効果が見られることと、 sbm部位の変異の内oriT-some領域に最も近いsbmAによる変異が最も伝達効率を 低下させたことから、TraM-IHF-TraM複合体とoriT-someとの間には高次構造を 形成する上での立体配置的な関係、おそらくはタンパク質同士の相互作用が存 在すると考えられる。

TraMタンパク質がoriT領域の四ケ所に結合することはすでに第二章で明らかにし たが、それらsbm部位がDNA伝達に必要であるということは、本章の結果によって初 めて明らかにされた。sbmA、Bのみがあれば低頻度ながら伝達が行なわれるが、高効 率の伝達には完全な形のTraM-IHF-TraM領域が必要であるという結果は、第二章で考 察したTraMのanchoring機能、すなわちoriT領域の膜への保持能力がsbmA、Bしか存在 しない場合には充分に発揮されないが、TraM-IHF-TraM領域が完全な形で存在すると その機能が強化され、結果的にDNA伝達効率が上昇するものと説明できる。

図4-10 TraM-IHF-TraM領域におけるIHFの役割

上はoriT領域内に存在する各結合、認識部位、及びtraM遺伝子の大体の位置を示す模式図である。 下は、TraM-IHF-TraM領域を抜き出して描いた模式図。IHFがihfBに結合すればそこを中心にDNA が湾曲し、sbmA、B及びsbmC、Dに結合したTraMの間の空間的距離が近くなり(左)、 TraM-TraM相互作用によるコンパクトな複合体形成が可能になる。IHFが無いと、またはihfB部位 が無いとsbmA、BとsbmC、Dとが空間的に離れ(右)、複合体が形成されにくく、その結果伝達 効率が低下する。

TraMのanchoring機能はoriT領域を単に膜に保持するのではなく、DNA伝達口の近 僚に位置させなければDNA伝達の効率を高める効果は生じないであろう。そのために はTraMがDNA伝達口を形成すると考えられているTraDと相互作用することにより、 TraM-IHF-TraM複合体をDNA伝達口の近傍に位置させるとするのが考えやすい。とこ ろで本章の結果からTraM-IHF-TraM複合体がoriT-someと相互作用するとの示唆が得ら れた。一方、TraDがTraIと相互作用することにより細胞質タンパク質であるTraIを膜 に移行させるとの説もある (Silverman, 1987) 。上記のように、もしTraMとTraDとが 直接相互作用するのであれば、DNA伝達開始時においてoriT領域では、TraDが形成す るDNA伝達口、TraM-IHF-TraM複合体、oriT-someの三者が互いに相互作用しあって一 つの「DNA伝達開始装置」を形成するというモデルが考えられる(図4-11)。ま た、仮にTraMとTraDとの間に直接の相互作用が無いとしても、TraIとTraDとの相互作 用によってoriT-someがDNA伝達口の近傍に形成され、さらにそれをTraM-IHF-TraM複 合体がoriT領域を膜に保持することで安定化するといった働きも考えられる。しかし、 実際にはTraMとTraDとが直接相互作用するという証拠はこれまでin vivoにおいてもin vitroにおいても得られておらず、この点についてはさらに解析を進める必要がある。 これについてはTraM、TraI、TraD、TraY各タンパク質の細胞内における局在性の変化 を大腸菌細胞抽出液の分画操作によって調べ、相互作用しているタンパク質を検出す るといった方法が有効であると考えられる。

(3) IHFの機能とihf部位の重要性

本章における解析で、*ihfA*または*ihfB*に変異を導入すると伝達効率は約100分の1 にまで低下することが明らかになった。このことは、接合伝達において*ihf*部位に結合 するIHFの果たす役割が非常に大きいことを示すといえよう。また、*ihfA、ihfB*双方に 変異を導入したところその効果は相乗的に働き、伝達はほとんど行なわれなくなった。 一方R100-1やFについて、IHF⁻の宿主菌を供与菌としてその伝達への効果を調べた場 合には、伝達効率が100分の1から1000分の1に低下することが報告されている (Dempsey, 1987; Gamas et al., 1987)。ここで注目すべきことは*ihfA、ihfB*双方に変異を

図4-11 接合伝達におけるDNA伝達開始装置の予想図

oriT領域の二本 鎖DNAを 二本の 線で表わす。Tral、IHF、TraYは oriT-someを、TraMとIHFは TraM-IHF-TraM複合体を、TraDはDNA伝達口をそれぞれ形成するが、各構造体はそれぞれ互いに 連絡しあって、膜上にoriT領域も含めた「DNA伝達開始装置」を形成する。 導入した場合の伝達効率の低下が、IHF⁻の宿主菌を供与菌とした場合の伝達効率の 低下を大きく上回っているということである。この理由の一つに、導入した塩基置換 によってDNAのヘリックスの巻き方の強さ、曲がりやすさ、塩基対の解離しやすさな どが変化したことによりDNAとタンパク質の高次構造の形成に影響が及んだことが考 えられる。また、IHFの欠損によるpleiotropicな効果(Friedman, 1988)によりIHFの欠 損の接合伝達に及ぼす影響をある程度相補する何らかの因子が発現していることもあ りうる。そのような可能性の一つとして、第三章で明らかにした通り通常ではIHFに よって発現が部分的に抑制されているTraMがIHF⁻株においては大量に発現され、そ れがIHFの欠損による接合伝達効率の低下の度合いを小さくしていることも考えられ る。本章で行なったoriTプラスミドの接合伝達の系をIHF⁻株を供与菌に用いて行なう ことで解析すれば、これに関する評価が下せるであろう。

第5章 総括

本研究は、性決定因子R100の接合伝達遺伝子の中でDNA伝達に直接関わるとされ ていたがその具体的な機能、性質については不明であったtraMについて様々な角度か ら解析を行ない、その機能について考察し、さらに接合伝達の開始時にoriT領域上で 形成されるタンパク質-DNA複合体にまで考察を進めたものである。

本研究ではTraMタンパク質がoriT領域に特異的に結合するタンパク質であること を初めて明らかにすることができた。TraMは oriT領域内の150 bpにもわたる範囲に四 ケ所の結合部位sbmをもち、その結合に際しては各sbm部位に共通に見られる15 bpの 配列を認識するものと考えられる。これまでR100やFのoriT、すなわち特異的にニッ クが入る点については in vivo、 in vitroにおける解析が行なわれ、その位置も詳しく調 べられていたが、一方、接合伝達に必要な領域という意味でのoriT領域は、ただ漠然 とoriTの周辺、またはgeneXとtraMとの間の領域といった概念でしかとらえられておら ず、また、oriT領域がどのような構造をとっているかについても、その塩基配列から 得られる反復配列やGC含量以外には情報も無く、oriT領域の構造についての具体的な 解析を行なう手掛かりは大変少なかった。しかし、最近TraYやIHFの結合部位がマッ プされ(Inamoto et al., 1990)、さらに本研究でTraMタンパク質の結合部位、及びもう 一つのIHFの結合部位とがマップされたことにより、実はoriT領域は様々なタンパク 質の結合部位がほとんど隙間なく整然と並んだ構造をとっているということが明らか となった(図5-1A)。このようにoriT領域の構造についての情報がタンパク質結 合部位という観点から得られたことは、接合伝達におけるDNA伝達の開始、及びその 初期過程といったoriT領域上で行なわれる動的な状況についての解析を進める上で重 要な一段階であると考えられる。最近FやR1といったR100類縁の性決定因子において もTraM、IHF、TraY等の結合部位が報告され (Schwab et al., 1991; Di Laurenzio et al., 1992)、それら性決定因子のoriT領域もR100において明らかとなったoriT領域の構造 と極めて類似した構造をとっていることが示されている(図5-1A)。

A					ihta	
8100		sbi		-11		.20 1
	1	A		-IGATTI-ACOTT	-IHE-	MITMACAAACUCTA
F	1	ACCACACCCCA	CGCAAAAACAAGTTTTTG	CTGATTTTTTTTTT	ATAAATAGAGT	GTTATGAAAAATTAG
R1	:	ACCACACCCCA	CGCAAAAACAAGTTTTTG	CTGATTTGCTATT	TGAATCATTAA	CTTATGTTTTAAATA
		.40	sbyA	60	.80 \$	bmA 1
R100	1	TTTATATTTAA	TAATTCTGAATTATTAAA	TAGAGAGTCGTTG	GCGATCCTGTT	ACGACCCTATAGCGACT
F	:	TTTTTTTTACT	CTCTTTATGATATTTAAA	AAAGCGGT-GTCG	GCGCGGGCTACA	ACAACGCGCCGACACCG
R1		ATGTATTTTAA	TTTATTTTACATTATAAA	AAGGATTCATTGG	TGAATCGCATA	TGATTCACCAATGAATT
			sbmB	ihfB		-35chmC
R100	:	CTTATTAGGAT	CAGTACTGACAATTITCA	TGAAAAACATTGA	TATATATATAGO	GACGCCCCTAGCGCCGG
F		TTTTGTACCCC	TOGTACTGACTATTTTTA	HF-	TTTATATTACO	sbmB
81	1	TAACGCAACTC	ATAGATGAATCAGTAATA	ATAAAACAACGAG	TTAAAGCGAAT	IGACTETAGATTCAATT
		.18	-10	sbmD		-35
N100	1	ATCGCATTITI	TATADDATGATCCTAGA	bmA	GIGICITICIT	ACTIGI
F	;	GGTGTGTTTTTT -35	TATAGGATACCGCTAGG	D TraM (II)	GTGCGTCCCTG	TTTGCA
R1	:	CGTGATGTGAT	TTGCTGCATGAATCGTAA	TITCGTAACTTG	CGTCACGATTC	GATTCATCGATGAA
				250		202
R100	1	AAACACTATAT	CATATT <u>IATAGI</u> GAAAA	STTCATTGCTTAA	TAATGAAAGGT	TTTATCTTATG
Ë.		TTATGAATITT	AGTGTTTCGAAATTAA	TTTATTTATGT	TCAAAAAAGGT	ATCTCTAATG
91		+35	-10	CATCEGA-TAAG	AAAATAAACAG	TATACATATO
			THILD FOR CLEARLY	Contractory Trans		
B			R100	5"- TAGGGTCO	STAACAGG -3"	Amda
				5'- TAGGATC/	AGTACTGA -3"	sbmB
				51- TAGAGGCO	SCTGCTAG -3"	shmD
			R100 consensus:	5'- TAGGGECO	SctaCTAG -3'	
				S'-CTACCCCC	CTOCTA -3'	shea
				5'-TTAGGGGTG	SCTGCTA -3'	sbmB
				S'-GTGTCGGCC	COGCTA -3'	sbmC
				5'-GTGTCGGCG	SCGTTGT -3'	sbmC
				5'-GTAGGGGTC	SGTACTG -3'	sbmC
				5'-GTGTCGGGG	CCCCAGC -3'	ColEl oriT
			F consensus:	5'-NTAGGGGCC	SCTGCTA -3'	
				GTC T	G	
			consensus:			
			Fi	5'- NTAGGOGCO	SCTGCTA -3'	
				GTC T		
			R100:	5'- TAGGGECO	CetaCTaG -3'	
			ALCO .	anapares		

図 5-1 R100、F、R1のoriT領域中に存在するタンパク質結合部位

A. R100、F、R1それぞれのonT領域の塩基配列上にタンパク質の結合部位を示す。結合部位の 呼び方は報告された論文中での呼び方に従った。FではIHF、TraM、TraYの結合部位及び*traMの*プ ロモーターが、R1ではTraMの結合部位及び*traMの*プロモーターがそれぞれ報告されている。 B. R100とFのTraM結合部位に見られる共通配列の比較。R100については第二章の結果を、Fに ついてはDi Laurenzioら(1992)の結果を示す。最下部にそれぞれの共通配列同士の比較を示す。 特にFのoriT領域内のTraM、TraY及びIHFの結合部位の配置はR100のそれと全くといってもよいほど良く対応している。R100とFのTraM、TraIまたはTraYは各プラスミド に特異的に働き、互いにほとんど相補しない。しかし、それらの作用する場である oriT領域の構造が互いに極めて類似していることは、F型プラスミドの接合伝達に共 通に見られる機構の存在を示すものと考えられる。

FのTraMの結合部位についてのDi Laurenzioら(1992)の報告では本研究で命名し たsbmA、Bに相当する部位を一つにまとめてsbmCとし、本研究のsbmC、sbmDに対応 する部位をそれぞれsbmB、sbmAとしている(図5-1A)。彼女らはその報告の中 で、Fによって可動化されるプラスミドColE1のoriT領域にもやはりTraMの結合部位が 存在すること、それを含めたsbm部位には共通に見られる14 bpの配列が存在すること を示している。大変興味深いことにその14 bpの配列から得られる共通配列は本研究 で明らかにしたR100のsbm部位に見られる共通配列と非常に相同性が高く、実に14 bp 中12 bpが共通であった(図5-1B)。R100とFのTraMのアミノ酸配列は互いに相同 性が高く(図2-12)、しかもその塩基認識する配列も非常に似ているにもかかわ らずこれら二つのTraMは互いに相補しあうことはない。また、ColE1プラスミドもF によっては可動化されるがR100によってはほとんど可動化されない。これはR100、F 双方のTraMのアミノ酸配列及びその認識する塩基配列の微妙な違いによるのであろう。 第二章でも考察したが、類縁関係にあるF型プラスミドのうちpED208を除いたTraMの アミノ酸配列を比較すると、そのC末端側は全くといってもよいほど相同であるが、 N末端側には多少の違いが見られる(図2-12)。おそらくTraMの認識する塩基配 列の違いはこのN末端側によるのであろう。

R1においてはR100と同様にtraMの自己抑制系の存在が報告されている。Fにおける報告はまだなされていないが、Fにもおそらく同様の自己抑制系が存在するものと考えられる。F型プラスミドのtraY-IオペロンがTraJによって転写レベルで制御を受けること、TraJがFinOP系により転写後調節を受けることはすでに広く受け入れられているが、traMの発現についても、その自己抑制機構はF型プラスミド間に共通に見られる現象であると考えられる。traMの上流からtraJをへてtraYまでの発現調節領域は様々な要素が複雑に作用する領域である。最近traY-Iプロモーターの調節には宿主因子

であるArc、Cpx等の制御因子も関与していること(Silverman, 1985)、finPRNAが宿 主にコードされるRNaseIIIによって調節されていること(van Biesen et al., 1993)が示 され、また、本研究によってtraMの発現がIHFによって部分的に抑制されることが示 されたが、他にも未知の要素が関与する可能性は充分考えられ、tra遺伝子の発現制御 の機構は完全に解明されたとは言いがたい。

本研究においてはTraMの機能としてoriT領域に結合してoriT領域を膜近傍に保持 するというanchoring機能仮説を提唱した。TraMの機能としてはこの他にもDNAの高次 構造に影響を与えてin vivoにおける oriTへのニッキングの効率を高める、あるいは DNA伝達における供与菌内でのDNA相補鎖合成の開始に間接的に働くなどといったこ とも考えられる。本研究で明らかとなった個々のsbm部位の欠失や変異がDNA伝達効 率の低下を引き起こすという結果や、TraM-IHF-TraM複合体とoriT-someとの間の距離 にphasing効果が見られるという結果は、他の仮説を決して否定するものではないが、 TraMのanchoring機能仮説によって矛盾無く説明することができる。おそらくTraMの anchoring機能を充分に働かせるためにTraM-IHF-TraM複合体が形成され、また、 TraM-IHF-TraM複合体とoriT-someとの間に相互作用があるのであろう。しかし、膜近 傍に保持するといっても非特異的に膜に近寄らせればよいというわけではない。oriT をDNA伝達口の近傍に保持することによって初めてDNA伝達に必要とされる機能であ るといえよう。現在DNA伝達口は膜タンパク質であるTraDが形成すると広く考えられ ている。またTraDはとTralが相互作用することによって、Tralを膜に固定するとの説 がある (Silverman, 1987) 。ここでもしTraMとTraDが相互作用するのであれば、TraM のanchoring機能とはすなわちoriT領域をDNA伝達口の近傍に保持することになり、 TraM-IHF-TraM複合体とoriT-some、TraDは三者が互いに相互作用を及ぼすことで一つ のDNA伝達開始装置とでもいうべき複合体を形成することになる(図4-11)。ま た、TraMとTraDとの間に相互作用が無いとしてもTraD-TraI相互作用によって決まる配 置をTraM-IHF-TraM複合体が膜に保持することで安定化するとの解釈もできる。この 場合TraD-TraI相互作用が第一義的なものでTraMのanchoring機能はそれを補助する機能 であることになる。

接合伝達は性繊毛によって受容菌が認識され、供与菌と接合対を作ることから始

まる。その際供与菌と受容菌の接点は性繊毛の基部のところにできるものと考えられ る。したがってDNA伝達口も性繊毛の基部に形成されるとするのが妥当であろう。性 繊毛の基部がどのタンパク質によってどのように形成されているのかは現在までのと ころ明らかにされていないが、性繊毛が雄株特異的な細胞外器官であることからその 構成成分もTraタンパク質であろうと考えられる。そして、そこにDNA伝達口が形成 されるのであればおそらく性繊毛の基部のTraタンパク質とTraDとの間には相互作用 があるであろう。このように考えると性繊毛、DNA伝達口、TraM-IHF-TraM複合体、 oriT-some、そしてoriT領域DNAとが一つの高次構造体であるDNA伝達装置を形成する との仮説が立てられる(図4-11、図5-2)。しかし、ここに展開したのはほと んどが仮定に過ぎず、現在までのところTraDとTraIとの相互作用、そして本研究で明 らかとなったTraM-IHF-TraM複合体とoriT-someとの相互作用が示唆されているに過ぎ ない。今後、これら構成成分同士の相互作用を解析し、ここで展開したDNA伝達装置 仮説について検証することが必要である。特に、性繊毛の基部の構造についてはほと んど情報は得られていなく、その解析が望まれる。また、DNA伝達口についても供与 菌側の構成成分がTraDであると考えるのは自然であるが、受容菌側の構成成分がどの ようになっているのか、はたしてTraDが受容菌側にまで伝達口を穿つのか、それとも 本来の膜の構成成分が働くのかといったことについても、現在までのところ説得力の ある報告はなされていない。本研究で目的としたDNA伝達の開始機構、制御機構の解 明には、さらに解析を進めてこれらの問題にまで理解を深めることが必要であろう。

RECIPIENT CELL

図5-2 接合伝達におけるDNA移動の予想図

太い線で表した特定のDNA鎖の特定の部位にoriT-someによってニックが入る。供与菌と受容菌と の接点に形成されるDNA伝達口を通って5'個から太い線で示した一本鎖DNAが受容菌へと移動す る。その間ニックの5'個はTralタンパク質に結合してDNA伝達口の近傍、供与菌側に残っている。 TralはTraY、IHFと共にoriT-someを形成する。oriT-someはTraMもしくはTraDを介してDNA伝達口 近傍の内膜に固定されており、二本鎖DNAを巻き戻して一本鎖DNAを生成する。この巻き戻し活 性にはATPが必要であり、これが一本鎖DNAが受容菌へと移動する際の起動力となる(総説: Willetts and Wilkins, 1984)。TraMはoriT領域を膜に固定する。この図では性繊毛の形成に関与す るタンパク質や接合対の安定化に関与するタンパク質及びIHFを含めた宿主タンパク質などは描 いていない。この図はWillettsとSkurrayによる総説(1987)から改変の上引用した。

第六章 材料と方法

1. 菌株とプラスミド

使用した大腸菌K-12株の菌株を表6-1に示す。

表6-1 使用した菌株

Strain	Genotype or description	reference
MV1184	F'[traD36 proAB lacI ^q Z△M15] / ara	Vieira and Messing, 1987
	\triangle (<i>lac-proAB</i>) <i>rpsL thi</i> (ϕ 80 <i>LacZ</i> \triangle M15)	
	\triangle (<i>srl-recA</i>)306::Tn <i>10</i>	
MC1000	F^{-} araD139 \triangle (ara-leu)7679	Casadaban and Cohen, 1980
	\triangle lacX74 galU galK hsdR2 mcrB1 rpsL	
BW313	Hfr lysA dut1 ung1 thi-1 recA1 spoT1	Kunkel, 1985
JM109	F'[traD36 proAB lacI ^q Z \triangle M15] / recA1	Yanisch-Perron et al., 1985
	endA1 gyrA96 thi hsdR17 supE44	
	$relA1 \bigtriangleup (lac-proAB)$	
C600	F ⁻ thr-1 leuB6 thi-1 lacY1 supE44	Bachmann, 1987
	rfbD1 fhuA21 mcrA1	
YK2523	△3[<i>hip</i>]:: <i>cat</i>	Kano et al., 1991
TA1000	MC1000 \(\triangle 3[hip]::cat\)	This Work
NM554	F^- araD139 \triangle (ara-leu)7679	Raleigh, 1988
	△lacX74 galU galK hsdR2 mcrB1 rpsL recA13	
DH1	F ⁻ recA1 endA1 gyrA96 thi-1 hsdR17	Bachmann, 1987
	supE44 relA	
DH1Rif	DH1 Rif	This Work
JE177	harbors R100-1	A. Nishimura

MV1184はpUC119由来のプラスミドの宿主として用いた。

BW313はKunkel法による部位特異的塩基置換変異の導入の際、DNAにデオキシウラシ ν (dU) を導入するために用いた。

MC1000はTraM*の精製の際に用いたpJG200由来のpABO22、及びtraMのプロモーター

の解析に用いたpR-pMLB由来のプラスミドの宿主として用いた。

TA1000はMC1000の*hip*変異株であり、YK2523 (Δ 3[*hip*]::*cat*)から調製したP1ファージを用いてMC1000に対しP1トランスダクションを行ない、Cm'を指標に選択して得た。 C600はP1ファージのタイターを測定する際の指示菌として用いた。

JM109はpHSG299由来のプラスミド、及びpSIプラスミドを含むpUC19由来のプラスミドの宿主として用いた。

NM554はoriT領域解析のために構築したpABOプラスミドとR100-1とを保持させて接合 伝達の供与菌に用いた。R100-1をNM554に移すにはJE177を供与菌、NM554を受容菌と して液体培地中にて接合伝達を行なわせた。JE177は国立遺伝学研究所・西村昭子博士 より分与された、R100-1を保持する菌株である。

DH1Rifは本研究においてDH1から得たリファンピシン耐性を示す自然突然変異株であり、接合伝達の受容菌に用いた。

使用したプラスミドを表6-2~4に示す。

表6-2 第二章で使用したプラスミド

Plasmid	description	Source or reference
pUC119	pBR322-derived phagemid	Vieira and Messing, 1987
pJG200	pBR322-derived plasmid	Germino and Bastia, 1984
pSI87-ES3	pUC19 with R100 tra region	Inamoto et al., 1988
pSI87-B19	pUC19 with R100 tra region	Inamoto et al., 1988
pSI87-XE1	pUC19 with R100 tra region	Inamoto et al., 1988
pABO1	pUC119 with R100 traM	This Work
pABO12	pABO1 with two additional restriction sites	This Work
pABO22	carries traM-collagen-lacZ fusion gene	This Work

Plasmid	Marker	Parental plasmid(s)	Source or reference
pR-pMLB	Amp	pBR322	D. Bastia
pHS12	Tc	pSC101	Armstrong et al., 1984
pUC119	Amp	pBR322	Vieira and Messing, 1987
pABO1	Amp	pUC119	This Work
pABO10	Amp	pABO1	This Work
pABO11	Amp	pABO1	This Work
pABO15	Amp	pABO10	This Work
pABO16	Amp	pABO10	This Work
pABO17	Amp	pABO10	This Work
pABO18	Amp	pABO10	This Work
pABO49	Amp	pABO1 and pR-pMLB	This Work
pABO215	Amp	pABO15 and pR-pMLB	This Work
pABO216	Amp	pABO16 and pR-pMLB	This Work
pABO217	Amp	pABO17 and pR-pMLB	This Work
pABO218	Amp	pABO18 and pR-pMLB	This Work
pABO119	Amp	pUC119	This Work
pABO101	Amp	pABO11 and pABO119	This Work
pABO120	Тс	pABO101 and pHS12	This Work
pHY300PLK	Amp, Tc	pACYC177	Ishiwa and Shibahara-Sone, 1986
pABO300	Тс	pHY300PLK	This Work
pABO320	Тс	pABO101 and pABO300	This Work
pSI87-XE1	Amp	pUC19	Inamoto et al., 1988
pSI87-ES3	Amp	pUC19	Inamoto et al., 1988
pSI87-XS5	Amp	pUC19	Inamoto et al., 1988
pTAKI301	Tc	pABO300	K. Taki

表6-3 第三章で使用したプラスミド

表6-4 第四章で使用したプラスミド

Plasmid	description	Source or reference Yoshioka et al., 1987			
R100-1	finO mutant of R100				
	resistant to Tc, Cm, Str, Sfa, Hg				
pUC119	pBR322-derived phagemid	Vieira and Messing, 1987			
pHSG299	Km-resistant pUC type plasmid	Takeshita et al., 1987			
pSI87-ES3	pUC19 with R100 tra region	Inamoto et al., 1988			
pSI87-B19	pUC19 with R100 tra region	Inamoto et al., 1988			
pABO401	pHSG299 with R100 oriT and tra region	This work			
pABO421	pHSG299 with R100 oriT region	This work			
pABO601	deletion mutant of pABO421	This work			
pABO701	deletion mutant of pABO421	This work			
pABO731	deletion mutant of pABO421	This work			
pABO741	deletion mutant of pABO421	This work			
pABO751	deletion mutant of pABO421	This work			
pABO761	deletion mutant of pABO421	This work			
pABO771	deletion mutant of pABO421	This work			
pABO421MA	pABO421 mutated at sbmA	This work			
pABO421MB	pABO421 mutated at sbmB	This work			
pABO421MC	pABO421 mutated at sbmC	This work			
pABO421MD	pABO421 mutated at sbmD	This work			
pABO421Y2	pABO421 mutated at sbyA	This work			
pABO421F1	pABO421 mutated at <i>ihfB</i>	This work			
pABO421F5	pABO421 mutated at ihfA	This work			
pABO421F15	pABO421 mutated at <i>ihfA</i> and <i>ihfB</i>	This work			
pABO421G5	pABO421 with 5 bp insert	This work			
pABO421G10	pABO421 with 10 bp insert	This work			

pUC119 (Vieira and Messing, 1987) はKunkel法により部位特異的塩基置換変異を導入 するために用いるプラスミドを作製する際のベクターとして用いたファージミドである。 pUC119由来のプラスミドを保持する菌から一本鎖DNAを調整する際にはバクテリオ ファージM13KO7 (Vieira and Messing, 1987) をヘルパーファージとして用いた。 pHSG299 (Takeshita et al., 1987) はR100由来のDNA断片をクローニングして、oriTプ ラスミドの伝達系に用いるpABOプラスミドを構築する際のベクタープラスミドとして 用いた。

pR-pMLBはpBR322由来のプラスミドであり、パクテリオファージ λ の温度感受性リ プレッサーcl857から p_R プロモーターをへてcro遺伝子の開始コドン(ATGcro)、及びそれに融合したlacZ遺伝子を持つ。ATGcroの直後にはBamHI認識部位が存在する(図3-1)。

pJG200 (Germino and Bastia, 1984) はpR-pMLBのATGcroとlacZ遺伝子との間にコラー ゲン遺伝子を挿入して得られたプラスミドである。

pHS12 (Armstrong et al., 1984) はpSC101 (Stoker et al., 1982) 由来の、コピー数が増加 した変異プラスミドである。pHY300PLK (Ishiwa and Shibahara-Sone, 1986) はpACYC177 (Chang and Cohen, 1978) 由来のプラスミドである。これらは*traM*の自己抑制を示す際 用いたtransの位置からTraMを供給するプラスミドの構築の際のベクターである。

pSI87-B19、pSI87-ES3は、性決定因子R100のtra遺伝子群のうちoriT領域からtraM、J、 Y、A、L及びtraE遺伝子の一部までを、pSI87-XE1はoriT領域からtraM遺伝子の一部まで をpSI87-XS5はtraM遺伝子の一部からtraE遺伝子の一部までを、それぞれベクターpUC19 (Yanisch-Perron et al., 1985) にクローニングしたプラスミドである(Inamoto et al., 1988)。 pTAKI301はpABO300にtraJ構造遺伝子をクローニングしてTraJタンパク質を発現する ように構築したプラスミドである(Taki et al., unpublished result)。 pABOと名付けられた一連のプラスミドは本研究で作製したものである。

2. pABOプラスミドの構築

(1) TraM*の精製に用いたpABOプラスミド

pABO1はpSI87-ES3のSphI部位からBamHI部位まで、つまりR100のtra遺伝子群のうち orT領域からtraM、さらにtraJ遺伝子の一部までの領域をpUC119のマルチプルクローニ ングサイトにクローニングしたプラスミドである。pABO12はpABO1のtraM遺伝子の上 流及び終止コドンのところにBamHI認識部位、BgIII認識部位をそれぞれ導入して得た。 さらにpABO12のtraMを含むBamHI-BgIII断片をpJG200のBamHI認識部位にクローニング してpABO22を得た(図2-2)。

(2) traMのプロモーターの解析に用いたpABOプラスミド

 $traM_{xrc}$ -*lacZ*融合遺伝子を有するプラスミドのうち、pABO215、216、217、218は以下 のようにして構築した(図3-1)。pABO1に対してプライマー10を用いて部位特異的 塩基置換を行ない、traM構造遺伝子の開始コドンATGの直後に*Bam*HIの認識部位を導入 してpABO10を得た。さらにプライマー11、12、13、14を用いてpABO10上のtraM遺伝子 の上流領域にBamHIまたはBgIIIの認識部位を導入してpABO11、12、13、14を得、これ らのpABOプラスミドからBamHI-BamHI及びBgIII-BamHI断片を切り出してベクタープラ スミドpR-pMLBのBamHI認識部位にクローニングしてpABO215、216、217、218を得た。 pABO49は、プライマー10と16を用いてpABO1をテンプレートとしてPCR反応を行ない、 得られたDNA断片をBamHI処理した後にベクタープラスミドpR-pMLBのBamHI認識部位 にクローニングして得た。pABO218はsbmDとtraM構造遺伝子の間の領域を含む。その領 域に加えてpABO217にはsbmDが、pABO216にはsbmCとsbmDが、pABO49にはsbmB、 ihfB、sbmC、sbmDが、pABO215には全てのsbm部位とihfBとがそれぞれ完全な形で存在 する。(図 3 - 1)

(3) TraMタンパク質を細胞内のトランスの位置から供給するプラスミド

TraMタンパク質を細胞内のトランスの位置から供給するプラスミドpABO120、 pABO320は以下のように構築した(図6-1)。プライマー21Nを用いた部位特異的塩 基置換でベクタープラスミドpUC119の*lacPO*領域の上流にEcoRI認識部位を導入して pABO119を得た。また、プライマー1を用いた部位特異的塩基置換でpABO1のtraM構造 遺伝子のSD配列のすぐ上流にBamHI認識部位を導入してpABO11を得、pABO11から BamHI-BamHI断片を切り出してpABO119のBamHI認識部位にクローニングしてpABO101 を得た。このpABO101から得られるEcoRI-EcoRI断片上にはlacPから発現するtraM構造遺 伝子が存在し、それをベクタープラスミドpHS12にクローニングして得たのがpABO120 である。また、ベクタープラスミドとしてpHS12のかわりに、pHY300PLKのAmp'遺伝 子をPvul処理とT4 DNA polymerase処理でフレームシフト変異を導入することによって破 壊したプラスミドpABO300を用いて得たのがpABO320である。pHS12はpSC101由来の、 コピー数が増加した変異プラスミドである。pHY300PLKはpACYC177由来のプラスミド である。したがって、pABO120、pABO320はともにpBR322由来のプラスミドpR-pMLB と共存することができる。さらに、pSC101は自身の複製にIHFが必要であるので pABO120はIHF欠損株に保持させることはできないが(Friedman, 1988)、pABO320は IHF欠損株内でも複製することが可能である。

(4) oriT領域を持つpABOプラスミド

pABO401はpSI87-B19のEcoRI-Pstl 3.8 kb断片 (oriT領域からtraM、J、Y、A、L及びtraE 遺伝子の一部までを含む)をpHSG299にクローニングして得た。pABO421はpSI87-ES3 のSphI-XmnI 0.7 kb断片 (oriT領域からtraM遺伝子の一部までを含む)をpHSG299にクロ ーニングして得た。700番台の番号をつけたpABOプラスミドはEcoRI処理によって直鎖 状にしたpSI87-ES3をテンプレートとして、PCR反応を行なうことにより得られた断片 をpHSG299にクローニングして得た。PCR反応に用いた個々のプライマーの位置、それ らによって増幅されるoriT領域の範囲、及びそれらをクローニングして得られるpABOプ

図 6 - 1 TraMをトランスの位置から供給するプラスミド pABO120、pABO320の構築

pABO11はpUC119にtraMとその周辺をクローニングしたプラスミドpABO1のtraM構造遺伝子の上 流に、プライマー1を用いたKunkel法にてBamHI認識部位を導入して得たプラスミドである。 pABO119はpUC119のlacPOの上流にプライマー21Nを用いたKunkel法にてEcoRI認識部位を導入し て得たプラスミドである。pABO11のtraMを含むBamHI-BamHI断片を黒い太線で、pABO101の lacPO-traMを含むEcoRI-EcoRI断片を網かけの太線でそれぞれ示す。traMとpUC119のlacZ (LacZ a 断片をコードする)の位置及び方向は白抜きの矢印で示す。アンピシリン耐性遺伝子 (Amp')、 テトラサイクリン耐性遺伝子 (Tc') はそれぞれ実線、綱かけ線の矢印でその位置及び方向を表わ す。p、oはLacオペロンのプロモーター、オペレーターである。pABO101のEcoRI-EcoRI断片におい てtraMはLacPから転写される。LacZ'の開始コドンから始まる翻訳はすぐ下流に存在する終止コド ンで終結し、また、LacZ'はtraM構造遺伝子とはフレームがずれている。したがってpABO22 (第 二章、図2-2)におけるのと同様に、この断片から生産されるTraMはインタクトなTraMである と考えられる。pHY300PLK上のAmp'遺伝子は、その構造遺伝子内に存在するPvuI認識部位でPvuI にて切断し、その結果生じる突出末端をT4 DNA polymeraseにて平滑化した後にセルフライゲーシ ョンさせることでフレームシフト変異を導入して破壊した。B、E、PはそれぞれBamHI、EcoRI、 PvuIの認識部位である。 ラスミドは図6-2に示した。

個々の結合部位に部位特異的塩基置換変異を導入した変異pABO421は、pABO421の EcoRI-SphI 0.7 kb断片をpUC119にクローニングして得たプラスミドpABO9421に対して Kunkelの方法で塩基置換を導入し、しかる後にそのEcoRI-SphI 0.7 kb断片をpHSG299に 再クローニングすることによって得た。PCR及びKunkel法に用いた合成DNAプライマー は表6-7、6-8に示す。各変異pABO421の作成において導入した変異は図4-8に 示す。

3. プラスミドDNAへの部位特異的塩基置換変異の導入

プラスミドDNAに制限酵素認識部位を導入する際にはMutagene Kit (BioRad)、 Mutan-K Kit (宝酒造)を用いたKunkel法 (Kunkel, 1985)、またはGeneAmp PCR Kit (宝 酒造)を用いたPCRによる塩基置換法を行なった。

図6-2 PCRによる欠失oriT領域断片を持つpABOプラスミドの構築

上にoriT領域内に存在する各結合、認識部位、geneX、及びtra遺伝子の一部を模式的に示す。下に 600番台、700番台の番号を付けたpABOプラスミドの構築のためのPCRに用いたプライマーの位置及 びそれによって導入される制限酵素認識部位を示す。各pABOプラスミドは図に示した太線の領域を 持つ。

4. 合成オリゴヌクレオチド

塩基配列決定、プライマー伸長法、及びKunkel法またはPCR法による部位特異的塩基 置換導入に用いたオリゴヌクレオチドは、Applied Biosystem社のDNA合成装置380Bを用 いてホスホアミダイド法によって合成した。合成に要する試薬類はApplied Biosystem社 及びCruachem社より購入した。

表6-5 第二章で用いた合成プライマー

primer	sequence	position			
1	5'-CACTATAAATAT <u>GqATcc</u> AGTGTTTACAAG-3'	255 - 226			
2	5'-CTTTTAATTCTT <u>agaTcT</u> TCCTCATCATTT-3'	689 - 660			

各プライマーの位置は図1-4中のoriT領域の塩基番号による位置を示す。プライマ -1及び2はpABO1からpABO12を作製する際にKunkel法のプライマーとして用いた。各 プライマーによって導入される塩基置換変異を小文字で、その変異によって生じる制限 酵素認識部位を下線で示す。

表6-6 第三章で用いた合成プライマー

primer	sequence	position			
1	5'-CACTATAAATAT <u>GqATcc</u> AGTGTTTACAAG-3'	255 -	226		
10	5'-TACAAAATTACTggatCCATAAGATAAAAC-3'	311 -	282		
11	5'-TTAATAATTCAG <u>AgatcT</u> TAAATATAAATA-3'	59 -	30		
12	5'-CGTCCCTAATAT <u>AqATCt</u> ATGTTTTTCATG-3'	158 -	129		
13	5'-TATAAAAAAAGgg <u>GATCC</u> GGCGCTAGGGGGC-3'	187 -	158		
14	5'-AGACACTCCTAG <u>ggatcC</u> CTCTAGGATCAT-3'	219 -	190		
16	5'-CGATCCTGTTAC <u>Ggatcc</u> ATAGCGACTCTT-3'	75 -	104		
21N	5'-CTTTCCAGTCGG <u>GAAttC</u> TGTCGTGCCAGC-3'	602'-	631'		
M4	5'-GTTTTCCCAGTCACGAC-3'	359'-	375'		
traMRV	5'-CTGATATACAAAATTACTCT-3'	317 -	298		

プライマーM4とtraMRVはプライマー伸長法に用いた。そのほかのプライマーはpABO

イラスミドを構築する際の部位特異的塩基置換変異の導入に用いた。その際導入される 制限酵素認識配列を下線で示し、その配列をとるために導入された置換変異の位置及び 変異後の塩基を小文字で示す。プライマー21N、M4はpUCプラスミドに、それ以外のプ ライマーはoriT領域の周辺にハイブリダイズする。プライマー10、11、12、13、14、15、 21NはKunkel法による塩基置換導入、プライマー10と16はPCRによる塩基置換導入にそ れぞれ用いた。

各プライマーの位置は、右肩に印のないものは図1-4中の*oriT*領域の塩基番号によ る位置を、右肩に'が付いた位置はpUC19上の塩基番号(Yanisch-Perron et al, 1985)に 従った位置を示す。

orimer	sequence	p	osit	tion
10	5'-TACAAAATTACT <u>ggatCC</u> ATAAGATAAAAC-3'	311	-	282
12	5'-CGTCCCTAATAT <u>AGATCt</u> ATGTTTTTCATG-3'	158	-	129
13	5'-TATAAAAAATG <u>gGATCC</u> GGCGCTAGGGGC-3'	187	-	158
14	5'-AAAGACACTCCTAG <u>ggatcC</u> CTCTAGGATCAT-3'	221	-	190
8	5'-TGTCAGTAC <u>gGATCC</u> TAATAA-3'	123	-	103
11	5'-TTTCAT <u>ggaTCC</u> ACCTCTGGTGAC-3'	-130	-	-107
12	5'-GTT <u>ggatCC</u> ACCAAAAGCACCACA-3'	-54	-	-31
17	5'-ACAGGATCcCCAACGACTCTCTAT-3'	83	-	60

表6-7 第四章でのPCRに用いた合成DNAプライマー

各プライマーの位置は、図1-4中のoriT領域の塩基番号による位置を示す。各プラ イマーによって導入される変異を小文字で、その変異によって生じる制限酵素認識部位 を下線で示す。

表6-8 第四章でのKunkel法に用いたプライマー

prir	sequence		position			mutation	
32	5'-GTCCCTAATATAT <u>AgatcTtcTaga</u> CATGAAAATTGTCAGTA-3'	157		118	F1,	F15	
43	5'-TAAATAGCGTTTG <u>cTgcag</u> ACggtaccTAAAACGTAAATC-3'	35	-	-5	F5,	F15	
51	5'-CCTAATAAGAGTCGCTAgctttgatagcagctATCGC	110	-	61	MA		
	CAACGACTCTCTA-3'						
52	5'-ATGTTTTTCATGAAAATTGagctgctatcaatgcATA	140	-	91	MB		
	AGAGTCGCTATAG-3'						
53	5'-AAATGCGATCCG <u>GCGCGcc</u> tgctatcaaagcATATATA	180	-	131	MC		
	TCAATGTTTTTCA-3'						
54	5'-ACAAGTAAGAAAGACACTCagctgctatcaatccGGA	230	-	181	MD		
	TCATCCTATAAAA-3'						
55	5'-GGTCGTAACAGGATCGCCAACGACtcgagTCTCTATT	90	-	41	G5		
	TAATAATTCAGAATTATT-3'						
56	5'-GGTCGTAACAGGATCGCCAACGACtagtccatggTCT	90	-	41	G10		
	CTATTTAATAATTCAGAATTATT-3'						
57	5'-ATCGCCAACGACTCTCTATgTtAacATTaAGctTTAT	78	-	15	¥2		
	atcgatTAAATAGCGTTTGTTAATTAC-3'						

各プライマーの位置は、図1-4中のoriT領域の塩基番号による位置を示す。各々の プライマーによって導入される塩基置換変異を小文字で、その結果生じる制限酵素認識 部位を下線で示す。各プライマーによって変異を導入したpABO421プラスミドの変異の 名前を右に示す(図4-8参照)。

5. 合成DNA断片の作成

TraMの結合に対するコンペティターとして用いた二本鎖DNA断片は、それぞれの配列 について上下両DNA鎖を各々合成し、10 mM Tris-HCl (pH 7.5)、25 mM NaCl、0.1 mM EDTA (pH 8.0)中にて混合し、95C2分間の変性処理の後に65Cで30分間保温し、さらに 一分間に1Cの割合で温度を37Cまで下げ、30分間保温してアニールさせて得た。

6. 培地

使用した培地はL-rich培地、2×YT培地、LB培地(Miller, 1972)、 & 培地(Yoshioka

etal., 1987) 、EHA培地、R培地(Miller, 1972) である。これらの培地は全て120℃15分 間のオートクレーブで滅菌した後に使用した。L-rich培地、2×YT培地にはオートクレ ーブ後、やはりオートクレーブで滅菌したグルコースを終濃度が0.2%となるように加 えて使用した。EHA培地はオートクレーブ後グルコースを0.15%となるように、クエン 酸ナトリウムを6.8 mMとなるようにそれぞれ加えて使用した。R培地にはオートクレー ブ後グルコースを0.1%となるように、CaCl₂を2 mMとなるようにそれぞれ加えて使用し た。

プレートは適当な培地にBacto agar (Difco) を加えて作製した。LBプレート、EHAプレートはそれぞれ培地にBacto agarを1.5%になるように加えて作製した。RプレートはR培地にBacto agarを1.2%になるように加えて作製した。R Top agarはR培地にBacto agarを 0.8%になるように加えて作製した。

2 × YT培地はDNAの大量調製 (Ohtsubo et al., 1978) の際の培養に用いた。L-rich培地 はアルカリ-SDS法によるプラスミドDNA調製で、高収量が必要な際に用いた。 ϕ 培地 はルビジウム形質転換法 (Yoshioka et al., 1987) の際の本培養に用いた。R培地、EHA培 地はP1トランスダクションに用いた。LBプレートには必要に応じてアンピシリン (Amp)、テトラサイクリン (Tc; Sigma)、クロラムフェニコール (Cm; Sigma)、 カナマイシン (Km; Sigma)、リファンピシン (Rif; Sigma)、グルコース、 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside [X-gal] (Sigma)、isopropyl- β -D-tiogalactopyranoside [IPTG] (Sigma)を加えてコロニーの選択に使用した。その際 Ampは100 μ g/ml、Tcは5 μ g/ml、Cmは30 μ g/ml、Kmは50 μ g/ml、Rifは100 μ g/ml、 グルコースは0.2%、X-galは0.2%、IPTGは0.14 mMになるように加えた。

7. 試薬、酵素、キット

使用した試薬はそのつど述べた。特に示さない限り、和光純薬より購入したものを使 用した。

使用した制限酵素はNew England Biolabs、BioRad、宝酒造、東洋紡より購入した。 DNase I、T4 DNA polymerase、T4 polynucleotide kinase、DNA polymerase I Klenow fragment、 calf intestine alkaline phosphatase (CIAP)、T4 DNA ligase、RNase inhibitor、reverse transcriptase (RAV-2)、M13 DNA Sequencing kit、Mutan-K mutagenesis kit、Gene Amp polymerase chain reaction (PCR) kitは宝酒造より購入した。Mutagene KitはBioRadより購入 した。RNase A、コラゲナーゼ(タイプ虹)はSigmaより購入した。コラゲナーゼは、 300 µ gを50% [v/v]グリセロールを含むパッファーB(パッファーB-G50) 340 µ lic溶解 して0.9µg/µlの保存液を作製、-20℃にて保存し、実験に供した。これらの酵素は全て 製造者の示す反応条件にて使用した。

8. プラスミドDNAの調製

ベクターとして用いたpUC119及びDNase Iフットプリンティング法に用いたpSI87-XE1 osupercoiled DNAは、1リットルの培地よりBrij-DOCを用いる方法で調製し、CsCI密度勾 配により精製した(Ohtsubo et al., 1978)。DNA塩基配列の決定、Kunkel法(1985)に用 いたプラスミドDNAはアルカリ-SDS法(Maniatis et al., 1982)によって調製した。プラ スミドDNAの迅速な単離、同定には、R100-1を確認する必要があるときにはMachidaら (1982)によるcrude lysis法を、単離したプラスミドDNAを制限酵素処理する必要があ るときにはリチウムバッファーを用いるHeらの方法(1989)をそれぞれ用いた。

9. 形質転換

菌体の形質転換はHanahan (1983)の方法を改良したルビジウム法 (Yoshioka et al., 1987)またはTSS法 (Chung et al., 1989)によって行なった。特にKunkel法により塩基置 換を導入したプラスミド等、ライゲーション反応で得られたプラスミドによる菌体の形 質転換は効率の良いルビジウム法によって行ない、また、Heら (1989)の方法、アルカ リ-SDS法 (Maniatis et al., 1982)、crude lysis法 (Machida et al., 1982)によって詞製した プラスミドDNAによる菌体の形質転換はより簡便なTSS法によって行なった。

10. DNA塩基配列の決定

プラスミドDNAに導入した変異の確認のために合成オリゴヌクレオチドをプライマー としてジデオキシ法 (Sanger et al., 1977; Messing, 1983) により塩基配列を決定した。そ の際7-DEAZA Sequencing Kit (宝酒造) またはBcaBEST Sequencing Kit (宝酒造) を用い、 $[\alpha_{-}^{32}P]$ dCTP (15 TBq/mmol: Amersham)の取り込みによって標識を行った。 DNase Iフットプリンティング法、プライマー仲長法の位置マーカーには、5'末端を $[\gamma_{-}^{32}P]$ ATP (166.5 TBq/mmol: Amersham)によるリン酸化で標識したプライマーを 用いてM13 Sequencing Kit (宝酒造) を一部変更したジデオキシ法により決定したシーク エンスラダーを用いた。その際DNA鎖の仲長にはDNA polymerase I Klenow fragmentを用

11. TraM*の精製

viteo

TraM*はβ-ガラクトシダーゼに対するアフィニティーを利用した方法 (Ullmann, 1984; Inamoto et al., 1988) によって以下のように精製した。

TraM*を生産するプラスミドpABO22を保持する宿主菌MC1000をL-rich培地中で一晩前 培養の後、L-rich培地(0.2%グルコース、 $50 \mu g/ml r ンピシリンを含む$)250 mlに2.5 ml加え、500 ml容坂口フラスコ中で30℃にて振盪培養した。OD₆₀₀が0.5~0.6となったと ころで培養温度を42℃にシフトしてさらに90分間振盪培養した後に氷水中で冷却し、遠 心分離にて集菌した。以後の操作は、特に示さない限り0℃~4℃で行った。集めた菌体 を40 mlの氷冷したAFバッファー(20 mM Tris·HCl、10 mM MgCl₂、10 mM 2-mercaptoethanol、1.6 M NaCl [pH 7.4])(250 μ M phenylmethylsulfonyl fluoride [PMSF]を 含む)で洗浄し、培地500 mlに相当する菌体(湿重量で約1.5 g)を一つにまとめ、再び 遠心分離で集菌した。集菌した菌体はドライアイス中で凍結させ、-80℃にて保存した。

菌体を氷冷したAFバッファー24 ml (PMSF 250 μ Mを含む) に懸濁し、Branson sonic oscillatorを用いて強度4、50%の間欠超音波処理にて細胞を破壊し、11000×gの遠心分離 で破壊されずに残った細胞を沈殿させて除いた後に100000×gの超速心分離で膜画分を 除いた。このようにして得られた可溶性画分をp-amino-phenyl-β-D-thiogalactoside(TPEG) -Sepharoseカラムに通し、TraM*をカラムに保持させ、AFバッファー (250 μ M PMSFを 含む) 100 mlでカラムを洗い余分なタンパク質などを除いた後に、ほう酸パッファー (100 mM Na₂B₄O₇、10 mM2-mercaptoethanol、[PH 10.0]) を用いてカラムから溶出させた。 溶出したタンパク質は直ちにPD-10カラム (Pharmacia) を用いてパッファーB (10 mM Tris·HCl、250 mM NaCl、10 mM CaCl₂、10 mM 2-mercaptoethanol [pH 7.4]) に移し、10% [w/v]のグリセロールを含むバッファーB (バッファーB-G10) に対して透析し、TraM* 標品とした。精製の過程でのTraM*の確認は、SDS-PAGE及びLacZ活性の測定によって 行った。このようにして得られた標品はユッペンドルフチュープに分注し、ドライアイ ス中にて凍結の後-80℃で保存し、以後適宜融解して実験に供した。

12. タンパク質の定量

タンパク質の定量はBradfordの方法(1976)に従い、bovine serum albumine(BSA:生 化学工業)をタンパク質量の標準として行なった。

13. タンパク質のゲル電気泳動

タンパク質のSDS-ポリアクリルアミドゲルによる電気泳動(SDS-PAGE)は、Laemmli の方法(1970)に従って行った。TraM*に対してコラゲナーゼ処理を行った試料につい てTraM*の消失とTraM'の出現を確認するためにはHussainらの方法(1980)に従って行 った。いずれの方法においても、ゲルの染色にはクマシーブリリアントプルー(Sigma) を用いた。

14. DNAのゲル電気泳動

ゲルシフト法による解析は変性剤を加えないポリアクリルアミドゲルにて行なった。 プラスミドDNAの制限酵素断片の回収には変性剤を加えないポリアクリルアミドゲルま たはアガロースゲルによる電気泳動を行なった。泳動パッファーにはTAEバッファー

(40 mM Tris-acetate、2 mM EDTA [pH 8.0]) を用いた(Sambrook et al., 1989)。
DNAシークエンシング、DNase Iフットプリンティング、プライマー伸長法を行なう際には7 M尿素を含むボリアクリルアミドゲル(シークエンシングゲル)を用いた電気泳動を行なった。泳動パッファーにはTBEバッファー(90 mM Tris-borate、2 mM EDTA [pH 8.0])を用いた(Sambrook et al., 1989)。

15. β-ガラクトシダーゼ活性の測定

TraM*を発現している菌、TraM*標品などの β -ガラクトシダーゼ活性(LacZ活性)は、 Millerの方法 (1972) に従いo-nitrophenyl- β -D-galactoside (ONPG:和光純薬)を用いた 比色法によって測定した。

TraM_{ATG}-LacZ融合タンパク質による β -ガラクトシダーゼ活性(LacZ活性)は、0.2%の グルコースを含むL-rich培地中、30℃にてOD600が0.4~0.6になるまで振盪培養した培養 液について、同様に測定した。

16. ゲルシフト法

TraM*及びTraM'のDNAに対する結合はゲルシフト法を用いて調べた。 用いた直鎖DNAはプラスミドDNAを適当な制限酵素で切断し、フェノール処理、クロ
ロホルム処理、エタノール沈澱によって精製して得、TEパッファー(10 mM Tris・HCl、 1 mM EDTA [pH 8.0]) に溶解して保存した。DNA断片に対するタンパク質の結合は binding solution (50 mM NaCl、10 mM MgCl₂、0.1 mM EDTA、5 mM dithiothreitol (DTT: Nacalai)、0.1 mg/ml BSA、10% [w/v]グリセロール、25 mM MES-KOH) (MES: 2-(N-morpholino) ethanesulfonic acid (Sigma))中、28℃、20分間の条件で行なわせ、結 合反応後直ちにTAEパッファー中でのポリアクリルアミドゲル電気泳動(PAGE)に供 し、臭化エチジウムによる染色でDNA断片のパンドの泳動度を観察した。反応液のpH 値は、加えるMES-KOHによって調節した。binding solutionの組成を変えることで結合に 対する各種イオンの影響を知ることが出来る。結合に対するヘパリンの影響は20分間 の結合反応の後へパリンを加え、さらに5分間保温することによって調べた。

コンペティションの実験を行なう際には、oriT領域を含むDNA断片としてはpSI87-XE1 のDral-TthHB8I 1131 bp断片の5'末端を³²Pで標識して用い、コンペティターには互いに相 補しあう一本鎖合成DNAをアニールさせて調製した二本鎖DNAを用いて以下のように行 なった。

まず、コンペティター及びTraM*標品を含む10 μ lのbinding solution(前述)を28℃に て5分間保温し、そこにあらかじめ28℃にしておいた³²Pで標識したDNA断片0.005 pmol を含むbinding solution 5 μ 1を加え、さらに28℃にて20分間保温しTraM*と³²P標識DNA断 片との結合反応を行なわせた。その後直ちにTAEバッファー中でPAGEを行ない、電気 泳動終了後ゲルを真空加熱乾燥し、オートラジオグラフィーによりバンドを視覚化して それを観察した。

17. TraM*タンパク質のコラゲナーゼ処理

TraM*のTraM部分(TraM')とLacZ部分とを分離するためにTraM*標品に対してコラゲ ナーゼ処理を行った。TraM*標品の溶媒であるバッファーB-G10はコラゲナーゼの反応 条件を満たす組成であるので、これに直接コラゲナーゼを加えることで反応を行なわせ ることが出来る(Inamoto et al., 1990)。TraM*標品(0.6 pmol/ μ 1のTraM*を含む)に対 しコラゲナーゼ保存液(コラゲナーゼ0.9 μ g/ μ 1を含むバッファーB-G50)を適当量加 え30℃にて15分間反応させた後氷中にて冷却した。TraM'の生成はSDS-PAGEにて確認 した。このTraM*をコラゲナーゼ処理した溶液(LacZ部分やコラゲナーゼなども含む) をTraMt標品としてゲルシフト法に用いた。

18. DNA断片の³⁰Pによる5'末端標識

DNA断片の5'末端はT4 polynucleotide kinase及び[γ-³²P]ATPを用いたリン酸化反応によって³²Pにて標識した。

DNase Iフットプリンティング法に用いた片側の5'末端のみを³²Pで標識したDNA断片は 以下のように作製した(図2-9A)。

EaeI 側を標識した353塩基対 (353-bp) のHphI-EaeI 断片を作製するために、まずプラス ミドpSI87-XE1をEaeIで切断し、ポリアクリルアミドゲル電気泳動 (PAGE) の後 1018-bpの断片をゲルから回収し精製した (Maxam and Gilbert, 1980; Sambrook et al., 1989) 。 この断片の5'末端をCIAPによる脱リン酸化処理後、T4 polynucleotide kinase及び[γ -³²P]ATPを用いて³²P標識し、HphIで切断した後に353-bp HphI-EaeI 断片を同様にPAGE後 ゲルから回収し精製した。

DraI側を標識した288-bp DraI-Eael断片は、プラスミドpSI87-XE1の1131-bp DraI-TthHB8I断片を上記と同様にゲルから回収、精製して³²P標識し、Eaelにて切断し、 同様にPAGE後ゲルから回収し精製して得た。

ゲルシフト法に用いた1131-bp DraI-TthHB8I断片は、上記と同様に³²P標識した断片を Eaelによる切断を行なわずに用いた。反応液中に残存するT4 polynucleotide kinase及び[γ -³²P]ATPはフェノール処理、クロロホルム処理、エタノール沈殿による精製で除き、得 られた³²P標識断片はTEバッファーに溶解して用いた。

いずれの場合も精製したDNA断片はTEバッファーに溶解した。

19. DNase Iフットプリンティング法

oriT領域におけるTraM*の結合部位を決定するためにはDNase Iフットプリンティング 法を用いた(Galas and Schmitz, 1978; Inamoto et al., 1990)。

³²Pで標識したDNA断片(約0.1 pmol)を100 μ 1のbinding solution 中、28℃、20分間の 条件でTraM*と結合させた反応液にDNase I1 μ 1(0.001 units)を加え28℃で2分間反応さ せてDNAを部分消化させた後、20 μ 1のDNase1反応停止液(2.6 M NH₄Ac、87 mM EDTA、 130 μ g/ml sonicated salmon sperm DNA)を加えてDNase Iの反応を停止させた。フェノ ール処理、エタノール沈殿でタンパク質を除いた後に泳動パッファー(50% [v/v] formamide, 5 mM EDTA, 0.01% [w/v] xylene cyanol, 0.01% [w/v] bromophenol blue)に溶解 し、熱変性させ、シークエンシングゲルによる電気泳動でDNA鎖を分離した。フットプ リントのパターンはゲルを真空加熱乾燥後オートラジオグラフィーにて視覚化して観察 した。DNA鎖の位置マーカーには、末端標識した合成プライマーを用いてジデオキシ法 にて調製したシークエンスラダーを用いた。

20. P1トランスダクション

MC1000にhip変異を導入してTA1000を得る際にはP1トランスダクションを行なった。 まずYK2523 (Δ 3[hip]::cat)の培養液に5 mMとなるようにCaCl₂を加えた後にm.o.i.が 0.01~0.05になるようにP1kcファージを感染させ、R Top agar中で37℃8時間保温してフ アージを増殖させた。R Top agarを回収し、遠心分離を行ない分離した水相から滲出し たファージを回収した。クロロホルムを加えて混入したYK2523を殺菌し、タイターを 測定してファージ標品とした。MC1000の培養液に5 mMとなるようにCaCl₂を加え、得ら れたファージ標品を加えて37℃15分間感染させ、その直後にクエン酸ナトリウムを15% になるように加えて重感染を防ぐ。菌体を集めてEHA培地で洗浄した後にEHA培地中で 37℃30分間培養し、30µg/mlのCmを含むEHAプレート上でCm耐性のコロニーを選択し た。得られたコロニーについて30µg/mlのCmを含むEHAプレート上で単コロニー分離 を数回繰り返し、P1ファージを含まないことを確認してTA1000を得た。*lac*であること はX-galとIPTGを含むプレートで、IHFであることはpHS12による形質転換ができない ことでそれぞれ確認した。P1ファージのタイター測定の際の指示菌にはC600を用いた。

21. RNAの調製

大腸菌細胞からの全RNAの調製は、Miller (1972) 及びAibaら (1981) の方法に従って 行なった。

0.2%のグルコース及び適当な薬剤を含むL-rich培地中でA600が0.5~0.6になるまで菌体を増殖させ、培地中に直接氷を加えて急冷し、遠心分離にて集菌した。集めた菌体を 0.5%のSDS[Nacalai]を含む0.5mlのSol A (20mM sodium acatate、10mM EDTA [pH 5.5]) に懸濁し、あらかじめ60℃に保温しておいたSol Aで飽和したフェノールを0.5ml加え、 60℃で5分間振盪してフェノール抽出を行なった。遠心分離にて水相を分離し、そこに 抽出されたRNAをエタノール沈殿にて回収し、さらに混入したDNAを塩化セシウム密度 勾配超遠心を利用して除き、RNA標品とした。操作の全段階を通してRNA標品のバッフ アーには0.5%のSDSを含むSol Aを用い、保存する際には-20℃にて凍結した。RNA濃度 はOD₂₀₀の値から決定した。

22. プライマー伸長法による転写産物の5'末端の決定

プライマー伸長法はSambrookら (1989) のプロトコールを参考に適宜改良を加えて行なった。

5'末端を³²Pで標識したプライマー1 pmolを約20 μ gのRNAと混合し、RNase inhibitor及 び10 mMのDTTを含むANバッファー (250 mM KCl、10 mM Tris-HCl (pH 8.5) [Sigma]) 中 で37℃、2時間保温してアニールさせた。エタノール沈殿にて核酸を回収し、RNase inhibitor及び10 mMのDTTを含むRTバッファー (50 mM KCl、10 mM MgCl2、50 mM Tris-HCl (pH 8.5)) に溶解した後、dNTPを各々2 mMとなるように加え、さらに逆転写酵素 (Reverse transcriptase RAV-2) を加えて42℃、2時間保温して逆転写反応 (reverse transcription) を行なわせた。DNAが合成された反応液にRNaseAを加え、42℃、30分間 反応させてRNAを分解し、フェノール抽出、エタノール沈殿により精製したDNAをシー クエンシングゲルで電気泳動してオートラジオグラフィーにて視覚化し、その鎖長を決 定した。合成されたDNA鎖長のマーカーには、逆転写反応に用いたのと同じプライマー を用い、対象とするmRNAを得るのに用いたプラスミドに対して行なったシークエンス ラダーを使用した。

23. 接合伝達

接合伝達効率は液体培地中で接合を行なわせて測定した。

供与菌はLB培地中で一晩前培養した培養液0.1 mlを1.B培地3 mlに加え、100 ml容量の 三角フラスコ中で37℃にて三時間静置培養して性繊毛を充分に形成させた。受容菌は LB培地中で一晩前培養した培養液1 mlを5 mlのLB培地に加え、試験管内で37℃にて三時 間振盪培養した。供与菌、受容菌双方とも三時間の培養の後に0.1 mlを分取して適宜希 釈してプレート上に塗布し、接合伝達前のそれぞれの生菌数を調べた。受容菌培養液 2.5 mlを三角フラスコ中の供与菌培養液に穏やかに加え、37℃にて一時間静置培養して 接合伝達を行なわせた。供与菌の培養及び接合伝達に三角フラスコを用いるのは表面積 を大きくしてエアレーションを良くするためであり、静置するのは性繊毛や接合対が物 理的な力に弱く振盪培養では接合伝達効率が下がり、再現性も悪くなるからである。接 合伝達を行なわせた培養液は適宜希釈してプレート上に塗布し、薬剤耐性を示すコロニ ーによって受容菌、供与菌、transconjugantの生菌数をそれぞれ調べた。供与菌はKm、 Cm、X-gal、IPTGを含むプレート上で白いコロニーを形成する。受容菌はRifを含むプレ ート上でコロニーを形成する。pABOプラスミドが伝達したtransconjugantはKm、Rifを含 むプレート上、R100-1が伝達したプラスミドはCm、Rifを含むプレート上、pABOプラス ミド、R100-1双方が伝達したtransconjugantはKm、Cm、Rifを含むプレート上でそれぞれ コロニーを形成する。接合伝達頻度は、一時間の接合伝達が終わった培養液中の供与菌 細胞数当たりのtransconjugant細胞数で表わした。接合伝達に際しては、供与菌対受容菌 の細胞比は約1対10となるようにした。

参考文献

- Abdel-Monem, M. G. Taucher-Scholz, and M.-Q. Klinkert. 1983. Identification of Escherichia coli DNA helicase I as the traI gene product of the F sex factor. Proc. Natl. Acad. Sci. USA 80: 4659-4663.
- Achtman, M., B. Kusecek, and K. N. Timmis. 1978. tra cistrons and protein encoded by the Escherichia coli antibiotic resistance plasmid R6-5. Mol. Gen. Genet. 163:169-179.
- Achtman, M., P. A. Manning, C. Edelbluth, and P. Herrlich. 1979. Export without proteolytic processing of inner and outer membrane proteins encoded by sex factor tra cistrons in Escherichia coli minicells. Proc. Natl. Acad. Sci. USA 76: 4837-4841.
- Aiba, H., S. Adhya, and B. Crombrugghe. 1981. Evidence for two functional gal promoters in intact Escherichia coli cells. J. Biol. Chem. 256: 11905-11910.
- Alfaro, G., and N. Willetts. 1972. Therelationship between the transfer systems of some bacterial plasmids. *Genet. Res.* 20: 279-289.
- Armstrong, K. A., R. Acosta, E. Ledner, Y. Machida, M. Pancott, M. McCormick, H. Ohtsubo, and E. Ohtsubo. 1984. A 37 X 10³ molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J. Mol. Biol. 175:331-347.
- Bachmann, B. J. 1987. Derivations and genotypes of some mutant derivatives of Escherichi coli K-12. p. 1190-1219. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D. C.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
- van Biesen, T., F. Soderbom, E. Gerhart, H. Wagner, and L. S. Frost. 1993. Structural and functional analyses of the FinP antisense RNA regulatory system of the F conjugative plasmid. *Mol. Microbiol.* 10:35-43.
- Bukhari, A. I., J. A. Shapiro, and S. L. Adhya. 1977. DNA insertion elements, plasmids, and episomes, p. 601-704. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Campbell, A. M. 1969. Episomes. Advanced Genet. 11:101-145.

Caro, L. G., and M. Schnos. 1966. The attachment of the male-specific bacteriophage f1 to sensitive strains of Escherichia coli. Proc. Natl. Acad. Sci. USA 56: 126-132.

Casadaban, M. J., and S. N. Cohen. 1980. Analysis of gene control signals by DNA fusion

and cloning in Escherichi coli. J. Mol. Biol. 138:179-207.

- Cavalli-Sforza, L. L. 1950. La sessualita mei batteri. Boll. ist. sieroterap. milan. 29: 281-289
- Chang, A. C. Y., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134:1141-1156.
- Clewell, D. B. 1993. Sex pheromones and the plasmid-encoded mating response in Enterococcus faecalis. p. 349-368. In D. B. Clewell (ed.), Bacterial conjugation. Plenum Press, New York.
- Clewell, D. B. and S. E. Flannagan. 1993. The conjugative transposons of Gram-positive Bacteria. p. 369-394. In D. B. Clewell (ed.), Bacterial conjugation. Plenum Press, New York.
- Cohen, A., W. D. Fisher, R. Curtiss III, and H. I. Adler. 1968. The properties of DNA transferred to minicells during conjugation. Cold Spring Harbor Symp. Quant. Biol. 33: 635-641.
- Chung, C. T., S. L. Niemela, and H. Miller. 1989. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172-2175.
- Dempsey, W. B. 1987. Integration host factor and conjugative transfer of the antibiotic resistance plasmid R100. J. Bacteriol. 169:4391-4392.
- Dempsey, W. B. 1989. Sense and antisense transcripts of *traM*, a conjugal transfer gene of the antibiotic resistance plasmid R100. *Mol. Microbiol.* 3: 561-570.
- Dempsey, W. B. 1993. Key regulatory aspects of transfer of F-related plasmids. p. 53-74. In D. B. Clewell (ed.), Bacterial conjugation. Plenum Press, New York.
- Dempsey, W. B., and B. E. Fee. 1990. Integration host factor affects expression of two genes at the conjugal transferorigin of plasmid R100. *Mol. Microbiol.* 4: 1019-1028.
- Dempsey, W. B., and S. A. McIntire. 1983. The fin O gene of antibiotic resistance plasmid R100. Mol. Gen. Genet. 190:444-451.
- Di Laurenzio, L., L. S. Frost, B. Finlay, and W. Paranchych. 1991. Characterization of the oriT region of the IncFV plasmid pED208. Mol. Microbiol. 5: 1779-1790.
- Di Laurenzio, L., L. S. Frost, and W. Paranchych. 1992. The TraM protein of the conjugative plasmid F binds to the origin of transfer of the F and ColE1 plasmids. *Mol. Microbiol.* 6: 2951-2959.
- Everett, R., and N. Willetts. 1980. Characterization of an *in vivo* system for nicking at the origin of conjugal DNA transfer of the sex factor F. J. Mol. Biol. 136:129-150.

Fee, B. E., and W. B. Dempsey. 1986. Cloning, mapping, and sequencing of plasmid R100

traM and finP genes. J. Bacteriol. 167:336-345.

- Finlay B. B., L. S. Frost, and W. Paranchych. 1986. Origin of transfer of IncF plasmids and nucleotide sequences of the type II oriT, traM, and traY alleles from ColB4-K98 and the type IV traY allele from R100-1. J. Bacteriol. 168:132-139.
- Finnegan, D. and N. Willetts. 1973. The site of action of the F transfer inhibitor. Mol. Gen. Genet. 127:307-316

Friedman, D. I. 1988. Integration host factor: A protein for all reasons. Cell 55: 545-554.

- Frost, L. S. 1993. Conjugative pili and pilus-specific phages. p. 189-222.In D. B. Clewell (ed.), Bacterial conjugation. Plenum Press, New York.
- Gaffney, D., R. Skurray, and N. Willetts. 1983. Regulation of the F conjugation genes studied by hybridization and tra-lacZ fusion. J. Mol. Biol. 168:103-122.
- Galas, D. J., and A. Schmitz. 1978. DNase footprinting: A simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5: 3157-3170.
- Gamas, P., L. Caro, D. Galas, and M. Chandler. 1987. Expression of F transfer functions depends on the Escherichia coli integration host factor. Mol. Gen. Genet, 207: 302-305.
- Germino, J., and D. Bastia. 1984. Rapid purification of cloned gene product by genetic fusion and site-specific proteolysis. Proc. Natl. Acad. Sci. USA 81:4692-4696.
- Graus-Goldner, A., H. Graus, T. Schlacher, and G. Hogenauer. 1990. The sequences of genes bordering oriT in the enterotoxin plasmid P307: comparison with the sequences of plasmids F and R1. Plasmid 24: 119-131.
- Harada, K., and S. Mitsuhashi. 1977. Physiology of R factors. p. 135-160. In S. Mitsuhashi (ed), R factor, drug resistance plasmid. University of Tokyo Press, Tokyo.
- Hayes, W. 1953a. The mechanism of genetic recombination in E. coli. Cold Spring Harbor Symposia Quant. Biol. 18:75-93
- Hayes, W. 1953b. Obserbation on a transmissible agent determining sexual differentiation in Bact. coli. J. Gen. Microbiol. 8: 72-88
- He, M., A. Wilde, and M. A. Kaderbhai. 1989. A simple single-step procedure for small-scale preparation of *Escherichia coli* plasmids. *Nucleic Acids Res.* 18:1660.
- Hirota, Y. 1960. The effect of acridine dyes on mating type factors in E. coli. Proc. Natl. Acad. Sci. USA 46: 57-64.
- Hussain, M., S. Ichihara, and S. Mizushima. 1980. Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of *Escherichia coli* treated with globomycin. J. Biol. Chem. 255: 3707-3712.
- Ichikawa, H., K. Ikeda, W. L. Wishart, and E. Ohtsubo. 1987. Specific binding of transposase to terminal inverted repeats of transposable element T n3. Proc. Natl. Acad. Sci. USA 84: 8220-8224.

- Ihler, G., and W. D. Rupp. 1969. Strand-specific transfer of donor DNA during conjugation in E. coli. Proc. Natl. Acad. Sci. USA 63; 138-143.
- Inamoto, S., and E. Ohtsubo. 1990. Specific binding of the TraY protein to oriT and the promoter region for the traY gene of plasmid R100. J. Biol. Chem. 265: 6461-6466.
- Inamoto, S., Y. Yoshioka, and E. Ohtsubo. 1988. Identification and characterization of the products from the traJ and traY genes of plasmid R100. J. Bacteriol. 170:2749-2757.
- Inamoto, S., Y. Yoshioka, and E. Ohtsubo. 1991. Site- and strand specific nicking in vitro at oriT by the TraY-TraI endonuclease of plasmid R100. J. Biol. Chem. 266: 10086-10092.
- Ippen-Ihler, K. A., and E. G. Minkley, Jr. 1986. The conjugation system of F, the fertility factor of Escherichia coli. Annu. Rev. Genet. 20: 593-624.
- Ippen-Ihler, K. and R. A. Skurray. 1993. Genetic organization of transfer-related determinants on the sex factor F and related plasmids. p. 23-52. In D. B. Clewell (ed.), Bacterial conjugation. Plenum Press, New York.
- Ishiwa, H., and H. Shibahara-Sone. 1986. New shuttle vectors for Escherichia coli and Bacillus subtilis. IV. The nucleotide sequence of pHY300PLK and some properties in relation to transformation. Jpn. J. Genet. 61:515-528.
- Iuchi, S., and E. C. C. Lin. 1992. Purification and phosphorylation of the Arc regulatory components of *Escherichia coli*. J. Bacteriol. 174:5617-5623.
- Jacob, F., and E. Wollman, 1961. Sexuality and the genetics of bacteria. Academic Press.
- Jalajakumari, M. B., A. Guidolin, H. J. Buhk, P. A. Manning, L. M. Ham, A. L. M. Hodgson, K. C. Cheah, and R. A. Skurray. 1987. Surface exclusion genes traS and traT of the F sex factor of *Escherichia coli* K-12. Determination of the nucleotide sequence and promoter and terminator activities. J. Mol. Biol. 198:1-11.
- Kleckner, N., R. K. Chan, B. K. Tye, and D. Botstein. 1975. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J. Mol. Biol. 87: 561-575.
- Komano, T., A. Kubo and T. Nishioka. 1987. Shufflon: multi-insertion of four contiguous DNA segments of plasmid R64 creates seven different open reading frames. Nucleic Acids Res. 15:1165-1171.
- Koraimann, G., C. Koraimann, V. Koronakis, S. Schlager, and G. Hogenauer. 1991. Repression and derepression of conjugation of plasmid R1 by wild-type and mutated *finP* antisense RNA. Mol. Microbiol. 5: 77-87.
- Koraimann, G., C. C. Schroller, H. Graus, D. Angerer, K. Teferle, and G. Hogenauer. 1993. Expression of gene 19 of the conjugative plasmid R1 is controlled by RNase III. Mol. Microbiol. 9: 717-727.
- Koronakis, V. E, E. Bauer, and G. Hogenauer. 1985. The traM gene of the resistance plasmid R1: comparison with the corresponding sequence of the Escherichia coli F

factor. Gene 36: 79-86.

- Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488-492
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
- Lebek, G. 1963. Ueber die Entstehung mehrfachresistenter Salmonellen. Ein experimenteller Beitrag. Zentr. Bakteriol. Parasitenk. Abt. I Orig. 188:494-505.
- Lederberg, J., L. L. Cavalli, and E. M. Lederberg. 1952. Sex compatibility in *Escherichia coli*. Genetics 37: 720-730.
- Lederberg, J., and E. L. Tatum. 1946a. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp. Quant. Biol. 11:113-114.
- Lederberg, J., and E. L. Tatum. 1946b. Gene recombination in *Escherichia coli*. Nature 158:558.
- Lee, S. H., L. S. Frost, and W. Paranchych. 1992. FinOP repression of the F plasmid involves extension of the half-life of FinP antisense RNA by FinO. *Mol. Gen. Genet.* 235: 131-139.
- Lopez, J., L. Salazar, I. Andres, J. M. Ortiz, and J. C. Rodrigues. 1991. Nucleotide sequence of the oriT-traM-finP region of the haemolytic plasmid pSU316: comparison to F. Nucleic Acids Res. 19:3451.
- Machida, Y., C. Machida, and E. Ohtsubo. 1982. A novel type of transposon generated by insertion element IS 102 present in a pSC101 derivative. *Cell* 30: 29-36.
- Maneewannakul, K., S. Maneewannakul, and K. Ippen-Ihler. 1993. Synthesis of F pilin. J. Bacteriol. 175:1384-1391.
- Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual, p. 90-91 and p. 171-172. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Manning, P. A., G. Morelli, and M. Achtman. 1981. traG protein of the F sex factor of Escherichia coli K-12 and its role in conjugation. Proc. Natl. Acad. Sci. USA 78: 7487-7491.
- Marmur, J., R. Rownd, S. Falkow, L. S. Baron, C. Schildkrant and P. Doty. 1961. The nature of intergeneric episomal infection. Proc. Natl. Acad. Sci. USA 47: 972-979.
- Matson, S. W., and B. S. Morton. 1991. Escherichia coli DNA helicase I catalyzes a siteand strand-specific nicking reaction at the F plasmid oriT. J. Biol. Chem. 266: 16232-16237.
- Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. *Methods Enzymol.* 65: 499-560.

Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20-78.

- Meynell, E., and N. Datta. 1966. The relation of resistance transfer factors to the F-factor (sex-factor) of *Escherichia coli* K12. *Genet. Res.* 7: 134-140.
- Miller, J. H. 1972. Experiments in molecular genetics, p. 433 and 352-355. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Mitsuhashi, S., K. Harada, and H. Hashimoto. 1960. Multiple resistance of enteric bacteria and transmission of drug resistance to other strains by mixed cultivation. Japan. J. Exp. Med. 30: 179.
- Moore, D., C. M. Hamilton, K. Maneewannakul, Y. Mintz, L. S. Frost, and K. Ippen-Ihler. 1993. The Escherichia coli K-12 F plasmid gene traX is required for acetylation of F pilin. JBacteriol. 175:1375-1383.
- Mullineaux, P., and N. Willetts. 1985. Promoters in the transfer region of plasmid F, p. 605-614. In D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender (ed.), *Plasmids in bacteria*. Plenum Publishing Corp., New York.
- Nakaya, R., A. Nakamura, and Y. Murata. 1960. Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. 3: 654-659.
- Nelson, W. C., B. S. Morton, E. E. Lahue, and S. W. Matson. 1993. Characterization of the Escherichia coli F factor traY gene product and its binding sites. J. Bacteriol. 175: 2221-2228.
- Ohki, M., and J. Tomizawa. 1968. Asymmetric transfer of DNA strands in bacterial conjugation. Cold Spring Harbor Symp. Quant. Biol. 33: 651-658.
- Ohtsubo, E. 1970. Transfer-defective mutants of sex factors in *Escherichia coli*. II. Deletion mutants of an F-prime and deletion mapping of cistrons involved in genetic transfer. *Genetics* 64: 189-197.
- Ohtsubo, E., M. Rosenbloom, H. Schrempf, W. Goebel, and J. Rosen. 1978. Site specific recombination involved in the generation of small plasmids. *Mol. Gen. Genet.* 159: 131-141.
- Ohtsubo, E., Y. Nishimura, and Y. Hirota. 1970. Transfer-defective mutants of sex factors in *Escherichia coli*. I. Defective mutants and complementation analysis. *Genetics* 64: 173-188.
- Ostermann, E., F. Kricek, and G. Hogenauer. 1984. Cloning the origin of transfer region of the resistance plasmid R1. EMBO J. 3: 1731-1735.
- Ozeki, H., and S. Howarth. 1961. Colicine factors as fertility factors in bacteria: Salmonella typhimurium strain LT2. Nature 190:986-988.
- Pramoonjago, P., M. Kaneko, T. Kinoshita, E. Ohtsubo, J. Takeda, K. Hong, R. Inagi, and K. Inoue. 1992. Role of TraT protein, an anticomplementary protein produced in

Escherichia coli by R100 factor, in serum resistance. J. Immunol. 148:827-836.

- Reygers, U., R. Wessel, H. Muller, and H. Hoffmann-berling. 1991. Endonuclease activity of *Escherichia coli* DNA helicase I derected against the transferorigin of the F factor. *EMBO J.* 10:2689-2694.
- Rupp, W. D., and G. Ihler. 1968. Strand selection during bacterial mating. Cold Spring Harbor Symp. Quant. Biol. 33: 647-650.
- Salazar, L., J. Lopez, I. Andres, J. M. Ortiz, and J. C. Rodriguez. 1992. Characterization and nucleotide sequence of the *oriT-traM-finP* region of the IncFVII plasmid pSU233. *Mol. Gen. Genet.* 234: 442-448.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: Laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
- Schwab, M., H. Gruber, and G. Hogenauer. 1991. The TraM protein of plasmid R1 is a DNA-binding protein. Mol. Microbiol. 5: 439-446.
- Schwab, M., H. Reisenzein, and G. Hogenauer. 1993. TraM of plasmid R1 regulates its own expression. Mol. Microbiol. 7: 795-803.
- Sharp, P. A., S. N. Cohen, and N. Davidson. 1973. Electron microscope heteroduplex studies of sequence relations among plasmids of *Escherichia coli* II. Structure of drug resistance (R) factors and F factors. J. Mol. Biol. 75: 235-255.
- Silverman, P. M. 1985. Host cell-plasmid interactions in the expression of DNA donor activity by F' strains of *Escherichia coli* K-12. *Bio Essays* 2:254-259.
- Silverman, P. M. 1987. The structuralbasis of prokaryotic DNA transfer, p. 277-309. In. M. Inoue (ed.) Bacterial outer membranes as model systems, John Wiley & Sons, New York.
- Stoker, N. G., N. F. Fairweather, and B. G. Spratt. 1982. Versatile low-copy-number plasmid vectors for cloning in *Escherichia coli*. Gene 18:335-341.
- Sugino, Y., and Y. Hirota. 1962. Conjugal fertility associated with resistance factor R in Esherichia coli. J. Bacteriol. 84: 902-910.
- Sukupolvi, S., and D. O'Connor. 1990. TraT Lipoprotein, a plasmid-specified mediator of interactions between Gram-negative bacteria and their environment. *Microbiol. rev.* 54: 331-341.
- Takeshita, S., M. Sato, M. Toba, W. Masahashi, and T. Hashimoto-Gotoh. 1987. High-copy-number and low-copy-number plasmid vectors for lacZ α-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61:63-74.
- Taylor, D. P., J. Greenberg, and R. H. Rownd. 1977. Generation of miniplasmids from

copy number mutant of the R plasmid NR1. J. Bacteriol. 132:986-995.

- Thompson, R., and L. Taylor. 1982. Promoter mapping and DNA sequencing of the F plasmid transfergenes traM and traJ. Mol. Gen. Genet. 188:513-518.
- Thompson, R., L. Taylor, K. Kelly, R. Everett, and N. Willetts. 1984. The F plasmid origin of transfer: DNA sequence of wild-type and mutant origins and location of origin-specific nicks. *EMBO J.* 3: 1175-1180.
- Traxler, B. A., and E. G. Minkley, Jr. 1988. Evidence that DNA helicase I and oriT site-specific nicking are both functions of the F TraI protein. J. Mol. Biol. 204: 205-209.
- Tsai, M.-M., Y.-H.F.Fu, and R. Deonier. 1990. Intrinsic bends and integration host factor binding at F plasmid *oriT. J. Bacteriol.* 172:4603-4609.
- Ullmann, A. 1984. One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29: 27-31.
- Vapnek, D., and W. D. Rupp. 1970. Asymmetric segregation of the complementary sex-factor DNA strands during conjugation in *Escherichia coli*. J. Mol. Biol. 53: 287-303.
- Vapnek, D., and W. D. Rupp. 1971. Identification of individual sex-factor DNA strands and their replication during conjugation in thermosensitive DNA mutants of *Escherichia coli. J. Mol. Biol.* 60: 413-424.
- Vieira and Messing. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153:3-11.
- Watanabe, T., and T. Fukasawa. 1960. Resistance transfer factor, an episome in Enterobacteriaceae. Biochem. Biophys. Res. Commun. 3: 660.
- Watanabe, T., and T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J. Bacteriol. 81: 669-678.
- Willetts, N. 1971. Plasmid specificity of two proteins required for conjugation in E. coli K12. Nature New Biology 230: 183-185.
- Willetts, N., and B. Wilkins. 1984. Processing of plasmid DNA during bacterial conjugation. *Microbiol. Rev.* 48: 24-41.
- Willetts, N., and J. Maule. 1986. Specificities of IncF plasmid conjugation genes. Genet. Res. 47: 1-11.
- Willetts, N., and R. Skurray. 1980. The conjugation system of F-like plasmids. Annu. Rev. Genet. 14:41-76.
- Willetts, N., and R. Skurray. 1987. Structure and function of the F factor and mechanism of conjugation, p. 1110-1133. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and

Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D. C.

- Womble, D. D. and R. M. Rownd. 1988. Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. *Microbiol. Rev.* 52: 433-451.
- Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC18 vectors. *Gene* 33: 103-119.
- Yoshioka, Y., H. Ohtsubo, and E. Ohtsubo. 1987. Repressor gene finO in plasmids R100 and F: Constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J. Bacteriol. 169:619-623.
- Yoshioka, Y., Y. Fujita, and E. Ohtsubo. 1990. Nucleotide sequence of the promoter-distal region of the tra operon of plasmid R100, including *tral* (DNA helicase I) and *traD* genes. J. Mol. Biol. 214:39-53.
- Zheng, Z. X., M. Chandler, R. Hipskind, M. Clerget, and L. Caro. 1982. Dissection of the r-determinants of the plasmid R100.1: the sequence at the extremities of Tn21. Nucleic Acids Res. 9: 6265-6278.

謝辞

本研究を遂行するに当たりご指導頂きました東京大学分子細胞生物学研究所・ 生物物理研究分野、大坪栄一教授に深く感謝いたします。日頃より研究について、 コンピューターワークについて、貴重な助言を頂きました真木寿治助教授、大坪 久子助手、関根靖彦助手、布村和子博士、いわき明星大学の前田好美教授に感謝 いたします。生物物理研究分野入室当初から研究の実際について懇切丁寧に指導 してくださった吉岡泰博士、稲本進博士に感謝いたします。プラスミドpJG200、 pR-pMLBを分与して下さいましたD. Bastia博士、大腸菌株YK2523を分与して下さ いました京都薬科大学の加納康正助教授、大腸菌株JE177を分与して下さいまし た国立遺伝学研究所の西村昭子助教授、IHFタンパク質を分与して下さいまし た国立遺伝学研究所の西村昭子助教授、IHFタンパク質を分与して下さいました 金沢大学の山口和男教授に深く感謝いたします。五年間もの大学院生活を快く許 し、支えてくれた両親に感謝いたします。最後になりましたが共同研究者として 常に有意義な討論をし、また、有用な実験材料を分与して下さった福田博政氏、 瀧景子氏をはじめとする生物物理研究分野の皆様に心よりお礼申し上げます。

