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A purpose of this thesis is to investigate and propose a methodology for analyzing the complex data 

using the nonparametric statistics.  

The complex data appear in various application fields with modern data science, such as medical 

analysis and finance data analysis. A methodology for the complex data is still a developing 

problems. Among several types of the complex data, we mainly focus on the tensor data and the 

functional data which are typical cases of the complex data.  

The approach with nonparametric method is the statistical methodology which allows the statistical 

models to have an infinite dimensional parameter. Since the nonparametric statistics can reduce the 

bias from the model misspecification problem, the approach with the nonparametric method is 

intensively studied. However, it is known that the performance of the nonparametric methods is bad 

or unknown, since the highly complicated structure of the complex data.  

To propose the framework with the nonparametric statistics for the complex data, we mainly work 

on evaluating and reducing the complexity of the data. Namely, we define an estimator from a less 

complex hypothesis set to improve the speed of convergence of the estimator, while preserving the 

misspecification bias small. Especially, we focus on the smoothness property of the complex data or 

the statistical model. Smoothness often appears in the real data, and it is relatively easy for the 

statisticians to evaluate the effect theoretically. Our theoretical evaluation shows that the accuracy is 

improved by the complexity reduction, and experimental results guarantee the theoretical claim.  

From Chapter 2 to Chapter 5, we provide some frameworks with the nonparametric statistics for the 

tensor data and the functional data. Rigorously, Chapter 2 and Chapter 3 propose nonparametric 

methods for the tensor data, and Chapter 4 and Chapter 5 investigate the nonparametric frameworks 

for the functional data.  



Chapter 2 “Doubly Decomposing Nonparametric Tensor Regression” proposes a non- parametric 

extension of tensor regression. Nonlinearity in a high-dimensional tensor space is broken into simple 

local functions by incorporating low-rank tensor decomposition. Compared to naive nonparametric 

approaches, our formulation considerably improves the convergence rate of estimation while 

maintaining consistency with the same function class under specific conditions. To estimate local 

functions, we develop a Bayesian estimator with the Gaussian process prior. Experimental results 

show its theoretical properties and high performance in terms of predicting a summary statistic of a 

real complex network.  

Chapter 3 “Tensor Decomposition with Smoothness” suggests a new tensor decom- position method 

with a technique with the nonparametric statistics. Many data in the real world, an observed tensor 

often has a special property that the adjacent elements are similar or smoothly changing. In Chapter 

3, we propose a smoothed Tucker decomposition (STD) that incorporates the smooth property. STD 

models the smoothness of tensors by a small number of basis functions. By the modelling, STD 

converts the object of the tensor decomposition into a smaller coefficient tensor. The objective of 

STD is formulated as a convex problem and, to solve that, an algorithm based on the alternating 

direction method of multipliers is derived. We theoretically show that, under the smoothness 

assumption, STD achieves a better error bound by the reduction of the object tensor. The theoretical 

result and performances of STD are numerically verified.  

Chapter 4 “PCA-based Functional Linear Regression with Functional Responses” studies a 

regression model where both predictor and response variables are random functions. We consider a 

functional linear model where the conditional mean of the response variable at each time point is 

given by a linear functional of the predictor variable. The problem is then estimation of the integral 

kernel b(s, t) of the conditional expectation operator, where s is an output variable while t is a 

variable that interacts with the predictor variable. This problem is an ill-posed inverse problem, and 

we consider estimators based on the functional principal component analysis (PCA). We show that 

under suitable regularity conditions, an estimator based on single truncation attains the convergence 

rate for the integrated squared error that is characterized by smoothness of the function b(s, t) in t 

together with the the decay rate of the eigenvalues of the covariance operator, but the rate does not 

depend on smoothness of b(s,t) in s. This rate is shown to be minimax optimal, and consequently 

smoothness of b(s,t) in s does not affect difficulty of estimating b. We also consider an alternative 

estimator based on double truncation, and provide conditions under which the alternative estimator 



attains the optimal rate. We conduct simulations to verify the performance of PCA-based estimators 

in the finite sample. Finally, we apply our estimators to investigate the relation between the lifetime 

pattern of working hours and total income.  

In Chapter 5 “Nonlinear Functional Regression with Functional Responses with Derivative 

Estimation”, a regression model with functional covariates and functional responses is studied. We 

are interested in the regression model which is possibly nonlinear. Some methods for the nonlinear 

functional regression model are suggested, however, theoretical properties of the regression is still a 

developing problem. To clarify the properties for the nonlinear functional regression, we assume that 

the operator of the regression model has the Frechet derivative and the derivative is a compact 

operator. With the assumption, we propose an estimator for the regression operator based on the 

fundamental theorem of calculus. and the functional principal component analysis. Our theoretical 

analysis shows that a property of the kernel function of the Frechet derivative determines the 

convergence rate, and the rate is shown to be minimax optimal. Experimentally, the theoretical result 

is validated, and its prediction performance of the proposed estimator is comparable to the existing 

nonlinear methods.  

 

  


