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Chapter 1

Introduction

1.1 Overview

A purpose of this thesis is to investigate and propose a methodology for analyzing the
complex data using the nonparametric statistics. In this chapter, we briefly introduce
some basic ideas of the complex data and the nonparametric regression. Furthermore,
we review the main concept of this thesis. Finally, we provide reviews for the rest of this
thesis.

The complex data appear in various application fields with modern data science, such
as medical analysis and finance data analysis. A methodology for the complex data is
still a developing problem. Among several types of the complex data, we mainly focus
on the tensor data and the functional data which are typical cases of the complex data.

The approach with nonparametric method is the statistical methodology which allows
the statistical models to have an infinite dimensional parameter. Since the nonparametric
statistics can reduce the bias from the model misspecification problem, the approach with
the nonparametric method is intensively studied. However, it is known that the perfor-
mance of the nonparametric methods is bad or unknown since the highly complicated
structure of the complex data.

To propose the framework with the nonparametric statistics for the complex data, we
mainly work on evaluating and reducing the complexity of the data. Namely, we define
an estimator from a less complex hypothesis set to improve the speed of convergence of
the estimator, while preserving the misspecification bias small. Especially, we focus on
the smoothness property of the complex data or the statistical model. Smoothness often
appears in the real data, and it is relatively easy for the statisticians to evaluate the
effect theoretically. Our theoretical evaluation shows that the accuracy is improved by
the complexity reduction, and experimental results guarantee the theoretical claim.

1.2 Complex Data

There are many types of the complex data, and we mainly consider the tensor data and
the functional data.

1.2.1 Tensor Data

We let tensor denote a K-dimensional array. More formally, a K-mode tensor is an
element of the tensor product of K linear spaces; e.g., the space of K-mode tensors is a
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subspace of

RI1×I2×···×IK ,

where Ik denotes a dimensionality of the k-th mode of tensors. Also, tensor data denotes
a structure of data which can represent a higher order relation between several elements,
and it is regarded as a generalization of the matrices. Figure 1.1 shows an image of the
tensor data.

Figure 1.1: An image of 3-mode tensor data which belong to R5×5×5.

The tensor data appear in various modern application fields, such as medical analysis,
finance, data-mining and biostatistics. For instance, in the fields of medical analysis,
functional magnetic resonance imaging (fMRI) measures a change of blood flow in a
brain as a 3-dimensional voxels, such as X-axis × Y -axis × Z-axis × time. Another
typical example of a recommendation system in the field of data-mining. Stored data in
the recommendation system contain scores for each good, user, and context. Thus, each
of the scores is indexed by the three elements, then a set of the scores has the tensor
structure.

Tensor decomposition is one of the standard methods for the tensor data analysis.
Since the tensors contain a large number of elements, i.e.

∏K
k=1 Ik, there are some diffi-

culties in analyzing the tensor data directly. Then, a representation of the tensor data by
orthonormal basis vectors and their tensor products is applied. Let us define {e(k)j ∈ RIk}j
as a set of orthonormal vectors for each k = 1, . . . , K. Then, by the decomposition with
the basis, the tensor data X ∈ RI1×···×IK are expressed as

X =

J1∑
j1=1

· · ·
JK∑

jK=1

λj1...jKe
(1)
j1

⊗ · · · ⊗ e
(K)
JK

,

where {λj1...jK}j1 . . . jK = 1J1...JK denotes a set of coefficients with the parameters (J1, . . . , JK).
Here, ⊗ denotes the tensor product. Based on the form of the tensor decomposition, sev-
eral methods are developed, and they are intensively used in the tensor data analysis.
Coppi and Bolasco (1989), Bro (1997) and Kolda and Bader. (2009) provide a survey for
the method and its variation.
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1.2.2 Functional Data

Functional data denotes a structure of data which is regarded as a realized random func-
tion or stochastic process. Practically, the processes as the functional data are observed
on infinite grids or finite but huge number of grids. Such data are observed in many
application fields, such as time series analysis, biology, finance, and chemistry. Gener-
ally, the functional data are expressed by a random function X(t) with index t ∈ I on a
compact interval I ⊂ R. It is also viewed as a realization of a stochastic process in some
functional space, such as L2(I). Figure 1.2 provides an image of the functional data.

Figure 1.2: Plots of functional data. Each blue line denotes a realized path of X(t) with
index t ∈ [0.0, 0.9]. The red line is a mean E[X(t)].

Since the functional data are expressed as an infinite dimensional vector or the high
dimensional vector, a methodology and theory to handle the dimensionality are necessary.
For analyzing the functional data, one of the key factors is the smoothness property which
represents a kind of continuity of the functional data and is a rich source of information of
the data. The methods for the functional data can avoid the high-dimensional problem of
the functional data and obtain better performance by using the smooth property. Ramsey
and Silverman (2005), Wang et al. (2016) and other literature provide introduction and
survey for the methodology and applications.

1.2.3 Behavioural Data

Behavioural data are types of data observed from a behavior of individuals. Such data are
collected in the fields of economics, marketing, robotics, biology, and many other areas.
The behavior of individuals is observed as various forms. Thus there are a large number
of frameworks for analyzing the behavioral data.

One of the difficulties of analyzing the behavioral data to understand decision makings
of the individuals. In practice, the decision makings are affected by numberless informa-
tion, for example, their current situations, future predictions, and past histories. For
the analysis of the behavioral data, it is essential for an analyst to extract the relation
between the decision making process and other environmental factors through modeling.

Markov decision process (MDP) is one of the representative methods to analyze the
behavioral data. MDP is a common tool in the field of the reinforcement learning, and
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it is a fundamental framework is summarized in Sutton and Barto (1998). In MDP, the
decision making of individuals has represented as a maximizing a sum of future rewards
which is affected by their current decision and situation. The framework is applied to
the statistical analysis which are interested in the inference for parameters of MDP. Rust
(1987) proposed the statistical framework with an asymptotic analysis for an estimator
for the parameter of MDP.

1.3 Nonparametric Regression

1.3.1 Introduction

We introduce the nonparametric statistical models. Consider a family of probability
distributions

{Pθ : θ ∈ Θ} ,

where θ is a parameter of the distribution and Θ is a parameter space. For the statistical
analysis, we estimate a true parameter in Θ from the observation from the distribution
by statistical methods, and also provide the statistical inference. When Θ is an infinite
dimensional space, we call the family of the distribution as the nonparametric statistical
model.

Using the definition of the nonparametric statistical model, we introduce the nonpara-
metric regression model. Consider that we have n independent and identically distributed
pairs of random variables {(Xi, Yi)}ni=1. Also, we assume that the set of pairs is generated
from the following model

Yi = f ∗(Xi) + ϵi, i = 1, . . . , n,

where f is some function and ϵi is a random noise variable for each i = 1, . . . , n. Here,
the joint distribution of (X,Y ) is written as the regression model

{Pf : f ∈ F} ,

where F is a parameter space as a hypothesis set containing f ∗. When F is an infinite
dimensional space, e.g., (X,Y ) is a random variable in R2 and F is a set of all α > 0 times
differentiable function, the regression model is regarded as a nonparametric regression
model.

1.3.2 Estimation and Convergence Analysis

For the statistical analysis, we aim to find a true f ∗ ∈ F by an estimator f̂n. A large
number of estimators are suggested for the analysis. One of the standard methods is
the Nadaraya-Watson estimator which is defined by the kernel function. Let (X,Y )
take values in [0, 1] × R. Suppose we have a set of n observations {(Xi, Yi)}ni=1, and
let kh : R × R → R be the kernel function with the bandwidth h > 0. Then, the
Nadaraya-Watson estimator is defined as

f̂NW
n (x) :=

∑n
i=1 k(x,Xi)Yi∑n
i=1 k(x,Xi)

,
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for all x ∈ [0, 1] with
∑n

i=1 k(Xi, x) ̸= 0. The convergence of the estimator f̂NW
n is

measured by order of the risk with respect to n. When we set h = hn ≍ n−1/(2α+1), we
have the convergence rate of the Nadaraya-Watson estimator as

E
[
∥f̂NW

n − f ∗∥22
]
= O

(
n−2β/(2β+1)

)
,

by Theorem 1.6 in Tsybakov (2003).
Another standard method is the series estimator. Let {ϕj}∞j=1 be an orthonormal

basis in F . Thus, we can consider the decomposition of f as f ∗(x) =
∑∞

j=1 θ
∗
jϕj(x) with

the coefficients {θj}∞j=1. By estimating the coefficients, we can define the estimator as

f̂S
n (x) :=

m∑
j=1

θ̂jϕj(x), θ̂j :=
1

n

n∑
i=1

Yiϕj(Xi), ∀j = 1, . . . ,m,

where m is an integer which denotes a properly selected truncation number. The conver-
gence of the series estimator is also evaluated. When we select m ≍ n1/(2β+1), we have
the following risk bound

E
[
∥f̂S

n − f ∗∥22
]
= O

(
n−2β/(2β+1)

)
,

by Theorem 1.9 in Tsybakov (2003).
The convergence results can be extended to the case when X is d-dimensional random

variable, namely, X takes a value in [0, 1]d. In the case, the above estimators with a proper
setting satisfy

E
[
∥f̂n − f∥22

]
= O

(
n−2β/(2β+d)

)
,

where f̂n ∈ {f̂NW
n , f̂S

n }. Here, we can easily check that the smoothness property via β
improves the convergence, and the dimensionality of the input d makes the convergence
worse. It is shown that this convergence rate satisfies the minimax optimality. These
results are summarized in Tsybakov (2003).

1.4 Concept of Thesis

A purpose of this thesis is to develop an estimation problem which can obtain better
performance for statistical analysis. For the purpose, we aim to improve the convergence
rate of the estimator by reducing the complexity of the hypothesis set F . We firstly review
the existing theories which explain how the complexity of F affects the convergence.
Then, we provide an overview of the idea of this thesis.

1.4.1 Review : Hypothesis Complexity and Convergence

An intuition from the convergence result is that the rate of the convergence is determined
by a complexity of the parameter space F as the hypothesis set. Here, we use the term
complexity as the covering number N(ϵ,Θ, ∥ · ∥) which is a smallest number of ϵ-balls to
cover Θ with respect to the norm ∥ · ∥. Namely, it is defined as

N(ϵ,F , ∥ · ∥) := min
{
k : ∃{fj}Kk=1 ⊂ F : F ⊂ ∪k

j=1B(fj, ϵ)
}
,
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where B(f, ϵ) := {f ′ ∈ T : ∥f − f ′∥ ≤ ϵ}. Similarly, the idea of the packing number
represents an idea of the maximum number of the well-separated elements in F . It is
defined as

D(ϵ,F , ∥ · ∥) := max
{
k : ∃{fj}Kk=1 ⊂ F : min

1≤j,j′≤k
∥fj − fj′∥ ≥ ϵ

}
.

Note that there exists a relation between the above numbers as N(ϵ,F , ∥ ·∥) ≤ D(ϵ,F , ∥ ·
∥) ≤ N(ϵ/2,F , ∥ · ∥), for all ϵ > 0. The set of elements {fj}Kj=1 measures the complexity
of F and the covering and packing numbers are the upper bound and the lower bound
of the measure. For instance, assume that F be the class of all continuous functions
f : [0, 1]d → R with β-th derivative. Then, Theorem 2.7.1 in van der Vaart and Wellner
(1996) shows that

logN(ϵ,F , ∥ · ∥∞) ≤ Ck

(
1

ϵ

)d/β

,

where Ck > 0 is a finite constant.
The simple relation between the convergence rate and the complexity of the hypothesis

set is provided by Yang and Barron (1999). Let the norm ∥f − f ′∥ be bounded the
Kullback-Leibler divergence, and Fn be a set of estimators from the n observed samples
{(Xi, Yi)}ni=1. With additional proper conditions, Corollary 1 in Yang and Barron (1999)
shows that

min
f̂n∈Fn

max
f∗∈F

E
[
∥f̂n − f ∗∥2

]
≍ ϵ2n,

where the sequence ϵn satisfies

ϵ2n = logD(ϵn,F , ∥ · ∥)/n.

By the result, we can check that the more complexity hypothesis set F makes the con-
vergence rate slower, and the convergence rate is optimal from the aspect of the minimax
theory. Using this result, we can also see that the convergence rates in the examples
about the Nadaraya-Watson and the series estimator provides are derived by the bound
for covering number for the differentiable functions. These ideas are summarized in van
der Vaart (2000) and Gine and Nickl (2015).

1.4.2 Our Approach : Reduce Complexity

The main concept of this thesis is to improve the performance of the nonparametric
regression model by proposing a less complex hypothesis set. We firstly decompose the
risk of estimator which is our interest. Suppose that there exists an original hypothesis
set F , and the unknown true parameter f ∗ ∈ F . Our main interest is to propose an
estimator f̂n and evaluate the risk

E
[
∥f̂n − f ∗∥2

]
.

To propose the estimator f̂n, consider we have the less complex hypothesis set F̃ , and we
assume that F̃ and the original hypothesis set F satisfy

logN(ϵ, F̃ , ∥ · ∥) ≤ logN(ϵ,F , ∥ · ∥).
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Then, we define the estimator f̂n from the parameter space F̃ . Also, let us define an
element of f 0 ∈ F̃ which satisfies

f 0 = argmin
f∈F̃

∥f − f ∗∥.

Then, we evaluate the risk as

E
[
∥f̂n − f ∗∥2

]
≲ ∥f 0 − f ∗∥2 + E

[
∥f̂n − f 0∥2

]
.

Then, we regard the term ∥f 0 − f ∗∥2 as the bias from the model misspecification by F̃ ,

and also regard E
[
∥f̂n − f 0∥2

]
as the effect from the estimator.

According to the above discussion about the complexity and convergence, the latter
term is decreased when the complexity of F is sufficiently smaller than that of F . Thus,
we can improve the speed of convergence of the estimator with respect to n. The mis-
specification bias ∥f 0 − f ∗∥2 is also our interest, however, there is no general method to

evaluate the term. We handle the bias term by considering hypothesis sets F̃ properly,
using characteristics of the various complex data. One of the representative ways is to
use the smoothness property which appears in many types of complex data.
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要約

本博士論文の 2章および 3章について、以下の媒体で刊行されるため、非公表とする。

• Journal of Machine Learning Research W & CP series, volume 48 (ICML 2016),
pp. 727-736.

• Journal of Machine Learning Research W & CP series, volume 70 (ICML 2017), To
appear.

また残りの章について、近い将来に刊行（5年以内に出版予定）される期待があるた
め、非公表とする。


