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 Time is a fundamental concept that defines our entity. We live in an apparently 

irreversible flow of time, from the past through the present to the future, and our conscious 

experience is associated with the order or length of time. Time has created extensive interest in 

various fields including philosophy, art, and science, however, the definition of “time” has been 

quite diverse across fields. For example, Gibson (1979) described the difference between the 

physical and perceptual time as follows: 

 […] the flow of ecological events is distinct from the abstract passage of time 

assumed in physics. The stream of events is heterogeneous and differentiated into parts, 

whereas the passage of time is supposed to be homogeneous and linear. […] Events are 

perceived, but time is not. 

 In line with Gibson’s conceptual framework that what we perceive as “time” is the 

flow of ecological events, not the physical time, psychological investigations of time have 

revealed that the temporal processing in different timescales is indeed related to specific 

ecological functions and controlled by corresponding neural mechanisms (Figure 0.1). When 

researchers focus on the “perception” of event duration, it often refers to a duration of hundreds 

of milliseconds to seconds (Allman, Teki, Griffiths, & Meck, 2014). 

 When we time the duration of events in the external world, the temporal information 

is given through sensory systems. However, the sensory information available for organisms is 

sometimes too impoverished to make appropriate decisions (Ma & Jazayeri, 2014). Many 

psychophysical studies have indicated that the timing system utilizes various clues to optimally 

estimate the event duration. For instance, spatial and temporal frequencies of a stimulus (Aaen-  

Stockdale, Hotchkiss, Heron, & Whitaker, 2011; Kanai, Paffen, Hogendoorn, & Verstraten, 
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Figure 0.1.  Timescales of temporal processing. Adapted from Buhusi & Meck 

(2005) and Mauk & Buonomano (2004). Temporal information in different timescales 

is related to different behavioral functions, and processed by different neural 

mechanisms. 

 

 

2006; Kaneko & Murakami, 2009), eye movements (Morrone, Ross, & Burr, 2005), attention 

(Mattes & Ulrich, 1998; Tse, Intriligator, Rivest, & Cavanagh, 2004), emotional events 

(Droit-Volet, Fayolle, Lamotte, & Gil, 2013), and working memory load (Fortin & Breton, 

1995) have all shown to influence the perceived duration of a stimulus or an event. In particular, 

considerable research has focused on how the temporal context modulates the perception of 

duration (for reviews, see Bausenhart, Bratzke, & Ulrich, 2016; Shi & Burr, 2016; Shi, Church, 

& Meck, 2013).  

 Generally, context effect is a perceptual or cognitive phenomenon that the context 
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(environmental factors) temporally or spatially proximal to an event affects how the event is 

perceived. In a classical presentation of the context effect, Bruner & Minturn (1955) 

demonstrated that an ambiguous figure is recognized differently depending on the context 

(Figure 0.2). They used an ambiguous figure called “Broken-B” that can be recognized as either 

the letter “B” or the number “13”, and the subjects answered whether they recognized it as “B” 

or “13”. A series of letters or numbers was presented prior to the target “Broken-B”, and the 

subjects recognized “B” after the letter presentation and “13” after the number presentation.  

 

 

Figure 0.2.  An example of the context effect. Made in reference to Bruner & 

Minturn (1955). The middle “Broken-B” figure is recognized as either “B” or “13” 

depending on temporally proximal stimuli. 

 

 Temporal context effects have also been reported in the field of duration perception. 

Vierordt's Law is a representative example of how contextual information can influence 

temporal processing. According to Vierordt's Law, when stimuli with various durations are 

intermixedly presented, longer durations are underestimated and shorter durations are 
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overestimated (Lejeune & Wearden, 2009). One predominant explanation for this phenomenon 

is Hollingsworth's (1910) central tendency of judgment, in which the perception of time 

elements in a series is biased toward the mean of that series (Hollingworth, 1910). Recent 

computational modeling studies have suggested that the central tendency reflects the optimal 

encoding process of duration (Acerbi, Wolpert, & Vijayakumar, 2012; Jazayeri & Shadlen, 

2010; Ma & Jazayeri, 2014). Because the sensory measurement of an event duration may be 

noisy and unreliable due to sensory noises, the brain encodes event duration by taking into 

account the knowledge about temporal statistics in the environment, that is, the knowledge 

about how long events have occurred in the past. 

 In this thesis, I studied psychological and neural mechanisms for the optimal 

encoding process of event duration. In Study 1, I psychophysically investigated how stimulus 

modality and timescale affect the central tendency, and demonstrated that the central tendency 

occurs modality-dependently for durations in the sub-second (i.e., hundreds of milliseconds) 

range, and modality-independently for durations in the supra-second (i.e., several seconds) 

range. In Study 2, I examined the neural implementation of the optimal duration encoding by 

using fMRI, and found the activity of timing networks in the brain is plastically modulated 

depending on previously presented durations.  
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Introduction 

 Perception of event durations in the external world is vital for many human behaviors 

(Buhusi & Meck, 2005; Mauk & Buonomano, 2004). However, timing behavior is often 

susceptible to perceptual noise and decision uncertainty. Indeed, many psychophysical studies 

have indicated that timing systems use various clues to optimally estimate stimulus durations 

(Johnston, Arnold, & Nishida, 2006; Tse et al., 2004). In particular, a considerable number of 

researches have focused on examining how duration perception relies on temporal and 

non-temporal contextual information, such as previously presented durations and sensory 

modality, respectively (Shi & Burr, 2016; Shi, Church, et al., 2013). 

 As described in the General Introduction, the central tendency is a representative 

example of the context-dependent duration perception. Several psychophysical studies have 

revealed that the magnitude of the central tendency differs substantially between individuals, 

and investigated which components of the timing system mediate these individual differences 

(Cicchini, Arrighi, Cecchetti, Giusti, & Burr, 2012; Malapani et al., 1998). Studies that use 

computational modeling have shown that the central tendency is associated with timing 

precision; the noisier the internal representation of the duration, the larger the central tendency 

(Acerbi et al., 2012; Jazayeri & Shadlen, 2010). As described below, timing precision may 

depend on various factors, including sensory modality and the length of the timed stimulus. 

 A traditional but widely accepted model for duration perception in the 

millisecond-to-second range is the pacemaker-accumulator model. This model assumes the 

presence of a modality- and timescale-invariant central clock (Treisman, 1963). The scalar 

property also assumes that timing precision, defined as the ratio of the standard deviation of the 
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perceived duration to the stimulus duration, is constant in the millisecond-to-second range, and 

is a prominent finding in the field of time perception (Gibbon, 1977; Keele, Pokorny, Corcos, & 

Ivry, 1985). Furthermore, recent modeling studies also suggest the presence of a modality- and 

timescale-independent timing system (Rammsayer & Troche, 2014; Stauffer, Haldemann, 

Troche, & Rammsayer, 2012). In contrast, many psychological studies have indicated that 

timing precision does depend on the sensory modality (Cicchini et al., 2012) and timescale 

(Gibbon, Malapani, Dale, & Gallistel, 1997; Hayashi, Kantele, Walsh, Carlson, & Kanai, 2014). 

Durations in the sub-second (i.e., hundreds of milliseconds) and supra-second (i.e., several 

seconds) ranges are involved in different behavioral functions, and therefore recruit different 

neural mechanisms (Buhusi & Meck, 2005). Previous psychological studies have reported that 

the coefficient of variation or the Weber fraction of the perceived duration changes at the 

boundary at around 1 second (Gibbon et al., 1997; Grondin, 2014), and that cognitive load 

affects differently for the sub- and supra-second timing performance (Rammsayer & Lima, 

1991). Neuroimaging studies have also demonstrated that there are two timing networks in the 

brain divided by a boundary of approximately one second (Lewis & Miall, 2006; Wiener, 

Turkeltaub, & Coslett, 2010). Moreover, several computational models include sensory 

modality dependent components, especially for sub-second timing, such as time-dependent 

changes in the state of the neural network (Buonomano & Maass, 2009; Karmarkar & 

Buonomano, 2007), or time-sensitive mechanisms in early sensory processing (Heron et al., 

2012; Johnston et al., 2006). In line with these studies, Cicchini et al. (2012) found that visually 

defined sub-second durations induced a larger central tendency than auditorily defined 

sub-second durations due to the higher temporal precision of the auditory modality. Whether 
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such modality-dependent variations in the central tendency occur for supra-second durations is 

still a matter of debate (Noulhiane, Pouthas, & Samson, 2009; Ryan, 2011). 

 The present study aimed to examine how stimulus modality affects the optimal 

encoding of time across different timescales. If the source of timing noise is located at 

modality-dependent timing mechanisms, then the central tendency for visual and auditory 

durations should occur independently. If a common modality-independent timing mechanism is 

also involved in the central tendency, then the central tendencies for the visual and auditory 

modalities should show within-individual correlations. I hypothesized that the central tendency 

occurs differently for auditory and visual timing in the sub-second range and depends on 

modality-dependent processing, whereas a common modality-independent timing system 

regulates the central tendency in the supra-second range. To test these hypotheses, I quantified 

the central tendency for visual and auditory timing in the sub- and supra-second ranges. 

 In Experiment 1, I investigated how stimulus modality and timescale affect 

individual differences in the central tendency. In Experiment 2, I examined whether 

modality-dependent time encoding in the sub-second range results from differences in temporal 

sensitivity between the visual and auditory systems by controlling for differences in the 

discrimination of durations in the sub-second range between the two modalities. 

 

Experiment 1 

Methods 

Participants 

 Twenty healthy volunteers (13 males and 7 females, 18–29 years old) participated in 
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Experiment 1. All participants gave written informed consent for their participation in the 

experiment, which was approved by the institutional review board at The University of Tokyo. 

All participants reported to have normal hearing and normal or corrected-to-normal vision. 

Apparatus 

 The auditory stimuli were presented through an Audio Stream Input/Output (ASIO) 

compliant USB digital-to-analog converter (Roland UA-1G) and SONY MDR-XB500 

headphones at 60 dB. The visual stimuli were presented on a CRT monitor (Mitsubishi Electric 

RDF223H, 1024 × 768 pixels, 120 Hz refresh rate). Participants were seated 57.3 cm from the 

monitor in a dark soundproof room; participants’ heads were stabilized using a chin rest.  

Stimuli and procedure 

 Stimuli were generated using MATLAB (MathWorks, R2012b) and the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). A schematic of the task is shown in 

Figure 1.1. In the task, a pair of stimuli was briefly presented, one after the other. The visual 

stimulus was a white disk (5 degrees in diameter), while the auditory stimulus was a simple tone 

(600Hz, 60dB). Participants were asked to reproduce durations between the pair of stimuli by 

pressing a button with the forefinger of their dominant hand. Participants were instructed not to 

count the duration between stimuli (Rattat & Droit-Volet, 2012). Each visual flash or auditory 

tone lasted for 20 ms. A cosine ramp of 5 ms was applied to the onset and offset of all auditory 

stimuli. Stimulus durations were either sub-second or supra-second. The sub-second durations 

were 400–600 ms with 50 ms steps. The supra-second durations were 2000–3000 ms with 250 

ms steps; the supra-second durations were scaled 5 times longer. The inter-trial intervals (ITI) 

ranged from 1.2 s to 1.8 s. 
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Figure 1.1.  Schematic of the experimental procedure. Two brief flashes or tones 

were sequentially presented, and participants made button presses to reproduce the 

duration. Correct or incorrect feedback was presented immediately after participants’ 

responses. 

 

 Immediately after the subject’s response, a sensory feedback was given in every trial. 

If the reproduced duration was within a certain time frame of the actual duration, the same 

stimulus (i.e. a white disc or 600 Hz tone) was presented as positive (correct) feedback; 

otherwise, a green disk or a 400 Hz tone was presented as negative (incorrect) feedback. Each 

sensory feedback lasted for 20 ms. To compensate for the scalar property, the ratio of the width 

of this feedback time window to the stimulus duration was kept constant across the different 

stimulus durations. This feedback ratio was adaptively controlled using a one-up, one-down 

staircase method that adds or subtracts 0.015 for each incorrect or correct trial, respectively 

(Jazayeri & Shadlen, 2010). 

 Participants completed 4 separate experimental blocks, each of which was one of the 

4 combinations of sensory modalities and timescales (i.e., visual sub-second, auditory 

sub-second, visual supra-second, auditory supra-second). At the beginning of each block, 
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participants completed a practice session with 50 trials in order to become accustomed to the 

timescales and modalities. After the practice session, participants completed a total of 200 trials 

in each block. Each block was divided into 2 sessions for sub-second conditions, or 4 sessions 

for supra-second conditions. The presentation order of durations within a session was 

randomized. The order of blocks was also randomized across participants using a Latin square 

method. Participants completed all 4 blocks twice by coming in on two separate experimental 

days. In total, 400 trials were completed for each timescale-modality condition.  

Analysis 

 Trials in which the reproduced duration deviated more than 3 standard deviations 

(SDs) from each condition’s mean were excluded from all analyses. I linearly regressed the 

reproduced duration to the stimulus duration for each individual. The slopes of the linear 

regressions were compared across conditions as indices of the central tendency. For example, if 

stimulus durations were reproduced accurately then the slope was 1. However, if the central 

tendency occurred and longer durations were underestimated and shorter durations 

overestimated, the slope values were less than 1. To examine how stimulus modality and 

timescale affect the central tendency, I conducted a two-way repeated-measures ANOVA with 

stimulus modality (visual or auditory) and timescales (sub- or supra-second) as factors. 

Furthermore, I calculated within-individual correlations of the central tendency across different 

sensory modalities and timescales, in order to investigate whether modality- and 

timescale-independent timing systems are involved in the central tendency. 
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Results and Discussion 

 Figure 1.2 shows the reproduced durations in each condition. Overall, the central 

tendency was observed at a group level in all of the conditions except the auditory sub-second 

condition, as shown in previous studies (Cicchini et al., 2012; Ryan, 2011). 

 

 

Figure 1.2. Group means of the reproduced durations. The left panel indicates the 

results for sub-second timing. The right panel indicates the results for supra-second 

timing. Blue lines represent results for visual stimuli, and red lines represent results 

for auditory stimuli. Dotted lines correspond to accurate reproduction of the stimulus 

durations. Error bars represent the standard error of the mean. 

 

 Figure 1.3 shows the magnitude of the central tendency in each condition. A 

two-way repeated-measures ANOVA revealed significant main effects of the stimulus modality 

(F(1,76) = 17.5, p < .001) and timescale (F(1,76) = 55.8, p < .001), as well as a significant 

interaction (F(1,76) = 9.20, p = .003). These results indicate that (1) the visual modality is more 
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susceptible to the central tendency, (2) the magnitude of the central tendency is larger in the 

supra-second range, and (3) the difference in the magnitude of the central tendency between 

visual and auditory durations is larger in the sub-second range. As shown in Figure 1.3, the 

magnitude of the central tendency was significantly different between the visual and auditory 

modalities for sub-second timing (t(19) = 6.14, p < .001), but not supra-second timing (t(19) = 

2.16, p = .087, Bonferroni-corrected; the Bonferroni corrections were applied for two 

comparisons). 

 

 

Figure 1.3. Quantification of the central tendency. The slopes of the linear 

regressions are presented for all four conditions. A and V represent auditory and 

visual stimuli, respectively. Sub and sup represent sub-second and supra-second 

durations, respectively. Error bars represent the standard error of the mean. n.s. = not 

significant. 

 

 I further examined within-individual correlations of the central tendency across 

modalities and timescales. The magnitudes of the central tendency for the visual and auditory 

modalities were significantly correlated for supra-second timing (r = .86, p < .001, 
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Bonferroni-corrected), but not sub-second timing (r = .35, p = .25, Bonferroni-corrected; Figure 

1.4a). However, as shown in Figure 1.4b, the magnitudes of the central tendency for sub- and 

supra-second durations were not correlated for the visual modality (r = .48, p = .12, 

Bonferroni-corrected) or the auditory modality (r = .09, p = .99, Bonferroni-corrected; the 

Bonferroni corrections were applied for four comparisons). These results indicate that a 

modality-dependent component of the timing system is responsible for the central tendency in 

the sub-second range, while a common modality-independent timing system influences the 

central tendency in the supra-second range. 

 Because the reproduction task required motor responses, the reproduced durations 

and corresponding analyses might be susceptible to motor noise. Wearden (2003) suggested that 

the motor noise lead a noisier variability of reproduced durations for relatively shorter durations 

(Wearden, 2003). This noise could thus make the estimates of the central tendency more 

unreliable for the relatively shorter sub-second durations. One might argue that the 

non-significant correlation of the sub-second central tendency between modalities could be 

attributed to these noisy and unreliable estimates of the central tendency. To test whether the 

results obtained in the sub-second range were reliable, I examined whether task performance in 

the first and second experimental days were correlated in each condition. The magnitude of the 

central tendency in the first and the second experimental days were significantly correlated in 

all conditions (Table 1.1). These results suggest that the magnitude of the central tendency is 

stable within individuals across different experimental days, and reliably estimated in all 

conditions, including the sub-second durations. 
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(b) 

 

 

 

 

 

 

 

 

Figure 1.4. Within-individual correlations of the central tendency across 

different sensory modalities (a) and timescales (b). Regression index represents the 

slope of the linear regression of the reproduced durations to the stimulus durations. 

Each small circle represents an individual’s data. V and A stand for the visual and 

auditory conditions, respectively. Sub and supra represent the sub-second and 

supra-second durations, respectively. *** p < .001. 
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Table 1.1. Correlations between the magnitudes of the central tendency on the 

first and second experimental days.  

Condition Correlation coefficient P-value 

V-sub .74 .003 

A-sub .71 .006 

V-supra .64 .010 

A-supra .66 .013 

Note. V and A stand for the visual and auditory modalities, respectively. Sub and 

supra represent the sub-second and supra-second durations, respectively. P-values 

were Bonferroni-corrected for four comparisons. 

 

 Similar to Cicchini et al.’s study, I observed a significant central tendency for the 

visual but not the auditory sub-second durations. However, some participants in the present 

study, as well as in Cicchini et al.’s study, exhibited the central tendency for auditory 

sub-second durations. One possible explanation for this finding may be the presence of 

individual differences in sensory precision across modalities. Temporal resolution in the 

auditory modality is generally finer than in the visual modality, although such auditory 

superiority is not always observed (Kuroda, Hasuo, Labonte, Laflamme, & Grondin, 2014). If 

the deviation of the internal representation of a stimulus duration is too small to overlap 

neighboring durations, the perceived duration for that stimulus might not be affected by 

neighboring durations. In both Cicchini et al.’s study and the present investigation, the spacing 
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between stimulus durations was the same for the auditory and visual modalities, and was not 

normalized by the specific timing precision across individuals or sensory modalities. Therefore, 

in Experiment 2, I examined whether the modality-dependent central tendency in the 

sub-second range resulted from differences in the temporal sensitivity between the visual and 

auditory systems by controlling for differences in the discrimination of sub-second durations 

between the two modalities.  

 

Experiment 2 

Methods 

Participants 

 Thirteen healthy volunteers (7 males and 6 females, 19–30 years old) participated in 

Experiment 2. All participants gave written informed consent for their participation in the 

experimental protocol, which was approved by the institutional review board at The University 

of Tokyo. All participants reported to have normal hearing and normal or corrected-to-normal 

vision. 

Apparatus 

 The auditory stimuli were presented through an Audio Stream Input/Output (ASIO) 

compliant USB digital-to-analog converter (Roland UA-1G) and SONY MDR-XB500 

headphones at 60 dB. The visual stimuli were presented on a CRT monitor (Mitsubishi Electric 

RDF223H, 1024 × 768 pixels, 120 Hz refresh rate). Participants were seated 57.3 cm from the 

monitor in a dark soundproof room; participants’ heads were stabilized using a chin rest. All 

apparatuses were the same as in Experiment 1. 
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Stimuli and procedure 

 Stimuli were the same as in Experiment 1. Visual stimuli were white disks, while 

auditory stimuli were pure tones (600 Hz). 

 Experiment 2 consisted of a discrimination task and a reproduction task. The 

discrimination task was first conducted to normalize individual differences in temporal 

discriminability across the visual and auditory modalities. In the discrimination task, three 

successive flashes or tones that marked two neighboring durations were presented, and 

participants reported whether the first duration was longer or shorter than the second. The 

standard duration was always 500 ms, while the comparison durations ranged from 350 ms to 

650 ms with 50 ms steps. All comparison durations were presented 32 times. The order of the 

standard and comparison durations was randomized across trials. The visual and auditory 

durations were tested in separate sessions. In the analyses, the probability at which the 

participant judged the comparison to be longer than the standard was plotted as a function of the 

comparison duration. The discrimination sensitivity was calculated by fitting a cumulative 

normal function as a psychometric function. The discrimination sensitivity was defined as the 

Weber fraction. Weber fractions were defined as the ratio of the just noticeable difference (JND; 

half of the difference between the durations giving 25 % and 75 % of the psychometric 

function) to the standard duration (JND/500). Discrimination sensitivities for the visual and 

auditory durations were separately estimated for each participant. 

 For each participant, the reproduction task followed the discrimination task in the 

same modality. The order of visual and auditory tasks was randomized across participants. 

Durations used in the reproduction task were determined for each participant and for each 
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stimulus modality based on the participant’s performance in the discrimination task. To be 

precise, durations that gave 20, 35, 50, 65, and 80 percentiles in the psychometric function were 

used. Accordingly, all participants performed the visual and auditory tasks with physically 

different but perceptually the same durations. 

 As in Experiment 1, correct and incorrect feedback was given after each trial in the 

reproduction task. If the reproduced duration fell within a certain time frame of the stimulus 

duration, correct feedback was presented; otherwise, incorrect feedback was presented. In 

contrast to Experiment 1, the ratio of the width of the feedback time frame of the stimulus 

duration was also normalized for each participant. The feedback ratio was adaptively controlled 

with a one-up, one-down staircase method that added or subtracted 15 % of the Weber fraction, 

for each incorrect or correct trial, respectively. 

 Trials in which the reproduced duration deviated more than 3 SDs from each 

condition’s mean were excluded from all analyses. As in Experiment 1, the reproduced 

durations were linearly regressed to the stimulus duration, and the slopes of the linear 

regressions were compared across modalities as indices of the central tendency (Cicchini et al., 

2012; Levy, Namboodiri, & Hussain Shuler, 2015). 

 

Results and Discussion 

 To estimate discrimination sensitivity, I first drew psychometric functions for each 

participant and for each stimulus modality (Figure 1.5). Two participants were excluded from 

subsequent analyses because their response for either the shortest or the longest comparison 

duration did not reach 20 or 80 % respectively in both modalities. The Weber fractions were 
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0.145 ± 0.036 for visual stimuli and 0.126 ± 0.046 for auditory stimuli. There was no significant 

difference between the Weber fractions of visual and auditory durations (t(10) = 1.90, p = .09). 

 

 

Figure 1.5. Psychometric functions of visual (a) and auditory (b) durations for a 

typical subject. The probabilities at which the subject judged that the comparison 

(350-650 ms) was longer than the standard (500 ms) were plotted, and fitted to the 

cumulative normal distribution function. The discrimination sensitivity was defined as 

the Weber fraction, the ratio of the just noticeable difference (JND) to the standard 

duration. 

 

 In the reproduction task, even though the spacing between stimulus durations was 

normalized across participants and stimulus modalities by using the discrimination task, the 

magnitude of the central tendency substantially varied across individuals (Figure 1.6). The 

magnitude of the central tendency was significantly larger for visual durations than auditory 

durations (t(10) = 3.89, p = .003), as in Experiment 1. Additionally, the magnitude of the central 

tendency for visual and auditory sub-second durations was significantly correlated (r = .69. p 
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= .018). This result suggests that a common or homologous system is also involved in the 

optimal encoding of time in both auditory and visual sub-second perception. 

 

 

Figure 1.6. Within-individual correlations of the central tendency across visual 

and auditory modalities. Regression index represents the slope of the linear 

regression of the reproduced durations to the stimulus durations. Small open circles 

represent each individual’s data. Bold circles and bars represent the mean and the 

standard error of the mean, respectively. * p < .05 

 

 In the duration discrimination task, there was no significant difference between the 

discrimination sensitivities of the visual and auditory modalities (Experiment 2). Kuroda et al. 

(2014) also reported that the sensitivity of duration discrimination is almost identical for visual 

and auditory stimuli (Kuroda et al., 2014). Therefore, modality-dependency of the central 

tendency may not be explained by differences in timing precision between modalities. Because 
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the time reproduction task requires sensorimotor timing, it is possible that the timing precision 

of the reproduction task and the discrimination task are independent. However, previous studies 

indicated that variances of the perceived durations in the reproduction and discrimination tasks 

are significantly correlated (Merchant, Harrington, & Meck, 2013; Merchant, Zarco, & Prado, 

2008). Therefore, it is reasonable to determine stimulus durations in the reproduction task based 

on performance in the discrimination task. 

 In Experiment 2, a significant central tendency was also observed for auditory 

durations (t(10) = 2.99, p = .014). This result is seemingly inconsistent with results in 

Experiment 1. One possible explanation for this difference might be the range of stimulus 

durations. The means and SDs of the differences between the shortest and longest stimulus 

durations was 182.1 ± 45.5 ms for visual stimuli and 160.6 ± 57.2 ms for auditory stimuli. 

Therefore, the stimulus durations were narrowly ranged on average compared to Experiment 1, 

in which the difference between the shortest and the longest stimulus durations was 200 ms. 

Previous studies have demonstrated that the distribution of stimulus durations affects the 

memory bias in duration perception (Acerbi et al., 2012; Ryan, 2011; Wearden & Ferrara, 1995). 

Especially, the present results is consistent with the finding that the narrowly-ranged stimulus 

durations amplify the central tendency in the auditory modality (Noulhiane et al., 2009). Further 

study will be needed to investigate how the distribution of stimulus durations modulates the 

magnitude of the central tendency in relation to the stimulus modality and the duration 

discriminability. 
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General Discussion 

 In the present study, I investigated how stimulus modality and timescale affect 

individual differences in the central tendency of duration perception. The magnitude of the 

central tendency differed substantially between individuals, but was stable across different 

experimental days for each individual. The magnitude of the central tendency greatly varied 

depending on the timescale and the sensory modality, suggesting that timescale- and 

modality-dependent timing systems are responsible for individual differences in this 

phenomenon. 

Timescale-dependence of the central tendency 

 The present results indicate that sub- and supra-second timing influence the central 

tendency differently. A traditional view according the scalar property assumes that timing 

precision, defined as the ratio of the standard deviation of the perceived duration to the stimulus 

duration, is constant across sub- and supra-second ranges (Gibbon, 1977). If the magnitude of 

the central tendency depends on timing precision and the scalar property, as suggested by 

previous studies (Acerbi et al., 2012; Jazayeri & Shadlen, 2010), then the central tendency 

should occur equivalently for sub- and supra-second timing. Contrary to this traditional view, 

the current study found that the magnitude of the central tendency was larger in supra-second 

timing than in sub-second timing. Several psychological studies support this finding and have 

also demonstrated that timing performance is less precise in the supra-second range compared to 

the sub-second range (Gibbon et al., 1997; Lewis & Miall, 2009). The larger central tendency in 

the supra-second range might result from the noisier representation of durations in the 

supra-second range. In addition to the difference in timing precision between sub- and 
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supra-second timing, it should be noted that the experimental setting of ITIs might also lead the 

larger central tendency in the supra-second range. Meck (1985) suggested that the timing 

performance is impaired when the ratio of the timed duration to the ITI is large (Meck, 1985). In 

the present study, the same ITIs were used for sub- and supra-second trials. Therefore, the ratio 

of the timed duration to the ITI was larger in the supra-second, which might lead the larger 

timing bias in the supra-second range. 

 The magnitudes of the central tendency in the sub- and supra-second range were not 

correlated in both modalities (Experiment 1). Therefore, no evidence for the involvement of 

timescale-independent timing mechanisms in the central tendency was found. This result is 

consistent with a previous investigation that showed timing precision was not correlated 

between sub- and supra-second durations (Hayashi et al., 2014). In the present study, stimulus 

durations within a given session had narrow ranges (i.e., 0.4–0.6 s for sub-second, 2.0–3.0 s for 

supra-second durations) in order to investigate the difference in the central tendency between 

sub- and supra-second timing. In contrast, previous studies, including the original work of 

Vierordt (1868), used wide durations that spanned the sub- and supra-second ranges within an 

experimental session, and observed overestimation of short sub-second durations and 

underestimation of long supra-second durations (Lejeune & Wearden, 2009). If the sub- and 

supra-second timing systems were completely independent, the central tendency would not 

occur across different timescales, but this was not the case. Rammsayer & Troche (2014) 

proposed a hierarchical mechanism of duration perception in which a timescale-independent 

superordinate processing system controls the sub- and supra-second timing mechanisms 

(Rammsayer & Troche, 2014). Based on the present study, timing precision in the sub- and 
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supra-second ranges affects individual differences in the magnitude of the central tendency. 

These noisy duration representations in modality-dependent timing systems may be further 

processed by the timescale-independent superordinate processing system. 

Modality-dependence of the central tendency 

 In the present study, the central tendency was modality-dependent in the sub-second 

range, but not in the supra-second range; both modalities exhibited a comparable central 

tendency in the supra-second range. These results suggest that a common modality-independent 

timing system regulates the central tendency in the supra-second range, while a 

modality-dependent timing system has a greater impact on the central tendency in the 

sub-second range.  

 A previous study investigated the central tendency in the supra-second range in the 

visual and auditory modalities, and came to the opposite conclusion that a modality-dependent 

timing system does impact the central tendency in the supra-second range (Noulhiane et al., 

2009). In the central tendency, short durations are overestimated and long durations 

underestimated, resulting in an “indifference point” where durations are estimated accurately. 

Noulhiane et al. (2009) found that this “indifference point” was different between the visual and 

auditory modalities when identical stimulus durations were tested (Noulhiane et al., 2009). In 

contrast, Ryan (2011) showed that the distortion pattern of reproduced durations was 

comparable between the visual and auditory modalities (Ryan, 2011). In the present study, I 

observed high within-individual correlations between the magnitudes of the central tendency in 

the visual and auditory modalities in the supra-second range. This result strongly suggests the 

involvement of a common modality-independent timing system that regulates the central 
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tendency in the supra-second range. However, this result does not necessarily exclude the 

possibility of a modality-dependent mechanism in the regulation of supra-second duration 

perception. Consistent with the findings of Noulhiane et al. (2009), I observed that auditory 

durations were overestimated more than visual durations in the supra-second range. This 

overestimation of auditory durations suggests there are different “indifferent points” between 

the visual and auditory modalities, and makes it appear as if the magnitude of the central 

tendency is different for visual and auditory stimuli. However, this general overestimation of all 

auditory durations could be independent of the central tendency, which is generally thought to 

be the result of the overestimation of short durations and the underestimation of long durations. 

Further investigation is necessary to ascertain how modality-dependent general overestimation 

occurs in the supra-second timing system. 

 In the sub-second range, differences in the central tendency between the visual and 

auditory modalities remained, even when the ability to discriminate durations was controlled 

across sensory modalities (Experiment 2). Previous studies have shown that auditory modality 

dominates the time perception for audio-visual stimuli (Burr, Banks, & Morrone, 2009; Ortega, 

Guzman-Martinez, Grabowecky, & Suzuki, 2014). These studies suggest that the timing system 

utilizes auditory information for temporal estimation rather than visual, even when the 

perceptual threshold is equalized across the visual and auditory modalities. In contrast to these 

studies, the present study suggests that sub-second timing in the auditory modality largely relies 

on stimulus input, and is less affected by contextual information, such as previously presented 

durations. However, this does not mean that the auditory sub-second timing is not affected by 

contextual information. Various studies have indicated that previously presented durations do 
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affect perceived auditory durations (Gu & Meck, 2011; Wiener & Thompson, 2015; Wiener, 

Thompson, & Coslett, 2014); furthermore, the present study also observed a significant central 

tendency for auditory durations in Experiment 2. 

 Interestingly, I observed a significant correlation in the central tendency between the 

visual and auditory sub-second durations in Experiment 2, in which the spacing between 

stimulus durations was normalized across modalities based on timing precision that was 

measured by the duration discrimination task. Therefore, the modality-independent timing 

mechanism might also be involved in the central tendency in sub-second timing, in addition to 

the modality-dependent timing mechanism. Several studies support this conclusion that 

modality-dependent and modality-independent components influence the sub-second timing 

system. For example, a psychophysical and modeling study revealed a hierarchical timing 

mechanism whereby modality-specific processing occurs first, followed by 

modality-independent processing (Stauffer et al., 2012). An alternative model assumes that 

temporal information is primarily encoded in the auditory system (Filippopoulos, Hallworth, 

Lee, & Wearden, 2013; Kanai, Lloyd, Bueti, & Walsh, 2011). In this model, temporal 

information from all sensory modalities is transformed into an auditory format for temporal 

processing. These two models are not mutually exclusive, and both are consistent with the 

present results. Further study is necessary to examine the interaction between sensory 

modalities. 

 In summary, the present study suggests that individual differences in the central 

tendency might be associated with a common modality-independent timing mechanism for 

supra-second timing, and with both modality-dependent and modality-independent timing 
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mechanisms for sub-second timing. 

Incorporating timescale- and modality-dependent components into 

computational models of the central tendency 

 In the present study, I showed that both timescale and modality influenced the central 

tendency. These findings have important implications for the creation of computational models 

of the central tendency. Recent computational models have accounted for the central tendency 

in the context of a Bayesian framework (Acerbi et al., 2012; Jazayeri & Shadlen, 2010). 

Bayesian models assume that a noisy representation of the current stimulus duration (likelihood) 

is combined with a prior representation of the probability distribution of the stimulus durations 

presented within the experimental session. Both the likelihood and the prior determine a 

posterior distribution of the perceived duration, and participants make responses based on this 

posterior distribution. Such models have two fundamental assumptions regarding the probability 

distribution of the likelihood that need to be modified in light of the current findings.  

 One assumption is that the mean of the likelihood is equal to the stimulus duration. 

However, previous studies have shown that auditory durations tend to be estimated longer than 

visual durations (Cheng, Scott, Penney, Williams, & Meck, 2008; Penney, Gibbon, & Meck, 

2000), which demonstrates that the perceived duration can be systematically shifted from the 

physical stimulus duration. In the present study, I also observed overestimation of auditory 

durations in the supra-second range. Previous Bayesian models cannot account for these 

constant errors. One possible explanation for the overestimation of auditory durations is that 

auditory signals drive the internal clock faster than visual signals (Gu & Meck, 2011; Penney et 

al., 2000). However, the timed durations in the present study were empty intervals that were 
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defined by two brief sensory events and have no signal during the duration itself for both visual 

and auditory conditions. Considering the absence of sensory signal during the timed duration, it 

might be unlikely that the observed overestimation for auditory durations is ascribed to the 

faster accumulation of the internal clock throughout the timed duration. Another interpretation 

for the overestimation of auditory durations is that the latency to direct attention to the duration 

onset might be different between modalities, that is, the auditory signal might grab the attention 

faster (Grondin, 2010; Penney et al., 2000). Since the likelihood of timed durations could 

change in either case (Shi, Church, et al., 2013), the modality-dependent constant errors should 

be explained in the framework of Bayesian models by allowing the mean of the likelihood to 

shift from the physical stimulus duration. 

 The other assumption regarding the distribution of the likelihood that should be 

addressed is the scalar property. Psychophysical studies have reported that the scalar property is 

violated under certain conditions, and that timing precision changes around one second (Gibbon 

et al., 1997; Grondin, 2014). Indeed, I revealed that supra-second timing is more susceptible to 

the central tendency than sub-second timing, suggesting that timing precision is lower in the 

supra-second range than in the sub-second range. Therefore, caution should be taken when 

assuming that the scalar property holds for all durations across different timescales. The noise 

distribution of the likelihood may need to be determined separately for sub- and supra-second 

durations. Therefore, future studies should explore whether the duration distributions within the 

same timescale and across different timescales exhibit quantitatively similar central tendencies 

or not. These approaches will provide the means for identifying sources of timing noise that 

mediate the central tendency and establish a comprehensive model for the optimal encoding of 



 32 

time. 

 The present study demonstrated that the internal representation of time is subject to a 

context-dependent sensori-motor process that optimally encodes temporal information in a 

modality- or timescale-dependent manner. Although the present study focused to time 

reproduction as in previous studies (Acerbi et al., 2012; Cicchini et al., 2012; Jazayeri & 

Shadlen, 2010; Murai & Yotsumoto, 2016), the central tendency has been reported also for 

duration tasks without motor responses (Gu & Meck, 2011; Wiener & Thompson, 2015; Wiener, 

Thompson, & Coslett, 2014). Furthermore, Petzschner and her colleagues indicated that we 

have a common Bayesian principle for optimal magnitude estimation such as movement 

distance, stimulus length, and also duration (Petzschner & Glasauer, 2011; Petzschner, Glasauer, 

& Stephan, 2015). The modality- and timescale-dependence of the central tendency observed in 

the present study suggests that the source of timing noise can be unique to each timescale or 

each sensory modality, and then, a common computational process realizes the statistical 

optimality context-dependently for such noisy representation of time. 
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Introduction 

 As I mentioned in the previous chapter, temporal information in different timescales 

is related to different behavioral functions, and processed by different neural systems. Previous 

studies have shown that there are two timing systems divided by a boundary of around one 

second (Lewis & Miall, 2006). Sub-second timing is involved in motor control (Merchant & 

Georgopoulos, 2006) and speech generation (Schirmer, 2004), whereas supra-second timing is 

critical for foraging (Kacelnik & Brunner, 2002) and decision-making (Sohn & Carlson, 2003). 

Neuroimaging studies have revealed that sub- and supra-second timing differ in terms of their 

neural implementations (Lewis & Miall, 2003b; Wiener et al., 2010). The processing network 

for sub-second durations mainly involves the motor system, including the supplementary motor 

area (SMA), the primary motor area, and the primary somatosensory area, whereas the 

supra-second network includes the prefrontal cortex, the posterior parietal cortex, and the basal 

ganglia, which are areas involved in attention and/or working memory (Lewis & Miall, 2006). 

In physiological studies, duration-tuned neurons have been reported for sub-second timing in 

such areas as the SMA-preSMA (Crowe, Zarco, Bartolo, & Merchant, 2014; Merchant, 

Harrington, et al., 2013; Merchant, Perez, Zarco, & Gamez, 2013) and the putamen (Bartolo, 

Prado, & Merchant, 2014), and for supra-second timing in the prefrontal cortex (Yumoto et al., 

2011). 

 While previous neuroimaging studies have emphasized the distinctions between the 

sub- and supra-second timing systems (Hayashi et al., 2014; Jahanshahi, Jones, Dirnberger, & 

Frith, 2006; Lewis & Miall, 2006; Pouthas et al., 2005; Wiener et al., 2010), the nature of 

continuity between these two systems remains an open question. Psychologically, we can 
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execute timing tasks whether the target duration is sub-second, supra-second, or around 1 

second (i.e., peri-second). Seamless timing across different timescales cannot be realized 

without some intermediate or transitional state between the sub-second system and the 

supra-second system. This raises the question: how are peri-second durations processed in our 

brain? A few studies have indirectly dealt with this issue. A meta-analysis study reported the 

presence of brain regions that are activated in both sub- and supra-second timing (Wiener et al., 

2010). Several fMRI studies have reported that BOLD activities in various brain regions 

correlate with event durations at timespans ranging from the milliseconds to seconds range 

(Coull, Charras, Donadieu, Droit-Volet, & Vidal, 2015; Morillon, Kell, & Giraud, 2009; Wencil, 

Coslett, Aguirre, & Chatterjee, 2010). These fMRI studies, however, assumed a monotonic 

change of BOLD activity across sub- and supra-second timing, and did not directly investigate 

the distinction between sub- and supra-second timing. These studies suggest that continuities 

exist between the sub- and supra-second timing systems. However, no neuroimaging study has 

directly examined how these two distinct neural timing systems operate for peri-second 

durations. 

 One plausible solution for peri-second processing is that both the sub-second and 

supra-second systems are involved in processing peri-second durations, and therefore, 

peri-second durations are perceived through cooperation of these two systems. In such a 

framework, it is predicted that peri-second timing activated both the sub- and supra-second 

timing systems.  

 While the transition between timing systems might depend on the duration to be 

timed, the transition might also depend on the hysteresis of previous trials. It is well known that 
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stimulus history induces biases in various timing tasks (Jazayeri & Shadlen, 2010; Miyazaki, 

Yamamoto, Uchida, & Kitazawa, 2006; Shi, Church, et al., 2013). One example of these 

phenomena is the central tendency in timing, which can be described as follows: when various 

durations are presented in an intermixed order, relatively shorter durations are overestimated 

and relatively longer durations are underestimated. This phenomenon occurs across different 

timescales (Lejeune & Wearden, 2009): When various durations in the milliseconds-to-seconds 

range are intermixedly presented, shorter sub-second durations are overestimated, and longer 

durations in the supra-second range are underestimated. These phenomena suggest that duration 

perception depends on the history of recently presented durations. 

 Based on these psychophysical observations, which suggest the presence of a 

hysteresis-based timing mechanism, I hypothesized that peri-second processing relies on the 

timing system that predominately involves the processing system corresponding to the durations 

in previous trials. In other words, when peri-second trials are placed in between sub-second 

trials, the peri-second duration is encoded mainly by the sub-second system. On the other hand, 

when peri-second trials are placed in between supra-second trials, the peri-second duration is 

encoded mainly by the supra-second system.  

 Thus far, I have two independent hypotheses regarding peri-second processing. First, 

I hypothesized that both the sub- and supra-second timing systems are recruited for peri-second 

timing. Second, I hypothesized that the durations in previous trials affects peri-second 

processing. To test these hypotheses, I measured neural activity while subjects performed a 

duration reproduction task using functional magnetic resonance imaging (fMRI). 
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Methods 

Subjects  

 Twenty-one healthy volunteers (12 males and 9 females, 18-23 years old) 

participated in the fMRI experiment. All participants gave written informed consent for their 

participation in the experimental protocol, which was approved by the institutional review 

boards of The University of Tokyo. All subjects reported to have normal or corrected-to-normal 

vision.  

Procedure 

 All visual stimuli were generated using MATLAB with the Psychophysics Toolbox 

(Brainard, 1997). A schematic of a trial is shown in Figure 2.1. The task was to reproduce the 

duration of the visually presented Gaussian luminance blob. In the experiment, each trial began 

with a cue presentation, which informed the subject of the duration to be presented: a single 

character, S, M, or L, was presented for the sub-, peri-, or supra-second condition, respectively. 

After a pseudorandom delay (1–2 sec), a green Gaussian blob was presented for a certain 

duration. The stimulus duration was 0.4 second for the sub-second condition, 1 second for the 

peri-second condition, or 2.5 seconds for the supra-second condition. Subjects were not 

explicitly informed that stimulus durations within each condition were constant. After a 

pseudorandom delay (1–4 sec), the color of the fixation cross changed from white to black (go 

signal). After viewing this go signal, subjects reproduced the perceived duration of the green 

stimulus by making a sustained button press that lasted for the perceived duration. All subjects 

used their left thumb to press the response button. 
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Figure 2.1. Schematic of an experimental trial. In our experimental paradigm, each 

trial began with a cue presentation, which roughly informed the subjects of the cue 

duration to be presented. After a pseudorandom delay, a green Gaussian blob was 

presented for a certain duration. After another pseudorandom delay, the color of the 

fixation cross changed from white to black. After this change of color, subjects 

reproduced the perceived duration of the green stimulus by pressing a button. 

 

 Subjects completed 10 fMRI runs in total. In half of the runs, the peri-second trials 

were intermixed with the sub-second trials, and in the other half of the scans, the peri-second 

trials were intermixed with the supra-second trials. Sub- and peri-second runs contained 20 

trials for each duration, resulting in the subjects completing 100 trials in total for each duration 

within 5 runs. Supra- and peri-second runs contained 16 trials for each duration, resulting in the 

subjects completing 80 trials in total within the other 5 runs. The runs with sub- and peri-second 

trials and the runs with supra- and peri-second trials were performed alternately, and the type of 

run that began each experiment was counterbalanced across subjects. In subsequent contrast 

analysis, one randomly chosen sub- and peri-second run was discarded to equalize the number 

of trials used for contrast calculation for all conditions. Therefore, 80 trials for each condition 

were used in the analysis. 
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 I added a duration cue at the beginning of a trial for the following reason: each run 

included two distinct durations, and therefore, without the duration cue, subjects could judge 

whether the stimulus duration was the longer one or the shorter one during stimulus presentation. 

For example, if no duration cue was presented in the supra-second trials which were intermixed 

with the peri-second trials, subjects could judge that the presented stimulus duration was the 

longer one, as it lasted some duration beyond 1 second. By adding the duration cue, which 

informed the subjects in advance of the duration to be presented, I aimed to prevent the 

possibility that the brain activity induced by categorical judgment about the stimulus duration 

would contaminate timing-induced brain activity during stimulus presentation. 

MRI Data Acquisition 

 MRI data was acquired using a 3T MRI system (Magnetom Prisma, Siemens, 

Erlangen, Germany), equipped with a 64-channel head coil. For each subject, a high-resolution 

anatomical scan (MPRAGE) was performed. The total data acquisition time for the anatomical 

scan was 4.7 min (TR = 2 s, TE = 2.9 ms, flip angle = 9 deg, matrix size = 240 × 256 × 176, 

spatial resolution = 1 × 1 × 1 mm3). EPI sequences (TR = 2 s, TE = 30 ms, flip angle = 90 deg) 

were used to obtain functional MR images. Thirty-nine contiguous slices (3 × 3 × 3.5 mm3, with 

10% gap) oriented parallel to the AC-PC plane were acquired to cover the whole brain, using an 

interleaved slice acquisition sequence. The total time for each functional run was 6.2 min.  

Data Analysis 

 FS-FAST and FreeSurfer (http://surfer.nmr.mgh.harvard.edu) software were used for 

the data analysis. For image preprocessing, all functional images were head motion corrected, 

slice-time corrected, spatially smoothed with a Gaussian kernel of 8.0 mm (FWHM). The mean 
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intensity for the entire functional volume was computed for each scan. The global mean of the 

entire brain was rescaled so that the same mean was set across scans. All functional data were 

registered to the individual anatomically reconstructed brain. 

 Hemodynamic responses evoked by different task components were modeled as 

single events convolved with a canonical hemodynamic response function. Events time-locked 

to the presentation of the stimuli and the onset time of reproduction were defined separately for 

each duration condition, that is, sub-second, peri-second intermixed with sub-second, 

peri-second intermixed with supra-second, and supra-second durations. This resulted in eight 

distinct event types: 2 task components (stimulus/reproduction) × 4 durations. Duration of the 

stimulus event was defined as duration of the stimulus presentation, and duration of the 

reproduction event was defined as the reproduced duration. In the present study, I used a rapid 

event-related design. In the experiment, events were closely spaced, resulting in substantially 

overlapped hemodynamic responses. However, previous studies have shown that the underlying 

hemodynamic responses can be computationally deconvolved by randomly jittering inter-event 

intervals and under the assumption of linearity (Burock, Buckner, Woldorff, Rosen, & Dale, 

1998; Dale & Buckner, 1997). Using relatively long and varying intervals between the stimulus 

interval and the reproduction interval allowed temporal deconvolution of the BOLD response 

for the stimulus interval and the reproduction interval (Coull, Nazarian, & Vidal, 2008). To 

examine brain activity manifest by duration encoding, events in the stimulus phase were used 

for the following contrast analysis. I eliminated activation elicited by duration reproduction 

from the contrast analysis, because any change of BOLD response depending on duration 

condition can be attributable to the effect of the variation of reproduced durations in each 
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duration condition, or memory decay derived from the variation of time from trial onset. 

 In the analysis, I first identified brain regions related to sub- and supra-second timing 

by contrasting the BOLD response for the sub-second stimulus presentation and that for the 

supra-second stimulus presentation. Then, to identify regions involved in peri-second timing, I 

compared the BOLD response for the peri-second stimulus presentation to either the BOLD 

response for the sub- or the supra-second stimulus presentation. In the experiment, the sub- and 

supra-second trials appeared in half of the total of 10 runs, while the peri-second trials appeared 

in all runs. To compensate for the number of trials needed to calculate the BOLD contrast, I 

compared the BOLD responses between the trials presented in the same type of runs: the BOLD 

responses for the sub-second stimulus were contrasted to that for the peri-second stimulus 

intermixed with the sub-second trials, while the BOLD response for the supra-second stimulus 

were contrasted to that for the peri-second stimulus intermixed with the supra-second trials. 

Finally, to examine the hysteresis of the previous trials, the BOLD response for the peri-second 

stimulus intermixed with the sub-second trials was compared to the BOLD response for the 

peri-second stimulus intermixed with the supra-second trials. These two types of peri-second 

conditions had the same stimulus and same duration, and were different in terms of intermixed 

trials that were either sub- or supra-second trials. 

 One of the difficulties in neuroimaging studies of time perception is the use of 

control tasks. Some studies have compared brain activity of subjects while they were executing 

a timing task with that of subjects executing a control task (e.g., color task) in response to the 

same stimuli (Coull, Vidal, Nazarian, & Macar, 2004; Morillon et al., 2009). These studies 

defined the regions that exhibited greater activities in the timing task as “timing-related” regions. 
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However, Livesey et al. (2007) reported that some of these “timing-related” activities are 

attributable to differences in the difficulties of the timing versus control tasks (Livesey, Wall, & 

Smith, 2007). To eliminate the effect of task difficulty in the control task in the present study, I 

did not employ any explicit control tasks. Alternatively, I directly compared brain activities 

when subjects were timing the presented stimulus. Given that the stimuli used in all conditions 

were the same Gaussian luminance blobs and the task was always to reproduce the presented 

duration, the only thing that was different across conditions was the stimulus duration. 

 

Results 

Behavioral Data 

 The mean and SD of the reproduced duration was 657.0±166.6 ms for the sub-second 

trials, 1223.8±215.4 ms for the peri-second trials intermixed with the sub-second trials, 

1348.0±265.4 ms for the peri-second trials intermixed with the supra-second trials, and 

2358.1±289.7 ms for the supra-second trials.  

 To test the contextual effect of previous trials, I first conducted a two-way 

repeated-measures ANOVA with run type (sub- and peri-second run or peri- and supra-second 

run) and relative duration within a run (short or long) as factors. To compensate the difference 

of stimulus durations across conditions, the ratio of the reproduced duration to the stimulus 

duration was tested as an index of duration estimation error. If the central tendency occurs, the 

relatively short duration within a run should be overestimated, and the relatively long duration 

within a run should be underestimated. That is exactly what I found. 

 As shown in Figure 2.2, there were a significant main effect of relative duration 



 43 

within a run (F(1,80) = 46.84, p < .001) and of run type (F(1,80) = 22.84, p < .001). No 

significant interactions were found (F(1,80) = 0.01, p = .91). These results indicate that the 

central tendency occurred in both run types, and that durations were more overestimated in runs 

with sub- and peri-second trials than in runs with supra- and peri-second trials. 

 

 

Figure 2.2. Duration estimation errors calculated as ratios of the reproduced 

duration to the stimulus duration. Blue line indicates the duration estimation errors 

in runs with sub- and peri-second trials, and red line indicates the duration estimation 

errors in runs with peri- and supra-second trials. Error bars indicate standard errors 

(SE). Horizontal axis represents relative duration within each run: in runs with peri- 

and supra-second trials, for example, the peri-second durations are the relatively 

shorter durations and the supra-second durations are the relatively longer durations. 

	

 Furthermore, I tested the contextual effect in peri-second timing. The reproduced 
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duration for the peri-second trials intermixed with the supra-second trials was significantly 

longer than those for the peri-second trials intermixed with the sub-second trials (t(20) = 4.72, p 

< .0001, d = 1.03). This tendency was highly consistent across individuals (19 out of 21 subjects 

exhibited this tendency). This result indicates that the duration of previous trials affected the 

perceived duration of the peri-second stimulus. It should be noted that the reproduced durations 

for peri-second trials were longer than 1 second both for the peri-second trials intermixed with 

the sub-second trials (t(20) = 4.76, p = .0001, d = 1.04) and for the peri-second trials intermixed 

with the supra-second trials (t(20) = 6.01, p < .0001, d = 1.31). The overestimation in 

reproduced duration for sub- to peri-second durations is consistent with a previous study (Shi, 

Ganzenmüller, & Müller, 2013). 

fMRI Data 

 I first determined brain regions that exhibited different activation patterns between 

the sub- and the supra-second timing. When the subjects timed sub-second stimuli, the bilateral 

SMA, the bilateral visual cortex, the left premotor area, the right intra-parietal sulcus (IPS), and 

the right precentral and postcentral region were activated. By contrast, when subjects timed 

supra-second stimuli, significant activations in the inferior frontal gyrus (IFG), the superior 

frontal gyrus (SFG), the superior parietal cortex, the superior temporal cortex, the lingual gyrus, 

the putamen, and the ventral cerebellum were observed (Figure 2.3, Table 2.1). The timing 

networks I described are largely consistent with previously reported sub- and supra-second 

timing networks (Lewis & Miall, 2003b; Wiener et al., 2010) and confirm that sub-second 

timing versus supra-second timing depend on distinct brain networks. However, it should be 

noted that I observed the activation of the cerebellum in supra-second timing, whereas the 
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cerebellum is often reported to be involved in the sub-second timing network (Lewis & Miall, 

2006; Wiener et al., 2010). 

 Secondly, to determine the brain regions activated when subjects were timing the 

peri-second duration, I calculated the contrast between peri- and supra-second timing, and the 

contrast between peri- and sub-second timing (Figure 2.3, Table 2.1). In comparison with 

sub-second timing, peri-second timing activated the superior parietal cortex, the superior 

temporal cortex, the lingual gyrus, and the ventral cerebellum. These areas were mostly 

activated in supra-second timing, and were therefore included in the supra-second system. In 

contrast, when compared to supra-second timing, peri-second timing activated the SMA, the 

precentral area, the supramarginal gyrus, and the visual cortex. These areas were mostly 

activated in sub-second timing, and therefore included the sub-second system. As described 

above, peri-second timing thus activated both the sub- and the supra-second timing networks. 

These results suggest that duration at the boundary between the sub- and the supra-second is 

processed by a combination of the sub- and the supra-second systems.  
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Figure 2.3. Significantly activated clusters in sub-, peri-, and supra-second 

timing. The color scales indicate the cluster-wise corrected P-values.  
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Table 2.1. Brain regions significantly activated by either sub-, peri-, or 

supra-second timing. MNI coordinates of peak activation and cluster-wise corrected 

P-values are presented for each cluster. 

	  

Anatomical description 

si

de 

 MNI coordinates 
  

MNI coordinates 
  

MNI coordinates 
 

 X Y Z P-value 	  X Y Z P-value 	  X Y Z P-value 

	  
 

 Supra>Sub  Supra>Peri  Peri>Sub 
Frontal 

 
 

    
    

 
    

 
Superior frontal gyrus L  -22  22  49  0.0001     

 
    

 
Inferior frontal gyrus L  -34  45  -11  0.0001  -51 32 4 0.0013      
	  R  51  33  -5  0.0001     

 
    

 
Precentral R  43  -10  37  0.0086           
Parietal 

 
 

    
    

 
    

 
Paracentral L  -10  -17  48  0.0001       -10 -17 48 0.032 
Postcentral R  

    
      63 -8 12 0.025 

Superior parietal cortex 

	  

L  -18  -86  37  0.0001  -31 -46 56 0.0001  -18 -86 37 0.0001 
R  22  -82  41  0.0001  22 -51 60 0.0002  21 -83 41 0.0001 

Precuneus R  15  -46  56  0.0001       12  -47  65  0.0001 
 R  10  -54  11  0.027           
Temporal 

 
 

    
    

 
    

 
Superior temporal cortex L  -44  -23  3  0.039       -53 -19 4 0.034 
	  R  38  -13  4  0.0001       54 -24 6 0.0001 
Middle temporal cortex L  -60  -52  -3  0.013           
Occipital                 
Lingual L  -15  -61  0  0.005       -14  -61  0  0.0001 
 R            8  -63  5  0.0068 
Subcortical 

 
 

    
    

 
    

 
Cerebellum L  -28 -41 -47 0.0001  -37 -47 -30 0.0001  -30 -43 -47 0.0001 
	  R  18 -55 -55 0.0016       20 -51 -57 0.0026 
Putamen R  22 1 -8 0.0158     

 
    

 
	  

 
 

    
    

 
    

 
	  

 
 Sub>Supra  Peri>Supra  Sub > Peri 

Frontal 
 

 
    

    
 

    
 

Pre-SMA/SMA L  -11  11  43  0.0001  -6 0 64 0.0001  -7 -2 64 0.0001 
	  R  7  3  66  0.0001  8 1 57 0.0007  8 3 66 0.0001 
Precentral L  -58  6  27  0.0001  -53 -4 44 0.0001  -57 6 27 0.0001 
	  R  37  -19  57  0.0001  37 -20 59 0.0001  37 -19 57 0.0001 
Parietal 

 
 

    
    

 
    

 
Supramarginal gyrus L  -41  -43  39  0.0001       -44  -45  40  0.0001 
Superior parietal cortex L       -27 -61 45 0.003      
Occipital 

 
 

    
          

Visual cortex L  -26 -96 -8 0.0001  -26 -96 -8 0.0001  -27 -96 -8 0.0001 
	  R  28  -97  -5  0.0001  27 -98 -5 0.0001  24 -99 -8 0.0001 
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 Finally, to examine the effect of recent trials on peri-second processing, I compared 

brain activity for peri-second timing intermixed with sub-second timing with brain activity for 

peri-second timing intermixed with supra-second timing (Figure 2.4, Table 2.2). The right 

precentral and postcentral areas were more activated in peri-second trials intermixed with 

sub-second trials. These areas were also activated in sub-second timing, and are thus thought to 

be included in the sub-second system. In contrast, the right IPL was more activated for the 

peri-second trials intermixed with supra-second trials. The right IPL did not exhibit differential 

activity between sub- and supra-second timing in the present study, hence, there is no simple 

interpretation of the contextual effect in the right IPL. The right IPL has been linked to 

supra-second timing in previous studies (Lewis & Miall, 2002; Macar et al., 2002), therefore, I 

speculate that the right IPL activation in peri-second trials intermixed with supra-second trials 

might reflect the involvement of the supra-second timing system. These results suggest that the 

timing network which was activated by the recently presented durations predominates in 

peri-second timing. More specifically, when the subject frequently times sub-second durations, 

the peri-second duration is processed with a larger contribution from the sub-second system; 

when the subject frequently times supra-second durations, the peri-second duration is processed 

with a larger contribution from areas that have previously been associated with supra-second 

timing. 
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Figure 2.4. Peri-second trials intermixed with supra-second trials versus 

peri-second trials intermixed with sub-second trials. The color scales indicate the 

cluster-wise corrected P-value. 

 

Table 2.2. Brain regions that exhibited context-dependent time processing. 

BOLD contrasts were calculated between peri-second trials intermixed with 

supra-second trials and peri-second trials intermixed with sub-second trials. MNI 

coordinates of peak activation and cluster-wise corrected P-values are presented for 

each cluster. 

    MNI coordinates 

 Anatomical description side X Y Z P-value 

    Peri with Supra > Peri with Sub 

Inferior parietal lobule R 48  -60  41  0.0222 

    

        Peri with Sub > Peri with Supra 

Precentral R 38  -12  63  0.0001 
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Discussion 

 In the present study, I examined the neural correlates of duration perception in the 

milliseconds-to-seconds time range using fMRI. The present results indicated that: 1) distinct 

brain networks are involved in sub- versus supra-second timing (in accordance with previous 

studies), 2) both the sub- and supra-second timing networks work in cooperation in encoding 

peri-second durations, and 3) the processing mechanism for peri-second durations is context 

dependent in that peri-second timing relies more on the timing system that processed durations 

presented in recent trials. 

Distinctions between the sub-second system and the supra-second 

system 

 By comparing brain activities during sub-second timing and those during 

supra-second timing, I confirmed the presence of two separate timing systems for these two 

time ranges, as previous studies have reported (Hayashi et al., 2014; Jahanshahi et al., 2006; 

Lewis & Miall, 2003b; Pouthas et al., 2005; Wiener et al., 2010). Moreover, the activity patterns 

observed for sub- and supra-second timing in the present study were largely consistent with 

previous studies. Frontal and posterior parietal areas of the cortex, which are related to working 

memory or attention, were involved in supra-second timing, while motor and somatosensory 

systems, including the SMA, postcentral, and precentral areas, were activated in sub-second 

timing.  

 One exception might be my observation of activation in the cerebellum during 

supra-second timing. While several studies have reported that the cerebellum engages in 

sub-second timing (Lewis & Miall, 2006; Wiener et al., 2010), a meta-analysis by Lewis and 
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Miall (2003b) reported that the cerebellum also contributes to supra-second timing. Thus, the 

role of the cerebellum in duration perception is still under debate. Harrington et al. (2004) 

showed that patients with cerebellar damage exhibited greater timing-related variability in a 

time reproduction task, but not in a time-perception task, and that this timing-related variability 

correlated with working memory performance (Harrington, Lee, Boyd, Rapcsak, & Knight, 

2004). They concluded that the cerebellum might process task-relevant cognitive information 

when it involves the motor-output system. The observation of cerebellar activation in 

supra-second timing in the present study is consistent with their findings. Further study will be 

needed regarding the role of the cerebellum in timing perception in the milliseconds-to-seconds 

range. 

Transitional state in peri-second processing 

 In the present study, the peri-second duration preferentially activated the sub-second 

system versus the supra-second system, or vice-versa, depending on context. These results 

suggest that temporal processing for the peri-second duration relies on a transitional state, in 

which both the sub- and supra-second timing systems work in cooperation.  

 Behavioral results showed that the reproduced durations for both peri-second 

conditions were greater than one second. The overestimation of peri-second durations in the 

reproduction task is also reported by a previous study (Shi, Ganzenmüller, et al., 2013). The 

over-reproduction and the simultaneous activation of the sub- and supra-second system in 

peri-second timing might raise a question regarding the fluctuation of the categorical boundary 

between the sub- and supra-second systems. The durations used in the present study were 

selected based on the assumption that the boundary between the sub- and supra-second timing 
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systems lies at around one second (Lewis & Miall, 2006). In actuality, there exist controversies 

over the precise boundary between the two systems. A psychological meta-analysis study 

reported that the boundary lies at around 1500 ms (Gibbon et al., 1997), other researchers 

suggested that the boundary lies at around 500 ms (Rammsayer, 1999; Rammsayer & Lima, 

1991). In the present study, I showed that both the sub- and supra-second systems are recruited 

for peri-second timing. If a boundary lies either at 1500 ms or 500 ms, and two timing systems 

distinctly switch their operation by this precise boundary, the simultaneous activation of the 

sub- and supra-second timing systems would not be observed at one second. The present results 

can be explained if I assume the boundary exists precisely at around one second, however, this 

assumption is not very congruent with previous psychological studies. Rather, these results 

imply another possibility that the durations that the sub- and supra-second timing systems can 

process widely overlap at around one second. Previous psychological and neuroimaging studies 

have reported that different timing system is recruited depending on the task and stimulus 

modalities (Lewis & Miall, 2003b; Merchant, Harrington, et al., 2013; Merchant et al., 2008; 

Wiener et al., 2010). The categorical boundary between the sub- and supra-second durations 

might fluctuate within relatively widely overlapped durations between the sub- and 

supra-second timing systems, depending on the stimulus and task features. Because I tested only 

one-second duration in the present study, I cannot dissociate whether two timing systems have a 

precise boundary or widely overlap around 1 second. Further study will be needed to examine 

the transition from the sub-second system to the supra-second system. 

 Many studies, including the present study, have compared neural correlates of sub- 

and supra-second timing by using distinctly different durations (Jahanshahi et al., 2006; Lewis 
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& Miall, 2003a; Pouthas et al., 2005). In these cases, subjects were able to make a categorical 

judgment regarding whether the presented stimulus duration is relatively shorter or longer 

within an experimental session. Therefore, one might argue that the sub-second and 

supra-second systems do not code the absolute duration, but rather the relative duration within 

an experimental session. That is, the so-called “sub-second” system might process relatively 

shorter durations, while the so-called “supra-second” system might process relatively longer 

durations within a session. If this is indeed the case, it implies that the activation of the sub- and 

the supra-second systems in peri-second timing might not represent a transitional state between 

the sub- and supra-second systems. 

 If the “sub-second” system and the “supra-second” system respectively code 

“relatively shorter” and “relatively longer” durations, the peri-second trials intermixed with the 

sub-second trials would activate the supra-second system, because the peri-second trials had a 

relatively longer duration in runs with sub- and peri-second trials. Similarly, the peri-second 

trials intermixed with the supra-second trials would activate the sub-second system, because 

peri-second trials are relatively shorter in duration in runs with the supra- and the peri-second 

trials. However, the present results contradicted these predictions, and therefore, relative 

duration coding by the sub- and supra-second systems is unlikely. It is certainly a possibility 

that the difference between the two peri-second conditions was not optimized to detect brain 

activity coding relative durations. However, in addition to the present results, previous studies 

have suggested that the sub- and supra-second systems code absolute durations: Distinct 

activation in the sub- and supra-second systems has been reported even when multiple durations 

are not used in the task, and therefore, no information regarding relative duration was included 
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in this task (Lewis & Miall, 2003a; Wiener et al., 2010). Thus, on the whole, it is unlikely that 

the sub- and supra-second system code relative duration information. Therefore, activation of 

both the sub- and supra-second systems in peri-second timing suggests that the peri-second 

duration perception system is a transitional state between the sub- and supra-second systems. 

 Such a transitional timing mechanism between different timescales might enable a 

seamless representation of time. Many psychological and neuroimaging studies have 

investigated the distinctions between the sub-second and supra-second systems using temporal 

tasks with various durations spanning different timescales (Gibbon et al., 1997; Hayashi et al., 

2014; Koch, Oliveri, & Caltagirone, 2009; Lewis & Miall, 2003a, 2009; Rammsayer, 1999). 

These studies found there were differential brain activities or behavioral measures between sub- 

and supra-second timing, indicating that distinct psychological or neural mechanisms are 

recruited for sub- and supra-second timing. An oversight of these studies was that subjects 

executed the same timing tasks for durations of different timescales. The fact that the human 

observers can execute timing tasks whether the target duration is sub-second or supra-second 

suggests the presence of continuous or common mechanisms across the sub-second system and 

the supra-second system. Based on confirmatory factor analysis, Rammsayer & Troche (2014) 

proposed a hierarchical mechanism of duration perception  in which an timescale-independent 

superordinate processing system controls the sub- and supra-second timing mechanisms 

(Rammsayer & Troche, 2014). This superordinate common mechanism is certainly a possible 

means to realize seamless duration perception across different timescales. However, the 

transitional processing mechanism in the peri-second duration suggested by the present study 

represents another possibility. Even if no superordinate system exists, the continuity of the 
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sub-second system and the supra-second system in the peri-second range might enable the 

execution of timing tasks across different timescales. It should be noted that these two 

possibilities are not mutually exclusive, and further research is necessary to determine how 

these common or continuous mechanisms interact with each other. 

Context-dependent modulations of peri-second processing 

 The present results indicate that the processing mechanism used to perceive 

peri-second durations changes context-dependently; that is to say, peri-second timing relies 

more on the timing system which processed durations presented in recent trials. I also observed 

this contextual effect in the behavioral results. The reproduced duration for the peri-second 

trials was longer when they were intermixed with the supra-second trials, compared to when 

they were intermixed with the sub-second trials. 

 While peri-second timing intermixed with sub-second timing activated the right 

precentral area that was also activated during sub-second timing, peri-second timing intermixed 

with supra-second timing activated the right IPL that was not activated during supra-second 

timing. Hence, there is no simple interpretation of the contextual effect in the right IPL. 

Previous studies have reported activation in the right IPL during supra-second time reproduction 

tasks (Lewis & Miall, 2002; Macar et al., 2002). Moreover, the IPL has anatomical connections 

with the inferior frontal cortex and the auditory cortex (Caspers et al., 2011; Caspers et al., 

2013), which were activated in supra-second timing in the present study. Therefore, I speculate 

that the right IPL activation in peri-second timing intermixed with supra-second timing might 

reflect the involvement of the supra-second timing system. 

 In the present study, context-dependent encoding of time was observed only in the 
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right hemisphere. It is known that various timing tasks activate predominantly right-sided 

networks (Battelli, Pascual-Leone, & Cavanagh, 2007; Coull, Davranche, Nazarian, & Vidal, 

2013; Rao, Mayer, & Harrington, 2001). In particular, the right posterior parietal lobe, where 

greater activation was found in peri-second trials intermixed with supra-second trials, has been 

proposed to be a core region for timing (for a review, Battelli et al, 2007). Regions surrounding 

the central sulcus correspond to the primary motor and primary somatosensory areas, where 

greater activation was found in peri-second trials intermixed with sub-second trials, have also 

been reported to engage in the sub-second timing (Lewis & Miall, 2003b). It should be noted 

that all the contrasts found in the present analysis were computed with regressors time-locked to 

the stimulus presentation. Therefore, precentral (primary motor area) and postcentral (primary 

somatosensory area) activation in the peri-second duration intermixed with the sub-second 

duration would not reflect differences in reproduced durations between two peri-second 

conditions.  

 Even though contrasting activation patterns were computed by regressors for the 

stimulus presentation phase, the difference in brain activity between two peri-second conditions 

corresponded to the reproduced duration. The peri-second trials intermixed with sub-second 

trials activated the precentral area, which is a part of the sub-second system observed in the 

present study, and the reproduced duration of these trials was shorter than the reproduced 

duration of the peri-second trials intermixed with supra-second trials, which activated the right 

IPL, which has been linked to supra-second timing in previous studies. Almost all of the 

previous neuroimaging studies examining neural correlates of perceptual duration used illusions 

of time, in which looming, moving, or flickering visual stimuli appeared to be longer than static 
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stimuli (Bueti & Macaluso, 2011; S. K. Herbst, Chaumon, Penney, & Busch, 2014; Sophie K. 

Herbst, Javadi, van der Meer, & Busch, 2013; Wittmann, van Wassenhove, Craig, & Paulus, 

2010). Because these studies manipulated the perceptual duration by changing stimulus features, 

whether the detected brain activities were related to changes in perceptual duration or stimulus 

features was not dissociable. In contrast, in the present study, differential brain activity that 

depended on the hysteresis of durations in previous trials was detected between physically 

identical visual stimuli. Therefore, the brain activity detected between two peri-second 

conditions can be attributed to context-dependent timing processing and the corresponding 

change of the perceptual duration. 

 Studies with Bayesian modeling have revealed that the temporal variability of 

perceived duration induces the contextual effect such as the central tendency (Jazayeri & 

Shadlen, 2010; Petzschner et al., 2015; Shi, Church, et al., 2013). For the time reproduction task, 

when a single duration is presented and then subjects reproduce its duration, the temporal 

variability of the reproduced duration is larger compared to when multiple durations are 

presented (Grondin, 2012, 2014). The contextual effect of the reproduced duration observed in 

the present study might reflect the inherent large temporal variability of the single duration 

reproduction task and Bayesian inference process. The context-dependent modulations of 

timing systems suggest that the brain optimally encodes stimulus duration based on the history 

of previous trials, as many psychophysical and modeling studies have suggested (Cicchini et al., 

2012; Jazayeri & Shadlen, 2010; Lejeune & Wearden, 2009; Petzschner et al., 2015; Shi, 

Church, et al., 2013). The present study thus found the neural correlate of these proposed 

context-dependent timing systems. These systems would help to efficiently encode duration 
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under noisy conditions and in different temporal contexts, and might be responsible for 

Bayesian process in duration perception. 

 Previous studies have shown that the timing system that is used depends not only on 

stimulus duration, but also on various stimulus features and/or task dimension. Whether or not 

the duration is defined by movement, whether a stimulus is continuous or not (Lewis & Miall, 

2006), and possibly stimulus modality (Yuasa & Yotsumoto, 2015) can all modulate the 

selection of the timing network. In addition to these stimulus or task features, the hysteresis of 

previous trials is also a factor for encoding stimulus duration optimally.  
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 In this doctoral thesis, I have revealed the psychological and neural mechanisms that 

realize the optimal encoding of event duration. Detailed discussions being included in each 

preceding chapter, here, I dwell on the novelties and implications of my studies.  

 Previous studies have sporadically reported the properties of the central tendency by 

using a specific sensory modality or timescale. In Study 1, I investigated the central tendency in 

a comprehensive manner across sensory modalities and timescales, and revealed the 

modality-dependent nature in the sub-second range and the modality-independent nature in the 

supra-second range. In addition, I argued that some assumptions in previous computational 

modeling studies, the scalar property and the disregard of the modality effect for instance, can 

be sometimes violated. The present psychophysical study will prompt a rethink of previous 

Bayesian models of duration perception. 

 In Study 2, by using fMRI, I demonstrated that the sub- and supra-second timing 

networks in the brain are not completely separable, but they cooperatively encode peri-second 

durations. Furthermore, I found that the timing system which processes durations presented in 

previous trials is more involved in subsequent peri-second processing. This study will shed light 

on the neural implementation of the optimal encoding process of event duration. 

 Temporal context effect such as the central tendency shows the past experience 

shapes the perception of the present. In the central tendency, the duration perception in the 

present is biased toward durations presented in the past. In contrast to such an assimilative 

context effect, a contrastive temporal context effect has also been reported: The perception of 

duration is sometimes biased away from durations presented in the past (Heron et al., 2012; 

Walker, Irion, & Gordon, 1981). In this so-called duration adaptation effect, after repeated 
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exposure to relatively longer durations, a subsequent intermediate duration is perceived shorter; 

after repeated exposure to relatively shorter durations, the subsequent intermediate duration is 

perceived longer. A notable difference in task requirement between the central tendency and the 

duration adaptation is the presence of judgments for previously presented durations. When 

subjects have to make judgments about every sequentially presented duration, the central 

tendency is observed. In contrast, the duration adaptation occurs when subjects just passively 

observe the adapting durations and make judgments only about the subsequently presented 

duration. These two phenomena are also different in terms of computational account. While the 

central tendency can be accounted for in the framework of Bayesian inference (Figure 4.1 a), 

the channel-based model is a predominant computational model for the duration adaptation 

(Figure 4.1 b). The channel-based model assumes that the duration of a stimulus is coded by a 

population of channels that are tuned to various durations. Adaptation to a specific duration 

selectively suppresses the activity of channels that are tuned around the adapted duration. Then, 

a subsequently presented stimulus at another duration elicits the channels’ activity, but the 

responses of the adapted channels are weakened. This distortion in the activity-distributions 

across channels generates the aftereffect induced by adaptation (Heron et al., 2012; Murai, 

Whitaker, & Yotsumoto, 2016). By using an fMRI adaptation technique, a recent neuroimaging 

study demonstrated that the supramarginal gyrus, the anterior part of the inferior parietal lobule 

(IPL), exhibits such a duration-tuned neural activity (Hayashi et al., 2015). In Study 2, on the 

other hand, I revealed the context-dependent neural encoding of duration, which is consistent 

with the central tendency, in the posterior part of the IPL (Figure 4.1 c). These two studies 

unveiled that the IPL plays an important role in duration encoding based on the temporal  
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Figure 4.1 The computational models and neural bases of the central tendency and the 

duration adaptation. (a) A Bayesian model of the central tendency, adapted from Jazayeri & 

Shadlen (2010). Both the noisy representation of a stimulus duration (likelihood) and the prior 

knowledge about the distribution of stimulus durations determine a posterior distribution of the 

perceived duration, based on which subjects make their decisions. (b) The channel-based model 

of the duration adaptation. Each Gaussian distribution depicts the tuning curve of each duration 

channel. Normal responses of the duration channels are presented as gray lines. After adaptation 

to a specific duration (arrow), channel responses around the adapting duration are weakened 

(red lines), thereby distorting the group response to a subsequent test duration. (c) The context- 

dependent neural encoding of duration in the angular gyrus (Study 2). (d) The duration-tuned 

neural activity in the supramarginal gyrus, reported by Hayashi et al. (2015). 
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context, and that the anterior and posterior subregions of the IPL are distinctively related to the 

contrastive and assimilative context effect, respectively. 

 In the present doctoral thesis, I focused on the central tendency of event durations. 

The central tendency has been widely reported for various perceptual attributes including 

duration (Cicchini et al., 2012; Jazayeri & Shadlen, 2010), depth, angle (Petzschner & Glasauer, 

2011; Petzschner et al., 2015), and stimulus length (Laming, 1999). Some researchers have 

proposed that duration shares the processing mechanism with other perceptual attributes such as 

size and numerosity, and that these attributes represent the spatial and temporal “magnitude” of 

external events (Walsh, 2003). The cortical areas that are commonly activated by the processing 

of duration, size and numerosity include the posterior parietal area and the prefrontal area (Bueti 

& Walsh, 2009; Hayashi et al., 2013; Walsh, 2003), which correspond to the supra-second 

timing network reported in previous studies (Lewis & Miall, 2003a, 2006; Wiener et al., 2010) 

and also in Study 2 of the present doctoral thesis. Study 1 demonstrated that the central 

tendency in the supra-second range is modality-independent, and the central tendency in the 

supra-second range could be interpreted in a more general computational process beyond 

duration perception. If a common “magnitude” system governs the central tendency of the 

magnitude metrics, the central tendency in duration perception could be correlated with the 

central tendency in other perceptual attributes. My studies brought about understandings as to 

psychological and neural mechanisms of context-dependent duration encoding, and will have 

expandability to a broader optimization process of our perception.  
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