博士論文

Phylogenetic studies on Hymenophyllum subgenus Mecodium C．Presl ex Copel．
（Hymenophyllaceae）with special focus on the species boundaries of the

Hymenophyllum polyanthos（Sw．）Sw．complex
（コケシノブ科Hymenophyllum属Mecodium亜属におけるホソバコケシノブ種複

合体の系統•種分化の研究）

TAVARES VASQUES DIEGO
タヴァレス ヴァスケス ジェーゴ

"Ferns delighted me with their curlicwes, their croziers, their Victorian quality (not unlike the frilled antimacassars and lacy curtains in our house.) But at a deeper level, they filled me with wonder because they were of such ancient origin... My sense of a prehistoric world, of immense spans of time, was first stimulated by ferns and fossil ferns..."
Table of Contents
GENERAL INTRODUCTION 1
CHAPTER 1 - TAXONOMIC BACKGROUND OF HYMENOPHYLLUM SUBGENUS MECODIUM C. PRESL EX COPEL. 8
INTRODUCTION 8
TAXONOMIC CLASSIFICATION OF THE FAMILY 10
HYMENOPHYLLUM SUBGENUS MECODIUM 13
CHAPTER 2 - MOLECULAR PLASTID MARKERS REVEAL THE ACTUAL CIRCUMSCRIPTION OF HYMENOPHYLLUM SUBGENUS MECODIUM C. PRESL EX COPEL. AND OF HYMENOPHYLLUM POLYANTHOS (SW.) SW. (HYMENOPHYLLACEAE) 20
INTRODUCTION 20
MATERIAL AND METHODS 26
RESULTS AND DISCUSSION 30
CONCLUSIONS 39
CHAPTER 3 - FURTHER INSIGHTS ON THE CIRCUMSCRIPTION OF HYMENOPHYLLUM POLYANTHOS (SW.) SW. COMPLEX (HYMENOPHYLLACEAE) BASED ON THE NUCLEAR LEAFY MARKER 49
INTRODUCTION 49
MATERIAL AND METHODS 53
RESULTS AND DISCUSSION 56
CONCLUSIONS 60
CHAPTER 4 - MORPHOLOGICAL AND DISTRIBUTIONAL PATTERNS WITHIN THE HYMENOPHYLLUM POLYANTHOS (SW.) SW.COMPLEX66
INTRODUCTION 66
MATERIAL AND METHODS 71
RESULTS AND DISCUSSION 75
CONCLUSIONS 78
CHAPTER 5 - TAXONOMIC TREATMENT FOR THE SUBGENUS MECODIUM INCLUDING THE RE-VALIDATION OF H. STURMII BOSCH. IN BRAZIL 89
TAXONOMICAL TREATMENT FOR THE SUBGENUS MECODIUM 89
HYMENOPHYLLUM POLYANTHOS 91
HYMENOPHYLLUM STURMII BOSCH. IN BRAZIL 93
GENERAL DISCUSSION AND CONCLUSIONS 103
PHYLOGENETIC RELATIONS WITHIN SUBGENUS MECODIUM 103
THE POLYPHYLETIC STATE OF H. POLYANTHOS 104
PHYLOGENETIC VALUE OF LEAFY MARKER 105
MORPHOLOGICAL, ANATOMICAL AND DISTRIBUTIONAL ASPECTS 106
TAXONOMIC REVISION AND FUTURE PROSPECTS 107
ACKNOWLEDGEMENTS 110
BIBLIOGRAPHY 111
APPENDICES 126

General Introduction

Ferns are a traditionally recognized group which circumscription was widely discussed by taxonomists during decades. Recently, the term "ferns and its allies" corresponds to the most applied definition for these plants, representing the divisions Lycopodiophyta (i.e. Lycopodium, Selaginella and Isoetes) and Monilophyta. The monilophytes corresponds to a monophyletic group (Pryer et al. 2004) and comprises the whisky ferns (Psilotaceae), the moonworts (Ophioglossaceae), the horsetails (Equisetaceae), the marattioid ferns (Marattiaceae) and the leptosporangiate ferns (Polypodiopsida). Represented by more than 9000 species and more than 260 genera, the leptosporangiate ferns are the most diverse lineage of vascular plants after the angiosperms (Schuettpelz \& Pryer 2007).

The leptosporangiate ferns are strongly supported as a monophyletic group by molecular phylogenetic analysis (Pryer et al. 2001) and are characterized by ferns which sporangia is originated from a single epidermal cell. The group is diverse in form and habit, and includes several taxonomic lineages within it. Phylogenetic and taxonomic
assessments regarding this group have taken place in the last decades, bringing new insights on the evolutionary history of ferns.

Several efforts towards revealing the relation between the major lineages of lepstoporangiate ferns were made (Hasebe et al. 1993, 1994, 1995, Pryer et al. 2001, 2004, Schneider et al. 2004a, Schuettpelz et al. 2006, Schuettpelz \& Pryer 2007, Wolf 1997) and resulted in a general phylogenetic framework for the families' limits, which can be refereed to with a considerable accuracy. Nevertheless, infra-familiar categories' taxonomy in ferns still remains as not completely understood, corresponding to a target research topic in the field.

Studies targeting genera and species boundaries within ferns are still in progress, and much is still to be discovered. The main reasons for that vary from technical difficulties to biological reasons. One critical factor is the lack of primers and markers specifically described and developed for ferns' molecular studies. At the moment, the most applied markers in ferns' phylogenetic studies are the $r b c L$, $\operatorname{atp} B$, rps4-trnS and matK (Ebihara et al. 2006, Hennequin et al. 2006, Kreier \& Schneider 2006, Kuo et al. 2011, Lehtonen 2011, Pryer et al. 2001, Rothfels et al. 2012, Sano et al.

2000, Schuettpelz \& Pryer 2007, Schuettpelz et al. 2006, Smith et al. 2006, 2008, Schneider et al. 2004, 2013). Still, as new investigations targeting different lineages of ferns are made, the applicability and limits of each of these markers become clear. Still, the progress of phylogenetic investigations within fern groups is very important, leading to interesting evolutionary discussions.

This research targets a subcosmopolitan species of filmy ferns called Hymenophyllum polyanthos, which belongs to Hymenophyllum subgenus Mecodium. The biology and distribution, as well some evidences from previous studies, indicate that the species may correspond to a non-monophyletic lineage. Through collection of several specimens of the subgenus Mecodium, this research compares DNA sequences of different markers to distributional and morphological traits, aiming to solve the question regarding the monophyly of the complex.

Chapter 1 brings a historical summary of the classification system changes within Hymenophyllaceae, with focus on the generic and subgeneric levels. Taking as a starting point the bigeneric division between Hymenophyllum and Trichomanes, the chapter gathers and compares different classification systems within these genera,
arriving at the discussions regarding the circumscription of Mecodium. This discussion is essential for understanding the questions about the monophyly of Hymenophyllum polyanthos, discussed in the next chapter.

Chapter 2 brings, then, the main discussions of the thesis, corresponding to the polyphyly of H. polyanthos. The species is subcosmopolitan, distributed through tropical and subtropical regions of the globe. It is included in subgenus Mecodium, which was circumscribed recently by Ebihara et al. (2006) and Hennequin et al. (2006) based on molecular data. At the time of the circumscription, evidences that pointed towards the polyphyly of H. polyanthos were also obtained, but further investigations were still necessary to achieve concrete conclusions regarding the species. This chapter focuses on this matter and brings a clarification to the evolutionary history behind the evidences found by Hennequin et al. (2006). Based on several molecular markers investigated from different specimens of Mecodium, this chapter concludes that H. polyanthos corresponds to a polyphyletic species group.

Chapter 3, then, investigates the possible reasons for the polyphyletic condition of H. polyanthos. In order to address the occurrence of gene introgressions within the complex, the nuclear marker $L E A F Y$ is applied on a phylogenetic analysis, and the result is compared to the trees obtained in chapter 2. From this comparison, possible explanations for the diversity within Hymenophyllum subgenus Mecodium and the H. polyanthos complex are explored.

Based on the previous chapters discussions, chapter 4 brings morphological and anatomical comparisons between the samples analyzed, taking as a premise the phylogenetic groups obtained in those chapters. Seven parameters from the leaves and three anatomical parameters from the rhizomes are analytically compared to the phylogenetic groups in this chapter.

Finally, all of the results of the previous chapters are merged in chapter 5 into a novel taxonomic treatment for Hymenophyllum subgenus Mecodium. As a result, traits of the leaves support the suggestion of two new sections within the subgenus Mecodium: section Cuneatae, represented by plants from Malesia, Australia, Pacific
islands and South America; and section Mecodium, represented by plants from Africa,

Asia and Neotropics, including the type clade for H. polyanthos.

VASQUES D.T.

Chapter 1 - Taxonomic background of Hymenophyllum subgenus Mecodium C. Presl ex Copel.

INTRODUCTION

The Hymenophyllaceae family is a subcosmopolitan family of ferns represented by about 600 species, and corresponding to one of the largest families of leptosporangiate ferns (Iwatsuki, 1990). Known as the filmy ferns, this is a family of epiphytic saxicolous or terrestrial ferns of small to medium size. The rhizome is creeping, bearing a simplified protostelic vascular system. Leaves' petioles are non-articulated and can be present or not. The lamina can be simple, pinnate, flabellate, digitate, dichotomous or irregularly divided. The blade is composed by one to 4 layers of cells, and stomata or intercellular spaces are not present. Sori are terminal to the veins, solitary and covered by a cup or tube-shaped indusium. Sporangia occur inside of the indusium, attached to receptacles terminal to the leaf veins. Spores are globose-trilete, tetrahedral, bearing chloroplasts and short-lived (Iwatsuki 1990).

The delicate leaves composed by one to few layers of cells are the main distinguishing trait of the family, conferring a filmy appearance to these plants. Usually
occurring in shadowy and moisty environments (such as deep rain forests), these plants are very susceptible to desiccation. As observed by Shreve (1911), due to their physical properties, Hymenophyllaceae individuals are confined to places where specific abiotic conditions are attained: i.e over rocks near waterfalls or by the riverside; over fallen trunks associated to mosses or other bryophytes; and in areas where the temperature and humidity are more or less constant during the day. These conditions are usually achieved in mountainous rain or misty forests, at higher altitudes (over 1200m). Plants that occur at lower altitudes (e.g. around 900 m) are usually confined to deep forests in ravines, where the humidity and environmental temperature are more constant.

The family Hymenophyllaceae is a major family within the ferns and unique in its appearance. Even restricted to shadowy and moisty areas, the family represents are scattered around the globe, being found not only in tropical, but also in sub temperate areas. The species richness is also notorious, being overcome only by Cyatheaceae (ca. $600+\mathrm{spp}$), Dryopteridaceae (ca. 1700 spp), Pteridaceae (ca. 950 spp), Aspleniaceae (ca. 700 spp) and Polypodiaceae (ca. 1200 spp) (Smith \& al. 2006). Base chromosome number also varies within the family, but the lowest counts within ferns ($\mathrm{x}=11$) are
reported here (Smith \& al.2006). The simplification of leaves and rhizome structure is intriguing, especially due to the restriction of environments in which these plants occur. Nevertheless, asexual gametophytes are reported in regions beyond the distribution range, reaching temperate regions in the North America (Duffy \& al. 2015, Taylor 1967).

TAXONOMIC CLASSIFICATION OF THE FAMILY

Presl, van de Bosch, Mettenius, Prantl, Christensen, Copeland and Giesenhagen were important scientists that contributed to the taxonomy of Hymenophyllaceae during the $20^{\text {th }}$ century (Morton, 1968). Most of the systems proposed by these scientists divide the species into two genera: Hymenophyllum Sm . and Tricomanes L.. The main feature distinguishing these two traditional genera is the conformation of the sori sinangium, which is bivalvate in Hymenophyllum and cup-shaped in Trichomanes.

Copeland system was not very well accepted by other authors of that time, such as Christensen, Alston, Madame Tardieu-Blot, Schelpe, Sledge, Tryon and Holttum (Morton, 1968). The main reason for this was that Copeland proposed the
division of the family in several groups, some of them raised to the category of subgenus and genus later. The circumscription of so many groups was not recognized as practical by Morton and other scientists of the time, specially because Copeland based the description of many of his groups on subjective traits, such as "harsh leaves" or "fronds more divided". Also, unlikely other taxonomists of that time, Copeland believed that the sori involucre structure was not a reliable character for the classification of the family, although he contradicted himself while applying sori traits into his keys.

According to Morton (1968), the genus delimitation within Hymenophyllaceae is complicated, even for taxonomists and experts on the family. Furthermore, resuming the family to two genera distinguishable by the sori pattern results in several identification mistakes, especially when fertile fronds are not available. The author states that more subtle traits of the rhizome, petiole and lamina are important for the identification of groups within the family.

Clearly against an exaggerated division of fern families into small groups, Morton (1968) expresses that Hymenophyllaceae is very likely to be a monophyletic family. In face of a plant group with such a complicated taxonomic background,

Morton's intention was to gather knowledge on the family acquired over the years into a monography, which resulted in the division of the family into 6 genera.

Years later, Iwatsuki $(1984,1990)$ found previous classifications either heterogeneous or inconvenient, of hard application when considering a broader range of species. In order to address these inconveniences, Iwatsuki $(1984,1990)$ designed a system where the family is divided into two subfamilies: subfamily Hymenophylloideae (represented by 8 genera) and subfamily Cardiomanes (monotypic). In contrast with the previous classification systems, Iwatsuki $(1984,1990)$ system was based on a broader range of traits, taking in consideration aspects of the lamina and venation, and not only traits relative to the sori.

More recently, with the advance of the usage of molecular tools in taxonomic analyses, several studies on the family brought new insights on the circumscriptions of infra-family categories (Dubuisson \& al. 2003, Ebihara \& al. 2006, Hennequin \& al. 2003, 2006). With a molecular approach and aiming to categorize all the species of the family into monophyletic groups, Ebihara et al. (2006) proposes a system composed by 9 different genera. In this system, the hymenophylloid ferns are grouped within a single
genus Hymenophyllum, while the remaining trichomanod ferns are split into 8 different genera.

HYMENOPHYLLUM SUBGENUS MECODIUM

The genus Hymenophyllum sensu Ebihara (2006) is represented by long-creeping plants, with glabrous wiry rhizomes and bivalve sori. About 250 different species compose the genus, distributing from tropics to temperate regions and being categorized into 10 different subgenera. A comparison between the categories proposed by Ebihara (2006) and the previous classification systems can be found in table 1.

The subgenus Mecodium C. Presl ex Copel. sensu Ebihara (2006), one of the most representative subgenus of Hymenophyllum, is composed by about 35 species of cosmopolitan distribution and epiphytic habit. Plants of this subgenus are long-creeping, bearing filiform rhizomes, pinnate to tripinnate leaves with entire margins. Hairs and scales are abscent or caducuous, and further morphological specificities are not reported. The base chromosome number for the subgenus is $\mathrm{x}=28$ and corresponds to a synapomorphy for the group (Hennequin et al. 2010). The lectotype for the subgenus is Hymenophyllum polyanthos (Sw.) Sw., being selected by Copeland (1937).

Copeland (1937, 1938) circumscribed the subgenus Mecodium as a monophyletic group, composed by more than 100 species characterized by the entire, mostly glabrous lamina, and by the bivalve sori, with included receptacles. This circumscription was widely accepted during the $20^{\text {th }}$ century, although some divergences regarding the rank attributed to Mecodium were discussed (Hennequin et al. 2006). In this period, the works of Morton (1968), Pichi Semrolli (1977) and Iwatsuki $(1984,1990)$ were very influential for the taxonomy of the group (Table 1). Copeland (1937) had set Mecodium polyanthos (= Hymenophyllum polyanthos) as the type for Mecodium, although in 1947 the author had changed the type to Mecodium sanguinolentum Presl ex Copel. Nevertheless, Morton (1968), Pichi Sermolli (1977) and Iwatsuki $(1984,1990)$ kept M. polyanthos as the type for Mecodium.

Hennequin et al. (2006) tested the $20^{\text {th }}$ century hypothesis of classification for Mecodium by sampling several species of Hymenophyllum and gathering sequences from plastid markers. The results evidence that the subgenus Mecodium, as treated during the $20^{\text {th }}$, stood as a polyphyletic group, including represents from different subgenera. Furthermore, the clade containing H. polyanthos appear in accordance with
the subgenus Mecodium sensu Hennequin (2003), although H. polyanthos samples do not appear grouped in a monophyletic clade.

Interestingly, H. polyanthos represents appear interspersed with other species of Mecodium and, ultimately, divided into 2 clades that seem to reflect biogeographic patterns: one clade including species from the Mascarene Islands (i.e. H. inaequale (Poir.) Desv. and H. polyanthos from La Reunión), Chile (i.e. H. cuneatum Kunze) and Australia (i.e. H. mnioides Hooker \& Baker, H. ooides F. Muell \& Baker, H. polyanthos and H. rarum R. Br.); and another clade including species from the Neotropics (i.e. H. apiculatum Mett. ex Kuhn and H. polyanthos from Bolivia) and North Asia (i.e. H. polyanthos from Japan, H. wrightii Bosch and H. corrugatum Christ). At this point, represents of H. polyanthos investigated in the analysis appeared more closely related to biogeographically close samples, than to those identified as belonging to the same species, indicating that H. polyanthos could correspond to a complex of species with a subcosmopolitan distribution (Fig. 1).

As Hennequin (2006) explains, the non-monophyly of Mecodium is not taken as a surprise, since most of the subgenus' description was based on the absence (rather
the presence) of particular traits. Howbeit, the broad investigation undergone by Hennequin et al. (2006) has brought evidence to the presence of non-monophyletic groupings inside Mecodium, such as H. polyanthos, stressing the importance of broad taxonomic sampling. Although H. polyanthos specimens were sampled by Hennequin et al. (2006), the short coverage of sampling restricts discussions that can lead towards a monophyletic circumscription of the species. To resolve this, a broader sampling of the subgenus is necessary, including both specimens of H. polyanthos from several regions of the globe, and also other species included in Hymenophyllum subgenus Mecodium sensu Ebihara (2006). Like this, both distributional patterns and species limits can be assessed.
17

	saитшо!рıрว	-	sәишшо!рıрว	sauршо!pıp
	шпииоэоиарчdS	шпиио!оояарч ${ }_{S}$	ипllкидоидшк ${ }_{\text {¢ }}$	шп!̣о!วоиวрчdS
				шпиио!วодДәт
	шпйкидоиашк ${ }_{H}$	ип!рогдб		ип!рогда
		иодчдркэтид		иодчдркэтидН
		шпllкидоиашк ${ }_{H}$		
				шпlıкцдоиашк ${ }_{H}$
				plsang
snuәŋ	snuəŋ	snuəธิqns	sпuəŋ	snuəŋ
	(t86I) !¢п¢ұ¢mi	(896I) 407.10W		(Lt6I'8E6I) purpado

Figure 1: Estimated distribution for Hymenophyllum polyanthos (Sw.) Sw. is show by areas highlighted in yellow. Albeit the wide geographical distribution, these plants are usually restricted to more dense and humid forests, at higher altitudes.

VASQUES D.T.

Chapter 2 - Molecular plastid markers reveal the actual circumscription of Hymenophyllum subgenus Mecodium C. Presl ex Copel. and of Hymenophyllum polyanthos (Sw.) Sw. (Hymenophyllaceae)

INTRODUCTION

Hymenophyllum polyanthos (Sw.) Sw. corresponds to a subcosmopolitan species of filmy ferns and was first described by Swartz in 1788, under the name Trichomanes polyanthos Sw., and later combined to the genus Hymenophyllum in 1800 by the same author (Swarts 1788 , 1801). The type specimen is from Jamaica and it was described as a plant with 4-pinnatifid and deltoid leaves, pinnae decurrent, apex linear obtuse and sori numerous at the margin of the lamina (Swartz 1801). The epithet "polyanthos" (i.e. Poly, from the Greek $\pi \mathrm{m} \lambda$ ús, meaning "many"; and Anthos, from the Greek ơv θ os, meaning "flower") also probably derives from the numerous sori observed on the lamina of this species. Nevertheless, the number of sori on the lamina of these plants is far from being a useful diagnosis trait, since such character is observed in several other species of Hymenophyllaceae.

Not differently from other filmy ferns, the body of H. polyanthos is very simple in structure: the rhizome is long creeping, wiry and without any appendices (e.g. hairs or scales, that when present are usually caducous); the anatomy of the vascular bundle is of a 'subcolateral' protostele (Ebihara et al. 2007), with few exarch xylem cells surrounded by phloem, and a sclerenchyma ring present at the inner part of the cortex; petioles are not articulated to the rhizome and glabrous; lamina also glabrous, ovate to lanceolate, pinnatifid or pinnate; lamina tissue thin, composed of one layer of cells; sori numerous, concentrated on the distal portion of the lamina, composed of bivalve structures originated from terminal veins; sporangia are organized around a receptacle; spores bearing chloroplasts.

Due to the delicate structure of its leaves, the plants of this species are usually found in shadowy and moisty environments, like dense rainy and misty forests and near to rivers and waterfalls (Fig. 2). When occurring in more open areas, hit by direct sunlight and with higher variations in temperature and humidity during the day, H. polyanthos usually appears growing over living plants (e.g. Bromeliaceae) or fallen trunks, often within populations of mosses (Fig. 2B). As Shreve (1911) states, H.
polyanthos is, within the Hymenophyllaceae, one of the species most resistant to desiccation, after the trichome-bearing species. According to the author, as H. polyanthos' leaves dry, they curl like a crozier protecting the inner parts from further desiccation (Shreve 1911).
H. polyanthos has a pantropical distribution, occurring in elevated areas of the South and Central America (with few records in North America), South Africa, Asia and Oceania. Taxonomically, the species is grouped in Hymenophyllum subgenus Mecodium sensu Ebihara et al. (2006), despite doubts regarding your monophyly (Hennequin et al 2006). As explained in Chapter 1, Mecodium is a name that received several combinations during the last century, being recently revised by Hennequin and collaborators (Ebihara et al. 2006, Hennequin et al. 2006, 2010).

By comparing data from $r b c L-a c c D$ and $r p s 4-t r n S$ plastid markers, Hennequin et al. (2006) estimated a tree including represents from several subgenera of Hymenophyllum, and aiming to test the monophyly of Mecodium sensu Copeland (1938) and Pichi-Sermolli (1977), while comparing to circumscriptions proposed by Morton (1968) and Iwatsuki $(1984,1985)$. As a result, Mecodium sensu Copeland
(1938) and Pichi-Sermolli (1977) emerged as a non-monophyletic grouping, with represents scattered through the whole phylogeny.

Ebihara et al. (2006) proposed a new circumscription based on these results, delimiting Mecodium to the clade indicated as "H. polyanthos clade" by Hennequin et al. (2006). Like this, Hymenophyllum subgenus Mecodium sensu Ebihara et al. (2006) is circumscribed around more than 35 species, with H. polyanthos as the lectotype (selected by Copeland 1937). According to the circumscription of Ebihara et al. (2006), Mecodium includes epiphytic plants with rhizomes long-creeping, filiform, nearly glabrous; stipes up to 10 cm long; blades pinnate to tripinnatifid, elliptic to subdeltate, 45 cm by 6 cm , margins of segments entire; sori at the tips of ultimate segments, lips bivalve, entire, receptacles included in involucres; chromosome number base $x=28$ (Ebihara et al. 2006). Although the subgenus Mecodium and other Hymenophyllum subgenera were consistently circumscribed by Hennequin et al. (2006) and Ebihara et al. (2006) investigations, the position of H. polyanthos samples within the phylogenies indicated that the species might not correspond to a monophyletic grouping.

al. (2006) and research goals

One of the greatest challenges in the taxonomy and systematics of ferns is to
delimit species boundaries. Phenomena like apogamy, apospory and parthenogenesis (although not so common) have been reported in groups of ferns (Steil 1939), as well as hybrids and polyploid lineages (these ones more likely to occur in ferns), indicating that complex evolutionary scenarios are also responsible for the extant diversity of ferns.

Accurate recognition and delimitation of species of the family Hymenophyllaceae are especially complicated, due to the simplicity of the form of these plants, which usually bear one-cell thick leaves and have only a few centimeters of size. The lack of clearly distinguishable taxonomic traits and the difficulties to cultivate and study the biology of these delicate plants leads to the prediction of the existence of many species yet to be discovered. In the case of H. polyanthos, the broad geographical distribution (Fig. 1) had led scientists to argue about the existence of different lineages comprised under the same species name, but lack of definitive traits that could delimit such lineages in a category such as 'species' has precluded the taxonomy of the group to be further understood.

The goal of this chapter is to explore molecular data evidence that elucidates
the evolutionary relationship between geographically separated populations of H. polyanthos, clarifying the phylogenetic status of the species. Due to the confusing taxonomic background of the species and of the subgenus in which it is included, from this point on the subgenus Mecodium is going to be treated following Ebihara et al. (2006) circumscription, i.e corresponding to H. polyanthos and its closely related species, and sharing the basic chromosome number of $\mathrm{x}=28$ (Ebihara et al. 2006, Hennequin et al. 2006). H. polyanthos is going to be referred as a sensu lato lineage and a list of all species included in subgenus Mecodium sensu Ebihara et al. (2006) can be assessed through table 2. In this chapter three main questions will be addressed: 1) If H. polyanthos stands as a monophyletic grouping or not; 2) How lineages within the subgenus Mecodium are phylogeographycally related; and 3) How many lineages compose H. polyanthos sensu lato. Whether H. polyanthos s.l. should stand as a unique species lineage or should be divided into different groups corresponds to a question that profoundly affects the taxonomy of the subgenus Mecodium and, subsequently, of the family Hymenophyllaceae as well.

MATERIAL AND METHODS

Sampling and DNA extraction -- Samples included specimens recognized as H. polyanthos as well other closely related species of subgenus Mecodium sensu Ebihara et al. (2006). Samples were acquired through both collection trips and donations from collaborators. The main collection trips included visits to the Serra da Bocaina National Park in Sao Paulo, Brazil ($22^{\circ} 43^{\prime} \mathrm{S}, 44^{\circ} 36^{\prime} \mathrm{W}$), to Oku-Tama, Tokyo, Japan $\left(35^{\circ} \mathrm{N}\right.$, $139^{\circ} 7^{\prime}$ E) and to Amagi Kogen in Izu, Shizuoka, Japan ($34^{\circ} 51^{\prime} \mathrm{N}, 139^{\circ} 1^{\prime}$ E). The Serra da Bocaina trip was made between 21st-23rd February of 2015, in collaboration with Dr. Jefferson Prado, Dr. Regina Hirai and Danilo S. Gissi, researchers of the Institute of Botany of Sao Paulo. The Serra da Bocaina comprises an area of about 104000 hectares between the states of Sao Paulo, Rio de Janeiro and Minas Gerais. The park area includes formations of Cerrado (Brazilian savanna), rainy forests and pinewoods. It is a part of the Serra do Mar formation, reaching 2000 meters of altitude. The rainy forests in high altitude locations of this area provide a favorable environment for the occurrence of Hymenophyllaceae species.

In Japan, the main collections occurred in two opportunities: in the 22nd May of 2015, to the Oku-Tama area in Tokyo; and in the 4th July of 2015, to the

Amagi-Kogen area in Izu, Shizuoka. In both cases, dense vegetation, high altitude and humidity were conditions of the environment. Additional samples were obtained through small personal trips, as well the donation of collaborators from Brazil, US and Japan. The final dataset contains samples from several regions of the globe, including Central and South America, continental Africa, Asia, Australia and Pacific (appendix 1).

Fresh samples were involved in cloth bags before being placed in plastic bags together with silica gel in order to avoid exaggerated dehydration. Additional plants leaves and stems were pressed between paper towels and left to dry under room conditions for at least three days. After this, plants were organized in vouchers and deposited in the TNS herbarium in Tsukuba Museum of Natural History and at the SP herbarium in the Institute of Botany of Sao Paulo, Brazil (appendix 1).

Samples dried in silica gel as well additional voucher samples acquired from collaborators were used for DNA extraction. About 20 mg of leaves were pulverized using TissueLyser II by QIAGEN, followed by DNA extraction using the DNeasy plant mini kit (QIAGEN) standard protocol. Obtained DNA was stocked at $-30^{\circ} \mathrm{C}$, in
completely dark boxes.

Markers amplification and sequencing -- For the analysis of chloroplast DNA, six different markers were targeted, including the $a t p B$ coding region, atpB-rbcL intergenetic region, $r b c L$ coding region, $r b c L-a c c D$ intergenetic spacer, rps5-trnS intergenetic spacer and the matK coding region (Table 3). The sequencing of most of these markers is novel for the group. Amplification reactions: atpB region, one cycle of initiation under $95^{\circ} \mathrm{C}$ for 5 minutes, followed by three folds ten loops of $95^{\circ} \mathrm{C}$ for 30 sec , $56-59^{\circ} \mathrm{C}$ grade for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 minute, and one cycle of $72^{\circ} \mathrm{C}$ for 10 minutes; $\boldsymbol{a t p} \boldsymbol{B}-r \boldsymbol{b c} \boldsymbol{L}-\boldsymbol{a c c} \boldsymbol{D}$ region, one cycle of initiation under $94^{\circ} \mathrm{C}$ for 3 minutes, followed by three folds ten loops of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 52-54^{\circ} \mathrm{C}$ grade for 30 sec , and $72^{\circ} \mathrm{C}$ for 75 seconds, and one cycle of $72^{\circ} \mathrm{C}$ for 10 minutes; rps5-Trns region, one cycle of initiation under $94^{\circ} \mathrm{C}$ for 3 minutes, followed by three folds ten loops of $95^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 52-57^{\circ} \mathrm{C}$ grade for 45 sec, and $72^{\circ} \mathrm{C}$ for 70 seconds, and one cycle of $72^{\circ} \mathrm{C}$ for 10 minutes; $\boldsymbol{m a t K}$ region, one cycle of initiation under $95^{\circ} \mathrm{C}$ for 5 minutes, followed by three folds ten loops of $95^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 49-52^{\circ} \mathrm{C}$ grade for 30 sec , and $72^{\circ} \mathrm{C}$ for 1 minute, and one cycle of $72^{\circ} \mathrm{C}$ for 10 minutes. Amplification products were purified with ExoSap-IT
(Affymetrix), following sequencing procedures.

Sequences alignment and phylogenetic analysis -- forward and reverse sequences were assembled using ATGC v. 4.3.5 (Genetyx Corporation) and aligned using MEGA v. 7.0 (Kumar et al. 2016). The most suitable evolutionary model for the datasets was calculated using jModelTest v. 2.1.7 (Darriba et al. 2012). As outgroup lineages, sequences of Hymenophyllum species belonging to subgenera other than Mecodium were used. In total, 83 specimens were analyzed by comparing 4543 bp of the plastid markers.

Bayesian inference analysis was conducted using MrBayes v.3.2.5 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003). Markov Chain Monte Carlo method (Geyer \& Keramidas, 1991) was applied for one million generations, priors were set for equal and the posterior probability was sampled at each 1000 generations, being the first 25% discarded as burn-in. Maximum Likelihood analysis was performed using RAxML (Stamatakis 2006), using the GTRGAMMA model and over a 1000 bootstrap replicates. Finally, trees were edited using FigTree v. 1.4.2 (Rambaut 2012) and Illustrator v. 18.1.1.

Further analysis -- At the moment, a limited variety of markers is sequenced and available in GenBank, mostly corresponding to $r b c L$ and $r p s 4-t r n S$ sequences obtained by Hennequin et al. (2006). Although the restriction of data to these two markers results in a lower resolution of the tree on a subspecific level, an additional analysis (combining the novel data from this research with the GenBank data) is also provided here. The dataset here includes 120 OTUs and 2545 bp .

RESULTS AND DISCUSSION

Plastid markers phylogeny

The resulting phylogenetic tree for the plastid markers is shown in figure 3.

Numbers over each node denote the posterior probability for the Bayesian Inference, while numbers underneath each node represent the bootstrap rate for the Maximum Likelihood analysis. The node marked with a star shape is strongly supported by both analyzes and includes H. polyanthos and its correlated species samples. For that reason, this clade is understood as the correspondent to Mecodium sensu Ebihara et al. (2006), ultimately representing the H. polyanthos complex.

The Mecodium clade divides into two sub clades, herein marked as PSA and AN. Clade PSA is represented by individuals distributed from Asia to South America, passing through the Pacific and can be subdivided into 3 different clades: A South American clade (H. polyanthos samples from Brazil and H. cuneatum from Chile); a southeast Asia/ Papuasia clade (H. novoguineense K. Iwats. from New Guinea and H. polyanthos from Indonesia and Malaysia); and a Pacific clade (H. rarum from New Zealand and H. polyanthos from French Polynesia and Marquesas).

Other samples from the Central America (Costa Rica) and South America (Bolivia) were grouped within clade AN, in a clade identified here as N . The lineages divide here once again into 2 clades, one represented by H. myriocarpum Hook., and another composed by represents of H. undulatum (Sw.) Sw. and H. polyanthos. H. myriocarpum and H. undulatum are two species distinct by their 2-3 pinnate leaves of relative big dimensions.

The remaining samples in clade AN are distributed in several lineages, but the monophyly of these lineages as one group is not well supported by the plastid dataset applied here (Bayesian Inference posterior probability $=0.84$, not supported by the ML
analysis). Nevertheless, these lineages are represented by plants distributed from Tanzania, India and Southeast Asia, including H. wrightii Bosch and H. mikawanum (Seriz.) Seriz. from Japan, H. paniculiflorum C. Presl, H. corrugatum and H. kuhnii C. Chr., besides other represents of H. polyanthos.

The overall topology of the tree suggests the existence of at least two lineages, as shown in figure 4: one clade, represented by plants from Southeast Asia, Papuasia, Pacific islands and South America, will be refereed herein as the "Pacific-South America clade" (PSA), while another, represented by plants from Africa, Asia and Central to South America, will be referred as the "Asia/ Neotropics clade" (AN) (Fig. 3, Fig. 4).

Further analysis

In order to evidence the position of H. polyanthos complex samples within the genus Hymenophyllum and attempt to improve the sampling here, sequences available in GenBank were added to the analysis. Yet, few pieces of research on the group were performed until now, resulting in that sequences from GenBank are restricted to a number of markers. For that reason, only sequences from rbcL and rps4-trnS were
included in this analysis, resulting in a lower resolution of the tree.

Figure 5 shows the resulting tree, with the Bayesian inference posterior probabilities and the Maximum Likelihood shown over its respective node. The gray square denotes the H. polyanthos complex represents, circumscribing the subgenus Mecodium relatively to the other analyzed subgenera. As expected, the subgenus is circumscribed as a monophyletic grouping, supporting previous reports (Ebihara et al. 2006, Hennequin et al. 2006).

The topology of Mecodium tree is similar to the one obtained herein when comparing the whole dataset (Fig. 3). This indicates that even when comparing with other outgroups or when including novel samples, the overall topology of the tree isn't altered. The distinction between the "Pacific/ S. America" and "Asia/ Neotropics" clades is maintained, and there is no contradiction regarding the obtained groups within these clades.

Adding to this, new insights are obtained from this tree containing GenBank data. First, in the "Pacific/ S. America" clade, the PSA group is added with samples from La Reunion, an island from France located east of Madagascar, in the Indian

Ocean. The two samples included here (i.e. one H. polyanthos sample and one H. inaequale sample) appear grouped and may be sister to the S. America clade composed of Brazil and Chile samples. The accurate relative position of these clades cannot be assessed further on in this analysis due to the low support of the acquired nodes. Further analysis including La Reunion samples covering other markers should solve this question. Nevertheless, South America and La Reunion individuals are included in the SSA group.

The "Pacific-South America Clade" (PSA)

This clade is mostly represented by South hemisphere distributed samples, including plants from Chile, Brazil, New Guinea, French Polynesia, Marquesas and New Zealand, with Indonesian and Malaysian samples also included here. The clade is well supported by both ML and Bayesian analysis and is further divided into three clades based on its distribution.

The most basal clade that emerges here is indicated as the PSA1 clade and includes represents from Brazil and Chile (represented by H. cuneatum) (Fig. 6). The analysis including GenBank sequences shows that H. cuneatum appear clustered with H.
inaequale and H. polyanthos, both from La Reunion. Hennequin et al. (2006) and Larsen (2014) results pointed to a similar tree topology, but the results herein bring more support and resolution to the relation between the taxa, since the dataset applied here is more extensive than the previous works. According to Larsen (2014), subgenus Mecodium in the southern part of South America is represented by seven different species (i.e. H. apiculatum, H. axillare Sw., H. cuneatum, H. darwinii Hook.f. ex Bosch, H. fendlerianum J.W. Sturm, H. polyanthos and H. viridissimum Fée), distinguishable by undulations on the lamina margins and by the shape of the indusia.

Sister to the PSA1 clade, specimens from Southeast Asia and Pacific Islands emerge. The PSA2 clade includes H. polyanthos represents from Malaysia and Indonesia, clustered together with H. novoguineense from New Guinea, while the PS3 clade is represented herein by French Polynesia and Marquesas H. polyanthos, sister to H. rarum from New Zealand (Fig. 6).

The Asia-Neotropics clade (AN)

This clade is represented both by specimens from Southeast Asia and Africa,
as well by specimens from North and Central America. The "Neotropics" (N) clade (Fig. 6) is represented here by H. myriocarpum, H. undulatum and H. polyanthos from Bolivia and Costa Rica. H. myriocarpum and H. undulatum are species with a great range of trait variation within individuals according to Stolze \& Tryon (1989), occurring from Mexico to South America, including the Amazon region. The addition of Genbank data also included H. apiculatum within this clade (Fig. 5).

Taking in consideration the distributional proximity, H. polyanthos type (from Jamaica) is also likely to be included here. The clade marked as "type" (T) clade in figure 6, composed solely of H. polyanthos samples and sister to H. undulatum, is hypothesized as the type clade for H. polyanthos. Further confirmation of this hypothesis should be achieved by sampling of Jamaica H. polyanthos specimens.

The remaining groups ("A" groups, Fig. 3) include plants from Africa, Indo-China, Southeast Asia and Malesia. H. kuhnii from Tanzania and H. corrugatum from China appear within these groups, but the resolution at the base of the tree do not allow further conclusions (Fig. 6). Still with a relative position not well estimated by the dataset applied herein, three other clades appear: the "Malaysian" ("M" clade, Fig. 6)
clade, represented by H. polyanthos from Malaysia; the "H. wrightii" ("W" clade, Fig. 6) clade, represented by H. wrightii from Japan; and the "SE Asia - Malesia" clade (SEAM, Fig. 3), composed by several lineages. H. wrightii is a small species of Hymenophyllum distributed mainly in Japan and Korea, but with some reported occurrences of asexual gametophytes in North America (Duffy et al. 2015, Taylor 1967) and sporophytes in Canada (Iwatsuki 1961).

Finally, the SEAM clade is composed by at least four H. polyanthos s.l. clades, plus other related species. The H. polyanthos s.l. lineages correspond to the "Japan-Taiwan H. polyanthos" (JT) clade, including specimens from Aichi, Kagoshima and Miyazaki prefectures in Japan; the "Malaysia-Indonesia H. polyanthos" (MI) clade; the "Indonesia-Buthan-Cambodia H. polyanthos" (IBC) clade; and the "Japan H. polyanthos" (J1, J2 and J3) clades, including specimens from Nagano, Kanagawa and Tokyo (Fig. 6). Additionally, H. paniculiflorum, a compact species of Hymenophyllum, appears in a monophyletic clade within here ("Pan group"), closely related to the JT, MI and IB clades. Herein, H. paniculiflorum specimens are representative from Japan, Taiwan and Malaysia. Also, H. mikawanum, an endemic species to Mikawa, Japan
(Serizawa 1983), appear sister to the J1 clade.

Species boundaries within the complex

The topology of the tree inferred from the analysis of chloroplast markers reflects the diversification history within Mecodium, taking as a premise that chloroplasts diversification paths are correlative to the diversification paths of species that carry those chloroplasts. However, being chloroplasts usually unilaterally inherited in plants, the investigation of other markers, such as nuclear ones, is made necessary for unveiling the complete diversification background here.

Based on the plastid data explored in the previous sections, it is evident that H. polyanthos sensu lato does not correspond to a monophyletic grouping, hence being pointed as a polyphyletic species here. As explored in Funk \& Omland (2003), polyphyletic species are commonly discovered in phylogenetic investigations using molecular markers. The phenomenon, however, can be related to different reasons, including insufficient taxonomic treatment, gene introgression events, or the occurrence of polymorphisms or cryptic species (Funk \& Omland 2003).

Constructing a phylogeny based on nuclear markers and comparing it to the
plastid tree on this chapter can address these events. If trees emerge as congruent (i.e. bearing the same topology), nuclear markers phylogeny becomes further evidence for the evolutionary background supported by plastid markers. On the other hand, if incongruences emerge, further explanations become necessary, and events like introgressions or hybridizations can be addressed. The next chapter will take these questions as a topic of research, and the nuclear $L E A F Y$ marker will be the material for further phylogenetic discussions.

CONCLUSIONS

In accordance with previous estimations, but with a novel level of accuracy and detail, the subgenus Mecodium (undoubtedly monophyletic as circumscribed by Ebihara et al. 2006) is divided into 2 clades: a "Pacific/ S. America" clade, composed by plants that may have evolved in the South America region and then dispersed to the Pacific Islands and to La Reunion in the Indian Ocean; and a "Asia/ Neotropics" clade, composed by plants that evolved from Asia-Malesia regions to the Neotropics, dispersing to the northern part of South America. Furthermore, H. polyanthos, the type species for the subgenus, emerges as a polyphyletic species, as expected when taking in
consideration past studies on the genus Hymenophyllum. Reasons for this can include taxonomic misleads, but also genetic and evolutionary factors, requiring further research including nuclear markers and also morphological and ecological investigations. Such investigations, as well a novel taxonomical treatment suggestion, will be topics for the following chapters.

Figure 2: Hymenophyllaceae species usually occurs in humid environments, such as misty or rainy forests. A: misty forests at Serra da Bocaina, in Sao Paulo, Brazil. The mist was common during the mornings, covering the base of the mountains where dense vegetation was observed; B : fallen trunk covered by Bromelliaceae and Hymenophyllaceae speciemens (São Paulo, Brazil); C: Hymenophyllum paniculiflorum occurring in the crevice between rocks and together with various lichens (Yamanashi prefecture, Japan); D: Hymenphyllum polyanthos pending from a trunk (São Paulo, Brazil).

Table 2: List of species included in subgenus Mecodium sensu Ebihara (2006), taken as reference for this investigation.

Species	Author	Original reference	Date	Locality
H. abruptum	Hook.	Species Filicum 1: 88, t. 31B	1844	Jamaica
H. apiculatum	Mett. ex Kuhn	Linnaea 35: 391	1868	Venezuela
H. axillare	Sw.	J. Bot. (Schrader) 1800(2): 101	1801	Venezuela
H. brevifrons	Kunze	Bot. Zeitung (Berlin) 5: 185	1847	French Guiana
H. copelandii	C.V. Morton	Contr. U.S. Natl. Herb. 38(4): 173	1968	New Guinea
H. corrugatum	H. Christ	Bull. Herb. Boissier, sér. 2, 3(6): 508-	1903	China
H. cuneatum	Kunze	Analecta Pteridogr. 50	1837	Chile
H. darwinii	Hook.	Ned. Kruidk. Arch. 5(3): 157	1863	Chile
H. fendlerianum	Sturm	Flora Brasiliensis 1(2): 291	1859	Venezuela
H. fumarioides	Bory ex Willd.	Species Plantarum. Editio quarta 526	1810	Madagascar
H. inaequale	(Poir.) Desv.	Mém. Soc. Linn. Paris 6: 335	1827	Madagascar
H. kuhnii	C. Chr.	List Vasc. Pl. Gabon	1988	Madagascar
H. mikawanum	(Seriz.) Seriz.	Journ. Jap. Bot. 58(2): 64	1983	Japan
H. mnioides	Hooker \& Baker	Syn. Fil. 57	1867	New Caledonia
H. myriocarpum	Hook.	Sp. Fil. 1: 106, t. 37d	1844	Colombia
H. novoguineense	(Rosenst.) K. Iwats.	Blumea 51(2): 231	2006	New Guinea
H. ooides	F. Muell. \& Baker*	J. Bot. 28: 105	1890	New Guinea
H. paniculiflorum	C. Presl	Fl. China - Hymenophyllaceae	1843	China
H. polyanthos	(Sw.) Sw.	J. Bot. (Schrader) 1800(2): 102	1801	Jamaica
H. rarum	R. Br.	Prodr. 159	1810	Tasmania
H. recurvum	Gaudich.	Voy. Uranie, Bot. 376	1829	Hawaii
H. siliquosum	H. Christ	Bull. Herb. Boissier, sér. 2, 4(9): 938	1904	Costa Rica
H. undulatum	Sw.	J. Bot. (Schrader) 1800(2): 101	1801	Jamaica
H. viridissimum	Feé	Crypt. Vasc. Bresil 1. 194 t. 49 f. 3	1869	Brazil
H. wrightii	Bosch.	Ned. Kruidk. Arch. 4: 391	1859	Japan

OLLOOLLOVLOVOLOLLVOLOP \quad pyz－スATH

TGTAACGYTGYAAAGTTTGCTTAA CGTRTTGTACTYYTRTGTTTRCVAGC LLVOVイVOyVOOLHLLLVLLLLLL\＆LV\＆OLLVOLLV
ATGTCCCGTTATCGAGGACCT
GCCGCTAGACAATTAGTCAATC
TACCGAGGGTTCGAATC OOVOLLVOVVVLVVOOLVOLVOD פコVOLVOVYOפVפOVOLLODV OOLOפOVVDOOLLVOLOVDOL TACAGTTCGGTGGTGGAACC GTGTTGGATTCAAAGCTGGTG Sequence（5＇－＞3＇）
GAAATTCCAAAC
reference bibliography are presented．
Table 3：List of primers used for amplification of markers of interest．Following the primer ID，primer sequence，target gene，location of the gene and

Figure 3: Phylogenetic tree for the subgenus Mecodium, focusing on the Hymenophyllum polyanthos complex. Sequences of DNA for six different plastid markers were used for this analysis, comprising 4543 bp and 83 OTUs. Values over the branches indicate the Bayesian inference posterior probability, while values below the branches indicate the ML probability. Bold branches indicate branches supported by both analyses. Clades marked in black represent the outgroups, and the star mark indicates the subgenus Mecodium. Names over the nodes refer to groups cited in the discussion and colored branches indicate biogeographically related taxa.

Figure 4：Biogeographic distribution of samples compared to the obtained phylogenetic topology．A simplified tree is shown at the lower part of the figure，representing the topology acquired in figure 3 analyses．Colors are in accordance with the obtained groups（i．e．PSA，N and A）．The actualsampling distribution is represented by \bullet symbles，while hashed lines delimit the estimated distribution range for each of the groups．

RbcL
Rps4-TrnS

Figure 5: Cladogram for the genus Hymenophyllum, acquired by the inclusion of data available at GenBank. Sequences of DNA for $r b c L$ and rps4-trnS regions are compared for this analysis. Values over the branches indicate respectively the Bayesian inference posterior probability, while values below the branches indicate the ML probability. Subgenera names are indicated on the right side of the figure and the gray box indicates the subgenus Mecodium, focus of the analysis.

Figure 6: Lineages circumscription range over the phylogenetic tree for the subgenus Mecodium, focusing on the Hymenophyllum polyanthos complex. The type clade for Hymenophyllum polyanthos appear in the "Neotropics clade", highlighted in purple. Groups that need further taxonomical treatment are pointed by names (i.e. "A" groups in "Asia clade" and "SSA" groups in "Pacific/ S. America clade").

VASQUES D.T.

Chapter 3 - Further insights on the circumscription of Hymenophyllum polyanthos (Sw.) Sw. complex

 (Hymenophyllaceae) based on the nuclear LEAFY marker
INTRODUCTION

In addition to phylogenetic analysis using plastid molecular markers, recent studies on plants evolution usually also consider nuclear markers sequences. Although plastid sequences are relatively easy to acquire and provide a straightforward interpretation of the phylogeny, more complex evolutionary backgrounds (e.g. hybridization, polyploidization) can only be addressed when considering nuclear markers. One important discussion included in this context refers to the concept of species and how it is applied to different biological studies.

For systematists, the usual premise is that species are monophyletic or, in other words, correspond to lineages that have derivate from a same and exclusive ancestor. In practical ways, when considering species under a systematic scope, it is expected that DNA sequences should be more similar between individuals of the same species, than individuals from different species (Fig. 7A). Based on this idea, systematic taxonomists may circumscribe species, avoiding polyphyletic groupings (herein,
'polyphyletic' is referred as including the concepts of paraphyly and strict-sense polyphyly, Fig. 7B-C). Nevertheless, traditionally recognized species may emerge as polyphyletic groupings when compared to different markers, and reasons for that must be addressed when considering their circumscription.

Polyphyletic species

Funk \& Omland (2003) provided a broad revision of the frequency, causes and consequences of the existence of polyphyletic species within animals, by focusing on insights from mitochondrial DNA. While with animals comparisons of nuclear and mitochondrial markers may lead to the insights pointed by Funk \& Omland (2003), in plants the comparisons are usually taken between chloroplast and nuclear markers. Chloroplast markers are widely implemented in phylogenetic studies of plants, especially due to their comparatively easy handling. However, chloroplasts are usually unilaterally inherited in plants, hence other sources (such as nuclear markers) also need to be compared.

When doing so, incompatibilities between trees calculated using plastid and nuclear data may emerge and reasons for that are various. As explored by Funk \&

Omland (2003), background reasons might include what they calls imperfect taxonomy (i.e. occurrence of polymorphisms, geographic variation or cryptic species), interspecific hybridization, or even paralogy (i.e. inclusion of paralog sequences in the analysis). By comparing the topology of trees acquired from nuclear and plastid markers, one can address the occurrence of such events. Nevertheless, obtaining nuclear sequences remains a challenge due to several factors such as: variations in the number of gene copies between species; gene recombinations and convertions; and the persistence of divergent alleles in populations of species (Archambault \& Bruneau 2004).

Within ferns, Ebihara et al. 2005 and Adje et al. 2007 addressed the occurrence of reticulate evolution using nuclear markers. Nevertheless, studies in the field have difficulty in being further developed, especially due to the lack of markers available for analysis. While several markers are available for studies with angiosperms, within ferns few markers have been implemented until now (Cheng et al. 2012). Between these, investigations on the phylogenetic utility of the LEAFY gene have provided useful primers and methods while bringing new insights to the evolution of
ferns' genes.

The LEAFY gene is a low-copy nuclear gene associated with floral development (in angiosperms) and vegetative growth, including the development of compound leaves (evidenced in Pisum sativum L. by Hofer \& Ellis 1998). As a low-copy gene, it is expected that few copies of the gene are present in the genome of plants, but studies show that while single copies are observed in diploid species of angiosperms, two or more copies are present in polyploidy species, and in some gymnosperms (Frohlich \& Parker 2000). In ferns, this gene's evolution is still poorly understood.

Hymenophyllum polyanthos

In the previous chapter, the results from the phylogenetic study using chloroplast markers for the H. polyanthos complex were presented as evidences for the non-monophyly of it. However, as explained in this chapter, reasons for that can be of various kinds. Occurrences of cryptic lineages, polymorphisms and gene introgressions are hard to address, demanding broader investigations that take into consideration nuclear markers and morphological and/or ecological features.

In this chapter, evidences from $L E A F Y$ nuclear gene sequences are brought in discussion to attempt addressing the occurrence of gene introgressions in the studied groups. One might infer the occurrence of gene introgressions during the diversification of subgenus Mecodium by comparing the topology of trees acquired by both nuclear and plastid markers. Possible topology patterns that can be acquired and their meaning are shown in Fig. 7A) monophyly or congruence between topologies (when the phylogenies present the same topology); B) poplyphyly associated to taxonomical or evolutionary reasons (such as occurrence of cryptic species, polymorphs or introgressive genes); and C) poplyphyly associated with the inclusion of paralog sequences in the analysis. Hypothesizing that no introgressions took part in H. polyanthos complex, a pattern like the one shown in Fig. 7A might be expected to be recovered.

MATERIAL AND METHODS

DNA amplification and sequencing -- Several researchers in the last decades have developed primers for amplification of nuclear markers in plants, evidencing the validity of these markers for phylogenetic inferences (Álvares \& Wendel 2003, Ferguson \& Sang 2001, Hoot \& Taylor 2001, Raymond et al. 2002, Van den Heede

2003, Ishikawa et al. 2002). However, most of these developed primers remain untested in ferns, especially in Hymenophyllaceae. The LEAFY marker was recently developed and tested in Davalliaceae ferns by Cheng et al. (2012) and in Hymenophyllaceae by Ebihara (unpublished, 2005). Herein, the target region was part of the LEAFY intron 1 and exon 2, and the primers applied are included in table 3. Samples applied here are representatives of the same lineages included in the chloroplast markers analysis (appendix 1).

Direct PCR and sequencing resulted in double banding and unclear sequence readings, so cloning using Promega pGEM-T Easy Vector system experiments were performed. The ligation reactions included: 2X Rapid Ligation Buffer ($5 \mu \mathrm{l}$), pGEM-T Easy Vector $50 \mathrm{\eta g} / \mu \mathrm{l}(1 \mu \mathrm{l})$ and T4 DNA Ligase ($1 \mu \mathrm{l}$), PCR products (1:3 vector to insert ratio), completing with deionized water to a final volume of $10 \mu \mathrm{l}$.

For the cloning, TOYOBO Escherichia coli Competent Quick DH5 α cells were used. After incubation of the cells with the vectors, cells were spread over a LB medium containing ampicillin $(25 \mu \mathrm{~g} / \mu \mathrm{l})$ and covered by IPTG and X-Gal. Colonies were cultivated for 12 hours and white colonies were picked inside a clean bench for
amplification.

For the amplification reactions, T7 and SP6 promoter regions of the pGEM-T Easy vector were used as starting points for the reaction. The primers applied are as suggested by Promega (T7: 3'CATTATGCTGAGTGATATCCCG5'; SP6: 3'TAAGATATCACAGTGGATTTA5'). The thermal cycle was: one cycle of initiation under $94^{\circ} \mathrm{C}$ for 3 minutes, followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ grade for 30 sec, and $72^{\circ} \mathrm{C}$ for 1 minute, and one cycle of $72^{\circ} \mathrm{C}$ for 10 minutes. After this, successfully amplified samples were sequenced, using the primers present in table 3 .

Sequences alignment and phylogenetic analysis -- forward and reverse sequences were assembled using ATGC v. 4.3.5 (Genetyx Corporation) and aligned using MEGA v. 7.0 (Kumar et al. 2016). The most suitable evolutionary model for the datasets was calculated using jModelTest v. 2.1.7 (Darriba et al. 2012). As outgroup lineages, sequences of H. caudiculatum from Brazil were used.

Bayesian inference analysis was conducted using MrBayes v.3.2.5 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003). Markov Chain Monte Carlo method (Geyer \& Keramidas, 1991) was applied for one million generations,
priors were set for equal and the posterior probability was sampled at each 1000 generations, being the first 25% discarded as burn-in. Maximum Likelihood analysis was performed using RAxML (Stamatakis 2006), using the GTRCAT model and over a 1000 bootstrap replicates. Trees were edited using FigTree v. 1.4.2 (Rambaut 2012) and Illustrator v. 18.1.1.

RESULTS AND DISCUSSION

In total, 31 different samples were cloned and at least 10 different clone colonies were sequenced for each sample. Ultimately, 66 different sequences were obtained covering about 554 bp of part of $L E A F Y$ intron 1 and exon 2 . These sequences were applied to phylogenetic analyses, under Bayesian inference and Maximum Likelihood methods. The resulting tree is shown in figure 8, being the BI posterior probabilities shown over each obtained node, and the ML bootstrap rate under each node.

Although the overall topology of the tree suggests a pattern similar to the one found with chloroplast markers, important incongruences are also found here (Fig. 8), demanding explanations. Within the "AN" clade, incongruences appear dispersed
through the tree, while within the "PSA" clade, incongruent sequences appear grouped in distinct clades (marked in red). In both cases, incongruences cannot be explained simply by hybridization, especially because of the geographical origin of the samples.

Once specimens from Japan, China and Malaysia appear mixed with Costa Rica lineages, the sympatric coexistence of lineages is discarded and, thus, hybridization is not taken as likely to have occurred.

In the case of the incongruences present at the "PSA" clade, the conflicting sequences appear clustered together in 2 groups (A and B , fig. 8), indicating that they are significantly distinct from other sequences included in the PSA clade. Moreover, branches within these clades are very short, indicating that the sequences within them are similar to each other and that very few variations are present. The phylogeny topology observed is a result of variations that are exclusively shared by the sequences included in groups A and B (appendix 2). These variations are, however, not informative inside of each of these groups, resulting in very short branches and restricting the resolution of these clades.

Despite being a low-copy gene, the occurrence of duplications in the LEAFY
region is a possibility here, as reported by Archambault \& Bruneau (2004), who have found evidences of occurrence of duplication events and also pseudogenes at the molecular region in Caesalpinioideae (Leguminosae). Groups A and B observed in figure 8 can represent clusters of paralog sequences, in a scenario as represented in Fig. 7C. However, due to the short branches inside of these groups, further considerations are restricted. In order to solve this, new primers might be designed based on sequences other than those included in groups A and B. Using these newly designed primers, one may conduct the cloning experiments as performed here, expecting a more congruent topology for the phylogeny to be acquired.

Further analysis

Taking the premise that the incongruent sequences included in groups A and B correspond to paralog sequences, a phylogenetic analysis was performed with a dataset excluding these sequences (Fig. 9). The parameters applied here were the same as the ones applied to the tree of figure 8 . The resulting tree has a topology more congruent to that obtained with plastid markers, although some individual sequences
emerged in non-expected positions.

These sequences correspond to H. myriocarpum from Costa Rica and Bolivia that appear clustered with H. wrightii from Japan, H. polyanthos from Marquesas, Malaysia and China that appear within the Neotropics clade, and H. polyanthos from Brazil appearing together with H. polyanthos from Bolivia. These occurrences suggest a scenario like shown in fig. 7B, but still the geographical distance between the samples limit the range of explanations that can be applied here. It is possible that some kind of introgressive event has occurred between ancestors of these lineages in the past, but further investigations are necessary to bring concrete reasons for these events.

Nevertheless, no further evidence of gene introgression is observed here, what gives support to the pattern obtained through the phylogenetic analysis using plastid data. If introgressive events are not further observed between these groups, this data might evidence that plastid markers phylogeny is directly correlated with the subgenus Mecodium phylogeny. In other words, phylogenetic clusters observed here might be understood as independent lineages that need to be described separately.

CONCLUSIONS

Albeit nuclear markers investigations within ferns are still not widely explored, the development of new primers specific to these plants, as well the validity of these markers for phylogenetic studies, have been reported. In this chapter, nuclear LEAFY marker regions were sequenced and applied for a phylogenetic analysis aiming to address possible evolutionary backgrounds for the tree topology observed with plastid markers (chapter 2). As a result, incongruent tree topologies were obtained, indicating that paralog sequences were included in the analysis.

To solve this, further investigations are still necessary. Using the obtained data, primers specific to the congruent sequences can be designed and used for new phylogenetic analysis. In order to explain the expectations of such analysis, this chapter shows another analysis where the possibly paralog sequences are excluded from the dataset. The resulting tree shows a more congruent topology, with only some sequences emerging in not expected positions. Taking as a premise that the excluded sequences, in fact, correspond to paralog sequences, this data does not consistently support the occurrence of gene introgressions within the subgenus Mecodium. Together with distributional, morphological and ecological information, these results can support a
revision of the subgenus, as discussed in the following chapters.

Figure 7: Schematic explanation of the possible tree topologies to be expected. A. Monophyletic topology: species A and B , represented by 2 specimens each, are grouped independently; B . Polyphyletic topology: species A is polyphyletic, and this may be explained by the occurrence of cryptic species, polymorphisms or genetic introgressions; C. Paralogy: expected topology occurs more than one time inside of the tree, indicating the inclusion of paralog sequences in the dataset.

Figure 8: Phylogenetic tree for the subgenus Mecodium, focusing on the Hymenophyllum polyanthos complex. Sequences of DNA for the nuclear $L E A F Y$ first intron regions are compared here. Values over the branches indicate the Bayesian inference posterior probability, while values below the branches indicate the ML probability. Clade marked in black represent outgroups, and colored taxa are in accordance to groups obtained in figure 3 analysis. The clades marked in red represent taxa that are discussed in detail, probably indicating paralog sequences.

Figure 9: Phylogenetic tree for the subgenus Mecodium, focusing on the Hymenophyllum polyanthos complex. Sequences of DNA for the nuclear LEAFY first intron regions are compared here, but sequences hypothesized as paralog were excluded in this analysis. Values over the branches indicate the Bayesian inference posterior probability, while values below the branches indicate the ML probability. Clade marked in black represent outgroups, and colored taxa are in accordance to groups obtained in figure 3 analysis.

VASQUES D.T.

Chapter 4 - Morphological and distributional patterns within the Hymenophyllum polyanthos (Sw.) Sw. complex

INTRODUCTION

Overview of the body structure of Hymenophyllaceae

Traditionally the filmy ferns were classified into two genera (Hymenophyllum and Trichomanes) based mainly on the sori structure of these plants (Morton 1968). Recent investigations have circumscribed 9 different genera within the family (Ebihara et al. 2006), elucidating that other morphological traits are also relevant for the taxonomy of the group.

As discussed by Dubuisson et al. (2003), all extant basal leptosporangiate ferns (i.e. Osmundaceae family and gleicheniaceous ferns) are terrestrial, with exception of the filmy ferns. The epiphytic habit appears within the filmy ferns together with the emergence of long-creeping, wiry rhizomes bearing few to none roots. Nevertheless, within the different lineages of filmy ferns, the terrestrial habit can still be observed, hypothesized either as a plesiomorphic conversion, or an evolutionary reversion (Dubuisson et al. 2003).

Epiphytic plants with long-creeping, wiry rhizomes usually represent the
"hymenophylloid ferns", while the "trichomanoid ferns" can bear creeping, erect or ascending rhizomes, including hemi-epiphytic and terrestrial species. Appendices on the rhizomes are also variable between these 2 morpho-groups: rhizomes glabrous or bearing light-colored hairs can be observed in "hymenophyloid ferns", while blackish-hairs are present in the "trichomanoid ferns".

Several authors have described the rhizome stele structure (Boodle 1900; Hennequin 2004; Le Thomas 1961; Ogura 1938), being reported several types according to the position and number of vascular cells. According to these reports, some of the "trichomanoid ferns" present more 'massive steles', composed by a ring of metaxylem enclosing parenchyma and protoxylem (Boodle 1900). On the other hand, "hymenophylloid ferns" usually bear simpler steles, including the 'reduced', 'dorsi-ventral' and 'subcollateral' types (Ebihara et al. 2007, Hennequin et al. 2006), suggesting a reduction of the vascular system.

The leaf structure is divided between the stipe (= petiole) and the lamina. The petiole of filmy ferns is non-articulate to the rhizome and can be winged or not, depending on the group. Indumenta can also be attached both to the petiole or the
lamina, depending on the species. The lamina can be simple-pinnatifid up to 4-pinnate, oblong, flabellate, trapeziform or ovate-lanceolate (Larsen 2014). Each division of the lamina is called a pinna and its dimensions are also variable within groups. The rachis of the pinna can also be winged or not. Regarding the lamina dimensions, Dubuisson et al. (2003) proposes that epiphytic/ saxicolous taxa in Trichomanes exhibit a reduced body size (dwarfness) as a probable strategy for adaptation to hygrophilous environments.

Sori are terminal to the veins and composed by an indusium covering a receptacle, which bears the sporangia. A bivalved pattern of indusium is more commonly found within the "hymenophylloid ferns", while a tubular type is more common within the "trichomanoid ferns". Traditionally, the indusium shape was used to circumscribe the genus Hymenophyllum s.l. and Trichomanes s.l. (Morton 1968). The position of the sori is also correlated with the group, being of three kinds: catadromous (growing over a distal vein and blocking further growth of the segment), paratactic (growing over a proximal or distal vein and, thus, not blocking the further growth of the leaf) or pantotactic (growing on the margins of the leaf and occurring only on the genus

Cardiomanes) (Hennequin 2004, Larsen 2014, Prantl 1875).

Morphological traits in Mecodium

Within Hymenophyllum, the subgenus Mecodium is the less distinguishable morphologically. Even after its circumscription by Ebihara et al. (2006) based on molecular evidence, the only synapomorphy pointed for the genus is the chromosome number $(x=28)$. Under this circumscription, the subgenus is correspondent to the Hymenophyllum polyanthos complex and its relative species, which covers a broad geographical distribution, covering both New and Old World regions (Fig. 4).

Hymenophyllum polyanthos s.l. has been consistently evidenced as a non-monophyletic lineage in chapters 2 and 3, being the type clade circumscribed to the lineages distributed in the neotropics and sister to H. undulatum (Fig. 6). As a consequence, any another lineage of polyanthos that emerges in the analysis is up to further taxonomical treatment. Moreover, at least two big lineages are present inside the complex (correspondent to the "Pacific/ S. America" clade and the "Asia/ Neotropics" clade, Fig. 6).

Research Goals

Based on the groups obtained through the phylogenetic analysis of DNA markers, one can observe if the reported wide phenotype variation is still maintained when separating individuals according to these phylogenetic taxa. If, after analysis, different lineages of H. polyanthos s.l. emerge as morphologically similar, the investigated traits might be defined as homoplastic within the subgenus and, hence, should be avoided for further taxonomical analysis. On the other hand, the topology of the phylogeny showing that several well-circumscribed species appear interspersed to H. polyanthos s.l. specimens might also indicate that taxonomically informative traits can be found.

The goal of this chapter is to bring a morpho-anatomical analysis compared to the groups obtained through the phylogenies shown in chapters 2 and 3. Ultimately, the objective of this research is to point out taxonomically informative traits that may aid the treatment of the obtained taxa into novel categories within the subgenus Mecodium in a future revision work.

MATERIAL AND METHODS

Sampling - Morphological, anatomical and distributional information were obtained both from DNA sampled specimens, and from voucher species from the TNS, TI and SP herbaria (appendix 3). Based on its locality, additional voucher information from the BM and MO online herbaria were associated to one of the groups found in the phylogenetic analysis from chapter 2. For the morphometric measures, three fertile leaves were selected for each specimen. Specimens with damaged leaves, or bearing only sterile leaves were not considered for analysis. In total, 95 samples were analyzed morphologically (PSA Group: $\mathrm{n}=18$; N Group: $\mathrm{n}=22$; A Group: $\mathrm{n}=55$; appendix 4) and 28 samples were used for the anatomical measurements (PSA Group: $n=4 ; \mathrm{N}$ Group: $\mathrm{n}=6$; A Group: $\mathrm{n}=20$; appendix 5).

Morphometric measures - Voucher samples were scanned and measured using ImageJ v. 1.48 (Abràmoff et al. 2004). The leaves of the samples were analyzed under 7 parameters as shown in figure 10: petiole length (PL), lamina length (LL), lamina width (LW), lateral pinnae length (LPL), lateral pinnae width (LPW), pinnae distance (PD) and lateral pinnae insertion angle (A). Similar traits were compared before by

Dubuisson (2003) for the genus Trichomanes, proving to be of relevance for the proposition of ecological hypothesis. Only primary pinnae were considered by this analysis and pinnatifid plants (e.g. H. wrightii) were compared only in regards to the PL, LL and LW parameters. Each parameter was measured in 3 different leaves per sample, and the average of these values is compared. Available vouchers varied in conservation condition, and many were damaged and not considered in this study.

Anatomical assays - For the anatomical assays, both fresh and voucher samples were used (appendix 5). Fresh samples were fixed in FAA (1:1:8 Formalin - Acetic Acid ethanol 50%) for one night. In the case of voucher specimens, rehydration was performed by immersing the samples into $1: 1$ water - glycerol solution at $60^{\circ} \mathrm{C}$ for one night (adapted from Kobayashi \& Suzuki 2014).

In the sequence, samples were immersed in growing concentrations of ethanol for dehydration. From the initial condition, samples were moved to a 50% ethanol solution for two hours, followed by $60 \%, 70 \%, 80 \%, 90 \%, 95 \%$ and 100% ethanol solutions for two hours each. After this, samples were immersed in 100% ethanol once again for 12 hours.

Following the dehydration, samples were progressively immersed in TechnoVit 7100 resin. For this, the immersion time and ratio sequences were of: $2: 1$ ethanol-TechnoVit solution for 3 hours; 1:1 ethanol-TechnoVit solution for 3 hours; 1:2 ethanol-TechnoVit solution for 12 hours; 100% TechnoVit solution for 24 hours; and again 100% TechnoVit solution for 3 days. After the immersion in resin, samples were hardened and cut using an automated microtome. Rhizome samples were cut transversaly $3 \mu \mathrm{~m}$ thick and observed under a light microscope. Cortical parenchyma tissue was danified in most of the samples and, for that reason, measurements on the rhizome sizes were based on the diameter of the medule, counting from the sclerenchyma tissue layer. Besides that, the sclerenchyma tissue layer thickness and the number of fully developed metaxylem cells were recorded for analysis, as shown in figure 10 .

Statistical analysis \& description of groups - The data acquired was compared at first with a Principle Component Analysis (PCA), using Minitab v. 17 (Ryan et al. 1994). Parameters were compared as ratios between the lamina length and lamina width (LL:LW), the lamina length and the petiole length (LL:PL), the lamina length and the
lateral pinnae distance (LL:ND) and the lateral pinnae length and lateral pinnae width (LPL:LPW). Insertion angle of lateral pinnae (A) was the only parameter to be compared separately.

Additionaly, data were compared through boxplots and the significance of the observed differences were tested through multistate-ANOVA tests using R language (R Core Team, 2006). Morphology and anatomy data sets were addressed separately and compared to the groups obtained in chapter 2 analyses (i.e. A group, N group and PSA group). For some samples, missing data were included, corresponding to pinatifid leaves which the measurement of lateral pinnae was not possible (appendix 4). Four models (Pillai's trace, Wilks' lambda Hotteling's trace and Roy's root) were tested for each data set, resulting in similar results between the different models (table 5). For the pairwise comparison of groups, adjustments of the p-values were performed under the Holm method. Based on these results, descriptions for the circumscribed groups are presented at the end of the chapter.

RESULTS AND DISCUSSION

Morphological parameters

In total, 18 samples ($=54$ measurements/ parameter) of "PSA" clade, 22 samples (= 66 measurements/ parameter) of " N " clade and 55 samples (= 165 measurments/ parameter) of "A" groups were analysed (appendix 4). Figure 11 shows the score plot for the first two components of the Principal Component Analysis for each analyzed specimen and according to the groups obtained in the phylogeny of chapter 2. The Eigenvalue for each component is represented in figure 12 and the principal coefficients for each component are shown in table 4, according to each relevant variable.

Overall, individuals from the Pacific-South America clade appear distributed in the direction of the upper right part of the graph, while Asia-Neotropics clade represents are more concentrated in the lower left part of the graph (Fig. 11), suggesting a cluster based on the combination of both components, in special principal component 2. Looking at the coefficients for the first two most influential principal components, one can observe that for PC1 the LL/LW and the LL/PD variables were most influential
(coefficient $=0.574344659$ and 0.557302741 respectively), while for the PC2 the pinnula angle and LPL/LPW (coefficient $=-0.586987493$ and 0.785249654 respectively) were the most relevant variables (Table 4).

Figure 13 shows a comparison of the average variance of the five investigated parameter ratios and between the three groups obtained with the phylogenetic analysis. Independently from the parameter ratio to be investigated, "A" groups and "N" clade present overlapping measurements, suggesting that they are morphologically similar to each other. Despites the maximum and minimum values represented by the bars over the boxplots, the quartile limits indicates that the variation from the average measurements is not wide. On the other hand, "PSA" clade plants present more divergent values when compared to " A " groups and " N " clade plants. Also, the quartile limits are broader in "Pacific" plants' boxplots, indicating a wider range of variation.

The MANOVA results are reported in table 6. Significant differences were observed between A groups and PSA clade, were MANOVA (Pillai's Trace $=0.60744$, $F_{5,62}=19.188, p<0.001$), and between N clade and PSA clade (Pillai's Trace $=$ $\left.0.72673, F_{5,34}=18.084, p<0.001\right)$. On the other hand, no significant difference were
observed between the A groups and the N clade (Pillai's Trace $=0.13384, F_{5,66}=$ 2.0398, $p=0.08436$), suggesting that while the PSA clade is considerably different from the other groups, A groups and N clade are similar in morphology.

Overall, these results suggest that plants from the "PSA" clade have more closely appressed pinna, inserted at an angle up to 50 degrees in comparison to the rachis costa. This renders more slender leaves, reflecting in the LL/LW ratio, which is also significantly different between the "AN" and "PSA" clades (Fig. 13, Table 6). Besides this, LL/PL and LL/PD ratios were significantly different between "A" groups and "PSA" clade plants, indicating that "PSA" plants bear longer and more frequently divided fronds than "A" groups' plants.

Anatomical observations

The measured parameters for anatomical traits can be observed in appendix 5 and are summarized in boxplots in figure 14. All of the observed specimens beared a protostelic 'dorsi-ventral' stele as described by Ebihara et al. 2007. This kind of stele is characterized by the presence of protoxylem and metaxylem organized relatively to the dorsi-ventral position of the rhizome.

Several assays presented a damaged cortex, due to the fragility of cortical parenchyma cells. For this reason, the diameter of the rhizome was measure from the sclerenchyma strands and mentioned here as 'inner diameter' (Fig. 10). The 'inner diameter' varied from about 0.2 mm to about 1 mm between samples. The vascular bundle is small, composed by few metaxylem cells (appendix 5, Fig. 14).

Differently from the morphological parameters explored on the previous sections, anatomical parameters' MANOVA results do not point to any signficant correlation ($p>0.01$) between the observed parameter and the analysed pairwise groups, i.e. A $v s \mathrm{~N}$ (Pillai's Trace $=0.26435, F_{3,19}=2.2758, p=0.1126$), A vs PSA (Pillai's Trace $\left.=0.044776, F_{3,17}=265562, p=0.8492\right)$ and $\mathrm{N} v s$ PSA (Pillai's Trace $=0.57611$, $F_{3,6}=2.7182, p=0.1374$). This suggests that anatomic traits as explored here are not valid for taxonomic purposes when comparing the groups obtained in chapter 2 analyses.

CONCLUSIONS

In this chapter, morphological and anatomical measurements were compared
to the phylogenetic groups obtained in chapter 2 in order to propose a new system for the subgenus Mecodium as a whole. The lineages supported by the molecular analysis were compared by different morphological parameters and, as a result, potential diagnosis traits emerged from the analysis. Between the morphological traits, the pinnae insertion angle appeared as the most correlated trait, although some other measurement ratios also showed less promenient correlation. On the other hand, anatomical parameters investigated here did not show correlation to the lineages found in chapter 2, indicating that variations on anatomy evolved similarly between the investigated lineages. The results of this chapter may support a new taxonomic treatment for the subgenus Mecodium as a whole. This topic is explored in the next chapter.

Figure 10: Scheme of the morphological (upper part) and anatomical (lower part) parameters explored. LL: Lamina Length, LW: Lamina Width, PL: Petiole Length, PD: Pinnae Distance, A: Angle of insertion, LPW: Lateral Pinnae Length, LPW: Lateral Pinnae Width.

 Second Component

[^0]

ZL8ttて69000	¢ヶE\＆Z9EL0＊0－	ItIてZ9E09＊0	tS96ちZS8L．0	$\mathcal{E L I L S 8 E 6 0 * 0}{ }^{-}$	MdT／TdT
L09860L¢0 0^{-}	600L98¢8で0－	カt\＆8\＆z989＊0	£6tL86985＊ 0^{-}	IttE0¢cIE 0^{-}	วృธึuv
Z6LIZ0L8900	96EL¢ZLIE゙0	8て9Z9てL8で0	ELI6t0¢8100－	Itzz0ELS¢「0	Cd／＇TI
$660 Z ヵ$ 2E000	8t0L868¢8＊${ }^{-}$	¢¢0£E\＆L8000－	七E0¢ZIEt0＊0	ttS06IIOS＊0	Td／＇T
I86LS00ZL＇0－	て6ヤ6992Lで0	ZSLSLOELで0	IてZ80こてS0＊0－	$6 ¢ 9 t t \mathcal{L}$ LS ${ }^{\text {co }}$	MT／TT
SPd	t ${ }^{\text {d }}$	E．Od	2．0d	IOd	ләдәик．ле d $^{\text {d }}$

A.

Figure 13: A. Boxplots showing variation of each parameter between the different lineages obtained through the phylogenetic analysis. From left to right, boxplots represent "A" groups (in blue, 55 samples, $\mathrm{n}=165$ measurements/parameter), " N " clade (in purple, 22 samples, $\mathrm{n}=66$ measurements/parameter) and "PSA" clade (in green, 18 samples, $\mathrm{n}=54$ measurements/parameter). From top to bottom, the five parameters used for the PCA are compares (i.e. LL:LW, LL:PL, LL:PD, LPL:LPW and A, as explained in the methods section). B. On the right side, a schematic drawing shows the kind of measurement represented by the initials.

Inner Diameter (mm)

Sclerenchyma thickness (mm)

Metaxylem cells (number)

Figure 14: Boxplots showing variation of each anatomical parameter between the different lineages obtained through the phylogenetic analysis. From left to right, boxplots represent "A" groups (in blue, 20 samples), "N" clade (in purple, 6 samples) and "PSA" clade (in green, 4 samples). From top to bottom, the parameters are: inner diameter of the rhizome (mm); thickness of the sclerenchyma band (mm); and number of full developed metaxylem cells.

988800	＊L00＊0＞	¢\％	78	9	9	$989{ }^{\circ}$	99 ${ }^{\circ} \mathrm{\square}$	$69078{ }^{\circ} 0$	6TLも＇I	7	ζ	700\％s، SoY
L87\％ 0	＊L00＊0＞	9	¢91	9	OI	L89980	L86．7］	L89980	LLG＇I	7	ζ	
L987＊0	＊L00＊0＞	焐	99 I	9	01	7687 ${ }^{\text { }}$	780 0 I	$6 \pm \square \square L^{\circ} 0$	9998°		\checkmark	${ }^{\text {epquert }}$ ，sYI！M
$9987^{\circ} 0$	＊L00＊0＞	97	89 I	9	OT	76L\％${ }^{\text { }}$	7088＊ 8	$66987^{\circ} 0$	0689＊0	7	ζ	
Surozery		Suоұвиу	к．	Suодеи	к．бојочdxој	Suozeuy	к．оооочd．ло才	Suоұей	к．\％ојочdxо－N	Suодей	к．\％ооочdxој	
	－ －$^{\text {d }}$		Олл＇马	J® S！	Ч7Od ${ }^{\text {\％}} \mathrm{H}$		sdd V		${ }^{2} \Lambda$			$7^{\text {² }}$ L

morphology data set，the p values obtained were lower than 0.001 for all tests，indicating that the morphological observations are significantly betweent the
group and PSA group）．The table compares each test result between the two data sets applied here（i．e．morphology and anatomy data sets）．For the

＇u＇a SAnosv

＊80－ษ゙086 ${ }^{\text {I }}$	＊60－乌706 6	现	9	¢80．81	8L9620 0	I	VSd ${ }^{\text {s }}$－ N
＊LI－G96T．G	＊LI－Hzeli	79	c	88T．61	モぁLO900	I	VSd ${ }^{\text {s }}$－ V
98Ғ800	98¥800	99	G	$8680{ }^{\circ}$	888¢0	I	$\mathrm{N} \cdot \mathrm{s} \Lambda \mathrm{V}$
（ ${ }^{\text {ulo }}$ H）Pazsn！py	әпгел．d			$H^{*} \times$ oxdd V		JU	тоұов号
							К．8ojoydxow

Significant differences（ p－value <0.05 ）are denoted by＊marks．

Table 6：MANOVA results for the morphology and anatomy data sets taking as factors the groups obtained in chapter 2 analyses（i．e．A group， N group and
山‘の SAOOSVム

VASQUES D.T.

Chapter 5 - Taxonomic treatment for the subgenus Mecodium including the re-validation of \boldsymbol{H}. sturmii Bosch. in Brazil

DIVISION OF SUBGENUS MECODIUM

By combining the phylogeny results obtained from the molecular analysis of chapters 2 and 3 with the morphometric measurements present in chapter 4 , it is evident that the subgenus Mecodium is at least divided into 2 lineages: one composed by plants from the Asia-Pacific and South America, and another composed by plants from the Neotropics, Africa and Asia. Hennequin et al. (2006) previously estimated these results as possible, but only with the molecular and morphological measurements presented here such hypothesis could be conclusively assessed. Based on this, I suggest the division of the subgenus into 2 sections, as follows.

TAXONOMICAL TREATMENT FOR THE SUBGENUS MECODIUM

1) Section Cuneatae Vasques sect. nov. (Fig. 15-16)

Type: H. cuneatum Kunze

Distribution: Chile, Argentina, Brazil (Central to South), La Reunion, Malesia-Papuasia, Australia, Pacific islands.

Diagnosis: Insertion angle of lateral pinnae up to 50°.

Corresponds to the "Pacific - South America" (PSA) clade, including species from Malesia-Papuasia, Australia, Pacific islands and the southern part of South America. Species of this section have more narrow leaves, due the insertion angle of lateral pinnae on the rachis.

Included species: H. abruptum Hook.*, H. copelandii C.V. Morton*, H. cuneatum Kunze, H. darwinii Hook.*, H. fendlerianum Sturm*, H. inaequale (Poir.) Desv., H. mnioides Baker*, H. novoguineense (Rosenst.) K. Iwats., H. rarum R. Br., H. viridissimum Feé*.

Asterisks (*) mark species not sampled in the phylogenetic analysis and included here based on distribution and morphological patterns.
2) Section Mecodium (Fig. 17-19)

Type: H. polyanthos (Sw.) Sw.

Distribution: Venezuela, Peru, Bolivia, Colombia, Paraguay, Brazil (N, NE, Central regions), Mexico, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama, Guyana, Surinam, French Guyana, Ecuador, USA, Canada, Alaska, Tanzania,

Madagascar, India, China, Japan, Korea, Malesia countries.

Diagnosis: Insertion angle of lateral pinnae higher than 50°.

Corresponds to the Neotropics (including plants from North and Central America, as well the northern part of South America), African and Asian groups (AN clade). It includes the type species for subgenus Mecodium, Hymenophyllum polyanthos, which receives a new circumscription here.

Species included: H. apiculatum Mett. ex Kuhn, H. axillare Sw.*, H. brevifrons Kunze*, H. corrugatum H. Christ, H. fumarioides Bory ex Willd.*, H. kuhnii C. Chr., H. myriocarpum Hook., H. ooides F. Muell. \& Baker*, H. paniculiflorum C. Presl, H. polyanthos (Sw.) Sw., H. recurvum Gaudich.*, H. siliquosum H. Christ*, H. undulatum Sw., H. wrightii Bosch.

Asterisks (*) mark species not sampled in the phylogenetic analysis and included here based on distribution and morphological patterns.

HYMENOPHYLLUM POLYANTHOS

Considering the system proposed in the previous section, a further taxonomical treatment specific for H. polyanthos samples that have emerged as polyphyletic in this analysis is necessary. As explored before, the type for H. polyanthos
is reported from Jamaica and, having that as a premise, the "type clade" is pointed in figure 6 , sister to H. undulatum. This type clade is described following this section. The remaining H. polyanthos s.l. occurrences need taxonomic treatment, as explained in the following.

In the "Pacific - S. America" (PSA) clade, at least three different lineages of H. polyanthos s.l. need taxonomic treatment: i) PSA1: the Brazilian specimens, sister to H. cuneatum from Chile, and closely related to the La Reunion specimens; ii) PSA2: from Malaysia and Indonesia, closely related to H. novoguineense from New Guinea; and iii) PSA3: from French Polynesia, sister to H. rarum from New Zealand.

The "Asia" groups remain not completely resolved herein, but the actual topology already points to the existence of at least 5 lineages of H. polyanthos s.l. needing treatment: J1: sister to H. mikawanum from Japan; IBC, MI and JT: including specimens from Japan, Taiwan, Malaysia, Indonesia, Cambodia and Buthan, the specimens included here are grouped with H. paniculiflorum and may still be further divided into more specific lineages based on further molecular evidence; J2 and J3: represented herein by two samples from Japan that emerge in a grade in the acquired
phylogeny; and M: from Malaysia (Fig. 6).

Finally, the "N" clade remais represente by three species: H. myriocarpum, H. undulatum and H. polyanthos sensu stricto, described as follows:

Hymenophyllum polyanthos (Sw.) Sw., J. Bot. (Schrader) 1800 (2): 102. 1802. Trichomanes polyanthos Sw. Prodr. 137. 1788. Type: "Jamaica", O. P. Swartz s.n. (holotype S06-1597; isotypes B-W 20235, BM000936765, S-R-2978, S-R-6211, S-R-6212).

Hymenophyllum clavatum Sw., J. Bot. (Schrader) 1800(2): 101. 1801. TYPE: "Jamaica", O. P. Swartz, s.n. (holotype SBT10582; isotype B -W 20237).

Habit epiphyte. Rhizomes long-creeping, ca. 0.5 mm in diameter, glabrous. Fronds monomorphic, 1-pinnate, up to 7 cm long, ca. 2 cm wide; stipes approximately $1 / 2$ the length of the frond, glabrous; pinnae not articulate, ovate-lanceolate, up to about 7 pairs per pinna, insertion angle of ca. 65°, lamina membranaceous, free-veined, middle pinnae bigger than proximal and distal ones, margins entire; sori terminal to the veins, on receptacules involved by a bivalvated annuli, ca. $0.1 \mathrm{~cm} \times 0.15 \mathrm{~cm}$, trapezoid.

Distribution: Jamaica, Costa Rica, Bolivia, North Brazil

HYMENOPHYLLUM STURMII BOSCH. IN BRAZIL

The description of Brazilian Flora has started in the XIX century, with works
of naturalists such as A. Cogniaux, C.D. Martius, A.G. Eichler and I. Urban responsible for the edition of the Flora Brasiliensis, the most important taxonomical work for Brazil, including more than 22000 species descriptions, being ca. 6000 of them new entries (Cogniaux et al. 1883).

It is estimated that more than 250 thousand species of plants are known Worldwide, and about 14\% of these species occur in Brazil (Peixoto \& Morim 2003, Shepherd 2003). As exposed by Tryon (1972), the Brazilian region (together with the Mexican and Andean) corresponds to a center of diversity and endemism, concentrating most part of the continental species of America. Nevertheless, works of Flora in Brazil have constantly brought new species, indicating that there is still much of the diversity to be discovered in the region.

Based on the results of the molecular phylogenetic analysis explored in chapter 2, Hymenophyllum polyanthos (Sw.) Sw. is restricted to the Neotropics, thus becoming necessary new circumscriptions of any other occurrences around the world. Herein, I explore a treatment for the Brazilian occurrence of H. polyanthos s.l. (i.e. PSA1 clade in fig. 6), which is described as a revalidated species: Hymenophyllum
sturmii Bosch

Hymenophyllum sturmii Bosch Nederlandsch Kruidkundig Archief 5(2): 152. 1861 (Fig. 20) Syntype: Brasil, Hab. Brasilia (Rio de Janeiro, Sierra dos Orgaos, etc.), C. Gaudichaud s.n. (not observed), A. Vauthier s.n. (not observed), H. K. Beyrich s.n. (not observed).

Plants epiphyte. Rhizomes long-creeping, ca. 0.3 mm in diam, glabrous. Fronds monomorphic, 1-pinnate, ca. 10 cm long, laminae ca. 2 cm wide; stipes approximately $1 / 5$ the length of the frond, not winged, glabrous; pinnae ovate-lanceolate, ca .1 cm x 0.4 cm , light-green, glabrous, insertion angle of ca. 40°, not articulate, free-veined, middle pinnae bigger than proximal and distal ones, margins entire; sori terminal to the veins, on receptacules involved by a bivalvated annuli, ca. $0.2 \mathrm{~cm} \times 0.2 \mathrm{~cm}$, orbicular.

Diagnosis: Hymenophyllum sturmii is firstly reported by Bosch in 1861 as a plant from the "Serra dos Órgãos" montaneous formations in Rio de Janeiro, Brazil, and very similar to H. polyanthos (Bosch, 1861). H. sturmii is closely related to the Chilean species H. cuneatum, being differentiated by the format of the pinna, which is trapeziform to trianguliform in H. cuneatum and lanceolate to oblong in H. sturmii, and by the format of the annuli, which is cuneate in H. cuneatum and round in H. sturmii.

Distribution: Argentina, Brazil (South, Southeast and Central regions) and Bolivia.

Figure 15: Specimens representative from section Cuneatae Vasques sect. nov.. A-B: H. cuneatum (C13) from Chile, A: lamina detail $(\mathrm{scale}=1 \mathrm{~cm}), \mathrm{B}$: transversal assay of the rhizome $($ scale $=0,1 \mathrm{~mm}) ; \mathrm{C}-\mathrm{D}: H$. polyanthos (K12) from Malaysia, C: lamina detail (scale $=1 \mathrm{~cm}$), D : transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$); E: H. polyanthos $(\mathrm{K} 40)$ from Malaysia, lamina detail (scale $=1 \mathrm{~cm}$); F-G: H. rarum (Z16) from New Zealand, F: lamina detail (scale $=1 \mathrm{~cm}$), G: transversal assay of the rizhome (scale $=$ $0,1 \mathrm{~mm})$. On the anatomical assays pictures, the initials stand for: PX: protoxylem, MX: metaxylem, Ph : phloem, S: schlerenchyma, P: parenchyma.

Figure 16: Specimens representative from section Cuneatae Vasques sect. nov., in specific Brazil. A: H. polyanthos (DV2015001), lamina detail (scale $=1 \mathrm{~cm}$); B-C: H. polyanthos (DV20150011), B: lamina detail $($ scale $=1 \mathrm{~cm}), \mathrm{C}:$ transversal assay of the rhizome $(\mathrm{scale}=0,1 \mathrm{~mm}) ;$ D-E: H. polyanthos $($ RH756 $)$, D: lamina detail $(\mathrm{scale}=1 \mathrm{~cm}), \mathrm{D}$: transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$); F: H. polyanthos (DV20150004), lamina detail $(s c a l e=1 \mathrm{~cm})$. On the anatomical assays pictures, the initials stand for: PX: protoxylem, MX: metaxylem, Ph: phloem, S: schlerenchyma, P: parenchyma.

Figure 17: Specimens representative from section Mecodium C. Chr., "Neotropics clade". A: H. myriocarpum (B25) from Bolivia, lamina detail (scale $=1 \mathrm{~cm}$); B-C: H. myriocarpum (B22) from Bolivia, B: lamina detail $($ scale $=1 \mathrm{~cm}), \mathrm{C}$: transversal assay of the rhizome $($ scale $=0,1 \mathrm{~mm}) ; \mathrm{D}-\mathrm{E}: H$. myriocarpum (B16) from Bolivia, D: lamina detail (scale $=1 \mathrm{~cm}$), D : transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}) ; \mathrm{F}:$ H. polyanthos $(\mathrm{B} 3)$ from Bolivia, lamina detail ($\mathrm{scale}=1 \mathrm{~cm}$). On the anatomical assays pictures, the initials stand for: PX:protoxylem, MX: metaxylem, Ph : phloem, S : schlerenchyma, P : parenchyma.

Figure 18: Specimens representative from section Mecodium C. Chr., "Asia" groups. A: H. polyanthos (W17) from Taiwan, lamina detail (scale $=1 \mathrm{~cm}$); B-C: H. paniculiflorum (K41) from Malaysia, B: lamina detail (scale $=1 \mathrm{~cm}$), C : transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$); D-E: H. polyanthos (K36) from Malaysia, D: lamina detail (scale $=1 \mathrm{~cm}$), D: transversal assay of the rhizome (scale $=$ $0,1 \mathrm{~mm}$); F-G: H. polyanthos (W16) from Taiwan, F: lamina detail (scale $=1 \mathrm{~cm}$), G: transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$). On the anatomical assays pictures, the initials stand for: PX: protoxylem, MX: metaxylem, Ph: phloem, S: schlerenchyma, P: parenchyma.

Figure 19: Other specimens representative from section Mecodium C. Chr., "Asia" groups. A-B: H. polaynthos $(\mathrm{K} 35)$ from Malaysia, lamina detail $(\mathrm{scale}=1 \mathrm{~cm}), \mathrm{C}$: transversal assay of the rhizome $($ scale $=$ 0,1mm); C-D: H. paniculiflorum (K18) from Malaysia, C: lamina detail (scale $=1 \mathrm{~cm}$), D: transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$); E-F: H. mykawanum (GC1000) from Japan, E: lamina detail (scale $=1 \mathrm{~cm}$), F: transversal assay of the rhizome (scale $=0,1 \mathrm{~mm}$); G-H: H. polyanthos $(\mathrm{K} 34)$ from Malaysia, G : lamina detail $(\mathrm{scale}=1 \mathrm{~cm}), \mathrm{H}$: transversal assay of the rhizome $($ scale $=0,1 \mathrm{~mm})$. On the anatomical assays pictures, the initials stand for: PX: protoxylem, MX: metaxylem, Ph : phloem, S : schlerenchyma, P : parenchyma.

Figure 20: Hymenophyllum sturmii (Bosch) Vasques, from Brazil. A: body representation showing one sterile leaf; B: fertile frond detail showing the sori bearing sporangia; C: transversal assay of the rhizome showing from outside to the inner part: cortex parenchyma, cortex sclerenchyma, core parenchyma, vascular bundle with metaxylem turned to the dorsal side.

VASQUES D.T.

General Discussion and Conclusions

PHYLOGENETIC RELATIONS WITHIN SUBGENUS MECODIUM

As explained in chapter 1, Mecodium corresponds to a name that has been circumscribed several times during the taxonomical history of the family Hymenophyllaceae. The actual circumscription, based on Ebihara et al. (2006) and Hennequin et al. (2006), places the name as a subgenus within the genus Hymenophyllum, and set its boundaries around the subcosmopolitan Hymenophyllum polyanthos and its relatives. The monophyly of the subgenus is reinforced by the results of chapters 2 and 3 (Fig. 3 and 8), even when compared to neighbor subgenera (Fig. 5). Additionally, these results indicate that the species within the subgenus have diversified initially into 2 big lineages: one lineage composed of plants from Malesia, Pacific and South America; and another composed of plants from Africa, Asia, Malesia and the Neotropics. This distributional pattern was suggested before by Hennequin et al. (2006), but with few pieces of evidence at the time. The broad range of markers and samples applied here brings new evidence towards this hypothesis.

THE POLYPHYLETIC STATE OF H. POLYANTHOS

Still in chapter 2, the phylogenetic analysis based on plastidial markers indicates that, as expected, Hymenophyllum polyanthos sensu lato does not correspond to a monophyletic lineage. The subcosmopolitan species emerged interspersed to other represents of subgenus Mecodium, thus being described as a "polyphyletic species" (Fig. 3). This discussion is deepened in chapter 3, based on the review presented by Funk $\&$ Omland (2003). According to these authors, the phenomenon of "polyphyletic species" can be explained from different points of view, usually requiring further evidence for evaluation. In chapter 3, molecular data from LEAFY nuclear marker are compared in order to address the occurrence of gene introgression events within the subgenus Mecodium (one of the possible explanations for the polyphyletic condition of H. polyanthos samples obtained in chapter 2). In general, the results of chapter 3 do not support the hypothesis of occurrence of gene introgression events to explain the patterns obtained in chapter 2 , indicating that H. polyanthos' polyphyletic state still might have been a result of poorly distinguishable traits between global specimens, what caused the
inclusion of different lineages under the same name (Fig. 8, 9). Further research is still necessary and additional evidence from other nuclear markers, or of different regions of the $L E A F Y$ marker may confirm this hypothesis in the future.

PHYLOGENETIC VALUE OF LEAFY MARKER

Although phylogenetic studies including nuclear markers in the analysis are common with groups of angiosperms, within ferns' groups such studies are still few. One of the main reasons is that polyploids are quite common within ferns, what brings difficulties to the isolation and sequencing of nuclear markers in these plants. Nevertheless, reports showing that low-copy genes (such as the LEAFY marker) can aid phylogenetic studies are becoming more common. In chapter 3, the results of experiments of cloning and sequencing of LEAFY sequences for subgenus Mecodium samples are reported. Although apparently informative for phylogenetic investigations, possibly paralog sequences were also acquired in the analysis, requiring further investigations to fully address this marker. The development of specific primers for the acquired sequences may solve the problem with the emergence of paralog sequences
and bring, at last, conclusive results to the polyphyly of H. polyanthos. Nevertheless, this is the first time $L E A F Y$ marker sequences are acquired for Hymenophyllaceae, what brings new possibilities for phylogenetic studies within the family.

MORPHOLOGICAL, ANATOMICAL AND DISTRIBUTIONAL ASPECTS

Taking the premise that results from chapters 2 and 3 indicate that H.
polyanthos s.l. corresponds to a polyphyletic grouping of different phylogenetic lineages, chapter 4 brings a comparison of morpho-anatomical parameters between the lineages obtained with the phylogenetic analysis. Although the simple body of filmy ferns imposes limits to the description of taxonomically informative traits, the principal component analysis applied in chapter 4 brings insights on possible diagnostic traits for the obtained lineages (Fig. 13, 14, Tables 5, 6). The most correlate parameter here was the insertion angle of pinnae on the leaf, showing that plants from PSA clade have more closely appressed pinnae than those from AN clade. The assays on the anatomy of the rhizome of these plants, however, showed no potential correlation of parameters with the acquired groups.

TAXONOMIC REVISION AND FUTURE PROSPECTS

Finally, in chapter 5, results from chapters 2,3 and 4 are merged in the suggestion of a new classification within the subgenus Mecodium, diving it into 2 sections: section Cuneatae Vasques sect. nov., including plants from PSA clade (Fig. 15-16); and section Mecodium C. Chr. comb. nov., including plants from the AN clade (Fig. 17-19). The type clade for H. polyanthos is set inside the Neotropics clade (Fig. 6), based on the location of the original type for the species (i.e. from Jamaica). Additionally, the clade PSA1 (Fig. 6) from Brazil is re-circumscribed to H. sturmii Bosch, species initially described for the Rio de Janeiro region, but later synonymized to H. polyanthos (Fig. 20).

In this study, the combination of molecular, morphological and distributional data analysis with the revision of the taxonomical transformations within the subgenus Mecodium have brought a new level of detail to the comprehension of the diversity within the group. Basing the discussion on the results of the phylogenetic analyses applied here, it is evident that H. polyanthos s.l. corresponds to a non-monophyletic
grouping and that further treatment of the subgenus Mecodium might bring a better solution to the taxonomy of the group. In the near future, the comparison of additional nuclear sequences to this analysis may bring to a conclusion the phylogenetic condition of H. polyanthos s.l., opening ways to novel works towards a taxonomical revision of the complex.

VASQUES D.T.

Acknowledgements

I acknowledge Dr. J. Nitta, Dr. S. Tagane and Dr. G. Rouhan for the information and samples of Mecodium, many of them included in this study.

I also acknowledge D. Gissi, Dr. R. Hirai and Dr. J. Prado for the assistance with the collection trip to Brazil, where many interesting specimens were found and collected. Additionally, I thank the same collaborators for additional samples and advices provided later on.

I'm deeply grateful for Dr. Y. Hirayama and Dr. R. Imaichi for providing me with space, materials and technical aid on the anatomical assays.

I thank all of the researchers at the Ito laboratory for both the theoretical and emotional support during these years of research.

And finally I thank Dr. Ebihara and Dr. M. Ito for all of the precious support since I came to Japan. Thank you for believing in me.

Bibliography

Abràmoff, M.D., P.J. Magalhães \& S.J. Ram (2004). Image processing with ImageJ. Biophotonics international, 11(7), p. 36-42.

Archambault, A. \& A. Bruneau (2004). Phylogenetic utility of the LEAFYIFLORICAULA gene in the Caesalpinioideae (Leguminosae): gene duplication and a novel insertion. Systematic Botany, 29(3), 609-626.

Adjie, B., S. Masuyama, H. Ishikawa \& Y. Watano (2007). Independent origins of tetraploid cryptic species in the fern Ceratopteris thalictroides. Journal of Plant Research 120: 129-138.

Álvarez, I. \& J.F. Wendel (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29(3), 417-434.

Boodle, L. A. 1900. Comparative anatomy of the Hymenophyllaceae, Schizaeaceae and Gleicheniaceae. I. On the anatomy of Hymenophyllum, Annals of Botany 14: 455-496.

Bosch, R.B. van den 1861. Hymenophyllaceas novas. In Nederlandsch Kruidkundig

Archief. Verslangen en Mededelingen der Nederlandsche Botanische Vereeniging 5(2): 152.

Chen, C. W., L.Y. Kuo, C.N. Wang \& W.L. Chiou (2012). Development of PCR primer sets for intron 1 of the low-copy gene $L E A F Y$ in Davalliaceae. American Journal of Botany, 99(6), 223-225.

Cogniaux, A., C.D. Martius, A.G. Eichler \& I. Urban (1883). Flora brasiliensis. Flora brasiliensis, 14 .

Copleand, E.B. (1937). Hymenophyllum. Philipp. J. Sci., 64, 1-188.

Copeland, E.B. (1947). Genera Filicum-the genera of ferns. Genera Filicum-the genera of ferns.

Darriba, D., G.L. Taboada, R. Doallo \& D. Posada (2012). ModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9 (8), 772.

Dubuisson, J.Y., S. Hennequin, E.J. Douzery, R.B. Cranfill, A.R. Smith \& K.M. Pryer (2003). RbcL phylogeny of the fern genus Trichomanes (Hymenophyllaceae), with special reference to neotropical taxa. International Journal of Plant Sciences, 164(5), 753-761.

Duffy, A.M., M.C. Stensvold \& D.R. Farrar (2015). Independent gametophytes of Hymenophyllum wrightii in North America: Not as rare as we thought. American Fern Journal, 105(1), 45-55.

Ebihara, A., K. Iwatsuki, T.A. Ohsawa \& M. Ito (2003). Hymenophyllum paniense (Hymenophyllaceae), a new species of filmy fern from New Caledonia. Systematic Botany, 28(2), 228-235.

Ebihara, A., S. Hennequin, K. Iwatsuki, P.D. Bostock, S. Matsumoto, R. Jaman, J.Y. Dubuisson \& M. Ito (2004). Polyphyletic origin of Microtrichomanes (Prantl) Copel. (Hymenophyllaceae), with a revision of the species. Taxon, 53(4), 935-948.

Ebihara, A., H. Ishikawa, S. Matsumoto, S. J. Lin, K. Iwatsuki, M. Takamiya, Y. Watano \& M. Ito. (2005). Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany 92: 1535-1547.

Ebihara, A., J.Y. Dubuisson, K. Iwatsuki, S. Hennequin \& M. Ito (2006). A taxonomic
revision of Hymenophyllaceae. Blumea-Biodiversity, Evolution and Biogeography of Plants, 51, 221-280.

Ebihara, A., K. Iwatsuki, M. Ito, S. Hennequin \& J.Y. Dubuisson (2007). A global molecular phylogeny of the fern genus Trichomanes (Hymenophyllaceae) with special reference to stem anatomy. Botanical Journal of the Linnean Society, 155(1), 1-27.

Ferguson, D. \& T. Sang (2001). Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proceedings of the National Academy of Sciences, 98(7), 3915-3919.

Frohlich, M. W., \& Parker, D. S. (2000). The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany, 25(2), 155-170.

Funk, D. J. \& K.E. Omland (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 397-423.

Geyer, C.J. \& E.M. Keramidas (Ed.)(1991). Markov chain Monte Carlo maximum likelihood. Computing Science and Statistics: Proceedings from 23rd

Symposium on the Interface, p. 156-163. Fairfax Station, Interface Foundation. Hasebe, M., M. Ito, R. Kofuji, K. Ueda \& K. Iwatsuki (1993). Phylogenetic relationships of ferns deduced from rbcL gene sequence. Journal of molecular Evolution, 37(5), 476-482.

Hasebe, M., T. Omori, M. Nakazawa, T. Sano, M. Kato \& K. Iwatsuki (1994). RbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences, 91(12), 5730-5734.

Hasebe, M., P.G. Wolf, K.M. Pryer, K. Ueda, M. Ito, R. Sano, G.J. Gastony, J. Yokoyama, J.R. Manhart, N. Murakami, E.H. Crane, C.H. Haufler \& W.D. Hauk (1995). Fern phylogeny based on rbcL nucleotide sequences. American Fern Journal, 134-181.

Hennequin, S., A. Ebihara, M. Ito, K. Iwatsuki \& J.Y. Dubuisson (2003). Molecular systematics of the fern genus Hymenophyllum sl (Hymenophyllaceae) based on chloroplastic coding and noncoding regions. Molecular Phylogenetics and Evolution, 27(2), 283-301.

Hennequin, S. 2004. Le genre Hymenophyllum Sm. (Hymenophyllaceae, Filicopsida): systématique phylogénétique, évolution morphologique et histoire biogéographique. Doctoral thesis, l'Université Pierre et Marie Curie. 266 pp.

Hennequin, S., A. Ebihara, M. Ito, K. Iwatsuki \& J.Y. Dubuisson (2006). New insights into the phylogeny of the genus Hymenophyllum sl (Hymenophyllaceae): revealing the polyphyly of Mecodium. Systematic Botany, 31, 271-284.

Hennequin, S., A. Ebihara, J.Y. Dubuisson \& H. Schneider (2010). Chromosome number evolution in Hymenophyllum (Hymenophyllaceae) with special reference to the subgenus Hymenophyllum. Molecular Phylogenetics and Evolution, 55 (1), 47-59.

Hofer, J. M. \& T.N. Ellis (1998). The genetic control of patterning in pea leaves. Trends in plant science, 3(11), 439-444.

Hoot, S.B. \& W.C. Taylor (2001). The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. American Fern Journal, 91(3), 166-177.

Huelsenbeck, J.P. \& F. Ronquist (2001). MRBAYES: Bayesian inference of phylogeny.

Bioinformatics, 17, 754-755.

Ishikawa, H., Y. Watano, K. Kano, M. Ito \& S. Kurita (2002). Development of primer sets for PCR amplification of the PgiC gene in ferns. Journal of plant research, 115(1), 65-70.

Iwatsuki, K. (1961). The occurrence of Mecodium wrightii in Canada. American Fern Journal, 51(3), 141-144.

Iwatsuki K. (1984). Studies on the Systematics of Filmy Ferns VII. A scheme of classification based chiefly on the Asiatic Species. Acta Phytotax. Geobot 35(4), 165-179.

Iwatsuki, K. (1990). Hymenophyllaceae. In: Kramer, K.U. \& P.S. Green. The Families and Genera of Vascular Plants - Pteridophytes and Gymnosperms (p. 157-163). Berlin, Heidelberg: Springer.

Kobayashi, K. \& M. Suzuki (2014). Identification Methods of Plant Materials of Excavated Weavings. Bulletin of the National Museum of Japanese History, 187, 457-467.

Kumar, S., G. Stecher \& K. Tamura (2016). MEGA 7: Molecular Evolutionary Genetic Analysis version 7.0 for bigger datasets. 1-5.

Kuo, L. Y., F.W. Li, W.L. Chiou \& C.N. Wang (2011). First insights into fern matK phylogeny. Molecular Phylogenetics and Evolution, 59(3), 556-566.

Larsen, C. (2014). Estudios sistemáticos y biogeográficos en Hymenophyllum (Hymenophyllaceae) en Sudamérica Subtropical y Templada (Doctoral dissertation, Facultad de Ciencias Naturales y Museo).

Lehtonen S. (2011). Towards resolving the complete fern tree of life. PLoS One 6: e24851.

Le Thomas, A. (1961). Etude anatomique du rhizome et du pétiole des Hymenophyllaceae d'Afrique Occidentale et de la re gion malgache. Bulletin de la Socie' te 'Scientifique de Bretagne 36: 217-264.

Morton, C.V. (1968). The genera, subgenera, and sections of the Hymenophyllaceae. Contributions from the United States National Herbarium, 38 (5), 153-214.

Nadot, S., R. Bajon \& B. Lejeune (1994). The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Plant Systematics and Evolution, 191(1-2), 27-38.

Ogura, Y. (1938). Anatomie der Vegetationsorgane der Pteridophyten. Berlin: Gebru "der Borntra"ger.

Peixoto, A. L. \& M.P. Morim (2003). Coleções botânicas: documentação da biodiversidade brasileira. Ciência e Cultura, 55(3), 21-24.

Prantl, K.B. 1875. Untersuchungen zur Morphologie der Gefässcryptogamen, I. Die Hymenophyllaceaen, die niedrigste Entwicklungsreihe der Farne. Engelmann. Leipzig, Germany.

Pryer, K. M., H. Schneider, A.R. Smith, R. Cranfill, P.G. Wolf, J.S. Hunt \& S.D. Sipes (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409(6820), 618-622.

Pryer, K. M., E. Schuettpelz, P.G. Wolf, H. Schneider, A.R. Smith \& R. Cranfill (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91(10), 1582-1598.

Rambaut, A. (2012). Tree Figure Drawing Tool Version 1.4.0. UK: Institute of Evolutionary Biology, University of Edinburgh.

Raymond, O., F. Piola \& C. Sanlaville-Boisson (2002). Inference of reticulation in outcrossing allopolyploid taxa: caveats, likelihood and perspectives. Trends in Ecology \& Evolution, 17(1), 3-6.

R Core Team (2006). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/.

Ronquist, F. \& J.P. Huelsenbeck (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.

Rothfels C.J., A. Larsson, L.-Y. Kuo, P. Korall, W.-L. Chiou \& K.M. Pryer (2012). Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. Systematic Biology 16: 490-509.

Ryan, T.A., B.L. Joiner \& B.F. Ryan (1994). Minitab ${ }^{\text {TM }}$. John Wiley \& Sons, Inc.

Sano, R., M. Takamiya, M. Ito, S. Kurita \& M. Hasebe (2000). Phylogeny of the lady fern group, tribe Physematieae (Dryopteridaceae), based on chloroplast rbcL gene sequences. Mol. Phylogenet. Evol. 15, 403-413.

Schneider H., A.R. Smith, R. Cranfill, T.J. Hildebrand, C.H. Haufler \& T.A. Ranker
(2004a). Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Molecular phylogenetics and evolution, 31(3): 1041-1063.

Schneider H, E. Schuettpelz, K.M. Pryer, R. Cranfill, S. Megallon \& R. Lupia (2004b). Ferns diversified in the shadow of angiosperms. Nature 428: 553 - 557.

Schneider H, L. He, S. Hennequin \& X.-C. Zhang (2013). Towards a natural classification of Pteridaceae: inferring the relationships of enigmatic pteridoid fern species occurring in the Sino-Himalaya and Afro-Madagascar. Phytotaxa 77: 49-60.

Schuettpelz, E., P. Korall \& K.M. Pryer (2006). Plastid atpA data provide improved support for deep relationships among ferns. Taxon 55, 897-906.

Schuettpelz, E. \& K.M. Pryer (2007). Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon, 56 (4), 1037-1037.

Serizawa, S. (1983). A new species of Mecodium (Hymenphyllaceae) from central Honshu of Japan. Journ. Jap. Bot. 58 (2): p. 62-65.

Shepherd, G. J. (2003). Conhecimento de diversidade de plantas terrestres do Brasil. Ministério do Meio Ambiente (MMA), Brasília.

Shreve, F. (1911). Studies on Jamaican Hymenophyllaceae. Botanical Gazette, 184-209.

Smith, A.R., K.M. Pryer, E. Schuettpelz, P. Korall, H. Schneider \& P.G. Wolf (2006). A classification for extant ferns. Taxon 55, 705-731.

Smith, A.R., K.M. Pryer, E. Schuettpelz, P. Korall, H. Schneider \& P.G. Wolf (2008).

Fern classication. In: Ranker, T.A., Haufler, C.H. (Eds.), Biology and Evolution of Ferns and Lycophytes. Cambridge University Press, New York, pp. 159-174.

Souza-Chies, T. T., G. Bittar, S. Nadot, L. Carter, E. Besin \& B. Lejeune (1997). Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Systematics and Evolution, 204(1-2), 109-123.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics, 22 (21), 2688-2690.

Steil, W.N. (1939). Apogamy, apospory, and parthenogenesis in the pteridophytes. The Botanical Review, 5, 433-453.

Stolze, R.G. \& R.M. Tryon (1989). Pteridophyta of Peru. Part I. 1. Ophioglossaceae 12. Cyatheaceae. Feldiana Botany 20, p. 49-78.

Swartz, O.P. (1788). Nova genera \& species plantarum seu prodromus descriptionum vegetalium, maximam partem incognitorum quæ sub itinere in Indiam occidentalem annis 1783-1787 digessit Olof Swartz. MD. in bibliopolis Acad. M. Swederi.

Swarts, O. (1801). Journal für die Botanik. Germany: Göttingen.

Taylor, T.M.C. (1967). Mecodium wrightii in British Columbia and Alaska. American Fern Journal, 57(1), 1-6.

Tryon, R. (1972). Endemic areas and geographic speciation in tropical American ferns. Biotropica, 121-131.

Van den Heede, C.J., R.L.L. Viane, \& M.W. Chase (2003). Phylogenetic analysis of Asplenium subgenus Ceterach (Pteridophyta: Aspleniaceae) based on plastid
and nuclear ribosomal ITS dna sequences. American Journal of Botany 90(3): 481-495.

Wolf, P. (1997). Evaluation of $\operatorname{atp} B$ nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. American Journal of Botany, 84(10), 1429-1440

VASQUES D.T.

Appendices

Appendix 1: List of samples used for the molecular analysis (Chapter 2). Samples are organized by species name, deposited herbarium name, Collector name, location and identification number.

Abrodictyum rigidum: Duke, J.Y. Dubuisson HV 1997-3, no date, Venezuela, AY775447, AY095137. Hymenophyllum hygrometricum: P, F, J.Y. Dubuisson HR-1999-13, no date, La Reunion, AY775451, AY095118. Hymenophyllum apiculatum: J.Y. Dubuisson HV 1997-03, no date, Venezuela, AY775438, AY775411. Hymenophyllum armstrongii: TI, CHR, A. Ebihara 01122-03, no date, New Zealand, AB162691; UC, A.R. Smith 2610, no date, AY095128. Hymenophyllum asplenioides: DV20150008, D.T. Vasques 2015-0008, 22.II.2015, Serra da Bocaina, Sao Paulo, near to the entrance gate to the park 1562m. Hymenophyllum atrovirens: A. Ebihara 040119-01, no date, New Zealand, AB496575, AB496595. Hymenophyllum caudiculatum: DV20150012, D.T. Vasques 2015-0012, 23.II.2015, Serra da Bocaina, Sao Paulo, near to the cottage (Campos da Bocaina) trail 1590m. Hymenophyllum corrugatum: Y5, G.Miehe \& U.Wuendisch 94-220-11, no date, China, Xizang, SE Tibet, AB191443. Hymenophyllum cruentum: TI, T.A. Ohsawa 2015, no date, Chile, AB191455; P, F, M. Wedin H38, no date, AY095133. Hymenophyllum cuneatum: C13, A.Ebihara 021223-07, no date, Chile. Hymenophyllum demissum: RBG, B.G. Glasgow, 830, no date, New Zealand, AY775441, AY775416. Hymenophyllum devolii: ED19587, UG221, s.n., no date, Taiwan, Taitung. Hymenophyllum dilatatum: TI, A. Ebihara 011219-06, no date, New Zealand, AB191444; UC, W.C. Taylor 90584, no date, AY095138. Hymenophyllum flabellatum: A. Ebihara 0111216-02, no date, New Zealand, AB083279; s.n., no date, French Polynesia, AY775417. Hymenophyllum heimii: F. Rakotondrainibe 6008, no date, Madagascar, AY775443, AY775419. Hymenophyllum hirsutum: J.Y. Dubuisson HR-1999-6, no date, La Reunion, AY775450, AY775432. Hymenophyllum imbricatum: S. Matsumoto 01-758, no date, Vanuatu, AB496566, AB496587. Hymenophyllum inaequale: P, F, J.Y. Dubuisson HR-1999-9 no date La Reunion, AB217848, AY095122. Hymenophyllum kuhnii: M38, G.Rouhan 517, no date, Tanzania, AB496577, AB496597. Hymenophyllum lyallii: TI, CHR, A. Ebihara, 011221-06, no date, New Zealand, AB162684; TI, CHR, A. Ebihara 011221-06, no date, New Zealand, AB496589. Hymenophyllum mikawanum: TNS VS 738136, GC1000, A. Ebihara, S. Serizawa \& H. Miyazaki AC2009-2172, 13.VI.2009, Japan, Aichi prefecture. Hymenophyllum minimum: A. Ebihara 011222-09, no date, New Zealand, AB496572, AB496592. Hymenophyllum myriocarpum: Sundue and J. Nitta 1483, 20.I.2008, Costa Rica, Heredia, Rio Cuarto, La Selva Biological Station 60m; Sundue and J. Nitta 1475, 17.I.2008,

Costa Rica, San Jose, Villa Mills, Cerro de la Muerte 3354m; J. Nitta, J. Condack, F. Matos, C. Rothfels, M. Sundue, A. Vasco 94, 27.I.2008, Costa Rica, San Jose, Cerro de la Muerte 3093m; J. Nitta, J. Condack, F. Matos, C. Rothfels, M. Sundue, A. Vasco 90, 25.I.2008, Costa Rica, Alajeula, road to Vulcan Poas 2244m; J. Nitta 2325, no date, Costa Rica, Alajeula, San Ramon, Nectandra Biological Preserve; J. Nitta 159, 8.III.2008, Costa Rica, Puntarenas Reserva Biologico Durika 2102m; J. Nitta 110, 1.II.2008, Costa Rica, San Jose, Chirripo National Park 3083m; B3, Asakawa 174-4, 2001, Bolivia; B25, Asakawa 208-3, 2001, Bolivia; B22, Asakawa 196-2, 2001, Bolivia; B20, Asakawa 184-2, 2001, Bolivia; B19, Asakawa 184-1 2001, Bolivia; B16, Asakawa 180-3, 2001, Bolivia; J. Nitta 148, 24.II.2008, Costa Rica, Alajeula, San Ramon 1203m. Hymenophyllum novoguineense: G6, R.J.Johns 9637, no date, New Guinea. Hymenophyllum paniculiflorum: TNS VS 738125, UG253, A. Ebihara, S. Serizawa \& H. Miyazaki AC2009-2183, 13.VI.2009, Japan, Aichi Prefecture, Toyota city; TNS VS 776536, UG252, A. Ebihara, C. Tsutsumi, G. Kokubugata \& C.-I. Huang TW2008-1879, 20.VI.2008, Taiwan, Yilan; TAIF VS, UG225, s.n., no date Taiwan, Yilan; TNS VS 766206, K41, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto, SB2007-61, 1.II.2007, Malaysia, SabahMt., KinabaluMasilau, Nepenthes Trail; K18, Arikawa, 316A, no date, Malaysia, Mt. Kinabalu; H164, A.Ebihara 040404-03, no date, Japan, Saitama prefecture, Chichibu. Hymenophyllum pectinatum: TI, T.A. Ohsawa 2017, no date, Chile, AB191450; P, F, M. Wedin H41, no date, AY095134. Hymenophyllum polyanthos: TNS VS, Y11, Bhutan 59, no date, Bhutan; Y10, Rocher, no date, Bhutan; TNS VS 762064, W17, A.Ebihara, M.Yokota, G.Kokubugata, S.Kobayashi \& K.Yasuda TW2006-187, 6.XII.2007, Taiwan, Pingtung Chuenr Hsiang, Jinshui-ying; TNS VS 762067, W16, A.Ebihara, M.Yokota, G.Kokubugata, S.Kobayashi \& K.Yasuda TW2006-184, 6.XII.2007, Taiwan, Pingtung Chuenr Hsiang, Jinshui-ying; TNS VS 763148, UG258, s.n., 30.IX.2006, Japan, Kagoshima, Kumage; TNS VS 776487, UG257, A. Ebihara, T. Oka \& T. Oka NN2008-1967, 16.IX.2008, Japan, Nagano prefecture; TNS VS 768184, UG256, Atsushi Ebihara, Mihoko Uzawa, Naoko Mizukami \& Kanako Tokutome 1355, 6.X.2007, Japan, Saitama prefecture, Chichibu; TNS VS 766417, UG255 , A. Ebihara, S. Fujimoto \& K. Ohora KI2007-1261, 25.VIII.2007, Japan, Wakayama; TNS VS 764218, UG254, A.Ebihara, C.Tsutsumi, M.Kato, G.Kokubugata, T.Komatsu \& H.Yamashita AM2007-395, 20.V.2007, Japan, Kagoshima, Ooshima-gun; TAIF VS , UG226, s.n., no date, Taiwan, Hsinchu; S8, Wood 10456, no date, Marquesas; RH756, R.Y. Hirai, J. Prado \& R. da Silva Cruz 756, 12.XII.2014, Brazil, São Paulo, Santo André 850m; J. Nitta 631, 22.VIII.2010, French Polynesia, Society Islands, Moorea 372 m ; J. Nitta 170, 11.III.2008, Costa Rica, San Jose; J. Nitta 135, 19.II.2008, Costa Rica, Alajeula; J. Nitta 9, 8.X.2006, French Polynesia, Society Islands, Moorea, Mt. Rotui; J. Nitta 78, 27.XI.2007, French Polynesia, Society Islands, Borabora; J. Nitta 631, 22.VIII.2010, French Polynesia, Society Islands, Moorea, face of Mt. Tohiea above town of Maatea 372m; J. Nitta 6,
8.X.2006, French Polynesia, Society Islands, Moorea, Mt. Rotui 711m; J. Nitta, U. Hapid 537, 27.IV.2009, Indonesia, Java, Gunung Halimun, trail to Gunung Kendeng 1648m; J. Nitta, U. Hapid 528, 27.IV.2009, Indonesia, Java, Gunung Halimun, trail to Gunung Kendeng 1350m; J. Nitta, U. Hapid 515, 26.IV.2009, Indonesia, Java, Gunung Halimun, trail to Gunung Kendeng 1113m; J. Nitta, U. Hapid 476, 23.IV.2009, Indonesia, Java, Gunung Gede, trail to waterfalls 1500m; J. Nitta, U. Hapid 475, 23.IV.2009, Indonesia, Java, Gunung Gede, trail to waterfalls 1500 m ; J. Nitta, Li-Yaung Kuo 426, 26.XI.2008, Taiwan, Pingtung County, Li Long Shan Trail 842m; J. Nitta, Li-Yaung Kuo 424, 26.XI.2008, Taiwan Pingtung County, Li Long Shan Trail 813m; J. Nitta 42, 26.X.2006, French Polynesia, Society Islands, Moorea, Mt. Mouaputa 578m; J. Nitta 3020, 10.VII.2013, French Polynesia, Society Islands, Moorea, Mt. Mouaputa 794m; J. Nitta 2824, 1.VII.2013, French Polynesia, Society Islands, Moorea, Mt. Mouaputa 411m; J. Nitta 2770, 24.VI.2013, French Polynesia, Society Islands, Moorea, Mt. Mouaputa 646m; J. Nitta 2645, 17.VI.2013, French Polynesia, Society Islands, Moorea, Mt. Rotui 830m; J. Nitta 2311, no date, Costa Rica, Alajeula, San Ramon, Nectandra Biological Preserve; J. Nitta, Suzanne Vinette 1806, 20.VIII.2012, French Polynesia, Society Islands, Moorea, Mt. Rotui; J. Nitta 170, 11.III.2008, Costa Rica, San Jose, San Gerardo de Dota 2364m; J. Nitta, Suzanne Vinette, Ravahere Taputuarai 1537, 9.VIII.2012, French Polynesia, Society Islands, Moorea, Mt. Tohiea 1170m; J. Nitta, Suzanne Vinette 1438, 3.VIII.2012, French Polynesia, Society Islands, Moorea, Mt. Tohiea 1000m; J. Nitta, Suzanne Vinette 1395, 30.VII.2012, French Polynesia, Society Islands, Moorea, Mt. Tohiea 800m; J. Nitta, Suzanne Vinette 1254, 21.VII.2012, French Polynesia, Society Islands, Moorea, Mt. Tohiea 1109m; J. Nitta, Suzanne Vinette 1160, 18.VII.2012, French Polynesia, Society Islands, Moorea, Mt. Tohiea 800m; TNS VS 762710, KS19, A.Ebihara, Y.Hirayama, G.Kokubugata, Y.Saito \& M.Uzawa KS2007-287, 24.II.2007, Japan, Miyazaki prefecture, Kitago-cho, Inohae Ravine; TNS VS 762571, KS1, A.Ebihara, Y.Hirayama, G.Kokubugata, Y.Saito \& M.Uzawa, KS2007-116, 18.II.2007, Japan, Kagoshima prefecture, Satsuma-cho, Mt. Shibi; TNS VS 766210, K45, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-94, 3.II.2007, Malaysia, Sabah, Mt. Alabu; TNS VS 766209, K44, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-92, 3.II.2007, Malaysia, Sabah, Mt. Alabu; TNS VS 766208, K43, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-76, 2.II.2007, Malaysia, Sabah, Mt. Kinabalu, Silau Silau trail; TNS VS 766205, K40, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-60, 1.II.2007, Malaysia, Sabah, Mt. Kinabalu, Masilau, Nepenthes trail; TNS VS 766204, K39, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto, SB2007-52, 1.II.2007, Malaysia, Sabah, Mt. Kinabalu, Masilau, Nepenthes trail; TNS VS 766200, K36, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-16, 31.I.2007, Malaysia, Sabah, Mt. Kinabalu, between Timophon gate and Kandis shelter; TNS VS 766199, K35, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-13,
31.I.2007, Malaysia, Sabah, Mt. Kinabalu, between Timophon gate and Kandis shelter; K12, Yamada 011129-01, no date, Malaysia; I5, Asakawa 21, no date, Indonesia; TNS VS 1161468, HY59, s.n. 1755, no date, Cambodia; TNS VS 1161451, HY16, s.n. 1497, no date, Cambodia; H40, Fujimoto, s.n., no date, Japan, Aomori prefecture, AB574717; H17, Morino 000616, 16.VI.2000, Japan, Kanagawa prefecture, Tanzawa; TNS VS 773469, GC883, Atsushi Ebihara, Chie Tsutsumi \& Katsuyuki Kawahara KS2008-1726, 16.V.2008, Japan, Kagoshima prefecture, Kumame-gun, Yakushima; DV20150013, D.T. Vasques \& A. Ebihara 2015-0013, 22.V.2015, Japan, Tokyo, Okutama 360m; DV20150011, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0011, 23.II.2015, Brazil, São Paulo, São José do Barreiro 1590m; DV20150004, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0004, 22.II.2015, Brazil, São Paulo, São José do Barreiro 1562m; DV20150001, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0001, 21.II.2015, Brazil, São Paulo, São José do Barreiro 1564m; J.Y. Dubuisson s.n., no date, La Reunion, AY775445, AY775424; s.n. 40, no date, Tahiti, AB217846, AY775425. Hymenophyllum rarum: Z16, A. Ebihara, 011217-09, no date, New Zealand, AB496571, GU200689. Hymenophyllum revolutum: D. Callen, no date, New Zealand, GU200675, GU200690. Hymenophyllum rufescens: A. Ebihara 011221-08, no date, New Zealand, AB496570, AB496591. Hymenophyllum scrabum: A. Ebihara 011223-05, no date, New Zealand, AB083278, AY775428. Hymenophyllum serrulatum: A. Ebihara 000223-0009, no date, Malaysia, AB496565, AB496586; Hymenophyllum tenellum: P, Duke, J.Y. Dubuisson HR-1999-27, no date, La Reunion, AB191453, AY095126. Hymenophyllum tunbrigense: S. Hennequin 2004-2, no date, Portugal, GU200679, GU200694. Hymenophyllum undulatum: J. Nitta, J. Condack, F. Matos, C. Rothfels, M. Sundue, A. Vasco 96, 27.I.2008, Costa Rica, San Jose, Cerro de la Muerte 3093m; J. Nitta, J. Condack, F. Matos, C. Rothfels, M. Sundue, A. Vasco 91, 25.I.2008, Costa Rica, Alajeula, road to Volcan Poas 2244m; J. Nitta \& David Barrington 2019, 12.I.2013, Costa Rica, Alajeula, San Ramon, Nectandra Biological Preserve 2143m; J. Nitta 161, 9.III.2008, Costa Rica, Puntarenas, Reserva Biologico Durika 2500m. Hymenophyllum valvatum: DV20150014, D.T. Vasques \& A. Ebihara 2015-0014, 22.V.2015, Okutama, Japan, Tokyo 360m. Hymenophyllum villosum: TI, A. Ebihara 011223-01, no date, New Zealand, AB191454; D. Callen, no date, New Zealand, AY775429. Hymenophyllum wilsonii: F. Katzer 1, no date, United Kingdom, GU200678, GU200693. Hymenophyllum wrightii: H16, A. Ebihara 000618-1, 18.VI.2000, Japan, Gunma prefecture; H12, A. Ebihara, 000901-1, 1.IX.2000, Japan, Nagano prefecture, AB083277, AY775430; GC980, A. Ebihara, A. Yamaoka \& Y. Fukazawa 081220-12, no date, Japan, Tokyo; TNS VS 765790, GC435, A.Ebihara, Y.Tsujita \& Y.Horii TH2007-911, 7.VIII.2007, Japan, Akita prefecture, Yurihonjyou city; H88, A. Ebihara 000901-02, no date, Japan, Nagano prefectur

Appendix 2: Nucleotide sequences alignment used for the phylogenetic investigation based on LEAFY
nuclear marker (Chapter 3). The groups A and B denote paralog sequences found in the analysis, as
shown in figure 9.

B22_c_myriocarpum_Bolivia GC980_poriahtii_ 20150004 c polyanthos Brazil
G6 5 novoquinense NewGuza
B22 b myriocarpum Bolivia GC980 b wrightii Japan
B22_1_myriocarpum Bolivia
DV20150004_1_polyanthos Brazil GC980_1_wrightii_Japan
K35_1_polyanthos_Malaysia
K35_a_polyanthos_Malaysia
Y11_3_polyanthos Bhutan
Y11_a_polyanthos_Bhutan
$\frac{\text { DV20150004 a polvanthos Brazil }}{\text { B22 } 8 \text { myriocarpum_Bolivia }}$
B3_1_polyanthos_Bolivia
B22_6_myriocarpum_Bolivia B3_5_polyanthos_Bolivia C1_1_cuneatum_Chile C13_2_cuneatum_Chile C1___cuneatum_Chile 2_4_cuneatum_Chile DV20150012_2_caudiculatum_Brazi DV20150013_caudiculatum_Brazil DV20150004__polyanthos_Japan DV20150004_-_polyanthos_Brazi GC1000_-_polyanthos_Brazl
GC883-1 pawanum_Japan
GC883-2 polyantho
GC883_
GC883-4 polyanthos Japan ${ }^{H} 12$ a wrigtii Japan H12 b wrightii Japan
H16 1 wrightii Japan
H164 1 paniculiflorum Japan
H88 5 wrightii Japan
K35 c polyanthos Malaysia M38_1_kuhnii_Tanzania M38_2 kuhnii Tanzania Nitta1160 5 polyanthos FrenchPolynesia Nitta148_myriocarpum_CostaRica Nitta159_a_myriocarpum_CostaRica Nitta159_b_myriocarpum_CostaRica Nitta161_a_undulatum_CostaRica Nitta161_b_undulatum_CostaRica
Nitta3020_4_polyanthos_FrenchPolynesia Nitta3020_5_polyanthos_FrenchPolynesia Nitta476_1_polyanthos_Indonesia Nita476_2_polyanthos_Indonesia Nitta91___polyanthos_ndonesia Nita91_1_undulatum_CostaRica Nita96_a_undulatum_CostaRica 8___undulatum_CostaRica 88_-_polyanthos_Marquesas S8 5-polyanthos_Marquesas UG254 1 polyanthos W17_1_polyanthos_Japan Y11_4_polyanthos_aiwan Y_1 corrugatum_China Y5_2_corrugatum_China Z16-2 rarum NewZealand

B22_c_myriocarpum_Bolivia GC980_a_wrightii_Japan DV20150004_c_polyanthos_Brazil AGGGAGTG- TTGCCTGATACTTTCATTTGTTATTCCTCAAACTTCAAATTCCATTTGCCCT-GTGAAACGC
 G6 5 novoguineense NewGuinea

B22_b_myriocarpum_Bolivia GC980_b_wrightii_Japan B22_1_myriocarpum_Bolivia DV20150004_1_polyanthos_Brazi GC980_1_wrightii_Japan
K35_1_polyanthos_Malaysia
K35_a_polyanthos_Malaysia
Y11 a polyanthos_Bhutan DV20150004 a polvanthos Brazil

B3_1_polyanthos_Bolivia
B22_6_myriocarpum_Bolivia
B3_5_polyanthos_Bolivia C13-1_cuneatum_Chile C13_3_cuneatum_Chile C13_4_cuneatum_Chile
DV20150012 2 caudiculatum_Brazl
DV20150012_6_caudiculatum_Brazi
DV20150013_1_polyanthos_Japan
DV20150004_2_polyanthos_Brazil
DV20150004_-_polyanthos_Brazil
GC1000_1_mikawanum_Japan GC883_1_polyanthos_Japan GC883_-2_polyanthos_Japan GC883-4 polyanthos Japan

H12_a_wrightii Japan
H12_b_wrightii Japan
H16_1_wrightii Japan
164_1_paniculiflorum_Japan
H88_5_wrightii_Japan
K35_c_polyanthos_Malaysia M38-2 kuhnii-Tanzania
Nta1 160_5_polyanthos_FrenchPolynesia
Nitta148_myriocarpum_CostaRica
Nitta 159_a_myriocarpum_CostaRica
Nitta159_b_myriocarpum_CostaRica
Nitta161_a_undulatum_CostaRica
Nitta3020 4 polyanthos FrencostaRica
Nitta3020-5 polyanthos French Polynesia
Nitta476_1_polyanthos Indonesia
Nitta476_2_polyanthos_Indonesia Nitta515_polyanthos_Indonesia Nitta91_1_undulatum_CostaRica Nitta96_a_undulatum_CostaRica Nitta96_b_undulatum_CostaRica

S8_1_polyanthos_Marquesas
S8_4_polyanthos_Marquesas
UG254_1_Mas
W17-1 polyanthos_Japan
Y11-_-polyn
Y5
Y5 2 - corrugatum China
___rarum_NewZealand

TTG
TTG
TTG
TTG
TTG
$-T T G$
$-T T G$
$-T T$
$-T T$ GTITHCCICAAAACITCAAAACICCANIIIITI-GIGAAGCGCGTGAAACG
 gTtTTTCCTCAAAACTTCAAACTCCATTTTTTTT-GTGAAACGCGGGAAGIG THGCCIGAHACHIHCAITGGTIGTCCTC GGGAGTG - TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCATTTGTCCT AGGGAGTG - TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCCCATTTATCCT AGGGAGTG-TTGCCTGATACTTTCATTTGTTTTTCCTCAAACTTCAAACTCCATTTGTCC AGGGAGTG-- TTGCOTGATACTTTCATTTGTTTTTCCTCAAACTTCAAACTCCATTTGTCCT-
\qquad G AGGGAGTG
AGGAAGTG TTGCCTGATACTTTCATTTGTTTTTCCTCAAACTTCAAACTCCATTTGTCCTGTGAAAC AGGAAGTG - TTGCCTGATACTTTCATTTGTTGTTCCTCAAACCCCAA AGGGAGTG-GGGAGTG-TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCTCATTTGTCCT GTGAAACC AGGGAGTG- TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCCCATTTGTCCT-GTGAAACCC
 AGGGAGTG - TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCACATTTGTCCT AGGGAGTG-TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCCCATTTGTCCT AGGGAGTG-TTGCCTGATACTTTCATTTGTTGTTCCTCGAACTTCAAACCCCATTTGTCCT GGGAGTG - TTGCCTGATACTTTCATTTGTTCCTCCTCGAACTTCAAACCCCATTTGTCCT AGGGAGTG-TTGCCTGATACTTTCATGTGTTGTTCCTGGAACTTCAAAACCCCATTTGTCCT AGGGAGTG-

 AGGGAGT- \qquad AGGGAGTG \begin{tabular}{l}

- TT

- TT

\hline
\end{tabular} JGGGAGTG -- TT AGGGAGCG AGGGAGTG AGGGAGTG AGGGGAGTG AGGGAGTG AGGGAGTG AGGGAGTG

AGGGAGTG AGGGAGTG AGGGAGTG AGGGAGTG ATGGAGTG AGGGAGTG AGGGAGTG AGGGAGTG AGGGAGTG Z16 2 rarum NewZealand

B22_-_myriocarpum_Bolivia K35_b_polyanthos_Malaysia GC980_a_wrightii_Japan DV20150004_c_polyanthos_Brazil

22-b_polyanhos_Bhutan B22_b_myriocarpum_Bolivia 3221 myriocarpum Bolina B22-1-9 1 olyantho GC980 1 wrightii Japan K35 1 polyanthos Malaysia K35 a polyanthos Malaysia Y11 3 polyanthos Bhutan Y11_a_polyanthos Bhutan
DV20150004 a oolvanthos Brazil B3-1 polyanthos Bolivia
2_6_myriocarpum_Bolivia B3_5_polyanthos_Bolivia C13_1_cuneatum_Chile
C13_2_cuneatum_Chile
C13_3_cuneatum_Chile
C13_4_cuneatum_Chile
DV20150012_2_caudiculatum_Brazi DV20150012_6_caudiculatum_Brazi DV20150013_1_polyanthos_Japan DV20150004_2_polyanthos_Brazil DV20150004_b_polyanthos_Braz 1000_1_mikawanum_Japan GC883_1_polyanthos_Japan CC883_2_polyanthos_Japan C8883_-polynan H12 a wrightii Japan

H12_b wrightii Japan
H16-1 wrightii Japan
_1_paniculiflorum_Japan
c_polyanthos Malaysia
M38_1_kuhnii-Tanzania
M38_2_kuhnii_Tanzania
Nitta1160 5 polyanthos FrenchPolymesia Nitta148_myriocarpum_CostaRica Nitta159_a_myriocarpum_CostaRica Nitta159_b_myriocarpum_CostaRica Nitta161_a_undulatum_CostaRica Nitta161_b_undulatum_CostaRica
Nitta3020_4_polyanthos_FrenchPolynesia
Nitta3020_5_polyanthos_FrenchPolynesia
Nitta476_1_polyanthos_Indonesia Nitta476_2_polyanthos_Indonesia Nitta515_polyanthos_Indonesia Nitta91_1_undulatum_CostaRica Nitta96_a_undulatum_CostaRica Nitta96_b_undulatum_CostaRica S8_1_polyanthos_Marquesas S8_4_polyanthos_Marquesas UG254_1_Marquesa W17-1 polyanthos Taiwan
Y 11 - 4 polyanthos Bhutan
Y5 - 1 corrugatum China
Y5 2 corrugatum China
Z16_1_rarum_NewZealand
Z16_2_rarum_NewZealand
${ }_{1}^{220}$ AgCTGCGTAATC
AGCTGCGTAATC
AGCTGCGTAATC AGCTGCGTAATC
GGCTGCGGAATG GCTGCGGAATG GGCTGGGGAATG AGCTGCGGAATG AGCTGCGGAATG AGCTGCGGAATG AGCTGCGGAATG AGCTGCGGAATG AGCTGCGGAATG AGCTGCGGAATG. AGCTGCGTAATG
AGCTGCGTAATG GGCTGCGTAATG GCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG GCTGCGTAATG GCTGCGTAATG GCGCGTAATG GCTGCGTAATG gCTGCGTAATG GCTGCGTAATG GCTGCGTAATG GCTGCGTAATG GCTGCGTAATG CTGCGTAATG GCTGCGTAATG TGCGTAATG GCTGCGTAATG GCTGCGTAATG GCTGCGTAATG GCCGCGTAATG AGCTGCGTAATG GCTGCGTAATG gCtGCGTAATG GCTGCGTAATG GGTGCGTAATG GCCGCGTAATG AGCCGCGTAATG GCTACGTAATG GGTGCGTAATG agigugianta GCTGCGTAATG GGIGGTATG GGTGGIAAT GGCTGGTAAT AGCTGCGTAATG AGCTGCGTAATG GGCTGCGTAATG GGCTGCGTAATG AGCTGCGTAATG AGCTGCGTAATG GCTGCGTAATG AGCTGCGTAATG

TTTTTCCATGAGAAGTGAC-GGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 279 TTTTTCCATGAGAAGTGAC-GGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 279 -TTTTTCCATGAGAAGTGAC-GGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT $279 \boldsymbol{A}$ TTTTTCCATGAGAAGTGAC-GGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 279 TTTTTCCATGAAAAGTGACAGGAGTTTTGTCIGAAGTTGTCAAGATCAAGAAGAATCTIATT 280 TTTTTCAATGAAAAGTGAAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 281 TTTTTTCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 TTTTTCCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 TTTTTCCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 B TTTTTCCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 TTTTTCCATGAAAAGTGACAGGAGTTTCGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280
TTTTTCCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 TTTTTCCATGAAAAGTGACAGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 280 ITITICCAATGAAAAGTGACAGGAGITITGTCTGAAGITGTCAAGATCAGAAGAATCIAATI 281 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 276 TTTTTCCATGAGAAGTGACGGAAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 277 ittttccatgaganatgacgggagttttgictgangitgt - TTTTCCATGAGAAGTGATGGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 279 TTTTTCCATGAGAAATGACGGGAGTTTTGTCTGAAGTTGT.........................AATCTATT 269 -TTTTCCATGAGAAGTGATGGGAGTTTTGTCTGAAGTTGTCAAGATCAGAAGAATCTATT 279 TTTCTCCATGAGAAGTGACGGGAGTTTTGTCTAAAGTTGTCAAGATTAGAAGAATCTATC 259 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTAAAGTTGTCAAGATTAGAAGAATCTATC 259 TTTTTTTATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 279
TTTTTCCATGAGAAGTTACGGGAGTTTTGTCTGAAGTTGTCAAAATCAGAAGAATCTATT 281 TTTTTCCATGAGAAGTTACGGGAGTTTTGTCTGAAGTTGTCAAAATCAGAAGAATCTATT 281 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 276 -TTTTCCATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGAT-AGAAGAATCTATC 278 -TTTTCCATGAAAAGTGACGAGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 283 -TTTTCCATGAAAAGTGACGAGAGTTTTGTTTGAAGTIGIGAAGATCAGAAGAATCTATC 281 TTTTTCCATGAAAAGTGACGAGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 282 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGGTCAGAAGAATTTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGGTCAGAAGAATTTATC 279 TTTTTCCATTAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 279 TTTTTCCATGAAAAGTGACAGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 279
TTTTTTTATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 281 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 278 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAAAAGAATCTATC 268 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCCATC 279 TTTTTCCATTAGAAGTGACGGGAGTTTTGTCTGAAGTTGTCAAGATTAGAAGAATCTATT 280 TTTTTCCATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATGAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATTTATC 279 TCTTTTCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATTAGAAGTGACGGGAGTTTTGTCTGAAGTTGTCAAGATTAGAAGAATCTATT 280 TTTTTCCATTAGAAGTGACGGGAGTTTTGTCTGAAGTTGTCAAGATTAGAAGAATCTATT 280 TTTTTCTATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 279 TTTTTTTATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 280 TTTTTCCATGAGAAGTGACGGGAGTTTTGTCTGAAGTTGGCAAGATCAGAAGAATCGATT 280 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 278
TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCATGAGAAGIGAGGGGAGTITGTIGAAGITGGAAGATCAGAAGAATCGATT 280 TTTTTCCATGAGAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAAATTTATC 279 TTTTTTTATGAAAAGTGACGGGAGTTTTGTTTGAAGTTGTCACGATCAGAAGAATTTATC 279 ITTTTTTATGAAAAAGTGACGAGAGTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 280 TTTTTTTATGAAAAGTGACGGGATTTTTGTTTGAAGTTGTCAAGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGCTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGCTTGAAGTTGTCACGATCAGAAGAATCTATC 279 TTTTTCCATGAGAAGTGACGGGAGTTTTGTCTGAAGTTGGCAAGATCAGAAGAATCGATT 280

B22_c_myriocarpum_Bolivia GC980_a_wrightii_Japan DV20150004_c_polyanthos_Brazil G6 5 novoquineense NewGuinea

B22_b_myriocarpum_Bolivia GC980_b_wrightii_Japan B22_1_myriocarpum_Bolivia DV20150004_1_polyanthos_Braz GC980_1_wrightii_Japan K35_1_polyanthos_Malaysia Y11_3 polyanthos_Malaysia Y11_a_polyanthos_Bhutan

2_8_myriocarpum Bolivia B3_1_polyanthos_Bolivia B22_6_myriocarpum Bolivia B3_5_polyanthos_Bolivia C13_1_cuneatum_Chile C13_2_cuneatum_Chile C13_3_cuneatum_Chile C13_4_cuneatum_Chile DV20150012-6_caudiculatum_Brazi V20150012_6_caudiculatum_Brazl DV20150013_1_polyanthos_Japan DV20150004_2_polyanthos_Brazil
GC10004_b_polyanthos_Brazil GC883-1 mawanum_Japan GC883-2 polyanthos_Japan CC883_3 Man GC883-polyanthos_Japan H12_a_wrightii_Japan H12 b wrightii H16_1_wrightii_Japan 1_paniculiflorum_Japan H88_5_wrightii_Japan
K35_c_polyanthos_Malaysia
M38_1_kuhniii-Tanzania Ntta1 Nitta148_myriocarpum_CostaRica Nitta159_a_myriocarpum_CostaRica Nitta159_b_myriocarpum_CostaRica Ntta161_a_undulatum_CostaRica Nitta3020 4 _olyandulatum_CostaRica Nita3020_4_polyanthos_FrenchPolynesia -_5_470 11 ilatio_1_polyanthos_Indonesia Nitta515_polyanhos_Indonesia Nitta91 1 undulatum_CostaRic Nitta96-- undulam -Nitta96-_ undulam -Cosarica S8 1 polyanthos -Marques
S8 4 polyanthos_Marquesas
S8_5 polyanthos_Marquesas
UG254 1 polyanthos Japan
W17_1_polyanthos_Taiwan
Y11_4_polyanthos_Bhutan
Y5_1_corrugatum_China
Y5_2_corrugatum_China
Z16_2_rarum_NewZealand sot
CTGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG-TTTTTTGTGGATTGGTGT 348 TGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG-TTTTTTGTGGATTGGTGT 348 A CTGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG-TTTTTTGTGGATTGGTGT 348 CTGTGATCCACTCAACCIAGCGTTGTCCATCGTAGTCCCIAGATTCTTGG-TTTTTTGTGGATTGGTGT 348 CTG IGAITCCACITCAACCTAGCATIGITCCAICGIAGITCCCITGAIHCTIGGTTTTTTGTGGATTGGTGT 350
TTTTTTGTGGATTGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG-TTTTTTGTGGATTGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG - TTTTTTGTGGATTGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG
CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG - TTTTTTGTGGATTGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG - TTTTTTGTGGATTGGTGT 349
CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG - TTTTTTGTGGATCGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG - TTTTTTGTGGATCGGTGT 349

CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGG- TTTTTTGTGGATTGGTGT 349 CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTTGATTCTTGGTTTTTTTGTGGATTGGTGT 350 CIGIGAIICACIIAACCIAGCAITGICAICGIAGIICCCIIGAIICIIGG | CCG |
| :--- |
| CCG |
| CCG |
| CTG |
| CTG |
| CTG |
| CTG |
| CT |
| CTG |
| CTG |
| CCG | CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG ITITITGTGGATIGGTGI ITTTTTGTGGAACTG-GT 347 CGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG TTTITGIGGATTGGTGT 34 TTTTTTGTGGATTGGTGT 348 TGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTAGATICTTGGCTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CTGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG -CTGTGATCCACTCAATCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGGCCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG-

CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTTTTGGCCGTGATCCATTCAACCAAGCATTGTCCACCGTAGTCCCTAGATTCTTGG ttittigtagattagatit TTTTTGTGGATTGGTGT TTTTTTGTGGATTGGTGT 328 TTTTTTGTGGATTGGTGT 348 TTTTTTGTGGACTGGTGT 350 | TTTTTTGTGGATTGGTGT | 345 |
| :--- | :--- | TTTTTTGTGGATTGGTGT 347 TTTTTTGTGGATTGGGTGT 347 TTTTTTGTGGATTGGTGT 350 CGTGATCCATTCAACCAAGCATTGTCCACCGTAGTCCCTAGATTCTTGG-TTTTTGTGGATTGGTG 351 CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG-TTTTTTGTGGATTGGTGT 348 CGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCOTAGATTCTTGG - TTTTTTTGTGGATTGGTGT 348

 ..-. .-........... TTTTTTGTGGATTGGTGT TTTTTTGTGGATTGGGTGT GGIGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGACTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG TTGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTCGG - CCGTGATCCATTCACCCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CTGTGATCCACTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG
CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG
CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGGCTGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CCGTGATCCATTCAACCTAGCATTGTCCATCTTAGTCCCTAGATTCTTGG CTGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG TTGTGATCCATTCTACCTAGCATTGTCCATCGTAGTCCCTAGATTCTCGG

TTGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTCGG CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG| CCGTGATCCATTCAACCTAGCATTGTCCATCGTAGCCCCTAGATTCTTGG- |
| :--- |
| CGTGATCCATTCAACCTAGCATTGTCCATCGAAGCCCCTAGATTCTTGG | CCGTGATCCATTCAACCTAGCATTGTCCATCTTAGTCCCTAGATTCTTGG CTGTGATCCATTCAACCTAGCATTGTCCATCGTAGTCCCTAGATTCTTGG CTGTGATCCACTCAACCTAGCGTTGTCCATCGTAGTCCCTAGATTCTTGG -

\qquad TTTTTGTGGATTGGTGT 337 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 349 TITTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 349 TTTTTGGTGGATTGGTGT 349 TTTTTTGTGGATTGGTGT 349 TTTTTGTGGATTGGTGT 349 TTTTTGTGGATTGGTGT 347 TTTTTGTGGATTGGTGT 348 TtTTTGTGGATTGGTGT 349 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 348 TTTTTGTGGATTGGTGT 349 TTTTTGTGGATTGCTGT 348 TTTTTGTGGATTGGTGT 348 ITTTTGTGGATTGGTGT 348 TTTTTCGTGGATTGGTGT 348 IGIGATCCACTGAACOTAGCGITGICCATGGIAGTCCCTAGATICTIGG-TTTTTTGTGGATTGGTGT 349

Bla	
B22_c_myriocarpum_Bolivia	CTGGTTATTTTCATTCACGTGTCCAATGAGAATAGGACTGTTTGTATTGGTT--TTGAAGGTGATAAGCT-AAA

B22_c_myriocarpum_Bolivia GC980 a wrightii_Japan GC980_a_wrightii_Japan
${ }_{1}^{460}$
AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 49 AGGITACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 A DV20150004_c_polyanthos_Braz AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC
AGGTTACCCCTTICTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTICAGAGGCTGTTGC AGGIIACCCCIIICIICIGGAGGAACIIAGGGAGCAAAAGAGGAGAIIAAIGAIGCIAAIGIIIICCAGAGGCIGITGC 492

B22_b_myriocarpum_Bolivia GC980_b_wrightii_Japan
B22_1_myriocarpum_Bolivia
V20150004_1_polyanthos_Brazi
GC980_1_wrightii_Japan
K35_1_polyanthos_Malaysia
K35_a_polyanthos_Malaysia Y11_3_polyanthos_Bhutan Y11_a_polyanthos_Bhutan B3_1_polyanthos_Bolivia B22_6_myriocarpum_Bolivia B3_5_polyanthos_Bolivia C13_1_cuneatum_Chile C13_2_cuneatum_Chile
C13_3_cuneatum_Chile C13_4_cuneatum_Chile DV20150012_2_caudiculatum_Brazi DV20150013_1_polyanthos_Japan DV20150004_2_polyanthos_Brazi DV20150004_b_polyanthos_Brazil GC1000_1_mikawanum_Japan
GC883_1_polyanthos_Japan
GC883_2_polyanthos_Japan
GC883_3_polyanthos_Japan - 12 -12 a wrightii_Japan H12_b_wrightii_Japan H16_1_wrightii_Japan H88_5_wrightii_Japan 35_c_polyanthos_Malaysia M38_1_kuhnii_ Tanzania M38_2_kuhnii_Tanzania
Nitta148_myriocarpum_CostaRica Nitta159_a_myriocarpum_CostaRica Nitta161_a_undulatum_CostaRica Nitta161_b_undulatum_CostaRica Nitta3020_4_polyanthos_FrenchPolynesia Nitta476 1 polyanthos Indonesia Nitta476_2_polyanthos_Indonesia Nitta51_polyanthos_Indonesia Nitta96-_ undulatum CostaRica Nitta96 b undulatum CostaRica S8_1_polyanthos_Marquesas
S84_polyanthos_Marquesas S8_5_polyanthos_Marquesas UG254_1_polyanthos_Japan W17_1_polyanthos_Taiwan Y11_4_polyanthos_Bhutan
Y5_1_corrugatum_China
Y5_2_corrugatum_China Z16_1_rarum_NewZealand Z16_2_rarum_NewZealand

AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 493 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 492 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 492 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC
AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGITACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 493 AGGTTACCCCITCTICTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 493 AGGIIACCICIICIICIGCAGGAACIAGGGAGCAAAGAGGAGAIAAIGAIGCAAIGIIICAGAGGCIGIIGC 494 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGACGCTGTTGC 488
AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 490 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 489 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGGCTGTTGC 48 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCGATGTTTCCAGAGGCTGTTGC 472 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCGATGTTTCCAGAGGCTGTTGC 472 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491
AGGTTAACCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGATGCTGTTGC 493 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAAGAGGAGATAATGATGCAATGTTTCCAGATGCTGTTGC 493 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 490 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCGATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCGATGTTTCCAGAGGCTGTTGC 493 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCGATGTTTCCAGAGGCTGTTGC 493
 AAGTTACCTCGTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491
AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 426 AGGTTACCTCTTCTTCTGCAGGAACTAGAGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 493 AGTTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGO AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 492 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 49 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491
AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCCCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 492 AGGTTACCCCTTCTTCTGCAGGAACCAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGG 492 AGGTTACTTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 490 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491
AGGTTACCCCTTCTTCTGCAGGAACCAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGG 492 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 49 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 492 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC
AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCTCTTCTTCTGCAGGAACTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 49
AGGTTACCTCTTCTTCTGCAGGACCTAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCAGAGGCTGTTGC 49 AGGTTACCCCTTCTTCTGCAGGAACCAGGGAGCAAAGAGGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGC 491 AGGTTACCCCTTCTTCTGCAGGAACCAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGG 492
AGGTTACCCCTTCTTCTGCAGGAACCAGGGAGCAAAGAGGAGATAATGATGCAATGTTTCCAGAGGCTGTTGG 492

B22_c_myriocarpum_Bolivia TGGTGTTGGTGGTCCTTTGAATTTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC 557 K35_b_polyanthos_Malaysia TGGTGTTGGTGGTCCTTTGAA-TTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC GC980_a_wrightii_Japan TGGTGTTGGTGGTCCTTTGAA DV20150004_c_polyanthos_Brazil
G6 5 novoguineense NewGuinea

TTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC TGGTGT - - TGGTCATTTGAA -

B22_b_myriocarpum_Bolivia GC980_b_wrightii_Japan
B22_1_myriocarpum Bolivia V20150004_1_polyanthos Brazil GC980_1_wrightii Japan 351 polyanthos Malaysia K35_a_polyanthos_Malaysia Y11_3_polyanthos_Bhutan Y11_a_polyanthos Bhutan DV20150004 a polyanthos Brazil B3_1 polyanthos_Boliva B22 6 myriocarpum Bolivia B3_5 polyanthos Bolivia C13_1 cuneatum Chile C13_2_cuneatum_Chile C13-4_cuneatum_Chile V20150012 2 caudiculatum Brazil V20150012_6_caudiculatum Brazil DV20150013 1 polyanthos Japan DV20150004 2 polyanthos Brazil DV20150004-b polyanthos Brazil GC1000 1 mikawanum Japan

GC883_1_polyanthos Japan
GC883-2 polyanthos_Japan
GC883_3 polyanthos Japan GC883 4 polyanthos Japan H12_a_wrightii Japan H12_b_wrightii_Japan H16_1_wrightii_Japan _1_paniculiflorum_Japan H88_5_wrightii_Japan -c_polyanthos_Malaysia M38_2_kuhnii- Tanzania Nita1160 5 polyanthos FrenchPolynesia Nitta148_myriocarpum_CostaRica Nitta159 a myriocarpum CostaRica Nitta159_b_myriocarpum_CostaRica Nitta161 a undulatum CostaRica Nitta161_b_undulatum_CostaRica
itta3020_4_polyanthos_FrenchPolynesia Nitta3020 5_polyanthos FrenchPolynesia Nitta476_1 polyanthos Indonesia Nitta476_2 polyanthos Indonesia Nitta515 polyanthos Indonesia Nitta91 1 undulatum CostaRica Nitta96_a_undulatum CostaRica Nitta96_b_undulatum_CostaRica S8_1_polyanthos_Marquesas S8_4_polyanthos_Marquesas S8_5_polyanthos_Marquesas UG254_1_polyanthos Japan W17_1_polyanthos_Taiwan Y11_4_polyanthos_Bhutan
Y5_1_corrugatum_China
Y5_2_corrugatum_China
Z16_1_rarum_NewZealand

GGTGT

TGGTGT
TGGTGT. TGGTGT.
TGGTGT. TGGTGT. TGGTGT
TGGTGT TGGTGT. TGGTGT. TGGIGG TGGTGT
TGGTGT TGGIGT TGGTGT TGGTGT TGGTGT
TGGTGT TGGTGT TGGTGT TGGTGT TGGTGT TGGTGT
TGGTGT TGGGTGT TGGTGT TGGTGT TGGIGT
TGGTGT TGGTGT TGGTGT
TGGTGT TGGTGT
TGGTGT TGGTGT
TGGTGT TGGTGT TGGGTGT TGGTGT TGGIGIT TGGTGT TGGTGT TGGTGT TGGTGT TGGTGT TGGTGT-TGGTGT--TGGTGT--TGGTGT-TGGTGT-TGGTGTTGGGTGT -TGGTGT-TGGTGTGGTGT. TGGGTGTTGGTGT - -
-GTCCTTTGAA GGICCTTTGAA GGGTCCTTTGAA GGGTCCTTTGAA GGGTCCTTTGAA GGGTCCTTTGAA gGtCCTtTGAA GGGTCCTTTGAA CGGTCATTTGAA -GGTMA

TGGTCCTTTGA
TGGTCCTTTGAA CGGTCCTTTGAA ggtcctttga GgGtCCtTtGAA CGgTCCTTTGAA CGGTCCTTTGAA CGGTCCTTTGAA tggtćcttta ggtcctitgaa tggtcctttaA tgatcctttgat tGgTCCTTTGAA tggtcotttaa tGgtCCTTTGAA tggtcctttaA tGGTCCTTTGA tGgTCCTTTGA tgGtcctttaA tgGtCCTtTGA tGgtcctttaA tGgTCCTTTGA tGgTCCTTTGA tGgTCCTTTGA CGGTCCTTTGAA GGTCCTTTGAA tGgTCCTTTGA TGGTCCTTTGAA tGgTCCTTTGA tGGTCCTTTGA CGGTCCTTTGAA GgtCCTtTGA tGgTCCTTTGA tGgtcctttaAA tGgtcctttaA TGGTCCTTTGAA tGgtcctittaA tgGtcctttga tGgTCCTTTGAA tGgTCCTTTGAA tggtcctctaa tgGtCCTTtGAA tggtc CttTGAA tGgTCCTTTGAA tGgTCCTTTGAA tGgTCCTTTGAA TGGTCCTTTGAA - tgGtCCtTTGAA

TTTGAACTCGAAAGAACCTGTTTTCCTAGGGCAAAATCATGGGAC
 TTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC 552 TTTGAACTCGAAAGAACCTGTTCTCCTGGGGCAAAAATCATGGAC 5 TTTGAACTCGAAAGAACCTGTTCTCCTGGGGCAAAATCATGGAC 543 TTTGAACTCGAAAGAACCTGTTCTCCTGGGGCAAAATCATGGAC 5 TTTGAACTCGAAAGAACCTGTTCTCCTGGGGCAAAATCATGGAC TTTGAACTCGAAGGAACCTATTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAGGAACCTATTCTCGTAGGGCAAAATTCAGGAC TTGAACTCGAAAGAACCTGTTCTCATAGGGCAAAATCATGGAC 5 TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAGAATCATGGAC 555 TTGAACTCGAAAGAACCTGTTTTCCTAGGGCAAAATCATGGAC 5 TTTGAATTCGAAAGAACCTGTTCTCTTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC 5 TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC 5 TTTGAACTCAAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCAAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC ITTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTGAACTCGAAAGAACCTGTTCTCATAGGGCAAAATCATGGAC TTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCGTGGAC ITGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC ITGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TIGAACTCAAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTTCTAGGGCAAAATCATGGAC TTTGAACTCGAAAAAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCGTGGAC TTGAACTCAAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCAAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCGTGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCGTGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCGTGGAC TTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTTCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTTCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCGAAGGAACCTGTTCTCCTAGGGCAAAATCGTGGAC TTTGAACTCGAAAGAACCTGTTCTCCTAGGGCAAAATCATGGAC TTTGAACTCAAAAGAACCTGTTCTCCTAGGCCAAAATCATGGAC TTTGAACTCAAAAGAACCTGCTCTCCTAGGCCAAAATCATGGAC

Appendix 3: List of samples used for the morphometric analysis (Chapter 4). Samples are organized by species name, deposited herbarium name, Collector name, location and identification number.

Hymenophyllum cuneatum: C13, A. Ebihara 021223-07, no date, Chile. Hymenophyllum mikawanum: TNS VS 738136, GC1000, A. Ebihara, S. Serizawa \& H. Miyazaki AC2009-2172, 13.VI.2009, Japan, Aichi prefecture. Hymenophyllum myriocarpum: B3, Asakawa 174-4, 2001, Bolivia; B25, Asakawa 208-3, 2001, Bolivia; B16, Asakawa 180-3, 2001, Bolivia; B22 Asakawa 196-2, 2001. Bolivia. Hymenophyllum paniculiflorum: TNS VS 766206, K41, A.Sugawara, A.Ebihara, T.Nakamura \& S.Matsumoto SB2007-61, 1.II.2007, Malaysia, Sabah Mt. Kinabalu Masilau, Nepenthes Trail. Hymenophyllum polyanthos: DV20150013, D.T. Vasques \& A. Ebihara 2015-0013, 22.V.2015, Japan, Tokyo, Okutama 360m; TNS VS 776487, UG257, A. Ebihara, T. Oka \& T. Oka NN2008-1967, 16.IX.2008, Japan, Nagano prefecture; TNS VS 1161451, HY16, 1497, no date, Cambodia; TNS VS 766204, K39, A. Sugawara, A. Ebihara, T. Nakamura \& S.Matsumoto SB2007-52 1.II. 2007 Malaysia Sabah Mt. Kinabalu Masilau, Nepenthes Trail; I5, Asakawa 21, Indonesia; TNS VS 762067, W16, A. Ebihara, M. Yokota, G. Kokubugata, S. Kobayashi \& K. Yasuda TW2006-184, 6.XII.2007, Taiwan, Pingtung Chuenr Hsiang Jinshui-ying; TNS VS 762064, W17, A. Ebihara, M. Yokota, G. Kokubugata, S. Kobayashi \& K. Yasuda TW2006-187, 6.XII.2007, Taiwan, Pingtung Chuenr Hsiang Jinshui-ying; TNS VS 766417, UG255, A. Ebihara, S. Fujimoto \& K. Ohora KI2007-1261, 25.VIII.2007, Japan, Wakayama; TNS VS 766199, K35, A. Sugawara, A. Ebihara, T. Nakamura \& S. Matsumoto SB2007-13, 31.I.2007, Malaysia, Sabah Mt. Kinabalu between Timophon Gate and Kandis Shelter; TNS VS 766200, K36, A. Sugawara, A. Ebihara, T. Nakamura \& S. Matsumoto SB2007-16, 31.I.2007, Malaysia, Sabah Mt. Kinabalu between Timophon Gate and Kandis Shelter; TNS VS 766209, K44, A.Sugawara, A. Ebihara, T. Nakamura \& S. Matsumoto SB2007-92, 3.II.2007, Malaysia, Sabah Mt. Alabu; DV20150001, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0001, 21.II.2015, Brazil, São Paulo, São José do Barreiro, 1564m; DV20150004, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0004, 22.II.2015, Brazil, São Paulo, São José do Barreiro, 1562m; DV20150011, D.T. Vasques, J. Prado, R.Y. Hirai \& D.G. Gissi 2015-0011, 23.II.2015, Brazil, São Paulo, São José do Barreiro, 1590m; RH756, R.Y. Hirai, J. Prado \& R. da Silva Cruz 756, 12.XII.2014, Brazil, São Paulo, Santo André, 850m; TNS VS766205, K40, A. Sugawara, A. Ebihara, T. Nakamura \& S. Matsumoto SB2007-60, 1.II.2007, Malaysia, Sabah Mt. Kinabalu Masilau, Nepenthes Trail; K12, Yamada, 011129-01, no date, Malaysia; Nitta631, J. Nitta 631, 22.VIII.2010, French Polynesia, Society Islands, Moorea, 372m; K. Iwatsuki V-97038, 29.XII.1997, Vietnam, Lam Dong, 1400m; K. Iwatsuki V-98082, 1.I.1998, Vietnam, Lam Dong, 1400-1500m; TI00001290, T. Shimizu, K. Iwatsuki, N. Fukuoka \& M. Hutoh M13034, 14.X.1967, Malaysia, Penang,

500m; TI00001293, B. Hayata 1917, Indo-China; N.E.G. Courtwell 187, 29.V.1958, Papua-NewGuinea, Kanosuru; TI00001297, W.T. Tsang 20496, 17.V.1932, Indonesia, Sam Kok Shan; R.J. Johns 6644 10.III.1991, Brunei, Temburong, 1125m; R.J. Johns 6635, 10.III.1991, Brunei, Temburong, 1125m; TI00001298, M. Tagawa, K. Iwatsuki \& N. Fukuoka T1293, 4.XII.1965, Thailand, Udawn, 110-1500m; TI00001289, K. Yoda 496, 17.II.1962, Thailand, Mt. Khao Luang, 1000-1300m; TI00001288, E.B. Copeland, no number, I.1909, Philippines Luzon, Mt. Banahaw; TI00001295, T. Nakai, II.1919, Java, Mt. Gede; TI00001284, G. Murata, N. Fukuoka \& Sukasdi J-819, 18.VIII.1973, Java, Baturaden-Gunung Slamet; TI00047073, H. Hara, H. Kanai, G. Murata, M. Togashi \& T. Tuyama, 17.V.1960, Sikkim, Yoksam, 1700m; TI00047067, H. Hara, H. Kanai, G. Murata, M. Togashi \& T. Tuyama, 18.V.1960, Sikkim, Yoksam, Bakkim, 1700-2200m; TI00001457, H. Ohba, M. Wakabayashi, M. Suzuki \& S. Akiyama 8351506, 14.IX.1983, Nepal, Khae Khola, Phedi Kharka - Koplang - Khanigaon, 1700-2100m, TI00001466, H. Kanai, H. Ohashi, K. Iwatsuki, H. Ohba, Z. Iwatsuki \& P.R. Shakya 872271, 5.VI.1972, Nepal, Hile-Mure-Sinduwa-Bhalikhop-Chitre, 1900-2400m, TI00001471, H. Kanai, H. Ohashi, K. Iwatsuki, H. Ohba, Z. Iwatsuki \& P.R. Shakya 873274, 20.VI.1972, Nepal, Topke Gola - Jalang Chhyongo, 3600-4300m; TI00001476, H. Kanai, H. Hara \& H. Ohba 852275, 31.VIII.1972, Nepal, Bhorlang- Sundarijar, 1400-2400m; TI00001491, H. Kanai, G. Murata \& M. Togashi, 16.XI.1963, Nepal, Baroya Khimty-Thakma Khofkla; TI00001450, H. Ohba, M. Wakabayashi, M. Suzuki, N. Kurisaki, K.R. Rajbhandari \& S.K. Wu 8581003, 19.VIII.1985, Nepal, Sagarmatha - Kata Bisana - Goyem - Lamjura Taktor, 2550-3400m; TI00001458, H. Ohba, H. Kanai, M. Wakabayashi, M. Suzuki \& S. Akiyama 8350300, 12.VII.1983, Nepal, Dhaulagiri - Gorepani Deorali, 2650-3170m; TI00001488, H. Hara, S. Kurosawa \& T. Tuyam, 14.XI.1963, Nepal , Thakma Khola-Diorali Bhanjang; TI00001486, H. Hara, S. Kurosawa \& T. Tuyama, 12.XI.1963, Nepal, Baroya Khimty-Thakma Khofkla; TI00001489, H. Kanai, G. Murata \& M. Togashi, 16.XI.1963, Nepal, Baroya Khimty-Thakma Khofkla; TI00001453, H. Ohba, M. Wakabayashi, M. Suzuki, N. Kurisaki, K.R. Rajbhandari \& S.K. Wu 8581292, 2.IX.1985, Nepal, Sagarmatha - Sarkari Pati, 3350-3970m; TI00001452, H. Ohba, M. Wakabayashi, M. Suzuki, N. Kurisaki, K.R. Rajbhandari \& S.K. Wu 8581172, 25.VIII.1985, Nepal, Sagarmatha, 3970m; M.Kato, Y. Shimizu, N. Murakai, S. Akiyama \& X. Cheng 1058, 21.VII.1988, China, Yunnan, Yanbi County, 2350-2600m; TI00047018, W.T. Tsang 24872, 1-16.III.1935, China, Ts'ung-hwa District, Sam Kok Shan; D.E. Boufford \& B. Bartholomew 24725, 9.IX.1988, China, Guan Xian, Qinglongzui, 1620m; M.Kato, Y. Shimizu, N. Murakai, S. Akiyama \& X. Cheng 1109, 22.VII.1988, China, Yunnan, Yanbi County, 2300-3150m; Gaoligong Shan Biodiversity Survey 16696, 28.IX.2002, China, Yunnan, Gongshan, 2950m; TI00001496, J. Murata 9382, 15.II.1980, Japan, Tokunoshima, 500m; TI00001499, S. Hatusima 18379, 25.VI.1955, Japan, Okinawa, 450m; TI00001500, R. Nozu, 9.XI.1957, Japan, Okinawa;

TI00047002, T. Uchiyama, 16.XII.1900, Japan, Kagoshima, Amami-Oshima, TI00047003, H. Ito, 7.V.1936, Japan, Kagoshima, Amami-Oshima; TI00047005, H. Ito, 7.V.1936, Japan, Kagoshima, Amami-Oshima; TI00047007, H. Ito, 7.V.1936, Japan, Kagoshima, Amami-Oshima; BM000936770, W.A.W. de Beuzeville 6296, III.1897, Trindad Tobago; BM000785349, E.A.C.L.E. Schelpe 5540, 6.VII.1955, Mozambique, Sofala; BM000776979, R. Spruce 4699, VIII.1856, Peru; SP22249, F.C. Hoehne, V.1914, Brazil, Rio de Janeiro, Tijuca; SP22251, M. Wacket 153a, no date, Brazil, São Paulo, Serra do Mar; SP5083, F.C. Hoehne, 22.I.1921, Brazil, Minas Gerais, Santa Barbara; SP448301, J. Prado, H. Tuomisto, K. Ruokolainen \& J.N. de Souza 1948, 12.II.2008, Brazil, Amazonas, Presidente Figueiredo; SP443379, E. Schuettpelz, J. Prado, P.B. Schwarsburd \& G. Yatskievych 1412, 14.I.2010, Brazil, Minas Gerais, Santo Antonio do Itambé, 865m; SP430123, R.Y. Hirai, J. Prado, J. Vasconcellos Neto \& P.R. Polli 642, 16.X.2009, Brazil, São Paulo, Jundiaí, 1233m; SP440645, N.M. Lepsch da Cunha \& E. Costa Pereira 402, 28.IX.1989, Brazil, Amazonas, Distrito Agropecuário, 50-150m; SP266246, O. Yano, M.P. Marcelli \& T. Ahti 21482, 25.XI.1993, Brazil, Minas Gerais, Itamonte, 2250m; SP175321, M. Kirizawa, E.A. Lopes \& A. Custodio Filho 655, 8.XII.1981, Brazil, São Paulo, Casa Grande; SP386691, F.B. Matos, A.M. Amorim, J. Paixão, S. Sant'ana et al. 926, 8.II.2006, Brazil, Minas Gerais, Santa Maria do Salto; SP313553, J. Prado \& M.P. Marcelli 786, 21.III.1996, Brazil, São Paulo, Campos do Jordão, 1430m; SP391924, P.H. Labiak, A. Amorim, M. Lopes, A.B. Rodrigues \& S. Sant'ana 3712, 11.VIII.2006, Brazil, Bahia, Camacã, 850m; SP337057, P. Labiak 1097, 24.V.1999, Brazil, São Paulo, Salesópolis, 900m; SP382404, F.B. Matos, A. Amorim, J. Jardim, J. Paixão et al. 358, 8.II.2005, Brazil, Bahia, Barro Preto; SP8694, F.C. Hoehne, 13.IX.1923, Brazil, São Paulo, Campos do Jordão; MBG2139818, D.B. Lellinger \& J.J. White 990, 7.VII.1970, Costa Rica, Heredia; Nitta135, J. Nitta 135, 19.II.2008, Costa Rica, Alajeula; Nitta170, J. Nitta 170, 11.III.2008, Costa Rica, San Jose; TI00001277, H. Ito, 9.IV.1941, South Pacific Mandate, Kusai, Mt. Matante; TI00001273, S. Sekibe, 18.VIII.1940, South Pacific Mandate, Palao, Aimiriki; TI00001269, T. Tuyama, 25.VIII.1937, South Pacific Mandate, Palao; JP2289, J. Prado \& R.Y. Hirai 2289, 16.XI.2012, Brazil, São Paulo, Campos do Jordão, 1888m; RH534, R.Y. Hirai 534, 30.V.2008, Brazil, Minas Gerais, 1300m. Hymenophyllum rarum: AB496571, Z16, A. Ebihara 011217-09, no date, New Zealand. Hymenophyllum wrightii: AB083277, H12, A. Ebihara 000901-1, 1.IX.2000, Japan, Nagano prefecture; H16, A. Ebihara 000618-1, 18.VI.2000, Japan, Gunma prefecture; GC980, A. Ebihara, A. Yamaoka \& Y. Fukazawa 081220-12, Japan, Tokyo; H88, A. Ebihara 000901-02, no date, Japan, Nagano prefecture

$$
\begin{aligned}
& \begin{array}{l}
\text { sочдирК̆од } \\
\text { sочдивКод }
\end{array} \\
& \begin{array}{l}
\text { sочдирКод } \\
\text { sочдивКод }
\end{array} \\
& \text { sочдирКод } \\
& \text { sочдиркјод } \\
& \text { sочдир亿оd } \\
& \text { sочдирКод } \\
& \begin{array}{l}
\text { polyanthos } \\
\text { polyanthos }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { sочдирК̆од } \\
\text { sочдирКГод }
\end{array} \\
& \begin{array}{l}
\text { sочдирКод } \\
\text { sочұивКод }
\end{array} \\
& \text { un.ıolfilno!utd }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 冬 } \\
& \begin{array}{l}
60299 \angle \mathrm{~S} \Lambda \mathrm{SNL} \\
00299 \angle \mathrm{~S} \Lambda \mathrm{SNL}
\end{array} \\
& \text { 66[99L S } \Lambda \text { SNL } \\
& \text { LIt99L S } \\
& \star 9029 \text { L S S SNL } \\
& \text { L90Z9L SA SNL } \\
& \text { toz99 L S SNL } \\
& \text { IStI9II S } \Lambda \text { SNL } \\
& \text { L8t9LL S } \Lambda \text { SNL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 좃 } \\
& \text { స }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ミ } \\
& \sum_{\sigma} \quad ज \\
& \cdots \quad \underset{\sim}{0} \\
& \begin{array}{l}
\text { HY16 } \\
\text { K39 }
\end{array} \\
& \begin{array}{l}
\text { 9IXH } \\
\text { LSZD }
\end{array} \\
& \mathcal{E} \text { L00GI0Z } \Lambda \text { の } \\
& \text { 空 } \\
& \begin{array}{l}
\circ \\
\hline 8 \\
\hline 8
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Malaysia } \\
\text { Malaysia }
\end{array} \\
& \text { Malaysia } \\
& \begin{array}{l}
\text { Japan } \\
\text { Malaysia }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 豳 } \\
& \text { Indonesia } \\
& \text { Malaysia } \\
& \text { Malaysia } \\
& \text { Cambodia } \\
& \begin{array}{l}
\text { \#. } \\
\text { 苞 } \\
\text { 曾 }
\end{array}
\end{aligned}
$$

Malaysia III

$$
\begin{aligned}
& \text { Td/TT MT/TT } \\
& \text { N N F }
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \vdots \\
& 61 \\
& \stackrel{-}{\infty} \\
& \text { N } \\
& \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{I}{ } \\
& \varepsilon 0 \\
& \varepsilon \\
& \text { - } \\
& 1.9
\end{aligned}
$$

＂،РІqеэ！ LL／PD：lamina length ：pinnula distance ratio；PA：pinnae insertion point angle（in degrees）；LPL／LPW：lateral pinnula length ：width ratio．N／A stands for
 Киәљо $К К$ р рәı！ ・お
TI00047073
TI00001284
TI00001295
TI00001288
$\begin{aligned} & \text { 긍 } \\ & \stackrel{8}{8} \\ & \vdots \\ & \stackrel{\rightharpoonup}{\circ} \\ & \infty\end{aligned}$

$$
\begin{aligned}
& \underset{i}{\sim}
\end{aligned}
$$萬

$$
\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{C}}
$$

$\stackrel{\oplus}{\stackrel{\rightharpoonup}{\bullet}}$

$\varepsilon \cdot \square$	$t \cdot \varepsilon t$	¢ 01	0．I		рuriegZ Mən	9IZ	ILS96tGV	unııp．	әрег ${ }^{\text {¢ }}$ VSd
$\varepsilon^{*} 0$	で¢	$\downarrow^{\bullet} \varepsilon \tau$	$\bigcirc \times 9$	\forall＊	I！！ze．g	$687 Z \mathrm{df}$		sочдирイбод	әреэ ${ }^{\text {V }}$ VSd
$\varsigma^{*} 0$	$て ゙ \varepsilon ¢$	［＇0E	$\vdash^{*} \mathcal{E}$	［＇8			69ZI0000IL	sочдирイоб	әрег VSd
$\varsigma^{*} 0$	I＇IS	$80 t$	$I^{\wedge} \varepsilon$	$S \cdot L$			ELZI0000IL	sочдиря㣙	әрег ${ }^{\text {¢ }}$ VSd
$\vdash^{*} 0$	£ $9 ¢$		$L^{\prime} \mathrm{I}$	で9			LLZI0000IL	sочдиряоб	ขрг ${ }^{\circ} \mathrm{V}$ VSd
$\varsigma^{*} 0$	0.75	［ 02	$て ゙ L$	$9{ }^{\circ} \varepsilon$	II！ze．tg		t698dS	sочдиря㣙	әрер ${ }^{\text {¢ }}$ VSd
$L^{\circ} 0$	で9S	がtt	$\mathcal{E} 8$	$\varepsilon \cdot 6$	II！ze．g		L¢0LEEdS	sочдирイуод	әре［ ${ }^{2}$ VSd
$\varsigma^{\circ} 0$	$0^{\circ} \angle t$	で8て	8＊8	$6{ }^{\circ}$	I I！ze．g		$6 \pm Z Z Z \mathrm{dS}$	sочдирイүод	әрег ${ }^{\circ}$ VSd
$\varsigma^{\circ} 0$	［ ${ }^{\circ} \mathrm{S}$	S 82	$6^{\circ} \mathcal{E}$	0×9	${ }^{\text {n．}}{ }^{\text {d }}$		6L69LL000WG	sочдир亿㣙	әрер ${ }^{\text {¢ }}$ VSd
$\varsigma^{*} 0$	L＇8t	ャ－99	$L^{\circ} \mathrm{L}$	8．91				яочдиря㣙	әре［ ${ }^{2}$ VSd
$0{ }^{\circ}$	9% S	8.81	$I^{\wedge} \varepsilon$	67		IE9Pn！${ }^{\text {a }}$		sочдиря；ол	әрер ${ }^{\text {V }}$ VSd
t＇て	［＇9t	$9^{\circ} \mathrm{LI}$	$て ゙ \subseteq$	\dagger^{*} S		ZIX		sочдирイуод	әре［ ${ }^{\text {a }}$ VSd
t＊	L＇8t	$8^{\circ} \mathrm{SI}$	I＇t	$8^{*} \mathcal{E}$		0tX	¢0z99L S	sочдир亿бод	әргэ VSd
$て ゙ て$	8.67	［ 0 0	$t \bullet$	$L \cdot \square$	［I！ze．g	95LHU		sочдирイ尹од	әре ${ }^{\circ} \mathrm{V}$ VSd
6 I	¢＇0t	8＊ 1 E	9×9	S＇t	［I！ze．g	［L00¢L0Z		sочдирイуод	ขръ ${ }^{\circ} \mathrm{V}$ VSd
L＇I	0＇It	I＇tて	t＇8	でも	II！ze．tg	t000¢LOZAG		sочдиряјол	әрер VSd
${ }^{\prime}$	$0{ }^{\circ} \mathrm{LE}$	s^{\prime} \％	67	でて	II！ze．g	L000¢L0ZAG		sочдир亿㣙	әреๆ VSd

怠

	$90^{\circ} 0$	$82^{\circ} 0$		£Eไ	
	$2 I^{\circ} 0$	$9 t^{\circ} 0$		818	
	2I＇0	LS＊0		SI	
	¢0 0	$9{ }^{\text {a }} 0$	urde 1	88H	
	${ }^{\circ} 0$	$6 S^{\prime} 0$	urder	ELIH	
	L0＇0	カE＊0	urder	t91H	
	¢0．0	$6 て^{\circ} 0$	urder	0001つ	
	L0．0	$9 t^{\circ} 0$	${ }_{\text {¢！}}^{\text {¢ }}$ ！$\square^{\circ} \mathrm{G}$	$\varepsilon \mathcal{E}$	
	ZI＇0	9.0	¢！¢！$\square^{\circ} \mathrm{O}$	こZG	
	${ }^{\circ} 0$	$\varsigma^{\circ} 0$	${ }^{\text {¢！} \Lambda!} \square^{\circ} \mathrm{G}$	028	
	$90^{\circ} 0$	$L t^{\circ} 0$	${ }^{\text {¢！} \Lambda!} \square^{\circ} \mathrm{G}$	618	
	$60^{\circ} 0$	$t t^{\circ} 0$	${ }^{\text {¢！} \Lambda!} \square^{\circ} \mathrm{G}$	918	
	L0．0	でャ 0	${ }^{\text {R！} \Lambda!} \square^{\circ} \mathrm{G}$	IG	
	L0．0	$9 \varepsilon^{*} 0$		9IZ	ILS96tGV
	L0．0	$\dagger^{*} 0$	IIzerg	95LHY	
	$\varsigma I^{\circ} 0$	900	I！zerg	［IOOSLOZAG	
	$80^{\circ} 0$	$8 \mathcal{E}^{\circ} 0$	ข！บว	£1ว	
	（1um）	（mu）	র．ıuno3	CII．．əч	（II шп！．．вq．əә

data obtained from the each sample is presented as：inner diameter（ mm ）；sclerenchyma thickness（ mm ）；and metaxylem cells（number）．

Appendix 5：List of samples observed for the anatomical analysis．Samples are organized according to the topology of the acquired phylogeny．Anatomical

$$
146
$$

$$
\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{n}}
$$

$$
\begin{aligned}
& \infty
\end{aligned}
$$

[^0]: analysis.

