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Abstract

Magnetism has been attracting great interest in for many years because its research

has led us deep understanding of our nature and the application has become highly

necessary in our society. Experimentally, light or an electromagnetic wave has been

used as a probe to investigate magnetic materials via the magneto-optical effects. Es-

pecially, since the novel spintronics materials, such as heterostructures of magnetic

and topological insulators (TIs), are paid attention nowadays, the magneto-optical ef-

fect in the vacuum ultraviolet ∼ soft X-ray energy region is expected as a powerful

method with element-selectivity and a resonant enhancement in order to understand

their buried magnetism. However, only the magnetic circular dichroism (MCD) that is

just one of the phenomena of the magneto-optical effect has been mostly discussed. It is

required to develop new methods that enable us to obtain both of the magneto-optical

parameters, MCD and the optical rotation, and to investigate magnetism using them.

In the present thesis, we studied the magnetism of buried layers using the magneto-

optical effect in the soft X-ray energy region. We also developed a new method with a

polarization modulated synchrotron radiation. The first issue is the origin of the prox-

imity effect that induces a magnetic order in a TI at the interface with a magnetic ma-

terial as one of the interesting magnetic phenomena at buried layers. By angle-resolved

photoelectron spectroscopy (ARPES) and X-ray MCD (XMCD) measurements of the

TI, Bi2Se3, on a ferrimagnetic insulator, Y3Fe5O12 (YIG), the Dirac-like surface state

of Bi2Se3 was directly observed and the localized 3d spin states of Fe3+ in YIG were

confirmed. We also proposed the interface model that the proximity effect is likely

described in terms of the exchange interaction between the localized Fe 3d electrons

in YIG and the delocalized electrons of the surface and bulk states in Bi2Se3 observed

by ARPES. However, because we only had indirect evidences of TI’s magnetism at

the buried interface, we have to focus on the bulk sensitive method with high accu-

racy, resonant magneto-optical Kerr effect (MOKE) measurement, to investigate buried

magnetic layers. Therefore, second subject is the study of L-edge resonant MOKE of

a buried Fe film to get a deeper understanding of resonant MOKE. The sign change

of the Kerr rotation angle (θK) between the L3- and L2-edges was first observed in

the experiment and reproduced by the classical electromagnetic simulation using em-

pirical optical constants. In addition, the spectrum of θK at the L3-edge, including

fine features, was reproduced by the quantum resonant scattering calculation with the

configuration interaction model. We also found the polarization dependence of θK.
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Nevertheless, intrinsically, MOKE is described by two parameters, θK and the ellip-

ticity (εK) that are derived from the optical rotation and MCD, respectively. In the

final topic, to discuss not only θK but also εK, which is difficult to be observed by

the existing resonant MOKE method in the soft X-ray energy region, we developed

a new soft X-ray source with a polarization modulation at SPring-8 BL07LSU fully

utilizing the feature of a segmented cross undulator. Its performance was confirmed

by the XMCD measurements with the modulated light, then, we also developed a new

magneto-optical method by combing the modulated soft X-ray and resonant MOKE.

It enabled us to measure both of θK and εK simultaneously with high accuracy. We

also determined the complex permittivity of the buried Fe film for the first time in the

soft X-ray energy region.
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Chapter 1

Introduction

1.1 Background of the present study

Magnetism is one of the significant properties of condensed matters. The research

has led us deep understanding of our nature and the application has become highly nec-

essary in our society. Experimentally, light or an electromagnetic wave has been used

as a probe to investigate magnetic materials. With visible light, we have been able

to see various magneto-optical effects, such as the Faraday effect [1] and the magneto-

optical Kerr effect (MOKE) [2–4]. When the probing photon energy increases up to

the vacuum ultraviolet (VUV) ∼ X-ray region, the spectroscopic information becomes

element-specific since it energetically covers absorption edges of the composing ele-

ments in a material. Since the X-ray absorption spectroscopy (XAS) requires a simple

measurement set-up of electron yield, the XAS experiments have been carried out over

the world. Moreover, the theoretical development of X-ray magnetic circular dichroism

(XMCD), which is a phenomenon derived from the difference of the absorption be-

tween left- and right-circular polarized light (LCP and RCP) depending on magnetism,

has now allowed researchers to evaluate the spin and orbital magnetic moments of the

magnetic elements of a sample [5–7].

The XMCD approach has nowadays applied to the novel spintronics materials, such

as heterostructures of magnetic and topological insulators (TIs) [8–16]. However, it has

been technically challenging to resolve their academic and industrial demands. This

is partly due to the fact that conventional detection of the electron yield in XMCD
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2 1. INTRODUCTION

is rather surface sensitive [17] and, on the other hand, the main concerns of the het-

erostructures are magnetic properties of the buried film and the interface. Thus, in-

novations in measurement of the X-ray magneto-optical effect have been highly called

for.

In addition to XMCD, MOKE using a resonant enhancement, so-called resonant

MOKE, has also been mostly applied to the transversal MOKE (T-MOKE) geome-

try in the soft X-ray energy region [18, 19]. Since the reflected light from a sample

is detected in MOKE measurement, it is a bulk sensitive method, thus, can access

the magnetism of buried layers. Furthermore, MOKE experiment enables us to inves-

tigate not only the magnetic circular dichroism (MCD) like as XMCD but also the

optical rotation derived from the variation of the phase difference between LCP and

RCP. Permittivity, which is one of the most important parameters describing magnetic

properties of materials, can be determined completely only after measuring both of

these two magneto-optical parameters. However, since T-MOKE shows only intensity

variations of the reflection, these parameters are non-separable in its measurement.

Although they can be investigated individually by using the Faraday effect [20, 21], its

transmission experiment is not suitable to be operated in the soft X-ray region because

of a strong interaction between light and materials.

On the other hand, in the polar- and longitudinal-MOKE (P- and L-MOKE) mea-

surements, the light polarization changes from linearly to elliptically due to MCD and

its plane rotates as a result of the optical rotation before and after reflection at a surface

of magnetic material. In contrast to the Faraday effect measurement, these techniques

can be operated as long as the sample can reflect the incident light. Moreover, using

the resonant enhancement in the VUV ∼ soft X-ray region, the optical rotation angle

(the Kerr rotation angle, θK) becomes significantly larger than that obtained by visible

light [22–29], as shown in Figs. 1.1(a) and (b). Some theoretical studies were also re-

ported phenomenologically and by the first-principles calculations [21, 24, 25, 30, 31].

Figure 1.1(c) shows the θK spectrum obtained by the first-principles calculation. How-

ever, as one can see, there still remains a discrepancy in the θK values between experi-

ment and theory, especially respect to quantum mechanism.

Furthermore, there is one more problem to determine the permittivity that it is

more difficult to measure the ellipticity (εK) of the elliptically polarization than θK

by the conventional technique in the VUV ∼ soft X-ray region [28]. In the visible

energy region, MOKE measurement is performed with a polarization modulated inci-

dent light [33]. This method enables us to measure θK and εK not only simultaneously
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Figure 1.1: (a) The Kerr rotation angle (θK) spectra of Fe(001) and Fe(110)
films at the visible photon energy region. The dashed line shows the theoretical
spectrum. Taken from Ref. [32]. (b) The θK spectra of an Fe film at the L-edge.
The filled squares and open circles represent the experimental and theoretical
values, respectively. Taken from Ref. [25]. (c) The θK spectrum of Fe at the
L2-edge obtained by the first-principles calculation. Taken from Ref. [30].



4 1. INTRODUCTION

Figure 1.2: (a) The Kerr rotation angle (θK) and reflectance magnetocircular
dichroism (RMCD) spectra of Fe2Se8 at room temperature (RT). (b) Real and
imaginary parts of off-diagonal element of conductivity tensor of Fe2Se8 at RT.
Taken from Ref. [34].

but also accurately, thus determine the permittivity completely. Figure 1.2 shows an

example of results obtained by the MOKE measurement with the modulated visible

light [34]. From the values of θK and reflectance magnetocircular dichroism (RMCD),

which is proportional to εK, the real and imaginary parts of off-diagonal element of

conductivity tensor that have magnetic information can be calculated. Conductivity

has the mostly same information as permittivity and they can be transformed to each

other easily.

However, it is difficult to realize a polarization modulated synchrotron radiation

(SR) using conventional undulators. To get a proper understanding of the magneto-

optical effect and the permittivity completely, it is required that a new SR source

with the modulation using a new undulator and a new method to measure θK and εK

simultaneously.

1.2 Purpose of the present study

The main purpose of this thesis is to unveil the magnetism of buried layers. Further-

more, to realize it, we develop a new soft X-ray source with the polarization modulation

and a new method combining the new light source and the magneto-optical effect.

At first, we focused on an interesting magnetism of the buried interface between a

three dimensional (3D) TI, Bi2Se3, and a magnetic material, Y3Fe5O12 (YIG). It was
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reported that Bi2Se3 shows a magnetic order at the interface due to the proximity

effect even at T = 130 K by visible MOKE and transport measurements [13]. To

understand its mechanism, we investigated the interface by angle-resolved photoelec-

tron spectroscopy (ARPES) and XMCD measurements with fixed polarizations. The

interesting issues in this study are as follows:

• Does Bi2Se3 make Dirac-like surface states at the surface and the interface even

grown on YIG?

• What mechanism generates the proximity effect at the interface? Is it possible

that the magnetic order of TI realizes above RT?

From the conclusion of the first topic, we considered that investigating magnetism

of buried layers requires a bulk sensitive method with high accuracy. Therefore, in

second topic, we focused on resonant MOKE and studied it using a buried Fe film for

the s- and p-polarized SR at the L-edge to get a proper understanding. The values of

θK obtained from the experiment were compared with that obtained from two types

of simulations: one is based on classical electromagnetic theory, and the other is the

quantum resonant scattering calculation. We discuss on the following problems:

• What shape of θK spectrum can be observed with a smaller influence of the

capping layer than that of previous studies [24, 25] at the Fe L-edge? How does

it depend on the polarization of incident light?

• What quantum mechanism controls resonant MOKE? What makes the discrep-

ancy between experiment and theory, as shown in Fig. 1.1?

The third objective is a development of the new soft X-ray source with the polar-

ization modulation by fully utilizing the feature of a segmented cross undulator at

SPring-8 BL07LSU. Furthermore, we considered the new method combing the new soft

X-ray and the resonant MOKE measurement with the rotating-analyzer ellipsometry

(RAE) to get new information of buried magnetic layers.

Finally, as a main subject of this thesis, we realized the resonant MOKE measurement

for the buried Fe film with the polarization modulated soft X-ray. The central issues

of this study are as follows:

• How can θK and εK be observed simultaneously in the soft X-ray energy region?
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• What values of permittivity of the buried Fe film is determined that nobody has

succeeded in doing in the soft X-ray energy region?

1.3 Structure of this thesis

Chapter 2 describes the basic principles of the magneto-optical effect and spintronics

materials used in this thesis. In the section of the magneto-optical effect, I focus

on MCD and MOKE for using in experiments. 3d transition magnetic materials and

topological materials are described as the spintronics materials that are employed as

samples in our studies.

Chapter 3 describes light sources and conventional experimental methods. SR from

the VUV to the soft X-ray energy region was used as a light source in this thesis.

To observe a band structure directly, ARPES experiment was operated at the VUV-

Photoemission beamline at Elettra, Italy. In addition, XMCD and MOKE measure-

ments were performed at the Fe L-edge at SPring-8 BL07LSU to discuss magnetic

properties. Especially, the MOKE measurements were used the resonant enhancement

at the absorption edges with the RAE.

Chapter 4 describes the study of an interface between a 3D TI, Bi2Se3, film and a

ferrimagnetic insulator, YIG, film. This material is expected that the magnetic TI ap-

pears at the interface by the proximity effect. From ARPES and XMCD measurements,

we proposed the model of the proximity effect at the interface.

In Chapter 5, the L-edge resonant MOKE of a buried Fe film was investigated. θK

was measured for the s- and p-polarized incident soft X-rays. The experimental values

were compared with the calculation values obtained from two methods: one is based

on the phenomenological theory with empirical optical constants, and the other is the

simulation based on the quantum resonant scattering theory with the configuration

interaction (CI) model.

The main subjects of this thesis are a development of a polarization modulated soft

X-ray and an adapting this light source to the magneto-optical effect. The detail of

this development of the polarization modulation at SPring-8 BL07LSU is described in

Chapter 6. In addition, the XMCD measurements with this modulated light source for

magnetic materials were made to estimate the performance of this soft X-ray.



1.3 Structure of this thesis 7

Furthermore, the polarization modulated soft X-ray was combined and the resonant

MOKE measurement with the RAE in Chapter 7. In this resonant MOKE measure-

ment, θK and εK can be measured simultaneously and accurately. Chapter 7 describes

the detail of this method and shows the results of resonant MOKE with the modulation

for the buried Fe film. Therefore, the element-specific complex permittivity of Fe was

determined for the first time in the soft X-ray energy region.

Finally, Chapter 8 is devoted to summary and future prospects.





Chapter 2

Basic principles

2.1 Magneto-optical effect

First, I shall define left-circular polarized light (LCP) and right-circular polarized

light (RCP) used in this thesis. Figure 2.1 shows the definition of LCP, RCP, the

helicity+ (σ+), and the helicity− (σ−) of light. LCP (RCP) that has the helicity+(−)

is defined as that the electric field vector turns counterclockwise (clockwise) when the

observer is facing in the on-coming light.

The magneto-optical effect is a phenomenon where light and a magnetic material

interact with each other. The origin of the magneto-optical effect is shown in Fig. 2.2.

The trajectory of the electric field of linear polarized light is expressed by a superpo-

sition of LCP and RCP with the same amplitude and rotating velocity, as shown in

Fig. 2.2(a). After interaction with a magnetic material, if a phase difference between

LCP and RCP is generated, the polarization plane of the linear polarized light rotates,

as shown in Fig. 2.2(b). This phenomenon is called the optical rotation. As shown

in Fig. 2.2(c), if a difference of amplitude between the electric fields of LCP and RCP

Figure 2.1: Definition of circular polarization and the helicity.

9



10 2. BASIC PRINCIPLES

Figure 2.2: Schematic drawing of the origin of the magneto-optical effect. θ
represents the optical rotation angle.

is generated, that is called the magnetic circular dichroism (MCD), the linear polar-

ization varies to an elliptically polarization. When both of the optical rotation and

MCD are observed, the light interacted with the magnetic material has the elliptically

polarization and its plane rotates, as shown in Fig. 2.2(d).

There are some kinds of the magneto-optical effects, such as MCD, the Faraday

effect [1], the magneto-optical Kerr effect (MOKE) [2–4], and the magnetic double

refraction [35]. In this section, I describe MCD, especially X-ray MCD (XMCD), and

MOKE that were discussed in this thesis.
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Figure 2.3: Schematic drawing of the 2p→ 3d optical transition in a magnetic
material. The directions of magnetization (M) and the majority spin are
antiparallel. EF represents the Fermi energy.

2.1.1 Magnetic circular dichroism (MCD)

As mentioned above, MCD is a phenomenon that a magnetic material shows a dif-

ference of photo-absorption between LCP and RCP. When X-ray is used as an incident

light, MCD can be observed at the absorption edges and it reflects the spin states of the

magnetic samples. Here, I shall focus on this XMCD, especially, the 2p → 3d optical

transition because the 3d electrons play the central role in the magnetism of transition

magnetic metals, thus, it is most widely used in XMCD measurements.

Figure 2.3 shows the optical transition of 2p → 3d in a magnetic material. By

the exchange interaction, the 3d state splits to the majority spin state (up spin) and

the minority spin state (down spin). After a 2p electron is excited by LCP or RCP,
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which has a parallel or antiparallel direction to that of the magnetization, a 2p hole

is generated and the 2p state splits to the 2p3/2 and 2p1/2 states by the spin-obit

(SO) interaction. At the 2p3/2 (2p1/2) state, the spin angular momentum S and the

orbital angular momentum L are parallel (antiparallel). Using the Clebsch-Gordan

coefficients, the spherical harmonics Y m
l , and the spin functions α, β, the angle parts

of wave functions of the 2p3/2 and 2p1/2 states are expressed as

2p3/2

|jmj〉 =



|32 ,
3
2〉 ∝ Y

1
1 α

|32 ,
1
2〉 ∝

√
2
3Y

0
1 α+

√
1
3Y

1
1 β

|32 ,
−1
2 〉 ∝

√
1
3Y
−1

1 α+
√

2
3Y

0
1 β

|32 ,
−3
2 〉 ∝ Y

−1
1 β,

(2.1)

2p1/2

|jmj〉 =

|
1
2 ,

1
2〉 ∝ −

√
1
3Y

0
1 α+

√
2
3Y

1
1 β

|12 ,
−1
2 〉 ∝ −

√
2
3Y
−1

1 α+
√

1
3Y

0
1 β.

(2.2)

Under the electric dipole approximation, the spin state is conserved and the z compo-

nent of the electric orbital angular momentum excited by σ+ increases by 1 (∆ml = +1).

On the other hand, σ− beam decreases ml by 1 (∆ml = −1).

Figure 2.4 shows a schematic drawing of the relative transition probabilities in the

2p → 3d optical transition with the exchange and SO interactions in the 3d state.

Here, I assume that the radial parts of wave functions of the 2p3/2 and 2p1/2 states

can be equal, and the majority 3d spin state is fully occupied to discuss simply. The

relative transition probability by circular polarized light is calculated by using the

Gaunt coefficients c1 (2md, 1mp)

| 〈2md|r̂±|1mp〉 |2 =

∣∣∣∣〈2md

∣∣∣∣ x± iy√
2r

∣∣∣∣ 1mp

〉∣∣∣∣2 = |c1 (2md, 1mp) |2. (2.3)

Defining the number of holes at the md state as hmd
, the expectation values of Lz and

Sz are calculated as

〈Lz〉 = − (2h+2 + h+1 − h−1 − 2h−2) ~, (2.4)

〈Sz〉 = (h+2 + h+1 + h0 + h−1 + h−2)
~
2
. (2.5)
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Figure 2.4: Schematic drawing of the relative transition probabilities and the
energy levels in the 2p→ 3d optical transition by σ+ or σ− with the exchange
and SO interactions in the 3d state. The blue squares represent the one electron
occupation probabilities.

The intensity of relative optical transition is proportional to the product of hmd
and

the transition probabilities, as shown in Fig. 2.4. Therefore, we obtain the intensity of

the 2p→ 3d relative optical transition by σ+ and σ−

L3 : ∆IL3 ∝ 6h+2 + 6h+1 + 2h0 − 6h−1 − 18h−2, (2.6)

L2 : ∆IL2 ∝ 12h+2 + 3h+1 − 2h0 − 3h−1, (2.7)

and

∆IL3 + ∆IL2 ∝ 9 (2h+2 + h+1 − h−1 − 2h−2) ∝ −9 〈Lz〉 . (2.8)

If there is no SO interaction at the 3d state, that is to say, hmd
= const. and

〈Lz〉 = 0, we can obtain ∆IL3 = −∆IL2 , thus, the XMCD absorption spectrum like as

Fig. 2.5(a) is observed. However, ordinarily, the SO interaction works at the 3d state

(〈Lz〉 6= 0). The absolute values of XMCD integral at the L3- and L2-edges are not

equal (∆IL3 6= −∆IL2) and the XMCD spectrum shapes like as Fig. 2.5(b).
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Figure 2.5: Schematic drawing of the XMCD absorption spectra at the L-
edge without the SO interaction (a) and with the SO interaction (b) at the
3d state. The absolute values of XMCD integral at the L3- and L2-edges are
equal in (a) or not equal in (b).

2.1.2 Magneto-optical Kerr effect (MOKE)

MOKE is one of the popular phenomena where photon and magnetic materials in-

teract with each other. MOKE is classified into three types by its geometry, the polar

MOKE (P-MOKE), the longitudinal MOKE (L-MOKE), and the transverse MOKE

(T-MOKE), as shown in Fig. 2.6. In this thesis, the surface normal of a magnetic

material can be chosen parallel to the z-axis and the plane of incidence as the yz-plane.

The directions of magnetization are parallel to the z-, y-, and x-axes for P-, L-, and

T-MOKE, respectively. In P- and L-MOKE, the light polarization changes from lin-

early to elliptically and its plane rotates before and after reflection at the surface of

a magnetic material, as shown in Fig 2.6(a). Its rotation angle is defined as the Kerr
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Figure 2.6: Schematics of the geometries of the polar (a), longitudinal (b),
and transverse (c) MOKE.

rotation angle (θK) and the ellipticity (εK) is defined as

εK = arctan
b

a
, (2.9)

where a and b are the long and short axes of the ellipse, respectively. Observation of θK

and εK has been used to obtain magnetic information. On the other hand, T-MOKE

shows only intensity variations of the reflected light depending on the magnetization.
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Polar MOKE (P-MOKE)

P-MOKE is theoretically expressed by the complex Fresnel coefficients [4]

rss=(n0 cosφi − n cosφt) / (n0 cosφi + n cosφt) , (2.10)

rpp=(n cosφi − n0 cosφt) / (n cosφi + n0 cosφt) , (2.11)

rps=
−in0 (n+ − n−) cosφi

(n cosφt+n0 cosφi) (n cosφi+n0 cosφt) cosφt
, (2.12)

rsp=rps. (2.13)

rij means the ratio of the incident j-polarized electric field and the reflected i-polarized

electric field. n (n0) represents the complex refraction constant of the magnetic ma-

terial (over layer) given by n (n0) = 1 − δ1(0) + iβ1(0). It is composed of a real part

1 − δ1(0) and an imaginary part β1(0) that represent non-magnetic dispersion and ab-

sorption, respectively. n± are expressed as n± = 1−(δ1 ±∆δ)+ i (β1 ±∆β), where the

subscripted sign ± indicates that the directions of the photon helicity and magnetiza-

tion are parallel/antiparallel in the sample, and n = 1/2 (n+ + n−). Here ∆δ and ∆β

denote the magnetic contributions of δ1 and β1, respectively. φi and φt are the angles

of incidence and refraction, respectively. θK and εK for the s-polarized incident light

(θsK and εsK) and the p-polarized incident light (θpK and εpK) in the P-MOKE geometry

are expressed as [4]

θsK + iεsK = −rps/rss ≈
−in0nQ(
n2 − n2

0

) ( cosφi
cos (φi − φt)

)
, (2.14)

θpK + iεpK = rsp/rpp ≈
−in0nQ(
n2 − n2

0

) ( cosφi
cos (φi + φt)

)
, (2.15)

where the Voigt parameter Q for the P-MOKE geometry is given by

Q = (n+ − n−) / (n cosφt). Moreover, the permittivity tensor for the P-MOKE geom-

etry is expressed as

ε =


εxx εxy 0

−εxy εyy 0

0 0 εzz

 , (2.16)

and Q is also given by Q = iεxy/εxx.
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Longitudinal MOKE (L-MOKE)

The complex Fresnel coefficients for L-MOKE are the same as those for P-MOKE

except for rsp [4],

rss=(n0 cosφi − n cosφt) / (n0 cosφi + n cosφt) , (2.17)

rpp=(n cosφi − n0 cosφt) / (n cosφi + n0 cosφt) , (2.18)

rps=
−in0 (n+ − n−) cosφi

(n cosφt+n0 cosφi) (n cosφi+n0 cosφt) cosφt
, (2.19)

rsp=−rps. (2.20)

θK, εK, and the permittivity tensor for L-MOKE are expressed as

θsK + iεsK = −rps/rss ≈
−in0nQ(
n2 − n2

0

) ( cosφi tanφt
cos (φi − φt)

)
, (2.21)

θpK + iεpK = −rsp/rpp ≈
−in0nQ(
n2 − n2

0

) ( cosφi tanφt
cos (φi + φt)

)
, (2.22)

ε =


εxx 0 εxz

0 εyy 0

−εxz 0 εzz

 , (2.23)

where Q for the L-MOKE geometry is given by

Q =
n+ − n−
n sinφt

= i
εxz
εxx

. (2.24)

Transverse MOKE (T-MOKE)

In T-MOKE, the intensity variation of the reflected light depending on magnetism

occurs for only the p-polarized wave. The reflection coefficients have the form

rpp
(
M±

)
≈ r̄pp

[
1± ε0ε2 sin 2φi

ε21 cos2 φi − ε0ε1 + ε20 sin2 φi

]
, (2.25)

where r̄pp is the non-magnetic p-polarized reflection coefficient of the magnetic material

and ε0 = n2
0 [4]. ε1 and ε2 represent the diagonal and off-diagonal components of

permittivity tensor, respectively.
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2.2 Spintronics materials

In this section, I shall describe 3d transition magnetic materials and topological

materials, especially, topological insulator (TI) as the representative materials that

have been widely used in the fields of magnetism and spintronics. It is notable that

the spin properties of 3d transition magnetic materials and TI are affected by the spin

exchange interaction and the SO interaction, respectively.

2.2.1 3d transition magnetic materials

Elements in the d-block of the periodic table, which includes groups 3 to 12 on the

periodic table, are called 3d transition metals. They have one or more d-orbital electrons

as their outermost electrons. Especially, since Fe, Co, and Ni exhibit ferromagnetism

at room temperature (RT), their pure metals and alloys have been attracting a wide

interest in the magnetism and spintronics research fields for many years. Figure 2.7

shows the saturation magnetic moment per atom at T = 0 K of alloys including Fe, Co,

or Ni as dependent on the average electron number per atom. This curve is called the

Figure 2.7: Saturation magnetization as dependent on electron concentra-
tion. Taken from Ref. [36].
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Slater-Pauling curve. As one can see, this relation has regularity mostly independent

on materials. The magnetic moments per atom of pure Fe, Co, and Ni are 2.2, 1.7, and

0.6 µB/atom, respectively.

3d transition metals form 3d bands that determine their magnetic properties. Fig-

ure 2.8 shows the spin density of states of Ni (a) and Fe (b) obtained by the calculations.

As one can see, the 3d band splits to the up spin state and the down spin state derived

from the exchange interaction. The up spin state of Ni is occupied fully and there is

only a limited number of holes in the down spin state. On the other hand, for Fe, the

density of states (DOS) for up spin (n↑) is much larger than that for down spin (n↓).

The difference between n↑ and n↓ corresponds to the magnetic moment, that is to say,

n↑ − n↓ = 0.6 µB/atom for Ni, n↑ − n↓ = 2.2 µB/atom for Fe.

Finally, we show θK of representative examples of 3d transition magnetic metals and

their alloys obtained by using visible light, as shown in Table 2.1.

Table 2.1: The Kerr rotation angle (θK) of representative examples of 3d
transition magnetic metals and their alloys in the visible range at RT.

Material θK (degree) hν (eV) Ref.

Fe 0.87 0.75 [39]
Co 0.85 0.62 [39]
Ni 0.19 3.1 [39]

Fe3O4 0.32 1 [40]
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Figure 2.8: (a) Density of states (DOS) curves for up (upper) and down
spins (bottom) of Ni. Taken from Ref. [37]. (b) DOS curves for up (upper)
and down spins (bottom) of Fe. Taken from Ref. [38]. EF represents the Fermi
energy.
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2.2.2 Topological materials

Figure 2.9: Schematic drawing of a 2D (a) and a 3D (b) TI.

TI was first proposed theoretically in 2005 [41–43]. TI is a quantum spin Hall system

and realized in both of two dimensional (2D) [41–43] and three dimensional (3D) [44–

46] systems, as shown in Fig. 2.9. Although TIs show bulk insulating performance,

they exhibit gapless states at their edges (for 2D) and surfaces (for 3D). The edge or

surface states are ensured by time-reversal symmetry (TRS) and the spin polarization

of the edge or surface states electrons is locked to its momentum (helical spin current),

as shown in Fig. 2.9.

Two dimensional topological insulator (2D TI)

Figure 2.10(a) shows a schematic drawing of the band structure of 2D TI. The gap-

less edge state connects the valence band with the conduction band of the bulk state

(insulator). The band structure of the edge state is symmetric about k = 0, where

k represents a wave number, and the symmetric points show opposite spin directions

each other (the Kramers pair).

There is a number that describes the characteristic of TI, the Z2 topological num-

ber [41, 47, 48]. The Z2 topological number, ν, is defined below. Here, I shall consider

that there are 2N bands (N : integer) below the Fermi energy (EF), and they have

Bloch eigenstates |un,k〉 (n = 1, 2, · · ·, 2N). A 2N × 2N matrix w (k) is defined as

wmn (k) ≡ 〈um,−k|Θ|un,k〉 , m, n = 1, · · · , 2N, (2.26)
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Figure 2.10: (a) Schematic drawing of the band structure of 2D TI. (b)
TRIM for 2D TI.

where Θ is a time reversal operator. On the other hand, I define time-reversal invariant

momenta (TRIM) as k = −k (mod G), where G is a reciprocal lattice vector. In 2D

system, using the reciprocal lattice unit vectors G1 and G2, there are four TRIM at

k = 0, G1/2, G2/2, (G1 + G2) /2, as shown in Fig. 2.10(b). I rewrite these k to k = Γi

(i =1, 2, 3, 4). The Z2 topological number ν is defined as

(−1)ν =

4∏
i=1

Pf (w (Γi))√
det (w (Γi))

, (2.27)

where Pf and det represent Pfaffian and determinant, respectively. The Z2 topological

number ν takes ν = 0 or ν = 1. When a material shows ν = 1, it is a non-trivial TI.

On the other hand, a material that has ν = 0 is a trivial TI, that is to say, not a TI.

Experimentally, for example, Bi thin film [49] and CdTe/HgTe/CdTe quantum well [50–

53] are reported as 2D TIs.

Three dimensional topological insulator (3D TI)

Figure 2.11(a) shows a schematic drawing of the band structure of 3D TI. The surface

state makes a Dirac cone, which is obtained from a rotation of the band structure of

the 2D TI edge state [Fig. 2.10(a)] about the vertical axis.
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Figure 2.11: (a) Schematic drawing of the band structure of 3D TI. (b)
TRIM for 3D TI.

In an analogous way to 2D TI, there are eight TRIM in 3D system at

k = 1
2 (n1G1 + n2G2 + n3G3) (n1, n2, n3 = 0, 1), where G1, G2, G3 are the reciprocal

lattice unit vectors, as shown in Fig 2.11(b).

For 3D TI, four Z2 topological numbers, ν0; (ν1ν2ν3), are defined as [44, 48]

(−1)ν0 =
8∏
i=1

δi, (2.28)

(−1)νj =
∏

i=(n1n2n3),nj=1

δi (j = 1, 2, 3) , (2.29)

where

δi =
N∏
m=1

ξ2m (Γi) . (2.30)

ξ2m (Γi) is a parity eigenstate (+1 or -1) of the mth state from the lowest energy state

at the TRIM k = Γi. It is notable that the parities of 2m − 1th and 2mth states are

equal (ξ2m = ξ2m−1) because of the Kramers degeneracy. The Z2 topological numbers,

ν0 and νj , take 0 or 1, respectively. Furthermore, when ν0 = 1, the surface states in

wherever surface directions make the gapless band structures, thus, this TI is called a

strong TI. On the other hand, there is at least one surface state that has a gap when

ν0 = 0, and this type of TI is classified as a weak TI.

Chalcogen compounds are the most famous materials as 3D TI. Figure 2.12(a) shows

the crystal structure of Bi2Se3 that is one of the chalcogen compounds [54]. It makes

a laminate structure composed of Bi and Se, and a unit as a quintuple layer (QL).
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Figure 2.12: (a) Schematic drawing of the crystal structure of Bi2Se3. t1,
t2, and t3 represent three primitive lattice vectors. Bi2Se3 makes a unit as a
quintuple layer (Se1-Bi1-Se2-Bi1’-Se1’), as indicated by the red square. Taken
from Ref. [54]. (b, c) ARPES spectra of Bi2Se3(111) near the Γ̄ along the Γ̄−M̄
(b) and Γ̄− K̄ (c) momentum-space cuts. The Fermi energy (EF) crosses not
only the surface state but also the bulk conduction band. Taken from Ref. [55].
(d) ARPES Fermi mapping of Bi2−δCaδSe3(111). Ca was doped to tune EF

of Bi2Se3. The spin directions at EF are indicated by the arrows. Taken from
Ref. [56]. (e) y component of spin polarization along the Γ̄ − M̄ momentum-
space cut at the binding energy EB = −20 meV, where the only surface state is
included. Schematic drawing of the cut direction is shown in the inset. Taken
from Ref. [56].

Figures 2.12(b) and (c) show the results of angle-resolved photoelectron spectroscopy

(ARPES) for Bi2Se3 [55], and it was reported that its surface state shapes a Dirac

cone, as shown in Fig. 2.11(a). Furthermore, spin-resolved ARPES showed the helical

spin polarization of the surface state of Bi2Se3 that is the fundamental feature of TI,

as shown in Figs. 2.12(d) and (e) [56].



Chapter 3

Experimental methods

3.1 Light source

3.1.1 Principle of synchrotron radiation (SR)

Synchrotron radiation (SR) [57, 58] is an electromagnetic radiation emitted when a

high-energy electron is accelerated radially, ordinarily, the electron is forced to travel

in a curved path by a magnetic field, as shown in Fig. 3.1. Comparing with other

light sources that enable us to use a limited energy range, SR can cover a broad range,

from microwaves to X-rays and gamma rays. Figure 3.2 shows a classification of the

electromagnetic radiation based on its energy (wavelength). Furthermore, SR has a

high directionality due to the relativistic effect, as shown in Fig. 3.1. Using a velocity

of an electron, v, a relative velocity is defined as β = v/c, where c is a speed of light in

Figure 3.1: Schematic drawing of the emission of SR with an angle distribu-
tion of the radiation power.

25
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Figure 3.2: Classification of the electromagnetic radiation based on its wave-
length (left axis) and energy (right axis).

vacuum. I shall define γ as

γ =
1√

1− β2
= 1957E [GeV] , (3.1)

where E represents the electron’s energy. Hence, an expectation of Ψ, which is a half

of an angle of SR’s space distribution, is calculated as

〈Ψ2〉1/2 ≈ 1

γ
=
√

1− β2. (3.2)
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A photon number (n) distribution of SR, called the brightness, is expressed as functions

of a wavelength (λ) and a solid angle from the light source (Ω)

d3n

dtdΩdλ/λ

[
photons/sec/mrad2/0.1%b.w./mA

]
= 3.46× 103γ3

(
λc
λ

)2 {
1 + (γΨ)2

}2
{
K2

2/3 (ξ) +
(γΨ)2

1 + (γΨ)2K
2
1/3 (ξ)

}
, (3.3)

where K2/3 and K1/3 are the modified Bessel functions of the second kind, and ξ is

defined as

ξ = λc

{
1 + (γΨ)2

}3/2
. (3.4)

λc and εc are the critical wavelength and the critical energy, respectively, and defined

as

λc
[
Å
]

= 5.59
ρ [m]

E3 [GeV]
=

18.6

E2 [GeV]B [tesla]
, (3.5)

εc [keV] =
12.4

λc
[
Å
] =

2.22E3 [GeV]

ρ [m]
, (3.6)

where ρ and B represent a radius of the electron circular trajectory and a strength of

the magnetic field, respectively. λc and εc are also defined where the total radiation

power is divided in half, and they are near the peaks of spectra. The integrated value

of the brightness with respect to Ψ is called the photon flux. On the other hand, the

divided value of the brightness by the size of light source is defined as the brilliance.

The first and second terms in the last bracket in Eq. (3.3) express the parallel and

perpendicular components of the electric field to the plane of trajectory (IP and IN ),

respectively. Using IP and IN , degrees of linear and circular polarization (PL and PC)

are expressed as

PL =
IP − IN
IP + IN

=
K2

2/3 (ξ)− (γΨ)2

1+(γΨ)2
K2

1/3 (ξ)

K2
2/3 (ξ) + (γΨ)2

1+(γΨ)2
K2

1/3 (ξ)
, (3.7)

PC = ±
√
IP IN

IP + IN
, (3.8)

where + (-) corresponds when Ψ > 0 (Ψ < 0). When Ψ = 0, PL = 1 and PC = 0.

Furthermore, PL decreases, while PC increases with increasing of |Ψ|.

In this thesis, I shall focus on the vacuum ultraviolet (VUV) and soft X-ray energy

region. Their ranges are defined around λ ∼ 10 nm (about 10 eV) for VUV, and

1 Å ∼ 10 nm order (1 keV∼10 eV order) for soft X-ray, as shown in Fig. 3.2. These

energy ranges cover a lot of absorption edges, and a strong interaction between light and
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materials is observed there. Therefore, it enables us to do many kinds of measurements

with element-selectivity and a resonant enhancement.

3.1.2 Undulators

Figure 3.3: Schematic drawing of an insertion device (ID). Based on Ref. [59].

An insertion device (ID) is a light source of SR [59]. It can generate much more

intense SR than that obtained by only bending magnets, as described above. The ID

consists of two magnet lines where two polarized magnets (N and S) line up alternately,

and N and S magnets face each other vertically, as shown in Fig. 3.3. In a SR ring, the

ID is inserted in the straight section between bending magnets. High-energy electrons

pass between the two magnet lines and take a sinusoidally serpentine motion derived

from the magnetic period. Hence, SR is emitted with high-brilliance.

A parameter K is defined as

K =
eBλ0

2πmc
= 0.934B [tesla]λ0 [cm] , (3.9)

where e and m are the elementary charge and the electron mass, respectively. B is

a maximum value of the magnetic field in the ID, and λ0 is a period length of the

magnetic field. When K � 1, the ID is called a wiggler and SR is emitted only near

peaks of the electron sinusoidally motion. Another type of ID is called an undulator

when K ≤ 1. The undulator can generate SR without a break in the electron motion,

and its beam size and angular spread are much smaller than those generated from the
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wiggler. This feature is suitable for the SR ring that has a low-emittance electron

beam [59].

From here, I focus on the undulator. The undulator with a weak magnetic field

(K � 1) can generate a quasi-monochromatic light where the fundamental wave is

dominant. When K ≈ 1, not only the fundamental wave but also odd-order harmonic

waves can be generated. A wavelength of k order harmonic wave is expressed as

λk =
λ0

2kγ2

(
1 +

K2

2
+ γ2θ2

)
, (3.10)

where θ is an angle between the beam direction and the straight line of the undulator.

Its brightness is calculated as

d3n

dtdΩdω

[
photons/sec/mrad2/0.1%b.w./mA

]
= 4.555× 104γ2N2ξ2

kK
2

{
J(k−1)/2

(
ξkK

2

4

)
− J(k+1)/2

(
ξkK

2

4

)}2

, (3.11)

where ξk = k/
(
1 +K2/2

)
, N is a periodic number of the undulator, ω is a frequency,

and Jk is the k order Bessel function.

Planar undulators, as shown in Fig. 3.3, generate a magnetic field vertically or hori-

zontally. When an electron passes the undulator with a vertical (horizontal) magnetic

field, horizontal (vertical) polarized light is emitted. To get circular polarized light,

especially, the VUV ∼ soft X-ray region, a helical undulator is used (in the hard X-ray

region, wavelength plates are used). Figure 3.4 shows a schematic drawing of the helical

undulator used at SPring-8 [59]. In the helical undulator, the electron trajectory shapes

a helix and it generates circular polarized light. Moreover, SR emitted from the helical

undulator includes only the fundamental wave on the straight line axis. This type of

undulator consists of three magnet lines at the top and bottom. The vertical magnetic

field can be generated by the central magnet line, while the lines at both sides gen-

erate the horizontal magnetic field. Moreover, left-circular polarized light (LCP) and

right-circular polarized light (RCP) can be switched by shifting the central magnet line,

which is called phasing.

To generate linear polarized soft X-ray when the electron energy is very high, such

as SPring-8, a figure-8 undulator is employed [59, 60]. Figure 3.5 shows a schematic

drawing of the figure-8 undulator. The electron trajectory resembles the figure of eight

(8) in the figure-8 undulator, as shown in Fig. 3.5 (upper right) and horizontal polarized

light is generated by this type of undulator. In order to create the figure-8 undulator,
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Figure 3.4: Schematic drawing of the helical undulator used at SPring-8.
LCP or RCP can be switched by phasing. Taken from Ref. [59].

Figure 3.5: Schematic drawing of the figure-8 undulator. Upper right figure
shows the trajectory of the electron in the figure-8 undulator. Taken from
Ref. [60].

the periodic length of the magnet lines at both sides in the helical undulator (Fig. 3.4) is

slightly changed to doubling along the z-axis (the straight direction of the undulator),

as shown in Fig. 3.5.
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3.2 Measurement

3.2.1 Photoelectron spectroscopy (PES)

Photoelectron spectroscopy (PES) [61] is one of the powerful methods to measure

an electron state in a solid. This technique detects a kinetic energy of a photoelectron

generated by the photoelectric effect investigated by A. Einstein [62]. The kinetic

energy of the photoelectron (Ek) in vacuum is expressed as

Ek = hν − EB − φ, (3.12)

where hν is a photon energy injected to the solid, EB is a binding energy of the electron

in the solid respect to the Fermi energy (EF). The work function, φ, is normally

φ = 4 ∼ 5 eV. Figure 3.6 shows the principle of the PES process. From the Fermi’s

Golden Rule, the transition probability (ω) of the electron from the initial state ψi with

the energy Ei to the final state ψf with the energy Ef expressed as

ω ∝ 2π

~
| 〈ψf |∆|ψi〉 |2δ (Ef − Ei − hν) , (3.13)

∆ =
e

2mc
(A · p + p ·A)− eφs +

e2

2mc2
A ·A, (3.14)

where A and φs are the vector and scalar potentials and p represents the momentum

operator p = i~∇. m is the free electron mass. The commutation relation in Eq. (3.14)

is calculated as A · p + p ·A = 2A · p + i~ (∇ ·A). If the gauge φs = 0 is chosen, the

two photon emission term A · A can be neglected, and one assumes that ∇ · A = 0

because of the translational invariance in the solid, Eq. (3.14) can be rewritten as

∆ =
e

mc
A · p. (3.15)

Normally, because the wavelength of the incident light is large compared to the atomic

distances, A can be taken as constant A = A0. Therefore, the bracket in Eq. (3.13)

can be calculated as

〈ψf |∆|ψi〉 ∝ 〈ψf |A · p|ψi〉 ∝ 〈ψf |A∇ · V |ψi〉 ∝ 〈ψf |A · r|ψi〉 = A0 〈ψf |r|ψi〉 , (3.16)

where V is the electron-electron interaction.

Here, it is assumed that a system hasN electrons and an electron is photoexcited from

the initial state φi to the final state (a free electron) φf,Ek
with energy Ek. Furthermore,
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Figure 3.6: Schematic drawing of the PES process [61]. EVac is the vacuum
energy level.

the remaining N −1 electrons change from the initial state ψi (N − 1) to the final state

ψf,s (N − 1) that has s excited states with energy Es (N − 1). s is used as the number

of states and the running index. In this situation, Eq. (3.16) is rewritten as

〈ψf |r|ψi〉 = 〈φf,Ek
|r|φi〉

∑
s

cs, (3.17)

with

cs = 〈ψf,s (N − 1) |ψi (N − 1)〉 . (3.18)

|cs|2 is the probability that the removal of a photoelectron from the initial state φi of the
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N -electron ground state leaves the system in the excited state s of the N − 1-electron

system. The intensity of PES (I) in this situation is expressed as

I ∝
∑
s,i

| 〈φf,Ek
|r|φi〉 |2|cs|2δ (Ek + Es (N − 1)− E0 (N)− hν) δ (E − Ef + φ) f(E, T ),

(3.19)

where E0 (N) is the ground state energy of the N -electron system and f(E, T ) is the

Fermi distribution function. Moreover, the spectral function of an electron with energy

E and momentum k is defined as

A (k, E) =
∑
s

|cs|2. (3.20)

A (k, E) and the one-electron Green’s function G (k, E) are related by the equation

A (k, E) =
1

π
[ImG (k, E)] , (3.21)

where G (k, E) is expressed with the self-energy Σ (k, E) as

G (k, E) =
1

E − E0 (k)− Σ (k, E)
, (3.22)

with E0 (k) = ~2k2/(2m). Eventually, A (k, E) is expressed as

A (k, E) =
1

π

ImΣ

(E − E0 (k)− ReΣ )2 + (ImΣ )2
. (3.23)

Three step model

As mentioned above, the photoelectric effect in the solid can be described by one

step transition in the N -electron system (the one step model). Nevertheless, the PES

process can be divided into three steps (the three step model) and it can describe

the process more successfully than the one step model. Figure 3.7 shows a schematic

drawing of the three step model of the PES process.

In the first step, electrons in the solid are photoexcited by the incident light with

energy hν. Its detail has been already described above.

In the second step, the photoexcited electrons are scattered and transported to the

surface. Not only the electrons whose energies are conserved by the elastic scattering

but also the secondary electrons which lose their energies are generated by the inelastic

scattering. The average distance where an electron does not lose its energy in solids
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Figure 3.7: Schematic drawing of the three step model of the PES pro-
cess [61]. The process is divided into (1) photoexcitation of electrons, (2)
transport of the photoelectrons to the surface, and (3) penetration through
the surface. The horizontal axes denote the DOS.

is called the mean-free path and depends on the kinetic energy of electron, as shown

in Fig. 3.8. As one can see, the relation between the mean-free path and the kinetic

energy of electron is independent on elements of solids, so-called the universal curve.

When the incident light with hν = 50 ∼ 80 eV is used for PES, the electrons that

escape from the solid in ∼ 5 Å depth can be detected, therefore, it is surface sensitive.

On the other hand, in the other photon energy regions, one can operate a relatively

bulk sensitive PES.

In the final step, photoelectrons penetrate to the vacuum through the surface. The

photoelectrons which have larger energies than the work function φ can escape from

the solid and be detected.

Angle-resolved photoelectron spectroscopy (ARPES)

Angle-resolved photoelectron spectroscopy (ARPES) is the only technique that en-

ables us to determine band structures of materials. In ARPES, not only the kinetic

energy of the photoelectron but also its momentum can be detected by an analyzer,
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Figure 3.8: Universal curve of electrons in solids taken from Ref. [63]. The
dashed line represents the theoretical curve independent of elements.

such as a hemispherical PES analyzer, as shown in Fig. 3.9. Because the photon energy

is normally low in ARPES, the wave number of the incident photon can be neglected,

and the momentum of the photoelectron is conserved before and after the photoexci-

tation except for the reciprocal lattice vector (G) of the solid. The momenta of the

initial state (Ki) and the final state (Kf ) have a relation as

Kf = Ki + G. (3.24)

When the photoelectron is emitted from the solid to the vacuum, the momentum

parallel to the surface (Kf//) is conserved, while the momentum perpendicular to the

surface (Kf⊥) is not done due to the inner potential (V0), as shown in Fig. 3.9. The

momentum parallel to the surface of the emitted photoelectron (kf//) is expressed as

kf// = Kf// = Ki//. (3.25)

Using the polar emission angle θ, Ek, and Eq. (3.12), kf// is calculated by

kf//
[
Å−1

]
=

√
2m

~
√
Ek sin θ (3.26)

= 0.5123
√
hν − EB − φ [eV] sin θ, (3.27)
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Figure 3.9: Schematic drawing of the emission of a photoelectron from a
solid to the vacuum and its detection by a hemispherical PES analyzer.

therefore, Ki// is given by

Ki//

[
Å−1

]
= 0.5123

√
hν − EB − φ [eV] sin θ. (3.28)

On the other hand, Ki⊥ is calculated by

Ki⊥
[
Å−1

]
= 0.5123

√
(hν − EB − φ) cos2 θ + V0 [eV]. (3.29)

3.2.2 X-ray magnetic circular dichroism (XMCD) measurement

X-ray absorption spectroscopy (XAS)

X-ray absorption spectroscopy (XAS) is a measurement of photo-absorption by the

excitation of a core electron into unoccupied states depending on photon energy. Its
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intensity is written as

I (hν) =
∑
f

| 〈f |T |i〉 |2δ (Ei − Ef − hν) , (3.30)

where T is the dipole transition operator. i (f) and Ei(f) represent the initial (final)

state and its energy of the optical transition, respectively.

To measure XAS spectrum in the hard X-ray energy region, the transmission mode,

where a ratio of the transmitted X-ray is obtained by the measurement of the X-ray

intensity at in front of and behind the sample, is widely used. On the other hand,

in the soft X-ray energy region, because of a strong interaction between light and the

sample, it is difficult to measure XAS spectrum by the transmission mode, therefore,

the yield mode is used. There are two types of the yield mode; one is the electron

yield mode and the other is the fluorescence yield mode. The electron yield mode is a

method detecting the amount of the electrons emitted by the incident soft X-ray, while

the fluorescence X-ray emitted from the sample is measured in the fluorescence yield

mode. Furthermore, the electron yield mode can be classified into the Auger electron

yield (AEY), the partial electron yield (PEY), and the total electron yield (TEY)

modes. The AEY method measures the amount of the Auger electrons. All escaping

electrons excited by the soft X-ray are detected in the TEY mode, while the PEY

method selects the energy of detected electrons. Since XAS spectrum can be measured

simply by measuring the current that flows in the sample (sample current) in the TEY

mode, this yield mode is most widely used and a convenient technique. Figure 3.10

shows a schematic drawing of the TEY and total fluorescence yield (TFY) methods

that were adopted in our experiments. The probing depths of the electron yield and

the fluorescence yield modes are about 5 ∼ 10 nm and 10 ∼ 100 nm depending on

the electron escape depth and the photon mean-free path, respectively [17]. Therefore,

the electron yield mode is surface sensitive, while the fluorescence yield mode is bulk

sensitive.

X-ray magnetic circular dichroism (XMCD) spectroscopy

X-ray magnetic circular dichroism (X-ray MCD, XMCD) spectroscopy [64, 65] is one

of the most leading methods to get the magnetic information. XMCD spectrum is

derived from the difference between the two absorption spectra obtained by circular

polarized light of opposite helicities, as shown in Fig 3.10. Using absorption edges,

the merit of this measurement is that one can use element-selectivity and a resonant
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Figure 3.10: Schematic drawing of a XMCD experimental set up. The TEY
method measures the sample current. A silicon drift detector (SDD) was used
for the TFY mode in our experiments.

enhancement. Moreover, one can obtain the values of the spin and orbital magnetic

moments by combining XMCD spectroscopy and the sum rules [5–7]. According to the

sum rules, their magnetic moments in units of µB/atom (mspin and morb) are calculated

by

morb = −
4
∫
L3+L2

(µ+ − µ−) dω

3
∫
L3+L2

(µ+ + µ−) dω
(10− n3d) , (3.31)

mspin = −
6
∫
L3

(µ+ − µ−) dω − 4
∫
L3+L2

(µ+ − µ−) dω∫
L3+L2

(µ+ + µ−) dω
(10− n3d)

(
1 +

7 〈Tz〉
2 〈Sz〉

)−1

,

(3.32)

where n3d is the 3d electron occupation number of the specific transition metal atom.

The L3 and L2 represent the integration energy range, around the L3- and L2-edges,

respectively. 〈Tz〉 is the expectation value of the magnetic dipole operator and 〈Sz〉
is equal to half of mspin in Hartree atomic units. µ± are the spectra obtained by

the helicity ±, respectively. C. T. Chen et al. made the first report of the accurate

determination ofmspin andmorb obtained from the XMCD spectra and the sum rules [7].

The integrated values of the MCD spectrum, p and q, are defined as

p =

∫
L3

(µ+ − µ−) dω, (3.33)
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Figure 3.11: Results of the spectroscopy for Fe/parylene thin films at the
Fe L-edge. (a) Transmission spectra taken with the projection of the spin of
incident photons parallel (I+, solid curve) and antiparallel (I−, dashed curve)
to the spin of the Fe 3d majority electrons (I+ and I− are equal to the spectra
obtained by the helicity + and − when the direction of magnetization is fixed,
respectively). Is represents the spectrum of the parylene substrates alone.
(b) Absorption spectra obtained from I+ and I−. (c) MCD spectrum (solid
line) and its integration (dashed line). (d) Summed XAS spectrum (solid line)
and its integration (dashed line). The dotted line represents the two-step-like
function for edge-jump removal before the integration. Taken from Ref. [7].
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q =

∫
L3+L2

(µ+ − µ−) dω. (3.34)

r is also the integrated value of the XAS spectrum after removing the two-step-like

function for edge-jump, as shown in Fig. 3.11(d),

r =

∫
L3+L2

(µ+ + µ−) dω. (3.35)

From Eqs. (3.31)–(3.35), when the value of 〈Tz〉 / 〈Sz〉 is negligible, the morb to mspin

ratio can be calculated as
morb

mspin
=

2q

9p− 6q
. (3.36)

C. T. Chen et al. measured the XMCD spectra of Fe and Co thin films, and deter-

mined their ratios morb/mspin and the individual values of morb and mspin, as shown in

Table 3.1 [7]. It is notable that they used the theoretical values for n3d. These values

are in good agreement with those determined by the theoretical calculations or the

gyromagnetic ratio measurements.

Table 3.1: Ratios morb/mspin and individual values of morb and mspin for
Fe (body-centered cubic, bcc) and Co (hexagonal close-packed, hcp) obtained
from the XMCD spectra and the sum rules. Taken from Ref. [7].

Fe (bcc) Co (hcp)

morb/mspin 0.043 0.095
morb 0.085 0.154
mspin 1.98 1.62

3.2.3 Magneto-optical Kerr effect (MOKE) measurement

Magneto-optical Kerr effect (MOKE) measurement is a powerful technique to extract

the magnetic information. While polarizers and a 1/4 wavelength plate are normally

used to observe the Kerr rotation angle (θK) and the ellipticity (εK) with visible light,

they can be determined by the rotating-analyzer ellipsometry (RAE) [28] in the VUV

∼ soft X-ray energy region. Figure 3.12(a) shows a set up of the resonant longitudinal

MOKE (L-MOKE) measurement with the RAE. The RAE unit is composed of a mul-

tilayer mirror as an analyzer, and a detector. The elements and layer thicknesses of the

multilayer mirror are optimized to reflect the light that has the incident photon energy.

In this thesis, we used the multilayer mirror made of W/B4C with N = 100 periods

for periodic distances of d = 1.19 nm for the Fe L-edge (NTT-AT Corporation), and
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Figure 3.12: (a) Set up of the L-MOKE measurement with the RAE. The
RAE unit comprises by a multilayer mirror and a detector. (b) Typical results
of the intensity variation with rotation angle, χ, for an Fe film taken at hν =
710 eV. The red and blue solid lines represent the spectra obtained when the
magnetic fields were +0.3 T (+B) and −0.3 T (−B), respectively. θK can be
determined from 2θsK = θ (−B)−θ (+B) for the s-wave, 2θpK = θ (+B)−θ (−B)
for the p-wave, respectively.
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a micro-channel plate (MCP) (Hamamatsu Photonics Corporation, MCP F4655) as a

detector. The intensity of the reflected light from the multilayer mirror is measured by

the detector as a function of rotation angle χ. It is expressed as

I (χ) =
r2
p

2

[
2V
(
α2 − 1

)
cos 2εK cos2 (θ − χ) + α2 + 1− V

(
α2 − 1

)
cos 2εK

]
, (3.37)

where α is the ratio, rs/rp, of reflectance amplitudes for the s- and p-waves [66, 67],

and θ represents the azimuthal angle of the major axis of the elliptically polarization.

When the light can be defined consistently by the Stokes parameters, the value of V is

unity [66]. It is known as Malus’s law that the intensity depends on the cosine square

function on χ [66, 67]. In this study, χ was swept clockwise with the observer facing

the beam. Using parameters C1 (εK) and C2 (εK), I (χ) is also rewritten simply as

I (χ) = C1 (εK) cos 2 (χ− θ) + C2 (εK) . (3.38)

Since the polarization plane rotates inversely under opposite magnetic fields in the

MOKE measurement, θK for the s-polarized incident light can be determined from

the difference in the ellipsometry curves taken under opposite magnetic fields: 2θsK =

θ (−B)− θ (+B) in this geometry, as shown in Fig. 3.12(b). On the other hand, for the

p-polarized incident light, it should be taken into account that rsp includes n− − n+

whose sign is inverse to n+ − n− in rps, as shown in Eqs. (2.19) and (2.20). θpK is

calculated by 2θpK = θ (+B)− θ (−B) based on the Onsager relations.



Chapter 4

Interface electronic structure at

the topological

insulator-ferrimagnetic insulator

junction

In this chapter, we studied a magnetic interface between a three dimensional (3D)

topological insulator (TI) and a magnetic material. This system is one of the interesting

buried magnetic layers.

4.1 Introduction

As mentioned in Chapter 2, TIs are notable materials currently attracting a wide

interest in both fundamental and applied research [68–70]. Although TIs show bulk

insulating performance, they exhibit Dirac-like gapless bands at their surfaces [54–

56, 71–74]. The surface state is ensured by time-reversal symmetry (TRS) and the spin

polarization of the surface state electrons is locked to its momentum. Because these

properties are resistant to non-magnetic external perturbations, TIs are expected to be

promising materials for new spintronic devices [68–70].

By breaking TRS, TIs exhibit a number of interesting features, such as the gap-

opening at the Dirac point [8, 75], the half-integer quantum Hall effect [76], the quantum

anomalous Hall effect [77, 78], the topological magnetoelectric effect [76, 79], and the

43
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image magnetic monopole effect [80]. There are two methods for breaking the TRS; one

is by doping magnetic impurities (Cr, Fe, and Mn) [75, 77, 78, 81, 82], and the other

is by connecting TIs to magnetic materials such as Fe, Co, and EuS [8–12]. However,

with the objective of device applications, magnetic metals in contact with TIs are not

appropriate because the TI surface state is short circuited by the metallic materials [14].

Recently, it was suggested that a ferrimagnetic insulator, yttrium iron garnet (YIG,

Y3Fe5O12) with a Curie temperature (TC) ∼ 550 K, has the potential to be an un-

derlayer for magnetic TI films [13–16]. It was reported, from magneto-transport and

magneto-optical measurements, that the temperature where the Bi2Se3 has a magnetic

order (TMO) reaches ∼ 130 K due to the proximity effect [13]. Furthermore, TC of

Cr-doped Bi2Se3 on YIG was found to be higher than that on a nonmagnetic substrate

through magneto-transport and X-ray magnetic circular dichroism (XMCD) measure-

ments [14, 15]. Understanding the mechanism of the proximity effect between TI and

YIG is required to realize TMO above room temperature (RT) for practical applications.

In this chapter, we present results of angle-resolved photoelectron spectroscopy (ARPES)

and XMCD measurements for Bi2Se3 films on YIG. We have successfully observed the

TI surface state in this Bi2Se3/YIG system and obtained direct evidence that the 3d

electrons of Fe in YIG induce the proximity effect at the interface between TI and YIG.

4.2 Experiment

YIG(111) thin films (8.4 nm thick) were grown by pulsed laser deposition (PLD) on

gadolinium gallium garnet (GGG) (111) substrates. Stoichiometric one-inch diameter

YIG targets were prepared by mixing Y2O3 and Fe2O3, followed by ball milling, calci-

nation, and sintering at 1400◦C [83, 84]. The surfaces of the GGG substrates (Supplier:

MTI Crystals, Inc.) were cleaned by ultrasonicating in acetone and then in isopropanol.

PLD of YIG was carried out using a KrF coherent excimer laser (λ = 248 nm, 400 mJ

pulses at 10 Hz pulse rate) at a growth rate of 3 nm/min (target-substrate distance:

85 mm) under 20 mTorr oxygen pressure (5 × 10−6 Torr base pressure), while 10 mm

×10 mm GGG(111) substrates were held at 650◦C. After deposition and before cool-

ing, the oxygen pressure in the chamber was increased to 500 Torr and then the films

were annealed at 650◦C. This annealing step improved the quality of the YIG films, as

reported elsewhere [85]. The sample temperature was decreased to 200◦C at 5◦C/min

in oxygen ambient, followed by natural cooling to RT.
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Figure 4.1: (a) A schematic drawing of the crystal structure of YIG. There are
two sites for Fe ions, octahedral (O) and tetrahedral (T ) sites. (b) A schematic
drawing of the Bi2Se3 film prepared on a YIG(111)/GGG(111) sample. (c) The
(00)-spot RHEED intensity oscillation during Bi2Se3 growth on the YIG film,
taken at an electron energy of 15 keV. (d) The RHEED pattern of a 6 QL
Bi2Se3/YIG sample. The symbol a∗ represents the reciprocal lattice constant
of Bi2Se3.

Figure 4.1(a) shows the crystal structure of YIG (space group Ia3d). The YIG

formula unit can be written as follows: {Y3+
3 }[Fe3+

2 ]
(
Fe3+

3

)
O2−

12 . The nonmagnetic

yttrium ions
(
Y3+

)
occupy 24c sites. Fe3+ ions occupy 16a (octahedral, O) and 24d

(tetrahedral, T ) lattice sites in the ratio of 2 : 3, respectively. The spins of these sites

are antiparallel and as a result, the unit cell is ferrimagnetic [86].

Figure 4.1(b) shows a schematic drawing of a Bi2Se3/YIG heterojunction. Bi2Se3

films were grown on a YIG film prepared on GGG (YIG/GGG) using Bi and Se effusion

cells. At first, 2 quintuple layers (QLs) of Bi2Se3 were grown on YIG at 150◦C and

subsequently annealed at 300◦C. Then further Bi and Se depositions were made at a

sample temperature of 250◦C. The thickness of the Bi2Se3 films was controlled from

3 to 6 QL by observing reflection high-energy electron diffraction (RHEED) intensity

oscillations, as shown in Fig. 4.1(c). After the deposition, the samples were annealed at

250◦C for 15 min to improve the crystalline quality. Figure 4.1(d) presents the RHEED

pattern of the 6 QL Bi2Se3/YIG/GGG sample. Referred to the (00)-rod, streaks are

identified at 2a∗ and
√

3×a∗ where a∗ represents the reciprocal lattice constant of
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Figure 4.2: Core level photoelectron spectroscopy spectra, taken at hν =
87.6 eV, of a 6 QL Bi2Se3/YIG sample before (red) and after (blue) decapping.
These spectra were normalized to the Bi 5d5/2 peak.

Bi2Se3. The pattern indicates that the Bi2Se3 films have a multi-domain structure

such as a 〈111〉-textured structure [87]. Finally, the sample surface was capped with a

30 nm-thick Se layer in order to transfer the sample wafer in air to the ARPES chamber.

Removal of the capping layer was accomplished by annealing at 190◦C for ∼ 10 min in

an ultra high vacuum (UHV) chamber prior to ARPES experiment.

The ARPES experiment was performed at the VUV-Photoemission beamline at Elet-

tra, Italy. Figure 4.2 shows the core level photoelectron spectra of the 6 QL Bi2Se3/YIG

sample before and after the decapping procedure. In contrast to a large and broad peak

structure of the Se 3d peak for the capped sample, a clean Bi2Se3 surface shows only

a single Se 3d doublet component that is split by the spin-orbit (SO) interaction, as

reported previously [88]. On the other hand, no apparent change was observed for the

spectral features of the Bi 5d core level. These observations indicate that the present

capping/decapping procedure was appropriate and a clean Bi2Se3 film is left after the

decapping.

XMCD measurements of the Bi2Se3/YIG samples were made at the Fe L-edge at RT

and 20 K. The experiment was made at the high-brilliance soft X-ray beamline [60],

BL07LSU, at SPring-8, Japan. A magnetic field of 0.24 T was applied by a retractable

permanent magnet. The XMCD was measured at the Fe L2,3-shell absorption edge of



4.3 Results and discussion 47

YIG by the total electron yield (TEY) and total fluorescence yield (TFY) modes. In

the TFY mode, fluorescence from the sample was detected by a silicon drift detector

(SDD), as shown in Fig. 3.10. XMCD spectra were derived from the difference between

the two absorption spectra obtained by circular polarized light of opposite helicities,

where the beam direction was set parallel to the magnetic field orientation and to the

surface normal direction.

4.3 Results and discussion

4.3.1 Angle-resolved photoelectron spectroscopy (ARPES) study

Figure 4.3(a) shows the momentum (k//: parallel to the sample surface) distribution

curves (MDCs) of the ARPES spectra around the Γ̄ point, taken at hν = 52.4 eV,

at RT. In the ARPES experiment, linear polarized light was incident onto the sample

in the p-configuration. In the figure, it can be seen that the two peaks in the MDCs

at the Fermi energy (EF) approach with increasing binding energy (EB) and overlap

each other at EB = 0.38 eV, followed by separation at higher EB. These results

unambiguously indicate band-crossing. The MDCs at RT in Fig. 4.3(a) and T = 30 K

(not shown) were fitted by two Gaussian peaks and the peak positions are plotted in the

photoelectron band diagrams in Figs. 4.3(b) and (c). At T = 30 K and RT, the surface

state band shows the Dirac cone dispersion around the Γ̄ point with the Dirac point at

EB = 0.38 eV. The band-dispersion curves were assigned to those of the Dirac surface

state bands of the Bi2Se3 film as reported previously [55, 74]. The Fermi velocity of this

system is vF = 5.1× 105 m/s and this value agrees with previous studies [54, 71, 72].

For comparison, the photoelectron band diagram, taken at hν = 23.1 eV, is also

shown in Fig. 4.3(d). The observed band between EF and 0.2 eV is assigned to the

bulk conduction band of Bi2Se3, as reported previously [55, 74] and it crosses the EF,

indicating the n-type doped nature. The electronic structures of the surface and bulk

states are essentially similar to the previous ARPES results of Bi2Se3 films on different

substrates [55, 56, 71–74]. Due to the TI nature of the Bi2Se3 film [69, 70, 80], the

existence of the surface state at the film/vacuum interface suggests its presence also

at the junction (interface) with the insulator YIG film. Moreover, Fig. 4.3(d) implies

that the Bi2Se3 bulk conduction band crosses EF at the Bi2Se3/YIG interface. It is

notable that the surface state band structure does not change with the temperature

across TMO ∼ 130 K [13], as shown in Fig. 4.3.
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Figure 4.3: (a) Photoelectron momentum distribution curves (MDCs), taken
at hν = 52.4 eV, for the 6 QL Bi2Se3/YIG sample at RT (red solid lines).
The solid black and green lines indicate the two-peak fitting curves. (b, c)
Photoelectron band diagrams around Γ̄ for the 6 QL Bi2Se3/YIG sample at
(b) T = 30 K and (c) RT (hν = 52.4 eV). The solid circles correspond to the
peak position from the MDCs and the black lines are fits. (d) ARPES spectra
of the 6 QL Bi2Se3/YIG sample at T = 30 K (hν = 23.1 eV).

4.3.2 X-ray magnetic circular dichroism (XMCD) study

Figures 4.4(a) and (b) show the Fe 2p X-ray absorption spectra (a) and XMCD

spectra (b) by the TEY mode. The spectral shapes are mostly in agreement with those

of the Cr-doped Bi2Se3/YIG sample reported by Liu et al. [14, 15]. Since the probing

depth of the present XMCD measurements using the TEY mode is about 5 ∼ 10 nm, as

described in Chapter 3, not much different from the thickness of 3 nm (3 QL) and 6 nm

(6 QL) Bi2Se3 [17, 89], the XMCD signals are thought to be essentially resulting from

the Fe atoms near the Bi2Se3/YIG boundary. The positive XMCD peaks at hν = 708

and 710 eV and the negative peak at hν = 709.5 eV suggest opposite spin directions

for the Fe atoms at two different sites in the YIG crystal, O (2 per formula unit) and T
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Figure 4.4: (a) XAS spectra of the 3 and 6 QL Bi2Se3/YIG samples obtained
by the TEY mode at RT and 20 K. The solid red and blue lines represent the
spectra taken with circular polarized light of plus and minus helicity (σ+, σ−),
respectively. (b) XMCD spectra of 3 QL Bi2Se3/YIG at T = 20 K (red), 6 QL
Bi2Se3/YIG at T = 20 K (green), and 6 QL Bi2Se3/YIG at RT (blue) obtained
by the TEY mode.

sites (3 per formula unit), as expected for the ferrimagnet. In the present measurement

configuration, the macroscopic magnetic direction of the ferrimagnetic YIG film shows

a negative peak for the Fe (T ) site [14, 15]. Furthermore, we notice a slight structure

at the L3 pre-edge as described below.

The upper curves of Fig. 4.5(a) are the enlarged XAS spectra of the 6 QL Bi2Se3/YIG

at RT obtained by the TEY mode at hν = 705 ∼ 708 eV. One can notice a spectral

feature at hν ∼ 706.5 eV in the σ+ spectrum. Compared with the previous X-ray

absorption study [90], the spectral feature is likely assigned to the Feδ+ (δ < 3) state

in the YIG crystal. On the other hand, the spectra in Fig. 4.5(b) and the lower curves

in Fig. 4.5(a) are the XAS results obtained by the TFY mode and they essentially

have very similar spectral feature as those taken by the TEY mode, except for the

pre-edge structure at hν = 706.5 eV. Since the probing depth in the TFY mode is

10 ∼ 100 nm, as described in Chapter 3 [17], the spectra obtained by this mode mainly

give information from Fe in the internal bulk region of YIG. These results indicate

the possible existence of the Feδ+ state at the Bi2Se3/YIG interface. It was reported

that Feδ+ states were produced by oxygen deficiency at the surface or interface of

YIG [91, 92].
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Figure 4.5: (a) Enlarged XAS spectra of 6 QL Bi2Se3/YIG at RT in the
absorption edge region obtained by the TEY mode (upper) and the TFY mode
(bottom). Intensity enhancement is observed at the pre-edge in the σ+ TEY
spectrum (indicated by arrow). The red and blue lines represent the spectra
taken with σ+ and σ−, respectively. (b) XAS spectra of 6 QL Bi2Se3/YIG at
RT obtained by the TFY mode.

4.3.3 Interaction model at the interface

From the experimental results shown above, magnetic order of Bi2Se3 at the interface

is most probably associated with the interface spin polarized states of the Bi2Se3 film

and localized spin states of the interface Fe3+ in the YIG film. Thus, the proximity

effect would be modeled as their interactions at the boundary. Such interface interaction

has been already investigated theoretically for a similar system that is composed of a

Bi2Se3 film and an EuS substrate [93]. When the TI film has a Dirac surface state with

a gap at the Dirac point by breaking the TRS, these delocalized spins were found to

experience an exchange interaction with the localized spins of the 4f electrons in the

Eu2+ ions [93]. Moreover, it was found that bulk (pz-orbital) states of the Bi2Se3 film

also contribute to the spin-coupling between the TI and the magnetic material when

EF is located above the minimum of the bulk conduction band [93]. By analogy, the

magnetic order of Bi2Se3 at the interface can be understood as an exchange interaction
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Figure 4.6: A schematic drawing of the proximity effect at the Bi2Se3 and
YIG interface. The origin is the antiferromagnetic (AF) exchange interaction
between the spin polarized electrons of the Bi2Se3 film and the localized 3d
electrons of the Fe3+ sites. The Bi2Se3 Dirac surface state band produces gap-
opening at the Dirac point. The macroscopic magnetic moments of Bi2Se3

(MTI) and YIG (MYIG) have opposite orientations from each other.

between the spin polarized electrons in the (gapped) Dirac surface state of the Bi2Se3

film and the localized 3d electrons of Fe3+ in the YIG film [11, 13], as shown in Fig. 4.6.

Moreover, there is also a contribution from the bulk electrons in the Bi2Se3 film since

the bulk conduction band crosses EF [Fig. 4.3(d)].

Judging from the sign of the XMCD signal, one can naturally assume that the Feδ+

state originates from the Fe atom at the O site. At a surface, the Fe ions are likely

reduced by oxygen vacancies [91, 92] that are probably formed during the film growth

process. The Feδ+ ions seem to occupy a few percent of the Fe sites, as estimated from

the XAS intensity ratio. The 3d electrons at the Fe (O) and Fe (T ) sites in YIG have

opposite spin orientations from each other and they individually have antiferromagnetic

interactions with the Dirac electrons of Bi2Se3 because all Fe 3d electron states are

occupied by the electrons with parallel spin due to the Hund’s rules. This results in

macroscopic configuration of the opposite magnetic moments between the Bi2Se3 film

and the YIG substrate [13], as schematically shown in Fig. 4.6. Since the spin magnetic

moment at the Fe3+ (O) site is opposite to that of YIG and the magnetic moment of

Feδ+ is smaller than that of Fe3+, one expects that the change to Feδ+ at the O site
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enhances the magnetic order at the Bi2Se3/YIG interface. On the other hand, the

Fe ions could also be reduced at the T site. However, it is not possible to argue the

formation of the Feδ+ state at the T site since the corresponding faint signal of this

impurity in the XAS spectra [Figs. 4.4(a) and 4.5(a)] will be completely overlapping

and covered with the large spectral peak of the Fe3+ (O) state at hν ∼ 708 eV. Because

decrease of the spin magnetic moment at the Fe (T ) site results in suppression of the

interface magnetic order, one should conclude that it is unnecessary to increase the

number of the Feδ+ state at the interface. Nevertheless, our result implies a possible

improvement of the interface magnetic order by the selective reduction of the Fe3+ state

at the Fe (O) site.

It is notable that not only investigating the details of the Feδ+ state but also an

appropriate analysis to determine atomic structure at the Bi2Se3/YIG heterojunction

is needed in order to conduct a first-principles calculation to properly understand the

scenario.

4.4 Conclusion

In summary, we provide evidence of the surface state of the Bi2Se3 film on YIG by

ARPES and the significance of the Fe3+ state for magnetic order of the Bi2Se3 at the

interface by Fe L2,3-edge XMCD. The origin of the proximity effect is likely described

in terms of the exchange interaction between the localized Fe3+ 3d electrons in the

YIG film and the delocalized electrons of the Dirac surface state and the bulk state in

the Bi2Se3 film. In addition, we succeeded in showing the possibility that controlling

the valence number of the Fe ions at the interface may be able to change the interface

magnetic property. This study plays a part in understanding the proximity effect

between TI and YIG, contributing to the realization of TI-based devices.

However, this study only shows the indirect results of the magnetic TI at the interface.

To unveil the mechanism of magnetic order in TI perfectly, a direct measurement by

bulk sensitive methods with high accuracy is required.
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Chapter 8

Summary and future prospect

8.1 Summary

In the present thesis, the magnetism of buried layers was investigated and their at-

tracting properties were observed. In order to get abundant information on them, which

is difficult to obtain by the existing methods, we developed the new light source and

methods in the soft X-ray energy region with the polarization modulation. We demon-

strate the performance of this method and show the new information of magnetism

using the polarization modulation.

In Chapter 4, the interface electron state at the junction between a three dimen-

sional (3D) topological insulator (TI) film, Bi2Se3, and a ferrimagnetic insulator film,

Y3Fe5O12 (YIG), was investigated by measurements of angle-resolved photoelectron

spectroscopy (ARPES) and X-ray magnetic circular dichroism (XMCD). The magnetic

TI should appear at the interface derived from the proximity effect, which is expected to

be promising materials for new spintronic devices. The surface state of the Bi2Se3 film

was directly observed by ARPES and it has a Dirac-like band structure like as those

of other Bi2Se3 grown on different substrates. By XMCD measurements, the localized

3d spin states of Fe3+ in the YIG film were confirmed. Furthermore, it should be also

reported that the valence number of the Fe ions in the YIG film varies and it could

affect the magnetism at the interface. From these results, we propose the interface

model that the proximity effect is likely described in terms of the exchange interaction

between the localized Fe 3d electrons in the YIG film and the delocalized electrons of

the surface and bulk states in the Bi2Se3 film observed by ARPES. This study shows

93



94 8. SUMMARY AND FUTURE PROSPECT

the importance of the magnetism at the interface that it is ordinarily difficult to observe

in detail by the common techniques.

In Chapter 5, the L-edge resonant magneto-optical Kerr effect (MOKE) of a buried

Fe film was investigated by the rotating-analyzer ellipsometry (RAE) and the Kerr

rotation angle (θK) obtained by the experiment was compared with those obtained from

two theoretical simulations. The resonant MOKE measurement in the soft X-ray energy

region is a powerful method to detect the magnetism at buried layers because of using a

reflected light and the resonant enhancement. In contrast to MOKE with visible light,

resonant MOKE also has element-selectivity. The sign reversal of θK between the L3-

and L2-edges was first observed in the experiment. Furthermore, it was consistent with

the classical electromagnetic simulation using the empirical optical constants. On the

other hand, the θK spectrum at the L3-edge, including the fine features, was reproduced

by the quantum theoretical calculation of the Fe 2p–3d resonant elastic scattering.

However, a large peak between the L3- and L2-edges, which was also obtained from the

quantum calculation, is not found in the experimental spectrum. These features likely

originate from the quantum interference effect during the resonant scattering process

that is described by the Kramers-Heisenberg formula. The large peak could be reduced

by the decoherence process of the other optical transitions and the inelastic scattering

process in the actual sample. In addition, to the best of our knowledge, the polarization

dependence of θK was also reported for the first time in the soft X-ray energy region.

We succeeded in showing the usefulness of resonant MOKE, its quantum mechanism

that shapes the θK spectrum, and the tasks to improve quantum calculations.

In Chapter 6 and 7, we present the main subject of this thesis. We developed the

new polarization modulated soft X-ray at SPring-8 BL07LSU fully utilizing the per-

formance of the segmented cross undulator, especially, the phase shifter composed of a

permanent magnet and an electromagnet. Its performance was confirmed by the XMCD

measurements with the modulated light for the FePt film and the (Bi1−xSbx)2 Te3/YIG

samples. XMCD was obtained by extracting the p component, which is the same fre-

quency as the polarization modulation, from the sample current signal and its high

sensitivity and accuracy were shown. Moreover, we designed the new method combin-

ing the resonant MOKE measurement and the polarization modulated light in the soft

X-ray region. Adding the merits of the resonant MOKE measurement, this method

enables us to measure θK and the ellipticity (εK) simultaneously and high accuracy due

to extracting the p and 2p components from the detected signal. Furthermore, since

θK and εK are derived from the optical rotation and the magnetic circular dichroism



8.2 Future prospect 95

(MCD), respectively, the off-diagonal components of the permittivity, which have mag-

netic information of materials, can be determined completely including both of the real

and imaginary parts. In fact, we succeeded in first measuring the θK and εK spectra of

the Fe film simultaneously and they are consistent with the fact that the spectra of θK

and εK are connected by the Kramers-Kronig relations. Although we have depended

on the simulation to obtain the value of permittivity in the soft X-ray energy region

in the past, the experimental complex permittivity can be determined completely by

our developed resonant MOKE method in this study. It is clear that the present study

opened the new field of magnetism research.

8.2 Future prospect

In the discussion above, the new methods were developed by combining the magneto-

optical effect with the polarization modulated soft X-ray. The XMCD measurement

with the polarization modulation, which enables us to observe a weak MCD, can be

applied to TI/magnetic material systems. In this thesis, the MCD of Fe3+ in YIG

was observed and we considered its effect on the magnetism of TI. To get a proper

understanding of the proximity effect, it is required to observe the magnetism of TI

directly. Comparing with the previous study reported by M. Ye et al. [118], the MCD of

magnetic TI appearing only at the interface with a magnetic material should be much

weaker than that of a magnetic element doped TI, such as Cr-doped (Bi1−xSbx)2 Te3.

However, the XMCD measurement with the modulated light should become a method

that can detect the weak signal from the interface by an optimization of the undulator

at SPring-8 BL07LSU. (Bi1−xSbx)2 Te3 on YIG that studied in Chapter 6 would be

investigated by the method and the MCD of Sb or Te in the TI should be observed

directly like as the previous study [118]. It leads to figure out the mechanism of the

proximity effect completely.

In addition, the MOKE measurement with the polarization modulation enables us

to measure the complex permittivity with element-selectivity in the soft X-ray energy

region, as discussed in Chapter 7. The permittivity of any kind of magnetic material

can be measured by this method with optimizations of the segmented cross undula-

tor and the multilayer mirror without the sample limitation like as the transmission

and diffraction methods. Permittivity would be useful to understand the electronic

structures and the optical transitions of the magnetic materials both of experimentally

and theoretically. Moreover, using the permittivity obtained experimentally can also
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develop optical designs that have relied on the simulations in the soft X-ray region until

now. It is also expected that the determination of permittivity would be used for the

material design, and the light induced spin-flip by the inverse Faraday effect [129, 130]

could be investigated, thus, this method can be applied to a time evolution study with

high harmonic generation (HHG) laser and X-ray free electron laser (XFEL) in the

future.
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