
学位論文

Investigation of Quantum Critical Phenomena
in Quasi-one-dimensional Magnets

by Low-temperature Magnetization and Specific-heat
Measurements

(極低温磁化・比熱測定で探る擬一次元磁性体の量子臨界現象)

平成28年12月博士（理学）申請

東京大学大学院理学系研究科
物理学専攻

河野　洋平



Abstract

This dissertation presents an experimental study of quantum critical phenomena at magnetic-
field-induced quantum critical points (QCPs) in three (quasi-)one-dimensional (1D) quantum
magnets by means of dc magnetization and specific-heat measurements at low temperatures.
This dissertation covers three related topics (Chapters 3-5), as well as the background theory
behind the experimental results (Chapter 1).

Experimental details used in the present work are described in Chapter 2. Dc magnetiza-
tion measurements were performed by a Faraday-force technique. After an explanation of the
principle of the method, an attempt to improve the sensitivity of the measurements, which
was essential for the present work, is described. Specific-heat measurements were performed
by a standard quasi-adiabatic heat-pulse method and a relaxation method.

In Chapter 3, the quantum criticality of the magnetization of Cu(C4H4N2)(NO3)2, or
CuPzN for short, near the saturation field Hs ∼ 14T is discussed on the basis of the phe-
nomenological theory for 1D free fermion gas. In our previous study, we proved that CuPzN
is a practically perfect 1D spin-1/2 Heisenberg antiferromagnet by comparison of our mag-
netization data at the base temperature of 80mK with numerical calculations and the phe-
nomenological theory. In this dissertation, we improve the cooling efficiency of the samples in
the dilution refrigerator and achieve magnetization measurements at the lowest temperature
of 39mK, which is comparable to the energy scale of the interchain interactions of CuPzN
J ′ ∼ 0.046K. Much better agreement of the magnetization curve with well-known Bethe
ansatz calculations at 0K is obtained at 39mK, implying that the interchain interactions
are irrelevant near Hs even at this temperature. Applying a universal relation derived from
1D free fermion theory, all the magnetization curve near Hs in the temperature range from
39mK to 350mK are well scaled into a single curve. A small deviation of the curve from the
theoretical prediction would be attributed to an effect of the repulsive interaction between the
fermions. These facts confirm the strong one dimensionality of CuPzN and establishes the
universality of the phenomenological theory for 1D free fermion gas near Hs in real magnets.

Chapters 4 and 5 deal with the critical exponent ν of the 3D ordering temperature near
the critical field Hc, T ∝ |Hc(T )−Hc(0)|ν . The compounds we focused on are spin-1/2
ferromagnetic-leg (FM-leg) ladders, in which leg interactions Jleg are ferromagnetic and rung
interactions Jrung are antiferromagnetic. These new types of ladder compounds have been
synthesized recently. We precisely determine the phase boundaries of two spin-1/2 FM-leg
ladder compounds, 3-Br-4-F-V [3-(3-bromo-4-fluorophenyl)-1,5-diphenylverdazyl] and 3-I-V
[3-(3-iodophenyl)-1,5-diphenylverdazyl], which consist of verdazyl-radical-based molecules,
from temperature dependences of the magnetization (M(T )) and the specific heat (C(T )).
The obtained critical exponents ν are discussed in the light of Bose-Einstein condensation



(BEC) universality and quasi-one dimensionality.
3-Br-4-F-V is a strong-rung type (|Jrung/Jleg| > 1) FM-leg ladder and has two field-

induced QCPs: the lower critical field Hc1 ∼ 5T, where a spin gap is destroyed, and the
saturation field Hc2 ∼ 9T. We demonstrate that a crossover temperature can be determined
from the broad peaks and dips in M(T ), and it moves in proportion to the magnetic field
near the QCPs. This behavior could arise from the quasi-one dimensionality of 3-Br-4-
F-V. A systematic change of the 3D ordering temperatures Tc is defined from anomalies
in the temperature derivative of χ(T ) = M(T )/H, dχ(T )/dT , and C(T ). Anomalies in
d(Tχ(T ))/dT are also discussed to confirm that the difference of the definitions of Tc does
not affect the critical exponent ν. The critical exponents ν obtained from a temperature-
window technique are in good agreement with the three-dimensional (3D) BEC universality,
ν = 2/3, near both of the QCPs in the limit T → 0. No sample dependence is observed
for the critical exponents. These results have proven that the verdazyl-radical-based FM-leg
ladders are promising as a new model system to study BEC physics.

By contrast, 3-I-V is a strong-leg type (|Jrung/Jleg| < 1) FM-leg ladder antiferromagnet
(TN = 1.4 K) and has only one field-induced QCP, the saturation field Hc ∼ 5.5T. In
a preceding study, a nontrivial phase was reported to exist near Hc2 on the basis of the
magnetization (M(H)) and the specific heat (C(H)) measurements. We firstly reexamine
this nontrivial phase near Hc2. The second-order field derivative of M(H), d2M/d2H, shows
a peak indicating the saturation and a shoulder-like anomaly, but C(H) shows only a single
sharp peak, different from the previous report. We consider that the broad peak of C(H) in
the previous data stemmed not from double phase boundary but from a collapse of the sharp
peak due to sample inhomogeneity. The 3D ordering phase boundary is defined from cusp-
like anomalies in χ(T ) and peaks in C(T ). Anomalies in d(Tχ(T ))/dT and dχ(T )/dT are
also discussed to check whether the difference of the definitions of Tc would affect the critical
exponent ν. The critical exponent ν obtained from a sliding-window technique shows the
nontrivial critical exponent ν=1, different from the conventional 3D BEC exponent ν=2/3,
as slightly moving away from the QCP. The ν=1 region is common to all the definitions of Tc.
The nontrivial critical exponent could be attributed to the 1D nature of the strong-leg-type
ferromagnetic-leg ladder and the frustrations of the intra- and inter-ladder interactions.

The difference of the critical exponents in the FM-leg ladder compounds derived from
low dimensionality and frustration would provide novel insight into BEC physics beyond the
conventional 3D BEC universality in other quasi-1D quantum magnets.
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Chapter 1

Introduction

1.1 Introduction of Quantum Critical Phenomenon

Quantum criticality has been an attractive concept in condensed matter physics because
it provides various types of universal behavior of observables in the vicinity of the phase
transitions in quantum magnets. When a phase transition is induced by external parameters,
e.g., magnetic field, pressure, etc. at zero temperature and is second order or continuous, it is
called a quantum phase transition (QPT). Then, the point at which QPT occurs is a quantum
critical point (QCP) [1]. At a QCP, quantum fluctuation is a main cause of the anomalous
behavior of observables such as specific heat, magnetic susceptibility, and correlation function;
it is therefore referred to as quantum critical phenomenon. Those observables show, for
example, characteristic power laws in the temperature dependences near a QCP.

Quantum fluctuation is brought about by the fact that quantum-mechanical operators are
not commutative, being different from classical ones. For example, let us consider the spin
state in which nearest-neighbor spins are anti-parallel along z axis as shown in Fig. 1.1. This
state, called Néel state, is a classical ground state (GS) of two-dimensional (2D) square-lattice
antiferromagnets [2]. When a local Heisenberg (isotropic) Hamiltonian, which describes the
antiferromagnetic (AFM) interaction (J > 0) between a and b site, is defined as

JSa · Sb = Sz
aS

z
b +

1

2

(
S+
a S

−
b + S−

a S
+
b

)
, (1.1)

operation of S−
a S

+
b to the GS generates a mixture of the spin state as indicated by blue arrows

in Figure 1.1. This means that the Néel state is no longer a true GS because of quantum
fluctuation.

1.2 Quantum Critical Phenomenon in One-

dimensional Quantum Spin Systems

1.2.1 Spin-1/2 One-dimensional Heisenberg Antiferromagnet

One-dimensional (1D) quantum spin system is one of remarkable examples in which strong
quantum fluctuations manifest themselves. As a typical model Hamiltonian, we consider a

1



Chapter 1. Introduction

a b

z
Sa

– Sb
+

J

Figure 1.1: Schematic picture of a Néel state on a 2D square-lattice antiferromagnet.

spin-1/2 1D Heisenberg antiferromagnet in a magnetic field

H = J
∑
i

Si · Si+1 − h
∑
i

Sz
i , (1.2)

where J > 0 is an antiferromagnetic coupling constant, Si is a spin operator, and h is a
normalized magnetic field along z axis, h = gµBH (g is a g-factor along z axis, and µB is
the Bohr magneton) [3]. Applying the Jordan-Wigner transformation

S+
i → c†ie

iπ
∑i−1

j=−∞ c†jcj (1.3)

Sz
i = c†ici − 1/2 (1.4)

and a canonical transformation
ci → (−1)ici (1.5)

to the Hamiltonian (1.2), it can be rewritten as

H = −J

2

∑
i

[c†i+1ci + h.c.] + J
∑
i

(c†i+1ci+1 −
1

2
)(c†ici −

1

2
)− h

∑
i

(c†ici −
1

2
), (1.6)

where c†i and ci are creation and annihilation operators of fermion, respectively. Eq. (1.6)
means that the spin-1/2 1D Heisenberg antiferromagnet can be described as spinless fermions
with a repulsive interaction J . In this picture, the magnetic field h acts as a chemical
potential, and the magnetization m = 〈Sz

i 〉 is the particle number of fermions 〈ni〉 = 〈c†ici〉.

1.2.2 Tomonaga-Luttinger Liquid

Generally speaking, quantum many-body problem is difficult to be solved, but 1D systems
are known to be exactly solved in many cases using so-called Bethe ansatz [4–7]. In the case
of Eq. (1.6), the GS has no degeneracy and no magnetic ordering, known as a Tomonaga-
Luttinger liquid (TLL) [3, 8, 9]. A spin correlation function of the GS is described as

〈Sα(r)Sα(0)〉 → (−1)r
1

r
log1/2(r) (r → ∞, α = x, y, z), (1.7)

2



Chapter 1. Introduction

that is, it indicates a power-law decay and a logarithmic dependence for the large distance
r. This implies that the GS by itself is a quantum critical state. An elementary excitation
from the GS is called spinon, and the excitation in the 1D case is always a pair of spinons
and non-local. Therefore, it forms a continuous spectrum as is shown in Fig. 1.2 [10]

vs sin q ≤ ω ≤ 2vs sin
q

2
, (1.8)

where vs = πJ/2 is a spinon velocity. These properties of the TLL reflects the strong
quantum effect of the 1D quantum spin system, and TLL can be seen in many kinds of 1D
systems [2, 3].

Figure 1.2: Two spinon continuum (the region between two solid lines). Closed symbols mean

singlet ground states, and open symbols mean triplet excitations calculated on a system size N =

10 [10]

1.2.3 Field-induced Quantum Phase Transition in a Spin-1/2 1D
Heisenberg Antiferromagnet

In a finite magnetic field, the GS of the Hamiltonian (1.2) remains to be a TLL until the
saturation field Hs = 2J/gµB [3, 9]. Above Hs, all spins are polarized along the magnetic
field, i.e., the GS is a field-induced ferromagnetic state. When the field-induced ferromagnetic
state is a vacuum, an elementary excitation slightly below Hs (h

<∼ hs) is considered as a
Sz = −1 magnon as shown in Fig. 1.3.

3



Chapter 1. Introduction

This magnon is a so-called hard-core boson, only one particle of which can exist on
the same site. In the vicinity of Hs, dilute hard-core bosons can be mapped onto free
fermion gas with a chemical potential µ = hs−h [11, 12]. Using Fermi distribution function
f(x) = 1/[1+ eβ(x−µ)] and assuming the dispersion ε ∼ h̄2k2/2m, the magnetization M near
Hs can thus be described as

M

L
=

Ms

L
+

√
2m

π2h̄2β

∫ ∞

0

dt

et2−β(hs−h) + 1
, (1.9)

where L is a system size, Ms = L/2 is the saturation magnetization, m is an effective mass
of the magnons, and β = 1/kBT [13, 14]. Eq. (1.9) implies a power-law of the temperature
dependence of the magnetization M ∼ T 1/2 at h = hs. In this point of view, H = Hs can
be regarded as a field-induced QCP in a spin-1/2 1D Heisenberg antiferromagnet.

In our previous paper [15], we have reported that temperature dependence of the mag-
netization at the saturation field Hs (∼ 14T) on Cu(C4H4N2)(NO3)2, or CuPzN for short, is
in excellent accordance with Eq. (1.9) down to the lowest temperature of 80mK. Then we
claimed that CuPzN is a practically perfect one-dimensional spin-1/2 Heisenberg antiferro-
magnet.

In this dissertation, we perform the magnetization measurements of CuPzN at the lowest
temperature of 39mK as described in Chapter 3. The temperature is comparable to the
energy scale of the interchain interactions J ′ ∼ 0.046K, estimated by the zero-field muon-
spin-relaxation experiment [16], so that an effect of J ′ near Hs can be discussed. We also
discuss scaling behavior of the magnetization curve of CuPzN near Hs at several tempera-
tures, which is derived from Eq. (1.9).

h hs

Sz = -1 

h > hs

hz

Figure 1.3: Magnon excitation from the field-induced ferromagnetic state.
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Chapter 1. Introduction

1.3 Bose-Einstein Condensation in Quasi-1D Quantum

Magnets

1.3.1 Correspondence of Quantum Spins to Bosons in Higher Di-
mension

In a real magnet, spin couplings are more or less three dimensional (3D). Unlike the case of
1D, quantum spins in 3D cannot necessarily be written by fermions with the Jordan-Wigner
transformation since Eq. (1.3) is non-local, i.e., it depends on the path of spin sites. In
1956, Matsubara and Matsuda [17] introduced a transformation between S = 1/2 spins and
hard-core bosons

S+
i = b†i , S−

i = bi, Sz
i = b†ibi − 1/2, (1.10)

where b†i and bi, respectively, are creation and annihilation operators of boson (Matsubara-
Matsuda transformation), in order to support Bose-Einstein condensation (BEC) theories of
liquid 4He. The Matsubara-Matsuda transformation (1.10) is local, so that it can be applied
to many kinds of quantum spin systems even in higher dimension. This theory has then
provided a way to understand a field-induced QPT of quantum magnets in the light of BEC
of such bosons.

1.3.2 General Properties of a BEC QCP in Quantum Magnets

For the realization of a BEC in quantum magnets—it is often called as “a BEC of magnons”,
spin systems are needed to consist of two-level states. Uniaxial [U(1)] symmetry of the spin
Hamiltonian is also required in order to satisfy a number conservation of bosons, i.e., the
longitudinal magnetization Mz = 〈Sz

i 〉 should commute with the spin Hamiltonian [18, 19].
A promising realization of this situation is a weakly-coupled spin-1/2 dimer system [18–20].
Spin-1/2 dimer is an antiferromagnetically coupled pair of spins, and the ground state is a
spin singlet |s〉 = (|↑↓〉− |↓↑〉)/

√
2 with a zero-field spin gap. In a magnetic field, spin-triplet

states of each dimer are split by the Zeeman effect as is shown in Fig. 1.4. The lowest branch
|t+〉 degenerates into the spin singlet state at the critical field h = hc, which depends on

the antiferromagnetic coupling, and then the spin gap is destroyed. At h
>∼ hc, the low-

energy excitation in the two-level spin states |s〉 and |t+〉 is a Sz = 1 magnon, which can be
considered as a hard-core boson introduced in Eq. (1.10). In a similar manner, many of spin
systems with two-level spin states are associated with hard-core bosons.

Under these conditions, a spontaneous breaking of the U(1) symmetry at a field-induced
QCP becomes a BEC QCP. Generally, the BEC QCP can be observed at a QPT from a spin
gapped or saturated state to a 3D XY-like AFM ordering state [18]. Then, the longitudinal
magnetization 〈Sz

i 〉 and the ordered moment 〈mx ± imy〉 corresponds to a total number of
bosons and condensed bosons, respectively, and can be controlled by the magnetic field H
that acts as a chemical potential µ. At the 3D BEC QCP, the phase boundary Hc(T ) in the
limit of zero temperature has been predicted to show the power-law dependence

T ∝ |Hc(T )−Hc(0)|ν , (1.11)

5



Chapter 1. Introduction

Figure 1.4: Magnetic-field dependence of the energy of spin singlet and triplet states on a spin-1/2

dimer.

where Hc(0) = Hc is a critical magnetic field and ν = 2/3 is a critical exponent at three
dimension [21–24].

Of course there always exist U(1) symmetry-breaking interactions such as Dzyaloshinskii-
Moriya interactions [25] in a real magnet, so that the concept of a BEC of magnons is an ap-
proximation. However, as reviewed by Zapf et al. [18], critical properties of the field-induced
QCPs in a lot of real quantum magnets can be understood by the 3D BEC universality be-
cause such interactions in many cases become relevant only at very low temperatures. The
spin-1/2 coupled dimer compound TlCuCl3 has been one of the most frequently referred
materials in the light of the 3D BEC universality [21, 26, 27]. A 3D ordering phase bound-
ary near the lower critical field Hc1 was determined from magnetization measurements as
shown in Fig. 1.5(a), and it has been claimed that the critical exponent φ (φ corresponds
to 1/ν) approaches the value φ=3/2 as reducing the maximum temperature of the power-
law fitting range to ∼ 2K (Fig. 1.5(b)) [26, 27]. The spin-1/2 coupled dimer BaCuSi2O6

is also a remarkable example for the 3D BEC universality [28, 29]. A temperature-window
technique (detail of this technique will be described in Chapter 4, Section 4.3.4) was ap-
plied to a H-T phase diagram near Hc1 determined from several experiments (Fig. 1.6(a)).
The obtained critical exponent ν approaches the value ν=2/3 as reducing the maximum
temperature of the power-law fitting range to 0.61K, supported by quantum Monte-Calro
simulations (Fig. 1.6(a)) [28]. As indicated by these examples, the temperature range for the
power-law fitting is important to obtain a reasonable critical exponent, which has also been
predicted by the numerical simulations for 3D BEC in quantum magnets [22, 23].

6



Chapter 1. Introduction

(a) H-T phase diagram of TlCuCl3 de-
termined from several magnetization mea-
surements. Solid curve shows a result of
Hartree-Fock calculation.

(b) The critical exponent φ obtained
from the fitting of the power-law function
|Hc1(T )−Hc1(0)| ∝ T φ with the phase
boundary in Fig. 1.5(a). The fitting has
been performed in the temperature range
between 77mK and Tmax, with reducing
Tmax.

Figure 1.5: Quantum criticality of the H-T phase diagram near the lower critical field Hc1 in the

spin-1/2 coupled dimer TlCuCl3 [27].

(a) H-T phase diagram of BaCuSi2O6 deter-
mined from several measurements and quan-
tum Monte-Calro simulations.

(b) The critical exponent ν obtained from the
temperature-window technique for power-law
fitting with the phase boundary near Hc1 in
Fig. 1.6(a). ν is the same exponent as defined
in Eq. (1.11). tw is the maximum temperature
of the fitting range scaled by 3.7K.

Figure 1.6: Quantum criticality of the H-T phase diagram near the lower critical field Hc1 in the

spin-1/2 coupled dimer BaCuSi2O6 [28].
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Chapter 1. Introduction

1.3.3 Effect of Low Dimensionality and Frustration beyond the 3D
BEC Universality

To investigate novel BEC physics beyond the conventional 3D BEC universality in a real mag-
net, the effects of low dimensionality as well as a frustration in spin couplings have attracted
much attention. For example, a “dimensional reduction” of the critical exponent ν has been
observed on the spin-1/2 coupled dimer BaCuSi2O6; there exists a crossover from ν=2/3 to
1 as the lower QCP, Hc1(0), is approached [29]. As a possible cause of the crossover, it has
been proposed that a geometrical frustration cancels out the inter-layer AFM interactions
between the square-lattice planes consisting of spin dimers, so that the system effectively
becomes quasi-two dimensional near the QCP [29–32]. Another interesting example, which
is related to the materials treated in this dissertation, is the theoretical study for quasi-one-
dimensional ferromagnets with weak AFM couplings; a crossover of the critical exponent ν
from ν=2/3 to 1 is predicted to occur as moving away from the saturation [33], being the
opposite to the above example. There are several other examples in which the deviation of
the critical exponent from the conventional 3D BEC universality could be attributed to low
dimensionality and frustration [34–36].

1.3.4 Field-induced QCPs in a Spin-1/2 Two-leg Ladder

Among quasi-low-dimensional quantum magnets, we now focus on a spin-1/2 two-leg ladder
as a quasi-1D magnet. The Hamiltonian of the system, in the simplest form, can be expressed
as

H = Jleg
∑
i,α

Si,α · Si+1,α + Jrung
∑
i

Si,1 · Si,2

−gµBH
∑
i,α

Sz
i,α, (1.12)

where Jleg is the interaction along each leg (α = 1, 2), Jrung is the rung interaction between
the legs. The most frequently studied case is “AFM-AFM” (Jleg, Jrung > 0), to which
the compounds (Cu7H10N)2CuBr2 (DIMPY) [37, 38] and (Cu5H12N)2CuBr4 (BPCB) [39, 40]
correspond. In this case, the ground state is a singlet state (S = 0), and there always
exists a spin gap [41]. With increasing the magnetic field, the lowest branch of triplet states
(Sz = 1) degenerates into the singlet state at Hc1, and Sz = 1 bosons (triplons) are excited,
analogous to a spin dimer in Fig. 1.4. Consequently, a TLL state (Section 1.2.2) appears in
the gapless phase between Hc1 and Hc2 due to the one dimensionality [3, 42]. If there exist
3D interactions between the ladders—as usual in real magnets, the triplons can condense into
the 3D BEC state [42]. Typical H-T phase diagram of the spin ladder is shown in Fig. 1.7.
For example, in DIMPY, the temperature dependence of the magnetization near Hc1 has
shown a broad minimum indicating a crossover to low-temperature TLL region above its
3D ordering temperature [37] (Fig. 1.8(a) and Fig. 1.8(b)). Such minimum in (quasi-)1D
gapped spin systems has been predicted theoretically [14, 43]. The 3D ordering temperature
of DIMPY has been discussed from a viewpoint of 3D BEC, but only a few data points were
compared with the power law T ∝ (Hc1(T )−Hc1(0))

2/3 [38] (Fig. 1.8(c)).
Typically, a spin ladder compound which has critical fields easily accessible by a static

magnetic field has a low 3D ordering temperature less than a hundred millikelvin, e.g.,

8



Chapter 1. Introduction

BPCB [40], so that it it difficult to extract the critical exponent of the phase boundary.
Thus, there could exist few experimental tests for the 3D BEC exponent in spin ladder com-
pounds. The critical exponents of the 3D ordering phase boundary in spin ladder compounds
near both of the critical fields, Hc1 and Hc2, have remained to be examined.

T

H

TLL

Hc1 Hc2

QCP QCP

3D ordering

Jleg

Jrung

Figure 1.7: Left: schematic picture of a two-leg ladder. Right: schematic picture of typical H-T

phase diagram of a spin-1/2 two-leg ladder. Dashed and solid lines denote a crossover and a phase

transition, respectively.

Figure 1.8: Left [(a) and (b)]: temperature dependence of the magnetization of DIMPY [37]. Solid

lines are quantum Monte Carlo simulations for an S=1/2 two-leg ladder. (a) 3T, 4T, 4.5T, and

5.5T, (b) 7.5T and 9T from bottom to top. Right [(c)]: 3D ordering phase boundary of DIMPY

determined from several measurements [38]. Solid line is fitting of the boundary near Hc1 with the

power law T ∝ (Hc1(T )−Hc1(0))
2/3.

9



Chapter 1. Introduction

1.3.5 Investigation of BEC Universality in Spin-1/2
Ferromagnetic-leg Ladder Compounds

Recently, spin-1/2 ferromagnetic-leg (FM-leg) ladders (Jleg < 0, Jrung > 0) have been
synthesized for the first time, using verdazyl radical molecules [44]. A verdazyl radical carries
an S = 1/2 quantum spin, and spin couplings between molecules are typically isotropic [44].
Theoretically, FM-leg ladders with an isotropic leg interaction have a spin gap, which stems
from the rung-singlet state [45–47], and the ground state between Hc1 and Hc2 has been
predicted to be a TLL [48] as well as the “AFM-AFM” case (Fig. 1.9). A 3D BEC state
is thus expected to be induced in the intermediate field range by weak 3D interactions, so
that the phase diagram would be similar to Fig. 1.7. An advantage of the FM-leg ladders
over the AFM-AFM ones is that they provide more opportunities to access the upper QCP
at Hc2; because Hc2 is insensitive to FM interactions [33], the FM-leg case gives smaller Hc2

when the intraladder couplings are of the same order of magnitude. However, there exist
few studies for an effect of weak 3D interactions and the field-induced QCPs in the FM-leg
ladders because of a lack of model compounds.

The three FM-leg ladders synthesized to date [44], 3-Cl-4-F-V [3-(3-chloro-
4-fluorophenyl)-1,5-diphenylverdazyl] [49], 3-Br-4-F-V [3-(3-bromo-4-fluorophenyl)-1,5-
diphenylverdazyl] [50], and 3-I-V [3-(3-iodophenyl)-1,5-diphenylverdazyl] [51], have shown
a variety of H-T phase diagrams different from Fig. 1.7. It could be attributed to the dif-
ferences of intra- and inter-ladder couplings and their frustration, but detailed properties of
the ordering phases remain to be clarified.

In this dissertation, we investigate the critical exponent ν of the phase boundaries on two
of the FM-leg ladder compounds, 3-Br-4-F-V (Chapter 4) and 3-I-V (Chapter 5). Previous
studies for these compounds are described in each chapter. The obtained critical exponents
are discussed in the light of BEC universality introduced as above and quasi-one dimension-
ality.

Figure 1.9: Theoretical phase diagrams for a spin-1/2 FM-leg ladder [48]. Left: phase diagram

of the ground state with intraleg exchange anisotropy ∆ and isotropic rung interaction J⊥. The

FM-leg case described in the text corresponds to ∆=1 and J⊥ > 0. Right: phase diagram for

a spin-1/2 FM-leg ladder with ∆=1 and J⊥ > 0 in a uniform magnetic field. Solid lines denote

second order phase transitions. Spin Liquid indicates TLL region.
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Chapter 2

Experimental Methods

2.1 Dc Magnetization Measurements

2.1.1 “Capacitance-Faraday method”

Dc magnetization measurements in this thesis were performed by means of “Capacitance-
Faraday method”. When a specimen of magnetization M is placed in an inhomogeneous
magnetic field H , it will experience a force

F = (M · ∇)H . (2.1)

We can get the magnetization M of the specimen by measuring this force, and this method
has been known as ‘‘Faraday method’’. In Sakakibara lab at ISSP, the inhomogeneous mag-
netic field H is generated by a specially-designed superconducting magnet that has gradient
coils in addition to a main solenoid coil, and the force F is detected by a transducer made
of a parallel-plate capacitor. Hereafter, we refer to this method as ‘‘capacitance-Faraday
method’’.

Figure 2.1 shows a schematic picture of the superconducting magnet adopted in the
capacitance-Faraday method; the main coil applies a uniform magnetic field to the specimen,
and the gradient coils, which consist of two series-oppositely wound coils, generate a field
gradient at the sample position. As shown in the right side of Fig. 2.1, the sum of the
magnetic field from each of the gradient coils, Hgrad, is canceled out at the center of the main
coil (z=0), but the field gradient G = dzHgrad|z=0 is maximized. This configuration enables
us to control the main magnetic field Hmain and its gradient G independently, by using two
independent power supplies. When a specimen is placed at the center z=0, it will thus be
subject to a force

F = MG, (2.2)

assuming that the longitudinal magnetization of the specimenMz ∼ |M | = M is sufficiently
larger than the transverse component Mxy [52].

Figure 2.2 shows the capacitive transducer, which transforms the force F into a variation
of the capacitance C. The magnetometer has two electrodes; fixed electrode is isolated from
the other part, and a movable electrode is attached at the bottom of a pole brace hung by
the crossed wires so that it can move vertically in proportion to an applied force. The device
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F

M

H G

H(0) = Hmain

z

0
Hmain+Hgrad

G(0) = dzHgrad|z=0

Gradient coil

Main coil

Figure 2.1: Schematic picture of a superconducting magnet used in the capacitance-Faraday

method. Hmain is the magnetic field from the main coil and Hgrad is that from the gradient

coil.

(a) Schematic picture of a capacitive
transducer in section.

(b) The capacitive
transducer using in
magnetization mea-
surements of CuPzN
(Chapter 3).

Figure 2.2: The transducer for the capacitance-Faraday method.

thus works as a kind of balance. A specimen is mounted on the top of the pole brace and
thermally linked by silver foil with a refrigerator.

Magnetization measurements by the capacitance-Faraday method are done by the follow-
ing two steps.

(i) Measure the capacitance with no gradient field, C(G = 0, H, T ) (Fig. 2.3(a)(i)). It
includes the force components other than the magnetization (2.2), such as the gravita-
tional weight and a magnetic torque of the specimen.

(ii) Measure the capacitance with a finite gradient field, C(G 6= 0, H, T ) (Fig. 2.3(a)(ii)).
The magnetic force (Eq. (2.2)), which is proportional to a change in the capacitor gap d,
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Chapter 2. Experimental Methods

can be detected as a change in C. Note that the output also includes the magnetization
of the movable electrode.

Using these measured data, a change of the gap ∆d, which depends on the magnetization
of the specimen M and the movable-electrode background Mback, can be expressed as

∆d = ε0S

(
1

C(G = 0, H, T )
− 1

C(G 6= 0, H, T )

)
, (2.3)

where ε0 is the permittivity of vacuum, and S is the area of the movable electrode. When
the spring constant of the wires is defined as k, equilibrium of the forces yields

(M +Mback)G = k∆d. (2.4)

As a result, the magnetization of the specimen can be calculated from

M =
ε0kS

G

(
1

C(G = 0, H, T )
− 1

C(G 6= 0, H, T )

)
−Mback. (2.5)

Mback can be obtained by an independent blank measurement. The spring constant k, which
is of order 1×105 dyn/cm, is estimated by a dc bias method; an application of a dc bias voltage
of Vb = 40−50 V induces an electrostatic force C2V 2

b /(2ε0S) to the capacitor electrodes, and
the gap changes. Further calibration of the magnetization value can be done by comparing
the measured data at a certain temperature, e.g., the liquid-helium temperature 4.2K, with
those obtained by a reference magnetometer such as MPMS, a commercial superconducting
quantum interference device (SQUID) magnetometer. Fig. 2.3(b) shows examples of the raw
capacitance data obtained by this method (G = 5 T/m) (Chapter 3).

Compared with the usual dc-magnetization-measurement method using SQUID, this
method is more suitable for low-temperature measurements since the capacitance measure-
ment produces no heat. Moreover, the capacitance measurement is unaffected by a magnetic

(a) Variation of the gap of electrodes in the
capacitance transducer with (i) zero and (ii) a
finite gradient of the magnetic field.

3.74

3.76

3.78

3.80

3.82

3.84

3.86

0 5 10 15

C
 (

p
F

)

µ
0
H (T)

CuPzN
80 mK
H || b

C (G = 0 T/m)

C (G = 5 T/m)

(b) Raw capacitance data of CuPzN at 80mK
(Chapter 3).

Figure 2.3: Procedure for the capacitance-Faraday method.
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field, so that high-sensitive magnetization measurements can be done even at very high fields.
In fact, the M(H) measurements at 39 mK in 14.5 T has been achieved on CuPzN in this
dissertation (Chapter 3).

2.1.2 Characteristics of the Capacitance Transducers and Devel-
opment of a New Capacitor for Quantum Magnets

We compare characteristics of two types of the capacitance transducers used mainly in our
laboratory and a new capacitor made for the measurement of quantum magnets with small
magnetization values.

Stycast Type

The Stycast-type capacitor has a movable electrode made from a silver-spattered quartz
plate (7 mm diameter and 14 mg mass) and a pole brace made from Stycast1266 [53]. These
materials are all diamagnetic and almost free from a magnetic impurity. It gives a simple
background Mback/H ∼ −1 × 10−8 emu, almost independent of the temperature as shown
in Fig. 2.4(a). The Stycast-type capacitor is thus suitable for measurements of samples with
relatively large magnetization values. If one needs to detect a magnetization change of order
10−4 emu in a field of 10 T, using this type of a capacitor is inappropriate because the
diamagnetic background is 10 times larger.

Aluminum Type

The aluminum-type capacitor has a pole brace made from aluminum doped with a small
amount of silicon, instead of Stycast1266 [54]. Since aluminum (Al) is Pauli paramagnetic,
it can compensate the diamagnetic component from other stuffs of the magnetometer, to
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0.0
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Stycast type (100 mK)
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1
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4
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m
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)

µ
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(a) Background Mback of the Stycast-type capac-
itor at 100mK.
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(b) Background Mback of the Al-type capac-
itor at 280mK (open symbols) and Mg-type
capacitor at 130mK (closed symbols).

Figure 2.4: Magnetic-field dependence of background of the capacitors.
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the value as low as Mback/H ∼ 1 × 10−9 emu. Thus, the Al-type capacitor can be used
for a specimen with much smaller magnetization. On the other hand, since 27Al has a
relatively large nuclear magnetic moment (Mnuc=+3.6415µN per atom [55]) in addition
to some amount of magnetic impurities, Mback includes a component that is temperature
dependent. In addition, Al shows superconductivity below ∼1K, although its effect is limited
only to very low fields below 100Oe. Typical background Mback data are shown in Fig. 2.4(b)
and Fig. 2.6.

Magnesium Type —The New Capacitor—

In order to overcome two issues of the Al type—nuclear magnetic moment and superconduc-
tivity, I have developed a new capacitance transducer using magnesium (Mg) metal which
is also Pauli paramagnetic. 25Mg also has a nuclear magnetic moment (Mnuc=−0.85545µN

per atom [55]), but its natural abundance ratio is only 10%, much less than that of 27Al
(100% [55]). Moreover, Mg does not show superconductivity. These features of Mg can thus
solve the problems with Al.

In this new capacitor, Mg of 6N purity is used as a sample stage to compensate diamag-
netic components of a movable electrode and a pole brace made from Stycast1266 (Fig. 2.5).
In order to suppress unfavorable de Haas-van Alphen oscillations, a small amount (2 %) of Al
is melted into Mg ingot (a snapshot of the obtained alloy is shown in the inset of Fig. 2.5(b)).
As can be seen in Fig. 2.4(b), this new Mg-type capacitor has smaller magnetic impurity
component than the Al type, and its linear component is positive and small at above the
fields where the impurity component is saturated. In Fig. 2.6, the temperature dependence
of the magnetization in a field of 5T for the Al type and Mg type are compared. The upturn
at low temperatures arising from the nuclear component is suppressed in the background
of the Mg type. We confirmed that the Mg-type capacitor actually achieves a substantial
improvement of the sensitivity over the previous types of the capacitors.

(a) Schematic picture of the movable part of
the Mg-type capacitor.

(b) Snapshot of the Mg-type ca-
pacitor. Inset: Mg-Al alloy used
as the stage of the capacitor.

Figure 2.5: Structure of the Mg-type capacitor.
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Figure 2.6: Temperature dependence of the background Mback of the Al-type capacitor (open

symbols) and Mg-type capacitor (closed symbols) at 5T.

2.2 Specific-heat Measurements

Specific-heat measurements in this thesis were mainly performed by means of the standard
quasi-adiabatic heat-pulse method, or by the relaxation method [56]. Fig. 2.7 shows the
schematic picture of the specific-heat measurements. Sample system contains a specimen
and an addenda that consists of a stage, heater (resistivity: Rh), and thermometer. The
system is connected to a thermal bath by a weakly-coupled thermal link (thermal resistivity:
RT = 1/κ). The bath temperature T = T0 is controlled to be constant by a bath heater
and a refrigerator. The specific heat C of the sample system contains that from the addenda
Cadd, but fortunately in the present measurements, Cadd is small enough compared with that
of the specimen, and did not affect the definitions of transition temperatures discussed in the
chapters below.

Specific heat C is defined from an increase of the temperature δT when a heat δ′Q is
quasi-statically given to a system,

C = lim
δT→0

δ′Q

δT
. (2.6)

Therefore, the simplest and precise form of the specific-heat measurement is an adiabatic
method in which C = ∆Q/∆T is measured from the increase of the temperature ∆T with
application of a heat ∆Q on a thermally-isolated system (RT = ∞). However, a perfectly
adiabatic condition is generally hard to be achieved in a lab, especially at low temperatures.

Let us consider that the sample system in Fig. 2.7 is weakly coupled with the thermal
bath, i.e., the thermal conductivity κ is finite. When P (t) is the heat transferred to the
system per unit time, the heat equation can be written as

P (t)− κ [T (t)− T0] = C
dT

dt
, (2.7)
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Stage

Heater

T = T(t)

Thermometer

Rh

Specimen

Bath

T = T0

Thermal Link

RT = 1/κ

Sample System
(Specific heat: C)

Figure 2.7: Schematic picture of setting of the specific-heat measurements (see text).

where T (t) and T0 are the sample and the bath temperature, respectively, assuming that
C and κ are constants within a narrow temperature window of interest. When P (t) is a
constant P0, it turns out that dT/dt → 0 as t → ∞, so that the heat resistivity 1/κ can be
estimated from

κ =
P0

T (∞)− T0

, (2.8)

where T (∞) is the saturation temperature. Considering the initial condition T (0) = T0 and
Eq. (2.8), the sample temperature of heating process Theat(t) can be derived from Eq. (2.7)
as

Theat(t) = T (∞)− [T (∞)− T0] exp(−t/τ), (2.9)

where the thermal-relaxation time τ = C/κ.
A quasi-adiabatic heat-pulse method is performed as described below. When a dc current

I0 is applied to the heater Rh in an interval 0 ≤ t ≤ t0 (heat pulse), the heat P0 = I2Rh per
unit time is given to the sample system as shown in the lower panel of Fig. 2.8 (∆Q = P0t0),
and the sample temperature increases as illustrated by the solid line in the upper panel of
Fig. 2.8. From Eq. (2.9), the increase of the temperature ∆T from T = T0 at t = t0 can be
described as

∆T = [T (∞)− T0][1− exp(−t0/τ)]. (2.10)

After t = t0, the sample temperature in the cooling process Tcool(t) is

Tcool(t) = T0 +∆T exp[−(t− t0)/τ ], (2.11)

which is derived from Eq. (2.7) with the conditions, P = 0, Tcool(t0) = T0 + ∆T , and
Tcool(∞) = T0. The integration of both sides of Eq. (2.7) in 0 ≤ t ≤ t0 yields∫ t0

0
{P (t)− κ [Theat(t)− T0]} dt = C

∫ t0

0

dT

dt
dt, (2.12)
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P0
Heater

Power
0

Temperature

Time

T0

0 tm t0

Figure 2.8: Time dependence of the sample temperature T (t) (upper panel) varies with the heat

pulse P0 in 0 ≤ t ≤ t0 from the heater (lower panel) (see text).

so that the specific heat C can be given as

C =
P0t0
∆T

τ

t0
[1− exp(−t0/τ)]. (2.13)

If the thermal isolation of the sample system is not well enough, the simple adiabatic form,
C = P0t0/∆T = ∆Q/∆T , would thus overestimate the specific heat C. However, in the
quasi-adiabatic method, re-definition of ∆T enables us to apply the adiabatic form even to
this case.

As one can seen in the left side of Eq. (2.12), C is determined from the area enclosed by
T (t) = T0, T (t) = Theat(t), and t = t0 (see Fig. 2.8). Therefore, when the time t = tm is
defined as the area enclosed by T (t) = T0, T (t) = Theat(t), and t = tm is equal to the one
enclosed by T (t) = Tcool(t), T (t) = Theat(t), and t = tm (denoted by shadow areas), the
instantaneous heating process at t = tm as illustrated by the dashed line yields the same
specific heat determined from Eq. (2.13) (solid line). Using t = tm, the specific heat C can
be re-defined as

C =
P0t0
∆T ′ =

P0t0
∆T exp[−(tm − t0)/τ ]

, (2.14)

where ∆T ′ = Tcool(tm)−T0. If t0 is short enough compared with τ , tm can be approximated
as tm ∼ t0/2. Thus, the quasi-adiabatic method enables us to estimate C precisely from
Eq. (2.14) because ∆T ′ can be determined from the extrapolation of the cooling curve T (t) =
Tcool(t) into t = tm.
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When C is small and the relaxation time τ becomes as short as a few seconds, the
extrapolation of the cooling curve often fails. In this case, a relaxation method is available.
Since the relaxation time τ can be estimated from the fittings of heating (cooling) curve with
Eq. (2.9) (Eq. (2.11)) and the thermal resistivity 1/κ can be estimated from Eq. (2.8) in
heating process, C can be calculated from the relation C = κτ in Eq. (2.9). Sensitivity of
the relaxation method may be a bit worse than that of the quasi-adiabatic method because
it contains the multiple fitting process.

2.3 Thermometer

As thermometers for the magnetization measurements, and for the bath and addenda of the
specific-heat measurements, we have used ruthenium-oxide thermometers (Model RO-600,
Scientific Instruments, Inc.). We calibrated these sensors by a calibrated ruthenium-oxide
thermometer (Type RuOx-B, Entropy, Inc.) from 30mK to 7K in zero magnetic field. In a
magnetic field, a universal batch-calibration curve for Model RO-600 has been applied, which
allows one to calibrate the thermometers with a temperature error of less than ±1.6% from
36mK to 4.2K in a field up to 16T [57].
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Chapter 3

Quantum Criticality and Scaling of
Magnetization in the Spin-1/2 1D
Heisenberg Antiferromagnet CuPzN

3.1 Introduction

3.1.1 Previous Studies of CuPzN

CuPzN has chains of S=1/2 Cu2+ which run along the crystallographic a axis [58, 59] as
one can see in Fig. 3.1. It has a relatively small intra-chain coupling of J =10.3K and a cor-
responding Hs of about 14T [59]. A zero-field muon-spin-relaxation experiment has detected
three-dimensional (3D) magnetic ordering at TN =0.107K, and the interchain coupling con-
stant J ′ has been estimated to be 0.046K [16]. Consistent with such a small J ′ relative to J ,
no anomaly indicative of the ordering has been found in the specific heat and the magneti-

Figure 3.1: Crystal structure of CuPzN. Spin-1/2 chains of Cu2+ run along the crystallographic a

axis.
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Antiferromagnet CuPzN
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Figure 3.2: Previous results of the magnetization measurements of CuPzN (preprint version of our

previous paper [15]). (a) Field dependence of the magnetization M (solid circles) and the differential

susceptibility dM/dH (solid squares) at 0.08K, along with the result of exact QTM calculations for

the 1D spin-1/2 HAF at 0.08K (open symbols). (b) Enlarged plot near Hs=13.97T. The dashed

line is a Bethe-anzatz result for T =0. In both panels, thin solid lines are guides to the eye. (c)

Comparison of M at 14T with the result of a QTM calculation for a 1D spin-1/2 HAF at Hs

(crosses). The solid line is the best fit of Eq. (3.1) with the coefficient A as a fitting parameter.

Obtained parameter A=0.230(1) is in good agreement with the given A in the text.

zation down to 0.05K, well below TN [60]. Because of these properties, CuPzN has provided
an ideal field for experimental tests of a spin-1/2 1D Heisenberg antiferromagnet.

In our previous paper [15], we demonstrated that our magnetization data of CuPzN at the
base temperature of 80mK are well reproduced by the exact calculation of the spin-1/2 1D
Heisenberg model employing the quantum transfer-matrix (QTM) method [61, 62], using the
parameters, J =10.8(1)K and g=2.30(1) (Fig. 3.2(a), (b)). Moreover, we have proved for the
first time that the observed quantum critical temperature dependence of the magnetization at
the saturation field Hs = 13.97T is actually be described by the phenomenological relation

Ms −M = AgµB

√
kBT/J (h = hs), (3.1)

where A =0.241 32 (Fig. 3.2(c)). This expression can be derived from the free fermion
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description Eq. (1.9) [14]

M

L
=

Ms

L
+

√
2m

π2h̄2β

∫ ∞

0

dt

et2−β(hs−h) + 1
(3.2)

(re-shown, see Chapter 1, Section 1.2.3, p. 3), with m= h̄2/J . These findings demonstrate
that CuPzN is a practically perfect one-dimensional spin-1/2 Heisenberg antiferromagnet.

3.1.2 Motivation of the Present Study

It may be surprising that the magnetization of the results of CuPzN follows the 1D theory
down to such a low temperature since one expects that the interchain coupling J ′ would
affect the behavior of the magnetization. For example, the modified Bethe-ansatz results
incorporating interchain couplings by a mean-field approximation predicts a rounding of the
magnetization curve near the saturation field [63]. If it is applied in the case of CuPzN,
it could raise the saturation field Hs by about 4J ′/(gµB)= 0.12T and cause M to become
rounded over a certain field interval, of a comparable size, below the raisedHs. In the previous
paper, we have attributed the absence of the additional rounding of the magnetization curve
to the competition between the antiferromagnetic and ferromagnetic J ′, and their geometrical
frustration, predicted by first-principles calculations of exchange interactions [64].

However, our previous measurements have been performed only at the base temperature
of 80mK, which is a bit higher than the energy scale of the interchain interactions J ′ ∼
0.046K, estimated by the zero-field muon-spin-relaxation experiment [16]. Thus, in this
dissertation we plan to examine whether the one dimensionality of CuPzN would persist
even at temperatures comparable to J ′.

3.2 Experimental

Our present dc magnetization measurements were performed on a part of the single-crystal
sample of CuPzN used in the previous measurements (Fig. 3.3), by means of the capacitance-
Faraday method with the Stycast-type capacitor. Magnetic fields were applied parallel to
the b axis as the same direction with the previous measurements. The magnetization value
was calibrated by the previous result of the saturated magnetization, Ms = 1.15µB [15].

In order to achieve the temperatures comparable to J ′ of 0.046K, we used a 3He-4He
dilution refrigerator which has a higher cooling power (kelvinox R©100, 100µW at 100mK,
Oxford Instruments) than the one used in the previous measurements (kelvinox R©25, 25µW
at 100mK, Oxford Instruments). Copper (5N purity, φ0.5wire× 15) and silver (4N purity,
φ0.3wire× 15) wires had firstly been used as thermal link between the mixture pot of the
refrigerator and the capacitor. However, as shown in Fig. 3.4, it took about 105 seconds
(∼ 28 hours) to cool down the sample from 0.1K to 0.05K at a field of 12.5T (open symbols).
This is not practical for high magnetic-field measurements considering the boiling off of liquid
helium used as cryogen.

For improvement of the cooling efficiency, the silver wires were annealed for about 3 hours
at ∼ 650 ◦C in ∼ 10−4mbar air since annealing can generally increase thermal conductivity of
metals (see, for example, Ref. 65). In the improved configuration, we used only such annealed
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Figure 3.3: Single crystal of
CuPzN used in the present
measurements. The white
paste is a non-magnetic ther-
mal compound used for fixing
the sample.
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Figure 3.4: Sample cooling process from 0.1K to

0.05K at 12.5T (see text).

silver wires (φ0.3wire× 30) as the thermal link and replaced a copper attachment between
the thermal link and the magnetometer with a silver one, in order to avoid a relatively
large nuclear specific heat of copper in a high magnetic field. Owing to these improvements,
we succeeded in reducing the cooling time to less than one tenth of the time before the
improvements (Fig. 3.4, closed symbols), and could reach the lowest temperature of 39mK.

3.3 Results and Discussion

3.3.1 Magnetization Curves and Differential Susceptibility near
the Saturation Field

Figure 3.5 shows the magnetization curves near the saturation field Hs = 13.97T at several
temperatures between 39mK and 359mK, along with the well-known exact Bethe-ansatz
curve at T =0 [7] recomputed in our previous paper [15]. In this temperature region, the
deviation of the experimental curves from the Bethe-ansatz curve is mainly from the rounding
nearHs. At below 80mK, the base temperature in our previous measurements, the agreement
of the present magnetization data with the Bethe-ansatz curve is the better, the lower the
temperature is.

This tendency is more obvious in the differential susceptibility dM/dH as shown in
Fig. 3.6. The peak height near Hs is increasing with decreasing the temperature. At the
lowest temperature, 39mK, dM/dH is in excellent accordance with the Bethe-ansatz curve
at below Hs. These facts imply that the inter-chain interactions are irrelevant even at 39mK,
which is close to the energy scale of the interchain interactions J ′ ∼ 0.046K estimated by
the zero-field muon-spin-relaxation experiment [16].
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Figure 3.5: Magnetization curves near the saturation field Hs at several temperatures. Dashed line

is a Bethe-ansatz result for T = 0.
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Figure 3.6: Differential susceptibility dM/dH near the saturation field Hs at several temperatures.

Solid lines are guide to the eye. Dashed curve is a Bethe-ansatz result for T = 0.
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3.3.2 Re-examination of the Quantum Criticality at the Saturation
Field

In our previous paper [15], the temperature dependence of the magnetization at 14T was
compared with Eq. (3.1). Although the field was a bit higher than the value, Hs=13.97T,
determined from the comparison of the magnetization curve at 80mK with the QTM calcu-
lations, a power-law fit of (Ms − M)/H ∝T β with the data yielded the value, β=0.48(1),
consistent with Eq. (3.1). In the present study, we performed the same measurements at
13.97T down to 60mK as shown in Fig. 3.7 along with the previous data at 14T. The
power-law fit with the present data yields β=0.4894(2), which is in better accordance with
Eq. (3.1). This fact supports that the quantum criticality of CuPzN at the saturation field
excellently agrees with the 1D theory.
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Figure 3.7: Log-log plot of (Ms −M)/H near Hs as a function of temperature below 1K. Circles

are the present data at 13.97T. Diamonds are the previous data at 14T, reported in Ref. 15. The

best fit of a power law, (Ms −M)/H ∝T β, to the 13.97T data yields β=0.4894(2) (solid line).

3.3.3 Scaling of Magnetization Curves near the Saturation Field

The free fermion description of the magnetization Eq. (3.2) can be transformed as

1− (1−M/Ms)/
√
2kBT/J = 1− 2N(x), (3.3)

N(x) =
1

π

∫ ∞

0

dk

ek2−x + 1
, (3.4)

x = gµB(H −Hs)/kBT. (3.5)
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This equation means that the left side of Eq. (3.3) can be described as a function of x,
f(x) = 1 − 2N(x), without adjustable parameters, i.e., magnetization curves in different
temperatures and magnetic fields can be scaled into a single curve as a function of x if
the 1D free fermion approximation is valid. Analogous scaling has been reported in the
magnetization curves of the spin-1/2 antiferromagnetic ladder (Cu5H12N)2CuBr4 (BPCB) [39]
and the temperature dependence of the magnetization of CuPzN extracted from our previous
paper by another group [66]. This scaling would be a criterion of one dimensionality. In the
case of CuPzN, we have Ms = 1.15µB, Hs = 13.97T, J =10.8K, and g=2.30.

Figure 3.8(a) shows the left side of Eq. (3.3) calculated from each curve of Fig. 3.5 as
a function of x = gµB(H − Hs)/kBT , along with the function f(x) = 1 − 2N(x). All the
obtained curves are in good accordance with f(x) near the saturation field (x = 0 ), but the
deviation from f(x) increases with decreasing x. A cause of this deviation is probably that
the free fermion description would become inappropriate at lower fields because of an effect of
the repulsive interaction between the fermions [14]. Nevertheless, all the experimental curves
are well scaled even in this parameter range. Indeed, a modification of N(x) to 0.9N(x) can
reproduce the scaled curves remarkably well (Fig. 3.8(b)). If this modification is attributed
to a change of the effective mass m by the effect of the repulsive interaction between the
fermions, it corresponds to m → 1.2m. Although theoretical supports are needed for this
assumption, this scaling behavior can reinforce the fact that CuPzN is a practically perfect
one-dimensional spin-1/2 Heisenberg antiferromagnet and establish the universality of the
1D fermion description Eq. (3.2).
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Figure 3.8: Scaling of magnetization curves near the saturation field Hs = 13.97T.
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3.4 Summary

We performed dc magnetization measurements of CuPzN near Hs = 13.97T down to 39mK,
which is lower than the lowest temperature of 80mK in our previous measurements and is
comparable with the energy scale of the interchain interactions J ′ ∼ 0.046K. The agreement
of the magnetization curve with the Bethe-ansatz result becomes increasingly better as the
temperature decreases, so that no effect of the interchain interaction can be observed even at
39mK. Moreover, all the magnetization curves near Hs are well scaled by a universal curve
derived from the 1D free fermion description of a spin-1/2 1D Heisenberg antiferromagnet
near the saturation field. These facts re-emphasize the strong one dimensionality of CuPzN
and establish that the 1D free fermion description is applicable to real 1D magnets in rather
wide parameter ranges.
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Chapter 4

Three-dimensional Bose-Einstein
Condensation in the Spin-1/2
Ferromagnetic-leg Ladder 3-Br-4-F-V

4.1 Introduction

4.1.1 Previous Studies of 3-Br-4-F-V

In the molecular-based crystal 3-Br-4-F-V (C20N4H15BrF), each molecule includes a verdazyl
radical, which carries an S = 1/2 quantum spin (the left of Fig. 4.1). The molecules are
stacked along a axis and form a spin ladder (the right of Fig. 4.1) [50]. The ab initio
MO calculations have revealed that the spin ladder is of FM-leg type (Jrung > 0, Jleg <
0). This and the two other verdazyl-radical-based crystals (3-Cl-4-F-V, 3-I-V) are the first
experimental realization of the FM-leg ladders [44].

The coupling constants have been estimated to be Jrung = 12.5K and Jleg = −8.3K
(|Jrung/Jleg| ∼ 1.5) by comparison of the magnetization curves with QMC calculations for
an S = 1/2 FM-leg ladder [44] (Fig. 4.2(a)). A spin gap exists at below the lower critical
field Hc1 ∼ 5T, and the saturation field is Hc2 ∼ 9T. In the magnetic field range between
Hc1 and Hc2, 3-Br-4-F-V exhibits a 3D ordering due to inter-ladder couplings below ∼0.6K
as indicated by the temperature derivative of χ = M/H (Fig. 4.2(c)) and the magnetic
specific heat Cmag (Fig. 4.3(a)) [50]. As revealed by nuclear magnetic resonance (NMR) mea-
surements, the 3D ordering phase is incommensurate. On the other hand, the temperature
dependence of χ itself shows a broad maximum or minimum (Fig. 4.2(b)), which could be
attributed to a crossover to a low-temperature TLL state as described in Chapter 1, Sec-
tion 1.3.4. However, in reality, most of the anticipated TLL region is replaced by a partial
ordering phase as indicated by the specific-heat and NMR measurements [50] (Fig. 4.3(b)).
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Figure 4.1: Left: structural formula of 3-Br-4-F-V [50]. Right: a part of crystal structures of

3-Br-4-F-V forming a two-leg ladder [50].

(a) Magnetic-field depen-
dence of the magnetization.
Solid lines denote the results
of QMC calculations.

(b) Temperature dependence
of the magnetic susceptibility
χ = M/H. Arrows denote
broad dip or peak anomalies
in χ. Triangles show the re-
sults of QMC calculations.

(c) Temperature derivative
of χ. Arrows denote kink
anomalies, indicating a 3D or-
dering.

Figure 4.2: Previous results of the magnetization measurements on 3-Br-4-F-V [50].
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(a) Temperature dependence of the
magnetic specific heat Cmag. Arrows for
higher temperatures in the data from
6.0T to 7.5T denote anomalies indicat-
ing a partial ordering. The other arrows
denote peak anomalies indicating a 3D
ordering. Triangles show the results of
QMC calculations.

(b) H-T phase diagram of 3-Br-4-F-V. Crosses,
squares, and circles correspond to the anoma-
lies defined from the temperature dependence
of χ (Fig. 4.2(b)), dχ/dT (Fig. 4.2(c)), and
Cmag/T (Fig. 4.3(a)), respectively.

Figure 4.3: Previous results of the specific-heat measurements and phase diagram on 3-Br-4-F-

V [50].

4.1.2 Motivation of the Present Study

Although detailed magnetic structures of these exotic ordering phases remain to be clarified,
a 3D BEC is expected to be realized in this situation. The 3D ordering phase is indeed
dome-like, in close resemblance to the other model compounds such as BaCuSi2O6 [28, 29]
(see Fig. 1.6(a), p. 7). Moreover, spin couplings between verdazyl radical molecules are
essentially isotropic [44], in favor of U(1) symmetry of their spin Hamiltonian, the condition
of which is necessary for BEC in quantum magnets as described in Chapter 1, Section 1.3.2
(p. 5). Thus, we have expected that 3-Br-4-F-V would be a new model system for BEC in
quantum magnets as a FM-leg ladder.

4.2 Experimental

Single-crystal samples of 3-Br-4-F-V were prepared in Hosokoshi lab at Osaka Prefecture
University as reported in Ref. 44. Dc magnetization measurements were performed by means
of the capacitance-Faraday method with the Al-type and Mg-type capacitors (Chapter 2) on
a 7.42mg sample (sample#1, Fig. 4.4(a)). Specific-heat measurements were carried out by
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the standard quasi-adiabatic heat-pulse and relaxation methods (Chapter 2) on a 1.46mg
sample taken from the same batch (sample#2, Fig. 4.4(b)). In both measurements, a 3He-4He
dilution refrigerator was used in the temperature ranges 0.1K≤T ≤ 1K. In all the measure-
ments, magnetic fields up to 9T were applied perpendicular to the a axis (perpendicular to
the leg direction).

(a) Single-crystal sample used for
dc magnetization measurements
(7.42mg, sample#1).

(b) Single-crystal sample used
for specific-heat measurements
(1.46mg, sample#2).

Figure 4.4: Single-crystal samples of 3-Br-4-F-V.

4.3 Results and Discussion

4.3.1 Dc Magnetization Measurements

Figure 4.5(a) and Figure 4.6(a) show the temperature dependence of the magnetic suscep-
tibility χ = M/H in several magnetic fields near the critical fields Hc1 and Hc2 (see also
Appendices, Section A.1, p. 66). There exists a nontrivial minimum (maximum) in Fig. 4.5(a)
(Fig. 4.6(a)), and the temperature at which the extremum appears (T = Tex) increases (de-
creases) with increasing the magnetic field. Analogous behavior in χ has been observed in
typical spin-1/2 two-leg spin ladders such as DIMPY [37]. Theoretically, such minimum or
maximum in (quasi-)1D gapped spin systems could indicate a crossover to low-temperature
TLL region, and a 3D ordering would be found slightly below Tex with 3D interactions [14, 43].
In fact, the behavior of Tex vs. H in the present measurements could indicate the TLL
crossover as discussed later.

In the previous report [50], 3D ordering temperature, Tc, from χ-T was determined from
a kink anomaly of the temperature derivative of χ, and it was in good agreement with Tc

determined from a peak of the temperature dependence of the specific heat C (Fig. 4.3(b),
Fig. 4.10). This correspondence is considered to be associated with Fisher’s relation for
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antiferromagnets,

C(T ) ∼ a
∂

∂T
(Tχ) , (4.1)

which describes that the specific heat near a second-order AFM phase transition can be scaled
with the temperature derivative of Tχ (the coefficient a is a slowly varying function near the
transition) [67]. Note that the most singular part in Eq. (4.1) arises from the temperature
derivative of χ itself. This relation has been confirmed experimentally in several materials,
e.g., Ref 68. In this sense, it would be the most plausible way to define Tc from dχ/dT or
d(Tχ)/dT . As can be seen from Fig. 4.5(b) and Fig. 4.6(b), the temperature derivative of χ
exhibits a kink anomaly below Tex as reported previously. Here, we define the temperature at
which the anomaly exists (minimum or maximum) in dχ/dT as Tc. We also applied a similar
definition of Tc for d(Tχ)/dT in Fig. 4.7 and find a dip (Fig. 4.7(a)) or peak (Fig. 4.7(b))
anomaly. We will discuss in Section 4.3.4 whether the difference of these definitions of Tc

would affect the critical exponents of the 3D ordering phase boundary near the critical fields,
Hc1 and Hc2.
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Figure 4.5: (a) Temperature dependence of the magnetic susceptibility χ = M/H in several

magnetic fields between 5.0T and 6.1T. Arrows indicate the temperature Tex at which χ takes the

nontrivial minimum. (b) Temperature derivative of χ calculated from the data on (a). Open arrows

show the transition temperature, Tc, defined from the minimum of the kink anomaly.
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4.3.2 Specific-heat Measurements

In Fig. 4.8(a) and (b), we show the magnetic heat capacity divided by temperature, Cmag/T ,
in several magnetic fields near Hc1 and Hc2, respectively. In these data, nuclear Schottky
contributions from 1H, 19F, and 14N are subtracted. The contributions are calculated from

Cnuc =
h̄2γ2

nI(I + 1)H2

3kBT 2
, (4.2)

where γn is a gyromagnetic ratio, and I is a nuclear spin (1H: γn/2π=42.575MHz/T, I =1/2,
19F: γn/2π=40.053MHz/T, I =1/2, and 14N: γn/2π=3.076MHz/T, I =1 [55]). For exam-
ple, as shown in Fig. 4.9, the upturn from nuclear Schottky contributions at 6T below 0.2K
is well represented by the results of calculation, and it does not affect a sharp peak appearing
at ∼ 0.4K. The sharp peak indicates the 3D ordering as shown in the previous report [50].
On the other hand, the shoulder-like anomaly inferred in the previous report to be a partial
ordering is weak (only the one at 7T is indicated by an open arrow) or even indiscernible
within the experimental resolution. This weakness of the partial ordering anomaly might be
due to sample dependence discussed in the next section.
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4.3.3 Phase Boundary Determined from the Present Measure-
ments

The 3D ordering temperatures observed in the present measurements are summarized in
Fig. 4.10 together with the results reported previously [50]. A noticeable difference between
the present and previous results is a disparity in the phase boundaries determined from dχ/dT
and Cmag/T ; whereas in the previous study these two measurements yielded nearly the same
transition temperature, the phase boundary defined from dχ/dT in the present experiment is
higher in temperature than the one derived from Cmag/T . It could be attributed to using the
different samples for the magnetization and the heat capacity measurements in the present
study. We ascribe this sample dependence to a high sensitivity of the interladder couplings
to a strain in this system; the larger crystal used in the magnetization measurements could
show slightly stronger interladder couplings. A cause of the weakness of the partial ordering
anomaly in Cmag/T might also be due to such sample dependence since Tc determined by the
present Cmag/T data is slightly lower than that obtained previously. From comparison with
the previous results, the partial ordering region is expected to exist above Tc defined on each
sample.

Note that all the phase boundaries can be well scaled to each other by Tc at 6T, as
shown in the inset of Fig. 4.10. This implies that the critical exponent ν of the phase
boundary T ∼ |Hc1,2(T )−Hc1,2(0)|ν would not be affected by the sample characteristics and
the different definitions of Tc on χ. We make analysis of the critical exponent of the phase
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Figure 4.10: 3D ordering phase boundary determined from the present (previous, Ref. 50) measure-
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guides to the eye. Crosses (stars) denote the temperature Tex at which the magnetic susceptibility χ
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results. Inset: phase boundaries scaled by Tc at 6T determined from the present data of Cmag/T .

boundary for these differently defined Tc individually in the next section.
Another remarkable feature in Fig. 4.10 is the linear behavior of Tex against the magnetic

field near Hc1 and Hc2. This behavior is reminiscent of a crossover to the TLL region in
(quasi-)1D gapped spin systems [14]. Close to the critical field H = Hc, the crossover
temperature Tex, at which the magnetization takes an extremum, is asymptotically expressed
in the universal form

Tex(H) = c
gµB

kB
|H −Hc1,2| , (4.3)

where the coefficient c = 0.762 38, and kB is the Boltzmann constant. This linear relation
has actually been observed on DIMPY [37] for the lower critical field, and the ideal spin-1/2
one-dimensional AFM chain CuPzN [15] for the saturation field. In the present case of 3-
Br-4-F-V, a linear fit of the Tex vs. H plot yields the absolute value of the linear coefficient
0.73±0.01 at fields below 5.3T and 0.78±0.02 at fields above 8.6 T, both of which are smaller
than the value determined from Eq. (4.3), cgµB/kB = 1.0246, assuming g = 2. Considering
the fact that Tex is relatively close to Tc in 3-Br-4-F-V compared with the above two examples,
it is likely that the temperature region at which Eq. (4.3) can be applied is largely overlapped
with the 3D ordering phase in 3-Br-4-F-V, although the linear relation between Tex and H
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can be ascribed to the quasi-one dimensionality of this compound.

4.3.4 Temperature-window Technique for the Critical Fields and
Exponents

To extract the critical exponent ν of the 3D ordering phase boundary, we employ the
temperature-window technique [27, 28, 69–71] in fitting the data by the power-law function
T ∼ |Hc1,2(T )−Hc1,2(0)|ν with the least-squares method. Fortunately, the almost symmetric
dome like phase diagram—in the boson language, this implies that the effect of quantum fluc-
tuations on the boson effective mass at fields below Hc1 is weak in this material [18]—enables
us to replace the function with a quadratic form

T (h) = a
(
1− h2

)ν
, (4.4)

by which the critical field can be determined more accurately [28]. In Eq. (4.4), a is a
fitting coefficient, which is approximated as a constant, and the normalized field is defined
as h = [Hc1,2(T )−Hm]/|Hm −Hc1,2(0)|, where Hm is the magnetic field centered in the 3D
ordering dome (in this case, µ0Hm ∼ 7T).

We first fit Eq. (4.4) to the data within the temperature window 0 ≤ T ≤ tmax for several
fixed ν’s, where tmax is the maximum temperature of the window. Fig. 4.11 shows examples
for the fitting method. The lowest value of tmax used is 0.27 and 0.28 K near Hc1(h = −1)
and Hc2(h = 1), respectively, so that at least three data points are available for the fitting.
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Figure 4.11: Examples of fitting Eq. (4.4) to the phase boundary determined from dχ/dT near

Hc1 with the fixed ν = 0.68. Open squares are Tc from the kink anomalies of dχ/dT . Dashed

lines are fitting curves. The maximum temperature of the window is set at (a) tmax = 0.300K (b)

tmax = 0.475K.
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For the given tmax, the fitting parameters Hc1,2(0) are determined (referred to as Hc1,2(tmax)).
Iterating this procedure with increasing tmax, we obtain Hc1,2(tmax) as a function of tmax.
The results of Hc1(tmax) and Hc2(tmax) determined from dχ/dT and d(Tχ)/dT are shown in
Fig. 4.12, and Hc1(tmax) and Hc2(tmax) from Cmag/T are shown in Fig. 4.13.

The zero-temperature limit Hc1,2(0) for each ν can be obtained by a linear extrapolation
of the lowest few data points of Hc1,2(tmax). The number of points for fitting on each panel
of Fig. 4.12 and Fig. 4.13 were selected so as to minimize the standard deviation of Hc1,2(0).
As shown in Fig. 4.12 and Fig. 4.13, the linear fitting lines on each panel (dashed lines)
converge on the narrow field region for a range of the ν values, analogous to the results of
other compounds to which the same technique has been applied [28, 70, 71]. On fitting in
Fig. 4.12, data points for 5.1T and 9.0T were eliminated since inclusion of these significantly
prevented Hc1,2(0) from converging. Since χ itself shows weak anomalies at these fields, the
anomalies in dχ/dT and d(Tχ)/dT might become ambiguous. On fitting in Fig. 4.13(a) and
(b), data points for 5.4T, and 8.75T, respectively, were eliminated because of similar non-
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Figure 4.12: Fitting results of the temperature-window technique with Eq. (4.4), applied to the

H-T phase diagram defined by dχ/dT and d(Tχ)/dT . As a function of the maximum temperature

of the window, tmax, for several fixed ν’s, (a) Hc1 and (b) Hc2 from dχ/dT , and (c) Hc1 and (d) Hc2
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convergence. We ascribe this non-convergence to that the partially ordering phase merges
into the 3D ordering phase near the critical fields, which makes the anomalies obscure. Thus,
irrespective for the particular ν value, the critical fields Hc1,2(0) can be estimated to be
µ0Hc1 = 4.960(5)T (Fig. 4.12(a)) and µ0Hc2 = 9.191(5)T (Fig. 4.12(b)) for dχ/dT , and
µ0Hc1 = 4.906(4)T (Fig. 4.12(c)) and Hc2(tmax) = 9.215(9)T (Fig. 4.12(d)) for d(Tχ)/dT .
For Cmag/T , µ0Hc1 = 4.784(8)T (Fig. 4.13(a)) and Hc2(tmax) = 9.238(5)T (Fig. 4.13(b)).

Fixing Hc1,2(0) to the values given above, the fitting of Eq. (4.4) to the data, in a similar
manner but now ν being the fitting parameter, yields the critical exponent as a function of
tmax (Fig. 4.14). As can be see in Fig. 4.14, all the ν(tmax) plots thus obtained approach
the value ν = 2/3 of the 3D XY-AFM QCP at low temperatures, being definitely different
from the 2D case ν = 1 and the 3D Ising case ν = 0.5 [18]. This tendency appears not
to be dependent on the sample characteristics and the different definitions of Tc on χ, so
that it could be universal behavior of the 3D ordering phase boundary of 3-Br-4-F-V. In the
boson language, the result indicates that the field-induced QCPs of 3-Br-4-F-V belong to the
3D BEC universality class in the temperature range of the present measurements. This is
the first observation of the 3D BEC exponent in a spin-1/2 ferro-leg ladder. Moreover, we
emphasize that the critical exponent near Hc2 is determined for the first time in gapped spin
systems, most of which require more than tens of teslas to reach the saturation field and is
difficult to examine the critical exponent.

4.4 Summary

We determined the critical exponents ν near the field-induced QCPs of the 3D ordering phase
boundary on the spin-1/2 ferromagnetic-leg ladder 3-Br-4-F-V, using dc magnetization and
specific-heat measurements. Near the lower critical field Hc1 and the saturation field Hc2, the
exponents obtained from the temperature-window fitting technique approach the value which
belongs to the 3D BEC universality class, ν = 2/3, at low temperatures. Although there is a
split between the phase boundaries determined from the specific heat and the magnetization,
which is attributed to different sample characteristics, the critical exponents at Hc1 and Hc2

seem not to be affected. This fact supports that the 3D BEC exponent is universal in the
ordering phase of 3-Br-4-F-V. Of course the sample dependence of 3-Br-4-F-V remains to be
clarified, but the results indicate that the verdazyl-radical-based FM-leg ladders are expected
to be a model system to study BEC physics in quantum magnets.

42



Chapter 5

Unconventional Critical Exponent
near the Saturation Field in the
Spin-1/2 Ferromagnetic-leg Ladder
3-I-V

5.1 Introduction

5.1.1 Previous Studies of 3-I-V

3-I-V (C20N4H16I) is a verdazyl-radical-based FM-leg ladder, similar to 3-Br-4-F-V (Chap-
ter 4). The molecular packing is the same as 3-Br-4-F-V as shown in Fig. 4.1 (p. 30) [50],
but the ab initio MO calculations have predicted that the spin ladder is of strong-leg type
(|Jrung/Jleg| < 1) deriving from the difference of the chemical modification of the phenyl
(Fig. 5.1). From comparison of QMC calculations with the magnetization curve, the coupling
constants, Jrung and Jleg, have been estimated to be 5.8K and −11.6K, respectively [44].

Unlike 3-Br-4-F-V, a 3D ordering has been observed even at zero magnetic field
(TN =1.4K, Fig. 5.2), i.e., there does not exist a zero-field spin gap predicted by the the-
ory of FM-leg ladders with isotropic spin couplings [46–48]. The 3D ordering temperature
determined from temperature dependences of the magnetic susceptibility and the specific
heat (Fig. 5.3) are in good accordance with each other, and then neither a TLL state nor
a partial ordering state such as 3-Br-4-F-V is observed [51], unlike the case of 3-Br-4-F-V.
Meanwhile, the field dependence of the specific heat (the inset of Fig. 5.3) and the mag-
netization (Fig. 5.4) suggests an additional phase near the saturation field as indicated in
Fig. 5.2.

Although the detailed properties of these phases have not been revealed yet, frustrated
intra- and inter-ladder couplings evaluated by the MO calculations are likely to be a cause
of the above characteristics of 3-I-V [51]. Schematic pictures of the evaluated couplings
are shown in Fig. 5.5. In the intra-ladder couplings (Fig. 5.5(a)), Jdiag is ferromagnetic,
so that it makes geometrical frustration among the three couplings Jleg(< 0), Jrung(> 0),
and Jdiag(< 0). The main inter-ladder couplings consist of a triangular unit formed by J1,
J2, and J3 as illustrated in Fig. 5.5(b) and (c). J1, J2, and J3 have been evaluated as
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antiferromagnetic, ferromagnetic, and ferromagnetic, respectively. It yields the same type of
frustration as the intra-ladder couplings. The existence of the intra-ladder frustration has
been considered to bring about the phase diagram different from 3-Br-4-F-V [51].

Figure 5.1: Structural formula of 3-I-V [51].

Figure 5.2: Previous result of phase diagram of 3-I-V, determined from the specific heat (circles),

the magnetic susceptibility (triangles), and the magnetization curve (squares) [51].

44



Chapter 5. Unconventional Critical Exponent near the Saturation Field in the Spin-1/2

Ferromagnetic-leg Ladder 3-I-V

Figure 5.3: Previous results of temperature de-
pendence of (a) the magnetization and (b) spe-
cific heat [51]. Inset: field-dependence of the
specific heat. Arrows indicate 3D ordering tran-
sition points.

Figure 5.4: Previous results of the field

derivative of the magnetization [51]. In-

set: arrows indicate critical fields deter-

mined from the linear extrapolations (bro-

ken lines).

Figure 5.5: Schematic picture of frustrated intra- and inter-ladder couplings of 3-I-V, evaluated

by the MO calculations [51]. (a) Intra-ladder couplings. Jleg(< 0), Jrung(> 0), and Jdiag(< 0) form

a frustrated triangular unit. (b) Inter-ladder couplings viewed along the leg direction. J1(> 0),

J2(< 0), and J3(< 0) form a frustrated triangular unit. (c) Inter-ladder couplings viewed along the

rung direction. Shadow triangles denote the same triangular unit.

45



Chapter 5. Unconventional Critical Exponent near the Saturation Field in the Spin-1/2

Ferromagnetic-leg Ladder 3-I-V

5.1.2 Motivation of the Present Study

As indicated by the previous studies, 3-I-V has a remarkably different phase diagram from
3-Br-4-F-V although both of their spin models consist of the spin-1/2 FM-leg ladder. The
distinction of these compounds could be attributed to the type of the FM-leg ladder, strong
leg (|Jrung/Jleg| < 1 in 3-I-V) or strong rung (|Jrung/Jleg| > 1 in 3-Br-4-F-V), and the
frustrated intra- and inter-ladder couplings. It is expected that these differences of the
parameters might also affect the critical exponent near the saturation filed, giving an insight
into the additional phase of 3-I-V. In the present study, we thus focused on the critical
exponent of the phase boundary and re-examined the previously-reported additional phase
by detailed dc magnetization and specific-heat measurements.

5.2 Experimental

Single-crystal samples of 3-I-V were prepared in Hosokoshi lab at Osaka Prefecture University
as reported in Ref. 44, similar to 3-Br-4-F-V. Dc magnetization measurements were performed
by means of the capacitance-Faraday method with the Mg-type capacitor (Chapter 2) on
single crystals, the mass of which was 2.52mg (Fig. 5.6). Specific-heat measurements were
carried out by the standard quasi-adiabatic heat-pulse and relaxation methods (Chapter 2),
using the same samples. In both measurements, a 3He-4He dilution refrigerator was used in
the temperature ranges 0.1K≤T ≤ 1K. In all the measurements, magnetic fields up to 8T
were applied perpendicular to the a axis (perpendicular to the leg direction).

Figure 5.6: Single-crystal samples of 3-I-V on the capacitor. The same samples were also used in

the specific-heat measurements.
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5.3 Results and Discussion

5.3.1 Field Dependence of the Magnetization and the Specific
Heat

Figure 5.7 shows the present result of the magnetization curve at 80mK and the field deriva-
tive of the curve. In the previous report [51], two shoulder-like anomalies were observed in
the field derivative of the magnetization, extracted by the linear extrapolations (Fig. 5.4).
As can be seen in Fig. 5.7, the present result also indicates two shoulder-like anomalies near
4.0T and 5.0T. Since the previous definitions of the anomalies might be a bit obscure, we
applied the second-order field derivative to the present data (d2M/d2H) as can be seen in
Fig. 5.8. A sharp peak indicating the saturation can be observed at 5.38(1)T. A shoulder-
like anomaly near 4.5T can be associated with the phase boundary of the additional phase
defined in the previous report, but it is to weak to be identified as a phase transition; it
would be a crossover rather than a definite phase transition.

The present result of the field dependence of the specific heat as shown in Fig. 5.9 further
demonstrates that “additional phase” is not completely independent of the main 3D ordering
phase; there exists only a single sharp peak at about 5.1T. Compared with the present data,
the broad peak in the previous data seems to arise from a collapse of the sharp peak rather
than an overlap of two phase transitions as discussed in Ref. 51. The difference of the peak
heights could be attributed to a difference in the sample quality.
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Figure 5.7: Present results of the magnetization curve at 80 mK (closed symbol), and the field

derivative of the magnetization dM/dH (open symbol).
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Figure 5.8: Present results of the magnetization curve at 80 mK (closed symbol), and the second-

order field derivative of the magnetization d2M/d2H (open symbol).
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5.3.2 Temperature Dependence of the Magnetic susceptibility and
the Specific Heat

Figure 5.10 shows the present results of the temperature dependence of the magnetic sus-
ceptibility χ(T ) = M(T )/H at several magnetic fields (see also Appendices, Section A.2,
p. 69). There exists a cusp-like anomaly in each curve, the same as observed in the previous
report [51]. The temperature at which the anomaly exists increases (decreases) with increas-
ing the magnetic field at below (above) 2.2T. Unlike 3-Br-4-F-V, a good coincidence between
the cusp-like anomaly in χ(T ) and the peak anomaly in the temperature dependence of the
specific heat C(T ) (Fig. 5.2) has been obtained in the previous study. Tc may therefore be
defined by the position of the cusp-like anomaly, which is the same definition in Ref. 51.
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Figure 5.10: Temperature dependence of the magnetic susceptibility χ = M/H at several magnetic

fields between 0.5T and 3.4T (left panel), and between 3.5T and 5.2T (right panel). For clarity,

each curve is shifted by +0.002 emu/mol more than the one just below on each panel. Arrow denotes

a minimum or maximum of cusp-like anomaly on each curve.
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We also obtained d(Tχ)/dT and dχ/dT as shown in Fig. 5.11 and Fig. 5.12, respectively,
in order to check whether different definitions of Tc affect the results as has been done in
3-Br-4-F-V. d(Tχ)/dT and dχ/dT show a dip or peak anomaly in each curve. The positions
at which these anomalies exist are defined as Tc for d(Tχ)/dT and dχ/dT . These results are
compared with each other in the next section.
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As can be seen in Fig. 5.13, temperature dependence of the specific heat C(T ) shows a
peak anomaly (Fig. 5.13, see also Supplemental Materials, Section A.2, p. 72) as observed
in the previous report (Fig. 5.3). C(T ) also shows a upturn at low temperatures in each
magnetic field. The upturn would stem from nuclear Schottky contributions from 1H, 127I,
and 14N, but the simple calculation of the nuclear specific heat as used in 3-Br-4-F-V could
not reproduce the upturn. Since 127I has a relatively large nuclear spin I =5/2, it may be
that an effect of internal fields from ordered moments upon the nuclear quadrupole moments
is non-negligible.

If the “additional phase” reported in Ref. 51 exists, some anomaly should be observed in
the region around 4.5T at below 0.6K, which is clearly absent in the previous data of χ(T )
and C(T ), as can be seen in Fig. 5.2. Indeed, no obvious sign of the additional transition
can be observed in the present data of χ(T ) and C(T ) as well as in the field dependence of
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the specific heat. From these, the shoulder-like anomaly in d2M/d2H (Fig. 5.8) seems not to
indicate a definite phase transition.

5.3.3 Phase Boundary Determined from the Present Measure-
ments

The phase boundary determined from the present results of χ(T ) and C(T ) is shown in
Fig. 5.14, along with the previous one. Both are in good agreement with each other, implying
the phase boundary is not sample dependent. As shown in Fig. 5.15, the boundary determined
from C(T ) seems to be at slightly lower temperatures than that of χ(T ). Since we used the
same samples in both measurements of χ(T ) and C(T ), different from the case in 3-Br-4-F-V,
a cause of the slight disparity could be ascribed to a difference in the definitions of Tc.

In Fig. 5.15, the phase boundary defined from d(Tχ)/dT is compared with the plots in
Fig. 5.14 near the saturation field. The one from dχ/dT is also shown in Fig. 5.16. Compared
with the results from χ(T ) itself, the behavior of these boundaries defined from the derivative
of χ are in better accordance with C(T ). In particular, Tc defined by d(Tχ)/dT agrees with
the one from C(T ) much better than that by dχ/dT . We therefore make analysis of the
critical exponent of the phase boundary for these differently defined Tc individually in the
next section.

0 1 2 3 4 5 6

µ0H (T)

0.0

0.5

1.0

1.5

2.0

T
 (

K
)

χ(T)(present)

C(T)(present)

χ(T)(previous)

C(T)(previous)

Figure 5.14: Phase boundary determined from the present results of temperature dependence of

the magnetic susceptibility χ(T ) (closed square) and the specific heat C(T ) (closed circle). Open

symbols are the previous results [51] extracted from Fig. 5.2.
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Figure 5.15: Enlarge plot of the phase boundary in Fig. 5.14 near the saturation, compared with

the one defined from d(Tχ)/dT .
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5.3.4 Sliding-window Technique for the Critical Field and Expo-
nent

In order to extract the critical field and exponent near the saturation field H = Hc, or the
field-induced QCP, we employ the sliding-window technique as described in Ref. 29. The
temperature-window technique as is used in 3-Br-4-F-V cannot be adapted in this case since
the phase boundary has only one QCP and is not symmetric.

In the sliding-window technique, the power-law function T ∼ |Hc(T )−Hc(0)|ν is fitted
with the data points on the phase boundary for various widths of the temperature win-
dow, ∆T by the least-squares method. Each temperature window is slided on the phase
boundary, and then the fitting parameters, Hc(0) = Hc and ν, can be obtained on various
temperature regions. Fig. 5.17 shows two examples of the fitting results with ∆T =0.3K
and Twin=0.351K, and ∆T = 0.5K and Twin = 0.779K, where Twin is the midpoint of the
temperature window.
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Figure 5.17: Examples of fitting results of the sliding-window technique, applied to the phase

boundary determined from χ(T ). Solid line is the fitting with the window parameters, ∆T =0.3K

and Twin=0.351K. Dotted line is the fitting with the window parameters, ∆T =0.5K and

Twin=0.779K (see text).
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With varying ∆T from 0.3K to 1.1K, we obtained the fitting parameters, Hc and ν as
a function of Twin on the phase boundary determined from χ(T ) as shown in Fig. 5.18. The
critical field Hc approaches Hc(0)= 5.4T in the limit of zero temperature (Fig. 5.18(a)).
Interestingly, the critical exponent ν approaches ν=1 around Twin=0.6K and then seems to
approach ν=2/3 below Twin=0.5K beyond the fitting error bars (Fig. 5.18(b)), i.e., it might
indicate a crossover of the critical exponent from ν=1 to ν=2/3. Note that Twin=0.5K
is close to the temperature below which the “additional phase” was reported to exist in the
previous study (cf. Fig. 5.2). The ν = 1 behavior might thus be related to the shoulder-like
anomaly in d2M/d2H.
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Figure 5.18: (a) The critical field Hc and (b) exponent ν, which are obtained from the sliding-

window technique applied to the phase boundary from χ(T ), vary with the midpoint of the tem-

perature window Twin. Different symbols denote the different temperature windows ∆T from 0.3K

to 1.1K (see text). All the error bars represent fitting errors of the least squares method.
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Figure 5.19: Dotted line denotes a linear fit of the phase boundary determined from χ(T ) (square)

between 0.5K and 1K, which yields the critical field Hc=5.561(5)T. The fitting curve T = a(Hc−
H)2/3 at Hc=5.4T (solid line) excellently reproduces the phase boundary at above 4.9T. The

critical field determined from d2M/d2H (diamond, see Fig. 5.8) at 80mK is in good agreement with

the fitting curve.

To check the behavior of the critical exponent of the phase boundary defined from χ(T ),
we refit the power-law function using the obtained parameters. As one can seen in Fig. 5.19,
a linear fit can excellently reproduce the phase boundary from χ(T ) between 0.5K and 1K
(dotted line), and the extrapolated value of Hc at zero temperature is 5.561(5)T, which is
consistent with the value around Twin=0.6K in Fig. 5.18(a). On the other hand, the power-
law function with Hc=5.4T and ν=2/3 can well reproduce the boundary below 0.5K.
Moreover, the critical field determined from d2M/d2H at 80mK (Section 5.3.1) is in good
agreement with the fitting curve derived only from the χ(T ) data.

We applied a similar analysis to the phase boundaries defined by d(Tχ)/dT and dχ/dT .
However, the critical exponents thus obtained behave differently from those obtained from the
phase boundary defined by d(Tχ)/dT and dχ/dT show different behavior obtained from χ(T )
itself in the temperature region below Twin=0.5K. As shown in Fig. 5.20, the critical exponent
obtained from the d(Tχ)/dT data levels off at ν = 1 below Twin=0.5K. On the other hand,
the critical exponent obtained from dχ/dT data deviates from ν = 1 and continues to
increases below Twin=0.5K (Fig. 5.21). We think the increase is not intrinsic since the peak
anomaly of χ(T ) on 3-I-V becomes very weak near Hc(0), so that the calculation error in
d(Tχ)/dT or dχ/dT would increase near Hc(0). Unfortunately, the crossover behavior below
Twin=0.5K remains controversial, but ν = 1 region near Twin=0.5K is common to all the
definitions of Tc.
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Figure 5.20: (a) The critical field Hc and (b) exponent ν, which are obtained from the sliding-
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temperature window Twin. Different symbols denote the different temperature windows ∆T from

0.4K to 1.1K. All the error bars represent fitting errors of the least squares method.
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Figure 5.21: (a) The critical field Hc and (b) exponent ν, which are obtained from the sliding-

window technique applied to the phase boundary from dχ/dT , vary with the midpoint of the

temperature window Twin. Different symbols denote the different temperature windows ∆T from

0.4K to 1.1K. All the error bars represent fitting errors of the least squares method.

Figure 5.22 and Figure 5.23 show fitting results of the function T = a(Hc − H)ν with
the phase boundary defined from d(Tχ)/dT and dχ/dT , respectively, below 1K. In Fig. 5.22,
the best fitting yields Hc=5.51(2)T and ν=0.99(2). In Fig. 5.23, the best fitting yields
Hc=5.53(3)T and ν=1.10(3). These results correspond to ∆T =1K and Twin=0.5K and
reproduce the ν = 1 region of the critical exponent. The critical field determined from
d2M/d2H at 80mK appears to be in line with these fitting curves, so that the crossover
behavior for χ remains controversial in this sense.
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Figure 5.22: Fitting result of the function T = a(Hc−H)ν with the phase boundary defined from

d(Tχ)/dT below 1K (solid line). Best fitting yields Hc=5.51(2)T and ν=0.99(2). Diamond is the

critical field determined from d2M/d2H at 80mK.
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Figure 5.23: Fitting result of the function T = a(Hc−H)ν with the phase boundary defined from

dχ/dT below 1K (solid line). Best fitting yields Hc=5.53(3)T and ν=1.10(3). Diamond is the

critical field determined from d2M/d2H at 80mK.
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The ν = 1 behavior can also be observed on the phase boundary determined from C(T ).
Figure 5.24 shows the obtained fitting parameters for C(T ), Hc and ν, with varying ∆T
from 0.3K to 0.6K. Unfortunately, the error bars in the minimum window, ∆T =0.3K, are
relatively large probably because the fitting is done using only a few points of the data.
However, it can be said that the whole behavior of the critical field and exponent is very
similar to the one from the χ(T ) data (Fig. 5.18) within the error bars.
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Figure 5.24: (a) The critical field Hc and (b) the exponent ν vary with the midpoint of the

temperature window Twin, which are derived from the sliding-window technique, applied to the phase

boundary determined from C(T ). Different symbols denote the different temperature windows ∆T

from 0.3K to 0.6K (see text). All the error bars represent fitting errors of the least squares method.
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Figure 5.25: Fitting result of the function T = a(Hc −H)ν with the phase boundary determined

from C(T ) (solid line). Best fit yields Hc=5.56(3)T and ν=1.00(3).

As shown in Fig. 5.25, the best fitting of the function T ∼ |Hc(T )−Hc(0)|ν to all the data
of the phase boundary from C(T ) yields Hc(0)= 5.56(3)T and ν=1.00(3). These parameters
are in excellently excellent agreement with the linear fit applied to the boundary from χ(T )
between 0.5K and 1K as described above.

Judging from these analyses of the critical exponent, the ν = 1 region is considered to
be universal for the phase boundary of 3-I-V near the saturation field Hc. We will discuss
possible causes of this ν = 1 behavior in the next section.

5.3.5 Possible Cause of the ν = 1 Behavior

As a cause of the nontrivial critical exponent ν=1, one may expect the Kosterlitz-Thouless
(KT) transition [72, 73], which belongs to the 2D BEC universality class although the power
law is subject to a logarithmic correction [18, 74]. In the case of the KT transition, it has
been predicted that the specific heat has a large peak above Tc due to the unbinding of
vortices, followed by only an weak anomaly at Tc [75–77]. This situation is not applicable to
the case of 3-I-V because Tc determined from the peak anomaly of C(T ) is close to the one
determined from the data of χ(T ).

We notice that a theoretical study for quasi-one-dimensional ferromagnets with weak
antiferromagnetic couplings predicts that a crossover of the critical exponent of a phase
boundary from the conventional 3D BEC exponent φ = 3/2 to φ = 1 (φ=1/ν) as moving
away from the saturation field Hc [33]. For the ν = 1 region to exist, inter-chain interactions,
or effective interactions between magnons, must be small enough compared with intra-chain
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couplings. This situation is analogous to the strong-leg type FM-leg ladder.
Although 3-I-V contains the relatively large antiferromagntic couplings, i.e., the rung

interactions Jrung =5.8K, between the ferromagnetic chains (legs) Jleg =−11.6K, it might
be possible to satisfy the conditions discussed in Ref. 33 from two points of view. First, a
spin-1/2 ferromagnetic-leg ladder can be mapped onto a spin-1/2 ferromagnetic chain with
an easy-plane anisotropy in a certain condition [48]. This means that we would have to
consider only the weak inter-ladder couplings. However, as discussed in Ref. 48, the mapping
could be relevant in the case of strong rung type and near the lower critical field, where
a spin gap is destroyed. It is then an open question whether the mapping can apply to
strong leg type near the saturation field as 3-I-V. Second, the frustration of intra- and inter-
ladder couplings in 3-I-V could make the effective interactions between the legs weaker.
In particular, the intra-ladder coupling predicted by the MO calculations is ferromagnetic
(Fig. 5.5), so that it could weaken the effective antiferromagnetic rung interactions (similar
situation is considered in the case of CuPzN in Chapter 3, Section 3.1.2). Although these
assumptions need theoretical supports, the unconventional critical exponent ν = 1 in 3-I-V
must reflect unique characteristics of the ferromagnetic-leg ladder.

5.4 Summary

We have determined the critical exponent ν of the 3D ordering phase boundary near the
saturation field Hc on the spin-1/2 ferromagnetic-leg ladder 3-I-V, using dc magnetization
and specific-heat measurements. Using the sliding-window fitting technique, we find the
nontrivial critical exponent ν=1, different from the conventional 3D BEC exponent ν=2/3,
on the phase boundary determined from χ(T ) near Hc. The ν=1 region is also observed on
the boundary determined from the temperature dependence of the specific heat C(T ). The
nontrivial critical exponent ν = 1 could be attributed to the 1D nature of the strong-leg-type
ferromagnetic-leg ladder. 3-I-V would thus provide a new model to study novel BEC physics
of magnons on quasi-1D systems containing ferromagnetic interactions.
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Conclusion

Quantum critical phenomena at magnetic-field-induced QCPs have been investigated on three
(quasi-)1D quantum magnets, CuPzN, 3-Br-4-F-V, and 3-I-V, by means of dc magnetization
and specific-heat measurements at low temperatures. In this chapter, obtained results are
summarized with focusing on the characteristics of the QCPs on these materials.

In the practically perfect 1D spin-1/2 Heisenberg antiferromagnet CuPzN, we have per-
formed the magnetization measurements near the saturation field Hs = 13.97T down to
39mK, which is comparable to the predicted value of the inter-chain interactions J ′ ∼
0.046K. Comparison of the obtained magnetization curves with the exact Bethe-ansatz cal-
culations at zero temperature indicates that no effect of J ′ appears even at 39mK. The
obtained magnetization curves can also be scaled in wide temperature range by a universal
relation derived from the phenomenological theory for 1D free fermion gas. These findings
support the virtually perfect one dimensionality of CuPzN and confirm the validity of the
phenomenological theory for real 1D magnets.

We have discussed the critical exponents ν near the critical field Hc, derived from the
3D ordering phase boundary T ∝ |Hc(T )−Hc(0)|ν , on the spin-1/2 ferromagnetic-leg (FM-
leg) ladders, 3-Br-4-F-V and 3-I-V, in the light of 3D Bose-Einstein condensation (BEC)
universality and quasi-one dimensionality.

The strong-rung-type FM-leg ladder 3-Br-4-F-V has two QCPs, the lower critical field
Hc1 ∼ 5T and the saturation field Hc2 ∼ 9T. The 3D ordering phase boundary Tc(H)
near the QCPs has been defined from the temperature derivative of the magnetic suscepti-
bility dχ(T )/dT or d(Tχ(T ))/dT and the temperature dependence of the specific heat C(T ).
There exists a disparity between the phase boundaries obtained from dχ(T )/dT and C(T )
measured on different samples, which could be attributed to a difference in the strain condi-
tion within the samples. Nevertheless, the behavior of the critical exponents ν obtained from
the temperature-window technique is found to show no sample dependence. The exponents
near both sides of the QCPs are in good agreement with the 3D BEC universality class,
ν = 2/3, at low temperatures. The 3D BEC exponent is considered to be universal on the
3D ordering phase boundary of 3-Br-4-F-V. This is the first observation as a spin-1/2 FM-leg
ladder and gives one of a few experimental tests for the critical exponent ν near Hc2.

The strong-leg-type FM-leg ladder 3-I-V has only one QCP, the saturation field Hc ∼
5.5T, different from 3-Br-4-F-V. We have defined the 3D ordering phase boundary Tc(H)
near the QCP from the temperature dependence of the magnetic susceptibility χ(T ) and the
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temperature dependence of the specific heat C(T ). In order to check whether the difference
of the definitions of Tc(H) would affect the critical exponent ν, anomalies in dχ(T )/dT and
d(Tχ)/dT have also been examined. The critical exponent ν of 3-I-V has been obtained by
the sliding-window technique. Irrespective of the definitions of Tc(H), there exists nontrivial
ν=1 region near 0.5K slightly off the saturation field, different from the conventional 3D
BEC ν=2/3. The difference of the critical exponent from the case of 3-Br-4-F-V could be
attributed to the “degree” of one dimensionality, i.e., strong-rung (3-Br-4-F-V) or strong-leg
(3-I-V) type, and the frustration of the intra- and inter-ladder couplings. This situation is
analogous to the theoretical study for quasi-one-dimensional ferromagnets with weak anti-
ferromagnetic couplings [33], which has predicted that a ν = 1 region appears on the phase
boundary as slightly moving away from Hc and strong one dimensionality is essential for the
existence of the ν = 1 region. Since the ν = 1 region has never been found in the candidates
mentioned in Ref. 33, 3-I-V is promising as a new candidate for the theoretical prediction.

Thus, CuPzN and 3-Br-4-F-V demonstrate the universality of the quantum critical phe-
nomena predicted by a mapping of quantum spins onto quasi-particle gases; CuPzN is an ideal
model compound for the phenomenological theory of 1D free fermion gas, and 3-Br-4-F-V is
found to be a new model compound for 3D BEC in quantum magnets. On the other hand,
3-I-V demonstrates that FM-leg ladders could lead to a novel quantum criticality beyond the
3D BEC universality. These facts provide new insight into a role of one dimensionality in the
quantum critical phenomena on various real quantum magnets including 3-Cl-4-F-V [44, 49],
another FM-leg ladder synthesized to date.
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A.1 Temperature Dependence of the Magnetic Suscep-

tibility of 3-Br-4-F-V

For clarity, Fig. 4.5 (p. 33), Fig. 4.6 (p. 34), and Fig. 4.7 (p. 35) show a part of the data used
for determining the phase boundary in Fig. 4.10 (p. 38) (Chapter 4). The rest of the data is
shown in Fig. A.1.1, Fig. A.1.2, and Fig. A.1.3.
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Figure A.1.1: (a) Temperature dependence of the magnetic susceptibility χ = M/H at 5.15T,

5.25T, and 5.45T. Arrows indicate the temperature Tex at which χ takes the nontrivial minimum.

(b) Temperature derivative of χ calculated from the data on (a). Open arrows show the transition

temperature, Tc, defined from the minimum of the kink anomaly.
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A.2 Temperature Dependence of the Magnetic Suscep-

tibility and the Specific Heat of 3-I-V

For clarity, Fig. 5.10 (p. 49) and Fig. 5.13 (p. 52) show a part of the data used for determining
the phase boundary in Fig. 5.14 (p. 53) (Chapter 5). Fig. 5.11 (p. 50) and Fig. 5.12 (p. 51)
also show a part of the data for Fig. 5.15 (p. 54) and Fig. 5.16 (p. 54), respectively. The rest
of the data is shown in Fig. A.2.4, Fig. A.2.5, Fig. A.2.6, and Fig. A.2.7.
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Hc. For clarity, each curve is shifted by +0.002 emu/mol more than the one just below on each

panel. Arrows denote cusp-like anomalies indicating the 3D ordering.
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A.3 Python Source Code for the Temperature-window

Technique

In order to fit Eq. (4.4) to the phase boundary of 3-Br-4-F-V within the temperature window
0 ≤ T ≤ tmax for several fixed ν’s (Chapter 4, Section 4.3.4, p. 39), we employ the standard
least-squares method with developing Python codes with the Numpy package as described
below. Fitting for the critical exponent ν with fixing Hc1,2(0) is also performed by similar
source code.

1 #importing modules
2 import math, numpy as np ,scipy.optimize, re, os
3 from numpy import inf
4

5 #setting parameters
6 vlist=[0.6,0.64,0.68,0.72,0.76,0.8] #list of fixed critical exponents
7 Hm=7.0 #the magnetic field centered in the 3D ordering dome of 3−Br−4−F−V
8 parameter0=[0.536,4.9] #initial values for fitting
9

10 #definition of fitting function
11 def fit funcHc(Hm,v):
12 def fitfuncHc(parameter,x,y):
13 residual=parameter[0]∗(1−((Hm−x)/(Hm−parameter[1]))∗∗2)∗∗v
14 return residual−y
15 return fitfuncHc
16

17 #partial derivatives of the fitting function
18 def dfuncHc(Hm,v):
19 def dfuncHc(parameter,x,y):
20 dev=[(1−((Hm−x)/(Hm−parameter[1]))∗∗2)∗∗v,−2∗parameter[0]∗v∗((Hm−x)∗∗2)∗((

Hm−parameter[1])∗∗(−3))∗(1−((Hm−x)/(Hm−parameter[1]))∗∗2.)∗∗(v−1)]
21 return dev
22 return dfuncHc
23

24 #main
25 def main():
26

27 #loading datafile which contains a pair of the magnetic field and the 3D ordering
temperature

28 dir = os.getcwd()
29 tempdata=np.loadtxt(dir+<filename>,delimiter=’\t’)
30

31 #sorting data
32 if tempdata[0][0] < Hmax:
33 tempdata=sorted(tempdata, key=lambda x:x[0])
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34 else:
35 tempdata=sorted(tempdata, key=lambda x:x[0], reverse=True)
36

37 #fitting for the fixed critical exponents in the vlist array
38 for v in vlist:
39 #initializing values and arrays
40 i = 0
41 j = 0
42 param output=[0.0 for i in range(len(tempdata))]
43 param result=[0.0 for i in range(len(tempdata))]
44 covar result=[0.0 for i in range(len(tempdata))]
45

46 #preparing inputfile
47 inputfile=<filename>
48 g = open(dir+inputfile, ’w’)
49 g.write(”#v={0}\n#tw (K)\t\’Hc\’\terror\n”.format(v))
50

51 for i in range(2,len(tempdata)):
52 #preparing arrays of the data within the temperature window defined by the value i
53 # (tmax = tempdata[i][0])
54 Nx = np.array([tempdata[j][0] for j in range(0,i+1)],dtype=np.float64) #array of

the magnetic fields
55 Ny = np.array([tempdata[j][1] for j in range(0,i+1)],dtype=np.float64) #array of

the 3D ordering temperatures
56

57 #fitting by the least−squares method
58 param output[i] = scipy.optimize.leastsq(fit funcHc(Hmax,v), parameter0,args=(

Nx,Ny),Dfun=dfuncHc(Hmax,v),full output=True,col deriv=1,xtol=1.0e−9,
maxfev=1000)

59 param result[i] = param output[i][0] # results of fitting parameters
60 covar result[i] = param output[i][1] # covariant matrix
61

62 if (len(Ny) > len(parameter0)) and covar result[i] is not None:
63 s sq = (fit funcHc(Hmax,v)(param result[i], Nx, Ny)∗∗2).sum()/(len(Ny)−

len(parameter0))
64 covar result[i] = covar result[i] ∗ s sq
65 else:
66 covar result[i] = inf
67

68 Hc=param result[i][1] #result of the critical field for the temperature window
69

70 Hc err=np.sqrt(covar result[i][1][1]) #fitting error determined from the diagonal
component of the covariant matrix

71

72 #writing the fitiing results into the inputfile
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73 g.write(’%0.7g\t%0.7g\t%0.7g\n’ % (tempdata[i][1],Hc,Hc err))
74 g.close()
75

76 if name == ’ main ’:
77 main()

A.4 Python Source Code for the Sliding-window Tech-

nique

In Chapter 5, Section 5.3.4 (p. 55), fitting of the power-law function T ∼ |Hc(T )−Hc(0)|ν
with the phase boundary of 3-I-V by the sliding-window technique is performed with devel-
oping a Python code similar to Section A.3 as described below.

1 #importing modules
2 import math, numpy as np ,scipy.optimize, re, os
3 from numpy import inf
4

5 #setting parameters
6 windowlist=[0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1] #list of the temperature−window sizes
7 parameter0=[1.0,6.0,1.0] #initial values for fitting
8

9 #definition of fitting function
10 def fit func(parameter,x,y):
11 residual=parameter[0]∗(parameter[1]−x)∗∗parameter[2]−y
12 return residual
13

14 #partial derivatives of the fitting function
15 def dfunc(parameter,x,y):
16 dev=[(parameter[1]−x)∗∗parameter[2],parameter[0]∗parameter[2]∗(parameter[1]−x)∗∗(

parameter[2]−1),(parameter[0]∗(parameter[1]−x)∗∗parameter[2])∗np.log(parameter
[1]−x)]

17 return dev
18

19

20 #main
21 def main():
22 #loading datafile which contains a pair of the magnetic field and the 3D ordering

temperature
23 dir = os.getcwd()
24 tempdata=np.loadtxt(dir+<filename>,delimiter=’\t’)
25

26 #sort data
27 tempdata=np.array(sorted(tempdata[tempdata[:,0]>2.8], key=lambda x:x[1]))
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28

29 for win in windowlist:
30 #preparing inputfile
31 inputfile=<filename>
32 g = open(dir+’/’+inputfile, ’w’)
33 g.write(”#window={0} K\n#Twin (K)\ta\taerr\tHc\tHc err\tv\tv err\n”.format(

win))
34 i = 0
35 j = 0
36

37 for i in range(len(tempdata)):
38 #setting a temperature window at a certain temperature on the phase boundary
39 if tempdata[i][1]+win > tempdata[−1][1]: break
40 else:
41 winarr= np.logical and(tempdata[:,1] >= tempdata[i][1], tempdata[:,1] <=

tempdata[i][1]+win)
42

43 #preparing arrays of the data within the temperature window
44 Nx = tempdata[winarr,0]
45 Ny = tempdata[winarr,1]
46

47 #fitting by the least−squares method
48 param output = scipy.optimize.leastsq(fit func, parameter0,args=(Nx,Ny),

Dfun=dfunc,full output=True,col deriv=1,xtol=1.0e−9,maxfev=1000)
49 param result = param output[0] # results of fitting parameters
50 covar result = param output[1] # covariant matrix
51

52 if (len(Ny) > len(parameter0)) and covar result is not None:
53 s sq = (fit func(param result, Nx, Ny)∗∗2).sum()/(len(Ny)−len(

parameter0))
54 covar result = covar result ∗ s sq
55 else:
56 covar result = inf
57

58 A=param result[0]# result of the fitting coefficient
59 B=param result[1]# result of the critical field
60 C=param result[2]# result of the critical exponent
61

62 #fitting error determined from the diagonal components of the covariant
matrix

63 Aerr=np.sqrt(covar result[0][0])
64 Berr=np.sqrt(covar result[1][1])
65 Cerr=np.sqrt(covar result[2][2])
66

67 #writing the fitiing results into the inputfile
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68 g.write(’%0.9g\t%0.9g\t%0.9g\t%0.9g\t%0.9g\t%0.9g\t%0.9g\n’ % (
tempdata[i][1]+win/2,A,Aerr,B,Berr,C,Cerr))

69 g.close()
70

71 if name == ’ main ’:
72 main()
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