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Abstrat

We present the measurement of the Mihel parameters of � lepton �̄ and �� in the radiative leptoni

deay �

�

! `

�

��̄ using 703 fb

�1

of ollision data olleted with the Belle detetor at the KEKB

e

+

e

�

ollider. The Mihel parameter is a fundamental property of unstable harged leptons and

haraterizes the dynamis of leptoni deays. The experimental values of �̄ and �� parameters may

reveal the presene of new physis beyond the Standard Model.

The Mihel parameters are measured by an unbinned maximum likelihood method where �̄ and

�� are �tted to the kinemati distribution of e

+

e

�

! �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄) (` = e or �). Using

the muon mode, �̄ and �� are simultaneously �tted to the spetra to be �̄

�

= �1:3 � 1:5 � 0:8 and

(��)

�

= 0:8 � 0:5 � 0:3. In the eletron mode, taking into aount the suppression of �̄ sensitivity

from the small mass of daughter eletron, we extrat (��)

e

by �xing �̄ value to the Standard Model

predition of �̄

SM

= 0. The measured value is (��)

e

= �0:4 � 0:8 � 0:9. The �rst error is statistial

and the seond is systemati. This is the �rst measurement of these parameters. These results are

onsistent with the Standard Model preditions within their unertainties and give a onstraint on the

oupling oeÆient of the generalized weak interation.

We also measured the branhing ratio of the radiative leptoni deays under the photon energy

threshold of E

�



> 10 MeV in the � rest frame to be B(�

�

! e

�

��̄) = (1:82 � 0:02 � 0:10) � 10

�2

and B(�

�

! �

�

��̄) = (3:68 � 0:02 � 0:15) � 10

�3

. These results are onsistent with the leading

order Standard Model predition. In the next-leading order, there are e�ets from multiple photon

emission, whih is not implemented in the urrent event generator. An improvement of generator is

required to make omparison at the next-leading order.
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Chapter 1

Introdution

1.1 The Standard Model

Everything in our universe is believed to be made from fundamental partiles. Their interations or

fores are desribed by an exhange of other partiles. Suh partiles are desribed so as not to have

their sizes as well as internal strutures thereby they are alled elementary partiles. The quantum

�eld theory (QFT) is a physial framework whih treats an entity of suh a partile as an exitation

of �eld in the spae-time, relying on both the quantum mehanis and the speial relativity�most

suessful theories of physis in the twentieth entury.

In priniple, in the framework of QFT, people an freely build new theories: arbitrary types of

partiles and rules of interations an form one theory. However, there are few theories whih an

reasonably predit real behaviors of known partiles. The Standard Model (SM) is known to be the

strongest preditable theories of QFT, in whih twelve types of fermions (orresponding to matters)

are governed by three types of fores. The fores are mediated by orresponding bosons. The masses

of these partiles are uniquely determined by strengths of eah oupling to the �eld of Higgs boson.

Below we give a summary of the SM.

Types of elementary partiles

� Higgs boson is a spin-0 partile to give other partiles masses.

� There are three types of fores: eletromagneti interation, harged and neutral weak inter-

ations and strong interation. These fores are mediated by spin-1 partiles and play roles

in anellations of position-dependent phases. The invariane under the phase transformation

is alled gauge invariane, hene these partiles are also alled gauge bosons. These gauge

bosons are named photon  for the eletromagneti, W

�

and Z bosons for the harged and

neutral weak interations and gluon g for the strong fore.

� Matters are made from spin-

1

2

partiles whih are ategorized into two groups: six types of

quarks and six types of leptons. The quark has harges of all fores above and is able to

partiipate in all interations. Whereas the lepton does not have a harge of strong fore but has

a weak harge, aordingly it partiipates in the weak interations. The three quarks have +2=3

eletromagneti harges and other three have �1=3. Three leptons whih have eletromagneti

harges +1 are alled harged leptons and are able to interat via eletromagneti fore while

the other three do not and are alled neutrinos. The three types are also alled �avors.

� Exept the neutral partiles , Z and g, all partiles have their orresponding anti-partiles,

whih have opposite quantum numbers.

5



Important harateristis

� Partiles have a property alled hirality, whose eigenvalue is 1 or -1. In the massless limit,

it is well known that the hirality equals to heliity that is de�ned as h =

�

S � n, where

�

S is a

normalized vetor of spin and n is a unity vetor of the partile movement. The positive and

negative heliities are alled right-handed and left-handed, respetively.

� Of all fores, only harged weak interation an hange the �avor of partile. Moreover, it

violates the symmetry of hirality, i.e., only negative-hirality partiles and anti-partiles are

ative in the harged weak interation.

� Strong fores have a potential proportional to distane V(r) / kr: in other words, the strength

of oupling beomes large in low energy or weak in high energy, so alled asymptoti freedom.

This means that a system whih has two free distant quarks is unstable, hene, in terms of

energy, it is more bene�ial to reate qq̄ pair (q represent a quark) from vauum to form two

qq̄ binding states (or mesons). For this reason, neither the free quark nor its frational harge

has not been disovered yet (quark on�nement).

� In addition, beause of the asymptoti freedom, theoretial alulations using perturbation

tehnique are less aurate for low energy behaviors of strong interation. In suh energy

sale, therefore, a preise omparison between a value observed by experiment and theoretial

predition is diÆult.

1.1.1 Searh for physis beyond the Standard Model

In 2012, at Conseil Européen pour la Reherhe Nuléaire (CERN), Higgs boson was disovered

by experiments at the large hadron ollider (LHC) from proton-proton ollision data [1, 2℄. The

existene of the Higgs boson, though many researher had believed in it, made a validity of the SM

deisive. The SM an explain almost all of partile phenomena that our in our universe. Various

quantum behaviors of partiles are within a predition of this framework. Many physiist, however,

believe that the SM to be neither omplete nor ultimate theory whih desribes nature beause there

are several strong fats that are inonsistent with the SM. The observation of nonzero mass of neu-

trinos disovered by the neutrino osillation [3, 4℄, the unknown soure of the gravitational potential

(dark matter), the asymmetry of amounts between matter and antimatter and the unnaturally small

mass of Higgs boson (so alled hierarhy problem) [5℄, all of them are not well explained in the

framework of the SM.

For the reason noted above, physiists are trying to �nd an inonsisteny of the SM or physis

beyond the SM (BSM). At least from existing observations, the e�et from physis BSM in various

behaviors of partiles appears to be small. This may imply that a new partile, whih is responsible

for phenomena BSM, has a very large mass. In fat, using the LHC, people ahieved very high-

energeti environment of 10 TeV or 10

14

K by aelerating and olliding protons and are attempting

to diretly unveil the appearane BSM. Another approah is to preisely measure the properties of

already known phenomena. Based on observations of a huge number of interations of partiles at

relatively low energy, possible e�ets from the physis BSM are preisely veri�ed.

1.2 Searh for physis beyond the Standard Model in harged

leptons

In the SM, there are three �avors of harged leptons: e; � and �. The eletron e has the smallest

mass in all partiles that have eletromagneti harges, hene the harge onservation does not allow
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eletrons to deay. The stability of eletrons opens various experimental possibilities to measure

their properties. The muon � and tau � have masses (105:65837545 � 0:0000024) MeV=

2

and

(1776:86 � 0:12) MeV=

2

, respetively [7℄, and an deay into lighter partiles. The tests of these

deays also give us additional information from the physis BSM.

In terms of searh BSM based on the preision measurement of partile properties, experiments

using the harged leptons turn out to o�er beautiful laboratories. The inativity of harged leptons to

the strong interation enables us to pursue exellent preision in the theoretial alulation. Various

properties of these deays, desribed by the eletroweak setor of the SM, are preisely alulated,

therefore, experimental results an be de�nitely ompared with theoretial preditions. Moreover,

unlike quarks, the harged leptons an exist in bare states and we are able to diretly test the nature of

elementary partiles. Though neutrinos also share this nature, it is diÆult to do similar measurement

due to the small reation rate.

The � partile

There have been varieties of experiments to measure � properties. Most notably, at Brookhaven Na-

tional Laboratory (BNL), the E821 experiment measured an anomalous magneti moment of the �

using polarized beam with amazing preision (0.7 ppm!) [6℄ and as a result exhibited a signi�ant de-

viation from the SM predition by 3� level. Not only the anomalous magneti moment but a variety

of properties of � have been measured for more than one entury. Its relatively long lifetime (� 2 �s)

and availability of thereby large number of pure � (moreover sometimes polarized) sample enables

us to perform exellent preision experiments for �: it may not be overstate that we understand the

muon very well.

The � partile

On the other hand, in spite of its equally interesting harateristis, various properties of � lepton

are not so preisely measured, partiularly due to its tehnial diÆulties of experiment. Theoretial

treatment of � is as simple as that of � ase, but the short lifetime of � (� 0:3 ps) does not allow

ompetitive measurement in terms of absolute preision.

Nevertheless, measurements of the � deay is one of the most sensitive probes to the e�ets

BSM. The large mass of the � allows us to expet an enhanement of the sensitivity on the BSM. For

instane, the two Higgs doublet model (2HDM), one of the branhes of the supersymmetri models,

predits an existene of the harged Higgs and the magnitude of their ouplings is proportional to

mass of a lepton. As a result, in omparison with � deays, we an expet the gain of sensitivity by

a fator of (m

�

=m

�

)

2

� 300.

The large mass of the �makes it possible to deay into both leptons and hadrons. The former one

is alled leptoni deay and aounts for approximately 35% of all tau deays. The rest deays of

the � ontain hadrons in the �nal state and are alled hadroni deay.

Taking into aount the sensitivities to the e�ets from physis BSM, we hose the � lepton for

the theme of study. In this thesis, we desribe the method in detail.

1.3 Mihel Parameters

The measurement of Mihel parameters is one of the most established strategies for the veri�ation

of the deay of harged leptons. The formalism was developed in the ourse of the lari�ation of

the (weak) harged interation.

Sine the disovery of weak fore, physiist have been trying to unveil its unique dynami nature

spending long time. Before moving to main topi, we review the history.

7



1.3.1 History of test of the harged urrent

The weak interation was �rst proposed by Fermi [8, 9℄ to explain the beta deay of the nuleus. He

inorporated an idea of the neutrino, whih had been suggested by Pauli, and sueeded to explain

the ontinuous momentum spetrum of the daughter eletron. In 1957, C. S. Wu found that the weak

fore did not respet the symmetry of the parity in the beta deay from

60

Co [10℄. The angular distri-

bution of the eletron from the polarized obalt nulei suggested the maximal violation of parity in

the ouplings, i.e., the interation results in the asymmetri ouplings between left-handed and right-

handed partiles. The struture of the oupling ontains the vetor and axial-vetor ontributions

almost in the same magnitudes with opposite signs, so it is alled V � A interation.

Beause of its unique properties, over more than one entury there have been various attempts

to reveal the nature of the weak interation. In 1949, Ruderman and Finkelstein predited that a

ratio of deay rates B(�

+

! e

+

�)=B(�

+

! �

+

�) was suppressed by four order of magnitude if the

weak interation ours through the V � A struture [11℄. The V � A type urrent permits only

negative-heliity partiles to partiipate in the weak interation, whih results in the violation of

angular momentum onservation in �

+

! `

+

� in the massless limit m

`

! 0 (` = e, or �). This

well known mehanism is often alled heliity suppression. In 1958, the eletron deay of pion

�

+

! e

+

� was �rst observed [12℄ and then a reent experimental value using stopped �

+

, B(�

+

!

e

+

�)=B(�

+

! �

+

�) = (1:2346 � 0:0035 � 0:0036) � 10

�4

[13℄ well supports its theoretial predition

(1:233 � 0:004) � 10

�4

[14℄.

More general tests of the Lorentz struture of the weak interation have been performed in the

deay of �

�

! e

�

��̄ and �

�

! `

�

��̄ by the measurement of Mihel parameters.

1.3.2 Mihel formalism

The most general Lorentz-invariant derivative-free matrix element of leptoni � deay

�

�

�

! `

�

��̄

y

is represented as [17℄

M =

�

�

�

�

`

`

=

4G

F

p

2

X

N=S ;V;T

i; j=L;R

g

N

i j

h

u

i

(`)�

N

v

n

(�

`

)

i h

u

m

(�

�

)�

N

u

j

(�)

i

; (1.1)

where G

F

is the Fermi onstant, i and j are the hirality indies for the harged leptons, n and m are

the hirality indies of the neutrinos, ` is e or �, �

S

= 1, �

V

= 

�

and �

T

= i
(


�



�

� 

�



�

)
=2

p

2 are,

respetively, the salar, vetor and tensor Lorentz strutures in terms of the Dira matries 

�

, and

g

N

i j

are the orresponding dimensionless ouplings. The hirality indies n and m are not summed

in Eq. (1.1) beause they are uniquely �xed for given i, j and the interation type. In the SM, �

�

deays into `

�

exlusively via the W

�

vetor boson with the V � A Lorentz struture, i.e., the only

non-zero oupling is g

V

LL

= 1. Experimentally, only the squared matrix element is observable and so

bilinear ombinations of the g

N

i j

are aessible. Of all suh ombinations, four Mihel parameters�

�, �, Æ and ��an be measured by the leptoni deay of the � when the �nal state neutrinos are not

�

The disussion here holds also for � when the daughter lepton ` is hanged to e.

y

Unless otherwise stated, use of harge-onjugate modes is implied throughout the thesis.
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�

�

�



`

�

`

�

�

�



`

�

`

�

�

�



`

�

`

Figure 1.1: Radiative deay. The last diagram arises from the radiation from W boson but this is

suppressed by the very small fator of (m

�

=m

W

)

2

� 5 � 10

�4

.

observed [18℄:

� =

3

4

�

3

4

�

�

�

�

g

V

LR

�

�

�

2

+

�

�

�

g

V

RL

�

�

�

2

+ 2

�

�

�

g

T

LR

�

�

�

2

+ 2

�

�

�

g

T

RL

�

�

�

2

+<

�

g

S

LR

g

T�

LR

+ g

S

RL

g

T�

RL

�

�

; (1.2)

� =

1

2

<

�

6g

V

RL

g

T�

LR

+ 6g

V

LR

g

T�

RL

+ g

S

RR

g

V�

LL

+ g

S

RL

g

V�

LR

+ g

S

LR

g

V�

RL

+ g

S

LL

g

V�

RR

�

; (1.3)

� = 4<

�

g

S

LR

g

T�

LR

� g

S

RL

g

T�

RL

�

+

�

�

�

g

V

LL

�

�

�

2

+ 3

�

�

�

g

V

LR

�

�

�

2

� 3

�

�

�

g

V

RL

�

�

�

2

�

�

�

�

g

V

RR

�

�

�

2

+5

�

�

�

g

T

LR

�

�

�

2

� 5

�

�

�

g

T

RL

�

�

�

2

+

1

4

�

�

�

�

g

S

LL

�

�

�

2

�

�

�

�

g

S

LR

�

�

�

2

+

�

�

�

g

S

RL

�

�

�

2

�

�

�

�

g

S

RR

�

�

�

2

�

; (1.4)

�Æ =

3

16

�

�

�

�

g

S

LL

�

�

�

2

�

�

�

�

g

S

LR

�

�

�

2

+

�

�

�

g

S

RL

�

�

�

2

�

�

�

�

g

S

RR

�

�

�

2

�

�

3

4

�

�

�

�

g

T

LR

�

�

�

2

�

�

�

�

g

T

RL

�

�

�

2

�

�

�

�

g

V

LL

�

�

�

2

+

�

�

�

g

V

RR

�

�

�

2

� <

�

g

S

LR

g

T�

LR

+ g

S

RL

g

T�

RL

�

�

: (1.5)

Parametrized by these values, the di�erential deay width of �

�

! `

�

��̄ is expliitly given by

d�(�

�

! `

�

��̄)

dE

�

`

d


�

`

=

4G

2

F

m

�

E

3

max

(2�)

4

q

x

2

� x

2

0

"

x(1 � x) +

2�

9

(4x

2

� 3x � x

2

0

)

+�x

0

(1 � x) � �

n

�

l

� S

�

�

3

q

x

2

� x

2

0

 

1 � x +

2Æ

3

�

4x � 4 +

q

1 � x

2

0

�

! #

; (1.6)

where E

max

= (m

2

�

+ m

2

`

)=2m

�

is the maximum energy of lepton in the tau rest frame, x = E

�

`

=E

max

is a normalized lepton energy, x

0

= m

`

=E

max

, and n

�

`

� S

�

�

is the osine of angle between the tau

spin and lepton diretion. Thus the Mihel parameters haraterize spetra of lepton momentum and

diretion. Moreover, as Eq. (1.6) shows � and �Æ appear with n

�

l

� S

�

�

, it is thus these two variables

determine the lepton angular dependene vs tau-spin diretion.

1.4 Further tests of the V � A interation in � deays

The Feynman diagrams desribing the radiative leptoni deay of the � are presented in Fig 1.1. The

last amplitude turned out to be suppressed by the very small fator of (m

�

=m

W

)

2

� 5 � 10

�4

[26℄ and

an be negleted. Then, as shown in Refs. [27, 28, 29℄, the presene of a radiative photon in the �nal

state (or sometimes alled inner bremsstrahlung) exposes three more Mihel parameters, �̄, �

00

and

��, whih are expliitly given by

�̄ =

�

�

�

g

V

RL

�

�

�

2

+

�

�

�

g

V

LR

�

�

�

2

+

1

8

�

�

�

�

g

S

RL

+ 2g

T

RL

�

�

�

2

+

�

�

�

g

S

LR

+ 2g

T

LR

�

�

�

2

�

+ 2

�

�

�

�

g

T

RL

�

�

�

2

+

�

�

�

g

T

LR

�

�

�

2

�

; (1.7)

�

00

= <

n

24g

V

RL

(g

S �

LR

+ 6g

T�

LR

) + 24g

V

LR

(g

S �

RL

+ 6g

T�

RL

) � 8(g

V

RR

g

S �

LL

+ g

V

LL

g

S �

RR

)

o

; (1.8)

�� =

�

�

�

g

V

RL

�

�

�

2

�

�

�

�

g

V

LR

�

�

�

2

+

1

8

�

�

�

�

g

S

RL

+ 2g

T

RL

�

�

�

2

�

�

�

�

g

S

LR

+ 2g

T

LR

�

�

�

2

�

+ 2

�

�

�

�

g

T

RL

�

�

�

2

�

�

�

�

g

T

LR

�

�

�

2

�

: (1.9)
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Table 1.1: Mihel parameters of the � lepton

Name SM Spin Experimental Comments and Ref.

value orrelation result

y

[7℄

� 0 no 0:057 � 0:034 [19℄

� 3=4 no 0:74979 � 0:00026 [20℄

� 1 yes 1:0009

+0:0016

�0:0007

[21℄

Æ 3=4 yes 0:75047 � 0:00034 [20℄

� 0 no 0:02 � 0:08 [22℄

�� 0 yes 0:00 � 0:01 al. from �

0

value [23℄

y

Experimental results represent average values obtained by the partile data group (PDG) [7℄. The most

preise results are referened here.

The formula of di�erential deay width for the radiative deay, whih orresponds to Eq. (1.6) in

�

�

! `

�

��̄ ase, beomes more ompliated and we postpone its desription until Chapter 5. Never-

theless, these new Mihel parameters also a�et the spetra of daughter partiles.

Similarly to � and �, both �̄ and �

00

appear as spin-independent terms in the di�erential deay

width. Sine all terms in Eq. (1.7) are non-negative, the upper limit on �̄ provides a onstraint on

eah oupling onstant. The value of �

00

is suppressed by a fator of m

`

=m

�

� 0:03% for an eletron

daughter and � 6% for a muon daughter and so diÆult to measure with the statistis available so

far. In this study, we use the SM value �

00

= 0.

To measure ��, whih appears in the spin-dependent part of the di�erential deay width, we

must determine the spin diretion of the �. This spin dependene is extrated using the spin-spin

orrelation with the partner � in the event (it is explained in detail in the next hapter).

The information on Mihel parameters is summarized in Tables 1.1 and 1.2 for muon and tau,

respetively. �̄ and �� parameters have been already measured in �

�

deay (note that �� parameter

is indued from �

0

parameter). Using the statistially abundant data set of ordinary leptoni deays,

previous measurements had determined the Mihel parameters �, �, Æ and � to an auray of a few

perent and in agreement with the SM predition. Taking into aount this measured agreement, the

smaller data set of the radiative deay and its limited sensitivity, we fous in this analysis only on the

extration of �̄ and �� by �xing �, �, Æ and � to the SM values. This represents the �rst measurement

of the �̄ and �� parameters of the � lepton.

1.5 Physis motivation

As introdued in Se. 1.3, the relationships between the oupling onstants g

N

i j

and the Mihel param-

eters intriately intertwine eah other. Consequently, an intuitive understanding of the onnetion to

a spei� model BSM is a room for disussion. For example, it is known that � is diretly assoiated

with the harged Higgs model. In the SM, only g

V

LL

= 1 is nonzero and other g

N

i j

being zero, hene

from Eq. (1.3) we obtain � � 0:5 � <fg

S

RR

g. Sine the harged Higgs mediates the radiative leptoni

deay of the � as a salar-type interation, the measurement of � is regarded as the veri�ation of the

oupling of Higgs to the right-handed �. The same analogy holds for �

00

: �

00

� 8 � <fg

S

RR

g. On the

ontrary, other Mihel parameters appear as the omplex ombinations of many ontributions BSM.

Nevertheless, there are a few omments for the new Mihel parameters, �̄ and ��. First, the

ordinary Mihel parameters (�, �, Æ and �) an be measured blindly to the polarization of outgoing

lepton. Conversely, the measurement of the new parameters �̄ and �� in the �

�

! `

�

��̄ is equivalent
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Table 1.2: Mihel parameters of the � lepton

Name SM Spin Experimental Comments and Ref.

value orrelation result

y

[7℄

� 0 no 0:013 � 0:020 [24℄

� 3=4 no 0:745 � 0:008 [25℄

� 1 yes 0:995 � 0:007 measured in hadroni deays [24℄

�Æ 3=4 yes 0:746 � 0:021 [25℄

� 0 no not measured from radiative deay (RD)

�� 0 yes not measured from RD

�

00

0 no not measured from RD, suppressed by m

`

=m

�

y

Experimental results represent average values obtained by the partile data group (PDG) [7℄. The most

preise results are referened here.

to the veri�ation of the ouplings of eah hirality of the daughter lepton. The angular distribution

of the photon vs the movement of the daughter lepton provides the information of the polarization

of the lepton. In fat, aording to Ref. [30℄, the �� is related to another Mihel-like parameter

�

0

= �� � 4�� + 8�Æ=3. Beause the probability that the �

�

deays into the right-handed harged

daughter lepton Q

�

`

R

is given by Q

�

`

R

= (1 � �

0

)=2 [31℄, the measurement of �� provides a further

onstraint on the V �A struture of the weak urrent.

y

It is known that veri�ation of the asymmetri

nature of the hirality has a strong impat on the theory BSM like right-left symmetri model [32, 33℄.

Seond, as is mentioned before, the �̄ is a sum of non-negative terms, hene the upper limit of the

�̄ onstrains the value of eah omponent. As summarized in �-Lepton deay parameters in Ref. [7℄,

some of the g

N

i j

inluded in Eq. (1.7) are not well measured for the � deay:

jg

V

RL

j < 0:52 (95% C:L); (1.10)

jg

T

RL

j < 0:51 (95% C:L); (1.11)

jg

S

RL

j < 2:01 (95% C:L); (1.12)

jg

S

LR

j < 0:95 (95% C:L): (1.13)

The measurement of the �̄ is very powerful way to onstrain these ouplings. Moreover, �̄ is also

related to another Mihel-like parameter �

00

= 16�=3 � 4�̄ � 3, whih represents the angular depen-

dene of the longitude spin of the daughter lepton (see e.g. Ref [34℄). Although �

00

has been already

measured for � deay, that of � is not yet known.

Finally, these six Mihel parameters deliver independent information. Figure 1.2 summarizes the

matrix of the orrelation oeÆients of these Mihel parameters alulated by �tting the parameters

to the spetra of Monte Carlo events for �

�

! e

�

��̄ (the detailed method of this evaluation is ex-

plained in Chapter 5). The orrelations of the Mihel parameters between the ordinary and radiative

ones, i.e., �, �, Æ, � and �̄, �� are suÆiently small and this implies a potential impat on the onstraint

of g

N

i j

in terms of the onstrution of theories.

1.6 Prodution of � leptons

In Table 1.3, information of possible � deay data olleted by various experiments is listed. To

preisely measure the properties of the � lepton, there are two requirements: the observation of large

y

Similarly, the probability that the right handed � ouples the daughter lepton is given by Q

�

R

= [1+ (3��16�Æ)=9℄=2.
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Figure 1.2: Correlation oeÆients between the Mihel parameters.

Table 1.3: List of available � data

Experiment Integrated luminosity (fb

�1

) Beam energies

ARGUS 0.5 E

ee

= 9.4-10.6 GeV

CLEO-II 4.7 E

ee

= 10.6 GeV

CLEO- 0.8 E

ee

= 3.8 GeV

Babar 467 E

ee

= 10.0-10.6 GeV

Belle 980 E

ee

= 9.5-10.9 GeV

LHCb > 2:0 E

pp

= 13 TeV (2015-2016)

number of � deays and lean environment in the detetion of daughter partiles. Aounting for not

only number of events but also lean environment of lepton ollider, the Belle experiment possesses

the best � data for its preision measurement.

The Belle experiment, whih was operated for more than ten years from 1999 to 2010 at Tsukuba

Ibaraki Japan, is a projet using an eletron-positron ollider KEKB and Belle detetor. The projet

was originally organized to aim for an observation of the soure of CP violation in the deays of B

mesons based on huge number of events. Indeed, Belle sueeded to unover the mehanism of the

CP asymmetry in the ontext of the SM. At the same time, however, the Belle experiment olleted

data from huge number of � deays produed by e

+

e

�

! �

+

�

�

proess. We use this exellent

environment to reveal the fundamental nature of � lepton.
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Chapter 2

Radiative leptoni deay �

�

! `

�

��̄

In order to measure the Mihel parameters, �̄ and ��, the probability density funtion (PDF) is �tted

to the deay spetra of �

�

! `

�

��̄ deay (` = e or �). Using �

+

! �

+

�

0

�̄ deay as a spin analyzer

for the partner side of �

+

in e

+

e

�

! �

+

�

�

prodution, information of polarization is extrated. In this

setion, we review the harateristis of the signal deay. Detailed method about the �t proedure is

explained in Chapter 5.

2.1 De�nition of the radiative deay and its distribution

Two kineti parameters haraterize the radiative leptoni deay �

�

! `

�

��̄. First one is an energy

of the radiative photon E



. Figure 2.1 shows the E



distribution simulated by KKMC and TAUOLA

generators.

�

Here, the E



is de�ned in the enter of mass system (CMS) of e

+

e

�

beam.

y

As the

histograms show, the distribution of the photon energy diverges in the limit E



! 0. This omes

from the fat that the d�=dE

�



has a singularity at E

�



! 0, where E

�



represents the photon energy in

the � rest frame.

For the reason noted above, the ordinary leptoni deay (no photon) and the radiative deay

annot be naturally distinguished. That is to say, the energy threshold is oneptually required: if

E

�



exeeds a ertain threshold, the event is regarded as the radiative deay. A onventional hoie

E

�



= 10 MeV is determined in suh a way that  is realistially measured by experiment and at

the same time branhing ratio beomes reasonable fration. In addition, if we apply typial photon

energy threshold � 100 MeV in the laboratory frame (suh veto is neessary to exlude variety of

bakgrounds), a soft radiative events whose photon energy is less than E

�



< 10MeV is rarely seleted

(order of 1%). We use this spei� value in the whole analysis to de�ne eÆieny of our radiative

deay.

z

The energy threshold of E

�



= 10 is also used to de�ne the branhing ratio of radiative deay,

whih is explained in next subsetion.

In reality, it is also required to determine lower threshold to generate the radiative deays by MC

simulation. The TAUOLA generator adopts the generating-energy threshold E

�

gen

= m

�

=1000, whih

should obviously satisfy E

�

gen

< E

�



. Figure 2.2 shows the fration of the radiative proess out of

total amounts of generated leptoni deays as a funtion of E

�



threshold. These plots tell that the

fration of radiative events (used to determine eÆieny) are 10:6% and 2:6% for eletron and muon

modes, respetively.

A osine of angle between the outgoing lepton and photon os�

`

is another important variable in

this analysis. Beause the deay amplitude is approximately expressed as a sum of

h

�

2

`

+ m

2

l

=E

2

`

i

�n

�

These generators are explained in Se. 3.4.

y

Otherwise stated, variables without any labels always mean those of the CMS.

z

From theoretial point of view, to justify the preision of perturbation tehnique, the hoie of smaller value less

than 10 MeV is not reasonable.
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Figure 2.1: Energy distribution of the radiative photon on the CMS generated by KKMC.
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Figure 2.2: Fration of event having a photon energy above threshold (out of generated leptoni

deays): (left) �

�

! e

�

��̄ and (right) �

�

! �

�

��̄. The horizontal axis represents photon energy

threshold on the �-rest frame and the vertial axis indiates the ratio. If onventional de�nition, E

�



=

10 MeV, is used, the frations are 10:6% and 2:6% for the eletron and muon modes, respetively.

The �at shape of small-energy region omes from the generating-energy threshold E

�

gen

= m

�

=1000.
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Figure 2.3: Distribution of an angle between lepton and photon: (left) �

�

! e

�

��̄ and (right)

�

�

! �

�

��̄. The horizontal is os�

`

.

for an integer n, the heavier mass of muon exhibits a broad distribution as an be seen in Fig. 2.3. The

requirement of maximum-allowed angle between lepton and photon is used to disriminate signal

from bakground ontamination.

2.2 Spin-spin orrelation of �

+

�

�

and two-body deay �

+

! �

+

�̄!

�

+

�

0

�̄)

τ
+

τ
‐

e
‐

e
+

RH

RH

LH

LH

Figure 2.4: Spin-spin orrelation in e

+

e

�

! �

+

�

�

proess. The heliities of �

+

�

�

pair are preferably

anti-orrelated eah other. Same olor indiates same ombination.

As mentioned in Se. 1.3, the measurement of the �� requires the information of the spin of

mother �. This is extrated through the orrelation of the � and its partner � in e

+

e

�

! �

+

�

�

produ-

tion. As drawn in Fig. 2.4, the heliities of �

+

�

�

pair are anti-orrelated (against) eah other. Sine

this proess ours through an exhange of  (spin-1 partile), the angular onservation permits only

either �

+

R

�

�

L

or �

+

L

�

�

R

states in the high energy limit E

�

! 1, where L and R denote the heliities of

taus. In ase of beam energy of KEKB aelerator (approximately E

�

� 5 GeV), 95% of �

+

�

�

pairs

are anti-orrelated while 5% are orrelated.

In the other side of �, or sometimes alled tag-side, we use �

+

! �

+

�

0

�̄ deay. In general, the

hadroni deay of the � with two pseudo-saler mesons have a quantum number J

P

of either 0

+

or

1

�

. The onserved vetor urrent (CVC) theorem allows only the latter hoie, hene the spin-1

exited state of �(770) as well as its radial exitations �(1450), �(1700)... are believed to dominate

this proess. Figure 2.5 shows the invariant mass distribution of the two-pion system for �

+

! �

+

�

0

�̄

proess simulated by the KKMC and TAUOLA generators.
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Figure 2.5: Invariant mass distribution for the two-pion system generated by KKMC and TAUOLA.
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Figure 2.6: Angular dependene of �

+

movement in �

+

! �

+

�̄ deay: (a) �

�

�

is the angle between

spin diretion of tau and �

+

in the �

+

rest frame (b) distribution of os�

�

�

. The blue arrow represents

spin of �

+

.

The spin diretion of �

+

a�ets the angular distribution of �

+

partile. As Fig. 2.6 shows, the �

+

are preferably generated into the opposite diretion of the tau spin. This situation an be explained

by a superposition of two amplitudes of a and b:

jai = j0i 


�

�

�

�

�

1

2

+

: A

a

= haj+i ; (2.1)

jbi = j1i 


�

�

�

�

�

1

2

+

: A

b

= hbj+i ; (2.2)

where the brakets in the right hand side represent heliities of �

+

meson and �̄, j+i represents the

initial state of �

+

polarized in +z diretion, andA

a

andA

b

are the orresponding amplitudes of eah

hannel whose maximums have a relation given by jA

max

a

=A

max

b

j =

p

2m

�

=m

�

[35℄. As illustrated

in Fig. 2.7, the amplitudes of a and b beome maximum (minimum) at �

�

�

= � (0) and �

�

�

= 0 (�),
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Figure 2.7: Two spin on�gurations of �

+

and �̄: (a) the angular momentum perfetly onserves

when �

�

� = � while violates when �

�

� = 0: (b) the situation beomes opposite. As a result, (a) and

(b) have angular dependenes of sin �

�

�

=2 and os �

�

�

=2, respetively.

respetively, and in fat it is known that the angular dependenes are given by sin �

�

�

=2 and os �

�

�

=2.

Observed probability is thus alulated to be

P(�) / 1 �

jA

max

a

j

2

� jA

max

b

j

2

jA

max

a

j

2

+ jA

max

b

j

2

os �

�

�

= 1 �

m

2

�

� 2m

2

�

m

2

�

+ 2m

2

�

os �

�

�

� 1 � 0:43 os �

�

�

: (2.3)

This linear dependene on os �

�

�

is seen in the �gure.

This rho deay is hosen beause of its large branhing fration B(�

+

! �

+

�

0

�̄) = (25:52 �

0:09)% [7℄ and relatively simple form-fator, whih results in an easy implementation of the PDF.

As a matter of fat, taking into aount the magnitude of polarizations and branhing frations,

Ref. [35℄ reports that �

+

! �

+

�

0

�̄ exhibits the largest sensitivities of all � deays on the polarization

measurement.

As explained above, through the spin-spin orrelation in e

+

e

�

! �

+

�

�

prodution and the angular

distribution of pions from rho deay, information of �

�

spin is indiretly extrated only to measure

the �� parameter.

2.3 Branhing ratio of �

�

! `

�

��̄ deays

Before starting this projet to measure the Mihel parameters, the most aurate experimental values

of the branhing ratio of �

�

! `

�

��̄ deay were the measurement by the CLEO experiment [36℄.

Using 4:68 fb

�1

of e

+

e

�

annihilation data, the CLEO obtained

B

EX:

CLEO

(�

�

! e

�

��̄)

E

�



>10 MeV

= (1:75 � 0:06 � 0:017) � 10

�2

; (2.4)

B

EX:

CLEO

(�

�

! �

�

��̄)

E

�



>10 MeV

= (3:61 � 0:16 � 0:35) � 10

�3

; (2.5)

where the �rst unertainty is statistial and seond is systemati. This measurement was renewed in

2015 by BaBar experiment using muh more abundant statistis of 431 fb

�1

e

+

e

�

ollision data to

give [37℄,

B

EX:

BaBar

(�

�

! e

�

��̄)

E

�



>10 MeV

= (1:847 � 0:015 � 0:052) � 10

�2

; (2.6)

B

EX:

BaBar

(�

�

! �

�

��̄)

E

�



>10 MeV

= (3:69 � 0:03 � 0:10) � 10

�3

: (2.7)

These measurements are in good agreement with the theoretial alulations, whih rely on the for-

mula given by [38, 39℄.

On the other side, as reported by Ref. [40℄ in 2015, the renewal of theory found a deviation

between these experimental values and the up-to-date theoretial predition. In this update, the next

leading order quantum eletrodynamis (QED) orretion was newly taken into aount, where up

to order-�

2

e�ets were inluded. The additional �-orretion gives not only the loop orretion, but
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also another infrared divergene in the �nal result. Therefore, the oneptual treatment of photon

di�ers from that of single emission: a ombination of one visible photon and one invisible photon

(

soft

; 

vis:

) is ategorized as an exlusivemode while a ombination where at least one visible photon

exists (

vis:

; 

vis:

) + (

soft

; 

vis:

), is ategorized as an inlusive mode (both visible mode (

vis:

; 

vis:

) is

also distinguished as a doubly deay). Interestingly, the measurement of mentioned branhing ratios

for �

�

! e

�

��̄ deay, whih is in fat approximately the exlusivemode, deviates from the exlusive

SM predition by 3:5�. Aording to the referene, the leading order (LO) alulation predits

B

Th:

LO

(�

�

! e

�

��̄)

E

�



>10 MeV

= 1:834 � 10

�2

; (2.8)

B

Th:

LO

(�

�

! �

�

��̄)

E

�



>10 MeV

= 3:663 � 10

�3

; (2.9)

whereas the next-leading order (NLO) predits

dB

Th:

NLO

(�

�

! e

�

��̄)

E

�



>10 MeV

= 1:645(19) � 10

�2

; (2.10)

B

Th:

NLO

(�

�

! �

�

��̄)

E

�



>10 MeV

= 3:572(3) � 10

�3

: (2.11)

Herein, the errors for the NLO alulation arise from a next-next-leading order e�ets, numerial

alulation and an experimental value of the lifetime of the �.

As a byprodut of this analysis, we also measure the branhing ratio. The proedures are de-

sribed in detail in Chapter 9.

2.4 E�et of the Mihel parameter on the distribution

In this setion, we demonstrate the e�et of the Mihel parameter on the spetra of daughter partiles.

As we shall explain, every event of signal �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄) is represented as a orresponding

point in the twelve-dimension phase spae. Due to its large dimension, it is diÆult to intuitively

observe the hange of distribution. However, we an glimpse the dependene of spetra of the lepton

and photon variables on the Mihel parameter by observing distributions projeted on 1D-axis.

The dependene on �� disappears when we integrate isotropially in the phase spae beause ��

is inluded in the spin-dependent term of the di�erential deay width as:

d�(�! `��̄)

dPS

� S

�

�

� V

�

��; (2.12)

where V

�

is a vetor funtion, whih does not depend on S

�

�

and is written as a linear ombination

of the diretion of lepton n

�

`

and photon n

�



. Integrations over the diretions of lepton and photon (n

�

`

and n

�



) give a net ontribution of zero. Thus it is required to adopt some asymmetri manipulation

to visualize �� e�ets. To separate the overall phase spae, we use a heliity sensitive parameter !

h

,

whih represents polarization of the � and is alulated only from observables. By onstrution, !

h

varies in an open interval: !

h

2 (�1; 1). The positive value of !

h

implies it is probable that the spin

of the �

+

(! �

+

�

0

�̄) is pointing to the same (opposite when �

�

deays to �

�

�

0

�) diretion as that of

�

+

movement. The detailed de�nition of !

h

is introdued in Se. 6.1. To observe the asymmetri

e�et, we integrate the di�erential deay width in the phase spae only where !

h

beomes positive.

Figures 2.8 and 2.9 show the dependene of the shape of momenta of lepton and photon on the

Mihel parameters. Eah distribution is alulated for a ertain value of the Mihel parameter by

the integration of the di�erential deay widths with other variables. For demonstration purpose, the

range of variation of the Mihel parameters are hosen to be larger than physially-realisti values.

As explained above, only !

h

> 0 events are used for the integration to draw Fig. 2.9. We observe

that the magnitude of the momentum of lepton is more strongly a�eted by the Mihel parameters

than other variables. Furthermore, the dependene of Mihel parameter on �

�

! �

�

��̄ deay is
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larger than that of �

�

! e

�

��̄ deay. This omes from the fat that the ontribution from physis

BSM is enhaned by a fator proportional tom

`

=m

�

as the expliit formula is introdued in Se. 5.4.1.

Here, we show the variation of distribution assuming very large Mihel parameters, the real pos-

sible values are, however, of order of 1 and this implies that measurement of these Mihel parameters

requires the preise veri�ation of the small variation of spetrum shape. That is why we need to

observe large number of events.

2.5 Determination of � diretion

Due to the short lifetime of �, it is diÆult to diretly measure the deay diretion. Nevertheless, in

the �

+

�

�

rest frame, we an onstrain their diretion assuming the masses of neutrinos to be zero.

When the leptoni deay ours, two neutrinos appear in the �nal state. Beause the two-body system

of ��̄ must not have a negative invariant mass, an inequality holds:

0 � M

2

��̄

= p

2

��̄

= (p

�

� p

`

)

2

, os �

�`

�

2E

�

E

`

� M

2

�

� M

2

`

2P

�

P

`

; (2.13)

whih means that the � deays in the region enlosed by a one around lepton diretion. On the other

hand, if the � deays hadronially, one neutrino is produed and gives an equality:

x

0 = M

2

�

= p

2

�

= (p

�

� p

h

)

2

, os �

�h

=

2E

�

E

h

� M

2

�

� M

2

h

2P

�

P

h

; (2.14)

where p

h

is a sum of four vetors for the hadroni daughters and M

h

is its invariant mass. This means

that the � deays inside the surfae of a one determined from the diretion of hadron momentum.

Depending on the onditions, through whih type two taus deay, we an divide the situation into

three ategories: (h; h), (`; h) and (`; `), where (a; b) with a; b = l; hmeans two tau deay leptonially

(l) or hadronially (h). As Fig 2.10 shows, (h; h) deay enables us to �x the diretion of the tau into

two andidates. If either of the � deays leptonially, the diretion is no more �xed and beomes

a region: (`; h) onstrains on a line and (`; `) onstrains on a region. In the ase of signal of this

analysis� �

�

! `

�

��̄ and �

+

! �

+

�

0

�̄�the andidate beomes a line. Therefore, we parametrize

the diretion using one parameter � 2 [�

1

;�

2

℄. As desribed later, this determination of � diretion

is used to desribe a probability density funtion (PDF).

x

Current upper limit of the mass of tau neutrinom

�

�

� 18:2 MeV [41℄ is pratially suÆient to justify this equation.
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Figure 2.8: Dependene of momenta and angles on �̄: left �gures (a)()(d) represent dependene of

the shape of P

`

, P



and �

`

spetra on �̄ for �! e��̄ deay and right �gures (b)(d)(f) represent those

for �! ���̄ deay.
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Figure 2.9: Dependene of momenta and angles on ��: left �gures (a)()(d) represent dependene

of the shape of P

`

, P



and �

`

spetra on �� for � ! e��̄ deay and right �gures (b)(d)(f) represent

those for �! ���̄ deay.

21



(a) (h; h) (b) (`; h) () (`; `)

Figure 2.10: Kinematis of �� deay for (a) (h; h), (b) (`; h) and () (`; `). Cones A and B are surfaes

whih satisfy ondition: p

2

miss

= 0. In the ase of (h; h) deay, the andidate of the � diretion beomes

generally two points determined by rossed points of the reversal one A and one B. Similarly in

(`; h) ase, the andidate beomes line as olored by red and (`; `) onstrains onto a region enlosed

by red urve. In the ase of signal deay, �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄), the andidate is line (b).
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Chapter 3

Experimental Apparatus

We desribe the experimental apparatus whih realizes the measurement of the Mihel parameters, �̄

and ��, using e

+

e

�

! �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄) proess. Events are produed by the KEKB aelerator

and observed/reorded by the Belle detetor.

3.1 The KEKB aelerator

The KEKB aelerator is an asymmetri energy ollider of e

+

and e

�

. The beam energies of E

e

�

=

8:0 GeV and E

e

+

= 3:5 GeV are hosen suh that the enter of mass energy oinides with a mass

of resonane state of �(4S ):

p

s = 10:58 GeV where s is the Mandelstam variable. The �(4S )

state, whih onsists of b

¯

b quark pair, suessively deays into B

¯

B pairs. Meanwhile, via a virtual 

interhange, the e

+

and e

�

pair also annihilates into �

+

�

�

and ̄ pairs, et. The asymmetry of beam,

� = 0:425, is intended to enlarge the deay lengths of B mesons in the laboratory frame to gain an

e�etive time resolution for the measurement of their deay rates.

A key goal of KEKB aelerator is to produe B and � partiles of interest as many as possible. In

fat, KEKB ahieved the maximum instantaneous luminosity L = 2:11 � 10

34

m

�2

s

�1

, whih is the

world-largest instantaneous luminosity at the time of writing.

�

For this reason, KEKB aelerator

is alled B-fatory or �-fatory. To realize the preise measurement of �

�

! `

�

��̄ deay (order

�-suppressed relative to the ordinary leptoni deay �

�

! `

�

��̄), the large number of taus thanks to

the �-fatory are neessary.

Not only did the KEKB aumulated e

+

e

�

annihilation data at �(4S ) energy, but it also ol-

leted data at di�erent energy settings suh as mass resonanes of �(1S ) (9:46 GeV=

2

), �(2S )

(10:02 GeV=

2

) and �(5S ) (10:86 GeV=

2

). At these energies, the e

+

e

�

! �

+

�

�

proess still ours,

however, the situations of event seletion and trigger are not neessarily same as that of �(4S ), and

moreover the di�erent beam energies make the desription of PDF (whih is explained later) om-

plex. For this reason, we use only �(4S ) resonane data, whih amounts to 703fb

�1

and orresponds

to 70% of all data.

Figure 3.1 shows an overall view of the KEKB aelerator. The eletrons are generated from

a thermal eletron while positrons are obtained by olliding 4 GeV e

�

beam into a high-Z material

(tungsten) in whih a gamma onversion  ! e

+

e

�

generates the positrons. Both e

+

and e

�

are

aelerated by a linear aelerator (LINAC) and injeted into a low energy ring (LER) and a high

energy ring (HER), respetively. At Tsukuba area, the e

+

and e

�

ollide at interation point (IP) with

a rossing angle of 22 mrad enlosed by the Belle detetor. In table 3.1, the mahine parameters of

KEKB aelerator are summarized.

�

The upgrade projet of the Belle experiment, Belle II, is planning to start physis data taking from 2017 using the

Super KEKB aelerator and Belle II detetor, where further inrease of the luminosity by a fator of �fty is expeted.

In Chapter 10, we explain the prospet of this analysis using data from the next-generation experiment.
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Figure 3.1: A drawing of KEKB aelerator. Eletrons and positrons irulate the high and low en-

ergy rings in lokwise and anti-lokwise, respetively. The Belle detetor is loated at the Tsukuba

hall [42℄.

Table 3.1: KEKB aelerator mahine parameter

Item HER (e

�

) LER (e

+

)

Cirumferene (m) 3016

Beam energy (GeV) 8.0 3.5

Beam urrent (A) 1.6 1.2

Beam-beam parameter �

y

(mm) y 0.09 0.129

Beta funtion at IP �

�

y

(mm) y 5.9

Beam size at IP �

x

=�

y

(�m/�m) 1:9=77 1:9=77

Number in bunhes y 1584

Crossing angle (mrad) 22

y Ahieved values
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Figure 3.2: De�nition of axis in the laboratory frame. The diretion of z-axis is de�ned as reversal

way of positron beam. The eletron and positron movement forms xz plane.

3.1.1 De�nition of frame

The diretions of the eletron and positron beams are not preisely bak-to-bak in the laboratory

frame: the tilt angle is �

LAB

= 22 mrad. This situation is shown in Fig. 3.2. xyz-axis in the laboratory

frame are de�ned by using beam diretion: the positron diretion is de�ned as a reversal way of +z,

the plane, in whih both eletron and positron settle, is xz-plane. Therefore, the four vetors of the

eletron and positron are parametrized in the laboratory frame as:

p

LAB

e

�

= (E

LAB

e

�

; P

LAB

e

�

sin�

LAB

; 0; P

LAB

e

�

os�

LAB

) (3.1)

and

p

LAB

e

+

= (E

LAB

e

+

; 0; 0;�P

LAB

e

+

): (3.2)

The sum of these momenta p

LAB

CMS

is that of the CMS in the laboratory frame and the veloity �

LAB

CMS

=

P

LAB

CMS

=E

LAB

CMS

allows us to onvert four vetors in both frames eah other. When the beam momenta

are boosted to the CMS with this �

LAB

CMS

, the diretion of z-axis does not oinide with that of eletron.

For this reason, we rotate frame around y-axis by � suh that both beams beome ollinear along

z-axis, where � is approximately 13:24 mrad. The rotated frame is the de�nition of our CMS frame.

Here, we summarize the de�nition of the oordinate system and notations.

� Diretions of z in both the laboratory and CMS frames are de�ned using e

+

beam whih points

-z diretion.

� Diretion of x in both the laboratory and CMS frames are determined by rotating aforemen-

tioned z diretion by 90

Æ

in the plane formed by the laboratory movements of eletron and

positron (�-plane).

� Diretion of x in CMS frame is determined by rotating the de�ned z diretion by 90

Æ

in the

�-plane.

� Diretion of y is de�ned by the ross produt of vetors e

y

= e

z

� e

x

, where e

i

(i is x, y or z)

stands for the unit vetor of i diretion.

� � stands for the polar angle from +z diretion

� � stands for the azimuthal angle around z axis

� r stands for the transverse distane alulated as r =

p

x

2

+ y

2

.

� Transverse momentum of p is notated as p

t

and de�ned as the r of p, i.e., p

t

=

q

p

2

x

+ p

2

y

.
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Table 3.2: Information of sub-detetors of the Belle detetors [43℄

Detetor Type Con�guration Performane

SVD-1 Double sided Si-strip 3-layers r = 30:0; 45:5; 60:5 mm �

z

= 42 � 44=p� sin

5=2

� �m [44℄

Strip pith 25(p)/42(n) �m 23

Æ

< � < 139

Æ

�

r�

= 19 � 54=p� sin

3=2

� �m

(p in GeV=)

SVD-2 Double sided Si-strip 4-layers r = 20:0; 43:5; 70:0; 88:0 mm �

z

= 26 � 33=p� sin

5=2

� �m [44℄

Strip pith 50(p)/75(n) �m (lay.1-3) 17

Æ

< � < 150

Æ

�

r�

= 17 � 34=p� sin

3=2

� �m

65(p)/73(n) �m (lay.4) (p in GeV=)

CDC Wire drift hamber r = 8:3-87:4 m (SVD1), 10:4-87:4 m (SVD2) �

r�

= 130 �m

Anode: 50 layers �77 < z < 160 m �

z

= 200 � 1400 �m

Cathode: 3 layers 17

Æ

< � < 150

Æ

�

p

t

=p

t

= 0:2%p

t

� 0:3%=�

�

dE=dx

= 6%

ECL CsI Sintillator Barrel: r = 125-162 m, 32:2

Æ

< � < 128:7

Æ

�

E

=E = 1:3%=

p

E

# rystals in barrel 6624 Endap: z = �102 m, 130:7

Æ

< � < 155:1

Æ

�

pos

= 0:5 m=

p

E

# rystals in endap 2112 : z = 196 m, 12:4

Æ

< � < 31:4

Æ

(E in GeV)

ACC Silia aerogel Barrel: r = 89-117 m P(�jK) < 10%; P(KjK) > 80%

# aerogel in barrel 960 Endap: z = 1660 m for 1:2 GeV/< P < 3:5 GeV/

# aerogel in endap 228

TOF Plasti Sintillator r = 120 m 2� K=� separation

128 � segmentation for P < 1:2 GeV/

�

t

= 100 ps

KLM Resistive plate ounter Endap: 20

Æ

< � < 45

Æ

�� = �� = 30 mrad.

14 layers : 125

Æ

< � < 155

Æ

Barrel: 45

Æ

< � < 125

Æ

3.2 The Belle detetor

The Belle detetor is a general-purpose measurement system whih is omposed of several sub-

detetors. The detetor is on�gured by 1:5 T superonduting solenoid and enloses the IP of the

e

+

e

�

beam.

Figure 3.3 shows the overall view of the Belle detetor. The deay verties are measured by the

silion vertex detetor (SVD) loated just outside of a ylindrial beam pipe. Traking of the harged

partiles are performed by the entral drift hamber (CDC). Energy of eletromagneti shower is

measured by the eletromagneti alorimeter (ECL). Partile identi�ation is provided by the infor-

mation of dE=dxmeasurements by the CDC, a shape of shower in the lusters and E=pmeasurement

in the ECL, an aerogel Cherenkov ounter (ACC) and a time-of-�ight ounter (TOF). The K

L

and

muons are identi�ed by arrays of the resistive plate ounters and iron plates loated at the outermost

part of the Belle detetor named K

L

and muons detetor (KLM). All of these information is proessed

and reorded by a data aquisition (DAQ) system when events are seleted by a trigger. The general

information and performanes of the sub-detetors are summarized in Table 3.2. In this setion, we

desribe funtions and priniples of the sub-detetors.
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Figure 3.3: Drawings of the Belle detetor: (a) the overall view and (b) the ross setion [43℄.
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Figure 3.4: Impat parameter resolution of the SVD as a funtion of pseudo-momentum: (a) �

z

and

(b) �

r�

[44℄.

3.2.1 Silion Vertex Detetor (SVD)

The main goal of the Belle experiment is to verify the mehanism of the CP violation in B deays,

where the violation of the CP appears as a time dependent asymmetry of the deay rate between

�

B! f

CP

(t) and �

¯

B
! f

CP

(t) ( f

CP

stands for a CP eigenstate). Sine the di�erene of the deay rate of

B=

¯

B mesons is measured as that of the �ight length, the preise measurement of the vertex position

is ruial. The SVD plays a role in loating the vertex position of B mesons. Furthermore, a low

momentum trak, whih does not reah the CDC inner wall, is reonstruted only by the SVD. In

this analysis, the SVD helps the CDC in the harged trak reonstrution.

There are two types of SVDs. The �rst version is alled SVD1 and worked until 2003. Beause of

a problem in the front-end hip, the SVD1 was upgraded to SVD2. The SVD1 (SVD2) is omposed

of three (four) layers loated at radii r = 30:0; 45:5; 60:5 mm (r = 20:0; 43:5; 70:0; 88:0 mm) and

overs 23

Æ

< � < 139

Æ

(17

Æ

< � < 150

Æ

), whih is onstruted from 8, 10, 14 (6, 12, 18, 18) ladder

strutures, respetively. Eah layer is made of double-sided Si-strip detetors (DSSD). The DSSD

has rossed linear e�etive areas (strip) on top and bottom sides, whih are orthogonally segmented

along r� and z diretions, respetively, and eah strip is made by a p-type or n-type semiondutor.

When a harged partile passes through the p-n juntion, the ionized eletron-hole pair is sepa-

rated by an applied high bias voltage and read out separately from p and n-side strips of the detetor.

The front-end iruit named VA1 hip provides an ampli�ation of the urrent and a shaping of the

signal. Figure 3.4 shows the ahieved impat parameter resolution of the SVD1 and SVD2 as a fun-

tion of pseudo-momentum, whih takes into aount the e�etive inrease of the pass length inside

material and de�ned by �p = p� sin

5=2

� and �p = p� sin

3=2

� for z and r� diretions, respetively. The

information of the SVD1 and SVD2 is summarized in Table 3.3.

3.2.2 Central Drift Chamber (CDC)

The CDC plays a role in the traking of harged partile and a preise determination of the mo-

mentum. Sine the Belle detetor is in the magneti �eld of B = 1:5 T, the momentum of harged

partile is determined aording to p = 0:3B�, where p is a momentum of harged trak in GeV/

and � is the observed urvature in meter. The trajetory of the harged trak is parametrized by �ve

free parameters (also known as a helix parameter) and �tted to a map of deteted energy deposition.

The helix parameter ontains information of not only the magnitude of urvature but also the impat
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Table 3.3: Information of SVDs

Item SVD1 SVD2

# layers 3 4

r (mm) 30.0, 45.5, 60.5 20.0, 43.5, 70.0, 88.0

overage 23

Æ

< � < 139

Æ

17

Æ

< � < 150

Æ

# DSSD � # ladders

layer1: 2 � 8 2 � 6

layer2: 3 � 10 3 � 12

layer3: 4 � 14 5 � 18

layer4: - 6 � 18

DSSD n-strips 42 �m �640 50 �m �512 (layer 1-3)

65 �m �512 (layer 4)

DSSD p-strips 25 �m �640 75 �m �1024 (layer 1-3)

73 �m �1024 (layer 4)

DSSD Thikness 300 �m 300 �m

Total number of hannel 81920 110592

parameter, whih is the distane of the losest approah to the interation point and denoted as dr and

dz in transverse and beam diretions, respetively. The impat parameters are useful to redue bak-

grounds suh as seondary partiles from beam and osmi rays. Moreover, the CDC also provides

information of the partile identi�ation based on dE=dx and reliable trigger signals.

As the struture of CDC is shown in Fig. 3.5, the CDC is a ylindrial wire drift hamber whih

lies in the region 83 mm < r < 880 mm for SVD1 term and 104 mm < r < 880 mm for SVD2 term,

respetively, and overs 17

Æ

< � < 150

Æ

angle. The asymmetrial struture in z-diretion is optimized

for the boost of beam. The hamber has 8400 drift ells, all of whih are grouped as axial or stereo

super-layers. The stereo wires are tilted and allow us to determine z-position. A gas mixture of 50%

He and 50% C

2

H

6

was hosen beause of its small low-Z so as to redue the multiple sattering for

low momentum traks.

The readout signals from the hamber are ampli�ed by Radeka-type pre-ampli�er [46℄ and sent

to the shaper and disriminator. The data are �nally proessed by a harge-to-time onverter with

retaining the information of the drift time and pulse height. With an aid of SVD, the ombined

harged-trak momentum resolution is given by:

�

p

T

p

T

=

 

0:19p

T

�

0:30

�

!

%; (3.3)

where p

T

is in GeV= and the traking eÆieny of harged pion is approximately 90% for 1 GeV/

trak.

Figure 3.6 shows a satter plot of dE=dx vs momentum for various partile types. It an be

understood that the partile types are well separated aording to eah expeted urve. The resolution

of dE=dx is 7% and utilized to disriminate partile types of harged traks.
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(a)

Figure 3.7: Geometry of the ECL [47℄.

3.2.3 Eletromagneti Calorimeter (ECL)

The main purpose of the Belle ECL is to measure an energy of photon whih is often generated by

asade deays of B meson as well as the � leptons. Beause the energy of photons generated by

daughter of the �(4S ) tend to be relatively small (� 1 GeV), it is required to provide a good energy

and position resolutions for suh photons. On the other hand, the ECL is also designed to aom-

modate high energy photons (� 4 GeV) produed from low-multipliity proesses like forbidden �

deay � ! `. Furthermore, the ECL plays an important role in the eletron identi�ation based on

the shower shape inside rystals and E=p value.

The Belle ECL is omposed of three setions�bakward and forward endaps and a barrel

region�whih separately over 12:4

Æ

< � < 31:4

Æ

, 130:7

Æ

< � < 155:1

Æ

and 32:2

Æ

< � < 128:7

Æ

,

respetively. Figure 3.7 shows the on�guration of the ECL. All regions onsist of CsI (TI) arrays

and amount to 8736 rystals in total. Eah rystal has a trapezoidal shape and points to the interation

region. The typial dimension of the rystal is 55� 55 mm

2

(front fae), 65� 65 mm

2

(rear fae) and

30 m long (i.e, 16:2 radiation length) but slightly varies depending on its loation. The sintillation

photons are deteted by two PIN photo-diodes, whose ative area are 10 m�20 m, glued on the end

surfae of a rystal. The pulse from the PIN photo-diodes is ampli�ed by a pre-ampli�er attahed

nearby and sent to a shaping iruit. The separate two shaped signals are summed and proessed by

a harge-to-time onverter. The energy and position resolution of the ECL are

�

E

E

=

 

1:34 �

0:066

E

�

0:81

E

1=4

!

%; (3.4)

�

pos

=

 

0:27 �

3:4

p

E

�

1:8

E

1=4

!

mm; (3.5)

where E is in GeV.
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Figure 3.8: Con�guration of the ACC [48℄.

3.2.4 Aerogel Cerenkov Counter (ACC)

The ACC provides the Belle with information of partile identi�ation. In partiular, K=� separation

in high momentum region 1:2 GeV= < p < 3:5 GeV=, whih is in fat a key of the analysis of

B physis, mainly depends on the information from ACC. To generate a Cerenkov light inside a

medium, it is required to satisfy the formula

n >

1

�

=

s

1 +

m

2

p

2

; (3.6)

where n is a refrative index of material and m is a mass of partile in question. As a result, for

�xed values of n and m, there is a lower threshold of momentum p > m=

p

n

2

� 1 and the emission

of Cerenkov light enables us to identify the type of inoming partile.

Figures 3.8 and 3.9 show the on�guration of the ACC in the Belle detetor and the drawing

of one module. The ACC is omposed of the 960 ounter modules whih are segmented into 60

divisions in � diretions. Silia aerogels, whih have low refrative indexes, were speially developed

and adopted as its medium. Aerogels with n = 1:030 are used for the forward endap region, while

n = 1:020; 1:015; 1:013; 1:010 are used for the barrel region from forward to bakward order. These

refrative indexes are hosen to take into aount the asymmetry of the beam energy. The produed

photons are deteted by the attahed �ne-mesh photomultiplier tubes (FM-PMTs) whih are hosen

beause of their high gain and the relatively strong tolerane to the high magneti �eld environment.

The signals from FM-PMTs are ampli�ed by a pre-ampli�er and proessed by a harge-to-time

onverter.

The number of photo-eletron generated by �

+

and K

+

andidates from D

�

deays, both of whih

are seleted based on the information of TOF and dE=dx measurements, is shown in Fig. 3.10. The

heavier K does not emit Cerenkov light and this allows us to separate K and �. Up to approximately

4 GeV/ in the momentum of partile, P(KjK) > 0:8 and P(�jK) < 0:1 are ahieved when P

K

=

P

K

=(P

K

+P

�

) > 0:6 is applied, where P

a

(a = K or �) is a likelihood that the partile type is a, whih

are alulated by ombined information of the CDC, ACC, TOF and ECL.
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Figure 3.9: Modules of ACC. The left module is Barrel ACC, while right one is that of the forward

endap. The ube struture of Silia aerogel (approximately 12 � 12 � 12 m

3

) is enlosed by a

Goretex re�etor and produed photons are deteted by the attahed PMTs [49℄.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

Figure 3.10: Distribution of the number of photo eletron generated from K

+

and �

+

traks for

various refrative index values. The red and blue dots indiate experimental distribution of K

+

and

�

+

, respetively and histograms represent that of MC simulation [43℄.
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Figure 3.11: TOF/TSC module.

Figure 3.12: Con�guration of the TOF/TSC [50℄.

3.2.5 Time-Of-Flight ounter (TOF)

Partile identi�ation of a low momentum harged trak up to 1:2 GeV/ is mainly performed by the

TOF ounter. The time-of-�ight of a partile is given by:

T =

L

�

= L

"

1 +

m

2

p

2

#

�1=2

; (3.7)

where L is the �ight length of the partile. Thus the partile type an be determined using observed

T value by ombining the momentum information from CDC.

Figure 3.11 shows the drawing of the TOF module. The module is omposed of two plasti

sintillators and one thin trigger sintillation ounter (TSC) to all of whih FM-PMTs are attahed

at both ends. The on�guration of the TOF module is shown in Fig. 3.12. The module is loated at

r = 1:2 m just inside the ECL barrel and overs 33

Æ

< � < 121

Æ

range with 64 modules in total. The

signal from FM-PMT is split into two streams: one is used for a harge measurement and the other

generates timing information and a soure of trigger.

The mass distribution alulated based on Eq. (3.7) is shown in Fig. 3.13. We an see a good

agreement between the experiment and MC simulation. The timing resolution of the TOF is ap-

proximately 100 ps and the separation power of K

+

and �

+

is 2� for a partile momentum up to

1:2 GeV/.

34



Exp5 data

σ (TOF) = 100ps

P<1.25GeV/c

Figure 3.13: Distribution of masses of �, K and proton with momenta less than 1.25 GeV/. Dots

indiate the experimental distribution and histogram is that of MC simulation [50℄.
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(a)

θ

φ

(b)

Figure 3.14: (a) Geometry of the barrel KLM [43℄. (b) Cross setion of the KLM layers [51℄

3.2.6 K

L

and muon detetor (KLM)

The main purpose of the KLM system is to identify K

L

and muons with high eÆieny by judging

whether a hadroni shower is observed or not. The momentum target of the muons is p > 600MeV=

beause the magneti �eld B = 1:5 T traps low energy traks before reahing the KLM. Moreover,

the KLM provides an angular information of the K

L

meson.

As shown in Figs 3.14a and 3.3, the KLM is on�gured to enlose all sub-detetors explained

above. The system onsists of forward and bakward endaps and a barrel part, whih separately

over 20

Æ

< � < 45

Æ

, 45

Æ

< � < 125

Æ

and 125

Æ

< � < 155

Æ

, respetively. Figure 3.14b shows the

ross setion of the KLM layers. The KLM barrel (endap) has a sandwih struture of fourteen

4.7-m-thik iron plates and �fteen (fourteen) grass-resistive plate ounters (RPCs). The RPC is a

type of the gas hamber, in whih thin gap �lled with gas is sandwihed by high resistive glass plates

on both sides. An eletri �eld is applied by two eletrodes (typially � 8 kV is applied) attahed on

the external side of the glass plates. In the streamer mode, when a harged partile traverses the gap,

ionized eletron-hail pair is gas-ampli�ed by the asade generation of the avalanhe e�et, whih

results in the loal polarization of the glass plates. The variation of the loal voltage is read out as a

urrent from the outermost eletrodes arranged orthogonally in � and � diretions and enables us to

reord the loation and timing. Thanks to the relatively large pulse from RPC, the signal is diretly

proessed with disriminator followed by a multiplexer.

A hadroni luster observed in the ECL, whih is not assoiated with any extrapolated harged

traks, is identi�ed as K

L

. The omparison of the measured range of trak vs its expeted range for

muon hypothesis is used to determine the likelihood of muon.

36



3.2.7 Trigger

The event of interest�B

¯

B, �

+

�

�

, �

+

�

�

, two-photon proesses, et�are seleted by a trigger system

with appropriate sale fators so as to aommodate a limited DAQ bandwidth and storage apabili-

ties.

The Belle trigger system onsists of hardware and software triggers also known as level 1 and

level 3 (L1 and L3) triggers, respetively. As Fig. 3.15 shows the shemati view of the L1 trigger, the

trigger signal is generated by a global deision logi (GDL) whih makes a logial determination of

orrelated information from sub-detetors. For example, the CDC and TOF generate trigger signals

from harged traks while the ECL provides a signal aording to the total energy deposit with a

veto on the Bhabha proesses e

+

e

�

! e

+

e

�

(). The KLM yields supplementary information of the

muons. The deision by GDL �nishes with �xed time 2.2 �s lateny after the event ourrene.

There are 64 or 75 kinds of trigger soures depending on the version of SVDs, and the information

of the GDL is stored in several bytes format. Eah bit of the GDL output orresponds to a ertain

trigger soure.

Although the eÆieny of the L1 trigger is suÆiently high (>96%) for typial B deays, the low

multipliity event like e

+

e

�

! �

+

�

�

! (1-prong)(1-prong)

y

proesses are su�ered from the notable

derease of the eÆieny due to the similar struture to the Bhabha events. This turns out to give a

systemati e�et on the measurement of the Mihel parameters (not only main target of this analysis

�̄ and �� but also �; �; �; �Æ measurements) as well as the branhing ratio of suh proesses. In a

typial running ondition, the average trigger rate is 200-400 Hz.

As explained later in Se. 6.1, to determine trigger eÆieny, we require the seleted signal

andidates to be �red by following spei� GDL output bits:

� lst4: this bit is set when the number of isolated ECL lusters exeeds three after osmi ray

veto.

� hie: this bit is set when the energy deposit in the ECL is larger than 1 GeV after the Bhabha

and osmi ray vetos.

� �s zt2 (SVD1 only): this bit is set when a number of short transverse traks is more than or

equal to 1, at least one full trak exists, hits in TSC exeed two and there is more than or

equal to one longitudinal trak. Here, the short transverse trak means that it is reonstruted

using only r and � information from the three innermost layers of the CDC. Similarly, the

longitudinal trak is reonstruted using only r and z information from the CDC.

� klm opn: this bit is set when the maximum opening angle exeeds 135

Æ

and there is at least

one hit in the KLM.

� klm b2b: this bit is set when there is a bak-to-bak trak with 64 segmented r-� region in the

CDC and there is at least one hit in the KLM.

The �rst two bits are ategorized as a neutral trigger whih uses ECL information while the others

are ategorized as a harged trigger determined mainly by the CDC, TOF and KLM. It turns out to

be important that the neutral and harged triggers base on physially independent soures.

3.2.8 Data aquisition system (DAQ)

The DAQ system reeives the data from sub-detetors when the L1 �red the trigger signal for an

event, paks the fragmented detetor-by-detetor information into an event-by-event format, selets

events with more intelligent deision with fast reonstruted data and stores the event.

y

1-prong means a deay with one harged trak.
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Figure 3.15: Shemati view of the Belle trigger system (L1) [52℄.
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Figure 3.16: Shemati view of the Belle DAQ system. The individual signals from all sub-detetors

are integrated by the GDL to generate a L1 trigger [53℄.

Figure 3.16 shows a shemati view of the DAQ system. Data from all sub-detetors exept

the SVD are sent with Q-to-T-onverted format and digitized by a ommon time-to-digital onverter

(TDC) module. At the beginning of Belle projet, TDC was performed by VME proessor alled

FASTBUS but it was replaed to pipelined system named COPPER. Beause of the large number of

hannels in the SVD, the data from front-end hip of the SVD are separately digitized by analog-to-

digital onverter (ADC) with a redution of the amount of data size.

The L3 trigger signal initiates the event-building in whih digitized data from sub-detetors are

olleted to an event-by-event format on the online omputer farm with linux PC servers (EFARM).

The real time reonstrution farm (RFARM) is responsible for the fast reonstrution of the harged

traks. To redue a beam bakground, in whih bremsstrahlung from beam generates seondary

partiles far away from the IP, at least one harged trak originating around IP with dr < 1 m,

jdzj < 4 m and P

t

> 0:3 GeV/, is required. The event whih satis�es L3 is stored in a storage

system.
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Table 3.4: Relationship between various partile identi�ations and sub-detetors

Type SVD CDC ECL ACC TOF KLM

e traking traking E=p Cerenkov light time-of-�ight -

dE=dx shower shape - - -

� traking traking energy deposit - time-of-�ight range

- - -

K traking traking - Cerenkov light time-of-�ight -

- - -

�

� identi�ation is determined by a omplementary ondition of K identi�ation

p traking traking - Cerenkov light time-of-�ight -

dE=dx - - -

K

L

exluding - hadron luster

traks - - -

 EM luster - - -

3.2.9 Partile identi�ations

In this setion, we summarize information of various partile identi�ations using the sub-detetors

explained above.

Eletron is identi�ed using the ratio of energy deposited in the ECL out of trak momentum

measured by the CDC (E=p), the transverse shape of the ECL luster, dE=dx value measured in

the CDC, light yield in the ACC and time-of-�ight measured by the TOF. Based on these values,

likelihood values for eletron and non-eletron hypotheses, L

e

and L

x

, are determined. The seletion

of eletron andidate uses likelihood ratio values P

e

= L

e

=(L

e

+ L

x

). For more detail, see Ref. [54℄.

Figure 3.17 shows an eÆieny of eletron and a ratio pion-misidenti�ation eÆieny when P

e

>

0:9 is applied.

Muon is identi�ed using an observed range inside the KLM for a harged trak reonstruted

by the SVD and CDC. The harged trak is extrapolated to the KLM and andidate of a luster

is assoiated. The range is determined by the outermost layer of the KLM and the harged trak

position. The likelihood values of �

+

, �

+

, K

+

and p�L

�

, L

�

, L

K

and L

p

, respetively�are determined

by the measured range vs predited range and the seletion of muon uses likelihood ratio values

P

�

= L

�

=(L

�

+ L

�

+ L

K

). For more detail, see Ref. [55℄. Figure 3.18 shows an eÆieny of muon and

a ratio of pion-misidenti�ation eÆieny when P

�

> 0:9 is applied.

Kaon and pion are identi�ed using dE=dx value measured in the CDC, light yield in the ACC

and time-of-�ight measured by the TOF. ACC and TOF provide good disrimination apabilities of

K/� for high (> 1:2 GeV/) and low momentum (< 1:2 GeV/) region, respetively. The likelihood

values of K

+

and �

+

(L

K

and L

�

), are determined based on information above and the seletions use

the likelihood ratios P

�

= L

�

=(L

�

+ L

K

) and P

K

= L

K

=(L

�

+ L

K

). Figure 3.19 shows eÆienies of

muon when P

�

> 0:4 is applied.

Photon is identi�ed from the andidates of the ECL lusters without any mathed harged traks.

Above information is summarized in Table 3.4.
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Figure 3.20: Integrated luminosity with �(4S ) resonane energy. Blue and red lines indiate SVD1

and SVD2 terms, respetively. The numbers represent the identi�ation number.

3.3 Operation of Belle data taking

The Belle experiment was managed with identi�ation numbers of runs. The odd numbers are in-

tended for the inrease of data, i.e., luminosity run, while the even numbers are for alibrations. The

overall numbers vary from 7 to 27 for the SVD1 term and from 31 to 73 for the SVD2 term. Sine

the numbers 67, 69, 71 and 73 were operated with di�erent beam energies, the �(4S ) operation

ranges only from 7 to 65. Between the run number of 55 and 61, a minor update of the DAQ system

was performed, thereby the detetion eÆieny of event was slightly improved. Figure 3.20 shows

a reord of an inrease of the integrated luminosity. Continuing the operation of the experiment, we

olleted 703 fb

�1

available data with the �(4S ) resonane beam energy.

3.4 Monte Carlo simulation

The physis proesses of e

+

e

�

! �

+

�

�

are simulated by KKMC [56℄ generator. The QED radiative

orretions from initial and �nal state radiations are simulated up to seond order and eletroweak

orretions are inluded up to its �rst order. Moreover, orrelations among �

+

�

�

spin polarizations,

whih are of ruial importane in this analysis, are fully taken into aount.

The suessive deay of the � is simulated by TAUOLA [57, 58, 59℄ generator inorporated in

the KKMC library. The TAUOLA provides �nal state of tau leptons with a resonant distributions

from intermediate hadrons and a omplete spin struture. The radiative leptoni deay �

�

! `

�

��̄

are also simulated by this generator. Other internal QED bremsstrahlung proesses from various

hadroni � deays are simulated by PHOTOS [60℄ generator. These orretions base on a proess-

independent formalism, where probabilities of a soft photon emission and a ollinear prodution of

photon with a harged partile are fatorized as an original matrix element and the bremsstrahlung

kernel funtion.

Although only small fration of events turn out to be �nally seleted (< 0:1%), two photon
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proesses e

+

e

�

! e

+

e

�

� (� is a state generated by  interation) are simulated by TREPS gener-

ator [61℄. The overall proess of  emissions and their interation are implemented by the double

equivalent photon approximation, therein a radiation of photon is interpreted as a �ux of photons.

The detetor e�ets are simulated based on the GEANT3 pakage [62℄. The GEANT is a toolkit

to simulate passage of elementary partiles through matters, where reation of partiles suh as

energy deposit, asade generation of eletromagneti daughters and deay in �ight, are alulated

at every step-by-step path evolution of the partile. Simulated detetor responses are proessed by

the same hain as the real experiment and results are reorded in the same format.
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Chapter 4

Event seletion

In this hapter, seletion riteria are explained in detail. The redution proess is omposed of three

stages: preseletion of �

+

�

�

pairs, seond and �nal seletions.

4.1 Preseletion

First of all, the deay of the �

+

�

�

is preseleted from e

+

e

�

ollision data. The de�nition of the

riteria is summarized in Table 4.1. With this seletion, bakgrounds are eÆiently rejeted while

retaining the eÆieny of �

+

�

�

proess by approximately 70%. In ase of signal, approximately

50% of events pass this stage inluding the trigger seletion. The information of the eÆieny is

summarized in Table 4.2.

The basi strategy of the preseletion is to selet events whih show strong diretivity and large

energy loss. Compared to other physis proesses, e

+

e

�

! �

+

�

�

deays produe small number of

large momentum partiles (so alled low multipliity) and show large missing energies esaped by

(at least) two neutrinos. This seletion riteria are ommon for other � analyses at Belle using the

e

+

e

�

! �

+

�

�

annihilation proess.

4.2 Seond seletion

After the preseletion, we selet events oarsely to further redue the number of bakground events.

Proesses suh as Bhabha e

+

e

�

! e

+

e

�

(), �

+

�

�

pair prodution, and two photon events e

+

e

�

!

`

+

`

�

e

+

e

�

are additionally suppressed only to be less than 0.01% out of rest events. Figure 4.1 shows

2D-plot of the missing angle �

CMS

miss

and mass M

miss

, whih provide an essential disrimination apa-

bility. Note that, at this stage, the orrespondene of signal partile andidates and observed ones are

deided.With this seletion, the number of seleted events beomes approximately 0.1% out of the

total number of �

+

�

�

pair produtions inluding other tau deays.

� Missing four momentum is de�ned by p

miss

= p

beam

� p

obs

, where p

beam

is a sum of beam

eletron and positron momenta and p

obs

is sum of observed momenta. Missing angle �

CMS

miss

is

a polar angle of p

miss

in the CMS frame and missing mass M

miss

is de�ned as p

2

miss

= M

2

miss

.

To alulate CMS momenta of harged traks, we use a pion hypothesis for the mass of orre-

sponding partiles. These variables must satisfy 30

Æ

� �

CMS

miss

� 150

Æ

and 1 GeV=

2

� M

miss

� 7

GeV=

2

, whih essentially selet events having large missing energy (and resulting o�-valane

of transverse momentum) from neutrinos. The orresponding eÆieny for signal events is

69%.
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Table 4.1: Preseletion riteria

De�nitions

Good harged trak P

LAB

t

� 0:1 GeV= and dr < 2 m, jdzj < 5 m.

ECL luster and photon E

LAB

ECL

> 0:1 GeV.

Missing four momentum p

miss

= p

beam

� p

obs

, where p

beam

is momenta of sum of beam

and p

obs

is sum of observed momenta.

Aordingly, M

2

miss

= p

2

miss

and �

CMS

miss

is its polar angle in the CMS frame.

E(ECL)

LAB

Total energy deposit in ECL in the laboratory frame.

E(ECL)

CMS

Total energy deposit in ECL in the CMS frame.

E

CMS

re

Sum of momenta of good harged traks + sum of energy of photons both in CMS.

P

LAB

t MAX

Maximum P

t

of good harged trak in laboratory frame.

E

CMS

tot

E

CMS

re

+ P

CMS

miss

(massless partiles are boosted to CMS).

N

barrel

Number of good harged trak within barrel region.

�

LAB

opn MAX

Maximum opening angle of harged traks in the laboratory frame.

E

CMS

(photon) Total energy of photon lusters in ECL in the CMS frame.

E(ECL)

CMS

trk

E(ECL)

LAB

� E

CMS

(photon).

Criteria

2 � number of good trak � 8.

jsum of hargej � 2.

P

LAB

t MAX

> 0:5 GeV=.

Event vertex dr < 1 m, jdzj < 3 m.

E

CMS

re

> 3 GeV or P

LAB

t MAX

> 1:0 GeV=.

Two-trak events must satisfy that E(ECL)

LAB

< 11 GeV and 5

Æ

< �

CMS

miss

< 175

Æ

.

2-4 harged trak events must satisfy

1

O and

2

O

1

O E

CMS

tot

< 9 GeV or �

LAB

opn MAX

< 175

Æ

or 2 GeV < E(ECL)

LAB

< 10 GeV.

2

O N

barrel

� 2 or E(ECL)

CMS

trk

< 5:3 GeV.

Table 4.2: EÆieny of preseletion

Proess Cross setion (nb) EÆieny (%) E�etive ross setion (nb)

�

+

�

�

0:92 70:2 0:65

�

+

�

�

1:05 5:7 0:06

e

+

e

�

() 1249 0:0011 0:014

e

+

e

�

e

+

e

�

(2-photon) 40:85 0:24 0:098

e

+

e

�

u

+

u

�

(2-photon) 11:7 0:56 0:065

Signal

Eletron mode 1:67 � 10

�2

46.6 7:85 � 10

�3

Muon mode 3:37 � 10

�3

49.1 1:65 � 10

�3
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� There must be exatly two oppositely harged traks in the event. To rejet traks not originat-

ing from e

+

e

�

ollision, the impat parameters of these traks (relative to the IP) are required

to be within �2:5 m along the beam axis and �0:5 m in the transverse plane. Both transverse

momenta must exeed 0:1 GeV/ in the laboratory frame and the larger one must have more

than 0:5 GeV/. The orresponding eÆieny for signal events is 92%.

� Number of hard photons � 5, where hard photon is de�ned by E

CMS



> 0:08 GeV. The orre-

sponding eÆieny for signal events is 99%.

� Total energy deposit in ECL must not exeed 9 GeV in the laboratory frame, whih results in

the suppression of BhaBha proess e

+

e

�

! e

+

e

�

(). This riteria do not essentially redue the

eÆieny for signal events.

� One of the harged traks must have lepton likelihood ratio P

`

> 0:7 (` = e or �). The other

trak must have a pion-likelihood ratio P

�

> 0:4. The orresponding eÆieny for signal

events is 87% and 73% for eletron and muon modes, respetively.

� A �

0

andidate is formed from two photon andidates, eah of whose energies satis�es E



>

80 MeV, with an invariant mass of 115 MeV=

2

< M



< 150 MeV=

2

. The orresponding

eÆieny for signal events is 51%.

� The � andidate is formed from a �

�

and a �

0

andidates, with an invariant mass of m

�

�

�

0

<

3:0 GeV=

2

. The orresponding eÆieny for signal events is 96%.

� Signal photon andidate is hosen with os �

`

> 0:9 in the CMS frame. If more than or equal

to two andidates satisfy this ondition, the event is rejeted. The hosen photon andidate

must have an energy more than 80 MeV for the barrel region (31:4

Æ

< �

LAB



< 131:5

Æ

) and 100

MeV for the endap region (12:0

Æ

< �

LAB



< 31:4

Æ

or 131:5

Æ

< �

LAB



< 157:1

Æ

) in the CMS

frame. The orresponding eÆieny for signal events is 42% and 34% for eletron and muon

modes, respetively.

� Either of the spei� GDL bits explained in Se. 3.2.7 must be �red. The orresponding

eÆieny for signal events is 85% and 89% for eletron and muon modes, respetively.

4.3 Final seletion

Finally, we apply stringent riteria on the seleted events. Below in the list, the irled numbers show

the order of the redution. Thereby, the number of seleted events dereases as the index inrements.

Figures 4.3 to 4.9 show the distributions of the ut parameters at eah step. The dots with error bars

indiate an experimental distribution and the open and olored histograms represent MC distribu-

tions of signal and bakgrounds, respetively. The MC distributions are saled based on the number

of entries just after the seond seletion. The MC distribution are overlaid on the experimental dis-

tribution. The detailed meanings of eah bakground are explained in Se. 4.4. The step-by-step

redutions of the signal eÆienies and the number of seleted events are summarized in Tables 4.3

and 4.4.

0

O The signal photon, whih tends to be produed ollinearly with lepton diretion, must lie in a one

determined by the lepton-andidate diretion that is de�ned by os�

e

> 0:9848 and os�

�

> 0:9700
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Figure 4.1: 2D-plots of �

CMS

miss

vs M

miss

for the experimental data, �

+

�

�

, Bhabha and two photon MC

events. The blak retangle box indiates a requirement of the seond seletion.

Table 4.3: Redution of eÆieny in eah step for �! e��̄ andidate.

Step after N

MC

and

N

MC

sig

"

sig

(%) Purity (%) Ns

MC

and

y N

EX

2nd seletion 7299848 1796214 6.45 24.6 1373878 1373878

0

O 6403839 1591564 5.72 24.9 1205243 1202834

1

O 6050803 1515469 5.44 25.0 1138800 1129166

2

O 5910310 1486277 5.34 25.1 1112358 1107275

3

O 5807107 1470467 5.28 25.3 1092935 1088418

4

O 5745691 1464212 5.26 25.5 1081376 1074840

5

O 5516655 1435304 5.16 26.1 1038270 1031535

6

O 4234513 1224733 4.40 28.9 796962 776834

y Ns

MC

and

means saled number of MC events at the step just before

0

O
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Table 4.4: Redution of eÆieny in eah step for �! ���̄ andidate

Step after N

MC

and

N

MC

sig

"

sig

(%) Purity (%) Ns

MC

and

y N

EX

2nd seletion 1478977 376484 6.30 25.5 258089 258089

0

O 636228 275069 4.60 43.2 111025 114367

1

O 603237 262554 4.39 43.5 105268 107826

2

O 543512 253771 4.25 46.7 94846 96427

3

O 519598 250083 4.19 48.1 90672 92359

4

O 499350 249135 4.17 49.9 87139 89130

5

O 478862 244229 4.09 52.3 83564 85516

6

O 398970 228947 3.83 57.4 69622 71171

y Ns

MC

and

means saled number of MC events at the step just before

0

O

in the CMS frame for the eletron and muon modes, respetively. The di�erent ut value is intended

to allow broader distribution of �

�

than eletron mode (see Se. 2.1).

1

O The pion andidate must have a likelihood ratio value of P

�

> 0:7.

2

O The eletron andidate must have a likelihood ratio value of P

e

> 0:9 and the �

2

of the trak

�tting is required to have �

2

trak

< 200. The muon andidate must have a likelihood value of P

�

> 0:9

and the �

2

of the trak is required to have �

2

trak

< 150. The requirement of the �

2

intends to rejet

bad quality trak but does not have essential impat on eÆienies.

3

O Rejet other �

0

possibilities: if the signal photon (inside aforementioned one) andidate and

either of the photons from the �

0

(the daughter of the � andidate) form an invariant mass of the �

0

(115 MeV=

2

< M



< 150 MeV=

2

), the event is rejeted.

4

O Angle between ` and �

0

: onsidering both `

�

and , and �

+

are boosted bak-to-bak eah

other in �

+

�

�

rest frame, we rejet events if the diretion of the ombined momentum of the lepton

and photon in the CMS frame orients in the hemisphere determined by the �

+

andidate (�

(`)�

> 90

Æ

).

5

O �

+

mass: an invariant mass of harged and neutral pions must satisfy 0:5 GeV=

2

< m

�

�

�

0

< 1:5

GeV=

2

.

6

O Sum of the laboratory energies of photons whih are not assoiated with any harged trak (de-

noted as E

LAB

extra

) must satisfy E

LAB

extra

< 0:2 GeV for � ! e��̄ events and E

LAB

extra

< 0:3 GeV for

� ! ���̄ events. This requirement is essential in the suppression of various bakgrounds. For

example, �

0

s produed from hadroni deays generate extra photon lusters. Moreover, fake lusters

arising from the beam deposit energies in the ECL.
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0

O!

1

O: Distribution of osine of angle between the lepton and photon: (a) overall view

and (b) enlarged view.

51



IDπ
0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

/0
.0

06
00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

610×
γ ν ν e →τ

Exp.

] (24.8%)   
rad

γ)[γτνeν-)(eτν0π+π(→-τ+τ

] (45.9%)   
brems.

γ)[τνeν-)(eτν0π+π(→-τ+τ

] (6.7%)   
brems.

γ)[γτνeν-)(eτν0π+π(→-τ+τ

others (22.5%)   

IDπ
0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

/0
.0

06
00

0.005

0.01

0.015

0.02

0.025

0.03

0.035
610×

γ ν ν µ →τ

Exp.

] (43.7%)   
rad

γ)[γτνµν-µ)(τν0π+π(→-τ+τ

] (15.3%)   
beam

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (5.8%)   
ISR

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (7.4%)   
rad

γ)[γτνµν-µ)(τν0π0π+π(→-τ+τ

] (5.6%)   
0πfrom 

γ)[τν0π-π)(τν0π+π(→-τ+τ

] (3.4%)   
0πfrom 

γ)[τν0π0π-π)(τν0π+π(→-τ+τ

others (18.8%)   

(a)

IDπ
0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

/0
.0

06
00

0.005

0.01

0.015

0.02

0.025

0.03

0.035

610×

Exp.

] (24.8%)   
rad

γ)[γτνeν-)(eτν0π+π(→-τ+τ

] (45.9%)   
brems.

γ)[τνeν-)(eτν0π+π(→-τ+τ

] (6.7%)   
brems.

γ)[γτνeν-)(eτν0π+π(→-τ+τ

others (22.5%)   

γ ν ν e →τ

IDπ
0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

/0
.0

06
00

0.5

1

1.5

2

2.5

3

3.5
310×

Exp.

] (43.7%)   
rad

γ)[γτνµν-µ)(τν0π+π(→-τ+τ

] (15.3%)   
beam

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (5.8%)   
ISR

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (7.4%)   
rad

γ)[γτνµν-µ)(τν0π0π+π(→-τ+τ

] (5.6%)   
0πfrom 

γ)[τν0π-π)(τν0π+π(→-τ+τ

] (3.4%)   
0πfrom 

γ)[τν0π0π-π)(τν0π+π(→-τ+τ

others (18.8%)   

γ ν ν µ →τ

(b)

Figure 4.3:

1

O!
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O: Distribution of likelihood(�=K): (a) overall view and (b) enlarged view.

52



lID
0.7 0.75 0.8 0.85 0.9 0.95 1

N
ev

/0
.0

03
00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

610×
γ ν ν e →τ

Exp.

] (25.0%)   
rad

γ)[γτνeν-)(eτν0π+π(→-τ+τ

] (46.0%)   
brems.

γ)[τνeν-)(eτν0π+π(→-τ+τ

] (6.7%)   
brems.

γ)[γτνeν-)(eτν0π+π(→-τ+τ

others (22.2%)   

lID
0.7 0.75 0.8 0.85 0.9 0.95 1

N
ev

/0
.0

03
00

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

610×
γ ν ν µ →τ

Exp.

] (44.0%)   
rad

γ)[γτνµν-µ)(τν0π+π(→-τ+τ

] (15.3%)   
beam

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (5.9%)   
ISR

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (7.4%)   
rad

γ)[γτνµν-µ)(τν0π0π+π(→-τ+τ

] (5.6%)   
0πfrom 

γ)[τν0π-π)(τν0π+π(→-τ+τ

] (3.4%)   
0πfrom 

γ)[τν0π0π-π)(τν0π+π(→-τ+τ

others (18.5%)   

(a)

lID
0.7 0.75 0.8 0.85 0.9 0.95 1

N
ev

/0
.0

03
00

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

610×

Exp.

] (25.0%)   
rad

γ)[γτνeν-)(eτν0π+π(→-τ+τ

] (46.0%)   
brems.

γ)[τνeν-)(eτν0π+π(→-τ+τ

] (6.7%)   
brems.

γ)[γτνeν-)(eτν0π+π(→-τ+τ

others (22.2%)   

γ ν ν e →τ

lID
0.7 0.75 0.8 0.85 0.9 0.95 1

N
ev

/0
.0

03
00

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

310×

Exp.

] (44.0%)   
rad

γ)[γτνµν-µ)(τν0π+π(→-τ+τ

] (15.3%)   
beam

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (5.9%)   
ISR

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (7.4%)   
rad

γ)[γτνµν-µ)(τν0π0π+π(→-τ+τ

] (5.6%)   
0πfrom 

γ)[τν0π-π)(τν0π+π(→-τ+τ

] (3.4%)   
0πfrom 

γ)[τν0π0π-π)(τν0π+π(→-τ+τ

others (18.5%)   

γ ν ν µ →τ

(b)

Figure 4.4:

2

O!

3

O: Distribution of likelihood(`=�): (a) overall view and (b) enlarged view.
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2
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Table 4.5: Bakground ontributions for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) andidates.

Proess y Fration Color

�

+

�

�

! (�

+

�

0

�̄)(e

�

��̄)[

rad

℄ 28:9% Open

(1) �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄)[

brems:

℄ 52:8% Yellow

(2) �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄)[

brems:

℄ 7:50% Green

(3) Others 10:7% Blue

y The braket represents the soure of photon.

4.4 Bakground omponents for the seleted andidates

In this setion, we present the signal and bakground ontributions evaluated by MC simulation

with seletion riteria desribed in the last setion. As explained below in detail, the frations of

bakground modes largely di�er between eletron and muon modes. This arises from the high rate of

bremsstrahlung by a daughter eletron. The small mass of eletron makes the rate of bremsstrahlung

high and this oupies the fration of seleted events.

4.4.1 �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) deay andidates

Figures 4.10, 4.11, 4.12 and 4.13 show the distributions of photon energy E



, eletron momentum

P

e

, osine of angle between lepton and photon os�

e

and angle itself for �

�

! e

�

��̄ andidates.

Fration of eah bakground is summarized in Table 4.5.

(1) Ordinary leptoni deay + bremsstrahlung, (e; ��

0

) + 

brems:

: 52:8%

When an eletron is aelerated by an eletri �eld of atoms in detetor, a photon is produed

almost ollinearly with the eletron diretion. In partiular, the photons produed at detetors

near the IP annot be essentially distinguished from signal photon even if we try to veto the

event based on the impat parameter of the eletron trak. Beause of the quite similar feature

to the signal events, i.e., its energy and angular dependene, this ourrene is alled external

bremsstrahlung. This ontribution is represented by a yellow histogram in Figs. 4.10 to 4.13.

(2) Radiative leptoni deay ourred but the bremsstrahlung is reonstruted, (e; ��

0

) + 

brems:

:

7:50%

Although the radiative leptoni deay �

�

! e

�

��̄ ours, the extra bremsstrahlung is reon-

struted as a signal photon. Sine this event does not onvey any information of the Mihel

parameters, we regard this event as a bakground. This ontribution is represented by a green

histogram.

(3) Others: 10:7%

The rest bakgrounds are treated as one ategory and we all them others. This ontribution

is represented by a blue histogram in Figs. 4.10 to 4.13. In Table 4.6, we show the list of

soures on this ategory. The ontributions ome from a beam bakground and a failure of

the reonstrution of �

+

andidates due to ontaminations from multi-pion deays suh as

�

+

! �

+

�

0

�

0

�̄.
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Figure 4.10: Distribution of the photon energy E



for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) andidates. The

braket shows an origin of the reonstruted photon. Dots with error bars indiate experimental

distribution while histograms are MC simulation. Open histogram represent signal MC while yellow,

green and blue histograms represent an ordinary leptoni deay + bremsstrahlung, a radiative leptoni

deay + bremsstrahlung and others.

Table 4.6: Bakground omponents in others for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) andidates.

Proess y Fration in others (%)

(�

+

�

0

�̄)(e

�

��̄)[

beam

℄ 32

(�

+

�

0

�

0

�̄)(e

�

��̄)[

rad

℄ 23

(�

+

�

0

�̄)(e

�

��̄)[

beam

℄ 9

(�

+

�

0

�

0

�̄)(e

�

��̄)[

brems:

℄ 6

Others (eah is smaller than 4%) 30

y The braket represents the soure of photon.
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Figure 4.11: Distribution of the momentum of eletron P

e

for the �

+
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�

0

�̄)(e

�

��̄) andidates.

The orrespondenes of olors of histograms are same as Fig. 4.10.
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Figure 4.12: Distribution of the osine of angle between the eletron and photon os�
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��̄) andidates. The orrespondenes of olors of histograms are same as
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Figure 4.13: Distribution of the angle between the eletron and photon �

`
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4.4.2 �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) deay andidates

For �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) andidates, we show the distributions of photon energy E



, muon mo-

mentum P

�

, osine of angle between muon and photon os�

�

and angle itself in Figs. 4.16, 4.15,

4.14 and 4.17. Following information is summarized in Table 4.7.

(1) Ordinary leptoni deay + beam bakground, (�; ��

0

) + 

beam

: 16:2%

For the �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) deay andidates, the beam bakground has the largest fra-

tion. The lusters in the ECL, originating from beam, behaves as photon and the event is

wrongly reonstruted when it is ombined with the ordinary leptoni deay �

�

! �

�

��̄. Be-

ause the distribution of the beam bakground is determined by omplex geometry and envi-

ronment of the beam, it is impossible to reprodue the distribution only from the MC. For this

reason, the energy deposit in the ECL from the beam bakground is reorded in the real exper-

iment with random trigger and this information is overlaid to MC event. This ontribution is

represented by a magenta histogram in Figs. 4.14 to 4.17.

(2) Ordinary leptoni deay + ISR/FSR, (�; ��

0

) + 

ISR=FSR

: 7:7%

The initial and �nal state radiation (ISR/FSR) are proesses in whih photons are generated

from verties of e

+

e

�

and �

+

�

�

, respetively. Sine �

�

is a long-lived partile in that the in-

terferene between the ISR/FSR proesses and deay amplitude of � is ignored, the radiative

deay is de�nitely distinguished from ISR/FSR in the generator level. The ISR/FSR is reon-

struted as signal photon and the event is seleted when it ombines with �

�

! �

�

��̄ deay.

This ontribution is represented by a water-blue histogram.

(3) Three � events, (�; ��

0

�

0

): 5:1%

When one �

0

from �

+

! �

+

�

0

�

0

�̄ is lost, it is reonstruted as the �

+

! �

+

�

0

� deay. Sine

the radiative deay �

�

! �

�

��̄ is properly reonstruted, this event still have a sensitivity on

the Mihel parameters. This ontribution is is represented by a purple magenta histogram.

(4) �-� deay, (��

0

; ��

0

): 3:8%

When one photon from neutral pion is missed and the harged pion is mis-identi�ed as muon,

the event is wrongly seleted. Though the probabilities are relatively small, the large branhing

ratio of �

�

! �

�

� ! �

�

�

0

� deay (� 25%) gives a notable ontribution to the �

�

! �

�

��̄

deay andidates. This ontribution is represented by a light-green histogram.

(5) 3�-� deay, (��

0

�

0

; ��

0

): 1:2%

�

�

! �

�

�

0

�

0

� deay is mis-reonstruted as signal when �

�

is mis-identi�ed as �

�

and three

photons from two �

0

are not vetoed even after the event seletion. Though the fration of

3�-� deay is small, the e�et of this deay on the �tted Mihel parameter is relatively high

and we separately regard this deay as one of major bakground modes. This ontribution is

represented by a red histogram.

(6) Others: 8:6%

Similarly to �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) deay andidates, the rest frations are grouped as one

ategory others. This ontribution is represented by an orange histogram. In Table 4.8,

we show the list of soures on this ategory. The ontributions mainly ome from a pion-

misidenti�ation as muon and ontaminations from the beam bakgrounds. In many ases,

pions from various hadroni deays ouple with the aidental beam bakground or a photon

from �

0

.
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Table 4.7: Bakground ontributions for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) andidates.

Proess y Fration Color

�

+

�

�

! (�

+

�

0

�̄)(�

�

��̄)[

rad

℄ 57:4% Open

(1) �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄)[

beam

℄ 16:2% Magenta

(2) �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄)[

ISR

℄ 7:7% Water-blue

(3) �

+

�

�

! (�

+

�

0

�

0

�̄)(�

�

��̄)[

rad

℄ 5:1% Purple

(4) �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�)[

from �

0

℄ 3:8% Light green

(5) �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�

0

�)[

from �

0

℄ 1:2% Red

(6) Others 8:6% Others

y The braket represents the soure of photon.

Table 4.8: Bakground omponents in others for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) andidates.

Proess y Fration in others (%)

(�

+

�

0

�

0

�̄)(�

�

��̄)[

beam

℄ 8

(�

+

��̄)(�

�

�

0

�

0

�)[

beam

℄ 8

(�

+

�

0

�̄)(�

�

��̄)[

beam

℄ 8

(�

+

��̄)(�

�

�

0

�)[

beam

℄ 7

(�

+

�̄)(�

�

�

0

�

0

�)[

from �

0
℄ 7

(�

+

�

0

�̄)(�

�

�

0

�

0

�)[

from �

0

℄ 6

(�

+

�

0

�

0

�̄)(�

�

�

0

�)[

from �

0

℄ 6

Others (eah is smaller than 4%) 50

y The braket represents the soure of photon.
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Figure 4.14: Distribution of the photon energy E



for the �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) deay andidates.

The braket shows an origin of the reonstruted photon. Dots with error bars indiate experimental

distribution while histograms are MC simulation. The open histogram orresponds to signal MC

distribution while olored histograms are bakground modes: (red) ordinary leptoni deay + beam

bakground, (blue) ordinary leptoni deay + ISR/FSR gamma, (purple) three-�, (green) ��, (brown)

3�-� and (orange) others.
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Figure 4.15: Distribution of the momentum of eletron P

�

for the �

+

�
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�

0

�̄)(�

�

��̄) andidates.

The orrespondenes of olors of histograms are same as Fig. 4.14.
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`

for the �
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0

�̄)(�

�

��̄) deay andidates. The orrespondenes of olors of histograms are same as Fig. 4.14.
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`

for the �
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deay andidates. The orrespondenes of olors of histograms are same as Fig. 4.14.
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4.5 Total eÆieny

In this setion, we present the eÆieny of signal events evaluated by MC simulation. We prepared

dediated signal MC samples whih ontain 7:504 � 10

7

events for eah of four on�gurations:

(e

�

; �

+

�

0

), (e

+

; �

�

�

0

), (�

�

; �

+

�

0

) and (�

+

; �

�

�

0

). By default, the TAUOLA generator adopts the

photon energy threshold: E

�



= m

�

� 0:001 � 1:8 MeV to de�ne the radiative deay. Based on the

information of the generated events, the ratio of events in whih E

�



exeeds 10 MeV is 66:6% for

` = e and 68:5% for ` = �, respetively. Thus the numbers of generated signal events de�ned by

E

�



> 10 MeV are 2:50 � 10

7

for (e

�

; �

+

�

0

), (e

+

; �

�

�

0

) deays and 2:57 � 10

7

for (�

�

; �

+

�

0

),

(�

+

; �

�

�

0

) deays. With seletion riteria desribed above, the number of seleted events are

N

�

e

� N(e

�

; �

+

�

0

)

�

= 1205449; (4.1)

N

+

e

� N(e

+

; �

�

�

0

) = 1195610; (4.2)

N

�

�

� N(�

�

; �

+

�

0

) = 996808; (4.3)

N

+

�

� N(�

+

; �

�

�

0

) = 991504: (4.4)

Divided by the number of generated signal events, the estimated eÆienies by MC are given as:

"̄(e

�

; �

+

�

0

) = (4:83 � 0:09)%; (4.5)

"̄(e

+

; �

�

�

0

) = (4:79 � 0:09)%; (4.6)

"̄(�

�

; �

+

�

0

) = (3:9 � 0:1)%; (4.7)

"̄(�

+

; �

�

�

0

) = (3:9 � 0:1)%; (4.8)

where the errors represent statistial unertainties. The eÆieny is determined based on the de�-

nition of radiative deay, i.e., if E

�



> 10 MeV the event is radiative. In this alulation, the radiative

photon is not required to be properly reonstruted. For example, even if the extra bremsstrahlung

from �

�

! e

�

��̄ is reonstruted as the signal photon, this event is still inluded in the alulation

of eÆieny.

As desribed in Chapter 6 and Appendix A, the MC does not well simulate the experimental

eÆieny partiularly due to an imperfet trigger simulation so that an additional orretion fator

must be taken into aount. With this modi�ation, the eÆieny turns out to derease by 11% and

8% for (e; ��

0

) and (�; ��

0

) events, respetively.

�

As long as the Standard Model (SM) proess is onsidered, the neutrino-less deay of the � is forbidden and we an

uniquely determine the types of neutrinos based on lepton number onservation. Hereafter, without expliitly writing

neutrinos, we often abbreviate the ombination of both deays in a simpli�ed form: (�; ��

0

) means � ! ���̄ and

� ! ��

0

�. Although the neutrino may hange � or �̄ depending on the sign of the �, we do not persist on it beause this

does not a�et any onlusions. Similarly, the harge assignment of partiles depends on the ontexts.
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Chapter 5

Method of the measurement of the Mihel

parameters

In this hapter, we desribe methods to extrat the Mihel parameters �̄ and ��. Tehnial details like

mathematial formulae and their derivations are found in the Appendix B.

5.1 Notations and onventions

In this hapter and Appendix B, we use following notations and onventions unless otherwise noted.

The four vetors are denoted by small letters with itali haraters like p and its energy and three

vetor omponents are denoted as E and P. The apital letter P means magnitude of P. 
 is used

to represent an angular omponent of three vetors and represents an abbreviation of a set fos�; �g.

The general vetors are also denoted as bold letters x. For example, a set of observed variables is

often abbreviated as x: partile-1 (P

1

;


1

) and partile-2 (P

2

;


2

) are put together to be represented

as x = fP

1

;


1

; P

2

;


2

g. Furthermore, we always use an asterisk as supersript like E

�

to show it

is evaluated in the � rest frame. While to show a value is evaluated in other frames, we also use a

tilde, hat and double asterisk. The meanings of these supersripts hange depending on eah ontext

and shall be explained on eah oasion. In this analysis, we often use a variable whih distributes

aording to a ertain probability density funtion. We represent x 2 f (x) for this situation that the x

is distributed aording to f (x).

5.2 Unbinned maximum likelihood method

The Mihel parameters � = f�̄; ��g are obtained by maximizing a likelihood funtion L, whih is

omprised of the produt of a probability density funtion (PDF) P(xj�) of eah event:

L(�) =

Y

k

P(x

k

); (5.1)

where k is the index of event and x represents a set of twelve-dimension observables, whih is

expliitly given by x = fP

`

;


`

; P



;




; P

�

;


�

;m

2

��

;

e




�

g and explained later in detail. In other words,

the P(x)dx is regarded as a probability suh that the event having orresponding point x lies inside a

ertain ube dx. Tehnially, it is more useful to adopt a negative logarithmi likelihood funtion

L(�) = � log L = �

X

k

logP(x

k

) (5.2)

so that the exponential small value that appears in the right hand side of the Eq. (5.1) beomes easy

to manage.
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Thus the proedure is dissolved into the formulation of P(x). Aounting for the event sele-

tion and the ontamination from bakgrounds, the total visible (properly normalized) PDF for the

observable x in eah event is given by:

P(x) = (1 �

X

i

�

i

) �

S (x)"(x)

R

dxS (x)"(x)

+

X

i

�

i

B

i

(x)"(x)

R

dxB

i

(x)"(x)

; (5.3)

where S (x) is the signal PDF explained later in Se. 5.4.1, B

i

(x) is the distribution of the i-th ategory

of bakground, �

i

is the fration of eah bakground and "(x) is the seletion eÆieny of signal.

The index i runs 1; 2; 3 and 1; 2; : : : ; 6 for eletron and muon modes, respetively, and this indiates

eah ategory of bakground explained in Se. 4.4 (also shown in Figs. 4.10 and 4.14 with eah

olor). The PDF of the major bakground modes are desribed using their theoretial formulae while

other minor ontributions are treated as one ategory and desribed based on the MC simulation. The

seletion eÆieny "(x) is not generally ommon between the signal and bakgrounds, the di�erene,

however, is inluded in the de�nition of B

i

(x). The denominator of eah term is a produt of the

average seletion eÆieny of eah omponent and its normalization.

Due to the large dimension of the phase spae, an evaluation of loal eÆieny "(x) as a funtion

of x is almost impossible. However, this does not ause a substantial problem, sine "(x) is a om-

mon fator irrelevant from �, whih results in an addition of a onstant in the negative logarithmi

likelihood maximization: L(�) � �

P

k

log "(x

k

). Therefore, the dependene of "(x) on x does not

diretly a�et �tted value of the Mihel parameters. The unneessity of a tabulation of "(x) is one of

the most important keys of this analysis.

5.3 Average eÆieny and normalization

We explain a manipulation of the terms in Eq. (5.3) before the desription of PDF. All terms in the

equation have forms given by

P

i

"(x)

= � �

F(x)

R

dxF(x)"(x)

; (5.4)

where F is S or B

i

in Eq. (5.3). Sine the overall probability of eah omponent should be unity,

F(x) should satisfy the unitary ondition:

R

dxF(x) = 1. However, in some ases, F(x) whih is not

neessarily be normalized is easy to extrat and we distinguish them by notating

e

F(x) for the PDF

whih is not normalized. For

e

F(x), we are allowed to ignore onstant fators suh as many (2�)s

arising from the Lorentz-invariant phase spae (LIPS). Right-hand side of Eq. (5.4) shows that this

term does not depend on the normalization fator of F(x). Therefore, it an be rewritten as

P

i

"(x)

= � �

e

F(x)

R

dx

e

F(x)"(x)

: (5.5)

The integration in the denominator is evaluated by seleted MC events, whih is distributed with

respet to the SM prediation:

� �

e

F(x)

R

dx

e

F(x)"(x)

= � �

e

F(x)

Z

dxF

SM

(x)

e

F(x)"(x)

F

SM

(x)

(5.6)

= � �

e

F(x)

"̄

N

sel

X

x

k

2"F

SM

e

F(x

k

)

F

SM

(x

k

)

= � �

e

F(x)

"̄�

SM

N

sel

X

x

k

2"F

SM

e

F(x

k

)

e

F

SM

(x

k

)

; (5.7)

72



� � �

e

F(x)

"̄�

SM

*

e

F

e

F

SM

+

(5.8)

where "̄ is the average seletion eÆieny, N

sel

is the number of seleted events and �

SM

is magnitude

of the normalization fator alulated as

�

SM

=

Z

dx

e

F

SM

(x): (5.9)

The braket in Eq. (5.8) indiates the average for the seleted SM distribution. Hereafter, we refer the

fator whih normalizes the Standard Model part �

SM

=

R

dx

�

F

SM

(x) to an absolute normalization,

while the relative fator

h

�

F=

�

F

SM

i

in Eq. (5.8) to a relative normalization.

5.4 Implementation of probability density funtions

In this setion, we present the desription of the PDFs for the signal and bakgrounds. For simpliity,

we desribe the tehnial details only for the signal desription and skip explaining those of the

bakgrounds in the main text by just writing the onept of the formulation. The detailed information

is given in Appendix B.

5.4.1 Desription of the signal PDF

The di�erential deay width for the radiative leptoni deay of the �

�

with a de�nite spin diretion

S

�

�

�

is given by

d�(�

�

! `

�

��̄)

dE

�

`

d


�

`

dE

�



d


�



=

�

A

�

0

+ �̄A

�

1

�

+

�

B

�

0

+ �� B

�

1

�

� S

�

�

�

; (5.10)

where A

�

i

and B

�

i

(i = 0; 1) are known funtions of the kinemati variables of the deay produts,


a

stands for a set of fos�

a

; �

a

g for a partile type a = (` or ) and the asterisk means that the variable is

de�ned in the � rest frame. The expliit formula is given in the end of this Se. 5.4.1. Equation 5.10

shows that �� appears in the spin-dependent part of the deay width. This produt an be measured

by utilizing the well-known spin-spin orrelation of the � pair in the e

�

e

+

! �

+

�

�

reation:

d�

�

e

�

e

+

! �

�

(S

�

�

�

)�

+

(S

�

�

+

)

�

d


�

=

�

2

�

�

64E

2

�

(D

0

+ D

i j

S

��

i

S

+�

j

) (i; j = 1; 2; 3); (5.11)

where � is the �ne struture onstant, �

�

and E

�

are the veloity and energy of the �, respetively,

D

0

is a form fator for the spin-independent part of the reation and D

i j

is a tensor desribing the

spin-spin orrelation [63℄:

D

0

= 1 + os

2

� +

1



2

�

sin

2

�, (5.12)

D

i j

=

0

B

B

B

B

B

B

B

B

B

B

B

�

(1 +

1



2

�

) sin

2

� 0

1



�

sin 2�

0 ��

2

�

sin

2

� 0

1



�

sin 2� 0 1 + os

2

� �

1



2

�

sin

2

�

1

C

C

C

C

C

C

C

C

C

C

C

A

; (5.13)

here, � is the polar angle of the �

�

and 

�

= 1=

p

1 � �

2

�

. The plane formed by eletron and tau

movements are de�ned as xz-plane (or equivalently � = 0 plane) and this is the reason why x and y

omponents in Eq. (5.13) are not symmetrial .
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The spin information on the partner �

+

is extrated using the two-body deay �

+

! �

+

�̄! �

+

�

0

�̄

whose di�erential deay width is given by

d�(�

+

! �

+

�

0

�̄)

d


�

�

dm

2

��

d

e




�

= A

+

+ B

+

� S

�

�

+

; (5.14)

A

+

and B

+

are the form fators for the spin-independent and spin-dependent parts, respetively, while

the tilde indiates the variables are de�ned in the � rest frame and m

��

is an invariant mass of the

two-body system of pions whih is de�ned as m

2

��

= (p

�

+ p

�

0

)

2

. The formulae of the form fators

are also given in the end of this setion. Thus the total di�erential ross setion of e

+

e

�

! �

+

�

�

!

(�

+

�

0

�̄)(`

�

��̄) proess is given by:

d�(`

�

; �

+

�

0

)

dE

�

`

d


�

`

dE

�



d


�



d


�

�

dm

2

��

d

e




�

d


�

/

�

�

E

2

�

h

D

0

�

A

�

0

+ A

�

1

��̄

�

A

+

+ D

i j

�

B

�

0

+B

�

1

���

�

i

�B

+

j

i

: (5.15)

To extrat the visible di�erential ross setion, we transform the di�erential variables into ones

de�ned in the CMS using a Jaobian J (dE

�

`

d


�

`

dE

�



d
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where the parameter � is the angle along the ar explained in Se. 2.5. The visible di�erential ross

setion is, therefore, obtained by an integration over �:
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where

e

S (x) is the PDF of the signal and x denotes the mentioned set of twelve measured variables:
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Sine the PDF is a linear ombination of the Mihel parameters
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�

For the derivation of Jaobians, see Appendix C.
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where �

SM

and hE

i

=E

0

i (i = 1; 2; 3) are the absolute and relative normalizations, respetively, and

"̄

SM

is an average seletion eÆieny for the SM distribution. In this alulation, we use the fat that

�̄

SM

= �

00

SM

= ��

SM

= 0.

Formulae

As mentioned, the di�erential deay width of the �
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is expressed as sum of spin independent A
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dependent parts B
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both of whih are funtions of normalized kineti parameters x, y and d as [28℄:
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In the desription of form fator, we use the CLEO model, where the di�erential deay width is

expressed as [64, 65℄:
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and B
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are given by following formulae:
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is the orresponding element of the Cabibbo-Kobayashi-Maskawa matrix and q is a four-

vetor de�ned by q = p
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. The fator BPS stands for a square of a relativisti Breit-Wigner

funtion and a Lorentz-invariant phase spae and they are alulated from the following formulae:
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is the momentum of neutrino in the tau rest frame given by P
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5.4.2 Desription of the major bakground PDFs

As mentioned before, the di�erene of the eÆieny between signal and bakground is inluded in

the de�nition of the bakground PDF suh that the normalized bakground PDF beomes

B

i

(x)"(x)

R

dxB

i

(x)"(x)

; (5.63)

where "(x) is the eÆieny of the signal distribution. This manipulation an be ategorized into three

ases. Suppose that an intrinsi PDF of the bakground mode in question is B

int

.

� Case A: Partiles are idential

When all partiles in the �nal states are ommon in both signal and bakgrounds, we simply

hange the intrinsi signal PDF to that of bakground.

� Case B: Partile lost

When the bakground mode has an extra partile and it is not vetoed by the seletion riteria,

the bakground event is seleted as signal andidate. In this ase, the visible PDF is obtained

by a onvolution with a probability that the event is not rejeted (ineÆieny):

B
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�

1 � "(y)

�

; (5.64)

where y indiates variables of the extra partile and

�

1 � "(y)

�

orresponds to the ineÆieny.

� Case C: Partile misidenti�ation

When a partile a is misidenti�ed as either of signal partiles b (a , b), the di�erene of a

fator is "(b! a)="(b! b). Therefore, the visible PDF simply beomes

B
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"(b! b)

(y)B
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(x); (5.65)

where y indiates a set of variable for the misidenti�ed partile.

Bremsstrahlung (ase A)

The two main bakgrounds for �

+
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! (�

+
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�̄)(e
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��̄) andidates ome from the bremsstrahlung of

eletron. The probability of the emission of the photon for a given diretion of the eletron f (�
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) is

expressed by:
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where

e

L is a material budget in terms of radiation length and E

min

is the energy threshold of the

bremsstrahlung photon. The value E

min

= 1 MeV is hosen to satisfy the ondition E
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=E

`

�

�

P

e
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. The momentum and angular distribution of the produed eletron and photon are given by
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as reported in Ref. [66℄. Convolution of these quantities and the original PDF of the

leptoni deays �

�

! e

�

��̄() produes the visible PDF of these proesses.
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Beam bakground (ase A)

Aidental fake ECL lusters from the beam are wrongly reonstruted as a signal photon and be-

ome a soure of bakgrounds. There are multiple soures of the beam bakgrounds. The beam

partiles are sattered by the residual gas atoms and hit on the inner wall of the beam pipe. The se-

ondary partiles generated by the out-of-orbit beam make lusters in the ECL. Similarly, the beam

is also sattered by an eletri �eld formed by the beam itself: when the eletri �led is formed by

the partiles of the same bunh this is alled Toushek e�et, when it is formed by the other side

of bunh it is alled beam-beam sattering. Moreover, the synhrotron radiation also beomes the

soure of the bakground.

Sine the preise simulation of these beam bakground is diÆult, we reord the data of energy

deposit in ECL lusters in the real experiment with a random trigger. Then, the beam bakground is

overlaid in the event of MC simulation.

In order to desribe the PDF of the beam bakground, we basially follow the Case A proedure.

However, there is a fundamental diÆulty here, i.e., the extration of the intrinsi PDF of the beam

bakground is not possible. For simpliity, we divide the overall phase spae into two parts: x =
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g. Here, y

and z are variables for the ordinary leptoni deay �

�

! �

�

��̄ and the beam bakground, respetively.

With this notation, the seleted distribution of z, whih is in fat aessible with MC simulation, an

be expressed as:
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where B

bm

(y) and B

ord

(z) are intrinsi PDF of the ordinary leptoni deay and beam bakground,

respetively. Removing B

bm

(z) from the normalized PDF term, we get

B(x)"(x)

Z

dxB(x)"(x)

=

B

ord

(y)B

bm

(z)"(x)

Z

dx"(x)B

ord

(y)B

bm

(z)

=

P

sel

(z)B

ord

(y)

Z

dy "(y)"(zjy)B

ord

(y)

�

P

sel

(z)B

ord

(y)

�"(z)

: (5.68)

Here, �"(z) =

R

dy"(y)"(zjy)B

ord

(y) represents an e�etive eÆieny of z for a given y 2 B

ord

(y) and

an be extrated from the signal MC distribution.

High polar angle ISR photons (ase A)

The ISR proess e

+

e

�

! �

+

�

�

 ombines with the ordinary leptoni deay �

�

! �

�

��̄ to beome a

andidate of the signal. In our analysis, we distinguish the ISR proess in two ategories depending

on the angle: ollinear and high polar angle ISRs. In the former ase, photon jets in the ollinear

region (�

e

� m

e

=E

beam

) is treated by means of the struture funtion [71℄. These photons do not

enter the aeptane of the detetor, hene it results in the derease of the energy of the � pairs and

boost of the CMS. This is desribed in Se.5.4.4. The latter photon is emitted inside the aeptane

of detetor and an be aidentally reonstruted as signal photon. The desription of the PDF is

straightforward beause we only need to modify the ross setion of the prodution e

+

e

�

! �

+

�

�

into radiative one in Eq. (5.11) (of ourse, the di�erential deay width of the radiative deay should

be hanged to non-radiative one) as [67℄:

y

d�
(
e

�

e

+

! �

�

�

+

)

d


�

!

d�
(
e

�

e

+

! �

�

�

+


)

dP



d




d


�

: (5.69)

y

So far for the radiative ross setion, the spin-spin orrelation of the �

+

�

�

pair is taken into aount only in this paper

while spin-independent formulae are given in Refs. [68, 69℄
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Three-� bakground (ase B)

If either of �

0

from the three-� deay �

+

! �

+

�

0

�

0

�̄ is lost and the rest parts are reonstruted as

�

+

! �

+

�

0

�̄ deay, the proess beomes the andidate of the signal. Sine the intrinsi PDF of the

three-� events is given by

B

3�

(x; y) =

d�(`; ��

0

�

0

)=�

dP

�

0

d


�

0

dP

`

d


`

dP



d




dm

2

��

d

e




�

=

d�(`; ��

0

�

0

)=�

dxdy

(5.70)

with x = fP

`

;


`

; P



;




; P

�

;


�

;m

2

��

;

e




�

g and y = fP

�

0
;


�

0
g; (5.71)

the visible PDF is alulated with the ineÆieny of �

0

as:

B

vis

(x) =

Z

dy B

3�

(x; y) 2

�

1 � "(y)

�

: (5.72)

The fator of two omes from the number of ounting for the �

0

.

�-� bakground (ase B and ase C)

The �

�

! �

�

�

0

(! )� deay is wrongly seleted by the misidenti�ation of �

�

! �

�

and a failure

of the rejetion of a photon from �

0

deay. The visible PDF of �

�

1

�

+

2

! (�

�

1

�

0

1

(! 

1



2

)�)(�

+

2

�

0

2

�̄)

proess is given by

B

vis

(x) =

"

�!�

"

�!�

Z

dy B

�-�

(x; y) 2

�

1 � "(y)

�

; (5.73)
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; (5.74)

with x = fP

�

1

;


�

1

; P



1

;
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2
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�

2
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�

2

g and y = f




2

g: (5.75)

3�-� bakground (ase B and ase C)

The �

�

! �

�

�

0

�

0

(! )� deay is similarly seleted as the �-� bakground: in this ase two �

0

are

not rejeted by the seletion riteria. The visible PDF of �

�

�

+

! (�

�

1

�

0

1

�

0

2

(! 

1
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)�)(�

+
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�

0
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; (5.76)
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; (5.77)

with x = fP

�

1

;


�

1

; P



1

;




1
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�
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;
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g and y = fP

�
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2
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�

0

2

g: (5.78)

5.4.3 Desription of other bakground modes

The rest minor bakground modes are desribed e�etively in the total PDF rather than the analytial

desription as presented above, beause the number of hannels in the ategory of other bakground

are too large to desribe them separately. Suppose that the seleted events are only the ombination

of signal and the other bakgrounds. The total PDF is given by

P(x) = (1 � �)

"(x)S (x)

R

dx "(x)S (x)

+ �

"(x)B(x)

R

dx "(x)B(x)

; (5.79)
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where � is a total fration of other bakground modes, S (x) and B(x) are PDFs of signal and bak-

grounds, and "(x) is an eÆieny of signal. Same as the major bakground modes, the di�erene of

eÆieny between signal and eah bakground mode is inluded in the de�nition of B(x). Here, we

should regard the B(x) as a kind of intrinsi distribution for a �xed seletion riteria. The bakground

term is modi�ed as

"(x)B(x)

R

dx "(x)B(x)

=

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

"(x)B(x)

R

dx "(x)B(x)

(5.80)

=

"(x)S

SM

(x)

"̄

sig

B

sel

(x)

S

sel

(x)

; (5.81)

where "̄

sig

=

R

dx "(x)S

SM

(x) is an average eÆieny of signal and S

sel

(x) and B

sel

(x) are normalized

PDFs of the seleted signal and other bakground modes, whih are given by

S

sel

(x) =

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

; (5.82)

B

sel

(x) =

"(x)B

SM

(x)

R

dx "(x)B

SM

(x)

: (5.83)

Thus �nally we get

P(x)

"(x)

= (1 � �)

S (x)

"̄

sig

+ �

S

SM

(x)

"̄

sig

T (x) (5.84)

T (x) �

B

sel

(x)

S

sel

(x)

: (5.85)

The extration of T (x) is performed by Shmidt method [70℄. As shown in Fig 5.1, the probability

density at a ertain point x is obtained from a set of seleted Monte Carlo sample by ounting number

of events around x. In reality, however, it is not e�etive to ount the number of event in the entire

12D phase spae beause the number of statistis is limited. Therefore, we divide the phase spae

into smaller subsets: T (x) = T (x

1

) �T (x

2

), where x

1

and x

2

are variables of the subsets. Furthermore,

it is also possible to freely hange variable into another independent set y aording to x = y �

�(x)

�(y)

beause when we formulate T (x), the Jaobians appearing in both numerator and denominator anel

eah other. Therefore, it is required to fatorize T (x) to the extent that the number of entry inside

loal region V is suÆient and exhange variables suh that the nature of spetra is properly re�eted

on. In this analysis, we use the method below:

T (�! e��̄)(x) = T (P
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) (5.86)

T (�! ���̄)(x) = T (P
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;
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1=P



) � T (P

�
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2

�

) � T (�

�

+ �

`

; �



� �

`

; �

�

) � T ( 

`

; os�

l

): (5.87)

The distribution of these variables are shown in Figs. 5.2 and 5.3 for �

�

�

+

! (e

�

��̄)(�

+

�̄) and

�

�

�

+

! (�

�

��̄)(�

+

�̄) andidates, respetively.
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Figure 5.1: The probability density of seleted sample at x an be obtained by ounting number of

events around x. The di�erential ross setion PDF

sel

(x) =

N

hit
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total
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.
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Figure 5.3: Distribution of various variables for �
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�̄) deay. The red and blue lines

are signal and others distributions, respetively. Both statistis are normalized so that both entries

are same.
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is turned on and o�, respetively.
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Figure 5.5: ISR emission an be regarded as Drell-Yan proess. E represent energy of e

�

and e

+

in

the ee-CMS frame.

5.4.4 Implementation of the e�et of ollinear ISR

As mentioned before, the ISR is ategorized into two groups depending on the diretion of the emis-

sion of the photon vs that of beam. Sine the dominant emission of the ISR is inside the region

of �

e

� m

e

=E

beam

= 10

�4

, we treat this e�et as a ollinear ISR. Figure 5.4 shows the generated

distribution of the momentum of the muon in the � ! ���̄ deay. Beause of the energy deposit of

the beam by ISR emission, the momentum distribution shifts in smaller side. Furthermore, CMS of

beam beomes not to oinide with ��-CMS frame. We take into aount the energy loss by means

of a struture funtion D(x) [71℄. As Fig. 5.5 shows, ISR photons are assumed to be ollinear with

beam axis

z

and the fration of the energy deposit from e

�

and e

+

are x

1

and x

2

, respetively. Similarly

to the well known Drell-Yan proess, the probability of the ISR emission is desribed as a double

onvolution with funtion D(x):

D(x) = D



(x) + D

ee

(x)

D



(x) =

1

2

�x

�

2

�1

"

1 +

3

8

� �

�

2

48

 

1

3

L + �

2

�

47

8

!#

�

1

4

�(2 � x)

+

1

32

�

2

"

4
(
2 � x

)
log

1

x

�

1 + 3(1 � x)

2

x

log(1 � x) � 6 + x

#

z

It is known that the e�et of large angle ISR is suppressed by an additional fator � [68℄.
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where � is the step funtion, � =

2�

�

(L � 1), L = log

�

s

m

2

e

�

and L = log

�

sx

2

m

2

e

�

. Thus the original PDF

P

org

(s) for an invariant mass squared s is modi�ed to

P

vis:

(s) =

Z

1

0

dx

1

Z

1

0

dx

2

D(x

1

)D(x

2

)P

org

(
s(1 � x

1

)(1 � x

2

)
)
� J; (5.88)

where J is a Jaobian whih onverts the di�erential variables from ��-CMS frame to the CMS of

beam and given as produts of three Jaobians: J

a

= P

2

a

E

0

a

=P

02

a

E

a

for a = l; ; �. The supersript

prime indiates that it is de�ned in the ��-CMS frame.

5.4.5 Implementation of the e�et of detetor resolution

The observed momenta and energies of partiles are distorted by measurement with detetors. This

e�et is taken into aount based on the information of the error of the detetor. The response of

detetor is desribed by a resolution funtion R(x; x

0

), where x and x

0

are, respetively variables for

observed and true values. In the presene of the distortion, the visible PDF is written as:

P

vis:

(x) =

Z

dx

0

P(x

0

)R(x; x

0

): (5.89)

In this analysis, we assume that the resolution funtion is a produt of eah partile: R(x; x

0

) =

R(P

`

;


`

) � R(P



;




) � R(P

�

;


�

) � R(P



0

;




0

) � R(P



0

;




0

), where 

0

means it is generated from the

signal �

0

. The resolution funtion of the harged trak�` and ��is given by

R(P; P

0

) =

1

(2�)

3=2

p

detE

exp

(

�

�P

T

E

�1

�P

2

)

; �P = P � P

0

; (5.90)

where E is an inverse of the variane-ovariane matrix de�ned in the Cartesian oordinate system

and P is a momentum of the reonstruted partile. The E has a form diag(1=�

2

1

; : : : ; 1=�

2

n

) if all

variables are not orrelated. Sine the trajetory of harged trak is �tted by the Helix parameters,

the error matrix is also given in this format, hene we onvert it with Jaobian as �H

T

E

�1

�H !

�P

T

J

�1

E

�1

J�P � �P

T

E

�1

Cartesian

�P, where �H is a vetor formed by the helix parameters and J is

the Jaobian de�ned as J = �H=�P. The MC distribution of the error matrix is alibrated using

osmi ray and saled so that the distribution beomes the Gaussian distribution.

For the reonstrution of photon, it is known that the di�erene of energy �E = E � E

0

is not

symmetri Gaussian as the ase of the harged trak. The asymmetri response is desribed by the

logarithmi Gaussian, whih is obtained by exhange of variable x = log(� � �E) where x follows

Gaussian distribution. � determines the maximum available energy and �E haraterizes the degree

of asymmetry. The angular response of the detetor is given as errors of �



and �



with simple

diagonal form: (�; �)

T

E

�1

(�; �) = (�; �)

T

diag(1=�

2

�

; 1=�

2

�

)(�; �). Similarly to the ase of harged

partile, it is onverted to Cartesian distribution. These parameters are alibrated using e

+

e

�

! 

proess and on�rmed by �

0

!  and �

0

!  deays measuring their invariant masses [72℄.
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5.5 Fitting

As desribed above, the visible PDF for an observed event x is formulated:

P(x) = (1 �

X

i

�

i

) �

S (x)"(x)

R

dxS (x)"(x)

+

X

i

�

i

B

i

(x)"(x)

R

dxB

i

(x)"(x)

;

By means of this PDF, for a given set of seleted events, we onstrut the (negative) logarithmi

likelihood funtion as

L(�̄; ��) = �log

0

B

B

B

B

B

�

Y

k

P(x

k

)

1

C

C

C

C

C

A

= �

X

k

log

�

P(x

k

)

�

: (5.91)

As Eq. (5.91) shows, the free parameters are only Mihel parameters �̄; �� and �

i

are �xed to values

evaluated by MC simulation. The assoiated unertainties of �

i

are taken into aount as systemati

unertainties.

5.6 Validation of �tter

5.6.1 Linearity of �tter

In order to validate our �tter, we hek the linearity response to the Mihel parameters whih are not

the SM values. Figure 5.6 shows the linearity of the �tter for eah Mihel parameter value. Eah

point is statistially independent and obtained by using 9:2 M generated events for �

�

! e

�

��̄ and

2:3M events for �

�

! �

�

��̄. Aording to the �gures, we an observe a good linearity of the �tter.

Furthermore, we also hek same on�rmation for the seleted sample, where seletion riteria

are applied. Figures 5.7 and 5.7d show the linearities for seleted statistis, where 4:7 M �

�

!

�

�

��̄ deay events are �tted. Still the linear response an be properly seen. We also attempt to �t

4:4M �

�

! e

�

��̄ seleted events and only result of �� shows robust linearity as seen in Fig 5.7b. The

linearity of �̄ is degraded due to its low sensitivity. Intuitively, this result seems strange based on the

sensitivities obtained �ttingMihel parameters to the generated events, beause statistial unertainty

should be proportional to the inverse of square root of event number. However, as explained in the

next setion, it is found that the low sensitivity of �̄ omes from seletion with os�

`

, whih is

neessary to hoose events.

5.6.2 Dependene of sensitivity on seletion riteria

In the last setion, we see that the sensitivities of Mihel parameters obtained by the seleted sample

are degraded ompared to those of the original generated events. This situation an be explained by

the e�et of seletion riteria. Figures 5.8 and 5.9 show sensitivity dependenes on E



and os�

`

.

Sine statistial unertainty should be proportional to the inverse of square root of the event number,

we use �

p

N to evaluate the e�et of seletion, where � is a statistial unertainty of Mihel pa-

rameters and N is a number of �tted events. Aording to these �gures, we an learly observe that

the sensitivities hange even if the e�et of derease of event number is ompensated by the fator

of

p

N. This is equivalent to remark that the importane of events in phase spae is not uniform:

events whih have higher energy photons and smaller os�

`

values give the large impat on the �t-

ted values of Mihel parameters. In partiular, the ondition of angle between lepton and photon is

ruial beause lower ut of the os�

`

enhanes the fration of bakgrounds. It is ideal to relax these

onditions as loose as possible, however, we annot help using the seletion riteria to retain realisti

purities.
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Figure 5.6: Linearity of �tter obtained using 9:2 M generated events for �! e��̄ and 2:3 M events

for � ! ���̄: (a)(b) �̄ and �� for � ! e��̄, ()(d) �̄ and �� for � ! ���̄. The horizontal axis

represents value of input Mihel parameter and vertial axis represents the �tted Mihel parameter.

The blue line is a �tted linear funtion and its gradient and interept are shown.
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Figure 5.7: Linearity of �tter obtained using 4:4 M seleted events for � ! e��̄ and 4:7 M events

for � ! ���̄. The horizontal axis represents value of input Mihel parameter and vertial axis

represents the �tted Mihel parameter (a)(b) �̄ and �� for �
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! e
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��̄, ()(d) �̄ and �� for �

�

!

�

�

��̄. The blue line is a �tted linear funtion and its gradient and interept are shown.
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e

dependenes on �̄ and ��. The vertial axis represents a normalized

sensitivity de�ned as �

p

N.
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5.6.3 Fitting Mihel parameters with bakground PDFs

For the experimental situation, we annot distinguish the events aording to their soures. With MC

events, however, we an separately turn on and o� eah ontribution. The PDFs of eah bakground

mode is on�rmed by mixing the bakground mode in question and �tting Mihel parameters with

the PDF of signal.

x

Figures 5.10 and 5.11 show the ontours of the likelihood for the mixed sample

for (e; ��

0

) and (�; ��

0

), respetively. In both ases, the analytial implementations are more or

less proper.

On the ontrary, we an observe bias due to the inlusion of others. In partiular, these others

always tend to shift �� in the negative side. As a matter of fat, the 3�-� deay, whih is explained

in Se. 5.4.2, was previously inluded in the fration of the others for �

�

�

+

! (�

�

��̄)(�

+

�

0

�̄)

andidates. However, we found that the e�etive desription of 3�-� in the others shifted the �tted

Mihel parameter (espeially ��), and deided to desribe it analytially. This is one of a proof that

the simpli�ation of the T = B

sel

=S

sel

de�ned in Eq. (5.85) into smaller subsets (like as we did in

Eq. (5.86) or (5.87)) fails to re�et the high dimension orrelations in the total PDF. We tried more

than �fty ways to simplify the T , but the tendenies were always more or less similar: �� tends to

move into negative side. Up to now, we ompromised on the urrent method and this is inluded as

a soure of systemati bias.

Figure 5.12 shows ontours of the likelihood funtions for the ombined statistis, where all

bakgrounds are inluded in the total PDFs. The entral values of �tted Mihel parameters are

�̄

e

= �2:5; (5.92)

(��)

e

= �0:25; (5.93)

�̄

�

= 0:67; (5.94)

(��)

�

= �0:22: (5.95)

We regard these residuals from the SM values of �̄ = �� = 0 as systemati unertainties due to

the limited preision of bakground desriptions. The magnitudes of these biases are less than 1�

statistial unertainties of experimental events. Conversely, the preision of PDF desriptions an be

justi�ed within this level.

x

Although we do not present in this thesis, we have also heked eah PDF by �tting other Mihel parameters. For

example, (`; ��

0

) deay has a sensitivity on �, �, � and ��. Therefore, it is possible to on�rm the PDF by �tting them.

Furthermore, sine the PDF of (��

0

; ��

0

) deay has a �

�

parameter (the di�erential deay width of �

+

! �

+

�

0

�̄ is

proportional to A + �

�

B � S

�

�

and we use the SM value �

�

= 1 in Eq. (5.55)), we also on�rmed this PDF by �tting �

�

.
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Figure 5.10: Contour of the likelihood obtained with ontaminated sample. (a) (e; ��

0

) + 

brem:

,

(b) (e; ��

0

) + 

brem:

and () others, are mixed to (e; ��

0

) statistis. Horizontal and vertial axises

represent �̄ and ��. Contours orrespond to �L = 0:5, �L = 4 � 0:5 and �L = 9 � 0:5 in order from

inside to outside. Cross hairs represent the SM predition.
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Figure 5.11: Contour of the likelihood obtained with ontaminated sample. (a) (�; ��

0

) + 

beam

, (b)

(�; ��

0

) + 

ISR

, () (�; ��

0

�

0

), (d) (��

0

; ��

0

), (e) (��

0

�

0

; ��

0

) and (f) others, are mixed to (�; ��

0

)

statistis. Horizontal and vertial axises represent �̄ and ��. Contours orrespond to �L = 0:5,

�L = 4 � 0:5 and �L = 9 � 0:5 in order from inside to outside. Cross hairs represent the SM

predition.
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Figure 5.12: Contours of the likelihood funtion for ombined statistis: (a) all �! e��̄ andidates,

(b) all � ! ���̄ andidates and () ombined. Contours orrespond to �L = 0:5, �L = 4 � 0:5 and

�L = 9�0:5 in order from inside to outside. Cross hairs represent the SM predition and white irle

orresponds to the best �t value of Mihel parameters.
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Stability of Mihel parameters on E

LAB

extra

We also heked the stability of �tted Mihel parameters on the variation of E

LAB

extra

value. Generally,

the frations of bakgrounds hange as the requirement varies and we an on�rm the validity of

the PDFs. Figure 8.2 shows the obtained Mihel parameters. The variations of the �tted values are

within their statistial unertainties.
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Figure 5.13: Dependene of E

LAB

extra

ut on �̄ (a) and �� (b). Horizontal and vertial axises are extra-

gamma energy ut and �tted Mihel parameters respetively. The red markers with error bars orre-

spond enter values and their statistial errors.
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Chapter 6

Analysis of the experimental data

As desribed in 5.4, the Mihel parameters are measured by �tting the total PDF de�ned as

P

total

(x) = (1 �

X

i

�

i

)

"(x)S (x)

R

dx "(x)S (x)

+

X

i

�

i

"(x)B

i

(x)

R

dx "(x)B

i

(x)

; (6.1)

and the dependene of "(x) anels when we formulate the logarithmi likelihood funtion. Suppose

that "(x) hanges "(x)! "(x)R(x), where R(x) is a orretion fator whih represents the hange of

seletion eÆieny. Following totally the same proedure as explained in Se. 5.4, the normalization

of signal term beomes

�

SM

sig

"̄

sig

N

sel

X

x

i

2"

e

S

SM

e

S (x

i

)R(x

i

)

e

S

SM

(x

i

)

(6.2)

=

�

SM

sig

"̄

sig

N

sel

X

x

i

2"

e

S

SM

h

E

0

(x

i

) + E

1

(x

i

) � �̄ + E
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00
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) � ��

i
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i

)

E

0

(x

i

)

; (6.3)

Consequently, the relative normalization is modi�ed:

*

E

i

E

0

+

x2"S

SM

!

*

E

i

E

0

R

+

x2"S

SM

; (6.4)

whih means that every event is weighted with additional fator R(x). In the presene of R(x), the

normalizations of bakground terms also hange and result in an additional fator R

i

=< R >

x2B

i

.

The di�erene of the eÆieny between the real experiment and MC simulation is taken into

aount by extrating the R(x). We tabulate R(x) as produts of orretions from a trigger eÆieny

and reonstrution eÆienies of all partiles.

6.1 Trigger eÆieny orretions

�

The information of the trigger is stored as bits from the global deision logi (GDL), whose eah bit

orresponds to eah soure of the trigger. The GDL data are paked with eight bytes format, hene at

maximum 64 soures of information are extrated. As explained in Se. 3.2.7, all events are required

to be �red by following spei� bits: �s zt2, klm opn, klm b2b, lst4 and hie. Figure 6.1 shows the

distribution of GDL trigger bits for both MC simulation and the experiment separately for SVD1

and SVD2 ases, respetively. As the �gure shows, it is apparent that the MC does not simulate the

trigger signals so preisely.

�

Hereafter, several orretion fators are evaluated. The binning of those fators are summarized in Se. 6.4
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Figures 6.2 and 6.3 show dependene of the trigger eÆieny on the momentum and angle of

lepton for both deay modes�(e; ��

0

) and (�; ��

0

)�for SVD1 and SVD2, respetively. In parti-

ular, (e; ��

0

) ase, we an see quite strong dependene on both variables. It is known that this e�et

arises from an improper alibration of the energy threshold of Bhabha veto. For this reason, we are

required to obtain the orretion fator R

trg

= "

EX

="

MC

to take into aount the systemati e�et from

trigger simulation.

To evaluate R

trg

, we �rst separate the events into two ategories depending on the soure of

trigger: one is a harged trigger Z and the other is a neutral trigger N, whih are de�ned as:

Z =

(

�s zt2 or klm opn or klm b2b for SVD1

klm opn or klm b2b for SVD2

; (6.5)

N = lst4 or hie: (6.6)

Noting that the harged and neutral triggers are physially independent signals, we an reognize

that the harged trigger eÆieny is "

Z

= N

N&Z

=N

N

and "

N

= N

N&Z

=N

Z

beause the fator from other

eÆienies should anel. Sine an event is triggered unless both triggers are inative, the eÆieny

is obtained as

"

trg

= 1 � (1 � "

N

)(1 � "

Z

) = "

N

+ "

Z

� "

N

"

Z

: (6.7)

As a matter of fat, Figs 6.2 and 6.3 are obtained by this Eq. (6.7). The eÆieny orretion R

trg

is

obtained by omparing the di�erene of Eq. (6.7) between the experiment and MC simulation as:

R

trg

=

�

N

N&Z

N

N

�

EX

+

�

N

N&Z

N

Z

�

EX

�

�

N

N&Z

N

N

�

N

N&Z

N

Z

�

EX

�

N

N&Z

N

N

�

MC

+

�

N

N&Z

N

Z

�

MC

�

�

N

N&Z

N

N

�

N

N&Z

N

Z

�

MC

: (6.8)

In this analysis, we obtain R

trg

as a funtion of P

LAB

`

, os�

LAB

`

and !

h

as produts of two 2D PDFs as

R

trg

= R

trg

(P

LAB

`

; os�

LAB

`

)

R

trg

(P

LAB

`

; !

h

)

R

trg

(P

LAB

`

)

; (6.9)

where !

h

is alled heliity sensitive parameter and alulated by following formula:

!

h

=

Z

�2[�

1

;�

2

℄

d�

B

0

� n

�

z

A

0

(6.10)

where A

0

and B

0

are spin-independent and spin-dependent terms de�ned in the signal PDF

(Eqs. (5.54) and (5.55)). This !

h

represents an average magnitude of the polarization of �

+

! ��

0

�̄

in the diretion of the movement of �

+

[73℄. The idea of this tabulation (Eq. (6.9)) is to take into

aount the orrelations among three variables as many as possible without loss of statistis per eah

bin. The orretion fator R

trg

is shown in Figs 6.4 and 6.5 for �

�

! e

�

��̄ and �

�

! �

�

��̄ andi-

dates, respetively. Although we evaluate this this fator in two dimensional spae as Eq. (6.9), they

are projeted onto one axis to observe them easily.

6.2 Partile seletion eÆieny orretions

The systemati e�et from partile seletion eÆienies are also inluded in R. The total e�ets

is assumed to be fatorized into produts of all partiles: R

tot

= R

`

R



R

�

R

�

0

. All of these fators

are extrated as funtions of momenta and osine of polar angles for orresponding partiles. For

harged traks (the lepton and pion), we regard the orretion fator as a produt of the harged-trak

reonstrution eÆieny and the PID seletion eÆieny as R

l;�

= R

re

R

PID

.
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Figure 6.1: GDL trigger bits distribution: (a) (e

�

; �

+

) deay andidate and (b) (�

�

; �

+

) deay

andidate. For both ases, upper �gures represent the distribution obtained with SVD1 term and

lower �gures represent the distribution for SVD2 term. Horizontal axis is number of GDL bits.

Filled histograms and blak point indiate MC simulation and real experiment. The number of MC

events is saled to that of experimental data based on the number of entries.
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The pion PID orretion fator is obtained by the measurement of D

�+

deay D

�+

! D

0

�

+

!

(K

�

�

+

)�

+

s

. Beause the di�erene of mass between D

�+

and D

0

is small (� 140MeV), the momentum

of �

+

s

from D

�+

deay is small (the s in the subsript stands for soft) and this harateristi trak

enables us to speify the proess without PID of D

0

daughters. Sine D

0

! K

+

�

�

deay is CKM-

suppressed (B(D

0

! K

+

�

�

)=B(D

0

! K

�

�

+

) � 0:4%), we an assume that the harges of two pions

are same. Therefore, we an determine the �

+

andidate uniquely from the two rest harged traks.

Then, the eÆieny of pion identi�ation for a ertain �-likelihood value is extrated observing the

�

+

trak of D

0

daughter by

"

�ID

=

number of � traks identi�ed as �

number of � traks

; (6.11)

and the orretion fator is extrated by the omparison of the eÆienies between the experiment

and MC simulation as R = "

EXP

�ID

="

MC

�ID

.

The lepton PID orretion is taken from two photon proess e

+

e

�

! e

+

e

�

`

+

`

�

(` = e; or �).

After a rejetion of osmi rays with an opening angle of `

+

`

�

pair, events are seleted if either of

lepton satis�es P

`

> 0:99 (` = e or �). The lepton identi�ation eÆieny is obtained using the

aompanying trak as

"

lID

=

number of ` traks identi�ed as l

number of ` traks

: (6.12)

Similarly to �ID ase, the orretion fator is extrated as R = "

EXP

`ID

="

MC

`ID

. These PID orretion

fators are onventional ones used in many Belle analyses.

The ommon fator of R

re

is obtained using the deay of four-harged trak events and explained

in Se. 6.3.

6.2.1 �

0

ID and ID eÆieny orretions

�

0

and  ID eÆieny orretions are obtained by analyzing two deays, �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�)

and �

+

�

�

! (�

+

�

0

�̄)(�

�

�). The �

0

eÆieny is formulated by omparing the number of seleted and

generated events as:

"

�

0

=

N

sel

(��

0

; ��

0

)=N

prod

(��

0

; ��

0

)

N

sel

(�; ��

0

)=N

prod

(�; ��

0

)

=

N

sel

(��

0

; ��

0

)

N

sel

(�; ��

0

)

�

N

prod

(�; ��

0

)

N

prod

(��

0

; ��

0

)

(6.13)

=

N

sel

(��

0

; ��

0

)

N

sel

(�; ��

0

)

B(�; ��

0

)

B(��

0

; ��

0

)

; (6.14)

where N

prod

and N

sel

mean number of produed and seleted events. The last fator is a ratio of

branhing ratio and an be ignored beause they are preisely measured within a few sub perents

and anels in the alulation of the orretion fator when the MC events are generated aording

to the measured branhing ratios.

The seletion riteria for ommon partiles (� and ��

0

) are basially arbitrary beause the eÆ-

ienies anel. On the other hand, for the rest �

0

, it is required to apply ompletely same seletion

riteria as that of signal, whih are not shared in both numerator and denominator. The event sele-

tion is omposed of two stages: preseletion of �

+

�

�

and �nal seletion. The preseletion of �

+

�

�

is

ommon to the event seletion explained in Se. 4.1. In the seletion of these andidates, it is not

neessarily important to inrease its purity beause we extrat the loal value by binning momentum

and diretion. For example, the reonstrution of �

+

! �

+

�

0

�̄ is ontaminated from several multi-

pion deays like �

+

! �

+

�

0

�

0

�̄, �

+

! �

+

�

0

�

0

�

0

�̄ and so on, however, this does not ause serious

problems beause the type of partile is same and we do not rejet event by a veto of suh extra
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Table 6.1: Seletion riteria for (��

0

; ��

0

) and (�; ��

0

) andidates

y

1

O: Common harged � is seleted by P

�

> 0:98 and P

�

< 0:01.

2

O: Common �

0

is seleted by 115 MeV=

2

< M



< 150 MeV=

2

,

where  is seleted with energy threshold E



> 40 MeV.

3

O: Common pair of ��

0

should form � andidate with 0:5 GeV=

2

< M

��

0
< 1:5 GeV=

2

.

4

O: A �

0

whih is not ommon is seleted with same seletion riteria as that of signal �

0

.

5

O: A  whih is not ommon is seleted with same seletion riteria as that of signal .

6

O: When  eÆieny orretion is extrated, a �

0

!  andidate whih is not ommon is

seleted with a loose ut 80 MeV=

2

< M



< 190 MeV=

2

. The  andidate is randomly

hosen from the two photons.

y

Common means partiles are shared in both denominator and numerator in Eq. (6.14).

Table 6.2: Frations of seleted andidates

y

(��

0

; ��

0

) andidate (�; ��

0

) andidate (�; ��

0

) andidate

(��

0

; ��

0

) 40% (��

0

; ��

0

) 37% (��

0

; ��

0

) 28%

(��

0

�

0

; ��

0

) 26% (��

0

�

0

; ��

0

) 24% (�; ��

0

) 20%

(��

0

�

0

; �) 8% (��

0

�

0

; �) 9% (��

0

�

0

; ��

0

) 15%

(��

0

�

0

; �) 4% (��

0

; �) 7% (��

0

�

0

; �) 9%

others 20% (��

0

�

0

; �) 4% (��

0

; �) 7%

others 20% others 20%

partiles. The only problem is the ontamination from muon instead of the harged pion reonstru-

tion, whih may have a di�erent behavior in the detetor. In our extration, the inlusion of muon is

less than 10%, hene, we ignore this. Using Eq. (6.14) and noting the anellation of the fator of

branhing ratio, we obtain the R

�

0

as:

R

�

0
=

"

EX

�

0

"

MC

�

0

=

N

EX

sel

(��

0

; ��

0

)

N

MC

sel

(��

0

; ��

0

)

�

N

MC

sel

(�; ��

0

)

N

EX

sel

(�; ��

0

)

: (6.15)

The ID eÆieny orretion an be also tabulated using same deays, where one of two photons

from �

0

is randomly seleted. Similarly to �

0

ase, same seletion riteria as signal must be applied

for  andidates. Thus the formula is expliitly written as

R



=

"

EX



"

MC



=

N

EX

sel

(�; ��

0

)

N

MC

sel

(�; ��

0

)

�

N

MC

sel

(�; ��

0

)

N

EX

sel

(�; ��

0

)

: (6.16)

In Tables 6.1 and 6.2, we summarize the seletion riteria and the ontribution of various modes for

(��

0

; ��

0

), (�; ��

0

) and (�; ��

0

) andidates. The measured R

�

0

and R



are shown in Figs. 6.6 and 6.7

as funtions of momenta and diretions for eah partile.

y

The others mainly ome from multi-pion deays n� (n � 4).

103



 (GeV)
0π

p
0 1 2 3 4 5

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
0π

svd1 p

(a) P

�

0

: 7-27

 (GeV)
0π

p
0 1 2 3 4 5

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
0π

svd2 p

(b) P

�

0

: 31-55

 (GeV)
0π

p
0 1 2 3 4 5

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
0π

exp61 p

() P

�

0

: 61-65

0πθcos
1− 0.5− 0 0.5 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0πθsvd1 cos

(d) os�

�

0

: exp7-exp27

0πθcos
1− 0.5− 0 0.5 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0πθsvd2 cos

(e) os�

�

0

: exp31-exp55

0πθcos
1− 0.5− 0 0.5 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0πθexp61 cos

(f) os�

�

0

: exp61-exp65

Figure 6.6: �

0

ID eÆieny orretion R as a funtion of momenta of �

0

: (a)(b)() P

�

0

dependene

for the run identi�ation number 7-27, 31-55 and 61-65, (d)(e)(f) os�

�

0

dependene for the same

identi�ation numbers.
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6.3 Reonstrution eÆieny orretions

In many analysis of B meson at Belle, the information of D

+�

! D

0

(! K

S

�

+

�

�

)�

+

s

deay is on-

ventionally used to extrat the harged trak reonstrution eÆieny. Similarly to measurement

of �ID eÆieny orretion explained above, the harateristi low momentum trak of �

+

s

(from

D

+�

! D

0

�

+

s

) is utilized to selet events and the mathematial onstraints of masses of D

0

and K

S

allow us to determine the momentum of a lost harged pion (from K

S

! �

+

�

�

deay) only from

partially observed information. However, the typial momentum of the pion from this proess tends

to be low (up to � 1 GeV=) and not so useful for this analysis. Moreover, the requirement of the

trak reonstrution used in this analysis is not same as previous study, thereby we need to separately

obtain the eÆieny orretion for this analysis.

The trak reonstrution eÆieny orretion R

re

is obtained using four-harged trak events

from �

+

�

�

deay where one side of tau deays leptonially and the other side deays into three

harged pions. Suppose that (`

�

; �

+

�

�

�

+

) deay ours. The harged traks are seleted by the same

seletion riteria as our main analysis (as explained in Chapter 4, the harged trak is required to

satisfy d

r

< 2 m, jd

z

j < 5 m and P

LAB

t

> 0:1 GeV=). Moreover, we require just one negative sign

lepton andidate whih has a lepton likelihood ratio of P

e

> 0:98 or P

�

> 0:98. In this ase, the

number of events whih have four reonstruted traks beomes

N

4

= N

0

"

2

+

"

�

�

�

"

(4)

other

; (6.17)

where N

0

is a number of produed events, �

�

is a produt of the eÆienies of both lepton identi�a-

tion and negative harged trak reonstrution, "

�

is the eÆieny of the harged trak reonstrution

and "

(4)

other

is other eÆienies for four-harged trak events that is explained later. Similarly, we an

alulate orresponding number for three harged trak events as

N

+

3

= N

0

�

�

"

2

+

(1 � "

�

)"

(3)

other

; (6.18)

N

�

3

= 2N

0

�

�

"

�

"

+

(1 � "

+

)"

(3)

other

; (6.19)

where the sign of N

�

3

represents the net harge of observed traks. Here, the fator of two in Eq. (6.19)

appears from way of ounting for positively-harged traks. Note that the subsript 3 does not mean

number of produed traks but reonstruted ones. Therefore, we obtain following relations as:

N

4

N

4

+ �N

+

3

= "

�

; (6.20)

N

4

N

4

+ �N

�

3

=2

= "

+

; (6.21)

where we de�ned � = "

(4)

other

="

(3)

other

. As desribed later, we do not apply di�erent seletion riteria

separately for the three and four trak events, therefore, we an deompose the fator of the other

eÆienies into ontribution of the trigger and ommon seletion riteria as "

(i)

other

= "

(i)

trg

"

om

(i = 3; 4).

The orretion fator of the trigger an be obtained in the same way as explained in Se. 6.1. In this

extration, we use an average value of "

(3)

other

and "

(4)

trg

aording to the observed events.

In order to extrat kinemati dependene on the reonstrution eÆieny orretion, we modify

Eq. (6.20) as:

�N

4

(P

LAB

; os�

LAB

)

N

4

+ �N

+

3

=

N

prod

(P

LAB

; os�

LAB

)"

�

(P

LAB

; os�

LAB

)

N

tot

prod

; (6.22)

where �N

4

(P

LAB

; os�

LAB

) represents number of entry inside a ertain bin tabulated based on the

momentum and angle of the negative pion andidate. The fator of N

prod

(P

LAB

; os�

LAB

)=N

tot

prod

in
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Figure 6.8: Distribution of a osine of angle between lepton and pion andidates. Red, water blue

and green histograms, respetively represent two, four and six trak events, where these numbers

mean those of produed ones. White histogram represents other ontributions like � ! nh � K

S

,

� ! ���n�

0

(n � 1) and two photon proess. The osine is de�ned as maximum value among the

ombinations of (`

�

; �

+

1

) and (`

�

; �

+

2

) (vie versa for an opposite harge on�guration).

the right hand side of Eq. (6.22) represents the fration of the produed events whih have spei�

momentum and osine of the polar angle.

Sine the fator of "

om

does not appear in Eq. (6.22) as long as same seletion riteria are applied

for three and four trak events, the obtained reonstrution eÆieny is stable for the ommon se-

letion and we an utilize this nature to enhane purity. In partiular, to suppress gamma onversion

proess  ! ee, we apply a loose seletion riteria in the angle between the lepton andidate and

other positively-harged trak events. Furthermore, we disard events if either of the two positive

pion andidates has a large lepton identi�ation probability, i.e., we rejet if P

e

> 0:15 or P

�

> 0:15.

The situation of the seletion is shown in Figs. 6.8 and 6.9. The obtained purity is summarized in

Table 6.3.

Whole story also holds for reversal harge on�guration (`

+

; �

�

�

+

�

�

) one the sign of N

3

is

swapped. Moreover, in priniple, these formulae hold for other four-trak deay proesses like

(`

�

; �

+

�

�

�

+

�

0

) and (`

�

; �

+

�

�

�

+

�

0

�

0

) only if we do not apply any seletion riteria for other pho-

tons. However, we deided to regard them as bakgrounds. To redue these deays, we apply the

extra gamma energy ut E

ECL

extra

< 0:5 GeV as shown in Fig. 6.10.

The reonstrution eÆieny orretion R

re

is obtained by alulating the ratio of Eq. (6.22)

between the experiment and MC simulation as:

R

re

=

"

�N

4

N

4

+ �N

3

#

EX

"

�N

4

N

4

+ �N

3

#

MC

; (6.23)

where the �rst fator of the right hand side of Eq. (6.22) is assumed to be aneled. For MC

events, we use only four-trak events ((`

�

; ���n�

0

) n � 1 deays are exluded) to obtain table

of �N

4

(P

LAB

; os�

LAB

) while that of experiment is alulated based on the observed number of

entries and the expeted amount of the ontamination evaluated by MC: the expeted number of

bakground events for the experiment is evaluated bin-by-bin using a sideband region de�ned by

E

ECL

extra

> 0:5 GeV. The signal ontamination for the sideband region is estimated to be �34% for both

N

3

and N

4

events.

Figure 6.11 shows obtained reonstrution eÆieny orretion R

re

as a funtion of momentum

of harged trak P

h

and osine of zenith angle os�

h

. The average values of the reonstrution and

trigger eÆienies are summarized in Table 6.5.
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Figure 6.9: Distribution of likelihood ratio value P

`

. Meanings of olors are same as Fig 6.8. The P

`

is de�ned as the maximum value of P

e

or P

�

for the two positively-harged pion andidates.
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Figure 6.10: Distribution of extra gamma energy E

ECL

extra

. Meanings of olors are same as Fig 6.8.

Table 6.3: Information of seleted events

N

re

N

2trak

prod

(%) N

4trak

prod

(ex.K

S

) (%) N

other

(%)

3 6 74 19

4 < 1 86 13
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Figure 6.11: Trak reonstrution eÆieny orretion R

re

as a funtion of momentum and diretion

of positively (red) and negatively (blue) harged partiles: (a)(b)() momentum dependene on R

re

for the run identi�ation number 7 to 27, 31 to 55 and 61 to 65: (d)(e)(f) angle dependene for same

experimental on�gurations.

Table 6.4: Average reonstrution and trigger eÆienies

Run ID "

+

(%) "

�

(%) "

(3)

trg:

(%) "

(4)

trg:

(%) �

Experiment

7 to 27 91.0 91.0 90.7 97.6 1.076

31 to 55 90.4 90.8 71.1 83.3 1.172

61 to 65 91.1 91.0 69.4 82.3 1.185

MC

7 to 27 92.4 92.5 94.2 98.7 1.049

31 to 55 92.7 92.7 85.9 94.2 1.097

61 to 65 92.8 93.0 91.1 97.3 1.067
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Table 6.5: Information of tabulations

Tables Argument # bin Determination of the indies

Trigger R(P

LAB

l

; os �

LAB

`

) �

R(P

LAB

`

; !

h

)

R(P

LAB

`

)

([i; 10℄; [ j; 10℄) �

([i; 10℄; [k; 10℄)

[i; 10℄

i : P

`

is uniformly divided into ten bins between [0; 5℄ GeV=

j : os�`

LAB

is uniformly divided into ten bins between [�1; 1℄

k : !

h

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

�ID R(P

LAB

�

; os �

LAB

�

) ([i; 32℄; [ j; 12℄)

Divisions (unit is in GeV=) i : [0; 0:5℄; [0:5; 0:6℄; : : : ; [2:9; 3:0℄;

[3:0; 3:2℄; : : : ; [3:4; 3:6℄; [3:6; 4:0℄; [4:0; 4:5℄[4:5;1℄:

Oh!Iam f ound!Thisisdummy:

Divisions j : [�1;�0:612;�0:511;�0:300;�0:152; 0:017;

0:209; 0:355; 0:435; 0:542; 0:692; 0:842; 1℄

Oh!Iam f ound!Thisisdummy:

eID R(P

LAB

e

; �

LAB

e

) ([i; 10℄; [ j; 7℄)

i : P

e

is uniformly divided into ten bins between [0; 5℄ GeV=

Oh!Iam f ound!Thisisdummy:

Divisions (unit is in degree) j : [18; 25; 35; 40; 60; 125; 132; 151℄

Oh!Iam f ound!Thisisdummy:

�ID R(P

LAB

�

; �

LAB

�

) ([i; 10℄; [ j; 7℄)

i : P

�

is uniformly divided into ten bins between [0; 5℄ GeV=

Oh!Iam f ound!Thisisdummy:

Divisions (unit is in degree) j : [17; 25; 37; 51; 117; 130; 145; 150℄

Oh!Iam f ound!Thisisdummy:

�

0

reonstrution R(P

�

0

; os �

�

0

) ([i; 10℄; [ j; 10℄)

i : P

�

0 is uniformly divided into ten bins between [0; 5℄ GeV=

j : os�

�

0

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

 reonstrution R(P



; os �



) ([i; 10℄; [ j; 10℄)

i : P



is uniformly divided into ten bins between [0; 25℄ (GeV=)

2

j : os�



is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

Charged trak

reonstrution

R(P

LAB

; os �

LAB

) ([i; 10℄; [ j; 10℄)

i : P

LAB

is uniformly divided into ten bins between [0; 7℄ GeV=

j : os�

LAB

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

6.4 Binning of orretion fators

In this setion, we summarize the method of binning. In table 6.5, information of the bins used for

the orretion fators are listed. The notation [i; 10℄ in the olumn �# bin� represents that the index i

is divided into 10 bins.

The bins of angular variables in the pion and lepton identi�ations are determined by taking into

aount the detetor geometries. The os �

�

division is based on the ACC rystal loation while �

e

and �

�

are divided aording to the separation of the ECL and KLM regions, respetively.

The tables of �

0

and  reonstrution eÆieny orretions on angular variables are divided

uniformly not in the laboratory frame but in the CMS frame beause this makes the distribution

broad. For  ase, onsidering the dense onvergene in the low-momentum region, we speify the

index of bin by i = [N

bin

p

P



=P

max

℄ so that the division of lower-momentum bins beomes small,

where the braket [ ℄ is the Gauss's eiling funtion and [x℄ indiates a maximum integer whih does

not exeed x.

The number of bins is determined in suh a way as to make the entries of bins have reasonable

amounts (approximately a few perent in its statistial unertainty).

Note that the plots presented before are obtained using di�erent divisions from those of real

analysis and of being summarized here. We divided the phase spae with larger number of ells for

drawing one-dimension plots beause the dependene of eÆieny orretion beomes learer.
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6.5 Con�rmation of the orretion R

In the presene of R, the seleted PDF of events is modi�ed as

P

total

(x) = (1 �

X

i

�

i

)

"(x)S (x)

R

dx "(x)S (x)

+

X

i

�

i

"(x)B

i

(x)

R

dx "(x)B

i

(x)

; (6.24)

w

w

w

w

w

�

P

total

(x) = (1 �

X

i

�

i

)

"(x)R(x)S (x)

R

dx "(x)R(x)S (x)

+

X

i

�

i

"(x)R(x)B

i

(x)

R

dx "(x)R(x)B

i

(x)

: (6.25)

As a result, we are able to hek the e�et of R by diretly applying it as a weight for the seleted

PDF. Sine the denominator of Eq. (6.25) is simply a ertain number, we an neglet the dependene

of R by normalizing the MC distribution based on the area of the histograms. Furthermore, it is

worth to note that the �t result does not depend on the absolute magnitude of R beause additional

fator  for R ! R disappears when we formulate log-likelihood funtion. Thus it is justi�ed to

verify R by simply seeing its shape without taking are of the absolute height of histograms. From

Figs. 6.12 to 6.15, we show the original and orreted histograms of the momenta and diretions for

lepton, photon, neutral pion and harged pion in the laboratory frame, whih totally form twelve-

dimension observables. With this orretion, we an see improvements in the shape. In partiular,

reasonable agreement in the angle distribution of lepton in the bakward region os �

`

< �0:6 is

observed. The notable disagreement in the forward diretion of os �

�

> 0:8 � 0:9 omes from an

inaurate extration of orretion fator of �ID eÆieny. This e�ets are separately evaluated by

exluding this region (see Se. 7.2.4).
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Figure 6.12: Distribution of lepton variables for �

�

! e

�

��̄ (left) and �

�

! �

�

��̄ (right): (a) P

`

, (b)

os�

`

and () �

`

. Solid blak and red lines represent original and orreted MC histograms. Dashed

green line represents orreted MC histogram based only on the trigger orretion R

trg:

. Points with

errors means experiment. In the bottom, the ratio of experimental number out of orreted histogram

is shown.
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Figure 6.13: Distribution of photon variables for �
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! e
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��̄ (left) and �
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��̄ (right): (a) P
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and () �



. The meanings of eah olor of line are same as Fig. 6.12.
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Chapter 7

Evaluation of unertainties

7.1 Statistial unertainties

The statistial errors of �tted Mihel parameters are obtained from information of the hange of

likelihood funtion. The PDF of �tted parameters is assumed to be Gaussian P / expf�

(���

0

)

2

2�

2

�

g for

� = �̄ or ��, hene the errors �

�

are evaluated as magnitude of residual suh that negative logarithmi

likelihood funtion L = �logP =

(���

0

)

2

2�

2

�

moves by 1=2. The errors are evaluated to be �̄

e

= 5:0,

�̄

�

= 1:5, (��)

e

= 0:8 and (��)

�

= 0:5.

7.2 Systemati errors

In Table 7.1, we summarize ontributions of systemati soures. The detail of eah item is explained

in following subsetions.

7.2.1 Systemati unertainty from branhing ratios

In this analysis, the frations of multiple bakground modes are evaluated using generi MC sample,

where input of the branhing ratios are taken from previous measurements. The systemati uner-

tainties due to the �nite auray of these measurements are estimated based on the world average

values summarized by the partile data group (PDG) (Ref. [7℄). The obtained frations of �

i

(i is an

index of bakground modes) are separately varied �

i

! �

i

(1 + �B

i

=B

i

) and variations �tted Mihel

parameters are assigned as orresponding errors, where B

i

means the branhing ratio. In Table 7.2,

we summarize the systemati ontributions from the input of branhing ratio.

7.2.2 Unertainty from the relative normalization

As explained in Se. 5.4.1, the relative normalization of PDF is evaluated by using generated MC

events. Sine the normalized PDF of signal is

P

sig

(x) =

E

0

+ E

1

� �̄

SM

+ E

2

� �

00

SM

+ E

3

� ��

SM

Z

dx E

0

+ E

1

� �̄

SM

+ E

2

� �

00

SM

+ E

3

� ��

SM

=

E

0

R

dxE

0

=

E

0

�

sig

; (7.1)
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Table 7.1: List of systemati ontributions

Item �

e

�̄

�

e

��

�

�

�̄

�

�

��

explained in

Input of branhing ratio 3:8 0:05 0:25 0:01 7.2.1

Relative normalizations 3:8 0:69 0.13 0.04 7.2.2

Absolute normalizations 1:0 0:01 0:03 0:001 7.2.3

Exp/MC orretions 1:9 0:14 0:09 0:10 7.2.4

Formulation of PDFs 2:5 0:24 0.67 0.22 7.2.5

E�et of luster overlap in ECL 2:2 0:46 0:02 0:06 7.2.6

Detetor resolution 0.74 0.20 0.22 0.02 7.2.7

E



ut 0.91 0.22 - - 7.2.9

Beam energy spread negligible negligible negligible negligible 7.2.8

total 6.8 0.93 0.77 0.25

Table 7.2: Systemati ontributions from input of branhing ratio

item �

e

�̄

�

e

��

�

�

�̄

�

�

��

(e; ��

0

) 3.7 0.04 - -

(e; ��

0

) + 

brems:

0.6 0.01 - -

(e; ��

0

) + 

brems:

0.6 0.02 - -

(�; ��

0

) - - 0.23 0.005

(�; ��

0

) + 

beamBG

- - 0.04 0.001

(�; ��

0

) + 

ISR

- - 0.03 negligible

(�; ��

0

�

0

) - - 0.04 0.005

(��

0

; ��

0

) - - 0.07 negligible

(��

0

�

0

; ��

0

) - - 0.07 negligible

total 3.8 0.05 0.25 0.007
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Figure 7.1: Histograms of oeÆients of E

0

, E

1

=E

0

, E

2

=E

0

, E

3

=E

0

for � ! e��̄ events. Blue line

represents an average. The alulated relative normalization oeÆients are as follows: E

1

=E

0

=

(3:84 � 0:01) � 10

�5

, E

2

=E

0

= (�1:2588 � 0:0005) � 10

�6

, E

3

=E

0

= (6:8 � 0:7) � 10

�6

.

then, the normalization of signal PDF beomes

Z

dx "(x)E

i

(x) =

Z

dxP

sig

(x)"(x)

E

i

(x)

P

sig

(x)

= �

sig

Z

dx "(x)P

sig

(x)

E

i

E

0

(7.2)

=

�

sig

"̄

sig

N

sel

X

x

i

2"P

sig

E

i

(x

i

)

E

0

(x

i

)

�

�

sig

"̄

sig

N

sel

*

E

i

(x)

E

0

(x)

+

: (7.3)

The average of ratio E

i

(x)=E

0

(x) for seleted events aording to the PDF of signal is onsidered

as a relative normalization. Figure 7.1 and Fig. 7.2 show the distributions of E

0

(x) and E

i

(x)=E

0

(x)

for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) and �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) events, respetively. To obtain these his-

tograms, 17 M and 12 M seleted events are used for eletron and muon modes, respetively. Using

entral limit theorem, we evaluate the statistial unertainties of hE

i

(x)=E

0

(x)i by the root mean

square of E

i

(x)=E

0

(x) divided by

p

N

MC

, where N

MC

is the number of used events mentioned above.

The impat of the unertainties of the normalization on the �tted Mihel parameters is estimated

by arti�ially shifting the enter values and evaluating the movement of �tted Mihel parameters.

The e�et of the unertainties are listed in Table 7.3. This relative normalization is one of the major

soures of unertainties for the eletron mode. This omes from the fat that the PDF of �

�

! `

�

��̄

deay has a strong peuliarity in m

`

! 0 and makes the onvergene of 1=N

MC

P

i

E

i

(x)=E

0

(x) slow.

However, a simulation of large amount of signal event is very time-onsuming and we deided to use

the mentioned numbers.

�
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�3

, E

2

=E

0

= (�1:665 � 0:001) � 10

�4

, E

3

=E

0

= (1:40 � 0:04) � 10

�4

.

Table 7.3: Systemati errors from relative normalization

soure of error

�

e

�̄

�

e

��

�

�

�̄

�

�

��

E

1

=E

0

3.8 0.05 0.12 0.014

E

2

=E

0

y

- - - -

E

3

=E

0

0.12 0.69 0.01 0.04

total

3.8 0.69 0.13 0.04

y In this analysis, �

00

is always set to be the SM value �

00

= 0, hene

the dependene on the orresponding normalization E

2

=E

0

is zero.
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U

Figure 7.3: Coneptual view of the integration of PDF in 2D plane. The �lled part represents the

region suh that PDF beomes positive. The events are uniformly generated in entire phase spae

whih enloses the valid region. The volume of generated phase spae is alulated as V

0

= ab.

7.2.3 Unertainty from the absolute normalization

As desribed in Se. 5.3, the absolute normalization is de�ned as an integration of PDF: � =

R

dxP(x). This value is alulated by MC method where events are uniformly distributed in the

entire phase spae as:

� =

V

0

N

gen

X

x

i

21=V

0

¯

P(x

i

); (7.4)

¯

P(x) =

(

P(x) x 2 U

0 x 2 U

0

� U

(7.5)

where U

0

is the phase spae and V

0

is its volume, U is its subspae suh that the PDF beomes

positive and N

gen

is the number of generated events. This illustrative idea in two dimension ase is

shown in Fig 7.3.

The unertainties from the absolute normalizations are evaluated by the entral limit theorem

similarly to the ase of relative normalization. Sine � always appears with fration �

i

, this e�et

shifts of Mihel parameters in the same way as the error from the input of the branhing ratio. The

ontributions are listed in Table 7.4.

7.2.4 Unertainties from orretion fators and ineÆienies

In this analysis, we obtain orretion fator of signal eÆieny R = "(x)

EX

="(x)

MC

, where this fator

is written as produts of orretions from the partile reonstrution eÆienies and trigger eÆ-

ieny. The estimated fators have errors due to �nite statistis of events and this systemati impat

is estimated by varying the enter values and evaluating the variation of �tted Mihel parameters

explained below. The errors of orretion fators themselves are evaluated assuming the Poisson

distribution, where the statistial unertainty of a number of bin is alulated by its square root.

This unertainty of orretion fator a�ets the �tted Mihel parameter through two ways. Sup-

pose the orretion fator shifts R! R+ ÆR. In the presene of systemati unertainties ÆR, the total

�

In this analysis, it took approximately �ve weeks to fully alulate the events.
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Table 7.4: Systemati errors from absolute normalization

item �

e

�̄

�

e

��

�

�

�̄

�

�

��

(e; ��

0

) 1.0 0.01 - -

(e; ��

0

) + 

brems:

0.2 negligible - -

(e; ��

0

) + 

brems:

negligible negligible - -

(�; ��

0

) - - 0.007 0.0001

(�; ��

0

) + 

beamBG

- - 0.008 0.0002

(�; ��

0

) + 

ISR

- - 0.021 0.0001

(�; ��

0

�

0

) - - 0.011 0.0014

(��

0

; ��

0

) - - 0.014 0.0003

(��

0

�

0

; ��

0

) - - 0.003 0.0001

total 1.0 0.01 0.03 0.0014

PDF beomes

P

total

(x) = (1 �

X

i

�

i

)

"(x)R(x)S (x)

R

dx "(x)R(x)S (x)

+

X

i

�

i

"(x)R(x)B

i

(x)

R

dx "(x)R(x)B

i

(x)

; (7.6)

w

w

w

�

(1 �

X

i

�

i

)

"(x)[R + ÆR℄(x)S (x)

R

dx "(x)[R + ÆR℄(x)S (x)

+

X

i

�

i

"(x)[R + ÆR℄(x)B

i

(x)

R

dx "(x)[R + ÆR℄(x)B

i

(x)

; (7.7)

where S (x) and B

i

(x) are PDFs of the signal and i-th bakground, whose frations are (1�

P

i

�

i

) and

�

i

, respetively, and "(x) is the eÆieny of MC. As explained many times, the variation of ÆR in

the numerator of Eq. (7.7) does not a�et the �tted Mihel parameters sine overall fator disappears

when we formulate likelihood funtion. The expression of the denominator (normalization) of signal

PDF beomes

Z

dx "(x)[R + ÆR℄(x)S (x) =

"̄

MC

sig

�

sig

N

sel

X

x2"S

[R + ÆR℄(x)

E

0

+ E

1

�̄ + E

3

��

E

0

(7.8)

= "̄

MC

sig

�

sig

*

[R + ÆR℄

 

1 +

E

1

E

0

�̄ +

E

3

E

0

��

!+

(7.9)

= "̄

MC

sig

�

sig

"

hR + ÆRi +

*

(R + ÆR)

E

1

E

0

+

�̄ +

*

(R + ÆR)

E

3

E

0

+

��

#

(7.10)

= "̄

MC

sig

�

sig

hR + ÆRi

2

6

6

6

6

6

6

4

1 +

D

(R + ÆR)

E

1

E

0

E

hR + ÆRi

�̄ +

D

(R + ÆR)

E

3

E

0

E

hR + ÆRi

��

3

7

7

7

7

7

7

5

: (7.11)

This is the residual of normalization explained in Chapter 6. Thus the e�et of ÆR an be divided

into the absolute and relative parts:

Æ(abs) = hR + ÆRi � hRi (7.12)

Æ(rel) =

D

(R + ÆR)

E

i

E

0

E

hR + ÆRi

�

D

R

E

i

E

0

E

hRi

(7.13)

Beause the error of the absolute normalization Æ(abs) is just a number whih appears with fration

�

i

, this a�ets the �tted Mihel parameters in the same way as the unertainties from the input of

branhing ratio explained in Se. 7.2.1.
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Figure 7.4: Muon identi�ation eÆieny and orretion fator as a funtion of os�

LAB

�

measured

using e

+

e

�

! �

+

�

�

proess. Red and blue points represent positively and negatively harged muons,

respetively. The blak lines mean boundaries of the most forward bin 17

Æ

< �

LAB

�

< 25

Æ

.

In the ase of bakground, the orresponding term also reeives unertainties from the absolute

part, where the average hi is alulated with respet to the bakground events in question.

Based on the above two ategorizations�absolute and relative normalizations�we found that

former ontribution was negligible. The variation of the fator Æ(abs) for every soure of deay turns

out to be less than 0:2%, hene it is suÆiently smaller than the errors from branhing ratios. This

omes from the fat that Æ(abs) is linear in R and redues to Æ(abs) = hÆRi. On the ontrary, the e�et

of Æ(rel) is notable.

While the R is de�ned as a orretion fator of the signal eÆieny (ommon between signal

and bakground), the errors of the ineÆienies di�erently a�et the �tted Mihel parameters. This

unertainty of ineÆienies ontributes to the �tted Mihel parameters not only through the denom-

inator of orresponding term but also from the numerator. Therefore, we simply ompared the �tted

results obtained with "

inef:

and "

inef:

+ Æ"

inef:

, where "

inef:

is the measured ineÆieny.

The measured �-ID eÆieny value R

�ID

exhibits strong derease as the polar angle reahes very

forward diretion �

LAB

�

< 25

Æ

. Suh forward muon annot penetrate into suÆient number of the

RPC/iron plates in the KLM and resulting eÆieny shows a ruial dependene on the polar angle

at edges. Although most of R

�ID

values are onsistent with R

�ID

� 1 within a few sigmas, estimated

values of the forward region are typially R

�ID

� 0:5. Aording to the study of �ID eÆieny

orretion using e

+

e

�

! �

+

�

�

pair prodution, R

�ID

value rapidly dereases at 0:910 <os�

�

< 0:940

(or equivalently 20

Æ

< �

�

< 24

Æ

) as shown in Fig. 7.4. The forward part of �ID eÆieny is tabulated

using a division 0:906 <os�

LAB

�

< 0:956 (17

Æ

< �

LAB

�

< 25

Æ

) and adoption of its average therein

gives the distortion on the spetra. Alternatively, we use R

�ID

= 1 for the diretion of � in 17

Æ

<

�

LAB

�

< 25

Æ

, and the resulting systemati e�et is estimated by exluding the events, whih amounts

to approximately 1.5% of total andidates. We regard the variation of the �tted Mihel parameters as

the orresponding unertainty.

The evaluated ontributions from orretion fators and ineÆienies are summarized in Ta-

ble 7.5

7.2.5 Unertainty due to imperfet formulation of PDFs

As is demonstrated in Se. 5.6.3, we validate our formulation of bakground PDFs by �tting the

Mihel parameters to the ombined statistis of signal and the bakground mode in question. Sine
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Table 7.5: Systemati errors from obtained tables

Item �

e

�̄

�

e

��

�

�

�̄

�

�

��

Contribution of ÆR through relative normalization

Trigger eÆieny 0:5 0:10 0:04 0:03

`ID eÆieny negligible 0:01 0:08 0:09

�ID eÆieny negligible negligible negligible negligible

�

0

ID eÆieny 0:4 0:09 negligible 0:01

 eÆieny 0:14 0:03 0:015 0:02

Contribution from ineÆieny tables

(e; ��

0

) + 

brems

ineÆieny 1:8 0:04 - -

(�; ��

0

�

0

) ineÆieny - - 0:001 negligible

(��

0

; ��

0

) ineÆieny - - 0:002 0:02

(��

0

; ��

0

) �mis-ID - - 0:001 negligible

(3�; ��

0

) ineÆieny - - negligible negligible

total 1:9 0.14 0.09 0.10

signal events are generated based on the SM distributions, the deviation of �tted Mihel parameters

from SM predition �̄ = �� = 0 is a systemati bias due to imperfet formulations of PDFs. We

estimated the systemati bias by simply taking the residuals of the results. This e�ets mainly ome

from the simpli�ation of high-dimension orrelation performed in the desription of the others as

mentioned in Se. 5.6.3.

7.2.6 Unertainty from the simulation of overlap in the ECL lusters

The on�rmation whether the MC method simulates the experimental events with suÆient auray

or not is generally diÆult espeially in analyses of high-dimension phase spae. Moreover, neither

de�nition of the quanti�ation nor its visualization is straightforward. The projeted histogram onto

one-dimension axis (like we desribe in Se. 6.5) reveals the validity to some extent, however, this

is not neessarily suÆient beause the measurement of Mihel parameters is, in other words, a

veri�ation of the orrelation in the high-dimension phase spae.

In this analysis, we an mainly rely on the evaluation of the high-dimension orrelation by MC

alulation for separate traks beause two harged traks (one for `

�

and the other for �

+

) are almost

bak-to-bak and the reonstrutions of three photons (two for �

0

!  and the rest one for signal)

is irrelevant eah other. The only exeption is the ase when the ECL luster of eletron trak is

very lose to that of signal photon so that both lusters have an overlap as illustrated in Fig. 7.5. To

on�rm this e�et, we hek the distribution of angle between positions of two lusters �

LAB

ECL(`)

as

drawn in Fig. 7.6. Here, we de�ne �

LAB

ECL(`)

as an opening angle of these lusters measured from the

interation point. The e�et of the New Physis on �

LAB

ECL(`)

an be onsidered to be less sensitive

beause �

LAB

ECL(`)

is mainly determined by the geometrial design of the detetor. The di�erene of

distribution in �

LAB

ECL(`)

! 0 between the experiment and MC simulation is regarded as the systemati

unertainty due to the simulation of the overlap.

Comparing the distribution of �

LAB

ECL(`)

, we an see an agreement to some extent between the

experiment and MC simulation. To quantify the orresponding error, we extrated a ratio of PDFs

between the experiment and MC simulation for �

LAB

ECL(`)

as:

R = R(�

LAB

ECL(`)

): (7.14)
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e

Figure 7.5: Coneptual view of two lusters in ECL. The urvature of lepton beomes small as the

momentum is large whih result in the merge of two ECL lusters.

The e�et of R an be evaluated in a similar way as the evaluation of eÆieny orretion explained

in Se. 7.3. The errors are estimated to be �

e

�̄

= 2:2, �

e

��

= 0:5, �

�

�̄

= 0:02 and �

�

��

= 0:06.

7.2.7 Unertainty from the detetor resolution

The impat of the detetor resolution is estimated by the omparison of the �tted values of Mihel

parameters with and without the onvolution of resolution funtion of R explained in Se. 5.4.5. The

orresponding errors are �

e

�̄

= 0:74, �

e

��

= 0:20, �

�

�̄

= 0:22 and �

�

��

= 0:02.

7.2.8 Unertainty from the beam Energy spread

The error of beam energy is alibrated based on the mass onstraint of B meson, whih result in the

auray of order of 0.1 MeV for the run dependent values. This magnitude orresponds to only

0.002%, therefore, we an basially expet that this error is negligible. Nevertheless, we on�rmed

this ould be really ignored. We alulated PDFs of signal and bakgrounds where the beam energy

were shifted on purpose and evaluated the variation of the �tted Mihel parameters. The magnitude

of the hange of the �tted Mihel parameters are of order of at most ten to minus forth

y

and we

onlude that the e�et of variation of beam energy is negligible.

7.2.9 Unertainty from E



distribution

As shown in Fig. 4.10, in low energy region (E



�100 MeV), we an observe the disrepany in

the photon energy distribution between the real experiment and MC simulation. This may ome

from the limited preision of bremsstrahlung simulation. As demonstrated in Se. 2.4, the e�ets of

nonzero values of �̄ and �� on the photon energy shape are small, hene it an be guessed that this

disrepany does not strongly a�et the �tted Mihel parameters. Nevertheless, we evaluated this

e�et by varying the seletion riteria of photon energy threshold to be E



= 150 MeV. The shifts

of �tted Mihel parameters are �

e

�̄

= 0:91 and �

e

��

= 0:22. This variation redues the amount of

statistis by approximately 18% and thus there is a hane that the statistial �utuation is simply

re�eted on the variation of �tted parameters. This evaluation is, therefore, onservative estimation.

y

This error inludes the preision of the reproduibility of PDF alulation itself.
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Figure 7.6: Distribution of angle �

LAB

ECL(`)

for �

�

! `

�

��̄: (left) ` = e and (right) ` = �. The meanings

of �lled olors are explained in aptions of Figs. 4.10 and 4.14 for ` = e and ` = �, respetively.
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Chapter 8

Results and disussion

8.1 Fit result

As presented in the last setion, the evaluated unertainties for �̄ using � ! e��̄ events is muh

larger than the expeted sensitivity for � ! ���̄ deay and it is reasonable to extrat �̄ value from

only � ! ���̄ events. Using seleted 776834 and 71171 events for � ! e��̄ and � ! ���̄

andidates, respetively, we performed the �t proedure and obtained results as:

��

e

= �0:4 � 0:8 � 0:9; (8.1)

�̄

�

= �1:3 � 1:5 � 0:8; (8.2)

��

�

= 0:8 � 0:5 � 0:25: (8.3)

where �rst errors are statistial and seond systemati. These obtained values are onsistent with the

SM predition. Figure 8.1 shows the ontour of the likelihood funtion for �! ���̄ events. The ��

are also obtained by ombined �t as

�� = 0:5 � 0:4 � 0:2; (8.4)

where �rst error is statistial and seond is systemati. The systemati unertainty is naively esti-

mated by

1

�

2

omb

=

1

�

2

e

+

1

�

2

�

: (8.5)

We also obtained dependene of E

LAB

extra

ut on the �tted Mihel parameters as shown in 8.2. In

the extration of �̄, we used � ! ���̄ while for ��, ombined result using � ! e��̄ and � ! ���̄

deays are shown. We an see stability of �tted Mihel parameters within errors. Figure 8.3 shows

a plot of a residual of likelihood funtion �L = L � L

max

projeted onto one axis. We an observe a

smooth and quadrati shape of the likelihood funtion around its maximum value.

8.2 Goodness of �t

In many appliation of the high energy physis, people often use �

2

�t to extrat desired parameter.

The bene�t of the �

2

�t is a fat that the PDF of �

2

value is already known, hene people an easily

evaluate the goodness of �t. In other words, the properties of �

2

distribution like average and p-

value an be extrated analytially based on a given degree of freedom. On the other hand, as is

often disussed, an evaluation of goodness of �t for the unbinned-maximum likelihood method is not

straightforward due to non-existene of a general PDF of the maximized likelihood value. Moreover,
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Figure 8.1: Contours of the likelihood funtion obtained using 69622 events for � ! ���̄ andi-

dates. Three irles orrespond to �L = 1=2, 4=2 and 9=2 ontours from inside to outside and mean

statistial unertainties. The ross is the SM predition.

it is also well known that the absolute maximum value of likelihood funtion itself does not tell any

information about its goodness.

�

As summarized in Ref. [75℄, there are several alternative solutions for the evaluation of the good-

ness of a �tting result obtained by the unbinned-maximum likelihood method. Among all presented

in the referene, we, in this work, attempt to use point-to-point dissimilaritymethod. The idea of this

method is to use evaluation parameter T de�ned as

T =

1

2

Z

dx(P

EX

(x) � P

�t

(x))

2

; (8.6)

where P

EX

(x) is a (unknown) PDF of the real experimental data and P

�t

(x) is the �tted PDF obtained

by the unbinned maximum likelihood method. This T beomes its minimum T = 0 only if P

EX

=

P

�t

. Therefore, the T value an be used to sore the similarity of spetra between real and �tted

distributions, i.e., its smaller value indiates that �t is deent. Here, a more general form of T is

de�ned as

T =

1

2

Z

dxdx

0

(P

EX

(x) � P

�t

(x))(P

EX

(x

0

) � P

�t

(x

0

)) (jx � x

0

j); (8.7)

where  (jx � x

0

j) is a ertain weighting funtion. Although P

EX

(x) is not known (if we know, we do

not need to �t a funtion), Eq. (8.6) is evaluated for the seleted experiment and MC events as:

T =

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j); (8.8)

�

For example, as presented in Ref. [74℄, a likelihood funtion onstruted from a PDF of partile deay time ( f (t) =

e

�t=�

=� for a given lifetime �) has a de�nite maximum value for any given number of events N and their average

¯

t

regardless of the shape of real distribution. Sine it is obvious that numerous distributions an give the same average

value

¯

t, the test using absolute value of the likelihood funtion does not sore the goodness of �t.
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where x and y indiate the seleted MC and the real experimental events, respetively. In our appli-

ation, we modify Eq. (8.8) with P

�t

(x)! P

�t

(x)w(x) to give

T =

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j)w(x

i

); (8.9)

where w(x) is given by

w(x) =

P

BSM

(x)

P

SM

(x)

R(x): (8.10)

Here, P(x) is the total PDF given by Eq. (5.3) and BSM and SM mean the Mihel parameters are

set to the �tted and SM values, respetively. In Eq. (8.9), the variation of distribution by the Mihel

parameters are taken into aount through the weight w(x).
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As demonstrated in Ref. [75℄, it is justi�ed to drop the �rst term in Eq. (8.9) beause its statistial

�utuations should be negligible for N

MC

� N

EX

. In our approah, however, rather than disarding

this term, we adopt a little bit orret method:

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

!

1

N

MC

(N

EX

� 1)

N

MC

;N

EX

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

where number of alulation is redued from N

MC

(N

MC

� 1) to N

MC

(N

EX

� 1) so that the alulation

beomes manageable to be same order as seond term. This simpli�ation is, in fat, neessary to

redue the ost of alulation. Thus we use

�

T =

1

N

MC

(N

EX

� 1)

N

MC

;N

EX

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

) (8.11)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j)w(x

i

); (8.12)

as a signature of the goodness of �t. The deision of the funtion  is not trivial but we fol-

low the method of Ref. [76℄, where it is given by  (d) = e

�d

2

=2�

2

. Here, d is a distane

in the twelve-dimension phase spae fP

`

;


`

; P



;




; P

�

;


�

;m

2

��

;

e




�

g de�ned simply with d

2

i; j

=

jP

`

i

� P

`

j

j

2

+ � � � + j

e

�

�

i

�

e

�

�

j

j

2

, and � is a measure to de�ne the spread of distribution. The vari-

ables in the twelve-dimension phase spae are linearly projeted into open interval (0; 1) so that the

volume of the overall phase spae beomes unity. The � is determined by an equation

1 = V

12

N

EX

(10�)

12

; (8.13)

where V

12

is a volume of the twelve-dimension unity sphere and given by V

12

= �

6

=�(12=2 + 1) =

�

6

=720. In other words, 10 � � is hosen as an average distane between a losest event when N

EX

events are uniformly distributed in the phase spae. The fator of ten is hosen to aount for a dense

onentration of events in the phase spae.

With desribed de�nition of

�

T , we an sore the goodness of �t: however, distribution of

�

T itself

when P

EX

= P

�t

is not known. This means that we are not able to alulate the p-value. To estimate

the distribution of

�

T , we adopt permutation test, where randomly pooled N

EX

and N

MC

events are

used to generate sequene of

�

T values, i.e., for every shu�ed set of pseudo �experimental� and

�MC� events, we alulate

�

T in the same way as real one. We repeat this proedure N

try

= 100 times

and ount events that satisfy

�

T

real

<

�

T

pseudo

. We take the fration as an estimator of p-value. In the

real evaluation of

�

T , however, it is not possible to use whole available events in terms of reasonable

CPU alulation due to its rapid inrease of iteration: � N

MC

�N

EX

�N

try

. Therefore, we divide both

MC and experimental sample into small subsets so that they typially ontain 5�10

4

and 10

4

events,

respetively. Figures 8.4 and 8.5 show distributions of

�

T for eletron and muon modes, respetively.

Sine p-value should distribute uniformly in the interval (0; 1) if the real and �tted funtions are

totally same, the appearane of widely spread values may suggest a good performane of our �t. At

the same time, however, we should put emphasis on the fat that the method explained above simply

annot rejet the badness of �t.
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Figure 8.4: Distribution of

�

T values for nine di�erent sets (whih are hosen randomly) for eletron

mode. The line shows real

�

T value from �tted sample and histograms are distributions obtained with

the permutated sets.

8.3 Upper limits on ouplings g

N

i j

As introdued in Se. 1.4, �̄ is represented as a sum of non-negative terms, hene the upper limit of

the �̄ parameter gives also upper limits of eah term. Here, again we show the expliit formula of �̄

and �� below
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: (8.15)

The distribution on the �̄ in the viinity of the optimal value is well desribed by Gaussian PDF.

Though it may draw ontroversy, if we allow �̄ < 0 region as possible area (in pratie, measured

value an beome negative as well) the upper limit of �̄ at 95% on�dene level is given by

�̄ < 1:5 (95% C:L):

Of all terms in Eq. (8.14), there are essential impats only on the �rst and last two terms in terms

of sensitivity beause the rest terms are suppressed by a fator of 1=8. Moreover, if we take into

aount existing values shown in Table 8.1 [7℄, the upper limit of �̄ gives notable impat only on

jg

T

RL

j. Putting zero into other terms in Eq. (8.14), we obtain jg

T

RL

j < 0:9 (95% C.L.).
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Figure 8.5: Distribution of

�

T values for nine di�erent sets (whih are hosen randomly) for muon

mode. The line shows real

�

T value from �tted sample and histograms are distributions obtained with

the permutated sets.

Moreover, from Eqs. (8.14) and (8.15), sum of �̄ and �� is also written as ombination of non-

negative terms as

�̄ + �� = 2

�

�

�
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+
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2

: (8.16)

From ombined measured value �̄ + �� = �0:8 � 1:8, we an similarly obtain its upper limit

�̄ + �� < 2:1 (95% C:L);

whih leads jg

V

RL

j < 1:0 and jg

T

RL

j < 0:7 (95% C.L.). If we assume that these oupling onstants are

real�whih means that T or CP is onserved� we an simplify Eq. (8.16) and draw allowed range

of g

S

RL

and g

T

RL

values for di�erent value of jg

V

RL

j

2

(95% C.L.) as shown in Fig. 8.7.

We an also give a di�erent onsideration using another linear ombination of the Mihel param-

eters as

�̄ � �� = 2

�

�

�

g
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LR

�

�

�

2

+
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4

�

�
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+ 2g
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�
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2

+ 4
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�
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2

< 1:1 (95% C:L)

but this turns out to be less e�etive for already existing onstraints on g

S

LR

, g

V

LR

and g

T

LR

ouplings.

Relying only on the measurement of �̄ and ��, we annot improve already obtained onstrained limit.

However, it is possible to improve onstraints by simultaneously ombining experimental values of
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Figure 8.6: Distribution of p value: (a) eletron mode using one hundred di�erent sets (b) muon

mode using ten di�erent sets.

other Mihel parameters. In partiular, � parameter shares same six g
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(8.18)

The magnitude of negative terms an be evaluated based on Table 8.1 as

1

2

jg

T

LR

j

2

+

1

8

jg

S

LR

j

2

< 0:12 (95% C:L): (8.19)

Moreover, the terms in the last parenthesis in Eq. (8.18) arise from the ontribution of the interferene

between salar and tensor type interations and disappear when we onsider one type of partile

BSM. In this senario, the rest positive terms are thus evaluated to be

2jg

V

RL

j

2

+

9

2

jg

T

RL

j

2

+

1

8

jg

S

RL

j

2

< 1:35; (95% C:L) (8.20)

whih gives

jg

V

RL

j < 0:82 (95% C:L); (8.21)

jg

T

RL

j < 0:55 (95% C:L): (8.22)

In partiular, Eq. (8.22) is ompetitive with PDG value that was obtained by ombing results of

multiple experiments.

8.4 Couplings with right-handed lepton

As desribed in Se. 1.4, the �� parameter is related to a normalized probability that � ouples with

a right-handed daughter lepton Q

�

`

R

. This value has not been measured yet for the tau lepton. Taking
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j

2

values.

Inner regions enlosed by ellipses are allowed. Here we assume g
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RL

and g
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are real.

Table 8.1: Upper limit of various ouplings g

N

i j

(95% C.L.) [7℄

�! e��̄

jg

S

RR

j < 0:70 jg
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j < 0:17
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j < 0:99 jg
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into aount that �Æ and � parameters had been preisely measured by �! `��̄ deays, substitutions

of the SM values �Æ = 0:75 and � = 1:0 lead Q

�

`

R

= 2��. In the same way as �̄, we evaluate the upper

limit of �� < 1:2 at 95% on�dene level. Thus we obtain the upper limit as

Q

�

`

R

< 2:4 (95% C:L): (8.23)

Obviously, we annot make any onlusive deision at urrent preision. It is desired to do further

preision tests by future experiments.

8.5 Relationship with the right-left symmetri model

As mentioned in the introdution, the measurement of Mihel parameters strongly ontributes to

the onstraint of physis models BSM whih have di�erent hirality struture from the SM. The

right-left symmetri model [80, 81℄ predits right-handed harged-weak urrent and exhibits Mihel

parameters BSM. The preise measurement of �� parameter, indeed, onstrains a mixing parameter

of this model, however, it turns out to be impossible to give essential onstraint with urrent preision.

It is required to improve the sensitivity by two order of magnitude to make it have an in�uene on

the BSM parameters. The disussion is given in Appendix F.
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Chapter 9

Measurement of the branhing ratio

B(�

�

! `

�

��̄)

In this hapter, we present the measurement of branhing ratio of B(�

�

! `

�

��̄) for ` = e or �

based on further optimization of seletion riteria for already seleted events desribed in Chapter 4.

We give a small disussion on the obtained results of branhing ratios.

9.1 Event seletion

Sine our goal of this measurement is to ahieve an auray of a few perents, tens of thousands

events turn out to be suÆient in terms of statistial unertainty. Unlike the measurement of Mihel

parameters, we an optimize seletion riteria more stringently so that the purity of signal beomes

suÆiently high � 70%. Moreover, rather than tuning seletion riteria based on an optimization of

statistial unertainty

�

, we put highly emphasis on the redution of systemati unertainties.

To avoid dupliative generation of MC events, we start from already seleted events exept the

E

LAB

extra

ut, whih is dediated to the Mihel parameter measurement. The additional seletion riteria

are summarized in Table 9.1. Here, to determine seletion riteria, we take into aount following

things:

�

1

O and

4

O: these seletion riteria are intended for redution of the systemati unertainty from

`ID eÆieny orretion. Beause of notable bakgrounds in forward and bakward parts, the

orretion fators R

`ID

in this region are not preisely estimated and we exlude them.

�

2

O: this requirement is also intended to redue R

eID

orretion unertainties.

�

3

O

6

O: both seletion riteria play ruial roles in the suppression of bakgrounds.

Figures 9.1 to 9.5 show the situations of the additional seletions. The blak points with error bars

indiate experimental distributions and open and olored histograms represent MC simulations for

signal and bakground modes, respetively. Eah olor of histogram is same as explanations in

Se. 4.4. To draw MC histograms, the sale fator is determined aording to the number of entries

just after the seond seletion desribed in Chapter 4.

The step-by-step redution of the signal eÆieny and the number of seleted events are summa-

rized in Tables 9.2 and 9.3.

�

In many optimization of seletion riteria, people often maximize a �gure of merit de�ned by FOM = S=

p

S + B,

where S and B are numbers of signal and bakgrounds, respetively. The idea of this optimization is to enhane the ratio

of signal number in terms of statistial �utuation of both signal and bakgrounds.
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Table 9.1: Additional seletion riteria

Eletron mode

1

O: The eletron diretion must lie region de�ned by �

LAB

e

< 126

Æ

.

2

O: The eletron momentum must exeed E

LAB

e

> 1:5 GeV.

3

O: The invariant mass of ombined momenta of e and  must exeed M

e

> 0:1 GeV=

2

.

4

O: The extra gamma energy E

LAB

extra

must be smaller than 0:2 GeV.

Muon mode

5

O: The muon diretion must lie region de�ned by 51

Æ

< �

LAB

�

< 117

Æ

.

6

O: CMS angle between � and  must satisfy os�

�

> 0:99.

7

O: The extra gamma energy E

LAB

extra

must be smaller than 0:3 GeV.

Table 9.2: Redution of eÆieny in eah step for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄) andidates.

Step after N

MC

and

N

MC

sig

"

sig

(%) purity (%) Ns

MC

and

y N

EX

2nd seletion z 7299848 2218523 7.96 30.4 1373878 1373878

Common ut 5466585 1810009 6.49 33.1 1028846 1023518

1

O 5326747 1775999 6.37 33.3 1002528 1005165

2

O 2419038 838600 3.01 34.7 455278 460944

3

O 88214 55331 0.198 62.7 16602 16395

4

O 67677 47515 0.170 70.2 12737 12302

y Ns

MC

and

means saled number of MC events at the step just after preseletion.

z The di�erene in number of signal events and eÆieny from Table 4.3 omes from

de�nition of signal. Herein, all radiative events are inlusively ounted.

Table 9.3: Redution of eÆieny in eah step for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄) andidates.

Step N

MC

and

N

MC

sig

"

sig

(%) purity (%) Ns

MC

and

y N

EX

2nd seletion 1478977 376484 6.30 25.5 258089 258089

Common ut 463368 242321 4.06 52.3 80860 83062

5

O 280847 155064 2.60 55.2 49009 52316

6

O 131722 87477 1.46 66.4 22986 24909

7

O 115564 82633 1.38 71.5 20167 21624

y Ns

MC

and

means saled number of MC events at the step just after preseletion.
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Figure 9.1:

1

O

5

O: Distribution of the osine of polar angle of lepton: (a) eletron mode (b) muon

mode.
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Figure 9.2:

2

O: Distribution of momentum of eletron.
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Figure 9.3:

3

O: Distribution of the invariant mass of ombined momenta of e and  M

e

: (a) overall

view (b) enlarged view.
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Figure 9.5:

4

O

7

O: Distribution of E

LAB

extra

: (a) eletron mode (b) muon mode.

9.2 Method

The branhing ratio an be determined using equation

B(�

+

! �

+

�

0

�̄)B(�

�

! `

�

��) =

N

obs

(1 � f

bg

)

2�

��

L"̄

; (9.1)

where B(�

+

! �

+

�

0

�̄) = (25:52 � 0:09)% [7℄ is a branhing ratio of �

+

! �

+

�

0

�̄ deay, N

obs

is

the number of observed events, f

bg

is fration of bakground events, �

��

= (0:919 � 0:003) nb

�1

is

the ross setion of e

+

e

�

! �

+

�

�

prodution at �(4S ) resonane energy, L = (703 � 10)fb

�1

is the

integrated luminosity for �(4S ) resonane energy, and "̄ is an average seletion eÆieny of signal

events.

The "̄ is evaluated by MC simulation. Here, as explained in Se. 2.1, the de�nition of radiative

deay is events whose energy of gamma in tau rest frame exeeds 10 MeV. The orretion between

the experimental distribution andMC simulation is performed by using R(x) = "

EX

(x)="

MC

(x), whih

is originally extrated to measure the Mihel parameters (the detailed method of the extration is

explained in Chapter 6). The average seletion eÆieny of MC simulation is expressed as:

"̄

MC

=

Z

dx S (x)"

MC

(x); (9.2)

where S (x) is the PDF of signal and "

MC

(x) is the seletion eÆieny. Sine what we need is an

eÆieny in the experimental situation, we hange Eq. (9.2) by

"̄

EX

=

Z

dx S (x)"

EX

(x) =

Z

dx S (x)"

MC

(x)

"

EX

(x)

"

MC

(x)

(9.3)

�

Z

dx S (x)"

MC

(x)R(x) =

"̄

MC

N

sel

X

x2S "

MC

R(x) = "̄

MC

¯

R: (9.4)
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Thus we evaluate the average of

¯

R aording to the seleted signal distribution and multiply it with

the seletion eÆieny of the MC simulation.

9.3 Evaluation of systemati unertainties

In Table 9.4, we summarize ontributions of systemati unertainties. To estimate systemati uner-

tainty of

¯

R values, we use following method.

The systemati unertainties of R

`ID

and R

�ID

values are estimated by a omparison of the eÆ-

ienies of the experiment and MC simulation and observation of time variation (dependene on the

run ID numbers). For R

`ID

ase, we on�rm it using J= ! `

+

`

�

proess. This hek is intended

to take into aount the di�erene of environment beause two-photon proess e

+

e

�

! e

+

e

�

`

+

`

�

is

muh leaner than typial B and � deays.

The systemati unertainties of R

�

0

ID

and R

ID

values are estimated by a omparison between hRi

and unity, where the braket is evaluated with respet to signal events.

The bin-by-bin values of suh systemati unertainties should be onsidered as 100% orrelated

values. Therefore, this ontribution is evaluated as an average Æ

¯

R

syst:

=

D

ÆR

syst:

E

, where the braket

h i means it is evaluated with respet to seleted events. On the other hand, the statistial �utuation

of bins should be regarded as independent values, hene we vary the entral value of eah bin R

i

and see the hange of Æ

¯

R

stat:

= hR + ÆRi � hRi. We repeat the variation ten times and the average

of the residuals

D

Æ

¯

R

stat:

E

is taken as its unertainties. It turns out that suh statistial �utuations are

negligible ompared to the systemati errors of overall bins.

The unertainty of B(�

+

! �

+

�

0

�̄) is taken from PDG average value [7℄ and that of �(e

+

e

�

!

�

+

�

�

) is taken aording to Ref. [77℄.

The statistial unertainty of MC events are basially ignored beause its �utuation is small for

N

MC

� N

EX

. The unertainty of N

obs

are purely statistial ones.

The evaluation of systemati e�et of purity f

bg

is estimated based on a sideband information.

The sideband events are seleted by following riteria: M

e

< 0:1 GeV=

2

and 0:90 <os�

e

< 0:94

for the eletron mode and 0:90 <os�

�

< 0:99 for the muon mode, where other seletion riteria

are ommon with that of signal extration. Suppose that N

S

and N

B

are number of seleted events

in signal and bakground regions and b is number of bakground events in signal region. Using MC

simulation, we estimate a ratio A = b=N

B

. Both signal and bakground regions are lose in phase

spae, then the bakground omposition of these regions are assumed to be lose as well. Thus it is

justi�ed A

EX

� A

MC

and the number of bakground events in signal region is estimated as

b

EX

= N

EX

B

A

EX

� N

EX

B

A

MC

: (9.5)

Beause b

MC

is obtained diretly from MC simulation, a omparison between b

MC

and Eq. (9.5)

enables us to evaluate the systemati e�et due to the bakground inlusion. The systemati un-

ertainties from the estimation of b are 4:4% for eletron and 5:0% for muon modes, respetively.

Taking eah fration into aount, we estimate resulting auraies of purity are 1:3% and 1:5%.

The e�et of detetor response are estimated by varying seletion ut parameters. Table 9.5 lists

up the evaluated systemati ontributions from variation of seletion riteria. We heked the e�et

of seletion riteria of photon energy threshold in the laboratory frame and parameters listed in Ta-

ble 9.1, beause, of all seletion riteria, they have essential impats on the redution of eÆieny.

The magnitude of variation of photon energy threshold is determined based on the information of

linearity of energy response. Aording to Ref. [43℄, a systemati shift between inident photon

energy vs measured energy was observed, partiularly below 100 MeV and the magnitude was ap-

proximately 2%. We varied the threshold by 5 MeV (whih orresponds to �5%) inluding the

margin fator. The variation of other seletion riteria are determined based on the propagation of

139



the error matrix of momenta and energies. In a similar way as the inlusion of detetor response in

the alulation of PDF (explained in Se. 5.4.5), preision of the measurement of ut parameters are

estimated by a residual Æ = x

org

� x

shift

, where x

org

and x

shift

are the original measured and shifted

values, respetively, and x

shift

are determined aording to the error matrix. The root mean square

(RMS) of Æ de�nes the order of variation: for the momentum and energy, we vary 3� RMS, whereas

onstruted parameters, namely, M

e

and os �

�

, are varied by 1 � RMS. Of all variations, notable

systemati unertainty is observed in the ut by M

e

. As Fig. 9.3 suggests, this is reasonable be-

ause the seletion by M

e

> 0:2 GeV=

2

is one of the most stringent seletion riteria to redue the

external bremsstrahlung.

In this measurement, we de�ned the radiative deay �

�

! `

�

��̄ by the ondition of photon

energy threshold of E

�



= 10 MeV in the tau rest frame. More onretely, to evaluate the seletion

eÆieny by MC simulation, we do not use events whose energy of photons are less than the thresh-

old. In the real experiment, however, we annot preisely determine the photon energy in the tau

rest frame (beause we are not able to speify not only the tau diretion but also the energy of tau),

aordingly there is a hane that a soft event, whih has a smaller-energy photon than threshold, is

reonstruted also as a signal. The ut value of photon energy in the laboratory frame are 80 MeV

and 100 MeV in the barrel and endap regions, respetively, and this requires an enhanement of

boost at least by a fator of ten, i.e., (1 + �) � 10 when diretion of boost and photon movement

are same. Indeed, this is barely possible in a limited phase spae and it turns out that the soft events

are inluded in the seleted events with frations of 1:1% and 0:3% for eletron and muon events,

respetively. We take these frations as soures of systemati unertainties due to the experimental

ambiguity of E

�



threshold.

We also heked the impat of a variation of shape of photon energy spetrum mainly due to

the unertainty of theoretial model. As explained many times, we measure the branhing ra-

tio de�ned with the threshold of E

�



= 10 MeV on the basis of the photon energy requirement

E



= 80 MeV (or 100 MeV) in the CMS. That is to say, we estimate the total number of radia-

tive events (E

�



> 10 MeV), denoted as N

10

, using the number of partially seleted events with

E



> 80 (100) MeV, denoted as N

80

. It follows from this that this measurement relies on the ratio

N

10

=N

80

(equivalently the shape of photon energy spetrum) whih is mainly determined by theoreti-

al assumption. However, the inputs of parameter whih a�ets the shape�masses of eletron, muon

and tau, and beam energies�are preisely measured and do not seriously vary the ratio N

10

=N

80

. In-

deed, we varied these values by 5%, whih is obviously onservative evaluation, and found that

N

10

=N

80

shifted only 0.06%.

9.4 Result

In Table 9.6, we show the result of measurements separately for the four on�gurations: (e

�

; �

+

�

0

),

(e

+

; �

�

�

0

), (�

�

; �

+

�

0

) and (�

+

; �

�

�

0

). They are ombined to give

B(�

�

! e

�

��̄)

E

�



>10 MeV

= (1:82 � 0:02 � 0:10) � 10

�2

; (9.6)

B(�

�

! �

�

��̄)

E

�



>10 MeV

= (3:68 � 0:02 � 0:15) � 10

�3

; (9.7)

where �rst error is statisti and seond is systemati. We also obtained these branhing ratio as a

funtion of E

LAB

extra

ut value as shown in Fig. 9.6.

9.4.1 Ratio of branhing ratio Q = B(�

�

! e

�

��̄)=B(�

�

! �

�

��̄)

As summarized in Table 9.4, the dominant systemati ontribution omes from the reonstrution

eÆieny orretion for �

0

. This unertainty an be removedwhen we measure the ratio of branhing
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Table 9.4: List of various systemati ontributions (%)

Item (e

�

; �

+

�

0

) (e

+

; �

�

�

0

) (�

�

; �

+

�

0

) (�

+

; �

�

�

0

)

R

trg

1:2 1:2 0:7 0:7

R

ID

1:0 1:0 0:4 0:4

R

`ID

1:9 1:9 1:1 1:1

R

�ID

0:7 0:7 0:7 0:7

R

�

0

ID

3:6 3:6 3:3 3:3

R

re

0:7 0:7 0:7 0:7

Luminosity 1:4 1:4 1:4 1:4

B(�! ��

0

�) 0:4 0:4 0:4 0:4

�(ee! ��) 0:3 0:3 0:3 0:3

f

bg

1.3 1.3 1:5 1:5

Detetor response 1.5 1.5 0.6 0.6

Ambiguity of E

�



threshold 1.1 1.1 0.3 0.3

Model unertainty negligible negligible negligible negligible

Total 5:3 5:3 4:3 4:3

Table 9.5: Systemati ontributions due to detetor response

Cut ID Variation of seletion riteria �B=B (%)

Eletron mode

E

LAB



threshold : E

LAB



< 80 MeV (or 100 MeV) 5 MeV 0.05

1

O: �

LAB

e

< 126

Æ

3:4

Æ

0.01

2

O: E

LAB

e

> 1:5 GeV 9 MeV= 0.01

3

O: M

e

> 0:1 GeV=

2

14 MeV=

2

1.3

4

O: E

LAB

extra

< 0:2 GeV 50 MeV 0.7

Total 1.5

Muon mode

E

LAB



threshold : E

LAB



< 80 MeV (or 100 MeV) 5 MeV 0.05

5

O: 51

Æ

< �

LAB

�

< 117

Æ

1:7

Æ

0.3

6

O: os�

�

> 0:99 0.002 0.5

7

O: E

LAB

extra

< 0:3 GeV 50 MeV 0.05

Total 0.6
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Table 9.6: Summary of result

item (e

�

; �

+

�

0

) (e

+

; �

�

�

0

) (�

�

; �

+

�

0

) (�

+

; �

�

�

0

)

N

obs

6188 � 79 6114 � 78 10458 � 102 11170 � 106

1 � f

bg

y

(%) 70:2 � 0:9 70:2 � 0:9 71:5 � 1:0 71:5 � 1:0

"̄

MC

(%) 0:172 0:169 1:26 1:27

¯

R 0:85 � 0:04 0:85 � 0:04 0:93 � 0:03 0:93 � 0:03

"̄

EX

(%) 0:146 � 0:007 0:144 � 0:007 1:28 � 0:05 1:29 � 0:05

B

E

�



>10 MeV

(%) 1:81 � 0:02 � 0:10 1:82 � 0:02 � 0:10 0:356 � 0:003 � 0:015 0:377 � 0:003 � 0:016

y

The de�nition of signal is di�erent from the main analysis. In the measurement of the branhing ratio,

events generated as radiative leptoni deay and whose photon energy exeeds E

�



= 10 MeV are inlusively

treated as signal. Therefore, for instane, even if the bremsstrahlung of eletron in �

�

! e

�

��̄ is

reonstruted as signal photon, it is still ategorized as signal.
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Figure 9.6: Branhing ratio of �

�

! `

�

��̄ deay as a funtion of E

LAB

extra

ut:(a) ` = e and (b) ` = �.

Red, blue and magenta lines respetively represent branhing ratio of �

�

! `

�

��̄, �

�

! `

�

��̄ and

�

+

! `

+

��̄. Orange region shows result of the measurement by BaBar [37℄. Blak, green and red

lines are theoretial preditions for LO, inlusive and exlusive modes, respetively [40℄. The error

inludes both statistial and systemati unertainties.
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Table 9.7: Comparison of the ratio Q (E

�



> 10 MeV)

Theory

Leading order 5.007

Next leading order inl. 4.793

Next leading order exl. 4.605

Experiment

CLEO 4.9 � 0.3 � 0.6 [36℄

BaBar 5.01 � 0.06 � 0.19 y [37℄

This measurement 4.95 � 0.06 � 0.20

y

Systemati unertainty is naively alulated from

referene values, where anellation is not taken

into aount.

ratio Q = B(�

�

! e

�

��̄)=B(�

�

! �

�

��̄). Moreover, other ommon systemati soures, R

re

,

R

�ID

, the integrated luminosity, the branhing ratio of �

+

! �

+

�

0

�̄ deay and the ross setion

�(e

+

e

�

! �

+

�

�

) also disappear. The obtained ratio is

Q =

B(�

�

! e

�

��̄)

E

�



>10 MeV

B(�

�

! �

�

��̄)

E

�



>10 MeV

= 4:95 � 0:06 � 0:20; (9.8)

where the �rst error is statisti and seond is systemati. As the information of Q value is summa-

rized in Table 9.7, our result well supports the LO alulation as well as the measurement of BaBar

experiment.

9.5 Disussion

9.5.1 Treatment of double photons

As mentioned in the introdution, the branhing ratio measurement by BaBar experiment is onsis-

tent with the theoretial LO alulation but not with NLO predition for �

�

! e

�

��̄ deay mode.

However, there is a room for disussion beause of the treatment of two photons in NLO alulation.

In Ref. [40℄, the authors de�ne three types of deays: an inlusive mode is de�ned as an event whih

has at least one hard photon, an exlusive mode is de�ned as an event whih has one and only one

hard photon and doubly deay whih has two hard photons. Here, the hard photon means the energy

exeeds 10 MeV in � rest frame. Figure 9.7a shows a shemati view of the energy on�guration of

two photons.

In this measurement, we rejet additional photons in two ways. First, if two photons whose ener-

gies exeed 80 MeV enter the one around lepton diretion, the events are rejeted. However, even

if two photons are generated inside the one, their lusters in ECL an merge and behave as a single

emission one both photons are produed towards almost same diretion (typially a few degrees in

laboratory frame). The other is a rejetion using the extra gamma energy whih is de�ned as a sum

of all photon lusters whih do not have assoiated harged traks. Sine the photon luster andi-

dates are determined if the energy exeed 40 MeV, a soft photon whih does not reah this energy

thresholds an survive from our seletion riteria. Consequently, there is a possibility that we fail to

rejet additional photons if their energies are small. Here, it is worthy to note that these experimental

thresholds are not so far from a threshold used in theoretial alulation (10 MeV) beause the boost
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of � by  � 3 auses an enhanement of photon energy in laboratory frame. This situation is drawn

in Fig. 9.7b. Beause of the fator of boost, the magnitude relationship between the experimental

and theoretial energy thresholds is obsure but at least there is an additional region in (E

1

; E

2

)

plane in whih we experimentally fail to veto the additional photon even if we attempt to measure

the exlusive branhing ratio. Thus above disussion may imply that experimental measurement

should show a value between the exlusive and inlusive branhing ratios. With urrent auray,

we annot onlude whether our result agrees with the predition of inlusive branhing ratio but it

is reasonable to rejet that of exlusive one.

To evaluate the e�et of NLO e�ets more preisely, it is inevitable to update the generator

of �

�

! `

�

��̄. Current version of the TAUOLA generator does not take into aount the NLO

e�ets, hene the double emission of photons are not properly exluded, i.e., the eÆieny of a single

emission of photon is neither well de�ned nor estimated. This improvements would be also important

for muoni deay to redue a possible systemati bias on the searh for its lepton �avor violating

deays like �

+

! e

+

 and �

+

! e

+

e

�

e

+

. In Appendix D, we introdue the theoretial information of

the doubly radiative deay with generated distributions of �nal state kinemati variables.

(a) (b)

Figure 9.7: Shemati view of energy of two photons: (a) an inlusive mode is represented by

a region enlosed by a red dashed-line while an exlusive mode is drawn by blue retangles: (b)

experimentally it is diÆult to de�nitely rejet weak photons even if they exeed the theoretial

energy threshold, whih result in a possibility to inlude �lled region.

9.5.2 Anomalous four-point interation

As pointed in Ref. [78℄, the kinemati properties of emitted photon re�ets the inner struture of

deay and thus the radiative leptoni deay an reveal a ertain physis BSM in a di�erent way from

the ordinary leptoni deay. However, unfortunately, there are not so many available theoretial

studies dediated to the radiative mode.

We then onsider the addition of anomalous four-point salar and tensor interations in the SM

Lagrangian as:

y

L �

g

p

2

W

�

"

¯

 (�

�

)

�

1 � 

5

2

 (�) �

e�

S

�

m

�

A

�

¯

 (�

�

) (�) +

ie�

T

�

m

�

A

�

¯

 (�

�

)�

��

 (�)

#

+ h::; (9.9)

where �

S

�

and �

T

�

haraterize the magnitudes of these interations. From theoretial point of view, the

naive inlusion of Eq. (9.9) does not make sense due to the violation of Gauge invariane. However,

there is a possibility that these terms an appear as parts of U(1) 
 SU(2) symmetri interations of

¯

 (�

�

)jDj

2

 (�) and

¯

 (�

�

)�

��

i[iD

�

; iD

�

℄ (�), where D

�

is the ovariant di�erential operator.

y

Similar interations have been studied in the spetrum of �

�

! `

�

��̄ by DELPHI ollaboration [79℄.
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�

�

�



`

�

`

Figure 9.8: Feynman diagram of anomalous four point salar and tensor interations.

As the Feynman diagram is shown in Fig. 9.8, the anomalous interation gives an additional

amplitude ofM

a

for �

�

! `

�

��̄ deay and interferes with that of the SM as:

jM

tot

j

2

= jM

SM

+M

a

j

2

� jM

SM

j

2

+ 2<fM

SM

M

�

a

g; (9.10)

where we ignored small fator of jM

a

j

2

. The shift of spetrum by 2<fM

SM

M

�

a

g is given by

�

 

d�(�! `��̄)

dxdyd


�

`

d


�



!

S

= �

4m

5

�

G

2

F

��

S

�

3(4�)

6

x�

�

`

z

"

� z

n

(1 + �

2

� x � y + z)(z � 3x) + (y � z)(x � z � 2�

2

)

o

+ 3y(z � 2�

2

)(1 + �

2

� x � y + z)

#

; (9.11)

for the salar type interation and

�

 

d�(�! `��̄)

dxdyd


�

`

d


�



!

T

= �

4m

5

�

G

2

F

��

T

�

3(4�)

6

x�

�

`

z

"

z(�3x + x

2

+ 13xy � 9y + 9y

2

) + z

2

(�7x � 17y + 7) + 6z

3

+ �

2

n

�18y + 18xy + 18y

2

+ z(8 � 3x � 37y) + 9z

2

o

� 18�

4

y

#

; (9.12)

for the tensor type interations, where x, y, z and � are normalized kinemati variables de�ned as

x = 2E

�

`

=m

�

, y = 2E

�



=m

�

, z = 2p



� p

`

=m

2

�

= xy(1 � �

�

`

os �

�

`

)=2 and � = m

`

=m

�

, respetively.

Integrating the di�erential variables numerially in the phase spae, we obtain

�(�

�

! `

�

��̄)

E

�



>10 MeV

= �

SM

E

�



>10 MeV

�

1 + 

`

�

N

�

�

; (N = S ; T ) (9.13)



S

e

= 2:01 � 10

�3

; (9.14)



S

�

= 8:73 � 10

�3

; (9.15)



T

e

= 6:17 � 10

�3

; (9.16)



T

�

= 3:19 � 10

�2

: (9.17)

Taking into aount the good agreement of the observed branhing ratio with that of the SM theoret-

ial predition, j�B(�

�

! ���̄)=B(�

�

! ���̄)j < 4:3% gives

�

�

�

�

S

�

�

�

�

< 4:9 (68% C:L); (9.18)

�

�

�

�

T

�

�

�

�

< 1:3 (68% C:L): (9.19)

This is the �rst attempt to onstrain these oeÆients.
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Chapter 10

Future prospets and onlusion

10.1 Future experiment and expeted improvements

The Belle II is an upgrade projet of the Belle experiment using Super KEKB aelerator and Belle I

I detetor, whih is planning to start physis data taking from 2017. The key of the next-generation

projet is to ahieve 40 times higher instantaneous luminosity than KEKB (L = 8:0 � 10

35

m

�2

s

�1

)

and ollet �fty times larger integrated luminosity. Using muh more abundant data set of e

+

e

�

!

B

¯

B, e

+

e

�

! �

+

�

�

, e

+

e

�

! ̄, et, further preision tests of the SM will beome available. Most

notably, improvements of analyses whose unertainties are statistial dominant will be main goals of

this projet. The measurement of �̄ and �� is truly a part of this subjet. In Table 10.1, we summarize

the information of the upgrade.

�

Considering the improvement of the gain of statistis by a fator of 50, we an roughly expet

seven times better statistial unertainty than this analysis, aordingly the measurement of the �̄ and

�� will be systemati dominant. Here, we disuss possible solutions to maintain the sensitivity.

First of all, it is worth noting that many soures of the systemati unertainties, whih are listed

in Table 7.1, are evaluated by �tting the Mihel parameters with and without the e�et of original

soures of unertainties. The variation of �tted �̄ and �� values is taken as their e�ets on the Mihel

parameters. For this reason, the magnitude of suh unertainties largely depend on the sensitivity of

�tted Mihel parameters to the spetra of MC distribution, where amount of statistis of experimental

events has a notable ontribution to the preision. However, it will not be so straightforward to

�

For more details, see e.g. [82℄ (physis) and [83℄ (aelerator and detetor).

Table 10.1: Upgrade of the Belle experiment

Item Belle Belle II

Aelerator KEKB Super KEKB

Beam Energy (E

e

�

; E

e

+

) (GeV) (8.0, 3.5) (7.0, 4.0)

Current (I

e

�

; I

e

+

) (A) (1.6, 1.2) (3.6, 2.6)

Instantaneous lumi. (m

�2

s

�1

) 2:1 � 10

34

8:0 � 10

35

Integrated lumi. (ab

�1

) 1.0 50

Detetor Belle Belle II

Vertex detetor Four layers of SVD Pixel [84℄ & strip [85℄ (2 + 4 lays.)

Traking CDC Inrease granularity of CDC [86℄

PID TOF & ACC TOP [87℄ & ARICH [88℄

Calorimeter ECL Improve readout eletronis [89℄

Computing KEK main International grid omputing [90℄
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inrease the statistis of MC events beause a orret evaluation/validation of the proedure requires

the generi �� MC sample, where various bakground modes are required to be simulated as well.

In general, both detetor simulation and store of data for generi �� MC events are very heavy

and tend to be substantial problem.

y

In fat, in this analysis, we use generi MC sample that is

only �ve times as large amount as that of real experiment. To maintain sensitivity for the Belle II

analysis, it will be neessary to prepare at least several times (order of 5-10) larger amount of MC

data sample than the statistis of real Belle II experiment.

z

Moreover, even in the situation of Belle

analysis, we need approximately ten hours to alulate the PDFs using �fty CPUs. To aommodate

50 times larger proessing, new breakthrough in the handling of omputation would be required.

At the time of writing, a use of graphial proessing unit (GPU) reeives more and more people's

attention. GPU was originally developed to alulate huge amount of simple data for the graphis

of omputer games but nowadays they are made use of in many siene �elds like a neural network,

an eonomis, a liquid simulation and so on. Their exellent ost performane may realize the huge

amount of alulation.

Seond, the 50 times larger data set may enable us to adopt more stringent seletion riteria

so as to inrease the purity of signal within a realisti statistial unertainty. In this analysis, we

are required to retain both seletion eÆieny and purity then resulting statistial and systemati

errors are almost ompatible. However, it is not impossible to apply more strong seletion riteria.

For example, the ontamination from the extra bremsstrahlung for � ! e��̄ andidates an be

redued by applying a seletion riteria for the invariant mass of lepton and photon m

e

. As shown

in Fig. 10.1, the extra bremsstrahlung an be exluded one we require m

e

> 0:1 � 0:2 GeV though

this drastially degrades the eÆieny. Similarly, for muon mode, a stringent ut on the os�

�

(e.g.

os�

�

> 0:99) may be reasonable. Nevertheless, as desribed in Se. 5.6.2, the sensitivity of the

Mihel parameters generally depends on a spei� seletion ut even if statistis is same. Therefore,

autious study of the sensitivity may be important. In fat, as mentioned in Ref. [91℄, the sensitivity

of e�et BSM would be maximum around �

�

� 180

Æ

. Therefore, it will be reasonable to allow

events like jos�

�

j > 0:98 to enhane sensitivity. However, it is worth to mention that this indiates

a ontamination from bakground in this region also highly a�ets the �tted Mihel parameters.

Third, as the method desribed in Se. 5.4.3 and mentioned in Se. 5.6.3, dediated treatment

of bakgrounds whih is urrently lassi�ed as others are neessarily to ahieve further preision.

The simpli�ation of the T = B

sel

=S

sel

into produts of subsets of T s generally disards the high-

dimension orrelations in the phase spae and delivers a systemati bias. There are some possible

strategies to overome this situation. Using more abundant data, it is possible to tabulate the subset

of T s in larger dimension of phase spae. In this analysis, we tabulate the subset as a funtion of

three variables at maximum. We may be able to extend up to four variables. Another possibility is

to �nd more preise way of the redution of T . Although the dimension of phase spae is �xed to

be twelve, the possible de�nition of T is almost in�nity, hene trial and error are inevitable. Modern

omputer tehnologies like deep learning may help this disovery.

Finally, to realize preise analyses of radiative deays (not only �! `��̄ but also other proesses

like � ! �, b ! s) in the environment of forty times as large instantaneous luminosity as Belle,

the suppression of beam bakground plays a ruial role in their suesses. Sine physis proesses

suh as radiative Bhabha sattering ee ! ee and ISR emission are proportional to luminosity, their

existene does not ause a substantial inrease of the systemati e�ets while the beam bakground

may be muh stronger than the fator of forty. To overome the (possibly) severe situation of the

beam bakground, the readout eletronis of the Belle II ECL will be upgraded, where waveform

signals from the PIN photo diodes attahed on the CsI rystal are �tted to detet the hit timing

preisely. The requirement of the orrespondene of the hit and ollision timing using this new

y

The amount of data for 703 fb

�1

(whole available �(4S ) data) of generi MC is approximately 5 TB.

z

This orresponds to �2 PB when Belle MC is assumed.
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(b) enlarged

Figure 10.1: Distribution of the invariant mass of eletron and photonm

e

for �

�

! e

�

��̄ andidate:

(a) overall view (b) enlarged view. As explained in Chapter 4, yellow and green histogram represent

the extra bremsstrahlung.

tehnique may give a signi�ant improvement in the purity. Even at Belle, in some latter period, it is

not impossible to aess the hit time information but we did not use them.

Taking into aount all fats listed above, it is not far from realisti to expet an improvement of

systemati unertainty by the same gain as statistial, i.e., a gain of the fator of

p

50 � 7.

10.2 Conlusion

We present a measurement of the Mihel parameters �̄ and �� of the � lepton using 703 fb

�1

of

�(4S ) beam energy data olleted with the Belle detetor at the KEKB e

+

e

�

ollider. The Mihel

parameters are fundamental nature of � and � leptons, whih haraterize the spetra of daughter

partiles from their leptoni deays. The generalized amplitude of leptoni deays is written as a

superposition of ten ontributions, in whih the salar, vetor and tensor interations are summed

for eah on�guration of hiralities of mother and daughter harged leptons. The Mihel parameters

are de�ned as bilinear ombinations of the dimensionless oupling onstants of ten amplitudes. The

omparison of experimentally measured Mihel parameters vs the Standard Model predition is thus

the model independent veri�ation of physis beyond the Standard Model.

The ordinary Mihel parameters �, �, � and �Æ have been preisely measured in �

�

! `

�

��̄ (`

= e or �) and their previous measured values are onsistent with the Standard Model preditions.

Whereas, �̄ and �� parameters an be measured only if we observe a photon from leptoni deay, or

radiative deay, �

�

! `

�

��̄. The angular distribution of photon with respet to the daughter lepton

movement indiretly exposes the polarization of daughter lepton and this enables us to understand

another aspet of internal struture of the weak interation.

�̄ and �� parameters are extrated from the radiative leptoni deay �

�

! `

�

��̄ and the tagging

� deay �

+

! �

+

(! �

+

�

0

)�̄ of the partner �

+

to exploit the spin-spin orrelation in e

+

e

�

! �

+

�

�

.

Beause of the suppression of sensitivity from the small mass of eletron, �̄ parameter is extrated
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only from �

�

! �

�

��̄ mode. �̄ and �� are simultaneously �tted to the kinemati distribution to be

�̄

�

= �1:3 � 1:5 � 0:8 (10.1)

(��)

�

= 0:8 � 0:5 � 0:3: (10.2)

In the eletron mode, �� is �tted by �xing �̄ value to the Standard Model predition of �̄ = 0 and the

optimal value is

(��)

e

= �0:4 � 0:8 � 0:9: (10.3)

The �rst errors are statistial and the seond are systemati. This is the �rst measurement of both

parameters for the � lepton. These values are onsistent with the SM expetation within the errors.

Based on the measured values of �̄ and ��, we obtained the upper limit of the oupling onstant

on g

N

i j

s. Combining linear ombination of � and �� values we obtain

jg

T

RL

j < 0:55 (95% C:L): (10.4)

From observed �� value, we also tried to obtain upper limit of the normalized probability that �

lepton ouples with a right-handed daughter lepton as

Q

�

R

< 2:4 (95% C:L): (10.5)

This is the �rst experimental onstraint for the tau lepton.

To make the measurement of �̄ and �� have further signi�ant impats on the theories BSM,

it is desired to perform more preise measurement using next generation experiments. In the

improvements of the auray of these measurements, it is neessary to redue systemati uner-

tainties, whih is already ompetitive to statistial unertainties of Belle data sample. The key of the

improvements will be treatment huge amount of data of the MC as well as the real experiment using

modern tehnologies of the omputing.

Further optimizing the seletion riteria, we also measured the branhing ratio of radiative deays

�

�

! `

�

��̄. The results are

B(�

�

! e

�

��̄)

E

�



>10 MeV

= (1:82 � 0:02 � 0:10) � 10

�2

; (10.6)

B(�

�

! �

�

��̄)

E

�



>10 MeV

= (3:68 � 0:02 � 0:15) � 10

�3

; (10.7)

where the �rst error is statisti and seond is systemati. These values are onsistent with the results

by BaBar experiment.

To redue various systemati e�ets, in partiular from �

0

reonstrution eÆieny, we obtained

a ratio of the branhing ratio

Q =

B(�

�

! e

�

��̄)

E

�



>10 MeV

B(�

�

! �

�

��̄)

E

�



>10 MeV

= 4:95 � 0:06 � 0:20; (10.8)

where the �rst error is statisti and seond is systemati. The magnitude of systemati unertainty

slightly improves to give �Q=Q = 4:0%. This result does not hange the onlusion desribed above.

The results are onsistent with the leading order theoretial alulation, whereas, similarly to the

result of BaBar experiment, in the eletron mode the measured branhing ratio does not prefer the

exlusive branhing ratio that is predited by taking into aount the NLO ontribution. Though we

veto the multiple photon andidates by the seletion riteria, due to the photon energy threshold, the

experimentally measured value should not be regarded as an ideal exlusive mode and indeed, it is
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more plausible to think it of the middle between the exlusive and inlusive modes. This arises from

the ignorane of the multiple photon emissions at the stage of event generation and the implementa-

tion of NLO formalism in the TAUOLA generator is required to do further analysis.

Based on the agreement of observed branhing ratio of radiative deay, we attempt to onstrain

the oupling onstants of anomalous four-point salar and tensor interations. Integrating the dif-

ferential deay width due to interferene between the anomalous and the SM amplitudes, we eval-

uate the expeted shift of branhing ratio and obtained upper limits are j�

S

�

j < 4:9 (68% C:L) and

j�

T

�

j < 1:3 (68% C:L). This is the �rst attempt to onstrain the four-point interations.
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Appendix A

Measurement of the branhing ratio

B(�

�

! `

�

��̄) (validation)

As one of a validation of our proedures, we measure the branhing ratio of �

�

! `

�

��̄ deay

for ` = e or �. The agreement of the branhing ratio with previous measurements tells us the

additional onsisteny for the estimation of R as well as an evaluation of bakgrounds ontamination

for �

�

! `

�

��̄ deays.

A.1 Method and evaluation of systemati unertainties

Taking into aount the on�rmation purpose of this measurement, we must use ompletely same

seletion riteria as that of the measurement of Mihel parameters. The method of the measurement

of the branhing ratio and its systemati unertainty are same as presented in Chapter 9. Sine it

is diÆult to de�ne the sideband region, we use same value as a di�erene of bakground amount

desribed in Chapter 9. Taking into aount a fration of bakgrounds, estimated systemati e�et

on the purity f

bg

is 2.9% and 2.1% for eletron and muon modes, respetively. In Table A.1, we

summarize the ontributions of the systemati unertainties for eah item.

A.2 Result

Table A.2 shows information of extrated values. Based on these information, we obtain thatB(�

�

!

e

�

��̄) = (1:83 � 0:00 � 0:11)% and B(�

�

! �

�

��̄) = (0:348� 0:001� 0:019)%. This result agrees

with the measurement by BaBar experiment.

A.3 Disussion and onlusions

A.3.1 E

LAB

extra

dependene

The inonsisteny of the experimental result with the NLO theoretial predition may ome from

double emission of photons. The stability of the measurement towards the extra gamma energy

E

LAB

extra

ut is useful prove of the veri�ation of this e�et beause the additional emission of photons

is suppressed by this ut. We measure the branhing ratio for samples separately seleted by di�erent

extra gamma energy ut from 0:00 GeV to 0:45 GeV with 0:05 GeV step. Sine E

LAB

extra

is de�ned as a

sum of energy of separate photon lusters whih exeeds 40 MeV in laboratory frame, the seletion

with E

LAB

extra

= 0 GeV means we do not allow any photon lusters in the event ourrene. Figure A.1

shows the dependene of the branhing ratio on the extra gamma energy ut. Sine the statistis
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Table A.1: Summary of systemati ontributions (%)

item (e

�

; �

+

�

0

) (e

+

; �

�

�

0

) (�

�

; �

+

�

0

) (�

+

; �

�

�

0

)

R

trg

2:8 2:8 1:8 1:8

R

ID

0:6 0:6 1:7 1:7

R

`ID

3:0 3:0 2:8 2:8

R

�ID

0:7 0:7 0:6 0:6

R

�

0

ID

3:5 3:5 3:5 3:5

R

re

0:7 0:7 0:7 0:7

Luminosity 1:4 1:4 1:4 1:4

B(�

+

! �

+

�

0

�̄) 0:4 0:4 0:4 0:4

�(e

+

e

�

! �

+

�

�

) 0:3 0:3 0:3 0:3

f

bg

2.9 2.9 2:1 2:1

Total 6:4 6:4 5:8 5:8

Table A.2: Summary of result

item (e

�

; �

+

�

0

) (e

+

; �

�

�

0

) (�

�

; �

+

�

0

) (�

+

; �

�

�

0

)

N

obs

391954 � 626 384880 � 620 35198 � 188 35973 � 190

1 � f

bg

y

(%) 33:0 � 1:1 33:0 � 1:1 57:4 � 1:3 57:4 � 1:3

"̄

MC

(%) 4:825 4:786 3:880 3:859

¯

R 0:89 � 0:05 0:89 � 0:05 0:92 � 0:05 0:92 � 0:05

"̄

EX

(%) 4:28 � 0:24 4:25 � 0:23 3:58 � 0:19 3:56 � 0:18

B (%) 1:84 � 0:00 � 0:12 1:82 � 0:00 � 0:12 0:344 � 0:002 � 0:020 0:353 � 0:002 � 0:020

y

The de�nition of signal is di�erent from the main analysis. In the measurement of the branhing ratio,

events generated as radiative leptoni deay and whose photon energy exeeds E

�



= 10 MeV are inlusively

treated as signal. Therefore, for instane, even if the external bremsstrahlung of eletron in �! e��̄ is

reonstruted as signal photon, it is still ategorized as a signal.

have overlaps, they are systematially orrelated eah other. The variation of the branhing ratios

towards the di�erent extra gamma energy ut are within the range of unertainties. These stabilities

of the branhing ratio imply that the measurements are more or less strong for the ontaminations

from bakgrounds beause di�erent ut value generally hanges the frations of various bakground

modes. Here, we an see a good agreement with the theoretial leading order alulation while it

is diÆult to judge whih next-leading order alulation is more preferable, namely, an inlusive or

an exlusive branhing ratio.

�

Our result is onsistent with measurement by BaBar experiment [37℄

within its unertainty.

A.3.2 Conlusions

As one of a validation of the proedures of the measurement of the Mihel parameters, we measure

branhing ratio of �

�

! `

�

��̄ deay using tagged �

+

! �

+

�

0

�̄ deay. The observed results are

B(�

�

! e

�

��̄) = (1:83� 0:00� 0:10)% and B(�

�

! �

�

��̄) = (0:348� 0:001� 0:019)%. Sine the

seletion riteria is not optimized for the branhing ratio measurement, the systemati e�ets turn

�

For these de�nitions, see Se. 2.3 or Se. 9.5
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 (GeV)γextra
LABE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

B
r

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

)γ ν ν e → τBr(

 bothγ ν ν ± e→ ±τ
γ ν ν - e→ -τ
γ ν ν + e→ +τ

γ ν ν e → τtheory (LO) 
γ ν ν e → τtheory (incl.) 
γ ν ν e → τtheory (excl.) 

γ ν ν e → τBaBar 

)γ ν ν e → τBr(

(a)

 (GeV)γextra
LABE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

B
r

0.0032

0.0034

0.0036

0.0038

0.004

0.0042

)γ ν ν µ → τBr(

 bothγ ν ν ±µ → ±τ
γ ν ν -µ → -τ
γ ν ν +µ → +τ

γ ν ν µ → τtheory (LO) 
γ ν ν µ → τtheory (incl.) 
γ ν ν µ → τtheory (excl.) 

γ ν ν µ → τBaBar 

)γ ν ν µ → τBr(

(b)

Figure A.1: Branhing ratio of �

�

! `

�

��̄ deay as a funtion of E

LAB

extra

ut:(a) ` = e and (b) ` = �.

Red, blue and magenta lines respetively represent branhing ratio of �� ! `

�

��̄, �

�

! `

�

��̄ and

�

+

! `

+

��̄. Orange region shows result of the measurement by BaBar [37℄. Blak, green and red

lines are theoretial preditions for LO, inlusive and exlusive modes, respetively [40℄. The error

inludes both statistial and systemati unertainties.

out to be approximately six perent and diÆult to give a onlusive deision. However, the result

well supports our Mihel parameter measurement as one of onsisteny hek.
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Appendix B

Desription of bakground PDFs

B.1 Ordinary leptoni deay + beam bakground

As explained in Se. 5.4.2, the ontribution from beam bakground is �nally given by

� �

P

sel

(z) � B

ord

(y)

�"(z)

; (B.1)

where as de�ned before, y = fP

`

;


`

; P

�

;


�

;m

2

��

;

e




�

g and z = fP



;




g are, respetively variables

for the ordinary leptoni deay and beam bakground, B

ord

(y) is an intrinsi PDF of the ordinary

leptoni deay �

�

! `

�

��̄ and �"(z) is an average eÆieny of the beam bakground with respet to

seleted y distribution, whih is expliitly given by

�"(z) =

Z

dy "(y)"(zjy)B

ord

(y): (B.2)

The tabulation of �"(z) for a ertain ell of z (denoted as �z

(i)

) is obtained by using seleted MC

signal sample with a fator of weight B

ord

(y)=P

signal

(y; z):

�"(z

(i)

) =

Z

dy "(y)"(z

(i)

jy)B

ord

(y) (B.3)

=

Z

z2�z

(i)

dz

Z

dy "(y)"(zjy)B

ord

(y)

�z

(i)

(B.4)

=

Z

z2�z

(i)

dz

Z

dy P

signal

(y; z) �

B

ord

(y)

P

signal

(y; z)

"(y)"(zjy)

�z

(i)

(B.5)

�

1

N

gen(i)

X

y

k

2"P

signal

z

k

2"P

signal

;z

k

2�z

(i)

B

ord

(y

k

)

P

signal

(y

k

; z

k

)

�z

(i)

: (B.6)

The probability density funtion of the ordinary leptoni deay B

ord

(y) is similarly formulated as

signal. First, we onstrut the intrinsi PDF of �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄):

�

B

ord

int

(y) �

d�(�

�

��̄; �

+

�

0

)

dE

�

`

d


�

`

d


�

dm

2

��

d

e




�

/

�

�

E

2

�

h

D

0

A

+

A

�

(x) + D

i j

B

+

i

� B

�

j

(x)

i

; (B.7)
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where tilde means a onstant fator is ignored, i.e., the right hand side of Eq. (B.7) is not normalized.

The spin-independent and spin-dependent terms for �

+

! �

+

�

0

�̄ sides (A

+

; B

+

) are ommon as

signal and the ordinary leptoni deay parts are written using dimensionless kinemati variable x =

E

�

`

=E

�
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:
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The di�erential variables are onverted into CMS frame with Jaobians (dE
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Thus we �nally obtain
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where �

ord

is a normalization of B

ord

(y).

B.2 Desription of PDF for 3� events

When either of two �

0

s from �

+

! a

+

1

�̄ ! �

+

�

0

�

0

�̄ deay is lost, this is reonstruted as �

+

! �

+

�

0

deay. For example, if  from �

0

!  proess is produed outside an aeptane of detetor, the

reonstrution fails. Furthermore, even if both s are inside detetor, their sattering with materials

leads misreonstrution of �

0

. In order to desribe the possibility of the loss of �

0

, we de�ne e�etive

probability density of 3� events:

�
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Here, x represent the visible twelve-dimension observables and y is a set of parameters for the lost

�

0

de�ned as y = fP

�

0

lost

;


�

0

lost

g. The fator inside braket 1 � "

�

0

lost

(y) represents a probability that
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�

0

is not reonstruted or ineÆieny, "

3�

extra

="

sig

extra

means a ratio of an eÆieny from the extra

gamma energy ut relative to signal distribution. B

3�

(x; y) is an intrinsi PDF for the 3� events
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��̄). The fator of 2 in the equation omes from number of ounting for two

�

0

s.

The di�erential deay width of �

+

(P)! �

0

(p

1

)�

0

(p

2

)�

+

(p

3

)�̄(q) an be expressed as sum of two

terms depending on the orrelation to spin of �:

d�(�

+

! �

+

�

0

�

0

�̄)

d�

4

= A

+

+ B

+

� S

�

�

; (B.20)

where A

+

and B

+

are spin independent and dependent form fators, respetively. These fators are

obtained by 3� hadroni four-vetor urrent J

�

with following relation:
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= (P � J

�

)(q � J) + (P � J)(q � J
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where the asterisk marks it is de�ned on �

+

rest frame. Similarly the hat means value on a

+

1

and

tilde on �

+

.

�

As J

�

, CLEO model is used where struture of �
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superposition of seven amplitudes with respet to their partial waves [93℄:
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Breit-Wigner funtions of a

1

and Y . The latter is de�ned as
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; L = 0; 1; 2 (whih orresponds to S ; P or D):
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is numerially approximated as Eqs. (B.29) to (B.35) whih is same implementation as

TAUOLA [94℄.
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m

0Y

and �

Y

0

are nominal mass and deay width of Y . These deay parameters are summarized in

Table B.1.

The kinemati variables in Eq. (B.23) are onverted with Jaobians.
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Table B.1: Deay parameters for �
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�̄ deay [93℄.
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B.2.1 Extration of the ineÆienies

The produt of the additional eÆienies 2[1��
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extra

is simultaneously tabulated fromMC

events. �
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��̄) events are seleted with same riteria exept two requirements:

number of photons in the one around lepton and the extra gamma energy. The fration of events

whih are further seleted with the additional requirement is taken as the desired ineÆieny. Fig-

ures B.1 and B.2 show the obtained ineÆienies as a funtion of an energy and a osine of polar

angle for lost �
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.
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where x is a set of visible variables in twelve-dimension phase spae de�ned as x =
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B.4 Desription of ISR photon + ordinary leptoni deay events
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then total di�erential ross setion is onstruted as
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The visible PDF in CMS is obtained by hange of variables with four Jaobians:
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B.5 Desription of 3�-2� deay events

The 3�-2� proess e

+

e

�

! �

+
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�

! (�

+

�

0

�̄)(�

�

�

0

�

0

�) has a large impat for the �tted Mihel Pa-

rameters (espeially ��) and we analytially desribe this distribution. This proess is reonstruted

when a harged pion from �

�

! �

�

�

0

�

0

� deay is mis-identi�ed as a muon and one photon from

either of �

0

is reonstruted as a signal photon.

The desription of PDF is similar to the 3-� and �-� ases explained in Se. B.2 and B.3. The
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where A
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and B
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are the form fators of the �
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The di�erential variables are hanged to those of CMS by Jaobians:
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Furthermore, using the isotropi nature of d�(�
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Thus the visible PDF is
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B.5.1 extration of ineÆieny

Due to the small statistis of the 3�-2� events, an ideal tabulation of ineÆieny is diÆult when

we use the generi MC. In fat, if the explained seletion riteria is applied, the eÆieny is ap-

proximately 3 � 10

�5

, whih �nally gives only � 5000 events with �ve times as large statistis as

real experiment. This small eÆieny mainly omes from requirement of the likelihood of muon,

P(�=�) > 0:9, hene it is possible to reover the eÆieny with relax of the ut. The ineÆieny an

be obtained by following formula:

"

inef:

= N

numerator

=N

denominator

; (B.79)

where the denominator is number of seleted events whih passed all seletion riteria exept the

extra gamma energy ut and number of gamma in the one and the numerator is number of seleted

events whih passes the exluded seletion riteria. The tabulation of the ineÆieny is obtained

depending on the topology of the events, whih are ategorized into eighteen groups. See the Fig B.4.

The gamma A is divided into three groups: it is outside the aeptane, or it is inside the aeptane

but is in the one around lepton or not. This situation is shown in Fig. B.5. Due to the small statistis,

we tabulated the fator as a onstant for eah ategorization. The obtained values are summarized in

Table B.2.
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Figure B.4: Notation of gamma. The lost gamma whose mother is same as reonstruted one is

tagged as A. The other gammas are tagged B.
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ε2
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ɤ
ɤ

B
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Figure B.5: The gamma A is ategorized into three groups, while two gamma B are into six groups.

The "

a

is an eÆieny that gamma is in the aeptane of detetor. The "

inone

is an eÆieny that

gamma is inside one around lepton. In total, three lost gammas are ategorized into 3 � 6 = 18

groups.
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Table B.2: Obtained ineÆieny and eÆieny of extra gamma energy ut

ID A type B type �

inef

=�

sig

extra

error

0 1 � �

a

(1 � �

a

)

2

0.98 0.05

1 1 � �

a

2�

a

(1 � �

a

)�

inone

0.75 0.10

2 1 � �

a

2�

a

(1 � �

a

)(1 � �

inone

) 0.66 0.02

3 1 � �

a

�

2

a

2�

inone

(1 � �

inone

) 0.24 0.14

4 1 � �

a

�

2

a

�

2

inone

0.193 0.003

5 1 � �

a

�

2

a

(1 � �

inone

)

2

0.17 0.05

6 �

a

(1 � �

inone

) (1 � �

a

)

2

0.54 0.01

7 �

a

(1 � �

inone

) 2�

a

(1 � �

a

)�

inone

0.32 0.01

8 �

a

(1 � �

inone

) 2�

a

(1 � �

a

)(1 � �

inone

) 0.279 0.002

9 �

a

(1 � �

inone

) �

2

a

2�

inone

(1 � �

inone

) 0.099 0.002

10 �

a

(1 � �

inone

) �

2

a

�

2

inone

0.0957 0.0004

11 �

a

(1 � �

inone

) �

2

a

(1 � �

inone

)

2

0.129 0.01

12 �

a

�
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(1 � �

a

)

2

0.41 0.02

13 �

a

�
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2�

a

(1 � �

a

)�
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0.36 0.03

14 �

a

�
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2�

a

(1 � �

a

)(1 � �

inone

) 0.278 0.003

15 �

a

�

inone

�

2

a

2�

inone

(1 � �

inone

) 0.141 0.004

16 �

a

�
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�

2

a

�

2

inone

0.145 0.001

17 �

a

�

inone

�

2

a

(1 � �

inone

)

2

0.077 0.02

B.6 Desription of an ordinary leptoni deay+ bremsstrahlung

events

The ordinary leptoni deay �

�

! e

�

��̄ is reonstruted as signal when the eletron produes a

photon aelerated by an eletri �eld of atoms in the material of detetor. To larify the notation,

we divide all observables into three parts: we use x = fP

�

;


�

;m

2

�

;

�




�

g, whih is not relevant to

bremsstrahlung, y = fP

`

;


`

g and z = fP



;




g. Moreover, we further de�ne generated momentum

of eletron as y

0

= fP

0

`

;


0

`

g. Hereafter in this setion, y, y

0

and z, are evaluated in the laboratory

frame even if letters do not have LAB in the supersript. Based on the above notation, the PDF is

formulated as:
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where funtion f represents probability that eletron (P

0

`

;


0

`

) emits bremsstrahlung whose energy is

larger than energy threshold E

min

,

y

L(�

`

) is an amount of material per unit of radiation length. The

L(�

`

) an be simpli�ed as L(�

`

) = L(�

`

= 90

Æ

)=sin�

`

. For SVD1, we use L = 0:19%X

0

and 0:27%X

0

for SVD2. The energy threshold E

min

= 1 MeV is hosen to satisfy the ondition E

min

=E

`

�

�

P

e

=P

e

. The B

brems:

(y; y

0

; z) is a di�erential deay width of bremsstrahlung as a funtion of photon

and sattered eletron and represented as

y

The derease of eletron energy inside material follows well known equation dE=dx = �E=X

0

. Assuming that the

�ight length in material is small, we an approximate the energy loss of eletron as � = E

0

x=X

0

. Using simpli�ed

PDF of energy of bremsstrahlung, PDF(E



)=(1 � f )�(E



� E

min

) + f =E



log(E



=E

`

), we an formulate a equation

� =

R

PDF(E



)E



dE



, whih aordingly gives analytial fration f .
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where apital letters K, P and P

0

are momenta of gamma, eletron and sattered eletron, whih are

normalized in a unit of mass of eletron. �

0

, � and � are diretions of them illustrated in Fig B.6. The

visible di�erential ross setion is obtained by integrating y

0

as

�
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The last two fators in Eq. (B.86) are Jaobians whih onvert di�erential variables of photon and

eletron momenta from the laboratory frame to CMS frame.
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Figure B.6: De�nition of the variable of bremsstrahlung of eletron. The diretion of the

bremsstrahlung photon is z-axis, and sattered eletron is in the xz-plane.
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Appendix C

Calulation of Jaobians

Here, the alulations of some of Jaobians appearing in the main text are desribed. In this analysis,

we use many Jaobians to hange variables from ones de�ned in tau rest frame into those of the

CMS frame. Beause an intrinsi di�erential deay width is usually de�ned in the � rest frame,

it is required to onvert variables so that all di�erential variables are within a ommon oordinate

system. In priniple, any Jaobians an be diretly alulated by di�erentiations of variables in

numerators with those of denominators and a alulation of determinant of the matrix. Although

the alulation itself is straightforward, it sometimes takes pains to perform the simple alulation

beause the number of terms tends to be very large. On the other hand, for a ertain set of Jaobians

related to the Lorentz transformation, there is a more simple and easier method utilizing the nature

of Lorentz-invariane.

Normally, the Lorentz-invariant phase spae of one partile is de�ned as d

3

p=(2�)

3

2E

p

. However,

the (2�)

3

is a ommon fator and not important for the derivation of Jaobians. Therefore, in this

appendix, we forget this fator and adopt an unusual Lorentz-invariant phase spae as d

3

p=2E

p

.

Apparently, the Lorentz-invariane is not broken at all. To denote the magnitude of spatial omponent

of four vetor p, we use a apital letter P. The di�erential variables dp

3

and dp

4

mean dp

x

dp

y

dp

z

and dEdp

x

dp

y

dp

z

, respetively. Moreover, we abbreviate the expliit notation of the integration sign

R

.

C.1 Jaobian for Lorentz-transformation

By de�nition, Lorentz-invariant phase spae should not hange when Lorentz transformation is ap-

plied to a ertain four momentum p! p

0

. Therefore, the following equation holds:
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C.2 2-body deay

For massive partile a, we an onsider the frame in whih a is at rest. In this system, the phase spae

of two body deay an be simpli�ed. Hereafter, the result is often quoted. We onsider following

two body deay:
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a(p)! b(q)(r).

Sine the four-vetor onservation holds, the delta funtion Æ(p� q� r) is multiplied for the Lorentz-

invariant phase spae. If we apply integration for four vetor r in the a-rest frame, the Lorentz

invariant phase spae an be expressed as:
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where tilde means variables are de�ned in the a-rest frame and m

a

is a mass of a. Furthermore,
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From seond to third line, an equation of the delta funtion
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is used. Thus the two-body phase spae is simpli�ed
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Applying Eq. (C.5) for the Lorentz-invariant phase spae of three partiles for two photons in �
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rest

frame, we obtain another expression:
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This formula also holds when p is a on-shell partile.
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but the expliit dependene of angles should disappear
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is alulated by a omparison of the Lorentz-invariant phase spae, where � is a veloity of �
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in

the CMS frame and
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and veloity

of �

0

is determined by observables measured in the system outside. The dependene of boost from �

is taken into aount by the Lorentz-invariant phase spae of �

0

.

dLIPS =

d

3

P

0

2E

0

d

3

P

1

2E

1

d

3

P

2

2E

2

Æ(p

0

� p

1

� p

2

)Æ

(2)

(p

0?

) (C.16)

=

dp

z0

E

0

d

e

P

1

d

e




1

e

P

2

1

8

e

E

2

e

E

2

Æ(

e

E

0

�

e

E

1

�

e

E

1

) (C.17)

=

E

2

0

d�

m

2

�

0

d

e




1

e

P

2

1

8

e

E

2

e

E

2

1

2

(C.18)

=

E

2

0

d�d

e




1

16m

2

�

0

: (C.19)

Here, we used a formula
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Generally, Jaobians should not have suh an expliit dependene on the angle of oordinates, i.e., this kind of

dependene should be written as inner (or external) produt of partile four-vetors. Otherwise, the Jaobian depends on

a spei� deision of oordinate but this apparently violates the isotropi nature of spae.
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The delta funtion in Eq. (C.16) represents Æ

(2)

(p
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) = Æ(p

x

)Æ(p

y

) and onstrains the movement of �

0

onto +z axis. The Lorentz-invariant phase spae is alulated in a di�erent way as
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Comparing Eqs. (C.19) and (C.27), we obtain
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The diret alulation of this Jaobian is not impossible at all, but in the similar way more omplex

Jaobians an be easily extrated. For example, another Jaobian
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related to the deay from a moving K
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(+z diretion)

K

L

(p

0

)! �

0

(p

1

)�

0

(p

2

)�

0

(p

3

); (C.30)

is alulated by applying this method to give
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where the asterisk and tilde indiate that variables are de�ned in K

L

and �� rest frame, respetively.
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by �, m

��

, n

�

��

and
e
n, but this may be beyond the level of hand alulation.
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L(�) is a matrix of the Lorentz-transformation for general boost �, whih is represented as
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C.6 Reursive relation of the Lorentz-invariant phase spae

In this setion, we use onventional de�nition of phase spae d
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The n-body Lorentz-invariant phase spae is redued into that of (n-1)-body as bellow:
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where asterisk means variables are de�ned in a-rest frame.
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Appendix D

Doubly radiative leptoni deay �

�

! `

�

��̄

In this appendix, we summarize harateristis of the doubly radiative leptoni deay �

�

! `

�

��̄.

The number of �nal-state partiles are �ve and this has a seven-dimension phase spae when we do

not see the angular distribution of neutrinos in the ��̄ rest frame. The di�erential deay width in the

tree level alulation is given by
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their expliit (lengthy) formulae are given in Ref. [96℄.

Figure D.1 shows the distributions of kinemati variables for the doubly radiative leptoni deay

�

�

! `

�

��̄ in the �

�

rest frame alulated aording to Eq. (D.1). To obtain the distributions, we

apply the energy threshold for both photons, i.e., E

�



> 10 MeV. From these �gures, we an observe

that (similarly to the single radiative deay) the eletron mode shows narrower distribution at �

`

! 0

than muon ase. However, it deserves to be mentioned that in the doubly radiative deay, �

�

has a

broader distribution than that of the single deay. The shift of the momentum of lepton ompared to

the single deay may be explained by the additional energy loss from two photon emission.

To onsider possibilities to observe the doubly radiative deays, we simulate an angular distri-

bution of an opening angle of photons and the energy distribution of photons both in the laboratory

frame as shown in Fig. D.3. In this alulation, we assume a boost fator of the beam energy of

KEKB aelerator. As seen from �gure, the most probable magnitude of the opening angle is ap-

proximately 10

Æ

� 20

Æ

and this is suÆiently large to distinguish both lusters eah other. Moreover,

there is a region in whih both energies of photons are reasonably observable (E

LAB



is more than

� 0:1 GeV). Taking into aount the tree level theoretial predition of the branhing ratio.

�

B(�

�

! e

�

��̄) = (8:327 � 0:008) � 10

�4

; (D.2)

B(�

�

! �

�

��̄) = (3:347 � 0:003) � 10

�5

; (D.3)

it may not be impossible to experimentally measure the branhing ratio.

�

This value is alulated by a software provided by the author of Ref. [96℄. The error inludes only unertainties from

mathematial alulation.
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Figure D.1: Distribution of variables from doubly radiative leptoni deay �

�

! `��̄. Blue and

red lines indiate eletron and muon modes, respetively: (a) E

�



(b) E

�

`

() os�

�

`

and (d) os�

�



. For

omparison, distribution of the single radiative deay is drawn for (a)(b)() with dashed lines. The

distribution of os�

�

in () is enlarged by a fator of ten.
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Appendix E

Detetor resolution

E.1 desription of energy response

As roughly explained in Setion 5.4.5, the response of detetor is desribed by the logarithmi Gaus-

sian. Here, the details are explained. The PDF of variable x, whih follows Gaussian distribution is

written as

dP
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e
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0
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2
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: (E.1)

Based on this x, we hange x into E with relation x = log(� � E), where � is a onstant whih

determines maximum energy. Therefore, the new variable E follows new PDF

dP

dE

=

1

� � E

1

p

2��

e

�

(log(

��E

��E

0

))

2

2�

2

; (E.2)

where E

0

orresponds nominal energy whih satis�es x

0

= log(� � E

0

). The most probable energy

E

p

is not generally same as E

0

and given by E

p

= � � (� � E

0

)e

��

2

. The degree of asymmetry is

represented by � =

�

E

��E

p

, where �

E

is de�ned as FWHM of E. These variables follow equations

� =

2

�

sinh

�1

�

��

2

�

and � = E

p

+

�

E

�

(� = 2

p

2 log 2), hene original onstants �, x

0

and � are obtained

by assuming E

p

, �

E

and �. As these values, given energy resolution is substituted for �

E

, E

p

is taken

from the reonstruted energy and � = 0:2.
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Figure E.1: Distribution of logarithmi Gaussian funtion in various � values. E

p

= 1 GeV, �

E

= 0:1

GeV are assumed.
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Appendix F

The right-left symmetri model

The right-left symmetri model [80, 81℄ is one of the natural extensions of the SM, in whih SU(2)

L




SU(2)

R


 U(1) gauge ouplings g

L

and g

R

of SU(2)

L

and SU(2)

R

subgroup are equal: g

L

= g

R

. The

symmetry spontaneously breaks into SU(2)

L


 U(1), prediting not only the SM W

�

and Z bosons

but also additional gauge bosons W

�

2

and Z

2

. The mass spetrum of harged bosons are obtained by

a diagonalization of real symmetri mass matrix of SU(2)

L


 SU(2)

R

bosonsW

�

L

and W

�

R

M

2

W

=

 

M

2

L

M

2

LR

M

2

LR

M

2

R

!

(F.1)

by

 

W

�

1

W

�

2

!

=

 

os � sin �

� sin � os �

!  

W

�

L

W

�

R

!

; (F.2)

where � is a mixing angle, whih satis�es

tan 2� =

2M

2

LR

M

2

R

� M

2

L

: (F.3)

The mass eigenvalues of W

1;2

are given by

M

2

W

1;2

=

M

2

L

+ M

2

R

�

q

�

M

2

R

� M

2

L

�

2

+ 4M

4

LR

2

=

M

2

R

2

"

� + 1 �

1 � �

os 2�

#

; (F.4)

where � = M

2

L

=M

2

R

is a ratio of mass squared and observed fat implies it is small � � 1. Con-

sequently, the mass relation of harged boson is desribed in terms of M

R

, � and �. Aording to

Ref. [97℄, the Mihel parameters �, �, �

0

= �� � 4�� + 8�Æ=3 and �

00

= 16�=3 � 4�̄ � 3 are related

with � and � as:

� =

3

4

os

4

�

 

1 + tan

4

� +

4�

1 + �

2

!

; (F.5)

� = �

0

= os

2

�(1 � tan

2

�)

1 � �

2

1 + �

2

; (F.6)

�

00

= os

4

�

 

1 + tan

4

� + 2 tan

2

�

3 � 4� + 3�

2

1 + �

2

!

: (F.7)
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Figure F.1: Contour of � and � determined by �, �

0

and �

00

. Blak, blue and red lines repre-

sent ontours of Eqs. (F.5), (F.6) and (F.7), respetively. � = 0:745; 0:749; 0:7499, � = �

0

=

0:1; 0:3; 0:5; 0:9; 0:99; 0:999 and �

00

= 1:001; 1:000001 are drawn.

Figure F.1 shows the ontours of � vs � determined by Eqs. (F.5), (F.6) and (F.7). Note that

� = 3=4 + � and �

00

= 1 � � do not have proper solutions for in�nitesimal value � > 0 and they

onverge � ! 0; � ! 0 when � ! 0, i.e., a large mass of limit of the new harged boson for

� = 3=4, � = �

0

= �

00

= 1. From the �gure, we an observe that � and �

0

have large sensitivities on

� parameter, aordingly it is used to determine the sale of M

R

(for example, � = 0:1 orresponds

to M

R

� 250 GeV=

2

). �

0

is indued by the measurement of �� parameter, it is, however, more

reasonable to use � parameter to onstrain � in terms of resulting experimental sensitivity. In fat,

with urrent sensitivity, we annot give any onlusive remark. Similarly, from �

00

parameter, whih

is indued from �̄, it is not possible to onstrain � and � due to its large unertainty.

As three equations suggest, the lepton universality predits the equal oupling struture between

harged leptons and theW

�

2

boson, it is thus muh straightforward to measure � parameter by means

of �! e��̄ deay. Current measured value of �

�

parameter, whih is approximately 0.2%, onstrains

mass M

R

> 450 GeV=

2

.
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