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Abstract

Current fluctuation in mesoscopic conductors is of increasing importance along with the
development of nanotechnology. The current fluctuation provides interesting and unique
information on nonequilibrium interacting systems. The distribution of the current has also
been extensively studied from a viewpoint of the nonequilibrium statistical physics. In
this thesis, we shed light on two important aspects of the current fluctuation in interacting
systems: (i) a detection scheme of the current distribution in a mesoscopic conductor and
(ii) renormalization effect on current noise through an interacting mesoscopic system. The
difficulty of analyzing the fluctuation in interacting systems arises from the absence of a
systematic framework. We utilize a path integral approach based on the Keldysh formalism
to provide microscopic understanding of the current fluctuation.

(i) Detection scheme of current distribution in a mesoscopic conductor

Owing to the rapid development of on-chip devices, it becomes realistic to characterize
nonequilibrium transport in mesoscopic conductors by the distribution of current through
the system. The first purpose of this thesis is to substantiate a detection scheme of the
current distribution by using a simple LC circuit. We use a stochastic method of describing
the dynamics of the detector LC circuit, which can be understood as a stochastic particle
subject to non-Gaussian noise. We show that the current distribution is fully determined
by the steady-state probability density function of the degrees of freedom in the detector
circuit in the classical-to-quantum crossover regime. At sufficiently low temperatures, the
effect of the quantum fluctuation in the detector circuit becomes significant to correctly
estimate the current distribution.

(ii) Renormalization effect on current noise in a charge-fluctuating quantum dot

Among mesoscopic conductors, quantum dot systems offer an ideal arena to study nonequi-
librium transport of interacting fermions. One of the most prominent many-body effects
in the quantum dot system is the strong renormalization of the transmission between the
quantum dot and the reservoirs due to their capacitive coupling. The second purpose of this
thesis is to elucidate the renormalization effect on current noise in the charge-fluctuating
quantum dot system. We develop a functional renormalization group method to systemati-
cally investigate the current noise in the quantum dot system in wide parameter regions. It
is found that the current noise shows power-law behavior at large bias voltages. This is a
manifestation of the renormalization effect in the nonequilibrium situation.
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Chapter 1

Introduction

1.1 Current fluctuation in mesoscopic conductors
Mesoscopic physics deals with condensed matters of an intermediate length scale [1]. The
characteristic lengthscale lies between the microscale where the system is considered as
an isolated quantum system and the macroscale where fluctuation is suppressed in the
thermodynamic limit. Hence, the mesoscopic systems offer an ideal arena for research into
both the quantum and statistical physics. The mesoscopic physics has been developed along
with the rapid advance in nanotechnology. In particular, novel transport phenomena have
been investigated in artificially-fabricated mesoscopic conductors. They are easily driven
out of equilibrium by an applied electric field in a controllable manner. Such availability of
the mesoscopic conductors paves the way to understanding the nonequilibrium statistical
physics.

The importance of current fluctuation in mesoscopic conductors has been widely
appreciated in a field of the mesoscopic physics, leading to a vast amount of experimental
and theoretical studies [2, 3]. The intrinsic sources of the current fluctuation are classified
into two types: thermal noise and shot noise. While the thermal noise is determined by
the equilibrium nature of the system, the shot noise has a nonequilibrium origin. It is a
consequence of the granularity of carrier particles, and reveals unique information which
is averaged out in conductance. The experimental demonstration of a fractional charge
in fractional quantum Hall systems is a good example to illustrate the usefulness of the
shot noise [4, 5]. The informative role of the noise is expressed as “The noise is the signal”
by Rolf Landauer, who made a significant contribution to research into the mesoscopic
physics [6].

As the current fluctuation essentially reflects a correlation of particles, it can be
utilized to elucidate the properties of a low-energy excitation which is intrinsic to the
system. Among various mesoscopic conductors, quantum dot systems form an ideal
test stage for investigating the nonequilibrium transport of interacting electrons. At
low temperatures, the quantum dot exhibits the Kondo effect [7], where an elementary
excitation is described by the Fermi liquid interacting with each other via the residual
interaction [8]. The current fluctuation in the quantum dot system in the Kondo regime
helps us to understand the microscopic scattering processes of the Fermi liquid [9]. Another
prominent example of quantum many-body effects is the Fermi-edge singularity [10, 11].
The Coulomb interaction between a local electron and surrounding conduction electrons
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can lead to singularities of the resonant tunneling close to the Fermi energy [12–15]. It
is closely related to the instability of the Fermi sea against a localized perturbation [16],
and generalization of the problem to the nonequilibrium transport provides nontrivial and
challenging issues.

Largely owing to the great advance in measurement techniques, the interest in the
current fluctuation has been extended beyond the Gaussian distribution [17–20]. The first
significant step was made by L. S. Levitov and G. B. Lesovik, who laid a foundation of the
full counting statistics [17]. They considered the counting statistics of electrons which are
transferred from one reservoir to another in a sufficiently long time interval. The histogram
thus obtained fully characterizes the microscopic scattering processes in the mesoscopic
conductor. The current distribution has attracted much attention also from a viewpoint of
nonequilibrium statistical mechanics. The combination of the equilibrium property of the
reservoir and the microscopic reversibility of the quantum dynamics requires the current
distribution to satisfy a special symmetry, which is known as the fluctuation theorem [21].
The fluctuation theorem reproduces the fluctuation-dissipation relation and the Onsager-
Casimir reciprocal relations in the linear-response regime. What is surprising is that the
fluctuation theorem is valid far from the equilibrium state, imposing strict constraints
on the current distribution. Another important consequence of the fluctuation theorem
is the appearance of the universal relations among nonlinear transport coefficients [22].
Experimental verification of the fluctuation theorem in the mesoscopic conductors is
currently in progress [23–27].

The fundamental question as to the full counting statistics is whether and how it can
be detected in a feasible measurement. The measuring device was first proposed by
considering an ideal spin 1/2 galvanometer that is exposed to a magnetic field produced
by current through a conductor [18]. In this setup, the number of the transferred charge
in a given time interval is directly related to the precession angle of the spin. Later, a
simple LC circuit started to be employed as a realistic detector circuit for the current
through the conductor [28–30]. The detector was also quantum mechanically treated to
ascertain the measurability of the full counting statistics [19, 31–33]. Now, the subject on
the measurement of the full counting statistics is not just a theoretical matter because of the
remarkable development of on-chip detection schemes [34–45]. In various experiments, the
detector consists of another electronic circuit fabricated on the same chip. In the classical
regime, it is even possible to count the number of the transferred electrons [25, 46, 47],
and the histogram is qualitatively compared with the theoretical prediction [25].

Motivated by the theoretical and experimental progresses on the current fluctuation in
mesoscopic conductors, we investigate the following topics in this thesis.

Detection scheme of non-Gaussian current fluctuation
We investigate a realistic detection scheme of non-Gaussian current fluctuation in a
mesoscopic conductor by using a simple LC circuit as a detector circuit. In previous
works, the explicit relations between the cumulants of the current distribution and
those of the detector LC circuit have been known only for the first three cumulants.
It is still an open question whether and how the LC circuit can characterize all the
cumulants of the current. In this thesis, we establish the relations for all the higher-
order cumulants by developing a stochastic method of incorporating the thermal,
non-Gaussian, and quantum noise in the detector circuit. It is shown that there is a
one-to-one correspondence between the distribution of the current and the detector
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in the quasi-classical regime. We also clarify how the quantum dynamics of the
detector circuit affects the estimation of the current fluctuation.

Renormalization effect on current noise in a charge-fluctuating quantum dot
We investigate current noise through a quantum dot system dominated by charge
fluctuation. It is well established that the capacitive coupling between the quantum
dot and the reservoir introduces power-law singularities in I −V characteristics due
to the renormalization effect [48–54]. However, little is known about the current
noise except for a special parameter point where the model exhibits self-duality [55–
57]. In this thesis, we clarify the renormalization effect on the current noise in the
charge-fluctuating quantum dot system. The functional renormalization group (FRG)
is one of the promising theoretical schemes which can incorporate the two-body
interaction in nonequilibrium situations [51, 58]. We develop an FRG scheme to
gain a comprehensive understanding on the current noise in the interacting quantum
dot system in wide parameter regions.

1.2 Full counting statistics
In contrast to bulk systems where the fluctuation is suppressed in the thermodynamic
limit, the fluctuation of current in mesoscopic conductors is of the same order as its
mean value. This fact is crucial from a viewpoint of application as the signal-to-noise
ratio determines the performance of the device. On the other hand, unique properties
of the fluctuation have also been appreciated and utilized for a long time. The current
fluctuation has rich information on carrier particles and dynamics of a system [2]. The
noise measurement has now become an indispensable tool to investigate equilibrium
and nonequilibrium systems. Substantially supported by the rapid development of fine
processing and measuring technologies, the trend is gradually being shifted to the current
fluctuation beyond the Gaussian approximation, namely the current distribution. It is
closely related to the fundamental aspects of nonequilibrium phenomena, such as the
fluctuation theorem [21]. This also requires us to develop a suitable framework to describe
the current fluctuation in all orders. The full counting statistics is such a theory to
conveniently and totally characterize the current distribution [18].

In this section, we review the theory of the full counting statistics, and provide basic
knowledge on the current fluctuation. In subsection 1.2.1, we provide a general framework
to describe the fluctuation of current through a mesoscopic conductor. In subsection
1.2.2, the full counting statistics is applied to the simplest model in order to elucidate the
fundamental microscopic processes lying behind the nonequilibrium transport phenomena.
In subsection 1.2.3, the fluctuation theorem and its consequences are discussed.

1.2.1 Stage of nonequilibrium transport
Let us consider a generic setup which consists of the system coupled to the left and right
reservoirs (Fig. 1.1). The full Hamiltonian reads H = H0 +HT . The isolated regions
are described by the Hamiltonian H0 = HS +HL +HR, where HS, HL, and HR are the
Hamiltonian of the isolated system, the left reservoir, and the right reservoir, respectively.
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Fig. 1.1 Schematic of a generic setup of mesoscopic conductors.

Each reservoir is connected to the system via the tunneling Hamiltonian HT , which
describes the hopping of an electron from the system to the left and right reservoirs.

The idea of the counting statistics has roots in the photodetection, which reveals that
the higher-order correlation functions carry fundamental information on the coherence of
photons [59]. The full counting statistics is an electronic analog of the photodetection:
The number of the electrons transferred from one reservoir to another in a given time
interval is counted to obtain the histogram which is intrinsic to the transport. The theory
of the counting statistics of the electronic current was pioneered by L. S. Levitov and
G. B. Lesovik [17, 18]. There are several ways to establish the full counting statistics: the
spin 1/2 galvanometer [18], the Keldysh formalism [60, 61], the system-detector coupled
system [19], and the two-point measurement [62].

The central object in the full counting statistics is the probabilities pτ(n) associated
with the transfer of n electrons from the left to the right reservoir in the time interval
[0,τ]. One of the intuitive ways to determine the probabilities is to use the two-point
measurement scheme [62]. In this approach, we project a many-body state to the eigenstate
of the numbers of electron in the right reservoir NR at t = 0 and t = τ . The outputs at
t = 0 and t = τ are denoted by nR(0) and nR(τ), respectively. The number of transferred
electrons is associated with the difference between the outputs of the two measurements,
i.e. n = nR(τ)−nR(0). An alternative formulation of the full counting statistics based on a
field-theoretical method [60, 61] is discussed in the next chapter.

Once the probabilities pτ(n) are determined, it is possible to evaluate the expectation
value of the measurable function g(n) as

EEEτ [g(n)]≡
∞

∑
m=−∞

g(n)pτ(n). (1.1)

It is convenient to define the characteristic function of the counting process associated with
the transfer probabilities pτ(n) (n ∈ Z) as

χτ(λ )≡ EEEτ [einλ ]

=
∞

∑
n=−∞

einλ pτ(n). (1.2)

The auxiliary parameter λ is called the counting field in the theory of the full counting
statistics. The moments of the numbers of the transferred charge n can be generated by
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Fig. 1.2 Schematic of a tunneling junction.

differentiating the characteristic function with respect to the counting field λ ;

EEEτ [nk] =
∂ kχτ(λ )

ik∂λ k

∣∣∣∣
λ=0

. (1.3)

As the number of the transferred charge n is expected to grow asymptotically in proportional
to the observation time interval τ , it is useful to introduce the scaled cumulant-generating
function

S(λ )≡ lim
τ→∞

1
τ

ln χτ(λ ). (1.4)

Then, cumulants of the steady-state current is defined as

Īk ≡ ek ∂ k

ik∂λ kS(λ )
∣∣∣∣
λ=0

, (1.5)

with the elementary charge e.

1.2.2 Levitov-Lesovik formula
The theory of the full counting statistics has achieved great success in varieties of meso-
scopic conductors such as diffusive conductors [61, 63], quantum Hall systems [64],
chaotic cavities [65], Aharonov-Bohm rings [22], Coulomb blockade system [66], Kondo
systems [9], charge fluctuating quantum dot [67], superconductors [68–70], and conduc-
tors under a time-periodic driving field [71]. One of the cornerstones of the full counting
statistics is the Levitov-Lesovik formula [17, 18].

In order to illustrate the usefulness of the full counting statistics, let us consider the
simplest model: the noninteracting fermionic system which is composed of weakly coupled
left and right reservoirs (Fig. 1.2). The isolated reservoirs are described by the Hamiltonian
H0 = HL +HR with

Hα = ∑
kkk

εαkkkc†
αkkkcαkkk, (1.6)

for α = L, R. Here, c†
L(R)kkk and cL(R)kkk are the creation and the annihilation operators of the

electrons in the left (right) reservoir with momentum kkk, and the dispersion relation εαkkk.
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These reservoirs are coupled to each other with the tunneling Hamiltonian

HT = ∑
kkkkkk′

(
tc†

RkkkcLkkk′ + t∗c†
Lkkk′

cRkkk

)
, (1.7)

with the transmission amplitude t. The left and right reservoirs are assumed to be in
equilibrium at the inverse temperature β . The chemical potentials of the left and right
reservoir are µL = εF + eV/2 and µR = εF − eV/2, respectively, with the Fermi energy εF
and the bias voltage V . Then, the distribution of the electrons in reservoir α (= L, R) is
characterized by the Fermi-Dirac distribution;

fα(ω) =
1

eβ (ω−µα )+1
. (1.8)

Since the total Hamiltonian H = H0+HT is quadratic in terms of the fermionic degrees
of freedom, the characteristic function χτ(λ ) is exactly evaluated. According to the field-
theoretic analysis discussed in subsection 2.3.2, the scaled cumulant-generating function is
obtained as

SLL(λ ) =
1

2π h̄

∫
dω ln

[
1+TLR

[
fL(ω)(1− fR(ω))(eiλ −1)

+ fR(ω)(1− fL(ω))(e−iλ −1)
]]

, (1.9)

with the transmission coefficient TLR = 4π2t2ρL(εF)ρR(εF). Here, we have neglected the
energy dependence of the density of states ρα=L,R(ω), for simplicity. The result is known
as the Levitov-Lesovik formula [18].

The first and the second cumulants of the current [see Eq. (1.5) for the definition] are
computed respectively as

Ī =
e

2π h̄

∫
dωTLR( fL(ω)− fR(ω)), (1.10)

Ī2 =
e2

2π h̄

∫
dω [TLR [ fL(ω)(1− fL(ω))+ fR(ω)(1− fR(ω))]

+TLR(1−TLR)( fL(ω)− fR(ω))2] . (1.11)

The first expression is known as the Landauer formula, which represents the current
through the transport channels lying within the bias window fL(ω)− fR(ω). The linear
conductance G ≡ dĪ/dV |V=0 is obtained as

G =
e2TLR

2π h̄
. (1.12)

The first two terms in the second-order cumulant (1.11) are the thermal noise because
fα(ω) and (1− fα(ω)) are overlapped at finite temperatures. It is also known as the
Johnson-Nyquist noise. The last term in the same equation is called the shot noise, which
is finite in the presence of a bias voltage. The factor TLR(1−TLR) originates from the
partition process of the carriers: The injected electron is transmitted through or reflected at
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the scattering region. After performing the energy integration, we have

Ī2 =
1

π h̄

[
2kBT TLR + eV coth

(
eV

2kBT

)
TLR(1−TLR)

]
, (1.13)

with the Boltzmann constant kB and the absolute temperature T . When the thermal noise
is dominant (eV ≪ kBT ), we obtain the fluctuation dissipation relation

Ī2 = 4kBT G, (1.14)

which connects the thermal noise to the conductance with the universal factor kBT . In the
zero temperature limit, on the other hand, the current noise is dominantly given by the
partition process at the scattering region:

Ī2 =
e3V
π h̄

TLR(1−TLR), (1.15)

which increases linearly with the bias voltage. In the weak tunneling regime (TLR ≪ 1),
the shot noise is related to the averaged current as

Ī2 = 2eĪ. (1.16)

This is identical to Schottky’s result for the shot noise induced by uncorrelated injections
of particles with the charge e. The ratio between the shot noise and the current can be
utilized to detect the effective charge of the quasiparticle which is intrinsic to the system
[2]. The property is elegantly utilized by identifying the fractional charge in quantum Hall
systems [4, 5].

While the second-order cumulant of the current has already elucidated the unique
properties of the carriers, the Levitov-Lesovik formula (1.9) contains much information
on the microscopic transport processes beyond that obtained with the Gaussian treatment.
Actually, it is possible to understand the stochastic processes underlying the transport
phenomena by comparing the characteristic function for the transport with that of the
basic stochastic distributions. In order to discuss this point, we consider the three cases
(i) at zero-temperature, (ii) with small transmission coefficient and (iii) away from these
regimes.

At zero temperature, the scaled cumulant-generating function (1.9) becomes

ST=0
LL (λ ) =

eV
2π h̄

ln
[
1+TLR(eiλ −1)

]
=

eV
2π h̄

SB(λ ;TLR), (1.17)

where SB(λ ; p) is the cumulant-generating function of the Bernoulli distribution with the
success probability p;

SB(λ ; p) = ln
[
1− p+ peiλ

]
. (1.18)

The stochastic interpretation is as follows. At zero temperature, electrons are unidirection-
ally injected from the source reservoir to the drain one. The electron succeeds to transmit
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through the scattering region with the probability TLR, otherwise it is reflected back to
the source reservoir. Within the bias window eV , there are eV/2π h̄ numbers of available
energy channels, in which the Bernoulli trial occurs independently.

Another important case is the electron transmission in the weak tunneling regime
TLR ≪ 1, where the scaled cumulant-generating function (1.9) becomes

STLR≪1
LL (λ ) = µ+(eiλ −1)+µ−(e−iλ −1), (1.19)

with µ+ ≡ eV TLR
2π h̄

∫
dω fL(ω)(1− fR(ω)) and µ− ≡ eV TLR

2π h̄
∫

dω fR(ω)(1− fL(ω)). This is
equivalent to the cumulant generating function for the Skellam distribution [72]

SS(λ ; µ1,µ2) = µ1(eiλ −1)+µ2(e−iλ −1), (1.20)

which describes the difference of the two independently Poisson-distributed random vari-
ables with the rate parameters µ1 and µ2. It is also called the bidirectional Poisson process
in the context of nonequilibrium transport. The equality STLR≪1

LL (λ ) = SS(λ ; µ+,µ−) can
be interpreted as follows. In the weak tunneling limit, the electron transmission is domi-
nated by the lowest-order processes, in which a single electron is transferred from the left
(right) to the right (left) reservoir with the transition probability µ+ (µ−). These processes
are considered to be rare events characterized by the Poisson distribution with the rate
parameter µ± and to have opposite contributions to the current. If the system is further
assumed to be at zero-temperature T = 0 with a finite bias voltage, the cumulant-generating
function is reduced to the Poissonian one

SP(λ ; µn) = µn(einλ −1), (1.21)

with n =V/|V |.
We can extend the above argument to the strong tunneling regime by decomposing

the microscopic transport events into the Poisson processes. By noting that (a(eiλ −
1)+ b(e−iλ − 1))n can be expanded with respect to eimλ − 1 (m = −n, −n+ 1, · · · , n),
the Levitov-Lesovik formula (1.9) can be generally expressed as the summation of the
Poissonian cumulant generating functions;

SLL(λ ) =
∞

∑
n=−∞

Wn(einλ −1)

=
∞

∑
n=−∞

SP(λ ;Wn), (1.22)

where the transition matrices Wn are defined as the coefficient of the (einλ − 1) term.
According to the probability theory, the cumulant generating function of the linear com-
bination of independent random variables is described by the summation of each one. In
our case, the number of the transferred charge m obeying the Levitov-Lesovik formula
is expressed as the summation of the random variables mn which obey the Poisson distri-
bution with the rate parameter Wn. From a different point of view, we rewrite the scaled
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cumulant-generating function as

SLL(λ ) = µP

∞

∑
n=−∞

wn(einλ −1)

= µp

[
eSw(λ )−1

]
= SP(−iSw(λ ); µP), (1.23)

by introducing the rate parameter µP = ∑
∞
n=−∞Wn, the probability wn ≡Wn/µP, and the

cumulant generating function Sw(λ ) = ln∑
∞
n=−∞ wneiλn. This is equivalent to the cumulant

generating function of the compound Poisson distribution.

1.2.3 Fluctuation theorem
As was discussed in the previous subsection, the current distribution contains much
information on the microscopic transport processes beyond the second cumulant. One of the
illuminating properties that hold in the higher-order cumulants is the fluctuation theorem,
which is derived from the microscopic reversibility of the system and the equilibrium
nature of the reservoirs [21].

The fluctuation theorem states that the distribution pτ(σ) with the time-averaged
entropy production rate σ and the time interval τ must be related to the time-reversed
probability pTR

τ (σ) as

pTR
τ (−σ) = pτ(σ)e−στ . (1.24)

This imposes a universal relation between the typical processes with the entropy production
and the rare ones with the entropy consumption. While both the entropy-producing and
entropy-consuming processes are allowed in the short time interval, the former dominates
the latter for τ → ∞. Thus, Eq. (1.24) can be viewed as a quantitative description of the
second law of thermodynamics. Indeed, the non-negativity of the expectation value of the
entropy production rate EEE[σ ]≥ 0 is proved by using the Jarzynski equality

EEE[e−στ ] = 1, (1.25)

which is readily confirmed by integrating the left- and right- hand sides of Eq. (1.24) with
respect to σ , and Jensen’s inequality

EEE[e−στ ]≥ e−EEE[στ]. (1.26)

The fluctuation theorem (1.24) is also expressed as

χτ(λ ) = χ
TR
τ (iτ −λ ), (1.27)

with the characteristic functions χτ(λ ) =
∫

dσeiλσ pτ(σ) and χTR
τ (λ ) =

∫
dσeiλσ pTR

τ (σ).
In the long-time limit, the fluctuation theorem takes the form

lim
τ→∞

1
τ

ln
pτ(σ)

pTR
τ (−σ)

= σ , (1.28)
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Fig. 1.3 Schematic of a spin 1/2 galvanometer.

which is also equivalently represented with respect to the (time-reversed) scaled cumulant-
generating function S(λ ) (STR(λ )) as

S(λ ) = STR(i−λ ). (1.29)

What is nontrivial about the fluctuation theorem is that the general results obtained in the
linear-response theory, such as the fluctuation-dissipation theorem and the Onsager-Casimir
reciprocal relation, are recovered systematically [21].

The general discussion as to the fluctuation theorem holds true for the electron transport
phenomena, in which the entropy production is related to the Joule heating. When an elec-
tron is transferred through the scattering region with the applied bias voltage V , the Joule
heat eV is generated. The corresponding entropy production is σ = βeV with the inverse
temperature β . The fluctuation theorem can be verified in the simple model discussed in the
previous subsection. By noting the identity fL(ω)(1− fR(ω)) = eβeV fR(ω)(1− fL(ω)),
the scaled cumulant-generating function (1.9) is shown to satisfy the symmetry

SLL(λ ) = SLL(iβeV −λ ). (1.30)

The time-reversed scaled cumulant-generating function is identical to the original one in
the simple model (SLL(λ ) = STR

LL (λ )) because of its time-reversal symmetry.

1.3 Detection scheme of current distribution
The current distribution discussed in the previous section is introduced with a purely theo-
retical motivation. A natural question is whether and how we can observe the distribution.
In order to fill the gap between theory and practice, a gedanken measurement scheme for
the current fluctuation was proposed by using a spin 1/2 galvanometer [18]. A magnetic
moment placed near a conductor precesses due to the electromagnetic field emitted by
electrons flowing through the conductor. The total precession angle during a time interval
τ is associated with the number of the transferred electrons.
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Let us consider a virtual spin 1/2 galvanometer which is placed near a mesoscopic
conductor (see Fig. 1.3). According to Ampere’s law, the current flowing through the
conductor generates a magnetic field, which exerts a torque on the magnetic moment. The
spin 1/2 starts to precess around the z axis according to the interaction Hamiltonian

Hint =
λ

2
Iσz, (1.31)

with the current I, the Pauli matrices σx,y,z, and the coupling constant λ . The total
Hamiltonian is given by

H = Hsys ⊗1+Hint =

(
Hsys +λ I/2 0

0 Hsys −λ I/2

)
=

(
H↑ 0
0 H↓

)
, (1.32)

with the Hamiltonian of the system Hsys. The total Hamiltonian is diagonal in the spin
space, and the components are denoted by H↑ and H↓. If the spin is coupled to the
conductor during the time interval [0,τ), the expectation value of the transverse component
σ+ = σx + iσy is

Tr [σ+ρ(τ)] = Tr
[
σ+e−iHτ

(
ρel ⊗ρspin

)
eiHτ

]
= Tr

[
e+iH↑τe−iH↓τ

ρel
]

Tr
[
σ+ρspin

]
, (1.33)

with the initial density matrix ρini = ρel ⊗ρspin. In the classical picture, the precession
angle of the magnetic moment is estimated as θ = λn, when n electrons are transferred
through the system. If we consider that the electron transport is decomposed into such
stochastic processes which occur with the probability pτ(n), the precession-angle part in
Eq. (1.33) is identical to the characteristic function (1.2);

Tr
[
e+iH↑τe−iH↓τ

ρel
]
= ∑

n
pτ(n)eiλn = χτ(λ ), (1.34)

which is also consistent with the result obtained in the two-point measurement scheme
without the initial correlation [62]. The similarity between the above characteristic function
and the partition function defined in the Keldysh formalism is discussed in the next chapter.

The spin 1/2 galvanometer was an illuminating idea to understand the full counting
statistics, but, at the same time, left some questions on its applicability. For instance,
the current distribution through superconducting junctions does not allow a probabilistic
interpretation because it can be negative [69]. This difficulty was solved by considering a
quantum mechanical description of the detector [19]. The authors of the paper found that
the probabilistic interpretation of the characteristic function is valid only in the presence
of the gauge symmetry. They also pointed out the importance of back action originating
from the dynamics of the detector. As the current fluctuation requires high accuracy of
the measurement, the detailed analysis of detector dynamics is a practically important
problem.
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1.4 Related Experiments
Mesoscopic circuits are promising arenas to test the fundamental aspects of nonequilibrium
statistical physics. In particular, the current distribution attracts much attention in the
context of the fluctuation theorem. In the following, we review two important experimental
works which examined the fluctuation theorem in the classical and quantum regimes.

Fluctuation theorem in the classical regime

The fluctuation theorem has been tested in Ref. [25] by using a double quantum-dot
(DQD) system in the classical tunneling regime. The experimental setup is shown in
Fig. 1.4(a). The DQD structure marked by the white circles is fabricated between the drain
and source reservoirs. The position of an electron in the DQD is monitored by a detector
quantum point contact (QPC) which is asymmetrically coupled to the left and right dots.
Figure 1.4(b) shows the QPC conductance GQPC, from which we can resolve the possible
charge states of the QPC; the left (right) occupied state “L” (“R”) and the empty state “0”.
The experiment was performed in a parameter region where the doubly occupied state is
not allowed. By counting the number of transitions between L and R during a time interval
τ , we can obtain the probability pτ(n) with the number n of electrons transferred from the
source to drain.

The probabilities obtained at the bias voltage VDQD = 0µV and VDQD = 20µV are
shown in the upper and lower panels in Fig. 1.4(c), respectively. The distribution is clearly
shifted in the presence of VDQD. Nevertheless, a charge flow against the source-drain
voltage n < 0 can occur with a finite probability. According to the fluctuation theorem
reviewed in subsection 1.2.3, the forward and backward probability should be related as

ln
pτ(n)

pτ(−n)
= neVDQD/kBT, (1.35)

with the temperature T of the DQD system. This relation is directly tested in Fig. 1.4(d) for
various T and VDQD. The experimental data shows linear behavior in accordance with the
theoretical prediction plotted as the solid lines though the discrepancies of 20% to 30% are
found in the slope. These discrepancies can be removed within the statistical uncertainty
of the data when we take into account the limited bandwidth of the detector circuit (dashed
lines).

This clear demonstration of the fluctuation theorem in the classical regime shows that
the recent technology has reached a stage of experimental verification of the full counting
statistics. The above result also suggests that a detailed analysis of the detector circuit is
indispensable to achieve good agreements between the theory and the experiment. The
detector cannot react to charge-switching events which occur much faster than the inverse
of the detector bandwidth. The missing events results in the correction of the fluctuation
theorem. We note that the discrepancies found in this experiment are explained not by the
QPC backaction [73] but by the imperfectness of the detector. The former scenario implies
excitation in the DQD system perturbed by the detector while the microscopic scattering
processes are not perturbed in the latter one.
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(a) (b)

(c) (d)

Fig. 1.4 (a) DQD system with a detector QPC. (b) Conductance of the QPC. (c) Probabilities
of the transferred electron number n. (d) Test of the fluctuation theorem (1.35). [Reprinted
from “Irreversibility on the Level of Single-Electron Tunneling” by B. Küng et al., Phys.
Rev. X 2, 011001 (2012) under the terms of the Creative Commons Attribution 3.0
License.]

Fluctuation theorem in the quantum regime

The fluctuation theorem results in novel consequences also in the quantum regime. At near
equilibrium, the current I and the current noise S can be expanded in terms of the bias
voltage V as

I(V,B) = G1(B)V +
1
2

G2(B)V 2 +
1
3!

G3(B)V 3 + · · · , (1.36)

S(V,B) = S0(B)+S1(B)V +
1
2

S2(B)V 2 + · · · , (1.37)

under an applied magnetic field B. The first coefficients of the current and noise are
related by the Johnson-Nyquist relation as S0(B) = 4kBT G1(B). The Onsager-Casimir
reciprocity states that the lowest-order coefficients are symmetric with respect to B, i,e,
G1(B) = G1(−B) and S1(B) = S1(−B). Remarkably, the fluctuation theorem further
imposes relations for nonlinear coefficients of the current and noise [22–24]. We introduce
the symmetrized and antisymmetrized components of the nonlinear coefficients with
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Fig. 1.5 (a) Aharonov-Bohm ring with the measurement setup. (b) Symmetric components
GS

2 and SS
1. (c) Antisymmetric components GA

2 and SA
1 . (d) SS

1 plotted against GS
2. (e) SA

1
plotted against GA

2 . [Reprinted with permission from “Fluctuation theorem and microre-
versibility in a quantum coherent conductor” by S. Nakamura et al., Phys. Rev. B 83,
155431 (2011). Copyright 2011 by The American Physical Society. ]

respect to the magnetic field as

GS,A
2 ≡ G2(B)±G2(B), (1.38)

SS,A
1 ≡ S1(B)±S1(B). (1.39)

Here, + and − are taken for S and A, respectively. The fluctuation theorem requires the
relations

SS
1 = 2kBT GS

2, (1.40)

SA
1 = 6kBT GA

2 . (1.41)

These results are beyond the consequence of the Onsager-Casmir reciprocal relation and
the fluctuation dissipation theorem.

The consequences of the fluctuation theorem have been directly tested in a quantum
coherent conductor [23, 24]. The experimental setup is given by using an Aharonov-
Bohm ring fabricated on a GaAs/AlGaAs 2DEG. Atomic force microscope image of
the system is shown in Fig. 1.5(a). The back-gate voltage Vg tunes the electron density
in the Aharonov-Bohm ring. Figures 1.5(a) and (b) show the Vg-dependence of the
symmetric components GS

2 (SS
1) and antisymmetric components GA

2 (SA
1 ) in the left (right)

axis, respectively. The symmetric and antisymmetric quantities are found to have a
strong correlation independently. Indeed, the proportionality between GS

2 and SS
1 and

between GA
2 and SA

1 are clearly seen in Fig. 1.5(d) and (e), respectively. More quantitatively
speaking, the factors are estimated as SS

1/2kBT GS
2 = 6.00+0.94

−0.98 and SA
1/6kBT GS

2 = 1.61+0.22
−0.20

in Ref. [24]. Unfortunately, there are discrepancies between the theoretical predictions and
the experimental results for the moment.
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Fig. 1.6 Flow chart of this thesis.

The experiment reviewed here has demonstrated that there exists nontrivial proportion-
ality between the nonlinear response and the nonequilibrium fluctuation in the coherent
mesoscopic conductor. This is the first experimental verification of the fluctuation theorem
in the quantum regime. In spite of this remarkable achievement, the reason of the observed
discrepancy has not yet been clarified. Recalling that a similar problem found in the
incoherent transport through the DQD required the detailed analysis of the detector circuit,
there is a possibility to explain this discrepancy by taking into account the realistic situation
of the system. This is an important question for future studies.

1.5 Organization of this thesis
As have been reviewed above, the current distribution has fundamental information on
the microscopic processes underling the nonequilibrium transport through the mesoscopic
conductors. With strong support from the recent progress in nanotechnology, it is feasible
to experimentally characterize the higher cumulants of the current both in the classical and
quantum regimes. It is an urgent need to refine the theoretical detection framework for
the current distribution. Another important viewpoint in the full counting statistics is the
modification of the current distribution itself due to many-body effects. It is known that the
transmission through mesoscopic conductors is strongly renormalized by the interaction
with the surrounding environments [60]. As the current fluctuation is sensitive to the
correlation of quasi-particles, it can be utilized to elucidate the intrinsic properties of the
interacting systems.

In this thesis, we investigate twofold topics on the current fluctuation in mesoscopic
conductors: a detection scheme of the full counting statistics and a renormalization
effect on the current fluctuation. These topics are subjects of nonequilibrium transport
in interacting mesoscopic systems. In order to utilize accumulated knowledge of such
challenging systems, we need an integrated framework which can treat the two-body
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interaction in both the classical and quantum regimes. In chapter 2, we develop a path
integral method for nonequilibrium transport in interacting systems based on the Keldysh
formalism. The current fluctuation can be transparently written in terms of the field-
theoretic language. The full counting statistics and the renormalization structure are
systematically incorporated in the framework. In chapter 3, we review recent insights
on a “particle” under Gaussian and non-Gaussian noises. Such a particle can work as an
effective detector for the fluctuation in the system of interest. Chapters 4 and 5 concern the
two main topics of this thesis. In chapter 4, a detection scheme of the current distribution
is discussed based on a stochastic method. We show that the current distribution in a
mesoscopic conductor is fully characterized by the steady-state distribution of the detector
circuit. Detailed analysis of detector dynamics is indispensable to correctly estimate the
current distribution. In chapter 5, we discuss the renormalization effect on the current
fluctuation in an interacting quantum dot system, i.e. the interacting resonant level model.
The current noise is found to exhibit a universal power-law behavior as a consequence of
the renormalization effect. In chapter 6, we summarize the results and state concluding
remarks of this thesis. The flow chart of this thesis is presented in Fig. 1.6.
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Chapter 2

Method for nonequilibrium fluctuation
in open quantum systems

In this chapter, we develop a theoretical framework to investigate nonequilibrium fluc-
tuation in mesoscopic conductors. We utilize the Keldysh formalism, which is one of
the most successful theories to treat nonequilibrium quantum and classical systems. In
particular, the path integral approach based on the Keldysh formalism provides a unified
way to describe wide varieties of physics including nonequilibrium transport, many-body
interaction, renormalization group structures, and the stochastic processes.

In section 2.1, we remark the general ideas in the Keldysh formalism and summarize
the notation used in this thesis. In section 2.2, the path integral approach is developed
based on the Keldysh formalism. In section 2.3, the nonequilibrium transport through open
quantum systems is discussed by focusing on a generic noninteracting model. In section
2.4, a method for interacting systems is developed by using a functional renormalization
group approach.

2.1 Keldysh formalism
The Keldysh formalism is one of the most powerful methods for nonequilibrium systems.
The original idea was proposed by Schwinger [1], and later developed and elaborated
by Keldysh [2]. It properly takes account of the effect of the dissipative environment as
a boundary condition of the Green’s function. There are some extensive textbooks and
review papers on the subject [3–6].

In a field-theoretic formalism, a many-body perturbation theory is developed by adia-
batically switching on the interaction from the noninteracting vacuum state [7, 8]. A core
part of the equilibrium theory is the Gell-Mann and Low theorem, which relates the vacuum
state of an interacting system to the corresponding noninteracting one up to a manageable
phase factor [8, 9]. In nonequilibrium situations, the state is quite different from the initial
one after asymptotically long times, and the Gell-Mann and Low theorem may not be
applicable. A way out is to use the doubled contour, which is called the Keldysh contour
(see Fig. 2.1) [1, 2]. With this, we do not need to pay attention to the infinite future. The
complexity of the doubled contour brings great benefits, allowing unified understanding on
nonequilibrium systems [4–6]. The techniques which have been developed in equilibrium
systems can be straightforwardly generalized in the Keldysh formalism. In addition, it
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Fig. 2.1 The Keldysh contour C.

provides a clear reformulation of the full counting statistics [10, 11] and the stochastic
processes [12]. Combined with the path integral approach, the renormalization structure
[13] is transparently discussed.

Hereafter, we summarize the notation used in this thesis. The argument z defined on
the Keldysh contour C is a combination of the real-time t and the Keldysh index ρ =∓.
The doubled degrees of freedom on the Keldysh contour C is conveniently described by a
matrix structure. We introduce the Pauli matrices,

τx ≡
(

0 1
1 0

)
, τy ≡

(
0 −i
i 0

)
, τz ≡

(
1 0
0 −1

)
. (2.1)

The integration of a function f (z) over the Keldysh contour C is defined as∫
C

dz f (z)≡
∫

dt
(

f−(t)− f+(t)
)

(2.2)

=
∫

dtTr
[

τz

(
f−(t) 0

0 f+(t)

)]
, (2.3)

where f∓(t) is the function projected on the contour C∓ and Tr is the trace in the Keldysh
space. The Dirac delta function on the Keldysh contour is defined as

δK(z,z′)≡ τzδ (t, t ′), (2.4)

with the Dirac delta function on the real-time axis δ (t, t ′). The integral of the product
of the functions A and B defined on the Keldysh contour is abbreviated as (AB)(z,z′)≡∫

dz1A(z,z1)B(z1,z′). We use an analogous abbreviation for the functions with the argu-
ments on the real time axis as (AB)(t, t ′)≡

∫
dt1A(t, t1)B(t1, t ′).

It is useful to introduce the contour-ordering operator TC along the Keldysh contour
C. It is identical to the (anti-)time-ordering operator on the forward (backward) branch
C− (C+). Any argument on the backward contour C+ is considered to be later than all the
arguments on the forward contour C−.

2.2 Path integral approach
The path integral approach provides a systematic scheme to handle the seemingly over-
complicated structure in the Keldysh formalism [6]. In order to compute the expectation
value of observables, it is convenient to introduce the generating functional with a source
term. Building blocks in the field theory, namely the Green’s functions, are also defined
on the Keldysh contour. The Green’s functions defined on the Keldysh contour acquire
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transparent physical meanings by employing a suitable basis. The basic computational
tools developed in this section are utilized to discuss various nonequilibrium phenomena
in later sections.

In subsection 2.2.1, basic ingredients for the functional representation of fermionic
systems are introduced. In subsection 2.2.2, the Green’s functions are defined as the
derivatives of the generating functional. In subsection 2.2.3, the Green’s functions of the
noninteracting fermionic system are computed based on the functional approach.

2.2.1 Grassmann numbers and coherent states
Let us consider the path integral representation of fermionic annihilation and creation
operators f̂ and f̂ †. We introduce the Grassmann number ψ , which satisfies the relations

ψψ
′ =−ψ

′
ψ, (2.5)

ψ
2 = 0, (2.6)

{ψ, f̂}= {ψ, f̂ †}= 0. (2.7)

From this property, any functional of the Grassmann fields ψ is expressed as the first two
terms of the Taylor expansion as F [ψ] = f0 + f1ψ . The functional differentiation of F [ψ]
is introduced in a natural way as

δ

δψ
F [ψ] = f1. (2.8)

The functional derivatives with respect to the Grassmann fields ψ and ψ ′ are also mutually
anti-commuting in order to be consistent with the commutation relations;{

δ

δψ
,

δ

δψ ′

}
= 0. (2.9)

We also define the integration over the Grassmann variables as∫
Dψ1 = 0, (2.10)∫
Dψψ = 1. (2.11)

The coherent state is defined as a state associated with the Grassmann number ψ;

|ψ⟩=
(

1−ψ f̂ †
)
|0⟩= e−ψ f̂ †

|0⟩, (2.12)

with the vacuum state |0⟩. Then, the coherent state |ψ⟩ is an eigenstate of the annihilation
operator f̂ with the Grassmann eigenvalue ψ , i.e. f̂ |ψ⟩= ψ|ψ⟩. We analogously define
the Grassmann variable ψ̄ and the left coherent state

⟨ψ|= ⟨0|
(
1− f̂ ψ̄

)
= ⟨0|e− f̂ ψ̄ , (2.13)
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which satisfy the eigenequation ⟨ψ| f̂ † = ⟨ψ|ψ̄ . With the aid of the overlap of these
coherent states

⟨ψ|ψ ′⟩= eψ̄ψ ′
, (2.14)

the matrix elements of an arbitrary normally ordered operator F( f̂ †, f̂ ) take the form

⟨ψ|F( f̂ †, f̂ )|ψ ′⟩= F(ψ̄,ψ)eψ̄ψ ′
. (2.15)

Therefore, the path integral representation of the expectation value of an operator Ô with
the density matrix ρ̂ is obtained as

⟨Ô⟩ ≡ Tr(Ôρ̂) (2.16)

=
∫ ∫

Dψ̄Dψe−ψ̄ψ⟨ψ|Ôρ̂|−ψ⟩, (2.17)

where the minus sign in |−ψ⟩ is a consequence of the anticommuting property of the
Grassman variable ψ . The identity operator 1̂ is represented in terms of the coherent states
as

1̂ =
∫ ∫

Dψ̄Dψe−ψ̄ψ |ψ⟩⟨ψ|. (2.18)

The Gaussian integration is performed as

∫ ∫ N

∏
i, j=1

Dψ̄iDψ j exp

[
N

∑
i, j=1

ψ̄iMi jψ j

]
= detM, (2.19)

for an N ×N matrix M.

2.2.2 Generating functional
In order to systematically calculate various quantities, it is convenient to introduce the
partition function with the fermionic source fields η and η̄ as

Z[η , η̄ ]≡
〈

TC exp
[

i
h̄

∫
C

dz
[
η̄(z) f̂ (z)+ f̂ †(z)η(z)

]]〉
. (2.20)

The path integral representation of the partition function is

Z[η , η̄ ] =
∫

Dψ̄Dψ exp
(

i
h̄
(S[ψ̄,ψ]+Ss[ψ̄,ψ;η , η̄ ])

)
, (2.21)

where the density matrix is incorporated in the action S[ψ̄,ψ] [4]. The source term is

Ss[ψ̄,ψ;η , η̄ ]≡
∫

C
dz [η̄(z)ψ(z)+ ψ̄(z)η(z)] , (2.22)

where the source fields η(z) and η̄(z) are the Grassmann numbers and anticommute with
the Grassmann fields of the fermions.
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The generating functional of the connected Green’s functions is defined as

W [η , η̄ ]≡−i lnZ[η , η̄ ]. (2.23)

The functional differentiation with respect to η and η̄ ,

δ

δη(z)
≡ τ

ρ
z

δ

δηρ(t)
, (2.24)

δ

δ η̄(z)
≡ τ

ρ
z

δ

δ η̄ρ(t)
, (2.25)

leads us to the equations

δW [η , η̄ ]

δ η̄(z)
= ⟨ψ(z)⟩s, (2.26)

δW [η , η̄ ]

δη(z)
=−⟨ψ̄(z)⟩s, (2.27)

where

⟨O⟩s ≡ 1
Z[η , η̄ ]

∫ ∫
Dψ̄DψO exp

(
i
h̄
(S[ψ̄,ψ]+Ss[ψ̄,ψ;η , η̄ ])

)
(2.28)

stands for the statistical average with the source term (2.22). These are reduced to the
physical values when all the source fields are set to zero.

The connected two-point Green’s function G(z,z′) on the Keldysh contour C is defined
as a derivative of W [η , η̄ ] as

G(z,z′)≡− δ 2W [η , η̄ ]

δ η̄(z)δη(z′)

∣∣∣∣
η=η̄=0

=− i
h̄

(
⟨TCψ(z)ψ̄(z′)⟩−⟨ψ(z)⟩⟨ψ̄(z′)⟩

)
. (2.29)

The statistical average without the source fields is denoted by ⟨O⟩ ≡ ⟨O⟩s|
η=η̄=0. The

Green’s function projected onto the real time axis by specifying the branches is denoted
by Gρρ ′

(t, t ′) = G(z,z′) for z ∈ Cρ and z′ ∈ Cρ ′
. From the definition of the contour-

ordering operator, G−− (G++) is the Green’s function for the (anti-)time-ordering product.
The remaining components G−+ and G+− are called the lesser and the greater Green’s
functions, respectively.

It is often more convenient to introduce another representation of the Green’s functions
with a new pair of fields,

ψ
p ≡ ψ−+ψ+

2
, (2.30)

ψ
s ≡ ψ

−−ψ
+. (2.31)
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The subscripts “p” and “s” represent “physical” and “source”, respectively. They are often
called “classical” and “quantum” components [6]. The unitary matrix

Q ≡ 1√
2

(
1 −1
1 1

)
, (2.32)

transforms the original fields ψ− and ψ+ into the new basis as(
ψs/

√
2√

2ψp

)
= Q

(
ψ−

ψ+

)
. (2.33)

Accordingly, the Green’s functions in the rotated basis are introduced as(
GK̃ Ga

Gr GK

)
≡ Q

(
G−− G−+

G+− G++

)
Q† (2.34)

=
1
2

(
G−−−G−+−G+−+G++ G−−+G−+−G+−−G++

G−−−G−++G+−−G++ G−−+G−++G+−+G++

)
(2.35)

=


−1

2
δ 2W [η , η̄ ]

δ η̄p(t)δηp(t ′)

∣∣∣∣
η=η̄=0

− δ 2W [η , η̄ ]

δ η̄p(t)δηs(t ′)

∣∣∣∣
η=η̄=0

− δ 2W [η , η̄ ]

δ η̄s(t)δηp(t ′)

∣∣∣∣
η=η̄=0

−2
δ 2W [η , η̄ ]

δ η̄s(t)δηs(t ′)

∣∣∣∣
η=η̄=0

 . (2.36)

The components Gr, Ga, and GK are called the retarded, advanced, and Keldysh Green’s
function, respectively. In the absence of the source component ηs, the forward and
backward contributions in the partition function are canceled out [4, 6], and the partition
function is constant, i.e. Z[η , η̄ ]|

ηs=0 = Tr[ρ̂]. Hence, the p-p component of the Green’s
function vanishes,

GK̃ = 0, (2.37)

leading to the relations

Gr = G−−−G−+ = G+−−G++, (2.38)

Ga = G−−−G+− = G−+−G++, (2.39)

GK = G−++G+− = G−−+G++. (2.40)

The retarded and the advanced components are mutually Hermitian conjugate as

Ga(t, t ′) = (Gr(t ′, t))∗. (2.41)
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Fig. 2.2 Discretized Keldysh contour C.

The causality requires the retarded (advanced) Green’s function lower (upper) triangular
matrices in the time domain;

Gr(t, t ′) = 0 (for t < t ′), (2.42)
Ga(t, t ′) = 0 (for t > t ′). (2.43)

2.2.3 Noninteracting system
In order to demonstrate how the Green’s functions are calculated based on the functional
approach, we consider the simplest fermionic Hamiltonian

Ĥ0 = ε f f̂ † f̂ , (2.44)

with the fermionic creation (annihilation) operator f̂ † ( f̂ ) and the energy level ε f . The
initial density matrix is chosen to be the equilibrium density matrix

ρ̂eq = e−β (Ĥ0−µN̂), (2.45)

with the inverse temperature β , the chemical potential µ , and the particle number operator
N̂ = f̂ † f̂ .

We divide the Keldysh contour C into (2N −2) time intervals of small length δt such
that t1 = t2N and tN = tN+1 (Fig. 2.2), and insert the identity operator

1̂ =
∫ ∫

Dψ̄iDψie−ψ̄iψi|ψi⟩⟨ψi|, (2.46)

at i = 1, 2, · · · , 2N. Then, the partition function (2.20) becomes

Z[η , η̄ ] =
∫ 2N

∏
i=1

Dψ̄iDψi exp

[
i
h̄

2N

∑
i=1

δi

(
iψ̄i

ψi −ψi−1

δi
− ε f ψ̄iψi−1 + η̄i−1ψi−1 + ψ̄iηi

)]
×⟨ψ1|ρeq|−ψ2N⟩, (2.47)

with δi ≡ ti − ti−1. The last contribution is evaluated as

⟨ψ1|ρeq|−ψ2N⟩= exp
[
−ψ̄1ψ2Nρeq(ε f )

]
, (2.48)
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with ρeq(ε f )≡ exp
[
−β (ε f −µ)

]
. Then, the partition function is rewritten as

Z[η , η̄ ] =
∫ 2N

∏
i=1

Dψ̄iDψi exp

[
i
h̄

N

∑
i, j=1

ψ̄iG−1
i j ψ j +

i
h̄

N

∑
i=1

δi (η̄i−1ψi−1 + ψ̄iηi)

]
, (2.49)

where the matrix is given by

iG−1
i j =



−1 0 0 . . . 0 0 −ρeq(ε f )
h2 −1 0 . . . 0 0 0
0 h3 −1 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −1 0 0
0 0 0 . . . h2N−1 −1 0
0 0 0 . . . 0 h2N −1


, (2.50)

with hi = 1− iδiε f .
The determinant of the matrix −iG−1 is calculated as

det
(
−iG−1)= 1+ρeq(ε f )

2N

∏
i=2

hi → 1+ρeq(ε f ), (2.51)

in the limit δt → 0. The (m,n) cofactor is similarly calculated as

(−1)n+m det
[
−iG−1]

mn =



n

∏
k=m+1

hk (m < n)

1 (m = n)

−ρeq(ε f )
2N

∏
k=2

hk/
m

∏
k=n+1

hk (m > n)

. (2.52)

Noting the relations ∏
2N
k=2 hk = 1 and 1/∏

m
k=n+1 hk = ∏

m
k=n+1 h∗k , we obtain the inverse

matrix as

iGmn =
1

1+ρeq(ε f )



−ρeq(ε f )
n

∏
k=m+1

h∗k , (m < n)

1, (m = n)
m

∏
k=n+1

hk, (n < m)

. (2.53)

Up to the first order in δt , the product of hi is simplified as

m

∏
k=n+1

hk =


e−iε f (tm−tn), (zn ∈C−, zm ∈C−)

e−iε f (tm−tn), (zn ∈C−, zm ∈C+)

e+iε f (tm−tn), (zn ∈C+, zm ∈C+)

, (2.54)
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where zn(m) is the variable on the Keldysh contour with the real time tn(m). If we introduce
the Fermi-Dirac distribution

f (ω) =
ρeq(ω)

ρeq(ω)+1
=

1
eβ (ω−µ)+1

, (2.55)

the Green’s function are obtained as

G−−(t, t ′) =− iθ(t − t ′)(1− f (ε f ))e−iε f (t−t ′)+ iθ(t ′− t) f (ε f )e−iε f (t−t ′), (2.56)

G−+(t, t ′) =i f (ε f )e−iε f (t−t ′), (2.57)

G+−(t, t ′) =− i(1− f (ε f ))e−iε f (t−t ′), (2.58)

G++(t, t ′) =− iθ(t ′− t)(1− f (ε f ))e−iε f (t−t ′)+ iθ(t − t ′) f (ε f )e−iε f (t−t ′), (2.59)

in the continuous limit (N → ∞) with the step function θ(t). The Fourier transforms of the
Green’s functions are

G−−(ω) =
1− f (ε f )

ω − ε f + i0+
+

f (ε f )

ω − ε f − i0+
, (2.60)

G−+(ω) =2πi f (ε f )δ (ω − ε f ), (2.61)

G+−(ω) =−2πi(1− f (ε f ))δ (ω − ε f ), (2.62)

G++(ω) =−
1− f (ε f )

ω − ε f − i0+
−

f (ε f )

ω − ε f + i0+
, (2.63)

with the infinitesimal positive value 0+. The Green’s functions in the rotated basis are
computed as

Gr(t, t ′) =−iθ(t − t ′)e−iε f (t−t ′), (2.64)

Ga(t, t ′) = iθ(t ′− t)e−iε f (t−t ′), (2.65)

GK(t, t ′) =−i(1−2 f (ε f ))e−iε f (t−t ′), (2.66)

and, equivalently, their Fourier transforms are

Gr(ω) =
1

ω − ε f + i0+
, (2.67)

Ga(ω) =
1

ω − ε f − i0+
, (2.68)

GK(ω) =−2πi(1−2 f (ε f ))δ (ω − ε f ). (2.69)

2.3 Nonequilibrium transport in open quantum systems
In this section, we provide a field-theoretic description of nonequilibrium transport through
open quantum systems. One of the simplest examples of open quantum systems is the
resonant level model, which is an archetypical and exactly solvable model. It is a very
good starting point of the transport phenomena away from equilibrium. Moreover, it forms
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Fig. 2.3 Schematic energy diagram of the resonant level model.

a basis of interacting open quantum systems, which need further elaboration of theoretical
treatment (see the next section). Though the present section is devoted to the analysis
of the resonant level model, it is straightforward to generalize the discussions to other
noninteracting systems, such as multiterminal systems and lattice systems.

In subsection 2.3.1, the resonant level model is introduced and solved by using the
field-theoretic techniques. In subsection 2.3.2, the full counting statistics is revisited from
a viewpoint of the Keldysh formalism. In subsection 2.3.3, useful expressions of the
transport quantities through the open quantum systems are derived by utilizing the gauge
structure of the system.

2.3.1 Resonant level model
In order to understand the nonequilibrium transport phenomena, we introduce the reso-
nant level model with an applied bias voltage (see Fig. 2.3). The resonant level model
consists of a single level which is coupled to fermionic reservoirs. Physically speaking,
it describes a noninteracting electron residing in a quantum dot (QD) coupled with leads.
The Hamiltonian of the resonant level model is written as

HRLM =εd d̂†d̂ + ∑
α=L,R

∑
kkk
(εαkkk −µα) ĉ†

αkkkĉαkkk + ∑
α=L,R

∑
kkk
(tα d̂†ĉαkkk +h.c.), (2.70)

where d̂† (d̂) and ĉ†
αkkk (ĉαkkk) are the creation (annihilation) operators of the electron in the

QD and the conduction electron in the leads α = L,R with momentum kkk and dispersion
relation εαkkk, respectively. For simplicity, we do not consider the spin degrees of freedom.
The first term of the Hamiltonian describes an isolated QD with an energy level εd , whereas
the second term represents noninteracting electron in the reservoirs with the chemical
potentials µL = εF + eV/2 and µR = εF − eV/2. Here, εF and V are the Fermi energy and
bias voltage, respectively. The third term describes electron tunneling between the QD
and the leads with the hopping amplitudes tα . The important assumption is that the both
leads are always in equilibrium. This formally means that the correlation functions of the
conduction electrons in the leads are given by the equilibrium ones.
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The path integral representation of the resonant level model is given by the action

SRLM[d̄,d; c̄,c] =
∫

C
dzdz′d̄(z)g−1

d (z,z′)d(z′)+
∫

C
dzdz′ ∑

α=L,R
∑
kkk

c̄αkkk(z)g
−1
αkkk(z,z

′)cαkkk(z
′)

−
∫

C
dz ∑

α=L,R
∑
kkk
(tα d̄(z)cαkkk(z)+h.c.). (2.71)

All the quantities in the action are defined on the Keldysh contour C shown in Fig. 2.1.
The Grassmann fields of electrons in the QD are denoted by d̄ (d) and c̄αkkk (cαkkk) represents
the conduction electron in the leads α = L,R with momentum kkk. The two-point Green’s
functions for the electrons in the isolated QD and those in the lead α with momentum
kkk are defined as g−1

d (z,z′) ≡ δ (z− z′)
[
i ∂

∂ z′ − εd

]
and g−1

αkkk(z,z
′) ≡ δ (z− z′)

[
i ∂

∂ z′ − εαkkk

]
,

respectively.
The Fourier transform of the Green’s functions can be computed in the same manner

as in subsection 2.2.3. The retarded and the lesser components of the isolated QD Green’s
function are given by

gr
d(ω) =

1
ω − εd + i0+

, (2.72)

g−+
d (ω) = 2πindδ (ω − εd), (2.73)

where nd is the initial density of the QD. As we consider that the lead α is in equilibrium
with the chemical potential µα and the inverse temperature β , the retarded and the lesser
components of the isolated lead Green’s function are

gr
αkkk(ω) =

1
ω − εαkkk + i0+

, (2.74)

g−+
αkkk (ω) = 2πi fα(εαkkk)δ (ω − εαkkk), (2.75)

with the Fermi-Dirac distribution function for the lead α ,

fα(ω) =
1

eβ (ω−µα )+1
. (2.76)

The partition function ZRLM is given by the functional integration over the fermionic
degrees of freedom;

ZRLM ≡
∫

D[d̄d]D[c̄c]exp
(

i
h̄

SRLM[d̄,d; c̄,c]
)
. (2.77)

The fermionic environments consisting of the conduction electrons can be exactly traced
out using the Gaussian integration. The hybridization between the QD and the lead α is
expressed as the tunneling self-energy of the dot electron,

Σα(z,z′) = ∑
kkk

t2
αgαkkk(z,z

′). (2.78)
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The retarded and the lesser components of the tunneling self-energy are

Σ
r
α(ω) = ∑

kkk

t2
α

ω − εαkkk + i0+

=− i∆α(ω)

2
, (2.79)

Σ
−+
α (ω) = i∆α(ω) fα(ω). (2.80)

where the real part of the Cauchy principal value is neglected in the second line of Eq. (2.79),
and the linewidth is defined as ∆α(ω)≡ 2πt2

αρα(ω) with the density of states in the lead α

denoted by ρα(ω)≡∑kkk δ (ω−εαkkk). The matrix representation of the tunneling self-energy
in the rotated basis is given by(

ΣK̃
α(ω) Σa

α(ω)
Σr

α(ω) ΣK
α(ω)

)
=

(
0 i∆α(ω)/2

−i∆α(ω)/2 i∆α(ω)(2 fα(ω)−1)

)
. (2.81)

After integrating out the conduction electrons, the partition function becomes

ZRLM =
∫

D[d̄d]exp
(

i
h̄

SRLM[d̄,d]
)
, (2.82)

up to an unimportant factor with the action

SRLM[d̄,d]≡
∫

C
dzdz′d̄(z)G−1

0d (z,z
′)d(z′). (2.83)

Here, the Green’s function of the isolated QD is modified as

G−1
0d (z,z

′)≡ g−1
d (z,z′)−Σres(z,z′), (2.84)

with the tunneling self-energy Σres(z,z′)≡ ΣL(z,z′)+ΣR(z,z′). The index 0 means that the
results are for noninteracting case. The Coulomb interaction term is considered in section
2.4. The retarded and the lesser components of the modified Green’s function are

Gr
0d(ω) =

1
ω + i∆(ω)/2

, (2.85)

G−+
0d (ω) = ∑

α=L,R

i∆α(ω) fα(εαkkk)

ω2 +∆2(ω)/4
, (2.86)

with the linewidth ∆(ω)≡ ∆L(ω)+∆R(ω). We note that the lesser component (2.86) is
no longer dependent on the initial QD density nd described by the lesser component of
the isolated Green’s function g−+

d (ω). It also holds for the greater component. Hence,
the lesser and the greater components of the isolated QD Green’s function can be set to
zero, i.e. g−+

d (ω) = g+−
d (ω) = 0 as far as we are concerned with the steady-state of the

QD-reservoir coupled system;(
gK̃

d (ω) ga
d(ω)

gr
d(ω) gK

d (ω)

)
=

(
0 1/(ω − εd − i0+)

1/(ω − εd + i0+) 0

)
. (2.87)
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2.3.2 Full counting statistics revisited
The full counting statistics [14, 15] is elegantly incorporated in the Keldysh formalism
[10, 11]. In order to trace the hopping process of the electrons in the time interval
[0,τ], we introduce the auxiliary phase γ(z) =−(ρλ/2)θ(t)θ(τ − t) for z ∈Cρ so that the
transmission amplitude tR acquires the phase as tReiγ(z). The introduced parameter serves as
a “non-demolishing marker” because it can detect the electron hopping without disturbing
its dynamics. As a consequence of the additional phase, the tunneling self-energy (2.78)
associated with the right reservoir is transformed as

ΣRγ(z,z′) = t2
R ∑

kkk
e−iγ(z)gRkkk(z,z

′)eiγ(z′), (2.88)

which is equivalent to the matrix(
Σ
−−
Rγ

(t, t ′) Σ
−+
Rγ

(t, t ′)
Σ
+−
Rγ

(t, t ′) Σ
++
Rγ

(t, t ′)

)
=

(
e−i(γ−(t)−γ−(t ′))Σ−−

R (t, t ′) e−i(γ−(t)−γ+(t ′))Σ−+
R (t, t ′)

e−i(γ+(t)−γ−(t ′))Σ+−
R (t, t ′) e−i(γ+(t)−γ+(t ′))Σ++

R (t, t ′)

)
.

(2.89)

The partition function is modified as

ZRLM(γ) =
∫

D[d̄d]exp
(

i
∫

C
dzdz′d̄(z)G−1

0dγ
(z,z′)d(z′)

)
, (2.90)

with the gauge-transformed tunneling self-energy Σresγ ≡ΣL+ΣRγ and the Green’s function

G−1
0dγ

(z,z′) = g−1
d (z,z′)−Σresγ(z,z′). (2.91)

Since the action is quadratic with respect to the fermionic Grassmann fields, the Gaussian
integration is formally performed as

ZRLM(γ) = det
(

iG−1
0dγ

)
. (2.92)

If we multiply the above equation by the constant det(−igd) and redefine the partition
function, its logarithm is obtained as

lnZRLM(γ) = ln
[
det
(
1−gdΣresγ

)]
= Tr

[
ln
(
1−gdΣresγ

)]
=−

∞

∑
k=1

Tr
[(

gdΣresγ

)k
]

=−
∞

∑
k=1

∫
τ

0
dtTr

[(
gggdτxΣΣΣresγτx

)k
]
(t, t). (2.93)

The bold letters represent the matrix of the Green’s function and the self-energy in the
rotated Keldysh basis.
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Here, we assume that the observation time τ is so large that the gauge phase is
approximated as

γ(z) =−ρλ

2
, (2.94)

for z ∈Cρ . It is possible to justify this assumption by noting that the sub-leading contribu-
tion is just logarithmic in τ [16]. Then, the logarithm of the partition function is further
calculated as

lim
τ→∞

1
τ

lnZRLM(λ ) =−
∞

∑
k=1

∫ dω

2π
Tr
[
(gggd(ω)τxΣΣΣresλ (ω)τx)

k
]

=
∫ dω

2π
Tr [ln(1−gggd(ω)τxΣΣΣresλ (ω)τx)]

=
∫ dω

2π
ln [det(1−gggd(ω)τxΣΣΣresλ (ω)τx)] . (2.95)

The tunneling self-energy is Fourier transformed as(
Σ
−−
Rλ

(ω) Σ
−+
Rλ

(ω)
Σ
+−
Rλ

(ω) Σ
++
Rλ

(ω)

)
=

(
Σ
−−
R (ω) e−iλ Σ

−+
R (ω)

eiλ Σ
+−
R (ω) Σ

++
R (ω)

)
. (2.96)

In the rotated basis, the tunneling self-energy is given by(
ΣK̃

Rλ
Σa

Rλ

Σr
Rλ

ΣK
Rλ

)
=

i∆R(ω)

2

(
(1− e−iλ ) fR − (1− eiλ ) f̄R e−iλ fR + eiλ f̄R

−e−iλ fR − eiλ f̄R (1+ e−iλ ) fR − (1+ eiλ ) f̄R

)
,

(2.97)

with f̄α(ω)≡ 1− fα(ω). With the aid of the formal expression of the partition function
(2.95), we obtain the result

lim
τ→∞

1
τ

lnZRLM(λ ) =
∫ dω

2π
ln
[
1+TLR(ω)

[
fL(ω)(1− fR(ω))(eiλ −1)

+ fR(ω)(1− fL(ω))(e−iλ −1)
]]

, (2.98)

with the transmission coefficient

TLR(ω) =
1
4

∆L(ω)∆R(ω)

(ω − εd)2 +(∆L(ω)+∆R(ω))2/4
. (2.99)

This is the Levitov-Lesovik formula (1.9) for the transport through the single resonant
level. We note that the general procedures of the full counting statistics outlined in this
subsection can be generalized to interacting electronic systems such as the QD in the
Kondo regime [17] and the charge-fluctuating regime [18].



2.3 Nonequilibrium transport in open quantum systems 35

2.3.3 Field-theoretic description of transport quantities
The full counting statistics combined with the two-point measurement scheme is well
suited to describe the time-averaged transport quantity in a long time interval. However,
the formulation is of limited use to describe time-dependent problems such as the photon-
assisted transport. Moreover, it is more transparent to formulate the problem from a general
point of view by separating it from the specific realization of the measurement protocol.
A key observation to generalize the full counting statistics is that the structure of the
counting field is the same as the gauge field defined on the Keldysh contour. We explicitly
investigate the gauge structure of the Lagrangian of the resonant level model, and show
that the full counting statistics is naturally built in the Keldysh formalism. The result of
the two-point measurement is recovered in a certain limit of the theory.

The action of the resonant level model with the gauge fields is written as

SRLM[d̄,d; c̄,c;A] =
∫

C
dzd̄(z)

(
i

∂

∂ z
− εd − eA0(z)

)
d(z)

+
∫

C
dz∑

αkkk
c̄αkkk(z)

(
i

∂

∂ z
− εαkkk − evα(z)

)
cαkkk(z)

−
∫

C
dz∑

αkkk

(
tαeieAα (z)c̄αkkk(z)d(z)+h.c.

)
. (2.100)

All the quantities in the action including the gauge fields are defined on the Keldysh contour
C shown in Fig. 2.1. Scalar potentials in the QD and the lead α are written as A0 and
vα , respectively. The vector potentials Aα are incorporated using the Peierls substitution:
The hopping parameters tα are modified as tαeie

∫
α

drrr·AAA where
∫

α
drrr ·AAA are the integral

of the vector potentials along the paths from the QD to the lead α . Here, we assume
that these integrals can be averaged over the path, whose length is set to one. The gauge
invariance of the action can be readily confirmed as shown in Appendix 2.A. By using
the gauge transformation, it is always possible to consider the gauge-fixing condition
A0(z) = vα(z) = 0. Hence, we do not consider the scalar potentials A0 and vα in the
subsequent discussions.

The action (2.100) with the gauge-fixing condition is solved in the same way as the
previous case. The dependence on Aα is incorporated in the tunneling self-energy as

Σα(z,z′) = ∑
kkk

t2
αe−ieAα (z)gαkkk(z,z

′)eieAα (z′). (2.101)

From this expression, it is clear that the tunneling self-energy with the counting field (2.88)
is expressed by setting the gauge field Aα(z) in a specific way.

By doubling the degrees of freedom of the external gauge fields as A∓
α (t), we can de-

scribe both the time-evolution and the statistical correlation. The functional differentiation
with respect to the gauge potentials on the Keldysh contour is represented in the Keldysh
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space as

δ

δAα(z)
=


δ

δA−
α (t)

0

0 − δ

δA+
α (t)

 . (2.102)

The expectation value of the current and its higher-order cumulants are obtained by
differentiating the generating functional with respect to the gauge field.

We define physical fields and source fields as

Ap
α(t)≡

1
2
(
A−

α (t)+A+
α (t)

)
, (2.103)

As
α(t)≡ A−

α (t)−A+
α (t). (2.104)

In order to preserve the normalization and the causality structure of the partition function,
the gauge fields should satisfy the condition A−

α (t) = A+
α (t) = Ap

α(t) in the end of the
calculation. Hence, the source field As

α(t) must be set to zero in the last step of calculations.
On the other hand, the physical components Ap

α(t) can be left finite to describe an external
driving field. Noting the relation ⟨ j−α (t)⟩ = ⟨ j+α (t)⟩ with the current operator jα(z), the
expectation value of the current can be obtained on the real time axis as

⟨ jα(t)⟩=
δW [η , η̄ ;A]

δAs
α(t)

∣∣∣∣
η=η̄=As=0

. (2.105)

The source component of the vector potential As
α(t) is closely related to the counting field

which is introduced in the full counting statistics. The important difference is that the
counting field is designed to describe the time-averaged current while the vector potential
is applicable to arbitrary time-dependent transport.

The current-current correlation function is defined as the second derivative of the
generating functional

Dα1α2(z
′′
1,z

′′
2)≡−i

δ 2W [η , η̄ ;A]
δAα1(z

′′
1)δAα2(z

′′
2)
. (2.106)

Its real-time representation is given as

Dαα ′(t, t ′) =


−i

δ 2W [η , η̄ ;A]
δA−

α (t)δA−
α ′(t ′)

∣∣∣∣∣
η=η̄=As=0

i
δ 2W [η , η̄ ;A]

δA−
α (t)δA+

α ′(t ′)

∣∣∣∣∣
η=η̄=As=0

i
δ 2W [η , η̄ ;A]

δA+
α (t)δA−

α ′(t ′)

∣∣∣∣∣
η=η̄=As=0

−i
δ 2W [η , η̄ ;A]

δA+
α (t)δA+

α ′(t ′)

∣∣∣∣∣
η=η̄=As=0

 ,

(2.107)
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where the minus signs of the lesser and the greater components come from the signs in
Eq. (2.102). The current noise is given as

Sαα ′(t, t ′)≡−2i
δ 2W [η , η̄ ;A]

δAs
α(t)δAs

α ′(t ′)

∣∣∣∣
η=η̄=As=0

= D−+
αα ′(t, t ′)+D+−

αα ′(t, t ′). (2.108)

The current-current correlation function defined in this way is Hermite, and relevant in
experiments as far as we focus on the time-averaged value.

2.4 Method for interacting nonequilibrium systems
In this section, we establish a theoretical method for nonequilibrium fluctuation in interact-
ing quantum systems. Based on the path integral formalism, we introduce the effective
action and vertex functions, which are convenient to express the transport quantities.
Though the derivation is rather formal, the resulting expressions provide a good starting
point to further elaborate the theoretical scheme. In particular, the problem is reduced
to how the vertex functions are calculated in various interacting systems. The functional
renormalization group approach, which is mainly used in chapter 5, is such a formalism to
calculate the vertex functions.

In subsection 2.4.1, we define the effective action and the vertex functions. In subsec-
tion 2.4.2, we provide formal expressions of the transport quantities in a generic interacting
system in terms of the vertex functions. In subsection 2.4.3, the expressions are applied to
the interacting quantum dot system. In subsection 2.4.4, the functional renormalization
group approach is developed.

2.4.1 Effective action and vertex functions
The effective action is a quantum analog of the classical action [7]. The quantum field
theory can be reformulated in terms of variational problems of the effective action. This
advantage of the effective action has been utilized for analyzing quantum many-body
problems. In the quantum field theory, various quantities are conveniently described
by the vertex functions. They are diagrammatically obtained by removing the external
propagators included in connected correlation functions, and belong to the class of one-
particle-irreducible (1PI) diagrams. The effective action is proved to be a generating
functional of the 1PI vertex functions. This is the second reason why the effective action is
an important object in the quantum field theory.

Let us consider an interacting fermionic system;

S[ψ̄,ψ;A] = S0[ψ̄,ψ;A]+Sint[ψ̄,ψ], (2.109)

where the S0 and Sint are the actions for the bare part and the interaction part, respectively.
The bare action is written as

S0[ψ̄,ψ;A] =
∫

C
dzdz′ψ̄i(z)G−1

0i j [A](z,z
′)ψ j(z′), (2.110)
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where the repeated indices are summed over. We assume that the external gauge field
A can be solely incorporated in the noninteracting Green’s function G0[A]. This is true
for various important examples including the resonant level model, the single-impurity
Anderson model, and the interacting resonant level model. The generating functional for
the connected Green’s functions is given by

W [η , η̄ ;A] =−i ln
∫

Dψ̄Dψ exp
(

i
h̄
(S[ψ̄,ψ;A]+Ss[ψ̄,ψ;η , η̄ ])

)
, (2.111)

with the the source term

Ss[ψ̄,ψ;η , η̄ ] =
∫

C
dz [η̄i(z)ψi(z)+ ψ̄i(z)ηi(z)] . (2.112)

The effective action Γ[⟨ψ̄⟩s,⟨ψ⟩s;A] is defined as the Legendre transform of W [η , η̄ ;A],

Γ[⟨ψ̄⟩s,⟨ψ⟩s;A]≡W [η , η̄ ;A]−
∫

C
dz [η̄i(z)⟨ψi(z)⟩s + ⟨ψ̄i(z)⟩s

ηi(z)] . (2.113)

By using δW [η ,η̄ ;A]
δ η̄i(z)

= ⟨ψi(z)⟩s and δW [η ,η̄ ;A]
δηi(z)

=−⟨ψ̄i(z)⟩s [see Eqs. (2.26) and (2.27)] and
the chain rule, we can obtain the important relations to determine η and η̄ ;

δΓ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψi(z)⟩s = η̄i(z), (2.114)

δΓ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i(z)⟩s =−ηi(z). (2.115)

Equations (2.114) and (2.115) provide a variational problem because the physical state
can be realized in the limit of η , η̄ → 0. The effective action is identical to the action in
the tree approximation [7], where the optimal-path solution corresponds to the classical
Euler-Lagrange equations. The full quantum effect can be incorporated in a perturbative
manner. This is the reason why Γ[⟨ψ̄⟩s,⟨ψ⟩s;A] is called the effective action.

By using Eqs. (2.27), (2.29), and δ 2W [η ,η̄ ;A]
δ η̄i′(z′)η̄i′′(z′′)

∣∣∣
η=η̄=0

= 0, the chain rule for the

arbitrary functional f [ψ̄,ψ] is written as

δ f [ψ̄,ψ]

δ η̄i(z)

∣∣∣∣
η=η̄=As=0

=
∫

C
dz′Gii′(z,z

′)
δ f [ψ̄,ψ]

δ ⟨ψ̄i′(z′)⟩s

∣∣∣∣
η=η̄=As=0

. (2.116)

The functional differentiation of Eq. (2.114) with respect to η̄i can be performed by
substituting δΓ[⟨ψ̄⟩s,⟨ψ⟩s;A]

δ ⟨ψi(z)⟩s for f in Eq. (2.116). This leads us to the equation

δ (z,z′)δii′ =
∫

C
dz′′Gii′′(z,z

′′)
δ 2Γ[⟨ψ̄⟩s,⟨ψ⟩s;A]

δ ⟨ψ̄i′′(z′′)⟩sδ ⟨ψi′(z′)⟩s

∣∣∣∣
η=η̄=As=0

. (2.117)
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This expression indicates that the second functional dervative of the effective action is the
inverse propagator

δ 2Γ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i(z)⟩sδ ⟨ψi′(z′)⟩s

∣∣∣∣
η=η̄=As=0

= G−1
ii′ (z,z

′). (2.118)

If we define the self-energy as

Σii′(z,z
′)≡ G−1

0ii′(z,z
′)− δ 2Γ[⟨ψ̄⟩s,⟨ψ⟩s;A]

δ ⟨ψ̄i(z)⟩sδ ⟨ψi′(z′)⟩s

∣∣∣∣
η=η̄=As=0

, (2.119)

with the noninteracting Green’s function G0, Eq. (2.118) becomes the Dyson equation of
the two-point connected Green’s function.

The effective action is the generating functional for the 1PI vertex functions [7]. The
1PI vertex functions can be diagrammatically obtained by truncating the external legs of
connected correlation functions. The vertex expansion of the effective action is given as

Γ[⟨ψ⟩s,⟨ψ̄⟩s,A]

=
∞

∑
m,n=0

(−1)m

(m!)2n!

m

∏
j,k=0

n

∏
l=0

∫
C

dz jdz′kdz′′l γ
(2m,n)
i′1···i′m;i1···im;α1···αn

(z′1, · · · ,z′m;z1, · · · ,zm;z′′1, · · · ,z′′n)

×⟨ψ̄i′1
⟩s(z′1) · · · ⟨ψ̄i′m⟩

s(z′m)⟨ψi1⟩
s(z1) · · · ⟨ψim⟩s(zm)Aα1(z

′′
1) · · ·Aαn(z

′′
n). (2.120)

We note that the auxiliary vector potential Aα(z) is also defined on the Keldysh contour, i.e.
it has the two components A−

α (t) and A+
α (t). Hence, there are in total 22m+n components

for the current-vertex function γ(2m,n).
Arbitrary vertex functions can be generated by functionally differentiating the effective

action with respect to ⟨ψ̄⟩s, ⟨ψ⟩s, and A. In particular, the functional differentiation of
Eq. (2.118) with respect to the gauge fields generates the three-point 1PI vertex func-
tions with two external electron lines and one external photon line. With the aid of the
Dyson equation G−1 = G−1

0 −Σ, the three-point 1PI vertex function is divided into the
noninteracting part and the interaction-induced part as

γ
(2,1)
i′;i;α (z

′;z;z′′) =− δ 3Γ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i′(z′)⟩sδ ⟨ψi(z)⟩sδAα(z′′)

∣∣∣∣
η=η̄=As=0

= γ
(2,1)
0i′;i;α(z

′;z;z′′)+ γ̄
(2,1)
i′;i;α (z

′;z;z′′), (2.121)

γ
(2,1)
0i′;i;α(z

′;z;z′′)≡−
δG−1

0i′i(z
′,z)

δAα(z′′)
, (2.122)

γ̄
(2,1)
i′;i;α (z

′,z;z′′)≡ δΣi′i(z′,z)
δAα(z′′)

. (2.123)

Here, γ
(2,1)
0i′;i;α and γ̄

(2,1)
i′;i;α are called the bare vertex function and the dressed vertex function,

respectively. The vertex functions are straightforwardly generalized to the higher-order



40 Method for nonequilibrium fluctuation in open quantum systems

Fig. 2.4 Diagrammatic representation of Eq. (2.126) relating the three-point correlation
function and the three-point vertex function. The black filled circle with the two fermion
lines and one wavy line represents the three-point current vertex function. The wavy line
denotes the external gauge field which couples to the electron system. The open and gray
circles represent the bare and the dressed three-point current vertex function, respectively.

terms. For example, the bare and dressed four-point current vertex functions are defined as

γ
(2,2)
0i′;i;α1α2

(z′;z;z′′1,z
′′
2)≡−

δG−1
0i′i(z

′,z)
δAα1(z

′′
1)δAα2(z

′′
2)
, (2.124)

γ̄
(2,2)
i′;i;α1α2

(z′,z;z′′1,z
′′
2)≡

δΣi′i(z′,z)
δAα1(z

′′
1)δAα2(z

′′
2)
, (2.125)

respectively.
The three-point connected correlation function is related to the vertex function as

δGi′i(z′,z)
δAα(z′′)

=
∫

C
dz1dz′1Gi′i′1

(z′,z′1)γ
(2,1)
i′1;i1;α(z

′
1;z1;z′′)Gi1i(z1,z), (2.126)

which can be confirmed by differentiating the identity (2.117) with respect to the vector
potential. The diagrammatic representation is shown in Fig. 2.4. Repeating the same
argument for the noninteracting Green’s function, we obtain an analogous equation for the
bare part as

δG0i′i(z′,z)
δAα(z′′)

=
∫

C
dz1dz′1G0i′i′1

(z′,z′1)γ
(2,1)
0i′1;i1;α(z

′
1;z1;z′′)G0i1i(z1,z). (2.127)

The equation can be diagrammatically interpreted that the functional derivative of the
noninteracting propagator with respect to the gauge field Aα corresponds to the insertion
of the bare vertex function. This interpretation is useful to determine the diagrams of the
dressed vertex functions (2.123): They can be given by inserting a bare current vertex
function at every internal noninteracting propagator of the self-energy.

2.4.2 Formal expression of current fluctuation
In this subsection, we derive formal expressions of the current and the current fluctuation
in terms of the vertex functions. As was discussed in section 2.3.3, the expectation values
of the transport quantities are obtained as the functional derivatives of the generating
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(a) (b)

Fig. 2.5 Diagrammatic representation of (a) the bare part S0 and (b) the vertex correction
S̄ of the current noise.

functional W [η , η̄ ;A]. The current is obtained as

δW [η , η̄ ;A]
δAα(z)

=−i
∫

C
dzdz′

δG−1
0i′i[A](z

′,z)
δAα(z′′)

Gii′(z,z
′),

= i
∫

C
dzdz′γ(2,1)0i′;i;α(z

′;z;z′′)Gii′(z,z
′). (2.128)

The higher-order transport quantities can be obtained by further functional differentiat-
ing the generating functional. With the aid of the four-point current vertex function (2.124)
and the identity for the three-point connected Green’s function (2.126), the current-current
correlation function (2.106) is also divided into two parts as

Dα1α2(z
′′
1,z

′′
2) = D0α1α2(z

′′
1,z

′′
2)+ D̄α1α2(z

′′
1,z

′′
2), (2.129)

with the bare term of the correlation function

D0α1α2(z
′′
1,z

′′
2)≡

∫
C

dz1dz′1γ
(2,2)
0i′1;i1;α1α2

(z′1;z1;z′′1,z
′′
2)Gi1i′1

(z1,z′1)

+
∫

C
dz1dz′1dz2dz′2γ

(2,1)
0i′1;i1;α1

(z′1;z1;z′′1)Gi1i′2
(z1,z′2)

× γ
(2,1)
0i′2;i2;α2

(z′2;z2;z′′2)Gi2i′1
(z2,z′1), (2.130)

and the vertex correction term

D̄α1α2(z
′′
1,z

′′
2)≡

∫
C

dz1dz′1dz2dz′2γ
(2,1)
0i′1;i1;α1

(z′1;z1;z′′1)Gi1i′2
(z1,z′2)

× γ̄
(2,1)
i′2;i2;α2

(z′2;z2;z′′2)Gi2i′1
(z2,z′1). (2.131)

The same formulas have been obtained by G. H. Ding and B. Dong [19] using the full
counting statistics. The symmetrized current noise (2.108) is divided into the bare part and
the vertex correction as

Sαα ′(t, t ′) = S0αα ′(t, t ′)+ S̄αα ′(t, t ′), (2.132)

S0αα ′(t, t ′)≡ D−+
0αα ′(t, t ′)+D+−

0αα ′(t, t ′), (2.133)

S̄αα ′(t, t ′)≡ D̄−+
αα ′(t, t ′)+ D̄+−

αα ′(t, t ′). (2.134)

The diagrammatic representation is shown in Fig. 2.5.
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2.4.3 Application to interacting quantum dot systems
The noninteracting part of quantum dot system is often given by the resonant level model
(2.100). The bare current vertex functions Eqs. (2.122) and (2.124) are calculated by
differentiating the tunneling self-energy (2.101) as

γ
(2,1)
0α

(z′;z;z′′) = ie
[
δ (z′′,z)−δ (z′,z′′)

]
Σα(z′,z), (2.135)

γ
(2,2)
0α1α2

(z′;z;z′′1,z
′′
2) = (ie)2

δα1α2

[
δ (z′′1,z)−δ (z′,z′′1)

][
δ (z′′2,z)−δ (z′,z′′2)

]
Σα(z′,z).

(2.136)

These equations are used to express various quantities in terms of the Green’s functions
and the tunneling self-energy.

With the aid of Eq. (2.135), the formal expression of the current (2.128) leads to

⟨ jα(z)⟩= e [(ΣαG)(z,z)− (GΣα)(z,z)] , (2.137)

where (AB)(z,z′) ≡
∫

dz1A(z,z1)B(z1,z′). By using Langreth’s theorem [5], the above
equation is projected onto the real-time axis as

1
e
⟨ jα(t)⟩=

(
Σ

r
αG−+

)
(t, t)+

(
Σ
−+
α Ga)(t, t)− (Gr

Σ
−+
α

)
(t, t)−

(
G−+

Σ
a
α

)
(t, t), (2.138)

where (AB)(t, t ′)≡
∫

dt1A(t, t1)B(t1, t ′). Hence, the problem of calculating the current is
reduced to the evaluation of the Green’s functions in the QD. In the stationary system, the
tunneling self-energy is given by Eqs. (2.79) and (2.80). Then, the expectation value of the
current ⟨ j⟩= ⟨ jR(t)⟩=−⟨ jL(t)⟩ is simplified as

⟨ j⟩= e
∫

dω
∆L(ω)∆R(ω)

∆L(ω)+∆R(ω)
A(ω)( fL(ω)− fR(ω)) , (2.139)

with the spectral function

A(ω)≡− 1
π

ImGr(ω). (2.140)

Equation (2.139) is equivalent to the Meir-Wingreen formula [20].
The formal expressions of the current fluctuation [see Eqs. (2.130) and (2.131)] require

rather laborious calculations. The important difference between the current and its fluctu-
ation is the existence of the vertex correction term, which cannot be expressed solely in
terms of the self-energy. We need to develop suitable schemes to determine the three-point
dressed vertex function (2.123). One way is to straightforwardly evaluate the diagrams in
the perturbation theory. Another promising way is to utilize the functional renormalization
group, which is discussed in subsection 2.4.4.

2.4.4 Functional renormalization group approach
We develop a functional renormalization group (FRG) method [13, 21–23] for the nonequi-
librium transport of correlated fermions. The FRG is an implementation of Wilson’s idea
of the renormalization group, where the high-energy degrees of freedom are successively
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incorporated to reach the emerging low-energy physics. While deep philosophy of the
renormalization group theory is inherited in the FRG scheme, it is also useful to invent
efficient approximation schemes. This method has contributed to deepen our understanding
of the nonequilibrium transport through interacting quantum dot systems [24–27].

In setting up the FRG scheme, we have to (i) introduce a flow parameter Λ and a
regulator function RΛ, (ii) derive flow equations for a Λ-dependent effective action ΓΛ, (iii)
use an appropriate initial condition of ΓΛ at Λinit, (iv) truncate the flow equations into a
finite set of ordinary differential equations, and (v) numerically or analytically solve the
equations. We outline the procedure in the following.

Regulator function

The first step in the FRG approach is to introduce a regulator function RΛ, which suppresses
the low-energy degrees of freedom. The parameter Λ is called the flow parameter. In
the following, we choose the regulator function by replacing the unperturbed propagator
G−1

0 with a Λ-dependent propagator G−1
0Λ

≡ G−1
0 +RΛ. This is equivalent to introduce the

additional action

∆SΛ[ψ̄,ψ]≡
∫

C
dzdz′ψ̄i(z)RΛi j(z,z′)ψ j(z′). (2.141)

In contrast to the usual renormalization group procedure where the original action S is
described by a set of parameters at different scales Λ, the model itself is modified as
S+∆SΛ in the FRG approach. In order to recover the original problem in the limit Λ → 0,
the regulator function RΛ must be chosen to satisfy the condition RΛ→0 = 0

We define the Λ-dependent generating functional

WΛ[η , η̄ ;A] =−i ln
∫

Dψ̄Dψ exp
(

i
h̄
(S[ψ̄,ψ]+∆SΛ[ψ̄,ψ]+Ss[ψ̄,ψ;η , η̄ ])

)
,

(2.142)

and the Λ-dependent effective action

ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]

≡WΛ[ηΛ, η̄Λ;A]−
∫

C
dz [η̄Λi(z)⟨ψi(z)⟩s + ⟨ψ̄i(z)⟩s

ηΛi(z)]−∆SΛ[⟨ψ̄⟩s,⟨ψ⟩s]. (2.143)

Here, η̄Λi and ηΛi are determined by solving the following equations

δΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψi(z)⟩s = η̄Λi(z)+ ⟨ψ̄i′⟩sRΛi′i, (2.144)

δΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i(z)⟩s =−ηΛi(z)−RΛii′⟨ψi′⟩s. (2.145)
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Flow equation

The Λ-dependent effective action satisfies the equation

dΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
dΛ

=−i
∫

C
dzdz′

dRΛii′(z,z′)
dk

δ 2WΛ[ηΛ, η̄Λ;A]
δ η̄Λi′(z′)δηΛi(z)

, (2.146)

whose derivation is given in Appendix 2.B. In the following, we simplify Eq. (2.146) by
introducing auxiliary matrices for the Λ-dependent Green’s function

GGG(2)
Λii′[ηΛ, η̄Λ;A](z,z′)≡


δ 2WΛ[ηΛ, η̄Λ;A]
δ η̄Λi(z)δηΛi′(z′)

− δ 2WΛ[ηΛ, η̄Λ;A]
δ η̄Λi(z)δ η̄Λi′(z′)

− δ 2WΛ[ηΛ, η̄Λ;A]
δηΛi(z)δηΛi′(z′)

δ 2WΛ[ηΛ, η̄Λ;A]
δηΛi(z)δ η̄Λi′(z′)

 , (2.147)

and for the regulator function

RRRΛii′(z,z
′)≡

(
RΛii′(z,z′) 0

0 −RΛi′i(z′,z)

)
. (2.148)

We note that the off-diagonal components of the Green’s function can be finite in the
presence of the source fields η and η̄ . With the auxiliary matrices, Eq. (2.146) is written as

dΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
dΛ

=
−i
2

Tr
(

dRRRΛ

dk
GGG(2)

Λ
[ηΛ, η̄Λ;A]

)
, (2.149)

where the trace involves integration over all the internal indices. The auxiliary vertex
function

ΓΓΓ
(2)
Λii′[⟨ψ̄⟩s,⟨ψ⟩s;A](z,z′)≡


δ 2ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i⟩s(z)δ ⟨ψi′⟩s(z′)

− δ 2ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψ̄i⟩s(z)δ ⟨ψ̄i′⟩s(z′)

− δ 2ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψi⟩s(z)δ ⟨ψ̄i′⟩s(z′)

δ 2ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
δ ⟨ψi⟩s(z)δ ⟨ψ̄i′⟩s(z′)


(2.150)

can be proven to be related to the Λ-dependent Green’s function as

GGG(2)
Λ
[ηΛ, η̄Λ;A] =

(
ΓΓΓ
(2)
Λ
[⟨ψ̄⟩s,⟨ψ⟩s;A]+RRRΛ

)−1
. (2.151)

Using this relation in Eq. (2.149), we obtain the exact functional differential equation for
the Λ-dependent effective action;

dΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A]
dΛ

=
−i
2

Tr
(

dRRRΛ

dk

(
ΓΓΓ
(2)
Λ
[⟨ψ̄⟩s,⟨ψ⟩s;A]+RRRΛ

)−1
)
, (2.152)
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Fig. 2.6 Diagrammatic representation of the flow equation (2.152). The slash line repre-
sents the insertion of the derivative of the regulator function dRRRΛ

dΛ
.

which is called the flow equation. This is the central tool of the FRG approach. Though
it has a simple one-loop structure (Fig. 2.6), it describes the evolution of arbitrary vertex
functions under the change of the flow parameter Λ.

Initial condition

The flow equation must be supplemented with an appropriate initial condition, which
depends on the choice of the regulator function RΛ. Usually, the regulator function at
initial value Λinit is chosen as RΛinit → ∞ for Λinit → ∞ so that all the fluctuation can be
suppressed at Λinit. As the lowest-order term of the effective action is the bare action, the
initial condition of the effective action is given by ΓΛinit = S. The Λ-dependent effective
action (2.143) connects the classical action S with the effective action Γ. Although the
trajectory is dependent on the detail of the regulator function RΛ, it reaches the unique
original effective action at the end of the flow (Λ = 0) irrespective of the choice of RΛ.

Infinite hierarchy

One systematic way to analyze the flow equation (2.152) is to expand it in terms of the
fields ⟨ψ̄⟩s and ⟨ψ̄⟩s. In order to isolate the term depending on ⟨ψ̄⟩s and ⟨ψ⟩s, we define
the self-energy and the Green’s function as

Σ̃ΣΣΛ ≡−ΓΓΓ
(2)
Λ

+ ΓΓΓ
(2)
Λ

∣∣∣
⟨ψ̄⟩s=⟨ψ⟩s=0

(2.153)

GGG−1
Λ

= ΓΓΓ
(2)
Λ

∣∣∣
⟨ψ̄⟩s=⟨ψ⟩s=0

+RRRΛ. (2.154)

Then, the flow equation becomes

dΓΛ

dΛ
=

−i
2

Tr
(

dRRRΛ

dk

(
GGG−1

Λ
− Σ̃ΣΣΛ

)−1
)

=
−i
2

Tr
(

dRRRΛ

dk
GGGΛ +

dRRRΛ

dk
GGGΛΣ̃ΣΣΛGGGΛ +

dRRRΛ

dk
GGGΛΣ̃ΣΣΛGGGΛΣ̃ΣΣΛGGGΛ

)
+ · · ·

=
i
2

Tr
(

GGG−1
Λ

SSSΛ +SSSΛΣ̃ΣΣΛ +SSSΛΣ̃ΣΣΛGGGΛΣ̃ΣΣΛ

)
+ · · · , (2.155)
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Fig. 2.7 Diagrammatic representation of the flow equation of the self-energy (2.157). The
black filled circle (square) with two (four) fermion lines is the self-energy (four-point
vertex function. The slashed inner propagator represents the scale-dependent propagator
SSSΛ defined in Eq. (2.156).

with the scale-dependent propagator

SSSΛ =−GGGΛ

dRRRΛ

dk
GGGΛ. (2.156)

If we expand the flow equation (2.155) in terms of ⟨ψ̄⟩s and ⟨ψ⟩s, each term of the
expansion is expressed in terms of the vertex functions with the aid of the vertex expansion
(2.120). By comparing the coefficients of the corresponding terms in the left and right
hand side of Eq. (2.155), we obtain the flow equation of the vertex functions.

The flow equation of the two-point vertex function, which is related to the self-energy
(2.119), is

dγ
(2,0)
Λ

(z′1;z1;)
dΛ

= iTr
(

SSSΛγ
(4,0)
Λ

(·,z′1; ·,z1;)
)
. (2.157)

The diagrammatic representation of the flow equation is given in Fig. 2.7. It is found that
we need to determine the four-point vertex function γ

(4,0)
Λ

, whose flow equation is obtained
as

dγ
(4,0)
Λ

(z′1,z
′
2,z1,z2;)

dΛ

= iTr
(

SSSΛγ
(4,0)
Λ

(·,z′1; ·,z1;)GGGΛγ
(4,0)
Λ

(·,z′2; ·,z2;) +GGGΛγ
(4,0)
Λ

(·,z′1; ·,z1;)SSSΛγ
(4,0)
Λ

(·,z′2; ·,z2;)

−SSSΛγ
(4,0)
Λ

(·,z′1; ·,z2;)GGGΛγ
(4,0)
Λ

(·,z′2; ·,z1;)−GGGΛγ
(4,0)
Λ

(·,z′1; ·,z2;)SSSΛγ
(4,0)
Λ

(·,z′2; ·,z1;)

+SSSΛγ
(4,0)
Λ

(·, ·;z1,z2;)GGGt
Λγ

(4,0)
Λ

(z′1,z
′
2; ·, ·;)+SSSΛγ

(6,0)
Λ

(·,z′1,z′2; ·,z1,z2;)
)
. (2.158)

Then, we need to determine the six-point vertex functions to solve the flow equation. This
procedure is endless, forming an infinite hierarchy of the flow equations.

We need to calculate the three-point current vertex function γ
(2,1)
Λ

to determine the
vertex correction of the current noise (2.131). The flow equation of the current vertex
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Fig. 2.8 Diagrammatic representation of the flow equation of the three-point vertex
function (2.159). The black filled circle with the four fermion lines and one wavy line
represents the five-point current vertex function.

functions are obtained in the same way as the self-energy as

dγ
(2,1)
Λ

(z′;z;z′′)
dΛ

= iTr
(

SSSΛγ
(4,0)
Λ

(·,z′; ·,z;)GGGΛγ
(2,1)
Λ

(·; ·;z′′)

+GGGΛγ
(4,0)
Λ

(·,z′; ·,z;)SSSΛγ
(2,1)
Λ

(·; ·;z′′)

+ SSSΛγ
(4,1)
Λ

(·,z′; ·,z;z′′)
)
, (2.159)

whose diagrammatic representation is shown in Fig. 2.8.
The flow equations of γ

(0,1)
Λα

(;z′′) and γ
(0,2)
Λ

(;z′′1,z
′′
2) are obtained, respectively, as

dγ
(0,1)
Λ

(;z′′)
dΛ

= iTr
(

SSSΛγ
(2,1)
Λ

(·; ·;z′′)
)
, (2.160)

dγ
(0,2)
Λ

(;z′′1,z
′′
2)

dΛ
= iTr

(
SSSΛγ

(2,1)
Λ

(·; ·;z′′1)GGGΛγ
(2,1)
Λ

(·; ·;z′′2)+GGGΛγ
(2,1)
Λ

(·; ·;z′′1)SSSΛγ
(2,1)
Λ

(·; ·;z′′2)

+SSSΛ(·, ·)γ
(2,2)
Λ

(·; ·;z′′1,z
′′
2)
)
. (2.161)

Noting that the first (second) derivative of the effective action in terms of the gauge field is
directly related to the current (noise), Eq. (2.160) (Eq. (2.161)) provides a way to determine
the transport quantities within the FRG scheme.

Truncation

In spite of its appealingly simple structure, the flow equation of the effective action (2.152)
cannot be solved exactly due to the infinite hierarchy of the flow equations of the vertex
functions. Hence, we have to devise an approximation scheme to handle the problem. The
simplest way is to truncate the hierarchy by neglecting the higher-order vertices. In chapter
5, we use the lowest-order approximation to determine the vertex functions.
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Appendix 2.A Gauge transformation
Let χα and χd be arbitary functions whose supports are the lead α and the QD, respectively.
Then, the gauge transformation on the Keldysh contour is expressed as

c′
αkkk(z) = cαkkk(z)e

ieχα (z),

c̄′
αkkk(z) = c̄αkkk(z)e

−ieχα (z),

d′(z) = d(z)eieχd(z),

d̄′(z) = d̄(z)e−ieχd(z), (2.162)

and

v′α(z) = vα(z)−∂zχα(z), (2.163)
A′

0(z) = A0(z)−∂zχd(z), (2.164)
A′

α(z) = Aα(z)+(χα(z)−χd(z)). (2.165)

The gauge invariance of the tunneling part of the action (2.100) is confirmed by calculation
such as

eieA′
α c̄′

αkkkd′ = eie(Aα+χα−χd)e−ieχα c̄αkkkeieχd d

= eieAα c̄αkkkd. (2.166)

Appendix 2.B Derivation of the flow equation (2.146)
In this appendix, we derive the flow equation of the Λ-dependent effective action ΓΛ.
Straightforwardly differentiating the definition (2.143) of ΓΛ with respect to Λ, we obtain

d
dΛ

ΓΛ[⟨ψ̄⟩s,⟨ψ⟩s;A] =
d

dΛ
WΛ[ηΛ, η̄Λ;A]− d

dΛ
∆SΛ[⟨ψ̄⟩s,⟨ψ⟩s]

−
∫

C
dz
[

dη̄Λi(z)
dΛ

⟨ψi(z)⟩s + ⟨ψ̄i(z)⟩s dηΛi(z)
dΛ

]
. (2.167)

By noting that the source fields ηΛi and η̄Λi are dependent on Λ, the derivative of the
generating functional WΛ with respect to Λ leads to the equation

d
dΛ

WΛ[ηΛ, η̄Λ;A]− d
dΛ

∣∣∣∣
ηΛ,η̄Λ

WΛ[ηΛ, η̄Λ;A]

=
∫

C
dz
[

dη̄Λi(z)
dΛ

δWΛ[ηΛ, η̄Λ;A]
δ η̄Λi(z)

+
δWΛ[ηΛ, η̄Λ;A]

δηΛi(z)
dηΛi(z)

dΛ

]
=
∫

C
dz
[

dη̄Λi(z)
dΛ

⟨ψi(z)⟩s + ⟨ψ̄i(z)⟩s dηΛi(z)
dΛ

]
. (2.168)

Hence, the right-hand side of this equation are canceled with the last two terms in
Eq. (2.167). Keeping the source fields ηΛi and η̄Λi fixed, the second term of the left-
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hand side of the above equation is

d
dΛ

∣∣∣∣
ηΛ,η̄Λ

WΛ[ηΛ, η̄Λ;A]

=
1

ZΛ

∫
Dψ̄Dψ

1
h̄

d
dΛ

∆SΛ[ψ̄,ψ]exp
(

i
h̄
(S[ψ̄,ψ;A]+∆SΛ[ψ̄,ψ]+Ss[ψ̄,ψ;η , η̄ ])

)
,

=
1
h̄

∫
C

dzdz′
d

dΛ
RΛi j(z,z′)⟨ψ̄i(z)ψ j(z′)⟩

=−i
∫

C
dzdz′

dRΛii′(z,z′)
dk

δ 2WΛ[ηΛ, η̄Λ;A]
δ η̄Λi′(z′)δηΛi(z)

. (2.169)

Collecting Eqs. (2.167), (2.168), and (2.169), we can prove the flow equation (2.146).
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Chapter 3

Particle coupled to environments

In mesoscopic systems, we frequently encounter a situation where a few degrees of
freedom are considered to be coupled to one or more environments. The degrees of
freedom are not only microscopic coordinates, such as the positions of particles, but also
macroscopic variables, such as the flux through a simple LC circuit [1]. The environment
causes dissipation and fluctuation of the “particles”, invoking stochastic description of
the dynamics. Microscopic description of the damped harmonic oscillator is given by
the Caldeira-Leggett model [2]. In the path integral approach, the dissipative equation of
motion is recovered as the optimal path of the action, and the fluctuation is systematically
incorporated around the path. Remarkably, the path integral approach can even describe
non-Gaussian stochastic processes [3].

A particle coupled to an environment is often viewed from a reversed perspective:
The characteristic nature of a specific environment is probed by introducing a tracer
particle. The inverse problem to detect the full counting statistics through a mesoscopic
conductor was put forward in Ref. [4] by using a detector LC circuit, whose variance was
perturbatively evaluated to extract the information on the current noise. Later, quantum
mechanical treatment of the detector circuit was discussed to consistently assess the current
fluctuation in various setups [5–9].

The difficulty of detecting the current distribution originates from the fact that the
non-Gaussianity is characterized by rare events with exponentially small probability. A
physical intuition of the dominance of the Gaussian fluctuation can be substantiated by the
theory of Van Kampen [10]. On the other hand, new insights on non-Gaussian noise in
classical systems have been presented lately by Kanazawa et al. [11, 12]. They clarified
that a non-Gaussian Langevin equation universally appears in a classical stochastic system
which is composed of multiple environments. They have also derived an inverse formula to
infer the statistics of the non-Gaussian noise from the tracer particle. These achievements
are crucial in the context of detecting the full counting statistics.

In section 3.1, the Caldeira-Leggett model is introduced and its deterministic motion
is derived using the optimal path approximation. In section 3.2, the classical fluctuation
of the particle is systematically incorporated and analyzed based on stochastic methods.
In section 3.3, the path integral representation of stochastic processes are derived by
utilizing characteristic functionals. In section 3.4, the universality of non-Gaussian noise
is discussed.



52 Particle coupled to environments

3.1 Caldeira-Leggett model
Let us consider damping motion of a particle of mass M moving in a potential U . The
classical dynamics of the coordinate variable X is given by the damped equation of motion

MẌ + γẊ +
∂U(X)

∂X
= 0, (3.1)

with the friction coefficient γ . The coordinate X in the damped equation of motion (3.1)
can represent not only the position of a point particle but also a collective motion of
macroscopic numbers of small constituents. For example, it is known that the magnetic
flux Φ threading a superconducting interference device (SQUID) is phenomenologically
described by the same equation with the replacement X → Φ, U(X) → U(Φ), M → C,
and γ → 1/R [1]. Here, C and R represent the capacitance and the resistance, respectively.
This is a typical example of macroscopic quantum phenomena; collective behavior of
macroscopic numbers of coherent quantum particles. If we consider the harmonic potential
U(Φ) = Φ2/2L with the inductance L, Eq. (3.1) is equivalent to the circuit equation for
the RLC circuit.

What kind of quantum dissipative dynamics is expected in a system whose classical
dynamics obeys the damped equation of motion (3.1)? This question was featured by
Caldeira and Leggett [2]. They ascribed the physical mechanism of the dissipation to a
large external environment surrounding the system. The crucial assumption is that the
equilibrium state of the environment is just weakly perturbed by the motion of the system.
This allows the environment to be represented as a collection of infinitely large numbers of
harmonic oscillators which are linearly coupled to the system. Moreover, if the classical
dynamics is given by Eq. (3.1), the coupling between the system and the environment is
assumed to be bilinear in the system and bath coordinates. Another important point is
the introduction of the counter term, which compensates the frequency-dependent shift of
the potential under a physical assumption that the coupling between the system and the
environment should not modify the potential. Further considerations are given in the main
text and Appendix C in the paper by Caldeira and Leggett [2].

Keldysh action of the Caldeira-Leggett model

The action of the Caldeira-Leggett model on the Keldysh contour is given by

SCL[X ;{xα}] = Ssys[X ;{xα}]+Senv[{xα}]+Sint[X ;{xα}], (3.2)

Ssys[X ] =
∫

C
dz

[
1
2

M
(

∂X(z)
∂ z

)2

−U(X(z))

]
, (3.3)

Senv[{xα}] =
1
2 ∑

α

∫
C

dz

[
mα

(
∂xα(z)

∂ z

)2

−mαω
2
αx2

α(z)

]
, (3.4)

Sint[X ;{xα}] = ∑
α

∫
C

dz
[

cαxα(z)X(z)− c2
α

2mαω2
α

X2(z)
]
. (3.5)

The set of the coordinates {xα} describes the harmonic oscillator composing the external
environment with the parameters mα and ωα . The coupling constant between the system
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and the environment is denoted by cα . As is discussed later, these auxiliary parameters can
uniquely specify the phenomenologically given dissipation term. The partition function of
the Caldeira-Leggett model is given by

ZCL =
∫

DXDxα exp
[

i
h̄

SCL[X ;{xα}]
]
. (3.6)

The Green’s functions of the bath oscillators defined on the Keldysh contour C are
calculated in the same way as the fermionic case;

(
gK̃

α(ω) ga
α(ω)

gr
α(ω) gK

α(ω)

)
=


0

1
mα(ω2 −ω2

α − iω0+)

1
mα(ω2 −ω2

α + iω0+)
−2πicoth(β h̄ω/2)

m2
α (ω2 −ω2

α)
2

 , (3.7)

with the inverse temperature β . As the action is quadratic in the bath oscillators xα , the
degrees of freedom in the environment can be exactly traced out, resulting in the self-energy(

ΣK̃
env(ω) Σa

env(ω)
Σr

env(ω) ΣK
env(ω)

)
=

(
0 −iJ(ω)

iJ(ω) −2iJ(ω)coth(β h̄ω/2))

)
, (3.8)

with the spectral function

J(ω)≡ π

2 ∑
α

c2
α

mαωα

δ (ω −ωα). (3.9)

Here, we made an important assumption that the spectrum of the environmental harmonic
oscillators is dense enough to be considered continuous. The auxiliary parameters in-
troduced to describe the external environment, i.e. mα , ωα , and cα , are included in the
spectral function J(ω). Hence, these parameters can describe the spectral function phe-
nomenologically specified in accordance with the system of interest. We also stress that the
Keldysh component of the self-energy results from the assumption that the environment is
equilibrium at inverse temperature β . This is known as the fluctuation-dissipation relation.

The action obtained after tracing out the environmental degrees of freedom is

SCL[Xp,X s] =
∫

dt
(
−MX s(t)

∂ 2Xp(t)
∂ t2 −U− [Xp,X s]+U+ [Xp,X s]

)
− 1

2

∫
dtdt ′

[
X s(t)Σr

env(t, t
′)Xp(t ′)+Xp(t)Σa

env(t, t
′)X s(t ′)

+X s(t)ΣK
env(t, t

′)X s(t ′)
]
, (3.10)

where the physical and source components of the bosonic field are denoted by Xp ≡
(X−+X+)/2 and X s ≡ X−−X+, respectively. The external environment introduces (i)
the friction terms Σr

env and Σa
env and (ii) the fluctuation ΣK

env. If we expand the action up to
the linear order in X s, the functional integration over X s leads to the functional Dirac delta
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function requiring the equation

M
∂ 2Xp(t)

∂ t2 +
∂U [Xp]

∂Xp +
1
2

∫
dt ′
(
Σ

r
env(t, t

′)Xp(t ′)+Xp(t ′)Σa
env(t

′, t)
)
= 0. (3.11)

This leads to the classical equation of motion with the friction force. The thermal and
quantum fluctuation is systematically incorporated in the higher order terms in Xq as is
discussed in section 3.2.

Ohmic coupling

As a simple but important case, we consider the Ohmic spectral function

J(ω) = γω, (3.12)

which leads to the self-energy in the time representation:

Σ
r(a)
env (t, t ′) =± γδ (t, t ′)

∂

∂ t ′
, (3.13)

Σ
K
env(t, t

′) =− iγ
(

4
β h̄

+
2π

β 2h̄2

∫
dt ′′

1
sinh2 [πt ′′/β h̄]

)
δ (t, t ′)

+
2πiγ
β 2h̄2

1
sinh2 [π(t − t ′)/β h̄]

. (3.14)

The coefficient of the Dirac delta function of the Keldysh component is chosen to satisfy
the condition ∫

dtΣK
env(t) = Σ

K
env(ω = 0) =

−4iγ
β h̄

. (3.15)

With the aid of the retarded and the advanced self-energy (3.13), the action (3.10) becomes

SCL[Xp,X s] =
∫

dt
(
−MX s(t)

∂ 2Xp(t)
∂ t2 − γX s(t)

∂Xp(t)
∂ t

−U− [Xp,X s]+U+ [Xp,X s]

)
+

2iγ
β h̄

∫
dt

[
(X s(t))2 +

π

4β h̄

∫
dt ′

(X s(t)−X s(t ′))2

sinh2 [π(t − t ′)/β h̄]

]
, (3.16)

from which we recover the damped equation of motion (3.1) in the lowest order in X s.
Hence, the Ohmic spectral function (3.12) produces the Ohmic dissipation within the
optimal path approximation.

3.2 Classical fluctuation
In the previous section, we showed that the optimal path solution of the Caldeira-Leggett
model (3.2) up to the lowest order in X s leads to the classical damped equation of motion.
The resulting equation disregards fluctuation originating from the environment. Thermal
and quantum fluctuations, which are coded in the Keldysh component (3.14), are sys-
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tematically incorporated in the higher-order terms in X s. In this section, we consider the
fluctuation which is present in the classical limit h̄ → 0.

Partition function in the classical limit

In order to properly recover the thermal fluctuation in the classical limit, it is convenient to
rescale the source component as X s → h̄X s. Noting the relation

π

2β h̄
1

sinh2 [π(t − t ′)/β h̄]
→ δ (t − t ′), (3.17)

in the classical limit (h̄ → 0), we obtain the partition as

ZCL =
∫

DXpDX s exp
[∫

dt
(
−iX s(t)

([
M

∂ 2

∂ t2 + γ
∂

∂ t

]
Xp(t)+U ′ [Xp]

))]
× exp

[
−2γ

β

∫
dt (X s(t))2

]
=
∫

DXpDηGδ

([
M

∂ 2

∂ t2 + γ
∂

∂ t

]
Xp(t)+U ′ [Xp]−ηG(t)

)
exp
[
−β

8γ

∫
dtη2

G(t)
]
,

(3.18)

where the Gaussian noise ηG is introduced in the second line by using the Hubbard-
Stratonovich transformation

exp [−X s
νX s] =

∫
DηG exp

[
−1

4
ηGν

−1
ηG + iX s

ηG

]
. (3.19)

Stochastic differential equation

The partition function (3.18) is equivalent to the Langevin equation

M
∂ 2Xp(t)

∂ t2 + γ
∂Xp(t)

∂ t
+U ′ [Xp] = ηG(t), (3.20)

⇔ ∂

∂ t

(
Xp(t)

MV p(t)

)
=

(
V p(t)

−γV p(t)−U ′[Xp]

)
+

(
0

ηG(t)

)
, (3.21)

EEE
[
ηG(t)ηG(t ′)

]
=

2γ

β
δ (t − t ′). (3.22)

The random force ηG is uncorrelated with itself at different time and is referred to as a
white noise. Moreover, its amplitude is given by 2γ/β being consistent with the fluctuation
dissipation relation; a consequence of the equilibrium nature of the environment. The
random force ηG is called the Johnson–Nyquist noise in electronic circuits. The field-
theoretic formulation of stochastic processes was first proposed by Martin, Siggia, and
Rose [13], and later reformulated in terms of a more transparent Lagrangian method
[14–16]. The relationship with another path integral formulation proposed by Onsager and
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Machlup [17] may become clear if we obtain the action

SCL[Xp] =
iβ
8γ

∫
dt
(

M
∂ 2Xp(t)

∂ t2 + γ
∂Xp(t)

∂ t
+U ′ [Xp]

)2

, (3.23)

by the functional integration with respect to ηG in Eq. (3.18).

Free particles and trapped particles

In order to clarify the relevance of Gaussian processes to physical systems, let us consider
a classical particle in the absence of the potential U . The equations for the position and the
velocity (3.20) become

∂Xp

∂ t
=V p(t), (3.24)

∂V p

∂ t
=− γ

M
V p(t)+

γ

M
1√
γβ

ξ (t), (3.25)

with EEE[ξ (t)ξ (t ′)] = 2δ (t − t ′). The equation for the velocity (3.25) is called the Ornstein-
Uhlenbeck process with the time constant τ = M/γ and the noise intensity D = 1/γβ . The
solution is given by

V p(t) =V p(0)e−t/τ +

√
D

τ

∫ t

0
dt ′e−(t−t ′)/τ

ξ (t ′). (3.26)

If we focus on the time much later than the time constant (t ≫ τ), the initial value is
irrelevant and the lower limit of integral can be extended;

V p(t) =

√
D

τ

∫ t

−∞

dt ′e−(t−t ′)/τ
ξ (t ′). (3.27)

Then, the stationary value of the velocity is zero (EEE[V p(t ≫ τ)] = 0), while the correlation
of the velocity is given by

EEE
[
V p(t)V p(t ′)

]
=

D
2τ

e−|t−t ′|/τ , (3.28)

which reduces to the white noise Dδ (t− t ′) in the limit τ → 0. The technique of tracing out
the variable which rapidly relaxes to its stationary value is called the adiabatic elimination.
The resulting equation for the position describes the diffusive motion with variance growing
proportional to the elapsed time t.

In the presence of the harmonic potential U [Xp] = k(Xp − X0)
2/2, the stochastic

differential equation for the velocity is modified as

M
∂V p

∂ t
=−γV p(t)− k(Xp(t)−X0)+

√
γ

β
ξ (t). (3.29)

Here, we assume that the friction coefficient γ is much larger than the characteristic energy
scales governing the internal dynamics of the particle. In the overdamped regime, the
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velocity reaches its stationary value instantaneously. Using the value in the equation of the
position, we find it obeying the Ornstein-Uhlenbeck process

∂Xp

∂ t
=−k

γ
(Xp(t)−X0)+

1√
γβ

ξ (t). (3.30)

In the long-time limit, the particle is trapped around the minimum of the harmonic potential.
Such a process is called mean-reverting. In striking contrast to the free particle case, there
exists a stationary distribution with the bounded variance 1/kβ . This is consistent with the
equipartition theorem EEE[k (Xp −X0)

2 /2] = 1/2β .

3.3 Path integral representation of stochastic processes
In the previous sections, probabilistic equations of a particle connected to an equilibrium
environment were obtained by incorporating the fluctuation around the optimal path of the
Caldeira-Leggett action. As was clear from the derivation, this argument can be inverted
to reformulate a given stochastic process in terms of the path integral [13–17]. The path
integral approach has an advantage of being able to proceed analytic calculations even for
non-Gaussian and non-Markovian processes [3, 18]. It also provides a transparent connec-
tion between the stochastic differential equations and the deterministic time-evolution of
the probability density function (PDF) such as the Fokker-Planck equation and the master
equation.

In subsection 3.3.1, we provide a path integral representation of general stochastic
processes using the characteristic functional defined on the Keldysh contour. In subsection
3.3.2, the Gaussian process is discussed including the important cases with the white
and colored noise. In subsection 3.3.3, the Poisson processes are formulated using the
field-theoretic technique.

3.3.1 Characteristic functional for stochastic processes
Let us consider the functional representation of a stochastic process Xp(t) obeying the
stochastic differential equation

dXp(t)
dt

= f (Xp)+η(t). (3.31)

Here, the random noise η(t) is another stochastic process. The stochastic differential
equation (3.31) is interpreted in the Ito sense in order to make it consistent with the
discretized Keldysh contour used in the previous sections.

The stochastic process Xp(t) can be regarded as the degree of freedom of a detector
perturbed by a system of interest. The realization of the random perturbation η(t) carries
fundamental information of the system. From this viewpoint, detecting the fluctuation
in the system corresponds to inferring the statistical property of η(t) from the dynamics
of Xp(t). Although the statistics of η is assumed to be given in Eq. (3.31), they should
be specified according to a microscopic calculation. This is one of the main subjects in
chapter 4.
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The expectation value of the random variable O[Xp] averaged over every realization of
the random noise is given in the path integral form as

EEE[O[Xp]] = EEE
[∫

DXpO[Xp]δ

(
dXp(t)

dt
− f (Xp)−η(t)

)]
. (3.32)

Here, the Jacoiban associated with the change of variables in the delta functional is proven
to be unity by virtue of the Ito regularization [19]. The expression is further computed as

EEE[O[Xp]] = EEE
[∫

DXpDX sO[Xp]exp
[
−i
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)−η(t)
)]]

=
∫

DXpDX sO[Xp]χ[X s]exp
[
−i
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)]
, (3.33)

where the statistics of the random noise is determined by the characteristic functional

χ[X s]≡ EEE
[

exp
(

i
∫

dtX s(t)η(t)
)]

. (3.34)

The action giving the expectation value (3.33) is

S[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
− i ln χ[X s]. (3.35)

In the following, we provide the characteristic functional of fundamental stochastic pro-
cesses such as the Gaussian processes and the Poisson processes.

3.3.2 Gaussian processes
One of the most typical stochastic processes found in various applications is the Gaussian
process, which is characterized by the mean function EEE[η(t)] = µ(t) and the noise kernel
EEE[η(t)η(t ′)] = 2ν(t, t ′). As the mean function can be incorporated in a deterministic force
f (Xp), the stochastic property of the Gaussian process is determined by the noise kernel
ν(t, t ′). The characteristic functional of the Gaussian process is given by

χG[X s] = exp
[
−
∫

dsds′X s(s)ν(s,s′)X s(s′)
]
. (3.36)

Substituting Eq. (3.36) for the characteristic function in Eq. (3.33), we read the action

SG[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
+ i
∫

dsds′X s(s)ν(s,s′)X s(s′), (3.37)

which is the Keldysh action for the stochastic differential equation (3.31) with the random
noise obeying the Gaussian process with the noise kernel ν(t, t ′). An important point is
that the noise kernel describes an arbitrary colored Gaussian noise.

It is readily found that the action (3.37) is closely related to the Caldeira-Leggett
model (3.10). In the latter context, the time-nonlocal noise originates from the quantum
fluctuation in Eq. (3.14). This implies that the quantum dynamics can be mapped to
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“classical” stochastic processes. We employ this correspondence in chapter 4 to analyze
the quantum fluctuation in the detector.

Gaussian process with white noise

The Langevin equation with the white Gaussian noise is recovered by choosing the noise
kernel as

ν(t, t ′) = Dδ (t − t ′), (3.38)

with the noise intensity D. The characteristic functional is simply given by

χWG[X s] = exp
[
−D

∫
dt (X s(t))2

]
, (3.39)

from which the action reads

SWG[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
+ iD

∫
ds(X s(s))2 . (3.40)

The Gaussian Langevin equation has a corresponding Fokker-Planck equation

∂

∂ t
P(Xp, t) =

∂

∂Xp

[
− f [Xp]+D

∂

∂Xp

]
P(Xp, t). (3.41)

In the following, we provide a field-theoretic derivation of the Fokker-Planck equation
(3.41) by following the transfer matrix method [19]. The starting point is the action (3.40),
which is understood in the Ito representation

SWG [Xp,X s] = ∑
j

[
−X s

j

(
Xp

j −Xp
j−1 −δt f [Xp

j−1]
)
+ iDδt

(
X s

j
)2
]
. (3.42)

The time stride is denoted by δt , and the coordinate variables are abbreviated as Xp(q)
j ≡

Xp(q)( jδt). The probability density function (PDF) at the jth step is defined as

P j ≡ Π
j−1
i′=1Π

j
i′′=1

∫
DXp

i′DX s
i′′ exp(iSWG [Xp,X s]) . (3.43)

The PDF P j is related up to the first order in δt with P j−1 as

P j ≃
∫

DδXpDX s [1+ iδtX s f [X −δXp]]

× exp
[
−1

2
(

δXp X s )( 0 i
i 2Dδt

)(
δXp

X s

)]
P j−1, (3.44)
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with X ≡ Xp
j , δXp ≡ Xp

j −Xp
j−1, and X s ≡ X s

j . The PDF P j−1 can be further expanded as

P j−1 = P[X −δXp, t j −δt ]

≃
∞

∑
m=0

(−δXp)n

n!
∂ nP j

∂Xn −δt
∂P j

∂ t
. (3.45)

The functional integration with the Gaussian weight in Eq. (3.44) can be performed
term by term. If we denote the expectation value of the variable O by ⟨O⟩, the two-point
correlation functions are given by

⟨δXp
δXp⟩= 2Dδt , (3.46)

⟨δXpX s⟩= ⟨X s
δXp⟩=−i, (3.47)

⟨X sX s⟩= 0. (3.48)

The two terms in Eq. (3.44) are evaluated up to the first order in δt using the relations

⟨P j−1⟩ ≃ P j +
1
2
⟨δXp

δXp⟩
∂ 2P j

∂X2 −δt
∂P j

∂ t

≃P j +Dδt
∂ 2P j

∂X2 −δt
∂P j

∂ t
, (3.49)

and

⟨X s f [X −δXp]P j−1⟩ ≃ −⟨X s
δXp⟩ f [X ]

∂P j

∂X
−⟨X s

δXp⟩ f [X ]P j

≃ i
∂

∂X

(
f [X ]P j

)
. (3.50)

By taking the limit δt → 0, Eq. (3.44) is reduced to the Fokker-Planck equation (3.41).

Ornstein-Uhlenbeck process

Another important situation is the noise η(t) being the Ornstein-Uhlenbeck process,

dη(t)
dt

=
1
τ
[−η(t)+ξ (t)] , (3.51)

EEE[ξ (t)ξ (t ′)] = 2δ (t − t ′), (3.52)

with the time constant τ . The correlation function of the noise is exactly computed, and it
corresponds to the exponentially correlated colored noise,

EEE[η(t)η(t ′)] = 2ν(t, t ′) =
2
τ

e−|t−t ′|/τ . (3.53)

Such a noise is generated by filtering a white Gaussian noise with an overdamped harmonic
oscillator [see section 3.2]. The action for the stochastic process with the Ornstein-
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Uhlenbeck noise is obtained as

SOU[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
+

i
τ

∫
dsds′X s(s)e−|s−s′|/τX s(s′).

(3.54)

Unfortunately, it is not possible to determine the PDF of the stochastic process Xp described
by the action (3.54). However, it is known that an effective Fokker-Planck equation can be
derived for a small correlation time τ [19].

In the following, we perturbatively analyze the PDF for the stochastic process Xp. We
note that Eqs. (3.31), (3.51), and (3.52) form coupled Markovian stochastic differential
equations for two stochastic variables Xp and η . If we denote the joint PDF by P(Xp,η , t),
the Fokker-Planck equation is obtained as

∂

∂ t
P(Xp,η , t) =− ∂

∂Xp (− f [Xp]+η(t))P(Xp, t)+
∂

∂η

[
1
τ

η +
1
τ2

∂

∂η

]
P(Xp, t).

(3.55)

We consider a perturbative solution of Eq. (3.55) in the form

P(Xp,η , t) = e−
η2τ

2 [P(Xp, t)+ηN (Xp, t)] . (3.56)

Hereafter, we suppress the arguments of P(Xp, t) and N (Xp, t) for simplicity. Substituting
the form in Eq. (3.55), we obtain

∂

∂ t
[P+ηN ] =

∂

∂Xp [ f [X
p]P]− ∂

∂XpNη
2 − ∂

∂Xp (P− f [Xp]N )η − 1
τ
Nη . (3.57)

Integrating Eq. (3.57) in terms of η with the Gaussian weight e−
η2τ

2 , we obtain the equation
for P as

∂

∂ t
P =

∂

∂Xp [ f [X
p]P]− 1

τ

∂

∂XpN . (3.58)

If we integrate Eq. (3.57) after multiplying it by η , we obtain the equation

∂

∂ t
N =− ∂

∂Xp [P− f [Xp]N ]− 1
τ
N . (3.59)

If the correlation time τ is much smaller than the other characteristic time scales of the
stochastic process, ∂

∂ tN and f [Xp]N are much smaller than N/τ . By neglecting these
terms, we find the relation 1

τ
N = − ∂

∂XpP . Then, Eq. (3.58) is reduced to the ordinary
Fokker-Planck equation

∂

∂ t
P =

∂

∂Xp [ f [X
p]P]+

∂

∂XpP, (3.60)

up to the first order in τ .
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3.3.3 Poisson processes
The Poisson process is an important non-Gaussian stochastic model found in various
phenomena such as electron emission from a cathode in a vacuum tube [20]. We denote the
number of events which have occurred during the interval (t ′, t) by N(t, t ′). Then, N(t, t ′)
is a Poisson process with rate parameter λ > 0 if it obeys a Poisson distribution with the
rate parameter λ (t − t ′);

P[N(t, t ′) = n] =
λ n(t − t ′)n

n!
e−λ (t−t ′). (3.61)

The probability of the occurrence of the event during an infinitesimal time dt is

P[N(t +dt, t) = 0] = 1−λdt, (3.62)
P[N(t +dt, t) = 1] = λdt, (3.63)
P[N(t +dt, t) = n ≥ 2] = 0, (3.64)

up to the first order in dt. Hence, the Poisson process can be viewed as a pure birth
process: The events may occur in the infinitesimal time interval dt with the probability
λdt independently of events outside the interval.

Shot noise with a single amplitude

We consider a particle which is perturbed by a delta pulse at each event obeying a Poisson
process. The shot noise is the sequence of pulses,

η(t) =
N(t)

∑
i=1

δ (t − ti), (3.65)

where the events have occurred at times t1, t2, · · · , tN(t). In order to derive the expression
of the characteristic functional (3.34) for the noise, we introduce the auxiliary function

χ
t
P[X

s] = EEE
[

exp
[

i
∫ t

−∞

dt ′X s(t ′)η(t ′)
]]

, (3.66)

which is related to the characteristic functional as χP[X s] = χ t=∞
P [X s]. It satisfies the

relation

χ
t+dt
P [X s] =

(
(1−λdt)+λdteiX s(t)

)
χ

t
P[X

s], (3.67)

which leads to the differential equation

d ln χ t
P[X

s]

dt
= λ

(
eiX s(t)−1

)
. (3.68)

By integrating the equation, the characteristic functional of the Poisson noise is obtained as

χP[X s] = exp
[

λ

∫
dt
(

eiX s(t)−1
)]

. (3.69)
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Shot noise with a random amplitude

The stochastic process for the Poisson noise is slightly generalized by considering that the
amplitude of each noise is also a random variable with the probability density function
w(a). This variant of a Poisson process is called the compound Poisson process. The
random noise is written as

η(t) =
N(t)

∑
i=1

aiδ (t − ti), (3.70)

where ai is the jump size of the particle at ith event that has occurred at ti. The characteristic
functional of the compound Poisson noise is obtained in an analogous way as

χCP[X s] = exp
[

λ

∫
dt
(∫

da w(a)eiaX s(t)−1
)]

= exp
[

λ

∫
dt (χJ[X s(t)]−1)

]
, (3.71)

where the characteristic functional associated with the jump is introduced as

χJ[X s(t)]≡
∫

da w(a)eiaX s(t). (3.72)

The compound Poisson process is reduced to the Poisson process when w(a) = δ (a−1).
The Keldysh action associated with the compound Poisson process is

S[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
− iλ

∫
dt (χJ[X s(t)]−1) . (3.73)

The (compound) Poisson process is a typical non-Gaussian process found in various
applications. The non-Gaussian statistics of the noise is characterized by the higher-order
terms in X s in Eq. (3.73). If the characteristic functional for the jump is expanded up to
the second order in X s as

χJ[X s(t)]−1 = iX s(t)EEE[a]− (X s(t))2

2
EEE[a2], (3.74)

the action is reduced to the Gaussian one (3.37) with the modified deterministic force
f [Xp]+λEEE[a] and the white noise of the intensity λEEE[a2]. A further generalization for an
arbitrarily shaped pulse is discussed in Ref. [3].
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Gaussian and shot noise

We consider a stochastic process driven by noise which consists of the white Gaussian and
shot noise as

ηGS(t) = ηWG(t)+ηCP(t), (3.75)

EEE
[
ηWG(t)ηWG(t ′)

]
= 2Dδ (t − t ′), (3.76)

ηCP =
N(t)

∑
i=1

aiδ (t − ti). (3.77)

Here, D is the intensity of the white Gaussian noise, and the shot noise, whose amplitude
ai is characterized by the jump-size distribution w(a), occurs at ti according to a Poisson
process with a rate parameter λ . The characteristic functional of the additive noise ηGS(t)
is given by the product of that of the white Gaussian noise (3.39) and the shot noise (3.71);

χGS[X s] = χWG[X s]χCP[X s]. (3.78)

Then, the action is

SGS[Xp,X s] =−
∫

dtX s(t)
(

dXp(t)
dt

− f (Xp)

)
+ iD

∫
ds(X s(s))2

− iλ
∫

dt (χJ[X s(t)]−1) . (3.79)

In the absence of the shot noise, the time-evolution of the PDF P(Xp, t) is described by
the Fokker-Planck equation (3.41). The Poisson noise introduces jump processes, whose
dynamics is described by the master equation. In the case of the compound Poisson noise
(3.73), the master equation is

∂P(Xp, t)
∂ t

=
∂

∂Xp

[
− f [Xp]+D

∂

∂Xp

]
P(Xp, t)

+λP

∫
da w(a)(P(Xp −a, t)−P(Xp, t)) . (3.80)

In the following, we provide a field-theoretic derivation of the master equation (3.80).
The strategy is closely analogous to the derivation for the Fokker-Planck equation discussed
in subsection 3.3.2. Hereafter, we use the same notation used in Eqs. (3.42) and (3.44).
The starting point is the discretized action

SGS [Xp,X s] = ∑
j

[
−X s

j

(
Xp

j −Xp
j−1 −δt f [Xp

j−1]
)
+ iDδt

(
X s

j
)2

−iλδt

∫
da w(a)

(
eiaX s

j −1
)]

. (3.81)
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The PDF (3.43) at the jth step is

P j ≃
∫

DδXpDX s
[

1+ iδtX s f [X −δXp]+λδt

∫
da w(a)

(
eiaX s

j −1
)]

× exp
[
−1

2
(

δXp X s )( 0 i
i 2Dδt

)(
δXp

X s

)]
P j−1. (3.82)

The crucial difference is that we need to evaluate the higher order-terms in X s to describe
the non-Gaussian nature. With the aid of the correlation functions (3.46), (3.47), and (3.48),
the non-Gaussian term in Eq. (3.82) can be evaluated as

δt⟨eiaX s
j −1⟩= δt

∞

∑
k=1

∞

∑
l=0

(ia)k (−1)l

k!l!
⟨(X s)k (δXp)l⟩

∂ lP j

∂X l

≃ δt

∞

∑
k=1

(−a)k

k!
∂ kP j

∂Xk

≃ δt

(
e−a ∂

∂ϕ −1
)
P j, (3.83)

up to the leading order in δt . This can be understood by noting that the cross correlation is
of order 1 while the auto-correlation vanishes or is of a higher order in δt . This requires
that the physical components to be contracted with the source ones. The number of the
combination of contraction is l!, which is canceled with the denominator. Considering the
Fokker-Planck term derived before, we can obtain the master equation (3.80) in the limit
δt → 0.

3.4 Non-Gaussian noise in classical systems
The Gaussian Langevin equation is frequently used as a phenomenological model of
fluctuating systems. For instance, the LC circuit with a dissipative environment is well
described by the Langevin equation in the high-temperature limit [21]. The universality
of the Langevin equation is established by the system-size expansion developed by Van
Kampen [10]. On the other hand, the non-Gaussianity of fluctuation is widely recognized
in various nonequilibrium systems such as electronic circuits [22, 23], granular particles
[24–26], nanomagnets [27], particles in dense collides [28], and particles with long-range
interactions [29]. Recently, the condition for the emergence of the non-Gaussianity and
the asymptotic derivation of the non-Gaussian Langevin equation have been given by
Kanazawa et al. [11, 12]. In this section, we review the Gaussian and non-Gaussian
Langevin equations from a microscopic point of view.

3.4.1 Van Kampen’s system size expansion
We review Van Kampen’s theory for the Gaussian Langevin equation [10]. Let us consider
dynamics of a stochastic variable v̂, whose probability density function (PDF) is denoted
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by P(v, t)≡ P[v̂(t) = v]. If the variable v̂ is Markovian, the PDF obeys the master equation

∂P(v, t)
∂ t

=
∫

∞

−∞

dy [P(v− y, t)W (v− y;y)−P(v, t)W (v;y)] , (3.84)

where W (v;y) is the transition rate from v with the jump size y. In general, the transition
rate depends on the microscopic detail of the jump events. Here, we make a critical
assumption that the transition rate is characterized by the typical jump size ε ≪ v and the
ε-independent transition probability W̄ (v;Y) with the scaled jump size Y ≡ y/ε . More
precisely, the scaled transition rate, which is defined by the relation

W̄ (v;Y)dY ≡W (v;y)dy (3.85)

⇔W (v;y) =
1
ε

W̄
(

v;
y
ε

)
, (3.86)

no longer depends on the small parameter ε . This assumption can be viewed as a separation
of the characteristic scales. The Kramers-Moyal expansion of the master equation (3.84) is
given by

∂P(v, t)
∂ t

=
∫

∞

−∞

dY [P(v− εY, t)W̄ (v− εY;Y)−P(v, t)W̄ (v;Y)] (3.87)

=
∞

∑
n=1

(−ε)n

n!
∂ n

∂vn [αn(v)P(v, t)] , (3.88)

with the Kramers-Moyal coefficient

αn(v)≡
∫

∞

−∞

dYW̄ (v;Y)Yn. (3.89)

With the rescaled time τ ≡ εt to see the coarse-grained dynamics, the master equation is
approximated up to the first order as

∂P(v, t)
∂τ

=− ∂

∂v
[α1(v)P(v, t)] , (3.90)

which is identical to the deterministic equation for v. For simplicity, we assume that the
v̂ is stable around v = 0. If we denote the kth coefficient in the Taylor expansion of the
Kramers-Moyal by α

(k)
n (v), the stability requires the relations

α
(0)
1 = 0, (3.91)

α
(1)
1 =−γ < 0. (3.92)

The fluctuation around the stationary point is incorporated in the higher-order terms in the
master equation

∂P(v, t)
∂τ

=
∂

∂v

[
γvP(v, t)−

∞

∑
k=2

αk
1

k!
vkP(v, t)

]
+ ε

∞

∑
n=2

∞

∑
k=0

(−ε)n−2

n!k!
α
(k)
n

∂ n

∂vn

[
vkP(v, t)

]
.

(3.93)
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We rescale the stochastic variable as V = v/
√

ε so that the second term describing the
fluctuation has a finite contribution in the limit ε → 0. With the variable α

(0)
2 = 2γT and

the rescaled PDF P(V,τ), the master equation is reduced to

∂P(V,τ)
∂τ

= γ
∂

∂V
[VP(V,τ)]+ γT

∂ 2

∂V 2P(V,τ). (3.94)

From the correspondence between the stochastic differential equation and the deterministic
equation for the PDF, the Fokker-Planck equation (3.94) is found to be identical to the
Gaussian Langevin equation

∂V (τ)

∂τ
=−γV (τ)+

√
γT η(τ), (3.95)

with the white noise EEE[η(τ)η(τ ′)] = 2δ (τ − τ ′).
The consequence of Van Kampen’s theory is general and powerful because it justifies

phenomenological description of various fluctuating systems in terms of the Gaussian
Langevin equation. From this viewpoint, it seems almost impossible to observe the non-
Gaussian fluctuation, which we are interested in. However, it is not the case. In the
next subsection, we review the universality of a non-Gaussian Langevin equation and the
information which can be extracted from the distribution of the tracer particle according to
the recent paper by Kanazawa et al. [11, 12].

3.4.2 Non-Gaussian Langevin equation
What is crucial in Van Kampen’s theory is that the transition rate is characterized by a single
parameter ε . Kanazawa et al. considered a particle coupled to multiple environments,
where the amplitudes of the noise are naturally characterized by several independent
parameters [11, 12]. The coexistence of thermal and athermal environments is crucial
for the non-Gaussian dynamics; otherwise the noise is reduced to be Gaussian according
to Van Kampen’s theory. Furthermore, the sensitivity of the stochastic particle to the
non-Gaussian noise allows us to probe the athermal environment by carefully considering
the asymptotic behavior of the particle.

Let us consider a particle coupled to thermal and athermal environments (Fig. 3.1(a)).
The coupling to the thermal environment at temperature T introduces the friction coefficient
γ and the thermal noise with the intensity γT . The jump process induced by the athermal
environment is characterized by the transition rate Wε(v;y) from velocity v with the jump
size y. Here, the typical jump size is denoted by ε . The Markov dynamics of the particle
velocity v is described by the PDF P(v, t)≡ P[v̂(t) = v] obeying the master equation

∂P(v, t)
∂ t

= γ
∂

∂v

[
v+T

∂

∂v

]
P(v, t)+

∫
∞

−∞

dy [P(v− y, t)Wε(v− y;y)−P(v, t)Wε(v;y)] .

(3.96)

The first term is the Fokker-Planck term originating from the thermal environment. As with
the case in Van Kampen’s theory, we assume that the time scale of the athermal environment
is well separated from that of the system. Then, we can define the ε-independent scaled
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Thermal

Athermal

(a) (b) (c)

Fig. 3.1 (a) Particle coupled to both the thermal and athermal environments. (b) Typical
time evolution of the particle velocity v in the presence of both the thermal and non-
Gaussian noise. (c) Steady-state probability density function (PDF) with the strong
non-Gaussianity.

transition rate W̄ (v;Y) with Y ≡ y/ε from the scaling assumption

W̄ (v;Y)dY ≡Wε(v;y)dy (3.97)

⇔Wε(v;y) =
1
ε

W̄
(

v;
y
ε

)
. (3.98)

In the following discussion, we derive the non-Gaussian Langevin equation under the
three assumptions [11, 12]:

1. Small noise
The typical jump size ε is much smaller than v.

2. Strong dissipation due to the thermal environment
The friction coefficient γ is independent of ε .

3. Coexistence of thermal and athermal noises
There exists an ε-independent parameter T such that T = T ε2.

We introduce the scaled variable V ≡ v/ε and the scaled PDF P(V, t)≡ εP(v, t). Under
the three assumptions, the master equation (3.96) is written as

∂P(V, t)
∂ t

=γ
∂

∂V

[
V+T ∂

∂V

]
P(V, t)

+
∞

∑
n=0

εn

n!

∫
∞

−∞

dYW̄ (n)(Y) [P(V −Y, t)(V −Y)n −P(V, t)Vn] , (3.99)

with the expansion

W̄ (εV;Y)≡
∞

∑
n=0

εn

n!
W̄ (n)(Y)Vn. (3.100)



3.4 Non-Gaussian noise in classical systems 69

In the small-noise limit ε → 0, the master equation is reduced to

∂P(V, t)
∂ t

=γ
∂

∂V

[
V+T ∂

∂V

]
P(V, t)+

∫
∞

−∞

dYW(Y) [P(V −Y, t)−P(V, t)] , (3.101)

with the scaled transition rate W(Y) ≡ W̄ (0)(Y). The jump processes described by the
scaled transition rate W(Y) are Markovian and no longer dependent on the state V because
the environmental correlation vanishes in this limit. Moreover, the dissipation due to the
friction term is dominantly induced by the thermal environment.

The steady-state PDF PSS(V)≡ limt→∞P(V, t) of the master equation (3.101) has been
already known in the previous work [11, 12]. The Fourier transform of the steady-state
PDF P̃SS(λ )≡

∫
dVeiλVPSS(V) is solved as

P̃SS(λ ) = exp
[∫

λ

0
ds
(∫

dY W(Y)
eisY −1

γs
−T s

)]
. (3.102)

Moreover, the inverse formula to achieve the transition rate W(Y) from the steady-state
PDF P̃SS(λ ) can be derived as

W(Y) =
∫ dλ

2π
e−iλY

[
λ
∗+ γT λ

2 + γλ
d

dλ
ln P̃SS(λ )

]
, (3.103)

with the intensity λ ∗ =
∫

dYW(Y).
Employing the correspondence discussed in the section 3.3, we obtain the stochastic

differential equation which corresponds to the master equation (3.101) as

dV̂
dt

=−γV̂+
√

γT ηT(t)+ηNG(t), (3.104)

with the white Gaussian noise ηT(t) with EEE[ηT(t)ηT(t ′)] = 2δ (t−t ′) and the non-Gaussian
noise ηNG(t) whose statistics is determined by the characteristic functional

χNG[X s] = exp
[∫

dt
∫

dY W(Y)
(

eiYX s(t)−1
)]

. (3.105)

Once the transition rate W(Y) is given, we can perform numerical simulation of the
non-Gaussian Langevin equation (3.104). Typical trajectories of the velocity obtained by
solving Eq. (3.104) are shown in Fig. 3.1(b). The non-Gaussian noise induces the jumps,
which are subsequently decayed due to the thermal dissipation. Non-Gaussianity is clearly
found in the steady-state PDF shown in Fig. 3.1(c).

The universality of the non-Gaussian Langevin equation is crucial in the context of the
full counting statistics because it justifies the observability of the higher cumulants of the
current through a conductor. However, there remains some points to be clarified in order
to exploit the insights for the full counting statistics. First, it has not yet been clarified
what is the transition rate associated with the electron transport processes. It requires a
theoretical scheme to determine the transition rate from a microscopic description of the
mesoscopic conductor. Second, the above discussion is limited to the classical regime
while various novel phenomena of the current fluctuation are expected in the quantum
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regime. In chapter 4, we address these issues to substantiate the fundamental part of the
full counting statistics.
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Chapter 4

Detection scheme of non-Gaussian
fluctuation in mesoscopic conductors

Nonequilibrium fluctuation in mesoscopic conductors has been intensively studied in both
classical and quantum regimes [1, 2]. Current distribution provides exclusive information
on microscopic transport processes in the mesoscopic conductors [3, 4]. Owing to the rapid
progress in nanotechnology, it becomes realistic to address the current fluctuation beyond
the Gaussian one [5–7]. In the classical regime, it is experimentally possible to count
the number of electrons which pass through a conductor [8, 9]. The achieved histogram
completely characterizes the nonequilibrium transport. The current distribution elucidates
the fundamental aspects of the nonequilibrium properties such as the fluctuation theorem
[10–12].

In general, it requires a sophisticated scheme to measure current fluctuation compared
with the conductance measurement. The fluctuation in small systems is sensitively affected
by their environments including its detector [12–18]. This is not just of theoretical interest
because recent technology enables us to fabricate electronic nanostructures. In particular,
on-chip devices are promising arenas to investigate the non-Gaussian noise in a well
controlled manner [19–30]. So far, it has been proposed to measure the current fluctuation
by using on-chip devices such as quantum point contacts [8, 9], double quantum dots
[19, 21], Josephson junctions [25, 26, 31, 32], LC circuits [33–35], and RLC circuits
[36, 37]. As has been reviewed in section 1.4, detailed analysis of the detector circuit
is indispensable to qualitatively explain the experimental data obtained in the classical
tunneling regime [12]. It is also expected that elaborate description of the detector is
essential to understand the results for quantum coherent conductors [11].

In the classical regime, the detector circuit of the current fluctuation can be understood
as a tracer particle under non-Gaussian noises [18, 33, 34]. A coupled mesoscopic conduc-
tor works as an athermal environment for the detector due to the nonequilibrium nature of
the system. In section 3.4, we have reviewed the universal appearance of the non-Gaussian
Langevin equation in such a system [38, 39]. The results are useful in that they indicate
a complete connection between the dynamics of the detector and the statistical property
of the non-Gaussian noise. However, there is still a gap between our insights into the
non-Gaussianity in the classical [38–40] and quantum [3, 4] systems because they have
been investigated separately so far. The previous works on quantum conductors [34, 36]
have related the second and third cumulants of the current to those of the detector degrees
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Athermal

Thermal

Fig. 4.1 Schematic of a QPC inductively coupled to a detector LC circuit. The flux through
the LC circuit can be considered as the position of a harmonic oscillator attached to both
the thermal and athermal environments.

of freedom based on a perturbative approach. Still, it is an open question whether and
how the detector circuit can characterize all the cumulants of the current. What remains
unclear to use the insights obtained in the classical systems is the microscopic derivation
of the non-Gaussian statistics of the noise. It is also an important next step to describe the
quantum dynamics of the detector circuit. Indeed, the quantum nature of the effective LC
circuit was reported in the context of the Josephson qubit [41].

In this chapter, we study a detection scheme of the current fluctuation in mesoscopic
conductors in the classical-quantum crossover regime. In order to proceed to a concrete
discussion, we consider that the detector is described by a dissipative LC circuit, which
is an effective model of the Josephson junction [41, 42]: a typical on-chip device used
in various experiments [26, 27, 41–46]. As a simple and generic setup, we consider the
detection of the current fluctuation in a quantum point contact (QPC). The LC circuit is
subject to the fluctuation generated by the nonequilibrium transport through the QPC [18].
The problem can be interpreted as quantum Brownian motion driven by a non-Gaussian
noise in terms of the correspondence between mechanical systems and electronic circuits
[47]. We develop a stochastic method for describing the quantum dynamics of the detector
circuit, and establish the one-to-one correspondence between the current distribution in
the mesoscopic conductor and the steady-state probability density function (PDF) of the
detector degrees of freedom.

This chapter is organized as follows. In Sec. 4.1, we give a microscopic description
of the dissipative LC circuit coupled to the QPC based on the Keldysh formalism, and
simplify the model by assuming the separation of the time scales of the subsystems. In
Sec. 4.2, the dynamics of the coupled system is formulated based on a stochastic method.
In Sec. 4.3, the inverse formula to infer the current distribution from the steady-state PDF
of the flux in the LC circuit is extended to the quasiclassical regime by solving the master
equation. In Sec. 4.4, the effect of the quantum correction on estimating the statistics of
the non-Gaussian noise is numerically evaluated. We summarize the results in Sec. 4.5.
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4.1 Model

4.1.1 Detector LC circuit coupled to a quantum point contact
We provide a microscopic description of a dissipative LC circuit coupled to a QPC (Fig. 4.1)
based on the Keldysh formalism [see section 2.1].

Detector LC circuit

The detector LC circuit is composed of an inductance L, a capacitance C, and a resistor
with admittance Y (ω). In realistic situations, the LC circuit is considered as an effective
model of a SQUID device, which is frequently utilized as an on-chip detector. The basic
variable of the LC circuit is the flux Φ through the inductor. If we denote the voltage
across the inductor by V̂ , the flux is defined as its time integral as Φ(t) =

∫ t dt ′V̂ (t ′). In
the absence of the resistor, the Lagrangian of the LC circuit is written as

LLC =
C
2

(
∂Φ

∂ t

)2

− 1
2L

Φ
2. (4.1)

Hence, the flux Φ is an analog of the coordinate X of a particle moving in a harmonic poten-
tial. The resistance in the circuit works as a dissipative environment for the “particle”. This
completely isomorphic structure indicates that the detector LC circuit is microscopically
described by the Caldeira-Leggett model [48],

Sdet[Φ] =
1
2

∫
C

dzdz′Φ(z)G−1(z,z′)Φ(z′), (4.2)

which was discussed in section 3.1 based on the Keldysh formalism [49, 50]. The symbol∫
C denotes the integration over the Keldysh contour C, and the argument z is a combination

of the real time t and the Keldysh index ρ = ∓. The forward and backward Keldysh
contours are denoted by C− and C+, respectively.

The physical meaning becomes quite clear if we move to the rotated Keldysh basis

Sdet[Φ
p,Φs] =

∫
dtdt ′

[
Φ

s(t)
(
G−1)r

(t, t ′)Φp(t ′)+
1
2

Φ
s(t)
(
G−1)K

(t, t ′)Φs(t ′)
]
, (4.3)

with the physical component Φp ≡ (Φ−+Φ+)/2 and source components Φs ≡ Φ−−Φ+.
With the aid of the self-energy (3.8), the retarded and Keldysh Green’s functions are
obtained as (

G−1)r
(ω) =C(ω2 −Ω

2)+ iJ(ω), (4.4)(
G−1)K

(ω) = 2iJ(ω)coth(β h̄ω/2), (4.5)

with the resonant frequency Ω ≡ 1/
√

LC, the inverse temperature β , and the spectral
function

J(ω) =
σω

1+(ω/ωD)
2 , (4.6)
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which is related with the admittance Y (ω) as J(ω) = ωY (ω). Here, we assume that
the coupling is Ohmic with the conductance σ in the low-frequency regime. The high-
frequency cutoff is introduced using the Drude cutoff ωD. We note that the quantum nature
of the dissipative LC circuit is solely incorporated in the Keldysh component describing
the fluctuation due to the linearity of the equation of motion of the flux Φ [47].

Quantum point contact

The action of the quantum point contact (QPC) consists of two parts as SQPC[c̄,c;Φ] =
S0[c̄,c]+ST [c̄,c;Φ]. The first term S0 describes the conduction electrons in the leads;

S0[c̄,c] = ∑
i=L,R

∑
kkk

∫
C

dzdz′c̄ikkk(z)g
−1
ikkk (z,z′)cikkk(z

′), (4.7)

where c̄ikkk [cikkk] are the Grassmann fields for the creation [annihilation] of an electron with
the wave vector kkk and the dispersion relation εikkk for i = L,R. The bias voltage V is applied
to the leads, which are assumed to be in equilibrium at inverse temperature βQPC. The
chemical potentials for lead i = L and R are µL = εF + eV and µR = εF, respectively, with
the Fermi energy εF . The Green’s functions of lead electrons are given in Eq. (2.74) and
(2.75) with the Fermi-Dirac distribution function

fi(ω) =
1

exp [βQPC(ω −µi)]+1
, (4.8)

for lead i = L, R. The second term ST describes the tunneling between the leads, accompa-
nying an electronic excitation in the inductively coupled LC circuit [47];

ST[c̄,c;Φ] =
1
N ∑

kkk,kkk′′′

∫
C

dz
[
tLRe

ie
h̄ αΦ(z)c̄Rkkk(z)cLkkk′(z)+H.c.

]
. (4.9)

Here, the hopping amplitude between the leads and the coupling constant between the
QPC and the LC circuit are denoted by tLR and α , respectively.

As the QPC action SQPC[c̄,c;Φ] = S0[c̄,c] + ST[c̄,c;Φ] is quadratic in terms of the
conduction electrons, we can exactly integrate out the fermionic degrees of freedom in the
same calculations as are found in subsection 2.3.2. Then, the QPC action becomes

SQPC[Φ] = ih̄
∫

C
dz ln

[
1− t2

LRGLV †[Φ]GRV [Φ]
]
(z,z), (4.10)

with the vertex operator

V [Φ]≡ exp
(

ieα

h̄
Φ

)
. (4.11)



4.1 Model 77

Here, we used the abbreviation (AB)(z,z′)≡
∫

C dz′′A(z,z′′)B(z′′,z′). The Green’s function
is defined as Gi(z,z′)≡ 1

N ∑kkk gikkk(z,z′), whose retarded and Keldysh components are

Gr
i(ω) =−iπρi, (4.12)

GK
i (ω) = 2πiρi(2 fi(ω)−1), (4.13)

respectively. The density of states ρL(R) is assumed to be independent of energy for
simplicity.

Partition function

Using the actions (4.2) and (4.10), the partition function of the QPC-LC coupled system is
given only in terms of the bosonic field Φ as

Z ≡
∫

DΦexp
[

i
h̄
(Sdet[Φ]+SQPC[Φ])

]
. (4.14)

The calculation is exactly performed so far. However, it is not possible to perform the
functional integration because the QPC action SQPC[Φ] contains an infinite numbers of
non-linear terms with respect to the bosonic field Φ [see Eq. (4.10)].

4.1.2 Quasistationary approximation
Throughout the following analysis, we assume the separation of the time scales in the
subsystems: The dynamics in the QPC is much faster than that of the LC circuit. This
assumption is called the quasistationary approximation [18, 25, 51, 52]. The correlation
time of the current fluctuation in the QPC is governed by either the bias voltage V or the
inverse temperature βQPC, while the dynamics of the LC circuit is characterized by the
resonant frequency Ω and the relaxation time C/σ . If these time scales are well separated,
we are allowed to consider the intermediate time scale ∆t satisfying

min
(

h̄
eV

, h̄βQPC

)
≪ ∆t ≪ min

(
C
σ
,

1
Ω

)
. (4.15)

In the time interval of length ∆t, we can regard the flux Φ in the QPC action Eq. (4.10)
as a constant because the dynamics in the LC circuit is frozen. The action for the QPC is
written on the discretized Keldysh contour as

SQPC [Φ
p,Φs] = ih̄∑

j

∫ t j+∆t

t j

dt ′Trln
[
1− t2

LRGLτzV †[Φ j]GRV [Φ j]τz

]
(t ′, t ′), (4.16)

where Φ j denotes the constant flux Φ in the jth time interval. If we introduce the auxiliary
self-energy ΣL[Φ j]≡ t2

LRV †[Φ j]GRV [Φ j], it is written in the Keldysh space as

ΣL[Φ
s
j] = t2

LR

(
G−−

R e−
ieα

h̄ Φs
jG−+

R

e
ieα

h̄ Φs
jG+−

R G++
R

)
, (4.17)
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which has the same structure as the tunneling self-energy with the counting field (2.96).
Since ∆t is sufficiently long for the QPC dynamics, the same calculation in deriving
Eq. (2.98) from Eq. (2.95) leads to the QPC action

SQPC [Φ
s] = ih̄∆t ∑

j

∫ dω

2π
ln
[
det
(
1−GGGL(ω)τxΣΣΣL[Φ j](ω)τx

)]
(4.18)

= ih̄
∫

dt
∫ dω

2π
ln
[
1+TLR

[
fL(ω)(1− fR(ω))(e

ieα

h̄ Φs(t)−1)

+ fR(ω)(1− fL(ω))(e−
ieα

h̄ Φs(t)−1)
]]

, (4.19)

with the transmission coefficient TLR ≡ 4π2t2
LRρLρR. Thus, we find that the QPC action

has the same structure as the Levitov-Lesovik formula (1.9), which is widely known in the
full counting statistics [3].

With the action of the LC circuit Eq. (4.3) and the QPC Eq. (4.24), we obtain the
partition function

Z =
∫

DΦ
pDΦ

s exp
[

i
h̄
(Sdet[Φ

p,Φs]+SQPC[Φ
s])

]
. (4.20)

The important point is that the QPC action is no longer dependent on Φp as a consequence
of the quasi-stationary approximation. This allows a stochastic interpretation of the QPC
action as is shown in the next section. We note that the quasi-stationary approximation is
violated when the time scales of the LC circuit and QPC are comparable to each other. In
this regime, the dynamics of the whole system is closely related to the dynamical Coulomb
blockade [53].

4.2 Stochastic analysis
In this section, we provide a stochastic interpretation of the QPC-LC coupled system by
rewriting the partition function (4.20) in terms of the characteristic functionals discussed
in section 3.3. The exponential of the QPC action can be associated with the characteristic
functional of the compound Poisson process. The thermal and quantum fluctuations
originating from the dissipative environment are incorporated in the noise kernel. The
non-Gaussian Langevin equation is derived using the asymptotic scaling.

4.2.1 Characteristic functionals
Gaussian fluctuation

The Gaussian fluctuation originating from the thermal environment is described by the
quadratic term in Φs in the LC action Eq. (4.3). In order to recover the thermal fluctuation
in the classical limit [see subsection 3.2], we scale the fields as Φs(t)≡ (h̄/eγ)ϕs(s) and
Φp(t)≡ (e/CΩ)ϕp(s) with the dimensionless time s ≡ Ωt and the dimensionless friction
coefficient γ ≡ σ/CΩ. The contribution from the (Φs)2 term in the action is identical to
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the Gaussian characteristic functional (3.36)

χG[ϕ
s]≡ exp

[
−T

γ

∫
dsds′ϕs(s)ν(s− s′)ϕs(s′)

]
, (4.21)

with the dimensionless temperature T ≡C/e2β and the noise kernel

ν(s)≡ β h̄
2σΩ

∫
∞

−∞

dω

2π
J(ω)coth

(
β h̄ω

2

)
e−isω/Ω. (4.22)

Using the Ohmic spectral function with the Drude cutoff (4.6), the noise kernel becomes

ν(s) =
ωc

2
e−|s|ωc +

∞

∑
k=1

1
(k/τωc)2 −1

(
ωce−|s|ωc − k

τ
e−k|s|/τ

)
, (4.23)

where ωc ≡ ωD/Ω and τ ≡ β h̄Ω/2π are the dimensionless cutoff and the quantum-
mechanical time scale, respectively. The cutoff frequency ωD is usually assumed to
be much larger than the resonant frequency Ω (ωc ≫ 1) so that the first term on the right
hand side of Eq. (4.23) may become a Dirac delta function. The second term is the non-
Markovian quantum correction, which becomes relevant at sufficiently low temperatures
1/β of the order h̄Ω. In the classical limit (τ → 0 and ωc → ∞), the second term vanishes
and the noise kernel is solely determined by the thermal noise (T/γ)δ (s). As will be
shown later, the existence of the cutoff ωc and the exponentially decaying form of the
second term are crucial to analyze the quantum correction.

Non-Gaussian fluctuation

As was already discussed in the introduction 1.2.2, the Levitov-Lesovik formula is in-
terpreted as a compound Poisson process by introducing the transition rate Wn using the
following relations

SQPC[ϕ
s]≡−i

∞

∑
n=−∞

∫
dt Wn(e

iα
γ

nϕs(t)−1). (4.24)

Then, the contribution from the QPC action in the partition function (4.20) is given by

χNG[ϕ
s]≡ exp

[
λP

∫
ds
[∫

dy w(y)
(

eiyϕs(s)−1
)]]

, (4.25)

where we defined the rate parameter λP ≡ ∑n wn and the jump size distribution

w(y)≡ 1
λP

∞

∑
n=−∞

wnδ

(
y− nα

γ

)
, (4.26)

with the dimensionless transition rate wn ≡Wn/h̄Ω (n ∈Z). The functional χNG is identical
to the characteristic fuctional for the compound Poisson processes (3.71).



80 Detection scheme of non-Gaussian fluctuation in mesoscopic conductors

In the weak tunneling regime, dominant contributions of the non-Gaussian noise comes
from the lowest-order terms of the transition rate Eq. (4.24);

W+1 = h̄TLR

∫ dω

2π
(1− fR(ω)) fL(ω)

=
TLR

2π

eV
1− e−eV βQPC

, (4.27)

W−1 = h̄TLR

∫ dω

2π
fR(ω)(1− fL(ω)),

=
TLR

2π

eV
eeV βQPC −1

. (4.28)

The transition rate W1 (W−1) is proportional to the probability for an electron to be trans-
mitted from the left (right) lead to the right (left) one.

As the non-Gaussian characteristic functional is structurally equivalent to the cumulant
generating functional (1.9) for the QPC without the detector, the transition rate Wn is
directly related to the current fluctuations. According to the full counting statistics, the
higher-order cumulants of the current fluctuation are generated by introducing the counting
field χ . If we consider the weak-tunneling regime for simplicity, the QPC action is
expanded in terms of the counting field as

iSQPC(χ)≃
[
W+1

(
eiχ −1

)
+W−1

(
e−iχ −1

)]
= (W+1 −W−1)(iχ)+(W+1 +W−1)(iχ)2 +O(χ3). (4.29)

The current and noise through the QPC are obtained as the coefficients, which are related
to the transition rate Wn as

I =
e
h̄
(W+1 −W−1) , (4.30)

S =
e2

h̄
(W+1 +W−1) , (4.31)

respectively.

Stochastic interpretation

In the following discussions, we consider the overdamped regime (γ ≫ 1). The partition
function Eq. (4.20) is written in terms of the two characteristic functionals (4.21) and
(4.25) as

Z =
∫

Dϕ
pDϕ

s
χG[ϕ

s]χNG[ϕ
s]exp

[
i
∫

dsϕ
s(s)

(
− ∂

∂ s
− 1

γ

)
ϕ

p(s)
]
. (4.32)

In deriving the equation of motion of the LC circuit, we used the fact that the friction
kernel becomes Markovian under the assumption of the large cutoff ωc ≫ 1. The action
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for the total system is

S[ϕp,ϕs] =
∫

dsϕ
s(s)

[
− ∂

∂ s
− 1

γ

]
ϕ

p(s)+
iT
γ

∫
dsds′ϕs(s)ν(s− s′)ϕs(s′)

− iλP

∫
ds
∫

dy w(y)
(

eiyϕs(s)−1
)
. (4.33)

As the characteristic functional is the product of the Gaussian and Poissonian ones,
the “tracer particle” is considered to be driven by the two independent noises obeying the
Gaussian and Poisson statistics. The stochastic differential equation corresponding to the
action (4.33) is

∂ϕp(s)
∂ s

=−1
γ

ϕ
p(s)+

√
T
γ

ηG(s)+∑
i

yiδ (s− si), (4.34)

⟨ηG(s)ηG(s′)⟩= 2ν(s− s′). (4.35)

The statistical property of the Poisson noise, which is often referred to as shot noise, is
determined by the non-Gaussian characteristic functional χNG. There are two random
variables to determine the shot noise; a set of the arrival times {si} and the amplitudes {yi}.
The arrival time si obeys the Poisson process with a rate parameter λP. The amplitude of
the noise yi is chosen according to the jump-size distribution w(y). In our model, the noise
amplitude at each event takes the value nα/γ with the probability wn/λP.

The physical meaning of the Gaussian and shot noise is as follows. As is clear from
the derivation, the Gaussian noise is induced by the dissipative environment of the detector
circuit. In the classical limit, it is reduced to the Gaussian white noise, i.e. the thermal
noise. The non-Markovian nature of the Gaussian noise is a consequence of the quantum
nature of the environment, which is expected to be relevant at sufficiently low temperatures
[see the discussion below Eq. (4.23)]. The quantum correction to the thermal noise is
discussed later. On the other hand, the origin of the shot noise is the nonequilibrium
current through the QPC. According to Ampere’s law, the instantaneous current produces
a magnetic field, which perturbs the flux in the inductively coupled LC circuit. All the
information of the current fluctuation in the QPC is coded in the shot noise. Hence, the
detection of the current distribution is equivalent to determining the statistics of the shot
noise. This is a reminiscent of the virtual spin 1/2 galvanometer reviewed in section 1.3.
Our model is a more realistic model of the detector by taking its internal dynamics into
account. We note that the statistical property of the shot noise is decoupled from the state
of the LC circuit as a consequence of the separation of the time scales.

4.2.2 Asymptotic scaling
The detector LC circuit coupled to the QPC can be considered as a quantum particle which
is coupled to both thermal and athermal environments. As was reviewed in section 3.4,
a particle coupled to a number of environments has been studied in the previous works
[38, 39], which clarified the three conditions for the non-Gaussianity to emerge:

1. The typical jump size ε induced by the non-Gaussian noise is small.

2. The thermal friction coefficient γ does not depend on ε .
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3. The thermal noise is smaller than or of the same order as ε2.

It is straightforward to confirm these conditions in our case. The jump-size distribution
(4.26) indicates that the characteristic size of the jump is given by ε ≡ α/γ , which is
small in the regime of weak inductive coupling and large damping. The condition 1 is
satisfied if it is possible to neglect the higher-order terms in the jump-size distribution.
This holds when the transmission coefficient is small; TLR ≪ 1. The condition 2 is trivially
satisfied because the thermal friction coefficient γ is irrelevant to the QPC, i.e. the athermal
environment. The condition 3 requires the temperature T at the detector to be scaled as ε2,
allowing to define the ε-independent scaled temperature T ≡ T/ε2.

With the rescaled variables φ ≡ ϕp/ε , φ s ≡ εϕs and Y ≡ y/ε , the action (4.33) is
scaled as

S[φ ,φ s] =
∫

dsφ
s(s)

[
− ∂

∂ s
− 1

γ

]
φ(s)+

iT
γ

∫
dsds′φ s(s)ν(s− s′)φ s(s′)

− iλP

∫
ds
∫

dYW(Y)
(

eiYφ s(s)−1
)
, (4.36)

with the rescaled jump-size distribution

W(Y)≡ εw(y)

=
1

λP

∞

∑
n=−∞

wnδ (Y −n). (4.37)

This is equivalent to consider the partition function

Z =
∫

Dφ
pDφ

s
χG[φ

s]χNG[φ
s]exp

[
i
∫

dsφ
s(s)

(
− ∂

∂ s
− 1

γ

)
φ

p(s)
]
, (4.38)

with the scaled characteristic functionals

ln χG[φ
s] =−T

γ

∫
dsds′φ s(s)ν(s− s′)φ s(s′), (4.39)

ln χNG[φ
s] = λP

∫
ds
∫

dYW(Y)
(

eiYφ s(s)−1
)

=−
∫

ds
∫ dω

2πΩ
ln
[
1+TLR

[
fL(ω)(1− fR(ω))(eiφ s(s)−1)

+ fR(ω)(1− fL(ω))(e−iφ s(s)−1)
]]

. (4.40)

The corresponding Langevin equation is

∂φ(s)
∂ s

=−1
γ

φ(s)+

√
T
γ

ηG(s)+ηP(s), (4.41)

with the Gaussian noise ηG, whose statistical property is given as (4.35), and the shot noise

ηP(s) = ∑
i
Yiδ (s− si). (4.42)
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Time scale

Bath

Quantum Classical

Fig. 4.2 Time scales.

The rescaled shot-noise amplitude Yi takes an integer value with the jump-size distribution
W(Y), while the arrival time si is determined by the Poisson process with a rate parameter
λP.

4.2.3 Fluctuation theorem
The fluctuation theorem [see subsection 1.2.3 and Ref. [10] for details] imposes strict
constraints on the statistics of the shot noise. With the aid of the identity fL(ω)(1−
fR(ω)) = eeV βQPC fR(ω)(1− fL(ω)), the non-Gaussian characteristic functional (4.40)
satisfies the relation

χNG[φ
s] = χNG [−φ

s + ieV βQPC] . (4.43)

By expanding the non-Gaussian characteristic functional in terms of the transition prob-
ability, the forward and backward processes represented by the transition rate W±n are
mutually related as

Wn =W−neneV βQPC, (4.44)

for n ∈ Z. This relation is nothing but the detailed balance of the transition rate. We note
that Eq. (4.43) is a consequence of the fluctuation theorem in the QPC.

4.2.4 Quantum fluctuation
In the following, we consider the dynamics of the detector circuit away from the classical
limit. The relevant time scales are shown in Fig. 4.2. The characteristic time scale of the
detector LC circuit is determined by the resonant frequency and the decay time constant
as τdet = min(C/σ ,1/Ω). In the classical regime, the fluctuation induced by the thermal
bath can be described by the inverse temperature β . The quantum nature of the dissipative
LC circuit becomes relevant at sufficiently low temperatures such that τ = β h̄Ω/2π ̸= 0.
Here, β h̄ can be understood as the quantum-mechanical correlation time of the thermal
bath which is composed of an infinite numbers of harmonic oscillators. We note that the
QPC time scale τQPC = min(h̄/eV, h̄βQPC) is assumed to be much smaller than the other
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time scales so that the quasistationary approximation Eq. (4.15) is applicable. In addition,
we need not consider the memory effect of the friction kernel as the cutoff is sufficiently
large (ωc ≫ 1).

The quantum effect is incorporated via the second term on the right-hand side of
Eq. (4.23), whose kth term gives the contribution

T
γ

1
(k/τωc)2 −1

(
ωce−ωc|s|− k

τ
e−k|s|/τ

)
. (4.45)

The exponentially decaying colored noise is a hallmark of the Ornstein-Uhlenbeck process
discussed in section 3.3. The auxiliary variables η

µ=±
k obeying the Ornstein-Uhlenbeck

processes

∂η
µ

k (s)
∂ s

=
−η

µ

k (s)+ξ
µ

k (s)

τ
µ

k
, (4.46)

⟨ξ µ

k (s)ξ µ ′

k′ (s
′)⟩= 2δ (s− s′)δkk′δµµ ′, (4.47)

with τ
+
k ≡ 1/ωc, τ

−
k ≡ τ/k, and the Kronecker delta δkk′ and δµµ ′ , have the same statistical

properties as the fluctuation in Eq. (4.45);

⟨ηµ

k (s)η
µ ′

k′ (s
′)⟩= 1

τ
µ

k
exp
(
−|s− s′|/τ

µ

k

)
δkk′δµµ ′. (4.48)

Hence, it is possible to consider that the quantum fluctuation is decomposed into the
mutually independent auxiliary variables η

µ

k . This discussion is substantiated in the
field-theoretic treatment by applying the Hubbard-Stratonovich transformation.

The overdamped Langevin equation with the quantum correction is

∂φ(s)
∂ s

=− 1
γ

φ(s)+

√
T
γ

η0(s)+
∞

∑
k=1

√
Tk

γ

[
η
+
k (s)+ iη−

k (s)
]
+ηP(s), (4.49)

with the noise amplitude Tk = T /((k/τωc)
2 −1) the thermal noise η0 whose statistics is

given by

⟨η0(s)η0(s′)⟩= 2δ (s− s′). (4.50)

We note that the η
−
k term is pure-imaginary because the second term of Eq. (4.45) is

negative. Thus, we were able to map the quantum dynamics of the detector coupled to
the QPC into the linearly-coupled non-Gaussian Langevin equations with the auxiliary
variables.

4.3 Master equation
In this section, we perturbatively solve the stochastic equations (4.42), (4.48), (4.49), and
(4.50) by mapping them to a deterministic equation of the probability density function
(PDF), i.e. the master equation. In section 3.3, we showed that the Gaussian processes are
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described by the Fokker-Planck terms and the non-Gaussian noise introduces additional
jump processes. The master equation (3.80) for a single variable is straightforwardly
generalized to a multivariate case.

We denote the PDF 1 by P(φ ,ηηη ,s) with the flux φ , a set of the auxiliary variables ηηη ,
and the rescaled time s. The corresponding master equation is

∂P(φ ,ηηη ,s)
∂ s

=
1
γ

∂

∂φ
[φP(φ ,ηηη ,s)]+

T
γ

∂ 2P(φ ,ηηη ,s)
∂φ 2

+
∞

∑
k=1

∑
µ=±

(√
µTk

γ
η

µ

k
∂

∂φ
+

1
τ

µ

k

∂

∂η
µ

k

[
η

µ

k +
1

τ
µ

k

∂

∂η
µ

k

])
P(φ ,ηηη ,s)

+λP

∫
dYW(Y)

(
eY

∂

∂φ −1
)
P(φ ,ηηη ,s). (4.51)

The first two terms on the right-hand side of Eq. (4.51) is identical to the Fokker-Planck
equation in the classical limit. The second line, which essentially originates from the
quantum nature of the thermal environment, describes the coupling between the flux φ

and the auxiliary variables η
µ

k we sell as their diffusive motion. The last term is the
consequence of the jump processes induced by the shot noise.

The multivariate master equation Eq. (4.51) is reduced to a single-variate one using
the technique discussed in subsection 3.3.2. In this case, the conditions for the short
time constant and the positive coupling constant [50] are expressed as τ

µ

k ≪ 1 and Tk > 0
for an arbitrary natural number k ∈ N and µ = ±. The former condition leads to the
inequalities 1/ωc ≪ 1 and τ ≪ 1. The latter one further requires a cutoff frequency to
filter the quantum-mechanical energy scale (τωc < 1). Under these assumptions, we can
construct a perturbative solution from the classical limit as

P(φ ,ηηη ,s)≃exp

[
−

∞

∑
k=1

∑
µ=±

τ
µ

k

(
η

µ

k

)2

2

][
P(φ ,s)+

∞

∑
k=1

∑
µ=±

η
µ

k Nµ

k (φ ,s)

]
. (4.52)

The coupled master equations for P(φ ,s) and Nµ

k (φ ,s) are given by

∂P(φ ,s)
∂ s

=

[
1
γ

(
1+φ

∂

∂φ

)
+

T
γ

∂ 2

∂φ 2 +λP

∫
dYW(Y)

(
eY

∂

∂φ −1
)]

P(φ ,s)

+
∞

∑
k=1

∑
µ=±

1
τ

µ

k

√
µTk

γ

∂Nµ

k (φ ,s)
∂φ

, (4.53)

τ
µ

k
∂Nµ

k (φ ,s)
∂ s

=

[
1
γ

(
1+φ

∂

∂φ

)
+

T
γ

∂ 2

∂φ 2 +λP

∫
dYW(Y)

(
eY

∂

∂φ −1
)
− 1

τ
µ

k

]
Nµ

k (φ ,s)

+

√
µTk

γ

∂P(φ ,s)
∂φ

, (4.54)

1 The classical interpretation of the PDF fails in the quantum regime. In this case, we need to consider
the density matrix of the quantum circuit [4].



86 Detection scheme of non-Gaussian fluctuation in mesoscopic conductors

respectively. The equation for the steady-state PDF PSS(φ) is given up to the first order in
τ

µ

k as

0 =

[(
1+φ

∂

∂φ

)
+T ∂ 2

∂φ 2 + γλP

∫
dYW(Y)

(
eY

∂

∂φ −1
)

−

[
1−∑

k

Tkτk

γ

∂ 2

∂φ 2

]−1

∑
k
Tk

[
1− τk

γ

]
∂ 2

∂φ 2

PSS(φ), (4.55)

with τk ≡ 1/ωc − τ/k. With the Fourier transform of the steady-state PDF P̃SS(λ ) and the
cumulant generating function F̃SS(λ )≡ ln P̃SS(λ ), Eq. (4.55) is solved as

F̃SS(λ ) = lnK̃(λ )+ F̃cl
SS(λ ). (4.56)

Here, the solution in the classical limit is known in Refs. [38, 39] as

F̃cl
SS(λ ) =−T λ 2

2
+ γλP

∫
dYW(Y)

∫
λ

0
dλ

′ e
iYλ ′ −1

λ ′ . (4.57)

The additional kernel describing the quantum correction is

K̃(λ )≡
(

1
1+θ 2λ 2

)k

, (4.58)

with the parameters

θ ≡
(
T τ

γ
[ψ (1+ τωc)−ψ(1)]

)1/2

, (4.59)

k ≡ 1
2

[
T

2θ 2

(
1− πτωc

tan(πτωc)

)
− 1

γ

]
. (4.60)

Here, ψ(x)≡ d
dx lnΓ(x) is the digamma function with the gamma function Γ(x)≡

∫
∞

0 dt tx−1e−t .
The factor of K̃ is determined by the normalization of the PDF P̃SS(0) = 1. The quantum
correction kernel Eq. (4.58) is identical to the characteristic functional of the difference of
the two independent random variables obeying the identical gamma distribution with the
scale parameter θ and the shape parameter k. The parameters θ and k are associated with
the amplitude and the arrival rate of the quantum fluctuation, respectively. The quantum
correction does not modulate the mean but the fluctuation of the flux φ . The quantum
correction vanishes in the classical limit, i.e. lnK̃(λ ) = 0 for τ = 0.

The kernel K̃ can be Fourier transformed for k > 0 as

K(φ) =
1√

πΓ(k)θ

(
|φ |
2θ

)k−1/2

Kk−1/2 (|φ |/θ) , (4.61)
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with the modified Bessel function of the second kind Kν(z). The steady-state PDF with the
quantum correction K(φ) is related with the classical solution as

PSS(φ) =
∫

dφ
′K(φ −φ

′)Pcl
SS(φ

′). (4.62)

The steady-state PDF of the quasiclassical LC circuit is determined if the detailed informa-
tion of the non-Gaussian noise is given as W(Y).

As was discussed in the previous work [38, 39], the steady-state PDF of the classical
particle can be utilized to probe the non-Gaussianity of the athermal environment. This
also holds for the quasiclassical particle; we can derive the formula to determine W(Y)
from PSS(φ) by using Eqs. (4.56), (4.57), and (4.58). The inverse formula is

W(Y) =
1

γλP

∫ dλ

2π
e−iYλ

[
γλP +

(
T +

2kθ 2

1+θ 2λ 2

)
λ

2 +λ
d

dλ
F̃SS(λ )

]
. (4.63)

The classical limit is recovered for τ = 0. The quantum correction becomes significant
when the temperature of the LC circuit is comparable to the variance of the quantum
correction (T ∼ 2kθ 2). Equation (4.63) is one of the main results of this chapter.

4.4 Results

4.4.1 Quantum correction without non-Gaussian noise
First, we discuss how the quantum correction (4.61) affects the steady-state PDF of the
detector circuit. In order to discern it from the effect of the non-Gaussian noise, we
suppose that there is no transmission in the QPC (TLR = 0). The steady-state PDF PSS(φ)
for the LC circuit in this setup is shown in Fig. 4.3(a). In the absence of the non-Gaussian
noise, the flux in the LC circuit is driven by the thermal and quantum fluctuations. The
amplitude of the thermal noise is T = 0.01, and the cutoff is ωc = 10. We examine various
quantum-mechanical scales: τ = 0, 0.01, 0.02, 0.03, 0.04, and 0.05. As is shown in Fig.
4.3(a), the quantum fluctuation broadens the steady-state PDF. The behavior of the quantum
kernel can be qualitatively understood as the increase of the temperature of order 2kθ 2.
We note that this interpretation is not perfect because of the λ -dependence of the quantum
correction. The variance of the PDF σ2

φ
≡ ⟨(φ −⟨φ⟩)2⟩ normalized with its classical value

T is plotted in Fig. 4.3(b) for various values of ωc. The cutoff effectively modulates the
quantum effect by controlling the filtering. The τ dependence of the variance indicates
that the quantum fluctuation grows as τ increases. This implies that the quantum effect
cannot be filtered by the cutoff, and the effective temperature becomes higher than the real
temperature.

4.4.2 Non-Gaussian noise in the weak tunneling regime
The non-Gaussian noise produced by the instantaneous current through the QPC signif-
icantly modifies the steady-state PDF. For simplicity, we consider the weak tunneling
regime (TLR ≪ 1) so that the lowest-order terms (w±1) are dominant. As is reviewed in
subsection 1.2.2, the non-Gaussian noise obeys a bidirectional Poisson process [10] in this



88 Detection scheme of non-Gaussian fluctuation in mesoscopic conductors

Fig. 4.3 (a) The steady-state PDF PSS without the non-Gaussian noise for various quantum-
mechanical time scales τ with the cutoff ωc = 10. (b) The dependence of the variance σ2

φ

normalized with the thermal noise amplitude T on τ for various ωc. The other parameters
are set to TLR = 0, γ = 2.0, and T = 0.01.

Fig. 4.4 (a) The steady-state PDF of the flux in the detector LC circuit coupled to the
QPC at large bias voltage (eV/2π h̄Ω = 103). The solid and dashed lines correspond to
TLR = 4 · 10−6 and TLR = 1.6 · 10−5, respectively. (b) The dependence of the skewness
(dashed lines) and the kurtosis (solid lines) on λP for various values of τ . The notation
of the colors is the same as the left panel. The other parameters are given by γ = 2.0,
T = 0.02, ωc = 10, and 2π h̄ΩβQPC = 103.

regime: The rate parameter λP is reduced to λP = w+1 +w−1, and the amplitudes of the
shot noise take two values ±1 with the probability w±1/λP [see also Eq. (1.19)].

High bias voltage

With the aid of Eqs. (4.27) and (4.28), the transition probability and the rate parameter at
zero-temperature are computed as

w±1

λP
= θ(±eV ), (4.64)

λP =
TLR

2π

e|V |
h̄Ω

, (4.65)

respectively. The sign of the shot-noise amplitude is determined by that of the bias voltage
as the current flows unidirectionally at zero-temperature due to the Fermi statistics. The
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Fig. 4.5 (a) The steady-state PDF of the flux in the detector LC circuit coupled to the QPC
without the bias voltage (V = 0) and at finite temperature (2π h̄ΩβQPC = 10−3). The solid
and dashed lines correspond to TLR = 4 ·10−6 and TLR = 1.6 ·10−5, respectively. (b) The
dependence of the kurtosis on λP for corresponding τ . The other parameters are set to
γ = 2.0, T = 0.02, and ωc = 10.

rate parameter is given by the product of the attempt rate e|V |/2π h̄Ω and the transmission
coefficient TLR. The steady-state PDF for the detector LC circuit coupled to the QPC in the
shot-noise regime (2π h̄ΩβQPC = 103 and eV/2π h̄Ω = 103) is shown in Fig. 4.4(a). The
curves are plotted for various quantum-mechanical time scales τ . The rate parameter is
estimated as λP ≈ 0.004 (λP ≈ 0.016) for TLR = 4 ·10−6 (TLR = 1.6 ·10−5), respectively.
Hence, the variance induced by the shot noise is smaller than or comparable to that of the
thermal noise (T = 0.02). As can be understood by comparing the results with and without
the shot noise (Figs. 4.3(a) and 4.4(a)), the shot noise induces the shift and asymmetry
of the PDF; it has a long tail for the positive region of φ . Moreover, the PDF exhibits a
characteristic step around φ = 1 because the amplitude of the shot noise is discretized due
to the granularity of the electron transport in the QPC. The quantum correction smoothens
the non-Gaussian structures of the PDF. Nevertheless, the τ dependence is weak around
φ ≃ 1, where the shot noise is dominant.

The non-Gaussianity of the steady-state PDF is quantified in terms of the skewness
⟨(φ −⟨φ⟩)3⟩/σ3

φ
and the kurtosis ⟨(φ −⟨φ⟩)4⟩/σ4

φ
−3). The dependence of the skewness

and the kurtosis on the rate parameter ΛP is shown in Fig. 4.4(b) as dashed and solid lines,
respectively. The notation of the colors is the same as in Fig. 4.4(a) in that each color
represents the curve with corresponding values of τ . In the regime where the shot noise
coexists with the thermal noise (λP ≤ T = 0.02), the non-Gaussianity develops as the rate
parameter λP increases. When the shot noise becomes dominant over the thermal noise,
the non-Gaussianity begins to be suppressed. This is consistent with Van Kampen’s theory
reviewed in subsection 3.4.1 because the flux is effectively driven by a single environment.
The broadening of the steady-state PDF due to the quantum fluctuation manifests itself as
the decrease of the non-Gaussianity for larger values of τ .

Finite temperature without bias voltage

The non-Gaussian noise is induced by the QPC even at high temperatures without the bias
voltage because of its nonlinear coupling to the LC circuit. The transition probability and
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Fig. 4.6 The transition of the steady-state PDF from the non-Gaussian to the Gaussian
distribution for large λP = TLR/π h̄ΩβQPC with the fixed inverse temperature 2π h̄ΩβQPC =
10−3. The solid and dashed lines correspond to τ = 0.05 and τ = 0, respectively. The
other parameters are set to the same values as in Fig. 4.5.

the rate parameter are computed as

w±1

λP
=

1
2
, (4.66)

λP =
TLR

π h̄ΩβQPC
. (4.67)

At finite temperatures without the bias voltage, the shot noise amplitude becomes either
positive or negative with the same probability because the current through the QPC is
bidirectional and unbiased. The rate parameter is proportional to the product of the
temperature and the transmission coefficient. The rate parameters for the solid lines
(TLR = 4 ·10−6) and dashed lines (TLR = 1.6 ·10−5) are estimated as λP ≈ 0.008 and λP ≈
0.032, respectively, in the steady-state PDF for 2π h̄ΩβQPC = 10−3 shown in Fig. 4.5(a).
The characteristic structures of the PDF around φ =±1 is smoothened by the quantum
fluctuation as τ increases. The reduction of the non-Gaussianity by the quantum fluctuation
is also confirmed in the kurtosis plotted in Fig. 4.5(b).

4.4.3 Relation to the central limit theorem
As is expected from Van Kampen’s theory, the steady-state PDF approaches Gaussian as
the rate parameter λP becomes larger: If the arrival interval of the intermittent noise is
much shorter than the decay time, it is piled up to be Gaussian. The steady-state PDF of
the detector circuit coupled with the equilibrium QPC with a relatively large transmission
coefficient is shown in Fig. 4.6. The solid lines are for the case with the quantum fluctuation
(τ = 0.05), while the dotted lines indicate the corresponding classical limit (τ = 0). The
rate parameters are approximately evaluated as λP ≈ 0.008, 0.05, 0.2, 0.8, and 1.8. The
characteristic step around φ =±1 are smoothened as λP increases. Moreover, the quantum
correction becomes less relevant when the non-Gaussian noise plays a dominant role in
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Fig. 4.7 The steady-state PDF of the flux in the detector LC circuit coupled to the QPC
with the finite temperature (2π h̄ΩβQPC = 0.001) and the bias voltage [eV/2π h̄Ω = 100
(1000) for solid (dashed) lines]. (b) the logarithm of the ratio w+1/w−1 estimated by the
inverse formula Eq. (4.63). The solid curves are obtained by properly incorporating the
quantum correction, which is neglected in the dashed lines. Parameters: γ = 2.0, T = 0.02,
ωc = 10, and TLR = 4.0 ·10−6.

determining the PDF. The behavior is consistent with the λP-dependence of the kurtosis
shown in Fig. 4.5(b).

4.4.4 Estimation of current distribution
Finally, we come back to our original problem to detect the full counting statistics in the
QPC from the steady-state PDF PSS(φ). This can be done by estimating the transition rate
w±1 with the aid of the inverse formula Eq. (4.63). As a demonstration, we estimate the
transition rate in the QPC at a finite temperature (2π h̄ΩβQPC = 0.001) and a finite bias
voltage. The steady-state PDF for the LC circuit coupled to the QPC in this parameter
regime is plotted in Fig. 4.7(a). The solid and dashed lines correspond to eV/2π h̄Ω = 100
and 1000, respectively. In contrast to the case without the bias voltage [see Fig. 4.5(a)],
the bias voltage introduces asymmetry of the PDF by modulating the transition rate w±1.
Nevertheless, the transition rates are rigidly related with each other as

ln
(

w+1

w−1

)
= eV βQPC, (4.68)

because of the fluctuation theorem discussed in subsection 4.2.3. The logarithm of the
ratio estimated by using the inverse formula Eq. (4.63) is plotted in Fig. 4.7(b) as solid
lines, which perfectly agree with the theoretical prediction Eq. (4.68). In general, the
transition rate which is estimated by neglecting the quantum correction is no longer correct.
The approximate estimate for various values of τ is shown as dashed lines in Fig. 4.7(b).
The curve for the classical limit (τ = 0) is consistent with the fluctuation theorem, while
the ratio gradually deviates from the correct value for larger τ . This result indicates that
the quantum correction is essential to correctly estimate the transition rate by the inverse
formula.
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4.5 Discussion
In this chapter, we have studied a detection scheme of the current distribution through
a quantum point contact (QPC) by using an inductively coupled detector LC circuit.
With the assumption that the detector dynamics is much slower than the QPC dynamics,
the detector can be considered as a quantum particle driven by the non-Gaussian noise:
the instantaneous current through the QPC generates a non-Gaussian fluctuation in the
circuit. The statistics of the non-Gaussian fluctuation is solely determined by the current
distribution in the QPC as a consequence of the time-scale separation. The quantum
nature of the dissipative circuit becomes also relevant at low temperatures. We have
used a stochastic approach to determine the statistics of the non-Gaussian and quantum
fluctuations from a microscopic viewpoint. The quantum correction of the steady-state
probability density function (PDF) is perturbatively evaluated, and is found to smoothen the
non-Gaussian structure of the steady-state PDF. This behavior is qualitatively understood
as the increase of an effective temperature. We have derived the inverse formula to infer
the non-Gaussian noise from the steady-state PDF. The formula establishes a one-to-one
correspondence between the PDF of the detector circuit and the current distribution in the
mesoscopic conductor even in the classical-quantum crossover regime. The numerical
results indicate that the quantum correction is essential to correctly estimate the statistical
property of the current fluctuation.

As typical values of the bias voltage applied to quantum conductors are set to |eV | ≤
50µeV ∼ 12GHz in shot-noise experiments, the resonant frequency of the detector we
used is estimated as Ω ≃ 10 MHz. If the QPC and the detector circuit are placed at
sufficiently low temperature T ≃ 10mK ∼ 0.2GHz to observe the quantum shot noise,
the quantum-mechanical time scale is approximately given as τ ≃ 0.008. Hence, the
quantum correction is relevant for the realistic parameter region. We note that our analysis
cannot be directly applied to the experiment which have tested the fluctuation theorem in a
coherent Aharonov-Bohm ring [see [11] and section 1.4]. In order to reduce undesirable
noises such as the 1/ f and the random telegraph noises, the authors of Ref. [11] used the
finite-frequency current fluctuation, which is not available in our setup. It is necessary
to go beyond the quasistationary approximation to detect the current fluctuation in the
dynamical regime [54, 55]. In this regime, the strong electromagnetic coupling between
the conductor and the detector results in the dynamical Coulomb blockade [53]. Further
studies are needed to tell whether the proper treatment of the quantum correction can
explain the discrepancies between the theoretical predictions and the experimental results
[11].
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Chapter 5

Current noise of a charge-fluctuating
quantum dot system

Remarkable advance in nanotechnology enables us to investigate the non-linear transport
in interacting systems. Among mesoscopic conductors, quantum dot systems offer exper-
imentally well-controlled situations to study the interplay of nonequilibrium fields and
two-body interaction. The interacting resonant-level model (IRLM), which was originally
introduced as a variant of the Kondo model [1], is an archetypal model to describe a
quantum dot dominated by the charge fluctuations. The nontrivial transport property which
has been confirmed by a vast amount of works on the IRLM [2–9] is the appearance of
universal power-law behavior in the nonlinear regime. In the scaling regime, where the
lead bandwidth ∆ is much larger than any other energy scales, the I-V characteristic shows
a power-law decay whose exponent depends on the strength of the two-body interaction
[2–4, 6–9]. This is a consequence of a renormalization effect due to the charge fluctuation
in the quantum dot system.

While a unified understanding on the current through the IRLM has been established,
the research of the current fluctuation has been just started recently. A perturbative
approach based on the Keldysh technique was put forward in Ref. [10] to understand the
current noise. Important insights for the noise were gained at a special parameter point
where the model has self-duality [11]. With the aid of this symmetry, the IRLM can be
mapped to a solvable model even under a finite bias voltage [4]. The analysis on the
shot noise using field-theoretic techniques and the density-matrix renormalization-group
method consistently indicates that the quasi-particles with the effective charge e∗ = 2e are
formed at the self-dual point [12–14]. This is in clear contrast to the noninteracting limit
e∗ = e. Away from the self-dual point, the bias-voltage dependence of the current noise of
the IRLM is still an open question. In addition, finite-temperature effects have not been
investigated so far. Considering this situation, it is strongly desirable to clarify the current
noise through the IRLM in general parameter regions.

In this chapter, we study a renormalization effect on the current noise of the IRLM in
wide parameter regions using the nonequilibrium functional renormalization group (FRG)
method [15]. Logarithmic divergences, which are major obstacles to go deep into the
scaling regime, are consistently removed in the FRG framework [6, 7]. It is also found
that the renormalization of the hopping between the dot and the leads can be described
using a surprisingly simple approximation [6]. In this chapter, we obtain and solve the
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flow equations of the current vertex functions (2.159) to determine the current noise. For
the on-resonance transport, an artificial divergence of the vertex correction found in plain
perturbation theory with respect to the interaction is consistently removed in our FRG
scheme. Away from the particle-hole symmetric point, a severe divergence which occurs
in the perturbation theory when the dot energy level is aligned with the chemical potentials
is shifted to higher orders. These achievements allow us to gain a comprehensive picture
of the zero-frequency current noise in the scaling limit. We show that the current noise
is governed by a universal power-law scaling in the large bias-voltage regime with an
exponent which, to the leading order in the interaction, is the same as that of the current.
The temperature dependence of the current noise is incorporated consistently with the
fluctuation-dissipation theorem. In addition, the effective charge is discussed by combining
analytic considerations with numerical results of the vertex correction. We conclude that
e∗ = e

[
1+O(u2)

]
with the dimensionless amplitude of the interaction u.

This chapter is organized as follows. In section 5.1, we describe the model and the
FRG scheme to compute the current noise. In section. 5.2, the results for the noise are
presented. A discussion of the results is given in Sec. 5.3.

5.1 Model and formalism

5.1.1 Model
We consider the charge-fluctuating quantum dot system without the spin degrees of freedom.
The minimal interaction in this situation is the Coulomb interaction between the spinless
fermion in the quantum dot and those in the leads. The interacting resonant level model
(IRLM) describes such a localized fermion capacitively coupled to delocalized ones in the
left and right leads (see Fig. 5.1). In the following discussions, we use a three-site system,
in which a fermion in the quantum dot, i.e. the central site, feels the interaction with those
in adjacent ones. The hopping amplitudes tα=L,R between the three-site region and the
leads are assumed to be much larger than the inter-site one t such that the left (right) site is
effectively incorporated into the left (right) lead. The single-site model studied in [1] is
recovered in this limit [6, 7, 16, 17]. The action of the IRLM is given by

S =
3

∑
i, j=1

∫
dzdz′d̄i(z)ggg−1

di j(z,z
′)d j(z′)+ ∑

α=L,R
∑
kkk

∫
dzdz′c̄αkkk(z)g

−1
αkkk(z,z

′)cαkkk(z
′)

− 1√
N ∑

kkk

∫
dz
[
tLd̄1(z)cLkkk(z)+ tRd̄3(z)cRkkk(z)+H.c.

]
+SU . (5.1)

The Grassmann fields d̄i(z) (di(z)) defined on the Keldysh contour C (Fig. 2.1) create
[annihilate] a spinless fermion on the site i. The creating and annihilating Grassmann fields
of the delocalized fermions in the lead α with the momentum kkk are denoted by c̄αkkk(z) and
cαkkk(z), respectively. The retarded component of the Green’s functions of the isolated dot is

(gggr
d)

−1 (ω) =

 ω +U/2 −t 0
−t i d

dz′ − (ε −U) −t
0 −t ω +U/2

 . (5.2)
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Fig. 5.1 Schematic of the interacting resonant level model (IRLM).

The energy level of the localized site and its hopping amplitude with adjacent sites are
denoted by ε and t, respectively. The energy level ε is defined such that ε = 0 corresponds
to the particle-hole symmetric case. The third term of the action Eq. (5.1) describes the
hopping between the three-site region and the leads with N sites. As was discussed in
subsection 2.3.1, the lesser component of the isolated three-site system is irrelevant in the
steady-state. The retarded and lesser Green’s functions for the noninteracting delocalized
fermion are given by Eqs. (2.74) and (2.75), respectively. We use units with kB = 1 and
h̄ = 1 and elementary charge e = 1. The interaction part is given by

SU ≡−U
∫

dz
(
d̄2(z)d2(z)d̄1(z)d1(z)+ d̄2(z)d2(z)d̄3(z)d3(z)

)
. (5.3)

The noninteracting reservoirs can be integrated out yielding the action

S =
3

∑
i, j=1

∫
dzdz′d̄i(z)GGG−1

0i j(z,z
′)d j(z′)+SU , (5.4)

where GGG−1
0 (z,z′)≡ ggg−1

d (z,z′)−ΣΣΣ
−1
0 (z,z′). The tunneling self-energy is given as

ΣΣΣ0(z,z′) =

 ΣL(z,z′) 0 0
0 0 0
0 0 ΣR(z,z′)

 , (5.5)

with Eq. (2.101). We suppose that a bias voltage V is applied symmetrically to the
equilibrium leads at the inverse temperature β . The Fermi-Dirac distribution is given
by fα(ω) = 1/(eβ (ω−µα ) + 1), where the chemical potentials are µL = εF +V/2 and
µR = εF −V/2 with the Fermi energy εF . The Fourier transforms of the tunneling self-
energies are obtained as

ΣΣΣ
r
0(ω) =


− i∆L

2
0 0

0 0 0

0 0 − i∆R

2

 , (5.6)

ΣΣΣ
K
0 (ω) =

 i∆L (2 fL(ω)−1) 0 0
0 0 0
0 0 i∆R (2 fR(ω)−1)

 . (5.7)
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Here, we suppose that the bandwidth ∆α ≡ 2πραt2
α with the frequency-independent density

of states ρα . For simplicity, we assume ∆L = ∆R ≡ ∆. As the particle-hole symmetry
ε = 0 corresponds to the resonant transport, we often refer to this case as the on-resonance
situation.

5.1.2 Functional renormalization group approach
Reservoir cutoff scheme

In setting up the functional renormalization group approach discussed in subsection 2.4.4,
we utilize the reservoir-cutoff scheme [16, 17]. One of the most crucial advantage of this
scheme is that the KMS condition is automatically satisfied, enabling the calculations
consistent with the fluctuation-dissipation theorem. In the reservoir-cutoff scheme, the
regulator function RΛ [see Eq. (2.141)] is introduced as

RRRr
Λ(ω) =

iΛ
2

111, (5.8)

RRRK
Λ(ω) =−iΛ [2 faux(ω)−1]111, (5.9)

where faux(ω) is the Fermi-Dirac distribution function at the inverse temperature βaux and
111 is the identity matrix of dimension three. This prescription is equivalent to consider
additional structureless reservoirs (see Fig. 5.2). It was shown in the previous work
[18, 19] that results for the current are independent of the choice of βaux. In the following,
we use the auxiliary reservoirs at infinite temperature, i.e. faux(ω) = 1/2, so that the
Keldysh component of the regulator function vanishes. The full Green’s function with the
interaction-induced self-energy ΣΣΣU,Λ is obtained by the Dyson equation

(GGGr
Λ)

−1 (ω) = (GGGr
0)

−1 (ω)+RRRr
Λ(ω)−ΣΣΣ

r
U,Λ(ω), (5.10)

GGGK
Λ(ω) = GGGr

Λ(ω)
[
ΣΣΣ

K
0 (ω)+ΣΣΣ

K
U,Λ(ω)

]
GGGa

Λ(ω). (5.11)

The retarded and the Keldysh components of the scale-dependent propagator SSSΛ(z,z′) [see
Eq. (2.156)] are obtained as

SSSr
Λ(ω) =

−i
2

GGGr
Λ(ω)GGGr

Λ(ω), (5.12)

SSSK
Λ(ω) =

−i
2

GGGr
Λ(ω)GGGK

Λ(ω)+
i
2

GGGK
Λ(ω)GGGa

Λ(ω). (5.13)

Fig. 5.2 Reservoir-cutoff scheme.
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(a)

(b)

Fig. 5.3 Diagrammatic representation of the flow equations of (a) the self-energy and
(b) the three-point current-vertex function in the static approximation. The gray square
represents the bare two-particle interaction. The open and gray circles are diagrammatic
representations of the bare and the dressed three-point current vertex functions, respectively.
The inner line denotes the Green’s function GGGΛ while the slashed one denotes the scale-
dependent propagator SSSΛ.

Truncation of the flow equation

In order to implement numerical calculations, we need to truncate the infinite hierarchy of
the flow equations (2.152). In the following, we use the lowest-order truncation, which
is known as the static approximation [15], to determine the flow equations of the self-
energy and current-vertex functions. We consider the Hartree-Fock-type diagram for the
self-energy and the RPA-type diagram for the vertex function [see Fig. 5.3]. In the static
approximation, the flow equation of the four-point vertex function is ignored, and its value
is replaced by the anti-symmetrized bare two-particle interaction Uik; jl . In spite of its
simplicity, this truncation for the self-energy is known to describe rich properties of the
I-V characteristics due to the built-in renormalization effect [15]. In particular, logarithmic
divergences found in the plain perturbation theory are consistently resummed to power laws
[6]. Hence, we expect that it is a good starting point to examine the current noise by solving
the flow equation of the current vertex functions within the static approximation. We note
that higher-order corrections can be systematically included in principle by incorporating
flow equations of higher-order vertices.

The flow equation of the self-energy is obtained as

d
dΛ

(
ΣΣΣ

r
U,Λ

)
i j =

iUik; jl

2

∫ dω

2π

(
SSSK

Λ

)
lk
(ω). (5.14)

Within the present approximation, the self-energy is independent of the frequency due to
the structure of the right-hand side. Hence, the single-particle Green’s functions can be
interpreted as effective noninteracting ones with renormalized parameters.

As we are interested in the current fluctuation in the steady state, we focus on the vertex
functions related with the current from the left reservoir to the quantum dot region. The
flow equation of the retarded component of the interaction-induced part of the three-point
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vertex function (2.123) is given by

d
dΛ

(
γ̄γγ
(2,1)
Λ

)r;s

i j;L
=

iUik; jl

2

[(
ΦΦΦ

(2,1)
Λ

)K

lk
+
(

ΦΦΦ
(2,1)
Λ

)K̃

lk

]
, (5.15)

with(
ΦΦΦ

(2,1)
Λ

)K
≡
∫ dω

2π

[
SSSr

Λ(ω)
(

γγγ
(2,1)
Λ

)r;s

;L
GGGK

Λ(ω)+SSSK
Λ(ω)

(
γγγ
(2,1)
Λ

)a;s

;L
GGGa

Λ(ω)

+SSSr
Λ(ω)

(
γγγ
(2,1)
Λ

)K;s

;L
GGGa

Λ(ω)+SSSK
Λ(ω)

(
γγγ
(2,1)
Λ

)K̃;s

;L
GGGK

Λ(ω)+(SSS ↔ GGG)

]
, (5.16)

and (
ΦΦΦ

(2,1)
Λ

)K̃
≡
∫ dω

2π

[
SSSa

Λ(ω)
(

γγγ
(2,1)
Λ

)K̃;s

;L
GGGr

Λ(ω)+(SSS ↔ GGG)

]
. (5.17)

The abbreviation (SSS ↔ GGG) denotes the terms which are obtained by mutually replacing SSS
and GGG in the preceding ones in the same parentheses. Similarly, the flow equation of the
Keldysh component is obtained as

d
dΛ

(
γ̄γγ
(2,1)
Λ

)K;s

i j;L
=

iUik; jl

2

[(
ΦΦΦ

(2,1)
Λ

)r

lk
+
(

ΦΦΦ
(2,1)
Λ

)a

lk

]
, (5.18)

with(
ΦΦΦ

(2,1)
Λ

)r
≡
∫ dω

2π

[
SSSr

Λ(ω)
(

γγγ
(2,1)
Λ

)r;s

;L
GGGr

Λ(ω)+SSSK
Λ(ω)

(
γγγ
(2,1)
Λ

)K̃;s

;L
GGGr

Λ(ω)+(SSS ↔ GGG)

]
,

(5.19)(
ΦΦΦ

(2,1)
Λ

)a
≡
∫ dω

2π

[
SSSa

Λ(ω)
(

γγγ
(2,1)
Λ

)a;s

;L
GGGa

Λ(ω)+SSSa
Λ(ω)

(
γγγ
(2,1)
Λ

)K̃;s

;L
GGGK

Λ(ω)+(SSS ↔ GGG)

]
.

(5.20)

The argument of the three-point vertex functions is omitted as these turn out to be inde-
pendent of the frequency in the static approximation. In contrast to the self-energy, these
vertex functions do not have a simple interpretation in reference to a noninteracting model.

Using the initial condition and the flow equation, we can prove the symmetry relations
for the three-point current-vertex functions;[(

γγγ
(2,1)
Λ

)r;s

i j;L

]∗
=−

(
γγγ
(2,1)
Λ

)a;s

ji;L
, (5.21)[(

γγγ
(2,1)
Λ

)K;s

i j;L

]∗
=
(

γγγ
(2,1)
Λ

)K;s

ji;L
, (5.22)[(

γγγ
(2,1)
Λ

)K̃;s

i j;L

]∗
=
(

γγγ
(2,1)
Λ

)K̃;s

ji;L
. (5.23)
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In the static approximation, we can derive the additional relations(
γ̄γγ
(2,1)
Λ

)r;s

i j;L
=
(

γ̄γγ
(2,1)
Λ

)a;s

i j;L
, (5.24)(

γ̄γγ
(2,1)
Λ

)K;s

i j;L
=
(

γ̄γγ
(2,1)
Λ

)K̃;s

i j;L
. (5.25)

Hence, it is sufficient to determine the retarded and the Keldysh components of the three-
point vertex function.

We determine the self-energy and the three-point current-vertex functions by solving
these flow equations numerically, and use the functions at Λ = 0 in the formula of the
current noise given in Eqs. (2.130)-(2.134).

Initial condition

We consider the model with Λinit →∞ as the initial one of the flow as all the vertex functions
defined in Eq. (2.120) can be calculated exactly in this limit. The initial conditions of the
self-energy and the vertex functions are computed in the following. The set of coupled
flow equations has to be integrated down to Λ = 0 at which the auxiliary reservoirs are
decoupled and the original model is restored.

The initial condition of the self-energy for Λinit → ∞ is written as(
ΣΣΣ

r
U,Λinit

)
11 (ω) =U1n2, (5.26)(

ΣΣΣ
r
U,Λinit

)
22 (ω) =U1n1 +U3n3, (5.27)(

ΣΣΣ
r
U,Λinit

)
33 (ω) =U3n2, (5.28)(

ΣΣΣ
K
U,Λinit

)
i j (ω) = 0, (5.29)

where ni is the occupation of the ith site.
As all the internal propagator is suppressed in the limit of Λinit → ∞, the initial current-

vertex functions are identical to those of the noninteracting system;(
γγγ
(2,n)
Λinit

)ρ ′
1ρ1;s···s

i j;α1···αn
(t ′1, t1; t ′′1 · · · t ′′n ) =

(
γγγ
(2,n)
0

)ρ ′
1ρ1;s···s

i j;α1···αn
(t ′1, t1; t ′′1 · · · t ′′n ) (for n > 0). (5.30)

The noninteracting current-vertex functions can be determined using the Ward-Takahashi
identity (

γγγ
(2,1)
0

)
11;L

(z′,z;z′′) = i
[
δ (z′,z′′)−δ (z,z′′)

]
(ΣΣΣ0)11 (z

′,z). (5.31)

The other components of the three-point vertex functions are zero because the source field
AL(z) is only included in the (1,1)-component of the tunneling self-energy Eq. (5.5). The
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initial conditions of the three-point current-vertex functions are obtained as(
γγγ
(2,1)
Λinit

)r;s

i j;α1
(ω1,ω1;0) =−δi1δ j1δα1L∆L(1−2 fL(ω1)), (5.32)(

γγγ
(2,1)
Λinit

)a;s

i j;α1
(ω1,ω1;0) = δi1δ j1δα1L∆L(1−2 fL(ω1)), (5.33)(

γγγ
(2,1)
Λinit

)K;s

i j;α1
(ω1,ω1;0) =−δi1δ j1δα1L∆L, (5.34)(

γγγ
(2,1)
Λinit

)K̃;s

i j;α1
(ω1,ω1;0) = δi1δ j1δα1L∆L. (5.35)

Here, we show only the case with ω1 = ω ′
1 because we focus on the zero-frequency current

noise in this chapter. We note that
(

γγγ
(2,1)
Λinit

)K̃;s
does not need to be zero. The multi-point

current vertices are determined by recursively using the Ward-Takahashi identity, and the
initial conditions for four-point current-vertex functions are(

γγγ
(2,2)
Λinit

)r;ss

i j;α1α2
(ω1,ω1;0,0) = 2iδi1δ j1δα1Lδα2L∆L, (5.36)(

γγγ
(2,2)
Λinit

)a;ss

i j;α1α2
(ω1,ω1;0,0) =−2iδi1δ j1δα1Lδα2L∆L, (5.37)(

γγγ
(2,2)
Λinit

)K;ss

i j;α1α2
(ω1,ω1;0,0) = 2iδi1δ j1δα1Lδα2L∆L(1−2 fL(ω1)), (5.38)(

γγγ
(2,2)
Λinit

)K̃;ss

i j;α1α2
(ω1,ω1;0,0) =−2iδi1δ j1δα1Lδα2L∆L(1−2 fL(ω1)). (5.39)

The initial conditions of the four-point and higher-point vertex functions are determined
by the bare action. If we denote the anti-symmetrized bare two-particle interaction [20] by
Ui j;kl , these vertex functions are written as(

γγγ
(4,0)
Λinit

)ρ ′
1ρ ′

2;ρ1ρ2

i j;kl
(ω ′

1,ω
′
2;ω1,ω

′
1 +ω

′
2 −ω1) =

{
−ρ

′
1Ui j;kl if ρ

′
1 = ρ

′
2 = ρ1 = ρ2,

0 otherwise.
(5.40)(

γγγ
(4,m)
Λinit

)ρ ′
1ρ ′

2;ρ1ρ2;ρ ′′
1 ···ρ ′′

m

i j;kl;α1···αm
(ω ′

1,ω
′
2;ω1,ω2;ω

′′
1 , · · · ,ω ′′

m) = 0 (m > 0). (5.41)

5.2 Results
In the following discussions, we focus on the scaling regime where the bandwidth ∆ is
much larger than any other energy scales. It was established by earlier studies that the
universal features of the steady-state current, such as the power-law behavior at large bias
voltages, manifest themselves in the scaling limit [2–4, 6–9]. The characteristic energy
scale governing the low-energy physics of the IRLM is introduced as TK ≡ 8|t̄ren|2/∆ with
the renormalized hopping amplitude t̄ren ≡ t + ΣΣΣ

r
12|T=V=ε=0 obtained at the end of the

flow (see e.g. Ref. [6]). An alternative definition of the scale using the susceptibility is
discussed in Appendix 5.A. The current shows a crossover from the linear-response regime
to a power-law decay at V ≃ TK [4, 6].
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Fig. 5.4 The dependence of δ I on the dimensionless interaction u for various values of
V/TK. The parameters are set to t/∆ = 0.001, ε/TK = 0, and T/TK = 0.

5.2.1 Consistency with the Meir-Wingreen formula
A standard approach to compute the current through an interacting system is to use the
Meir-Wingreen formula with the self-energy [21]. In this subsection, it is shown that
an alternative FRG formulation can be developed by solving the flow equation for the
current (2.160). We show that the current thus determined is indeed consistent with the
results with the Meir-Wingreen formula up to the controlled order. As the three-point
current-vertex functions enter the flow equation for the current, this consistency validates
our reformulation of the transport in terms of the FRG approach.

The explicit expression of the current using the Meir-Wingreen formula is given as

IMW
Λ =

1
2π

∫
dω

[
T Λ

LR(ω)( fL(ω)− fR(ω))+T Λ
Laux(ω)( fL(ω)− faux(ω))

]
, (5.42)

with

T Λ
LR(ω) =∆L∆R (GGGr

Λ)13 (ω)(GGGa
Λ)31 (ω), (5.43)

T Λ
Laux(ω) =∆LΛ(GGGr

ΛGGGa
Λ)11 (ω). (5.44)

This should be equivalent to the current obtained by solving its flow equation, which is
denoted by Iflow

Λ
. If we denote their difference by δ IΛ ≡ IMW

Λ
− Iflow

Λ
, its flow equation is

given by

dδ IΛ

dΛ
=
−i
2
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2π

[
(SSSΛ)

r
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(
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(2,1)
Λ
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+(SSSΛ)
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(
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Λ
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+(SSSΛ)

K
i j

(
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ji;L

−∆L(2 fL −1)
(
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Λ

dΣΣΣ
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U

dΛ
GGGr

Λ −GGGa
Λ

dΣΣΣ
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U
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GGGa

Λ

)
11

(
GGGr

Λ

dΣΣΣ
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U
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GGGK

Λ

)
11

+∆L

(
GGGK

Λ

dΣΣΣ
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U

dΛ
GGGa

Λ

)
11

]
. (5.45)
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Fig. 5.5 The vertex correction SU calculated using the FRG scheme (solid lines) and the
plain perturbation theory (dashed lines) for various values of t as a function of V . The
parameters are set to u = 0.1, ε/TK = 0, and T/TK = 0.

with the initial condition δ IΛinit = 0. The right-hand side should be zero within the
approximations that we use.

Equation (5.45) together with the expression for the self-energy Eq. (5.14) as well as
the vertex functions Eqs. (5.15) and (5.18) can be solved numerically. The resulting value
of the relative difference, |δ I|/IMW as a function of the dimensionless interaction u ≡U/∆

is plotted in Fig. 5.4. Within the static approximation the difference should be of second
order in u, i.e. δ I ≡ δ IΛ=0 =O(u2), which is confirmed in Fig. 5.4 for various values of
V . This finding indicates that we can consistently determine the current by solving its
flow equation and that the flow of the current-vertex function was properly implemented.
Hence, we can correctly reproduce all the known results for the current, e.g. a power-law
scaling with a U-dependent exponent at large voltages from the current determined by the
new scheme.

5.2.2 On-resonance current noise
As the current is governed by the single universal energy scale TK, it is natural to expect
it as the characteristic energy scale of the current noise as well. As long as we are
concerned with the zero-frequency current noise in the steady state, it is sufficient to
focus on the component S ≡ SLL(ω = 0) due to the charge conservation. If we denote the
zero-frequency bubble term (2.130) and the vertex correction (2.131) by S0 ≡ S0

LL(ω = 0)
and SU ≡ SU

LL(ω = 0), respectively, the current noise can be written as

S = S0 +SU . (5.46)

In this subsection, we consider the current noise for the on-resonance transport (ε = 0).

Necessity of renormalization group treatment

In order to calculate the current noise, we need to determine the current-vertex functions,
which enter the expression for the vertex correction [see Eq. (2.131) and Fig. 2.5(b)]. The
three-point vertex function can be computed either by using plain perturbation theory or
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Fig. 5.6 The dependence of noise S and its logarithmic derivative d lnS(V )/d lnV on V
for various values of u. The parameters are set to ε/TK = 0, t/∆ = 0.001, and T/TK = 0.

by solving the flow equations (5.15) and (5.18). It is established in the previous study that
the self-energy is plagued by a logarithmic divergence when it is computed in the plain
perturbation theory [6]. To avoid this known problem, we use the propagators with the
self-energy computed within the FRG scheme. Thus, we single out a possible divergence
of a perturbatively calculated three-point vertex function. The V -dependence of the vertex
correction SU obtained by perturbation theory and FRG is compared in Fig. 5.5 for various
values of t/∆. The both vertex corrections are divided by the bubble term S0, which
is free from artificial divergences. A significant difference is that the results obtained
by perturbation theory in the linear-response regime becomes gradually larger as we go
deeper in the scaling regime t/∆ ≪ 1. The artificial divergence around V = 0 prohibits
us to correctly analyze the scaling limit with the plain perturbation theory. The vertex
corrections calculated using FRG for the three-point vertex are free of this problem and
collapse into a single curve if rescaled by TK. This indicates that the FRG regularizes the
divergences of the vertex correction as is the case for the self-energy.

Zero-temperature current noise in the presence of the bias voltage

The dependence of the zero-frequency current noise on the bias voltage V is shown
in Fig. 5.6 for various u. Both the self-energy and the vertex function are determined
by numerically solving their flow equations. The logarithmic derivative of the noise
d ln[S(V )]/d ln(V ) is also plotted to read off the exponent with respect to the bias voltage
V . At small bias voltages V < TK, the curves for the current noise scaled with TK are
proportional to V 3 and collapse into a single one. This indicates that the prefactor of the
leading term proportional to (V/TK)

3 is independent of the two-particle interaction. For
u = 0, the current noise computed in our three-site problem agrees with the analytic result
for a lattice model discussed in Ref. [22] [see the thick dashed line in Fig. 5.6].
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Fig. 5.7 (a) The dependence of the logarithmic derivative of the current and noise on V for
various values of u. (b) The exponents for the current (blue squares) and noise (red circles)
read off at large bias voltages for various values of u. The black dashed (solid) lines in the
left (right) panel are the analytic result for the current [see Eq. (5.47)]. The parameters are
ε/TK = 0, t/∆ = 0.001, and T/TK = 0.

It is established that the current shows a power-law decay at high bias voltages

I/TK ∼ (V/TK)
− 4u

π , (5.47)

whose exponent is correct up to the first order in u. The constant logarithmic derivative of
the noise at large voltages (V ≫ TK) in Fig. 5.6 indicates that the current noise exhibits
power-law behavior in the same regime. The exponents read off from the logarithmic
derivatives of the current and noise at large bias voltage are compared in Fig. 5.7. The
dashed lines in Fig. 5.7(a) and the solid line in Fig. 5.7(b) are the analytically obtained
exponent for the current −4u/π [6]. The exponent of the noise is found to reach the
same value as that of the current at sufficiently large bias voltages. Previous works
employing FRG showed that the behavior of the current can be understood from an
effective noninteracting model with a renormalized hopping amplitude [6]. However,
whether the effective noninteracting model can also describe the noise is not obvious
because the current-vertex corrections enter its expression. The contribution of the vertex
correction to the current noise is discussed in more detail in the next section.

Finite temperature current noise

The dependence of the equilibrium thermal noise S on T is shown as the solid lines in
Fig. 5.8. The fluctuation-dissipation theorem states that the thermal noise is related with the
linear conductance G≡ d I/dV |V=0 as S = 4T G, which are plotted as the dashed lines. The
excellent agreement confirms that the fluctuation dissipation relation is indeed guaranteed
in the reservoir-cutoff scheme. The observed power-law decay of the thermal noise at
high temperatures in Fig. 5.8 can be understood as a renormalization of the transmission
amplitude.

The finite-temperature current noise as a function of V is plotted for T ≪ TK and
T ≫ TK in Fig. 5.9(a) and (b), respectively. The black dashed lines in Fig. 5.9(a) are the
thermal noise calculated via the fluctuation-dissipation theorem 4T G for each temperature.
The current noise obeys the fluctuation dissipation relation in the zero-bias limit; S(V →
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Fig. 5.8 The dependence of the equilibrium noise S (solid lines) and its logarithmic
derivative d lnS(T )/d lnT (dashed lines) on T for various values of u. The fluctuation
dissipation theorem requires the equilibrium noise to be related with the conductance G
as S = 4GT , which are plotted as dash-dot lines. The parameters are set to ε/TK = 0,
V/TK = 0, and t/∆ = 0.001.

0) = 4T G. The crossover from thermal to shot noise occurs around voltages such that
S3V 3 ∼ T G, where S3 is the coefficient of the V 3 term in the current noise S. The power-
law decay of the current noise is observed in the high-bias regime as it is for the zero-
temperature noise. The current noise at high temperatures T ≫ TK is shown in Fig. 5.9(b).
The power-law decay at high-bias voltages still survives when the bias voltage is larger
than T . It is found that the current noise exhibits a power-law decay at sufficiently large
voltages; V ≫ max{T,TK}. Due to this renormalization effect, the value of the current
noise at high voltages can become even smaller than the value in the zero bias limit. We
note, however, that the current is suppressed as well with the same exponent.

Effective charge in the weak interaction regime

The ratio between the noise and the current can be interpreted as an effective charge of
carriers when the transport is governed by the Poisson statistics [23]. At the particle-hole
symmetric point, the effective charge is defined as the ratio between the noise and the
backscattering current [12, 13] as

e∗ = lim
V→0

S(V )

2IBS(V )
, (5.48)

with the backscattering current

IBS ≡ GV − I. (5.49)

In the noninteracting case u = 0, the effective charge e∗ is e as is expected for the resonant
level model [see subsection 2.3.1 for details]. The self-dual point [12, 13] is another solv-
able case reached at a relatively large interaction in the presence of the particle-hole symme-
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Fig. 5.9 The dependence of the noise on V for (a) T ≪ TK and (b) T ≫ TK for various
values of u and T . The parameters are set to u = 0.01, ε/TK = 0 and t/∆ = 0.001.

Fig. 5.10 The dependence of the ratio between the noise S and the backscattering current
IBS on V for various values of u. The parameters are set to ε/TK = 0, t/∆ = 0.001, and
T/TK = 0.

try. At this point, field-theoretical techniques and the density-matrix renormalization-group
approach were utilized to show that the effective charge is 2e. However, It is totally
unknown so far how e∗ develops from e to 2e when u is increased. In this subsection, we
study this issue using our FRG scheme. Since our scheme is based on an expansion in
terms of the interaction strength (on the right-hand side of RG flow equations), we are
bound to small to intermediate u.

The dependence of the ratio S/2IBS on V is shown in Fig. 5.10 for various values of u.
The value of e∗/e can be read off at V/TK = 10−2. It is found that e∗ does not depend on
the interaction in our approximation. As all the contributions to linear order in u are kept
in our FRG scheme, we conclude that e∗/e = 1+O

(
u2). This numerical observation can

be substantiated by combined with the following analytic considerations.
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Fig. 5.11 The vertex correction SU divided by u2S0 calculated using our FRG scheme for
various values of u as a function of V . The parameters are set to ε/TK = 0, t/∆ = 0.001,
and T/TK = 0.

We, first, consider the leading term of the backscattering current IBS with respect to the
bias voltage V . In the linear-response regime, the transmission amplitude

TLR(ω)≡ ∆L∆R (GGGr)13 (ω)(GGGa)31 (ω). (5.50)

can be expanded in terms of the bias voltage as

TLR = T (0)
LR −T (2)

LR

(
V
TK

)2

+ · · · . (5.51)

Here, the frequency dependence of the transmission amplitude is neglected as we focus on
the small bias-voltage regime (V ≪ TK). Since we are concerned with the on-resonance
transport, the first term is unity T (0)

LR = 1. The second-order coefficient is obtained as
T (2)

LR = 1/3 because field-theoretical considerations [24] have shown that the backscattering
current is given by

2πIBS

TK
=

1
3
[
1+O(u2)

]( V
TK

)3

− 1
5

[
1− 20

3
u
π
+O(u2)

](
V
TK

)5

+O

([
V
TK

]7
)
,

(5.52)

which is consistently obtained by FRG (see footnote [52] of Ref. [24]; for a similar analysis
of the current as function of temperature see Ref. [19]). We note that this result can be
reproduced by our numerical calculations with the properly chosen TK (see Appendix 5.A).
This shows that the nonlinear coefficient of the current and noise can be reliably obtained
by our numerical calculation.
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As for the bubble term of the current noise, the lowest-order contribution in V at
zero-temperature (T = 0) and on resonance (T (0)

LR = 1) is obtained as

S0

TK
=

1
π

(
V
TK

)3

T (2)
LR . (5.53)

Then, the effective charge (5.48) is directly associated with the vertex correction SU as

e∗ = 1+
3πSU

(V/TK)
3

∣∣∣∣∣
V=0

. (5.54)

This relation shows that the U-dependence of the effective charge is incorporated via the
vertex correction.

The remaining question is whether the leading (V/TK)
3 term in the vertex correction

has an correction of order u. The answer is negative as is numerically seen in Fig. 5.11, in
which the vertex correction divided by u2 is plotted for various values of u. From this figure,
it is evident that SU depends on u and V as |SU |/TK ∝ u2(V/TK)

4 in the linear-response
regime (V < TK). Because of the prefactor of order u2 , the vertex correction is not under
control within the static approximation which only contains terms of order u. However,
the vertex correction does not contribute to the effective charge because it is of order V 4

while the bubble term scales as V 3 in the linear-response regime (V < TK). These analytic
and numerical considerations on the effective charge and the numerical observation of the
vertex correction consistently lead us to the conclusion that the effective charge e∗ shown
in Fig. 5.10 is not dependent on the two-body interaction u up to the first order. In order to
discern whether the correct u2 term is proportional to V 3 or not, we have to use the higher
order truncation schemes.

5.2.3 Current noise away from particle hole symmetric point
In this subsection, we investigate the current noise away from the particle-hole symmetric
point (ε ̸= 0).

Breakdown of plain perturbation theory away from resonance

We start by considering how the plain perturbation theory breaks down in the particle-hole
asymmetric case. The bias-voltage dependence of the noise with the three-point vertex
functions calculated with plain perturbation theory is shown in Fig. 5.12(a) for different
values of u and t/∆. Here, all propagators entering in the current vertex function are
computed in the FRG scheme to suppress the artificial divergence originating from the
self-energy. The peak located around V/2 ∼ ε divergently develops as we go deeper into
the scaling regime (t/∆ ≪ 1). The vertex correction SU divided by the product of the
two-body interaction u and the bubble term S0 is shown in Fig. 5.12(b), in which the
diverging peak is found to have a prefactor of order u. The plain perturbation theory cannot
be used to study the current noise away from particle-hole symmetry in the scaling limit
even for very small u.

The current noise and its vertex correction determined by solving their flow equations
Eqs. (5.15) and (5.18) are shown in Fig. 5.13. The divergent behavior of the current noise
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Fig. 5.12 (a) The current noise S and (b) the vertex correction SU divided by uS0 calculated
from a plain perturbation theory for various values of u and t away from the particle-hole
symmetric point as a function of V . The parameters are set to ε/TK = 10 and T/TK = 0.

Fig. 5.13 (a) The current noise S and (b) the vertex correction SU divided by u2S0 calculated
using our FRG scheme for various values of u and t away from the particle-hole symmetric
point as a function of V . The parameters are set to ε/TK = 10 and T/TK = 0.

observed in Fig. 5.12(a) is essentially removed for the curves in Fig. 5.13(a) for t/∆ = 0.01.
This indicates that our FRG scheme regularizes the leading-order divergences as for the
self-energy. In order to analyze the weak features still visible in the deep scaling regime
t/∆ = 0.001, we plot the vertex correction SU divided by u2S0 in Fig. 5.13(b). This figure
shows that the divergence with a prefactor of order u of plain perturbation theory [see
Fig. 5.12(b)] is pushed to order u2 within the FRG scheme. We cannot get rid of the
artificial divergence of order u2 within the static approximation which is valid up to the
linear order in u. This second-order divergence manifests itself as the artificial dip of the
noise appearing in Fig. 5.13(a) in the deep scaling regime (t/∆ = 0.001). In the subsequent
discussions, we take t/∆ = 0.01, where this artifact of order u2 is negligibly smaller than
the bubble term.

Off-resonance current noise

The current noise as a function of V is shown in Fig. 5.14 for various values of u. In
the linear-response regime (V < TK), the current noise is proportional to V in contrast to
the resonant transport [see Fig. 5.6]. At large bias voltages, the current crosses over to a
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Fig. 5.14 The dependence of the current noise S on V for various values of u away from
the particle-hole symmetric point. The parameters are set to ε/TK = 10, t/∆ = 0.01, and
T/TK = 0.

power-law decay with an interaction-dependent exponent αS =−4u/π . This accordance
with the on-resonant case ε = 0 is reasonable as the bias voltage dominates the transport
regardless of the presence or absence of ε for V ≫ ε .

The dependence of the current noise on ε at a fixed value of V is shown in Fig. 5.15.
The noise is constant for ε ≪ V as the level is placed inside the bias window. The ε-
dependence of the noise is visible when the level energy is away from the bias window
(ε ≳V/2). For large ε ≫ TK, the noise crosses over to a power-law decay as a function of
ε as the level position works as the cutoff of the renormalization in this case. For u = 0 the
exponent is −2 and the interacting part of the exponent is found to be twice as large as that
of the V -dependence; see the logarithmic derivative shown in Fig. 5.15 for ε/TK ≤ 1 and
ε/TK ≥ 10.

5.3 Discussion
In this chapter, we have investigated the current noise through a charge-fluctuating quantum
dot system. The minimal model for the interacting spinless fermion in the quantum dot is
given by the interacting resonant-level model (IRLM), where the transmission amplitude
between the dot and the leads is significantly renormalized by the two-particle interaction
u. We have developed a nonequilibrium functional renormalization-group (FRG) scheme
to investigate the current fluctuation in wide parameter regions which previous works could
not have addressed. In contrast to the current which is solely determined by the self-energy,
the current noise requires computation of the current vertex function. We start with the
lowest-order truncation with respect to the two-particle interaction u to derive and solve the
flow equation of the current vertex function. The simple approximation allows a unified
picture of the current noise through the IRLM in the wide parameter regions including the
case without the particle-hole symmetry.



5.A Definition of TK 115

Fig. 5.15 The dependence of the current noise and its logarithmic derivative on ε for
various values of u. The parameters are set to V/TK = 5, t/∆ = 0.01, and T/TK = 0.

In the scaling limit, where the bandwidth of the lead is much larger than any other
energy scales, the current noise calculated in plain perturbation theory is plagued by
artificial divergences. We have confirmed that the divergence originates from the vertex
function which enters in the vertex correction to the current noise. Our FRG method
removes the divergence at the particle-hole symmetric point, allowing a reliable analysis
in the deep scaling limit. In this regime, the current noise at high bias voltages shows
a power-law decay with the same exponent as that of the current. A finite-temperature
effect on the current noise is also incorporated consistently with the fluctuation-dissipation
theorem. The effective charge associated with the on-resonance transport through IRLM is
found to be independent of the interaction in the linear order in u. In the absence of the
particle-hole symmetry, a severe leading-order divergence found in the plain perturbation
theory is consistently replaced by O(u2) one, which is out of control in our lowest-order
approximation. Although the remaining order u2 divergence prohibits us to go deep in
the scaling limit, we obtain reliable results down to t/∆ = 0.01. We found that the current
noise robustly shows a power-law decay for max{V,ε}≫ TK.

The remaining problem is that we are bound to the regime where the two-body inter-
action is weak or intermediate. Higher-order calculations are desirable in the future to
discuss the crossover of the effective charge from the noninteracting case (e∗/e = 1) to the
self-dual point (e∗/e = 2) realized at relatively large values of u [12]. Furthermore, the
higher-order contributions need to be taken into account to remove a diverging term of
order u2 away from the particle-hole symmetric point. Another promising step is to extend
the FRG framework to determine the full counting statistics of interacting fermion systems
[13, 25, 26].

Appendix 5.A Definition of TK

There is an alternative definition of the characteristic energy scale TK other than TK ≡
8|t + ΣΣΣ

r
12|T=V=ε=0 |2/∆ used in the main text. The definition used in previous papers
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[6, 7, 18, 19] is related with the susceptibility as

T sus
K ≡− 2

π

(
d⟨n2⟩

dε

∣∣∣∣
T=V=ε=0

)−1

, (5.55)

where ⟨n2⟩ is the occupation of the central site. Both definitions can equivalently be used
when comparing with field-theoretical results obtained for t/∆ → 0 in the scaling regime.
We found that results rescaled with the TK obtained with the renormalized hopping are
weakly dependent on t/∆ and are closer to the field-theoretical predictions.
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Chapter 6

Summary and conclusion

In this thesis, we have investigated the nonequilibrium current fluctuation in mesoscopic
conductors. In chapter 1, we have reviewed the full counting statistics [1] and shown that
rich information on the microscopic transport processes is accessed by utilizing the current
fluctuation. The recent knowledge established by theoretical and experimental works have
motivated us to clarify two important aspects of the current fluctuation: a detection of the
full counting statistics and renormalization effect due to the two-body interaction. These
are essentially concerned with interacting mesoscopic systems. In order to microscopically
discuss the current fluctuation in such systems, a systematic method has been developed in
chapter 2 based on the Keldysh path integral formulation. In chapter 3, we have overviewed
the recent insights into the non-Gaussian stochastic equation which describes a particle
coupled to multiple environments. Chapters 4 and 5 are devoted to the topics of our main
interest. We summarize the results in the following.

Detection of non-Gaussian fluctuation

In chapter 4, we have studied a realistic detection scheme of full counting statistics in
mesoscopic conductors. We consider the simple problem of determining the current distri-
bution through a quantum point contact (QPC) by using an inductively coupled LC circuit
as a detector. We use a critical assumption that the characteristic time scale of the detector
is much larger than that of the QPC. With the aid of the quasi-stationary approximation,
we can obtain a stochastic picture in which the flux through the detector circuit is per-
turbed by a non-Gaussian noise generated by the current through the QPC. In the classical
limit, the detector can be considered as a stochastic particle driven by the thermal and the
non-Gaussian noise. At low temperatures, the quantum nature of the dissipative circuit
becomes significant as well. We used a stochastic approach to microscopically describe the
dynamics of the particle in the presence of the thermal, quantum, and non-Gaussian noises.
Based on this, we have shown that the steady-state probability density function (PDF) of
the detector circuit can fully characterize the statistical properties of the non-Gaussian
noise even in the classical-quantum crossover regime. It is also clarified that the quan-
tum correction is essential to correctly estimate the current fluctuation in the mesoscopic
conductor.

The result of this thesis has established the observability of the current distribution
by using a realistic on-chip device. The information on the full counting statistics, which
looked too abstract to be determined at first sight, is completely encoded in the dynamics
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of the detector circuit. We have provided the inverse relation to infer the statistics of the
current fluctuation from the steady state PDF of the detector circuit even in the presence
of the weak quantum fluctuation. It is an important future work to use the formalism
for coherent conductors such as the Aharonov-Bohm ring [2]. A possible drawback of
our analysis is that it is restricted to the time-averaged current fluctuations. When the
time scale of the detector is comparable to that of the conductor, the transport through the
conductor are significantly affected by the photon exchange between the subsystems [3, 4].
We need to go beyond the quasi-stationary approximation to discuss the time-dependent
transport [5, 6] and the finite-frequency full counting statistics [7].

Current noise in a charge-fluctuating quantum dot

In chapter 5, we have studied nonequilibrium current noise through a charge-fluctuating
quantum-dot system. The quantum dot in this regime is well described by the interacting
resonant-level model (IRLM), where the capacitive coupling between the quantum dot and
leads results in significant renormalization effect on the transmission amplitude. Although
the nonlinear I-V characteristic has been established by various methods [8–14], little
work has been done on the current noise except for a self-dual point [15–17]. We have
developed a functional renormalization group (FRG) approach [11, 18] to describe the
current fluctuation in the IRLM in wide parameter regions. The flow equations of the
current-vertex functions are derived and solved to determine the current noise. Our FRG
method consistently removes artificial divergences found in the plain perturbation theory,
allowing a comprehensive understanding of the current noise in the scaling regime. It
is found that the current noise exhibits universal power-law decay, whose exponent is
dependent on the strength of the two-body interaction. We also analyze the effective charge
in the weak coupling regime and find that it is only modified to the second or higher orders
in the two-particle interaction.

Our results indicate that novel renormalization effect manifests itself in the current noise
in the interacting quantum-dot systems. The nonequilibrium FRG approach developed
in this thesis offers a versatile method to discuss the full counting statistics in interacting
systems [16, 19, 20]. What remains unclear in our analysis is the higher-order contributions
in terms of the two-body interaction. An important question for future studies is to clarify
the microscopic scattering process of Fermi liquids in nonequilibrium situations [21].
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