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Abstract

In the presence of strong classical gauge fields, one encounters essentially new phenomena that

are not observed in the vacuum. Such phenomena are collectively called “strong-field physics”,

which has been attracting attention of many researchers in various fields in physics. One of the

most intriguing examples of the strong-field physics is spontaneous particle production from

strong classical gauge fields, i.e., the Schwinger mechanism. The Schwinger mechanism has

a long history especially in the context of the Quantum ElectroDynamics (QED), however,

there still remains a number of unsolved problems. Formulation of the Schwinger mechanism in

Quantum ChromoDynamics (QCD) and its application to the pre-equilibrium stage dynamics

of ultra-relativistic heavy ion collisions are examples of the problems.

In the first half of this thesis, we formulate the Schwinger mechanism in QCD based on

quantum field theory, including backreaction effects from quark, gluon, and ghost fluctuations.

To be more specific, we consider quantum fluctuations of quarks, gluons, and ghosts on top

of a classical color gauge field. By adopting mean field approximation for the quantum fluc-

tuations appearing in the QCD Lagrangian, we derive a set of linear differential equations for

the fluctuations, which accounts for particle production, backreaction, and (partial effects of)

scatterings. Within the mean field approximation, we extensively study the Schwinger mecha-

nism in QCD both analytically and numerically. For instance, we discuss finite pulse effects for

particle production; the plasma oscillation induced by the backreaction; quantum interferences

among created quarks and gluons; chemical composition of produced matter; and an evolution

towards isotropization of the system.

In the last half of thesis, we apply the formalism to the pre-equilibrium stage dynamics of

ultra-relativistic heavy ion collisions by modeling initial color flux tubes existing just after a

collision with a boost-invariantly expanding, and spatially uniform classical electric field. By

numerically tracing the time-evolution of the classical field strength, quark and gluon distribu-

tion functions, and thermodynamic quantities such as pressure and energy density, we reveal

how the system evolves towards a formation of quark-gluon plasma in ultra-relativistic heavy

ion collisions. In particular, we show (i) the classical electric field decays quite fast ∼ 3 fm/c

because of the decoherence of the classical field into quantum quark and gluon particles and

the longitudinal expansion of the system; (ii) huge number of quarks ∼ 1000 per unit rapidity

are produced very quickly ∼ 1 fm/c; and (iii) because of the decoherence and the longitudinal

expansion, the system becomes less anisotropic as ⟨: P̂z :⟩ / ⟨: P̂⊥ :⟩ ∼ 0.5 within a few fm/c.
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Chapter 1

Introduction

In the presence of strong classical gauge fields, one encounters essentially new phenomena that

are not observed in the vacuum. Such phenomena are collectively called “strong-field physics”,

which has been attracting attention of many researchers in various fields in physics.

A typical example of strong-field physics is spontaneous particle production from strong

classical gauge fields, which is often referred to as the Schwinger mechanism. The Schwinger

mechanism has a long history especially in the context of the Quantum ElectroDynamics (QED),

however, there still remain a number of unsolved problems. Formulation of the Schwinger

mechanism in Quantum ChromoDynamics (QCD) and its application to the pre-equilibrium

stage dynamics of ultra-relativistic heavy ion collisions, which we discuss in this thesis, are

examples of such problems.

This chapter is devoted to an introduction which provides the physics background of this

thesis: In Section 1.1, basics of the Schwinger mechanism, including its early and recent de-

velopments, are explained. In Section 1.2, we give a brief overview of ultra-relativistic heavy

ion collisions, focusing on their pre-equilibrium stage dynamics and relevance to the Schwinger

mechanism. In Section 1.3, objectives and an outline of this thesis is explained.

1.1 Schwinger mechanism

1.1.1 basics

Study of the Schwinger mechanism has a long history. The first recognition of the Schwinger

mechanism dates back to the dawn of QED: It was Dirac who first discovered a relativistic

wave equation for an electron, which is known as the Dirac equation today [1]. The Dirac

equation admits infinitely negative energy states. This looks problematic because any state

would fall into lower and lower energy states by emitting photons and hence there seem no

stable states. This problem was resolved by Dirac by re-interpreting that negative energy states

are all occupied (and hence any state cannot fall into negative energy states because of the Pauli

principle) in a physical vacuum (Dirac sea picture) [2]. Soon after the discovery of the Dirac

1



2 Chapter 1. Introduction

equation, Klein applied the Dirac equation to a problem of an electron scattering off a potential

barrier, and found a paradox that for a sufficiently strong potential the number of reflected

electrons is larger than that of injected electrons (Klein paradox) [3]. This paradox was resolved

by Sauter [4]. Sauter claimed that a level crossing occurs for a sufficiently strong potential and

that electrons filling the negative energy states (Dirac sea) can tunnel into the positive energy

states as in Fig. 1.1. Therefore, a pair of an electron and a positron is produced, with which

Sauter explained the anomalous excess of the reflected electrons in the Klein paradox.

Figure 1.1: The level crossing of QED vacuum under a strong potential.

Sauter’s idea indicates that a vacuum under a strong potential is no longer a vacant space

but behaves like a charged medium because of the pair creation. If this is true, then one

can expect that a non-zero source term appears in the Maxwell equation even in a vacuum

when it is exposed to a strong potential. This expectation was first theoretically confirmed by

Heisenberg and Euler within relativistic quantum mechanics [5]. They considered a constant

strong classical electromagnetic background field as a strong potential, and derived the so-called

Euler-Heisenberg effective Lagrangian LEH:

LEH = −1

4
F µνFµν +

(e2/4π)2

360m4
e

[
4(F µνFµν)

2 + 7(F µνF̃µν)
2
]
, (1.1)

where terms higher than O((F/m2
e)

6) are neglected. e > 0 is the coupling constant of QED

and me is the electron mass. F µν ≡ ∂µAν − ∂νAµ is the classical electromagnetic field strength

and F̃ µν ≡ ϵµνρσFρσ (ϵµνρσ is a completely anti-symmetric tensor normalized by ϵ0123 = 1)

is its dual. The first term in Eq. (1.1) is nothing but the usual Maxwell Lagrangian. The

second term describes the source term, which is the manifestation of the pair production from

a strong classical electromagnetic field. We note that here the strong field is not dynamical but

is treated as a background, i.e., backreaction effects from the produced particles to the strong

field is neglected and the field strength is kept fixed. This approximation is justified only when

the number of produced electrons is small enough. It was not until 1980s that the backreaction

problem was seriously discussed; we will come back to this issue in Section 1.1.3.



1.1. Schwinger mechanism 3

Sauter’s pair production claims that the particle number is no longer conserved. This

suggests that one has to use quantum field theory rather than single-particle quantum mechanics

to fully formulate Sauter’s idea. Schwinger was the first one to formulate Sauter’s idea within

quantum field theory [6]. Schwinger re-derived the Euler-Heisenberg effective Lagrangian (1.1)

as a one-loop effective Lagrangian described by the following diagram,

= + + + · · · , (1.2)

where the wavy line with a blob represents an insertion of a classical field. The thin line is

a bare propagator of an electron, and the thick line is a full one dressed by infinite number

of insertions of classical fields. Only even numbers of insertions are non-vanishing because

of the Furry theorem (charge symmetry in QED) [7]. Furthermore, Schwinger found that an

imaginary part appears in the Euler-Heisenberg effective Lagrangian (1.1). This means that

a vacuum under a strong classical electromagnetic field is unstable, i.e, transition probability

from an in-vacuum to an out-vacuum is less than unity as

| ⟨vac; out|vac; in⟩ |2 = exp

[
−2Im

∫
d4xLEH

]
< 1. (1.3)

The physical meaning of the imaginary part, w ≡ ImLEH, is the vacuum decay rate. One can

explicitly compute the vacuum decay rate w for a constant and homogeneous electric field E

as

w =
|eE|
(2π)3

∑
spin

∫
d2p⊥

∞∑
n=1

1

n
exp

[
−nπm

2
e + p2

⊥
|eE|

]
=

|eE|2

4π3

∞∑
n=1

1

n2
exp

[
−nπ m2

e

|eE|

]
, (1.4)

where p⊥ labels the transverse momentum (perpendicular to the direction of the electric field

E). The summation,
∑

spin = 2, accounts for the summation over the electron spin degrees

of freedom s = 1/2. The non-vanishing vacuum decay rate w is a consequence of Sauter’s

pair production. In this way, Sauter’s idea was fully formulated by Schwinger, and this is

the reason why particle production from a strong classical electromagnetic field is called the

(Sauter-)Schwinger mechanism. We should remark here that the vacuum decay rate w is not

the same as the pair production rate Γ ≡ dNe+e−/dx
3dt although confused in some literatures.

This is intuitively because the former is the rate for at least one pair of particles to be produced,

while the latter is the rate for pairs to be produced. This aspect was first made clear by Nikishov

[8] and recently revisited in Ref. [9]. Indeed, Nikishov directly computed the pair production

rate Γ, and found that

Γ =
|eE|
(2π)3

∑
spin

∫
d2p⊥ exp

[
−πm

2
e + p2

⊥
|eE|

]
=

|eE|2

4π3
exp

[
−π m2

e

|eE|

]
. (1.5)
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Thus, the pair production rate Γ is identical to the first term in the series of the vacuum decay

rate w. These two quantities coincide with each other only for |eE| ≪ m2
e.

Until now, we have restricted our attention only to the Schwinger mechanism for electrons.

However, the Schwinger mechanism is not limited to electrons. It can be generalized to charged

particles with arbitrary spin. In fact, the Euler-Heisenberg Lagrangian was extended for scalar

particles in Ref. [10] and for vector particles in Ref. [11]. These results were further generalized

by Marinov and Popov to the case of particles with arbitrary spin [12]. They found the following

expressions for the vacuum decay rate w and the pair production rate Γ for a constant and

homogeneous electric field E:

w =
|eE|
(2π)3

∑
spin

∫
d2p⊥

∞∑
n=1

βn
n

exp

[
−nπm

2 + p2
⊥

|eE|

]
= (2s+ 1)

|eE|2

(2π)3

∞∑
n=1

βn
n2

exp

[
−nπ m2

|eE|

]
,

(1.6)

Γ =
|eE|
(2π)3

∑
spin

∫
d2p⊥ exp

[
−πm

2 + p2
⊥

|eE|

]
= (2s+ 1)

|eE|2

(2π)3
exp

[
−π m2

|eE|

]
, (1.7)

where βn is a statistical factor given by

βn ≡

(−1)n−1 for bosons

1 for fermions
. (1.8)

m is the mass of the charged particle. The summation,
∑

spin = 2s + 1, accounts for the

degeneracy of the spin degrees of freedom with s = 0, 1/2, 1, . . .. The vacuum decay rate w and

the pair production rate Γ for a single spin degree of freedom are independent of the value of

the spin s. This is because electric fields do not couple to the spin degrees of freedom. This

situation changes when one considers a magnetic field in addition to the electric field. Consider

a constant and homogeneous magnetic field in parallel to the electric field as an example (one

can easily extend the following discussion by a Lorentz-boost to general cases, where the angle

between the electric and the magnetic field is non-zero). In this case, one can analytically

compute the vacuum decay rate w and the pair production rate Γ for arbitrary spin particles

[12]. The essence of the results is that magnetic fields do couple to the spin degrees of freedom,

and discretize the transverse motion as
√
m2 + p2

⊥ →
√
m2 + (2n− gsz + 1)|eB| (Landau

quantization), where n = 0, 1, 2, . . . labels the Landau level, g denotes the gyromagnetic ratio,

and sz is the longitudinal component of the spin sz = −s,−s + 1, . . . , s. As a consequence,

the lowest Landau level (low transverse momentum particles with n = 0) dominates the pair

production. More interestingly, the pair production is dramatically suppressed and/or enhanced

depending on the spin s of particles. Indeed, one finds an exponential suppression for scalar

particle production, while vector particle production is exponentially enhanced for s∥ = 1 with

g = 2. The latter is related to the Nielsen-Olesen instability [13, 14] inherent in charged vector

particles such as W -bosons and gluons [15].
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Since the Dirac sea picture is invalid for bosons, the original Sauter’s explanation for the

Schwinger mechanism should be modified now. The point is that Sauter’s explanation is based

on single-particle quantum mechanics, although the Schwinger mechanism, by its nature, must

be explained with the language of quantum field theory. This is related to how we reconcile

the negative energy states problem within quantum field theory, where the Dirac sea picture is

replaced by virtual pair fluctuations in a vacuum. The modern interpretation for the Schwinger

mechanism is as follows: In quantum field theory, a vacuum is not a vacant space but is full of

virtual pair fluctuations. The virtual pairs are ceaselessly created and annihilated in a vacuum

with a typical time scale ∆t ∼ 1/m because of the uncertainty principle. The presence of an

electromagnetic field, then, accelerates the virtual pairs and supply energy. If the work done

by the electromagnetic field ∼ |eE| ×∆t = |eE|/m (notice that magnetic fields do no work on

an orbital motion1) exceeds the mass gap m, i.e., |E| ≳ m2/e ≡ Ecr, the virtual pairs become

on-shell resulting in production of real pair particles. We note that, in this explanation, we

have implicitly assumed that the typical work done by the electromagnetic field is determined

by the field strength only. This assumption is valid for fields slowly varying in time, where the

typical frequency of the field is sufficiently smaller than the field strength so that the typical

energy scale of the electromagnetic field is solely determined by the field strength. We will

clarify this statement and review effects of time-dependent electromagnetic fields in Section

1.1.2.

One of the outstanding properties of the Schwinger mechanism is the exponential factor

in the vacuum decay rate w and/or in the pair production rate Γ, which depend on |eE|/m2

inversely in the exponential. From this factor, it is evident that the Schwinger mechanism for a

constant electric field is genuinely a non-perturbative phenomenon. This is in contrast to usual

perturbative phenomena, whose dependence on |eE|/m2 always appears with positive powers.

On the other hand, one can also understand that an extraordinary strong electromagnetic

field of the order of Ecr = m2/e ∼ 10−2 MeV2 ∼
√
1028 W/cm2 (for an electron-positron pair

productionm = me = 0.511 MeV) is required to make the Schwinger mechanism manifest. This

is the reason why the Schwinger mechanism has not been confirmed in laboratory experiments

until today. The strongest electromagnetic field that the human beings have now at hand is the

HERCULES laser in the United States of America, whose strength is about 2×1022W/cm2 [16]

although the attainable laser intensity is rapidly growing in these days [17] thanks to advents of

new technologies (e.g. the chirped pulse amplification (CPA) [18]) and there are many intense

laser facilities planned around the world (e.g. ELI [19], HiPER [20]).

In finishing this subsection, let us mention that the Schwinger mechanism has a wide range

of applications in various fields in physics. In particular, it plays an important role in the area of

QCD, which is reviewed in Section 1.1.4. Here, let us discuss other examples: As is mentioned,

intense laser facilities give us an unique opportunity to study the Schwinger mechanism in

1Effects of magnetic fields appear in the modification of the effective mass through the Landau quantization

as is explained in the last paragraph.
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laboratory experiments, although its strength is still below the critical one Ecr ≡ m2/e. In

addition, extraordinary strong classical electromagnetic fields, which may exceed the critical

strength are expected to appear in various physical systems (although it is not controllable)

such as super-heavy nuclei [21, 22, 23], ultra-relativistic heavy ion collisions [24, 25], charged

black holes [26], the early Universe [27, 28] and so on. Furthermore, it is recently argued in

the condensed matter community that the Schwinger mechanism can be tested experimentally

via quasi-particle excitations in graphene [29] and/or in cold atoms on a optical lattice [30,

31, 32]. It should also be noted that many interesting phenomena such as the Landau-Zener

transition in Mott insulators, the Unruh effect, the Hawking radiation, particle production

during the inflation era can be discussed in an analogue of the Schwinger mechanism because

the underlying physics is the same, i.e., particle production mechanism from strong fields.

Finally, let us comment that the theoretical formulation of the Schwinger mechanism was first

given by Schwinger [6] by the proper-time regularization of the one-loop digram (proper-time

method). Since then, many other formulations have been developed such as canonical method

[33, 34], quantum kinetic method [35, 36], worldline instanton method [37], stochastic method

[38], and so on.

1.1.2 time-dependent electromagnetic fields

So far, we have considered an idealized situation, where the strong classical electromagnetic field

is constant in time. In actual physical situations, however, one frequently has to deal with time-

dependent strong fields. For example, strong electromagnetic fields produced in ultra-relativistic

heavy ion collisions decay quite fast. Those in intense lasers are also time-dependent. Under

such situations, particle production mechanism from strong fields is significantly modified by

the time-dependence. Indeed, the non-perturbative nature of the Schwinger mechanism for a

constant electromagnetic field can be understood as a scattering process of a vacuum virtual

pair with an infinite number photons with zero frequency. This is not the case for a time-

depending field, where photons have non-zero frequency ω: A finite number of photons ∼ m/ω

is enough to excite a particle from a vacuum. Hence, the particle production may no longer be

non-perturbative, but perturbative particle production may occur.

The interplay between the perturbative and the non-perturbative particle production from

a strong classical electromagnetic field was first discussed by Brèzin and Izykson [39] and by

Popov [40]. They considered electron-positron pair production from a sinusoidal electric field

with frequency ω: E = E0 sinωt. In a weak field limit |eE0|/m2 ≪ 1, they found that the pair

production rate Γ varies with ω as

Γ =


|eE|2

4π2
exp

[
−π m2

e

|eE|

]
(γK ≪ 1)

|eE|2

16π

∣∣∣∣ eE2meω

∣∣∣∣4me/ω

(γK ≫ 1)

. (1.9)
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Here, γK ≡ meω/|eE0| is the so-called Keldysh parameter, which was previously introduced

in theory of ionizations of atoms [41]. For γK ≪ 1 or ω → 0 (constant field limit), one

naturally reproduces the well-known non-perturbative formula for the Schwinger mechanism

for a constant electric field. On the other hand, for γK ≫ 1, the frequency becomes so large

that the particle production becomes purely a perturbative phenomenon. The pair production

rate Γ is now free from the non-perturbative exponential factor, and the exponent ∝ me/ω ∼
(number of photons scattered for the particle production) in Γ reflects the fact that the multi-

photon scattering dominates the particle production mechanism.

One can also discuss effects of time-dependence via a pulsed electric field. This is done by

the author [42], and is discussed in detail in Section 2.3

One of the most interesting theoretical developments involving the time-dependent effects

is the dynamically assisted Schwinger mechanism [43]. It predicts that the pair production

rate Γ is dramatically enhanced compared to the naive Schwinger pair production rate for

a slowly varying γ
(1)
K ≪ 1 electric field E(1), if one superimposes fast γ

(2)
K ≫ 1 and weak

|E(2)| ≪ |E(1)| fluctuations E(2) on top of E(1). In this configuration, the fast electric field E(2)

“assists” the Schwinger pair production by supplying sizable energy via multi-photon scattering,

which results in lowering the pair production threshold. The dynamically assisted Schwinger

mechanism attracts much attention of experimentalists because it presents an efficient way to

observe the Schwinger mechanism in laboratory experiments. Optimization of the field profile

is also studied vigorously, for example, in Refs. [44, 45, 46].

1.1.3 backreaction

In the previous two subsections, we have treated the strong classical electromagnetic field as a

background and neglected the backreaction effects. Unfortunately, this treatment is unphysical

because it apparently violates the energy conservation law [47]. In reality, particles are accel-

erated by the electromagnetic field after they are created, and electromagnetic current flows.

The current generates an additional electromagnetic field according to Ampère’s law, which in

turn screens the original field. The backreaction effects were first phenomenologically addressed

within a transport model, which is often referred to as the flux tube model [48, 49]. In this

model, the classical Boltzman-Vlasov equation coupled to the classical Maxwell equation,

pµ
∂f(x, p)

∂xµ
− epµFµν

∂f(x, p)

∂pν
= C(x, p) + S(x, p), (1.10)

∂F µν

∂xµ
= jν , (1.11)

is considered. Here, f is a one-particle distribution function. C is a collision integral. S is a

source term, which accounts for the particle production from the Schwinger mechanism. j is

the current of the produced particles, which screen the original field via the Maxwell equation

(1.11). The flux tube model is intuitively clear and thus appealing, however, it is highly non-

trivial from a theoretical point of view. For instance,
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• What is a correct expression for the source term?

In the original works [48, 49], the source term is assumed to have the same form as what

the Schwinger mechanism for a constant electric field has (Eq. (1.5)). This assumption

is apparently incorrect because now the field strength depends on spacetime in general,

and hence Eq. (1.5) is not applicable. Note that no formula exists so far for the pair

production rate for arbitrary spacetime-dependent electromagnetic fields.

• What is a correct expression for the current?

In the original works [48, 49], a spatially uniform electric field pointing to the z-direction

is considered. They assumed that the current jµ ≡ jδµz is expressed as

j = jµcond + jµpol, (1.12)

jcond = e

∫
d3p

(2π)3
pz
p0
f, (1.13)

jpol =
1

|E|

∫
d3p

(2π)3
S (1.14)

so as to satisfy the energy conservation law. Here, jcond and jpol may represent the conduc-

tion and the polarization current, respectively. The justification of this expression from a

microscopic point of view is quite unobvious. Indeed, in the framework of quantum field

theory, a classical current is obtained by taking an expectation value of a current operator

jµ ≡ ⟨ĵµ⟩ (ĵµ = e ˆ̄ψγµψ̂ for fermions for example) with a certain regularization scheme.

The expression depends on the regularization scheme one chooses (or, physical conditions

one imposes) in general, however, no unique scheme exists for our problem because one

has to consider a spacetime-depending regularization when there is a spacetime-depending

electromagnetic field2.

• How can one justify the classical transport equation?

In the presence of strong fields, propagation of a particle should significantly differ from

that of the bare (i.e., classical) one because it receives large quantum corrections from the

strong field.

• Is the one-particle distribution function well-defined?

Theoretically speaking, a one-particle distribution function is well-defined only when in-

teractions are switched off. This is in contrast to our situation, where particles are strongly

interacting with the field.

2This situation is essentially the same as what we encounter in cosmological problems, where the spacetime

is curved [50].
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A more transparent way is the quantum-field-theoretical approach, which was developed in

Refs. [34, 51, 52, 53] (for a review, see [54]). In this approach, field equations

0 = [i/∂ − e/A−m] ψ̂, (1.15)

jν = ∂µF
µν (1.16)

are directly solved. (For scalar particles, the Klein-Gordon equation, 0 = [(i∂ − eA)2 −m2]ϕ̂,

is considered instead of the Dirac equation. ) Here, quantum operators are distinguished from

classical numbers by a hat (•̂) as usual. In this approach, mean field approximation is adopted

so that only an expectation value of the gauge field operator, Aµ ≡ ⟨Âµ⟩, and of the current

operator, jµ ≡ ⟨ĵµ⟩, are considered. This approximation is valid when quantum fluctuations,

(Âµ − Aµ)/Aµ and (ĵµ − jµ)/jµ, are negligible, i.e., the classical contributions, Aµ and jµ, are

large enough. In the first equation, the Dirac (or the Klein-Gordon) equation is solved non-

pertubatively with respect to the strong classical electromagnetic field Aµ. This is equivalent to

evaluating the one-loop quantum correction illustrated in Eq. (1.2), which accounts for the pair

creation. The backreaction effects are embedded in the classical Maxwell equation, described by

the second equation, as in the phenomenological flux tube model. The theoretical formulation

of this approach is presented in detail in Section 2.1. We note for completeness that a quantum

kinetic method is also developed in Ref. [55], which is essentially the same as the quantum-

field-theoretical approach explained above. In this approach, quantum Vlasov equation with

a source term, instead of the Dirac (or the Klein-Gordon) equation, coupled to the classical

Maxwell equation is considered. It is, however, much simpler to solve the field equation directly,

rather than solving a quantum kinetic equation with a complicated non-Markovian source term

[35, 56]. Another equivalent approach is recent real-time lattice simulations [57, 58, 59] based

on the classical statistical approximation [60]. In this approach, classical equations of motion

are numerically solved on a lattice and quantum effects are (partly) taken into account by an

ensemble average of initial field fluctuations. It is an advantage of this approach that numerical

costs are smaller than the previous two approaches for 3-dimensional problems; especially for

problems, where strong fields are inhomogeneous in space. However, it is speculated that the

classical statistical approximation may destroy the renormalizability of an underlying theory

[61].

The backreaction problem attracts much attention even today. In particular, it is recently

argued that avalanche-like particle production (QED cascade) occurs if one considers backre-

action effects beyond the mean field level [62, 63, 64]: Let us suppose that a charged particle

is present in a strong field (seeded by the Schwinger mechanism, for example). Then, since

the field is so strong that the particle would be quickly accelerated by the field to emit hard

photons, which in turn decay into an electron-positron pair. Repeating these steps to increase

the number of particles so rapidly that the original field would decay much faster than expected

in the mean field studies. Although the theoretical foundation for the QED cascade is still far

from complete, numerical simulations based on a simple phenomenological kinetic description
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support the QED cascade scenario [65, 66]. In addition, it is interesting to point out that such

an avalanche-like particle production was experimentally observed in an electron-hole plasma

created by a strong THz laser [67].

1.1.4 application to quantum chromodynamics

The Schwinger mechanism plays an important role in the area of QCD, especially in the physics

of multi-particle production: It is the strong classical color electromagnetic flux tubes that

bind quarks and gluons inside hadrons (color confinement) [68]. The typical strength of the

flux tubes is as strong as gE ∼ 1 GeV2, which can be determined by the Reggae slope in

hadron spectroscopy and/or by lattice QCD (for a review, see Ref. [69] for instance). Notice

that the strength is much larger than the critical field strength of the Schwinger mechanism

for both quarks and gluons. In high energy processes (e.g. lepton-hadron, hadron-hadron

scatterings), partons (quarks and gluons) inside a hadron are shot out and flux tubes span

between the partons expand (Low-Nussinov model [70, 71])3. The flux tubes do not expand

macroscopically, but decay through production of quark–anti-quark and/or gluon pairs via (a

colored version of) the Schwinger mechanism; otherwise the energy of a flux tube would increase

ultimately with increasing its length. These particles are eventually observed as (color neutral)

hadrons in detectors. This is the so-called string breaking picture of hadron production in high

energy processes [72, 73]. The string breaking picture is implemented in some phenomenological

models such as the Lund model [74], which has been very successful in reproducing hadron

spectra observed in actual high energy processes.

Static properties of the string breaking mechanism can be studied well within lattice QCD:

The emergence of color flux tubes in QCD was studied for mesonic (quark and anti-quark)

system in Refs. [75, 76, 77], baryonic (three quark) system in Refs. [77, 78], tetra-quark system

in Ref. [79], and penta-quark system in Ref. [80]. The breaking of color flux tubes was confirmed

in Refs. [81, 82] by analyzing a static quark and anti-quark potential separated with each other

by fixed distance l. They found that l ∼ 1.25 fm, which coincides with the typical size of

hadrons, sets critical distance for the string breaking to occur.

Dynamical aspects of the string breaking mechanism are, however, less understood. Indeed,

lattice QCD tells us nothing about dynamics because real-time information is lost in a Euclidean

formulation, with which lattice QCD stands. In order to understand dynamical aspects of the

string breaking mechanism, one has to follow real-time dynamics of the Schwinger mechanism

in QCD including backreaction effects. For this purpose, one has to extend the Schwinger

mechanism developed in QED to the case of QCD.

Study of this direction was initiated by Refs. [83, 84, 85, 86], in which the quark and

gluon pair production rates, Γqq̄ and Γgg, for a constant and homogeneous classical strong color

3The flux tube picture is also applicable to lepton-lepton scatterings. For this case, l̄l → γ → qq̄ dominates

the cross section, and the flux tubes should span between the produced quark and anti-quark pair.
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electric background field was computed. They considered a covariant constant background

field satisfying 0 = DµF
µν ≡ ∂µF

µν + ig[Aµ, F
µν ]. For covariant constant fields, there exists a

global color rotation such that it diagonalizes, i.e., Abelianizes the background field strength

as F µν = F̄ µν
∑Nc−1

α=1 wαHα with Hα being diagonal matrices which belong to the Cartan

subalgebra of SU(Nc). Now that the problem is essentially reduced to the Abelian one, one

finds a pair production rate Γ similar to that for QED (Eq. (1.7)) as

Γqq̄ =
Nc∑
i=1

∑
flavor

∑
spin

|q(fund.)i Ē|
(2π)3

∫
d2p⊥ exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē|

]
=

Nc∑
i=1

|q(fund.)i Ē|2

4π3
exp

[
−π

m2
f

|q(fund.)i Ē|

]
,

(1.17)

Γgg =

Nc(Nc−1)/2∑
A=1

∑
pol.

|q(ad.)A Ē|
(2π)3

∫
d2p⊥ exp

[
−π p2

⊥

|q(ad.)A Ē|

]
=

Nc(Nc−1)/2∑
A=1

|q(ad.)A Ē|2

4π3
. (1.18)

In deriving Eq. (1.18), we have used the fact that gluons are massless. mf is the mass of a quark

of flavor f . The indices i and A are the color indices of fundamental and adjoint representations,

respectively, and
∑

i and
∑

A account for the summation over the color degrees of freedom.∑
pol. = 2 counts the number of physical polarization of gluons; unphysical particles, i.e., ghosts

and scalar and longitudinal gluons are never produced. The effective color charges, q
(fund.)
i for

quarks and q
(ad.)
A for gluons, are defined by

q
(fund.)
i ≡ g

Nc−1∑
α=1

wα(Hα)ii, (1.19)

q
(ad.)
A ≡ g

Nc−1∑
α=1

wα(vα)A, (1.20)

where g is the coupling constant of QCD, and (vα)A is the root vector of SU(Nc).

Backreaction effects in QCD have been studied within the QCD version of the flux tube

model explained in Section 1.1.3 in Ref. [87]. Ref. [87] considered the Boltzman-Vlasov equation

[88, 89, 90] coupled to the classical Yang-Mills equation:

pµ
∂f

(q)
i (x, p)

∂xµ
− q

(fund.)
i pµF̄µν

∂f
(q)
i (x, p)

∂pν
= C(q)

i (x, p) + S(q)
i (x, p), (1.21)

pµ
∂f

(g)
A (x, p)

∂xµ
− q

(ad.)
A pµF̄µν

∂f
(g)
A (x, p)

∂pν
= C(g)

A (x, p) + S(g)
A (x, p), (1.22)

∂F̄ µν

∂xµ
= jν , (1.23)

where the source term S is assumed to be expressed by the particle production rate Γ in QCD

(Eqs. (1.17) and (1.18)). As the classical field is Abelianized, the non-Abelian part of the Yang-

Mills equation, ig[Aµ, F
µν ], vanishes in Eq. (1.23) so that it reduces to the Abelian Maxwell

equation.
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The phenomenological flux tube model is, unfortunately, far from self-evident as was ex-

plained in detail in Section 1.1.3. Quantum field theory should give us a rigorous formulation

from the first principle, however, study along this direction is insufficient. The quantum-

field-theoretical approach was applied in [91], where only backreaction effects from quarks are

considered and those from gluons are neglected. In reality, the backreaction effects from quarks

and gluons must give the same order contributions. Hence, inclusion of the gluon backreaction

effects is important, although it has not been completed so far. We resolve this problem in this

thesis.

1.2 Ultra-relativistic heavy ion collisions

Pre-equilibrium stage dynamics in ultra-relativistic heavy ion collisions is a big missing piece

in our current understanding of the event evolution. The physics is, on the other hand, very

similar to the string breaking dynamics reviewed in the last section as we will see, and hence it

is crucial to deepen our understanding of the Schwinger mechanism to fill in the missing piece.

In this Section, we explain what the problem is, and review recent theoretical attempts for this

problem.

1.2.1 overview

In our current Universe, i.e., with almost zero temperature and density, quarks and gluons are

confined in hadrons so that one can never observe them individually. The theory of quarks and

gluons, i.e., QCD predicts that the situation dramatically changes when we go to high temper-

ature and/or density. There, a phase transition occurs, and quarks and gluons are liberated

from hadrons to form a plasma state [92, 93]. This is the so-called Quark-Gluon Plasma state

(QGP) [94]. Lattice QCD predicts that the phase transition takes place at temperature around

TQCD ∼ 170 MeV [95, 96]. According to the Big Bang theory [97, 98], such a high temperature

state may be realized just after the birth of our Universe, and thus all the matter existing in

our current Universe can be thought of as remnants of QGP. Hence, understanding QGP is

important not only to unveil rich QCD physics, but also to elucidate the origin of the matter.

Ultra-relativistic heavy ion collisions are the only way that the human beings have now

at hand to create QGP in laboratory experiments. Heavy nuclei such as copper (63Cu), gold

(197Au), and lead (208Pb) with ultra-relativistic energies are collided, and a fraction of the

collision energy is converted into the thermal energy to achieve extremely high temperature

with macroscopic dimensions ∼ (10 fm)3. So far, these collisions are operated at the Relativistic

Heavy Ion Collider (RHIC) with typical collision energy
√
sNN = 200 GeV/nucleon since 2000,

and at the Large Hadron Collider (LHC) with
√
sNN = 5.5 TeV/nucleon since 2010. Many

experimental observables (e.g. elliptic flow v2, jet quenching, quarkonium suppression, thermal

photon, Hanbury-Brown-Twiss (HBT) interferometry, chemical equilibration) strongly indicate
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that QGP is actually created in ultra-relativistic heavy ion collisions.

Figure 1.2: Spacetime evolution of ultra-relativistic heavy ion collisions.

The spacetime evolution of ultra-relativistic heavy ion collisions can be roughly divided into

three stages (see Fig. 1.2); (I) before a collision (τ < 0), (II) pre-equilibrium stage just after a

collision (0 < τ < τQGP), and (III) locally equilibrated stage after QGP is created (τQGP < τ).

Thanks to vigorous theoretical and experimental studies of the past decades, there has been

significant progress in understanding the stages (I) and (III):

(I) Before a collision (τ < 0)

Before a collision, two incident nuclei at very high energies are saturated with a huge number

of gluons with typical phase space densities ∼ 1/g2 (see the left panel of Fig. 1.3). Such a

very dense gluon state is well approximated by coherent classical gluon fields sourced by ρ⃗,

rather than incoherent particles (Color Glass Condensate picture; CGC [99, 100, 101, 102]).

This is a non-Abelian analogue of the Weizsäcker-Williams fields in QED. In this picture,

quark contributions are negligible because they are sub-leading effects compared to that from

abundant gluons.

The non-linear interaction among gluons g ↔ gg plays an essential role in CGC: A gluon

with large momentum inside a nucleus emits gluons one after another through successive g → gg

processes, and the number of gluons dramatically increases with increasing the energy of the

nucleus, or equivalently with decreasing Bjorken’s x ∼ Q2/s (Q2 is the virtuality and s is the

center of mass squared). This cascade eventually ceases at sufficiently small x. There, gluons

start to overlap with each other, and the inverse process gg → g becomes significant to balance

the gluon emitting process so that gluon production saturates (see the right panel of Fig. 1.3).
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Figure 1.3: [Left] Particle Distribution Function (PDF) measured at HERA [103]. [Right]

Intuitive picture of gluon saturation.

As a result of this saturation mechanism, gluons are randomly distributed in the transverse

plane of the nucleus with typical correlation length ∼ 1/Qs. The only scale Qs is the so-called

saturation scale, which evolves with x as

Q2
s ∼ A1/3

(x0
x

)λ
GeV2, (1.24)

where A1/3 represents thickness of a nucleus with A being the atomic mass number. The

unknown parameters x0, λ are determined from experiments as x0 = 3 × 10−4, λ = 0.288 for

x < 10−2 (Golec-Biernat–Wüsthoff (GBW) parametrization [104, 105]). Typical values of Qs

read Qs ∼ 1 GeV for RHIC energy scale, and Qs ∼ 3 GeV for the LHC energy scale. The

randomness of the transverse gluon distribution can be described by a probability function

W [ρ] with ρ being the gluon density. Now that the number of color constituents, i.e., gluons

are sufficiently large, the central limit theorem tells us that it is good to model W [ρ] by the

following Gaussian ansatz (McLerran-Venugopalan (MV) model [99, 100, 101]) as

W [ρ] = exp

[
−1

2
trc

∫
d2x⊥

ρ2

g2µ2

]
, (1.25)

where the model parameter µ is related to the saturation scale Qs as g
2µ ∼ Qs [106]. In the

CGC framework, any observable ⟨O⟩CGC is computed as an ensemble average of the probability

function W [ρ] as

⟨O⟩CGC =

∫
[dρ]W [ρ]O[ρ]. (1.26)

An important consequence of CGC is that high energy hadrons are universally characterized

only by a single energy scale, i.e., the saturation scale Qs. This CGC prediction is actually

confirmed in scaling behaviors in deep inelastic scattering cross sections (geometric scaling)

[107, 108, 109].
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(II) pre-equilibrium stage just after a collision (0 < τ < τQGP)

The colliding nuclei pass through each other (Bjorken picture [110]) leaving a fraction of the

collision energy into the cylindrical shaped region between the two nuclei. The energy would

be converted into the thermal energy to create QGP through non-equilibrium processes, which

we review in Section 1.2.2.

(III) equilibrated stage after QGP is created (τQGP < τ)

QGP is created shortly after a collision τ > τQGP. The spacetime evolution of the system is,

then, well described within relativistic hydrodynamics. In particular, (a relativistic version of)

the Euler equation together with an equation of state, for instance, extracted from lattice QCD

is very successful in reproducing experimentally observed large elliptic flow v2. This success

strongly indicates that QGP behaves like a perfect liquid with tiny viscosity, which means that

• QGP is a strongly interacting matter rather than a weakly interacting gas as the asymp-

totic freedom of QCD [111, 112] naively implies; and

• the entropy (almost) conserves during the stage (III), so that the huge entropy observed

in the experiment (about 1000 charged hadrons per unit rapidity [113, 114]) must be

produced during the pre-equilibrium stage (II).

Hydrodynamics also implies that the formation time of QGP may be very short τQGP ≲ 1 fm/c

because the large elliptic flow v2 requires that the hydrodynamical evolution starts at early

times, when the anisotropy in the pressure gradients is large enough. The short formation

time τQGP is also suggested by hydrodynamical analysis of direct photons. Numerical codes

including higher order effects such as shear/bulk viscosity and initial state fluctuations are also

developing in these days, which are indispensable tools to extract bulk properties of QGP in

detail.

The cylindrical shaped region, where QGP is created, expands in the beam direction in

accordance with the motion of the colliding nuclei (Bjorken expansion [110]). QGP cools down

with this expansion, and the temperature eventually gets lower than the critical temperature of

the QCD phase transition TQCD ∼ 170 MeV. Then, quarks and gluons are confined to form a

gas of hadrons, which are finally caught by detectors after hadronic cascading evolution. This

stage of dynamics is described by hadron transport models (e.g. UrQMD [115], JAM [116]).

The hadron transport models have been successful in reproducing a number of observables in

low-energy heavy ion collisions up to SPS (Super Proton Synchrotron at CERN) energy scale
√
s ∼ 17 GeV/nucleon, where more relevant degrees of freedom in the process are given by

hadrons rather than quarks and gluons.
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1.2.2 pre-equilibrium dynamics

There is a big missing link between the stages (I) and (III), i.e., a bridge between CGC and

hydrodynamics. Namely, the questions are

(a) How can one theorize the non-equilibrium QCD dynamics during the stage (II)?

(b) How are the huge number of quark and gluon particles produced from the purely classical

gluon fields characterized by CGC?

(c) How does the system evolve to form QGP? In particular, the applicability of hydrodynamics

to QGP naively implies that QGP is (at least) close to isotropic Pz/P⊥ ∼ 1 because the

foundation of hydrodynamics relies on a derivative expansion around an equilibrium, and

hence a complete isotropization or a state very close to it is assumed for the expansion

to make sense. Is isotropization and/or hydrodynamization possible within an extremely

short formation time τQGP ≲ 1 fm/c?

Unfortunately, no complete answer exists for these questions starting from QCD, despite of

numerous and incessant (see Ref. [117] for example) theoretical attempts. What makes it

difficult is that there is no experimental probe so far for the pre-equilibrium dynamics during

the stage (II) because the strongly interacting matter in the stage (III) smears out the pre-

equilibrium information.

Anisotropy: P
T 
/ P

L

Occupancy: f

Thermal

Kinetic theory Classical

YM

Initial

f~1f~α f~α−1

Both

Figure 1.4: A cartoon of the field and particle regime in the pre-equilibrium stage dynamics of

ultra-relativistic heavy ion collisions. The figure is taken from Ref. [118].

Here, we review recent theoretical developments for this problem. The pre-equilibrium stage

(II) might further be divided into two regimes, namely, classical (0 < τ ≲ τpart) and particle

(τpart ≲ τ ≲ τQGP) regime (see Fig. 1.4). Different degrees of freedom dominate for each regime

(classical fields for the field regime, and particles for the particle regime), so that different

theoretical approaches are applied depending on the regime.
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field regime

As was explained in the last subsection, CGC tells us that incident nuclei are a highly dense

system of gluons with typical phase space density f ∼ 1/g2 ≫ 1, whose behavior is well

approximated by classical gluon fields sourced by ρ. Hence, the system can solely be described

by classical dynamics and one may use the classical Yang-Mills theory to describe the subsequent

spacetime evolution after a collision because quantum scattering processes are suppressed by

an inverse of the phase space density 1/f ≪ 1. In the following, we shall neglect quarks for

the first approximation, because it would give only subleading contributions compared to that

from dense gluons. Inclusion of quark degrees of freedom is an open issue in this research area.

The classical Yang-Mills theory tells us that a collision of these classical gluon fields results

in a formation of longitudinal color electromagnetic flux tubes between the two nuclei receding

from each other [119, 120, 121] (often referred to as glasma named after that it is a transient

state between color-GLAss-condensate and quark-gluon plaSMA). These flux tubes can be

understood as an analogue of the Low-Nussinov model in the string breaking dynamics.

Let us explain how these flux tubes emerge. Intuitively speaking, this is a colored version of

a capacitor, where each nucleus plays a role of a capacitor plate with large color charges due to

the gluon saturation. Theoretically, our task is to solve the classical Yang-Mills equation with

sources ρ(n) (n = 1, 2 differentiate the colliding nucleus 1 and 2 moving at the speed of light

to the positive and negative beam direction, respectively). This program is analytically doable

at the instant of a collision τ = 0+. Now, let us assume a perfect boost-invariance, i.e., the

resulting color electromagnetic fields do not depend on a spacetime rapidity coordinate. This is

because boost-invariance is a good approximation at the classical level since the incident nuclei

are highly Lorentz contracted to be pancake-shaped and move almost at the speed of light.

Then, one can analytically solve the classical Yang-Mills equation at the instant of a collision

τ = 0+ to obtain (before color averaging by Eq. (1.26))

Ex = Ey = 0, Ez = −ig
(
[α(1)
x , α(2)

x ] + [α(1)
y , α(2)

y ]
)
, (1.27)

Bx = By = 0, Bz = −ig
(
−[α(1)

x , α(2)
y ] + [α(1)

y , α(2)
x ]
)
. (1.28)

Here, we define the z-axis as the beam direction. The quantity α
(n)
i are the gauge potentials

associated to the incident nucei, respectively, and characterize the longitudinal component of

the field strength. They are given by

α(n)
x,y =

i

g
U (n)†∂x,yU

(n) with U (n) = P exp

[
ig

∫
dξ∇−2⊥ ρ

(n)

]
, (1.29)

where P denotes the path-ordering, and ξ = (t−z)/
√
2 for n = 1 and ξ = (t+z)/

√
2 for n = 2.

From Eqs. (1.27) and (1.28), we understand that:

• At the instant of a collision τ = 0+, the system is characterized by the above boost-

invariant strong classical color electromagnetic flux tubes as depicted in Fig. 1.5. This
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means that understanding the pre-equilibrium stage dynamics is to reveal how the initial

flux tubes at τ = 0+ decohere into a huge number of particles, which eventually form

QGP.

• The system is highly anisotropic with negative longitudinal pressure,

Pz =
1

2
trc
[(
E2
x + E2

y − E2
z

)
+
(
B2
x +B2

y −B2
z

)]
< 0, (1.30)

P⊥ =
1

2
trc
[
E2
z +B2

z

]
> 0. (1.31)

• Non-vanishing topological charge density exists because E ·B ̸= 0.

Figure 1.5: Boost-invariant strong classical color electromagnetic flux tubes created at the

instant of a collision τ = 0+.

Let us again stress that the “initial” condition at τ = 0+ for the pre-equilibrium stage dynamics

is given by the above boost-invariant strong classical color electromagnetic flux tubes just like in

the strong breaking dynamics. This is a very natural situation where the Schwinger mechanism

is at play. From this fact, one understands that it is crucial to deepen our understanding of

the Schwinger mechanism to elucidate the pre-equilibrium stage dynamics of ultra-relativistic

heavy ion collisions.

One has to employ numerical methods to follow the subsequent evolution τ > 0. This

is done in Ref. [121] for a perfectly boost-invariant system. In reality, however, there always

exist quantum fluctuations around classical quantities that can break the boost-invariance.

Interestingly, it was first demonstrated by Refs. [122, 123] that initial quantum fluctuations

seeded at τ = 0+ bring unstable behaviors in the subsequent evolution (their time scale is,

however, rather long ∼ 100/Qs), although the fluctuations considered in Refs. [122, 123] are

somewhat artificial ones. These unstable behaviors, which are often referred to as glasma

instability, are related to the Weibel instability, which is well-known in the context of plasma

physics, and/or the Nielesen-Olesen instability inherent in QCD [13, 14]. A more realistic initial

quantum fluctuations based on CGC are considered within classical statistical approximation in

Ref. [124]. Effects of initial quantum fluctuations are investigated in more detail in Refs. [125,
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Figure 1.6: Classical evolution of the system. [Left] Time-evolution of the longitudinal and

transverse pressure of the system with CGC initial quantum fluctuations. The figure is taken

from Ref. [124]. [Right] Time-evolution of the anisotropy and the phase space density with

different initial quantum fluctuations. The figure is taken from Refs. [125, 126].

126]. These results are displayed in Fig. 1.6, which claim that the system stays anisotropic

during the whole spacetime evolution because Pz approaches zero (free streaming) regardless of

initial quantum fluctuations one considers. This is truly a bad news for the question (c): The

classical evolution never isotropitizes or hydrodynamizes the system. This discrepancy may

be resolved in the subsequent particle regime. Indeed, it is argued within scalar ϕ4 theory in

Ref. [127] that the quantum scattering processes, although they are subdominant by a factor

of 1/f ≪ 1 and are neglected in the field regime, are essential to isotropitize and/or thermalize

the system.

particle regime

As time proceeds, the system becomes more and more dilute because of the expansion, so that

particle degrees of freedom become more and more important than those of classical fields.

This transition from the field regime to, say, the particle regime smoothly occurs at around

1 ≪ f ≪ 1/g2, where both field and particle picture give faithful description [60]. For f ≪ 1,

particle degrees of freedom dominate the system. In this particle regime, quantum scattering

processes, which are suppressed by a factor of 1/f in the field regime, become significant. It

is impossible to describe quantum scattering processes within the classical Yang-Mills theory,

and hence one has to use another theoretical approach to follow the spacetime evolution.

As such an approach, kinetic theory is a powerful theoretical framework to describe non-

equilibrium dynamics in dilute systems. An effective kinetic theory for QCD was developed in

Ref. [128], which is based on the Boltzman transport equation for the gluon distribution function
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with an elastic 2 ↔ 2 and an inelastic 1 ↔ 2 collision integrals. As the collision integrals,

especially that for the 1 ↔ 2 process, are complicated functionals, it is a hard task to evaluate

the kinetic equation. The state-of-art numerical simulation was done in Ref. [129], where a

boost-invariantly expanding 2 + 1 dimensional system was treated for simplicity. Figure 1.7

summarizes the main results of Ref. [129].

Figure 1.7: [Left] Time-evolution of the anisotropy and the phase space density within the

effective kinetic theory with various coupling constant. The arrow indicates the flow of the

time-evolution. The black line corresponds to the limit of the classical evolution. The figure is

taken from [118]. [Right] Onset of hydrodynamical evolution from the effective kinetic theory.

The figure is taken from [129].

One of the important lessons from [129] is that the isotropization Pz/P⊥ ∼ 1 actually occurs

in the particle regime (left panel of Fig. 1.7) verifying the importance of quantum scattering

processes in the isotropization.

On the other hand, however, the time scale is very long to achieve a complete isotropization

≳ 100/Qs for a realistic coupling constant αs ≡ g2/4π ∼ 0.3. This is a bad news for the question

(c): It does not seem to explain the fast hydrodynamization of the system τQGP ∼ 1 fm/c. There

is no satisfactory answer for this problem so far. One of the promising scenarios is based on

the assumption that one may apply hydrodynamics even before the system is isotropitized.

Based on this assumption, Ref. [129] analyzed the time-evolution of thermodynamic quantities

(energy density ϵ and pressure Pz, P⊥) within the effective kinetic theory and the first and

second order viscous hydrodynamics. As depicted in the right panel of Fig. 1.7, Ref. [129]

found that the effective kinetic theory agrees with hydrodynamics within a short time scale

τ ∼ 10/Qs, which is consistent with the fast hydrodynamization. Notice that the anisotropy is

still quite large Pz/P⊥ ∼ 0.2 at this time scale. The theoretical justification of the assumption

is quite unobvious, and deserves to be investigated further. One of the interesting trials to

this problem is the so-called aHydro framework [130, 131], which tries to extend the ordinary

hydrodynamics to such a highly anisotropic regime.
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Let us go back to the original questions (a)-(c), and briefly summarize what is answered and

what is not:

(a) The current understanding is that one may use the classical Yang-Mills equation for the

field regime and the effective kinetic theory for the particle regime (see Fig. 1.4).

It is, however, totally unclear what is a unified theory which can deal with both regions.

This is a very tough task because one has to directly follow non-equilibrium dynamics

of a certain quantum field theory. One of the promising approaches is the two particle

irreducible approximation for the Kandanoff-Baym equation (2PI formalism; for a review

[132]), although numerical simulations of this formalism in QCD are so difficult. Another

interesting approach is based on the gauge/gravity duality, which is a conjecture that

relates a certain class of gauge theories to the classical gravitational theory. This is done

in Refs. [133, 134] for the N = 4 supersymmetric Yang-Mills theory in the large Nc-limit.

They observed for the first time, preceded to QCD studies, the onset of hydrodynamics

occurring before a complete isotropization Pz/P⊥ ̸= 1. The formalism presented in this

thesis may give us a first step to resolve this problem.

(b) Not answered yet. The main focus was gluon production only, and much less attention has

been paid to quark production.

Quark production is essential in understanding the chemical equilibration of the system.

It is also important in understanding photon and dilepton production mechanism in the

pre-equilibrium stage, which may serve as non-vanishing probes for the pre-equilibrium

stage because they are free from strong interactions. Furthermore, it is argued that the

non-vanishing topological charge density in the glasma results in novel anomaly-induced

transport phenomena of quarks such as the chiral magnetic effect [135].

In spite of the importance and the applications listed above, there are only a few studies

about quark production in the pre-equilibrium stage dynamics of heavy ion collisions. It was

done by Gelis et al. [136] and by the author [137] under an assumption that backreaction

effects from quarks are negligible. We will overcome this limitation in this thesis.

(c) Up to now, there is no consensus on this question in the heavy-ion community. One of

the promising scenarios is that isotopization and hydrodynamization may take place in

the particle regime. In particular, a fast hydrodynamization occurs if we assume that

hydrodynamics is still valid to highly anisotropic systems.

As was pointed out, the validity of anisotropic hydrodynamics is quite unclear, and should

be investigated further to justify this scenario. We note that there are other scenarios

based on bottom-up thermalization [138], transient Bose-Einstein condensate [139], glasma

instability [140], chaosity in classical Yang-Mills theory [141], and so on.
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1.3 Objectives and outline of thesis

The purpose of this thesis is to formulate the backreaction problem of the Schwinger mechanism

in QCD starting from quantum field theory. We also apply the formalism (within mean field

and massless approximations) to investigate the time-evolution of the field strength, particle

distribution functions, and thermodynamic quantities such as pressure and energy density of the

system. We furthermore apply the formalism to describe the pre-equilibrium stage dynamics of

ultra-relativistic heavy ion collisions by modeling the initial flux tubes by a boost-invariantly

expanding, and spatially uniform classical electric field.

To be more specific, we consider quantum fluctuations of quarks, gluons, and ghosts on

top of a classical color gauge field. By adopting mean field approximation for the quantum

fluctuations on top of a classical gauge field appearing in the QCD Lagrangian, we derive a

set of linear differential equations, which accounts for particle production, backreaction, and

(partial effects of) scatterings. Our formalism has some advantages and can resolve some

problems explained in this Introduction. Namely, our formalism

• includes backreaction and scattering effects of the Schwinger mechanism from both the

quark and the gluon (and also the ghost) sectors for the first time based on quantum field

theory;

• describes both quark and gluon production, which are missing especially in previous

studies of the pre-equilibrium stage dynamics of ultra-relativistic heavy ion collisions;

• naturally explains a transition from the field regime to the particle regime, which may

give us a first step for the unified theoretical description of the pre-equilibrium stage

dynamics of ultra-relativistic heavy ion collisions; and

• is numerically feasible because it does not suffer from complicated functionals and/or

memory integrals as in 2PI formalism.

This thesis is organized as follows: In Chapter 2, the Schwinger mechanism in QED is fur-

ther reviewed. In Section 2.1, we explain how we formulate the Schwinger mechanism in QED

based on quantum field theory within mean field approximation. In Section 2.2, we apply the

formalism to a constant and spatially uniform electric field. By neglecting backreaction, we

re-derive the Schwinger formula for the vacuum decay rate w and the pair creation rate Γ. In

Section 2.3, we consider a pulsed electric field (Sauter-type electric field [142]) to examine effects

of time-dependence; backreaction is still neglected in this section. The results presented in this

section is based on my published work [42]. In Section 2.4, dynamical aspects of pair creation

is discussed for a constant electric field without backreation. In Section 2.5, we finally consider

backreaction, and see how they affects the time-evolution of the system by numerically evalu-

ating particle distribution functions and thermodynamic quantities such as energy density and

pressure. Chapters 3, 4, and 5 are main parts of this thesis. In Chapter 3, we extend the QED
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study to SU(Nc = 2) Yang-Mills theory without quarks. In Section 3.1, starting from quantum

field theory, we formulate for the first time the Schwinger mechanism in the Yang-Mills theory

including backreaction by adopting mean field approximation. In Section 3.2, we apply the

formalism for a constant and spatially uniform color electric field, and analytically follow the

time-evolution of the gluon particle distribution function by neglecting higher order quantum

effects such as backreaction and scatterings. In Section 3.3, we investigate backreaction effects

by numerically tracing particle distribution functions and thermodynamic quantities such as

energy density and pressure within massless approximation, and clarify similarities/differences

between the gluon production and the previous electron production. In Chapter 4, we further

extend our study to the case of SU(Nc = 3)⊗SU(Nf) QCD. The formulation will be explained

in detail in Section 4.1. In Section 4.2, we first apply the formalism for a constant color electric

background field. By neglecting the backreaction, we analytically follow the time-evolution of

the quark and gluon distribution functions. Various effects, such as the color angle θ-, the

number of flavor Nf-, the quark mass mf-effects are examined in detail. In Section 4.3, back-

reaction is considered, and we shall see that the different quantum statistics of gluons and

quarks results in a significant difference in the particle production. In Chapter 5, we apply the

formalism presented in Chapter 4 to the pre-equilibrium stage dynamics of ultra-relativistic

heavy ion collisions by modeling the initial color flux tubes by a boost-invariantly expanding,

spatially uniform classical color electric field. In Section 5.1, we first explain how we extend

the Schwinger mechanism, which was originally formulated in a non-expanding geometry, in

such a boost-invariantly expanding one. In Section 5.2, particle production without backreac-

tion is discussed based on my unpublished work [137]. In Section 5.3, we take into account

backreaction. By numerically tracing the time-evolution of particle distribution functions and

thermodynamic quantities such as energy density and pressure within massless approximation,

we discuss some phenomenological consequences of our formalism in the pre-equilibrium stage

dynamics of ultra-relativistic heavy ion collisions. Chapter 6 is devoted to a summary and an

outlook of this thesis.

This thesis contains three appendices: Analytic solutions of the Dirac equation and the

Klein-Gordon equation in a non-expanding geometry are presented in Appendix A and B,

respectively. Analytic solutions of the Dirac equation and the Klein-Gordon equation for an

expanding electric field are derived in Appendix C.

Throughout this thesis, we work in the Heisenberg picture. We implicitly take summation

over the repeated indices µ, ν, . . . for spacetime only, and not for other repeated indices, for

instance, color labels A,B, . . ., spin labels s, s′, . . . , and so on.





Chapter 2

Schwinger Mechanism in Quantum

Electrodynamics

The purpose of this chapter is to provide the modern understanding of the nature of the pair

production from a strong classical electric field in QED, prior to the extension to the QCD

study. In Section 2.1, we formulate the pair production from a strong classical electric field in

QED starting from quantum field theory, and explain how one can formulate the backreaction

problem within mean field approximation. In Section 2.2, we apply the formalism to a constant

electric field. By neglecting backreaction, we re-derive the Schwinger formula for the vacuum

decay rate w and the pair creation rate Γ. In Section 2.3, we consider a pulsed electric field

(Sauter-type electric field [142]) to examine effects of time-dependence of the applied field;

backreaction is still neglected in this section. In Section 2.4, dynamical aspects of the pair

production are discussed for a constant electric field without backreation. In Section 2.5, we

finally discuss backreaction effects by numerically evaluating particle distribution functions and

thermodynamic quantities such as energy density and pressure.

Some parts of this chapter are based on works by other authors; in particular, by Tanji

[34, 91], and by Kluger et al. [51, 52, 53, 54]. The results presented in Section 2.3 are based

on my own published work [42].

2.1 Formalism

2.1.1 QED under a classical gauge field

Lagrangian

Throughout this chapter, we consider QED, whose Lagrangian L̂QED is given by

L̂QED = ˆ̄ψ[i/∂ − e /̂A−me]ψ̂ − 1

4
F̂ µνF̂µν −

1

2
(∂µÂ

µ)2︸ ︷︷ ︸
≡L̂

−JµÂµ︸ ︷︷ ︸
≡L̂ext

. (2.1)

25
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Here, ψ̂ and Â are an electron and a photon field operator, respectively. Jµ is a classical external

source. e > 0 is the coupling constant of QED. me is the electron mass. The field strength

tensor is defined by F̂µν ≡ ∂µÂν − ∂νÂµ as usual. /• ≡ •µγµ is the Feynman slash notation

with γµ being the gamma matrices. We fix the gauge by the Feynman gauge condition by

introducing the gauge fixing term as −(1/2)(∂µÂ
µ)2.

expansion around a classical field

Generally, there exists a classical gauge field ⟨Âµ⟩ ̸= 0 because of the presence of the classical

source Jµ. Now, we wish to understand how the classical field affects the quantum mechanical

evolution of a system. To make this situation manifest, we split the total gauge field Âµ into

an incoherent quantum fluctuation (particle) âµ and a coherent gauge field (classical field) Aµ

as

Âµ ≡ Aµ + âµ, (2.2)

where

Aµ ≡ ⟨Âµ⟩ , âµ ≡ Âµ − Aµ. (2.3)

Here, ⟨•̂⟩ is an expectation value of a given initial state ⟨•̂⟩ ≡ ⟨state; in|•̂|state; in⟩.
We furthermore expand the total Lagrangian L̂QED in terms of the quantum fluctuation âµ

to obtain

L̂QED = ˆ̄ψ[i/∂ − e/A−me]ψ̂

− 1

4
F µνFµν − JµAµ −

1

2
(∂µA

µ)2

− 1

2
Fµν f̂

µν − (∂µA
µ)(∂ν â

ν)− Jµâµ − e ˆ̄ψ/̂aψ̂

− 1

4
f̂µν f̂µν −

1

2
(∂µâ

µ)2. (2.4)

Here, Fµν ≡ ∂µAν − ∂νAµ and f̂µν ≡ ∂µâν − ∂ν âµ are the classical and the quantum part of the

field strength tensor F̂µν , respectively.

conserved quantities

The QED Lagrangian L̂QED (Eq. (2.4)) possesses some symmetries, and there exist some con-

served quantities associated with the symmetries. Among them, the electromagnetic current

ĵµ and the symmetric energy-momentum tensor T̂ µν are important.

electromagnetic current ĵµ

The electromagnetic current ĵµ is a conserved quantity associated with a global U(1) gauge

symmetry:

ψ̂ → e−ieθψ̂. (2.5)
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The conserved quantity associated with this symmetry, i.e., the electromagnetic current ĵµ can

be obtained via the Noether theorem [143] as

ĵµ = e ˆ̄ψγµψ̂, (2.6)

which is conserved as

0 = ∂µĵ
µ. (2.7)

Notice that the conservation law Eq. (2.7) is an operator relation, which strictly holds anytime

as long as equations of motion of L̂QED are satisfied.

symmetric energy-momentum tensor T̂ µν

Another important quantity is the symmetric energy-momentum tensor T̂ µν associated with

a translational invariance of the system. The symmetric energy-momentum tensor T̂ µν is defined

as a metric variant of the Lagrangian L̂ as1

T̂ µν =
−2√
|g|
δ(|g|L̂)
δgµν

= −gµνL̂ − 2

[
∂L̂
∂gµν

− 1√
|g|
∂λ

(√
|g| ∂L̂
∂λgµν

)]
, (2.8)

where |g| is the determinant of a metric gµν (we finally take the Minkowski limit gµν → ηµν

as we are working in the Cartesian coordinates now). In terms of the variables Âµ, ψ̂, the

symmetric energy-momentum T̂ µν can be explicitly expressed as

T̂ µν =
1

4
ηµνF̂ ρσF̂ρσ − F̂ µ

ρF̂
νρ

− 1

2
ηµν(∂λÂ

λ)2 − ηµνÂρ∂ρ∂σÂ
σ + Âµ∂ν∂λÂ

λ + Âν∂µ∂λÂ
λ

+
i

4
ˆ̄ψ

[
γµ(

→
∂ν + ieÂν) + γν(

→
∂µ + ieÂµ)− (

←
∂ν − ieÂν)γµ − (

←
∂µ − ieÂµ)γν

]
ψ̂. (2.9)

The conservation law for the symmetric energy-momentum tensor T̂ µν reads

∂µT̂
µν = JµF̂

µν + Âν∂µJ
µ. (2.10)

The RHS is an energy supply from the external source Jµ. Again, we note that the above

conservation law is a strict operator relation.

The diagonal components of the symmetric energy-momentum tensor give the definition of

the energy density ϵ̂ and the pressure P̂x,y,z of the system; namely,

ϵ̂ ≡ T̂ tt, P̂i ≡ T̂ ii (i = x, y, z). (2.11)

1In general, the symmetric energy-momentum tensor is not the same as the canonical energy-momentum

tensor (which is not necessarily symmetric) obtained by the Noether theorem. In the Minkowski spacetime

coordinates, the difference between the two is given by the so-called Belinfante-Rosenfeld tensor [144, 145],

which is related to the spin angular momentum of the system.
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2.1.2 assumptions on the system

The above arguments are general in the sense that they do not depend on details of a system.

It is, however, difficult to formulate the Schwinger mechanism under such a fully generic case,

which is actually an on-going subject of this research area. To avoid the difficulty, let us make

some simplifications:

(i) (Homogeneity in space)

We restrict our attention to the case where only a homogeneous classical electric field is

present. If we define the z-axis by the direction of the electric field, then one can write

the classical gauge field Aµ in the following form without loss of generality by fixing the

residual gauge freedom as

Aµ(x) = (0, 0, 0, A(t)) = (0, 0, 0,−
∫ t

−∞
dt′E(t′)). (2.12)

In terms of the classical source Jµ, this assumption is equivalent to assume that the

source is homogeneous in space and has a current component in the z-direction only

Jµ(x) = δµzJ(t) .

(ii) (Vacuum initial condition)

We assume that the initial state is given by a vacuum |state; in⟩ = |vac; in⟩, i.e., there are
no particles initially.

(iii) (Adiabatic hypothesis)

We assume that, at asymptotic times t → ±∞, there are no classical electromagnetic

fields, and the classical gauge field Aµ becomes merely a pure gauge by adiabatically

switching off the source Jµ at the asymptotic times.

The first assumption is, indeed, a strong limitation. Extension to spatially inhomogeneous

gauge fields may be straightforward if one neglects backreaction effects [137, 147]. If one

considers backreaction, however, it brings some difficulties. The most problematic one is the

regularization. As was imagined from Introduction and is explained in the following, it is

essential to compute an expectation value of a current operator ⟨ĵ⟩ to formulate the backreaction

problem within quantum field theory. The expectation value is, unfortunately, divergent and

hence one has to regularize it to make sense. The problem is that there is no plausible way known

so far to regulate such divergences when there exists a spacetime dependent background. If the

background depends on time only, then, one can safely regulate divergences via, for instance,

the normal ordering procedure [34] or the adiabatic regularization [51].

The second assumption is needed in order that the assumption (i) is consistent with the

time-evolution of the system. Indeed, the assumption (i) together with equations of motion (at

mean field level) requires that the charge density of the system must vanish.



2.1. Formalism 29

The third assumption is very useful in employing a canonical quantization procedure in

Section 2.1.4. It is only when there are no interactions, where one can uniquely define the

notion of particles and the corresponding vacuum state.

2.1.3 mean field approximation

It is difficult to directly follow the real-time dynamics of the system defined by the Lagrangian

L̂QED; this is because it contains a non-linear interaction which is higher than the cubic order

in the quantum fluctuations, i.e., e ˆ̄ψ/̂aψ̂. As a workaround of this difficulty, let us consider

mean field approximation: We replace the non-linear term (higher than the cubic order in the

quantum fluctuations) by its expectation value as

e ˆ̄ψ/̂aψ̂ → eâµ ⟨ ˆ̄ψγµψ̂⟩ = âµ ⟨ĵµ⟩ , (2.13)

or

L̂QED → ˆ̄ψ[i/∂ − e/A−me]ψ̂

− 1

4
F µνFµν − JµAµ −

1

2
(∂µA

µ)2

− 1

2
Fµν f̂

µν − (∂µA
µ)(∂ν â

ν)− Jµâµ − âµ ⟨ĵµ⟩

− 1

4
f̂µν f̂µν −

1

2
(∂µâ

µ)2. (2.14)

This approximation is equivalent to discarding the fluctuating term ĵµ−⟨ĵµ⟩. This is justifiable
when the classical value of the current ⟨ĵµ⟩ is large enough, which is formally realized, for

instance, in the limit of large number of fermions (i.e., suppose that we have more than one

electron) Nf → ∞ [51].

Strictly speaking, the above mean field treatment is ill-defined because an expectation value

of two-point functions, such as the current ⟨ĵµ⟩, generally diverges because of vacuum con-

tributions. Thus, one has to regularize the divergence by subtracting the unwanted vacuum

contributions for our mean field treatment to make sense. For now, let us assume that this is

correctly done; we postpone this problem until Section 2.1.5, where divergences are regulated

by normal ordering procedure [34].

equations of motion

One can immediately derive equations of motion from the mean field Lagrangian (2.14), which

read

0 = ∂ν∂
ν âµ, (2.15)

0 = [i/∂ − e/A−me]ψ̂, (2.16)

⟨ĵµ⟩+ Jµ = ∂ν∂
νAµ. (2.17)
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The first two are the equations for the quantum fluctuations âµ, ψ̂. Thanks to the mean

field treatment, these two equations are linear in the quantum fluctuations. This enables us to

canonically quantize the fluctuations âµ, ψ̂, and to directly compute an expectation value of the

corresponding number operator. Notice that the equation for âµ is the same as the free one,

and thus no particle production occurs for this fluctuation. This is because photons have no

electric charge, and do not couple to the classical gauge field Aµ. Hence, we do not consider the

fluctuation âµ in the following discussion for simplicity. On the contrary, the electron field ψ̂

does couple to the classical gauge field Aµ through the interaction term e/Aψ̂, which represents

a multiple scattering between the classical field and electrons. This term is responsible for

electron (and positron) production; see Section 2.1.4 for the detail.

The third equation is for the classical gauge field Aµ. The physical meaning of this equation

is that the electromagnetic current due to produced electrons ⟨ĵµ⟩ (the source term on the LHS)

screens the original classical gauge field Aµ through the Maxwell equation. In this way, one can

formulate the backreaction problem in QED. An important point here is that one has to go

beyond the one-loop treatment to include the backreaction; it is the quantum interactions of

the cubic order in the quantum fluctuation that are responsible for the backreaction in QED.

By recalling the assumption (i) (i.e., homogeneity of the system) made in Section 2.1.2, one

can simplify the third equation (2.17) as

0 = ⟨ĵt⟩ = ⟨ĵx⟩ = ⟨ĵy⟩ , (2.18)

⟨ĵz⟩+ Jz =
d2A

dt2
= −dE

dt
. (2.19)

Equation (2.18) tells us that the local charge density of produced particles ⟨ĵt⟩ is always zero.
This is a manifestation of the charge symmetry in QED. Indeed, we shall see in Section 2.1.4

that electrons and positrons are simultaneously created and that the number of electrons and

of positrons are the same.

conservation law

Under the mean field treatment, the conservation laws, Eqs. (2.7) and (2.10), do not hold at

the operator level; nevertheless, they do hold at the mean field level. This is because the mean

field approximation does not change the expectation value of the Lagrangian. By using the

equations of motion within our mean field treatment, Eqs. (2.15)-(2.17), one can explicitly show

the conservation law for the electromagnetic current,

0 = ∂µ ⟨ĵµ⟩ , (2.20)

and for the symmetric energy-momentum tensor,

∂µ ⟨T̂ µν⟩ = JµF
µν + Aν∂µJ

µ. (2.21)
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If the system is homogeneous in space as we have assumed in (i) in Section 2.1.2, the

conservation law for ⟨ĵµ⟩ reads

0 = ∂t ⟨ĵt⟩ , (2.22)

which trivially follows from Eq. (2.18). On the other hand, the conservation laws for ⟨T̂ µν⟩
(2.21) can be simplified as

∂t ⟨ϵ̂⟩ = −EJz, (2.23)

which is noting but the energy conservation law under an external current Jz.

2.1.4 canonical quantization and particle production

In this subsection, we canonically quantize the fluctuation ψ̂ in the presence of the classical

gauge field Aµ, and compute particle spectra produced from the classical field.

In the canonical quantization procedure, it is important to identify what are correct posi-

tive/negative frequency mode functions. In the usual quantum field theory of free fields, one

can easily identify the correct positive/negative frequency mode functions by the plane wave

solutions ∝ e∓ip
0teip·x (i.e., eigenfunctions of the translational operator i∂µ) because of the

Poincaré invariance. If interactions are present, however, the Poincaré invariance is broken

(i.e., non-zero energy and momentum are supplied from the interactions), so that there is no

guiding principle to identify the positive/negative frequency mode functions.

In our problem, the classical gauge field Aµ becomes merely a pure gauge and no interaction

occurs at asymptotic times t → ±∞ (assumption (iii) in Section 2.1.2). In this case, the

canonical quantization procedure at the asymptotic times is doable without any ambiguity

because one can identify the positive/negative frequency mode functions at the corresponding

asymptotic time by the plane wave solutions as usual; this program is addressed in the first half

of this subsection. For intermediate regions−∞ < t <∞, however, interactions prevent us from

uniquely identifying the positive/negative frequency mode functions. Hence, ambiguities must

come in during the canonical quantization procedure, that is, the definition of a particle and

of a vacuum must be ambiguous. Nevertheless, it is very useful to make a working definition

of positive/negative frequency mode functions for intermediate regions in order to describe

dynamics of particle production. This is also important in regulating our mean field theory, for

which one has to identify the unwanted vacuum contributions to subtract. In the last half of

this subsection, we shall make such a working definition by assuming that the classical gauge

field is sufficiently adiabatic2.

2This kind of problems frequently appear in the context of cosmological particle production, where the

curved spacetime plays a role of the classical gauge field, and the adiabatic approach is frequently applied in

this research area as well [50].
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canonical quantization at asymptotic times and particle spectrum at t→ ∞

The homogeneity of the system (assumption (i) in Section 2.1.2) enables us to Fourier expand

the fluctuation ψ̂ by positive/negative frequency mode functions ±ψ
(as)
p,s (as = in for t → −∞

and out for t→ ∞) as

ψ̂(x) =
∑
s

∫
d3p

[
+ψ

(as)
p,s (t)â

(as)
p,s + −ψ

(as)
p,s (t)b̂

(as)†
−p,s

] eip·x

(2π)3/2
, (2.24)

where p labels canonical momenta, and s labels spin degrees of freedom. We normalize the

mode functions by

(±ψ
(as)
p,s |±ψ

(as)
p,s′ )F = δss′ , (±ψ

(as)
p,s |∓ψ

(as)
p,s′ )F = 0 (2.25)

for each as = in, out. Here, the fermion inner product (ψ1|ψ2)F is denoted by

(ψ1|ψ2)F ≡ ψ†1ψ2, (2.26)

which stays constant during the whole spacetime evolution as long as the fermionic quantities

ψ1, ψ2 obey the same Dirac equation (2.16).

The positive/negative frequency mode functions are identified as solutions of the equation

of motion (2.16) with plane wave boundary conditions at t→ ±∞: By noting that the classical

gauge field Aµ becomes merely a pure gauge and no interaction occurs at the asymptotic times

t→ ±∞, it is natural to require that the positive/negative frequency mode functions coincide

with those of free fields at each asymptotic time; namely, we require the following boundary

conditions for the mode functions:(
+ψ

(in)
p,s

−ψ
(in)
p,s

)
−−−−→
t→−∞

 up−eA,s exp
[
−i
∫ t
−∞ ωp−eAdt

]
v−p+eA,s exp

[
+i
∫ t
−∞ ωp−eAdt

] , (2.27)

(
+ψ

(out)
p,s

−ψ
(out)
p,s

)
−−−→
t→∞

 up−eA,s exp
[
−i
∫ t
−∞ ωp−eAdt

]
v−p+eA,s exp

[
+i
∫ t
−∞ ωp−eAdt

] . (2.28)

Here, ωp−eA ≡
√
(p− eA)2 +m2

e is the on-shell energy of an electron. up,s, vp,s are the free-

spinors of electrons and positrons, respectively, normalized as

u†p,sup,s′ = v†p,svp,s′ = δss′ , u
†
p,sv−p,s′ = 0. (2.29)

For details of the free-spinors up,s, vp,s, see Appendix A.1.

Now, we impose canonical commutation relations

{ψ̂(t,x), ψ̂†(t,x′)} = δ3(x− x′), {ψ̂(t,x), ψ̂(t,x′)} = 0 (2.30)
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to obtain annihilation operators at each asymptotic time, â(as) and b̂(as), for the positive and

the negative frequency mode, respectively. The anti-commutation relations for the annihilation

operators read

{a(as)p,s , a
(as)†
p′,s′ } = {b(as)p,s , b

(as)†
p′,s′ } = δss′δ

3(p− p′), (others) = 0 (2.31)

for each as = in, out.

An important point here is that the mode functions ±ψ
(as)
p,s do fully include the multiple

interactions with the classical field Aµ through the interaction term e/Aψ̂ in the Dirac equation

(2.16), and hence the positive (or negative) frequency mode at t→ −∞ will evolve into a linear

combination of the positive and negative frequency modes at t → ∞. This is essentially the

same as what we encounter in an one-dimensional barrier scattering problem where we always

have a mixture of in-coming wave and its reflection on one side of the barrier, but the other

side consists of out-going wave only. The linear relation between the modes can be described

by a Bogoliubov transformation given by(
â
(out)
p,s

b̂
(out)†
−p,s

)
=

∫
d3x

e−ip·x

(2π)3/2

(
(+ψ

(out)
p,s |ψ̂)F

(−ψ
(out)
p,s |ψ̂)F

)

=

(
(+ψ

(out)
p,s |+ψ(in)

p,s )F (+ψ
(out)
p,s |−ψ(in)

p,s )F

(−ψ
(out)
p,s |+ψ(in)

p,s )F (−ψ
(out)
p,s |−ψ(in)

p,s )F

)(
â
(in)
p,s

b̂
(in)†
−p,s

)

=

(
α
(out)
p,s β

(out)
p,s

−β(out)∗
p,s α

(out)∗
p,s

)(
â
(in)
p,s

b̂
(in)†
−p,s

)
. (2.32)

In the last line, we have used (+ψ
(out)
p,s |+ψ(in)

p,s )F = (−ψ
(out)
p,s |−ψ(in)

p,s )∗F and (+ψ
(out)
p,s |−ψ(in)

p,s )F =

−(−ψ
(out)
p,s |+ψ(in)

p,s )∗F, which follows from the orthonormality of ±ψ
(as)
p,s (Eq. (2.25)). The Bogoli-

ubov coefficients α(out), β(out) satisfy the following normalization:

1 = |α(out)
p,s |2 + |β(out)

p,s |2 (2.33)

Thus, the annihilation operators at t → −∞ and those at t → ∞ are inequivalent. This

means that the corresponding vacuum state, which satisfies

0 = a(as)p,s |vac; as⟩ = b(as)p,s |vac; as⟩ (as = in, out) (2.34)

for arbitrary p and s, are also inequivalent. The inequivalence can be expressed by the Bogoli-

ubov coefficients α(out), β(out) as

|vac; out⟩ =
√
P (out)

∏
p,s

exp

[
−(2π)3

V

β
(out)
p,s

α
(out)
p,s

a(in)†p,s b
(in)†
−p,s

]
|vac; in⟩

=
√
P (out)

∏
p,s

[
1− (2π)3

V

β
(out)
p,s

α
(out)
p,s

a(in)†p,s b
(in)†
−p,s

]
|vac; in⟩ . (2.35)
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This relation predicts that pair production occurs; the finial vacuum |vac; out⟩ at t→ ∞ start-

ing from the initial vacuum |vac; in⟩ at t→ −∞ contains pairs of an electron with momentum

p and a positron with momentum −p with a weight ∝ βp,s/αp,s. Because of this pair pro-

duction, the vacuum persistence probability P (out) = | ⟨vac; in|vac; out⟩ |2/| ⟨vac; in|vac; in⟩ |2

is smaller than unity, and the vacuum decays. By using the normalization condition 1 =

| ⟨vac; out|vac; out⟩ |2/| ⟨vac; in|vac; in⟩ |2, one can explicitly write down P (out) as

P (out) =
∏
p,s

(1− |β(out)
p,s |2) = exp

[
− V

(2π)3

∑
s

∫
d3p

∞∑
n=1

|β(out)
p,s |2n

n

]
, (2.36)

from which one can deduce the (average) vacuum decay rate w as

w =
1

T

∑
s

∫
d3p

(2π)3

∞∑
n=1

|β(out)
p,s |2n

n
(2.37)

One can also directly compute the electron and positron spectra at t → ∞ thanks to the

above canonical quantization procedure. The electron (positron) spectrum is computed as an

expectation value of the corresponding number density operator â
(out)†
p,s â

(out)
p,s (b̂

(out)†
p,s b̂

(out)
p,s ) by a

given initial state |vac; in⟩ as

d6N
(out)

e− (p, s)

dp3dx3
≡ 1

V
⟨â(out)†p,s â(out)p,s ⟩ = |β(out)

p,s |2

(2π)3
, (2.38)

d6N
(out)

e+ (p, s)

dp3dx3
≡ 1

V
⟨b̂(out)†p,s b̂(out)p,s ⟩ =

|β(out)
−p,s |2

(2π)3
. (2.39)

An important point here is that deriving the particle spectrum is thus reduced to computing the

Bogoliubov coefficient βp,s by solving the Dirac equation (2.16) with proper boundary condi-

tions. Remark that this formalism, which takes into account the interactions with the classical

field Aµ non-perturbatively by fully solving the equations of motion, does include perturbative

contributions as well which can be computed by, for instance, the usual diagrammatic tech-

niques of the S-matrix [148]. For a specific type of electric fields, one can explicitly check this

(see Section 2.3).

Let us comment a little bit more about Eqs. (2.38) and (2.39):

• The total number of produced electrons and of positrons
∫
d3pd6N

(out)

e± /d3pdx3 are the

same; this is the manifestation of the charge symmetry in QED.

• d6N
(out)

e− (p, s)/dp3dx3 = d6N
(out)

e+ (−p, s)/dp3dx3 holds reflecting the fact that an electron

and a positron are produced simultaneously so as to satisfy the momentum conservation

law p+ (−p) = 0, where 0 is the momentum that a vacuum carries.

• The Pauli principle strictly holds as (2π)3d6N
(out)

e± /dp3dx3 ≤ 1, which follows from the

normalization condition for the Bogoliubov coefficients (2.33).

• It is evident that the (average) vacuum persistence probability w and the (average) par-

ticle production rate Γ ≡ (1/T )
∫
d3pd6N

(out)

e± /d3pdx3 do not agree with each other.
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canonical quantization and particle spectrum for intermediate regions

Let us define positive/negative frequency mode functions for intermediate regions −∞ < t <

∞, where interactions with the classical gauge field Aµ are still present. To do this, let us

assume that the classical gauge field is sufficiently adiabatic in time. Then, it is natural to

think that correct positive/negative frequency mode functions at an intermediate time t = t0

(−∞ < t0 < ∞) do not deviate significantly from the plane waves at t = t0 because the

deviation should be suppressed by factors of ∂nt Aµ/dt
n (n ≥ 1).

This consideration urges us to define the positive/negative frequency mode functions at an

intermediate time by the following plane wave form:(
+ψ

(t)
p,s(t)

−ψ
(t)
p,s(t)

)
≡

 up−eA(t),s exp
[
−i
∫ t
−∞ ωp−eA(t)dt

]
v−p+eA(t),s exp

[
+i
∫ t
−∞ ωp−eA(t)dt

] . (2.40)

From the normalization condition (2.29) for the free-spinors up,s, vp,s, one immediately under-

stands that the intermediate mode functions ±ψ
(t)
p,s are normalized as

(±ψ
(t)
p,s|±ψ

(t)
p,s′)F = δss′ , (±ψ

(t)
p,s|∓ψ

(t)
p,s′)F = 0. (2.41)

Notice that in the limit of t→ ±∞, ±ψ
(t)
p,s smoothly approaches the correct mode functions at

asymptotic times ±ψ
(as)
p,s as

±ψ
(t)
p,s −−−−→

t→−∞ ±ψ
(in)
p,s , ±ψ

(t)
p,s −−−→

t→∞ ±ψ
(out)
p,s . (2.42)

The corresponding annihilation operators at an intermediate time, âp,s(t) and b̂p,s(t), are

obtained by expanding the fluctuation ψ̂ by the intermediate mode functions ±ψ
(t)
p,s as

ψ̂(x) =
∑
s

∫
d3p

[
+ψ

(t)
p,s(t)âp,s(t) + −ψ

(t)
p,s(t)b̂

†
−p,s(t)

] eip·x

(2π)3/2
. (2.43)

The annihilation operators, âp,s(t) and b̂p,s(t), are time-dependent because the intermediate

mode functions ±ψ
(t)
p,s do not satisfy the original Dirac equation (2.16). Because of the asymp-

totic behavior of ±ψ
(t)
p,s (2.42), the intermediate annihilation operators smoothly coincide with

those at asymptotic times t → ±∞. The anti-commutation relations for these annihilation

operators can be obtained from the canonical commutation relations for the field operator ψ̂

(2.30) as

{ap,s(t), a†p′,s′(t)} = {bp,s(t), b†p′,s′(t)} = δss′δ
3(p− p′), (others) = 0, (2.44)

which are the same as for the asymptotic ones.

Because of the multiple interactions with the classical field Aµ, the positive (negative) fre-

quency mode at an intermediate time t becomes a linear combination of those at t→ −∞. From
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the orthonormality condition for ±ψ
(t0)
p,s (2.41), one again finds that the annihilation operators

at an intermediate time are related to those at t→ −∞ by a Bogoliubov transformation:(
âp,s(t)

b̂†−p,s(t)

)
=

(
αp,s(t) βp,s(t)

−β∗p,s(t) α∗p,s(t)

)(
â
(in)
p′,s′

b̂
(in)†
−p′,s′

)
. (2.45)

Here, the Bogoliubov coefficients are given by

αp,s(t) ≡ (+ψ
(t)
p,s|+ψ(in)

p,s )F = (−ψ
(t)
p,s|−ψ(in)

p,s )
∗
F, (2.46)

βp,s(t) ≡ (+ψ
(t)
p,s|−ψ(in)

p,s )F = −(−ψ
(t)
p,s|+ψ(in)

p,s )
∗
F, (2.47)

and are normalized as

1 = |αp,s(t)|2 + |βp,s(t)|2. (2.48)

The Bogoliubov transformation (2.45) coincides with that at t→ ∞ (2.32) because of Eq. (2.42).

From the Bogoliubov transformation (2.45), one can derive various quantities at intermedi-

ate times such as the vacuum persistence probability, electron and positron spectra and so on

in the same manner as in the t→ ∞ case. We do not repeat the derivation here, but just write

down the results:

• The intermediate vacuum |vac;t⟩:

|vac;t⟩ =
√
P (t)

∏
p,s

exp

[
−(2π)3

V

βp,s(t)

αp,s(t)
a†p,s(t)b

†
−p,s(t)

]
|vac; in⟩

=
√
P (t)

∏
p,s

[
1− (2π)3

V

βp,s(t)

αp,s(t)
a†p,s(t)b

†
−p,s(t)

]
|vac; in⟩ . (2.49)

• The vacuum persistence probability P :

P (t) =
∏
p,s

(1− |βp,s(t)|2) = exp

[
− V

(2π)3

∑
s

∫
d3p

∞∑
n=1

|βp,s(t)|2n

n

]
. (2.50)

• The vacuum decay rate w:

w(t) =
d

dt

∑
s

∫
d3p

(2π)3

∞∑
n=1

|βp,s(t)|2n

n
. (2.51)

• The electron and positron spectra d6N
(t)

e± (p, s; t)/dp
3dx3:

d6Ne−(p, s; t)

dp3dx3
=
d6Ne+(−p, s; t)

dp3dx3
=

|βp,s(t)|2

(2π)3
. (2.52)
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For later purposes, it is useful to investigate the ultraviolet (ωp−eA → ∞) behavior of the

Bogoliubov coefficients αp,s, βp,s. In doing this, we first note that the in-state mode functions

+ψ
(in)
p,s are related to the intermediate ones +ψ

(t)
p,s as(

+ψ
(in)
p,s

−ψ
(in)
p,s

)
=

(
αp,s(t) −β∗p,s(t)
βp,s(t) α∗p,s(t)

)(
+ψ

(t)
p,s

−ψ
(t)
p,s

)
, (2.53)

because

+ψ
(in)
p,s (t)â

(in)
p,s + −ψ

(in)
p,s (t)b̂

(in)†
−p,s = +ψ

(t)
p,s(t)âp,s(t) + −ψ

(t)
p,s(t)b̂

†
−p,s(t) (2.54)

holds. By substituting this Bogoliubov relation into the original Dirac equation (2.16), one

obtains a differential equation for the Bogoliubov coefficients αp,s, βp,s as

d

dt

(
αp,s

βp,s

)
= −1

2

eE

ωp−eA

√
m2

e + p2
⊥

ωp−eA
exp

[
2i

∫ t

−∞
ωp−eAdt

](
β∗p,s
α∗p,s

)
. (2.55)

One can iteratively solve Eq. (2.55) order-by-order in ωp to find

αp,s = 1 +O(ω−3p−eA), βp,s =
i

4

eE

ω2
p−eA

√
m2 + p2

⊥
ωp−eA

exp

[
2i

∫ t

−∞
ωp−eAdt

]
+O(ω−3p−eA). (2.56)

Here, we have used ±ψ
(in)
p,s −−−−→

ωp→∞
±ψ

(t)
p,s in determining the boundary condition αp,s −−−−→

ωp→∞

1, βp,s −−−−→
ωp→∞

0. Notice that |β|2 falls faster than ω4
p, which guarantees that the total number

of produced particles
∫
d3p|βp,s|2 stays finite.

2.1.5 regularization

In this subsection, we discuss how to regularize fermionic two-point functions ⟨ ˆ̄ψΓψ̂⟩, where Γ

represents 1, γµ, ∂µ, . . . and so on. As was mentioned, the regularization is important for our

mean field treatment to make sense. The main message of this subsection is that the divergence

in the two-point functions originates from vacuum contributions, which are safely subtracted

via a normal ordering procedure [34] with respect to the intermediate operators introduced in

Eq. (2.43).

To be explicit, let us consider the current ⟨ĵz⟩ = ⟨ ˆ̄ψγzψ̂⟩ (Γ = γz) as an example. Firstly, we

examine the divergent structure of the two-point function. To do this, we use the Bogoliubov

relation (2.53) to re-express ⟨ĵz⟩ as

⟨ĵz⟩ = e
∑
s

∫
d3p

(2π)3
−ψ̄

(in)
p,s γ

z
−ψ

(in)
p,s

= e
∑
s

∫
d3p

(2π)3

[
|αp,s|2−ψ̄(t)

p,sγ
z
−ψ

(t)
p,s + αp,sβp,s−ψ̄

(t)
p,sγ

z
+ψ

(t)
p,s

+ α∗p,sβ
∗
p,s+ψ̄

(t)
p,sγ

z
−ψ

(t)
p,s + |βp,s|2+ψ̄(t)

p,sγ
z
+ψ

(t)
p,s

]
. (2.57)
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Using the asymptotic (ωp−eA → ∞) expressions for the Bogoliubov coefficients (2.56) and

computing the spinor product as ±ψ̄
(t)
p,sγz∓ψ

(t)
p,s = (

√
m2

e + p2
⊥/ωp−eA) exp[±2i

∫
ωp−eAdt], one

can evaluate Eq. (2.57) to find

⟨ĵz⟩ = e
∑
s

∫
d3p

(2π)3
[
−ψ̄

(t)
p,sγ

z
−ψ

(t)
p,s +O(ω−3p−eA)

]
. (2.58)

By noting that ±ψ̄
(t)
p,sγz±ψ

(t)
p,s = ∓(pz + eA)/ωp−eA, one understands that the first term in

Eq. (2.58) cubically ∼ Λ3 diverges with Λ being a momentum cutoff. On the other hand, the

second term only gives finite contributions3. Physically speaking, this divergence comes from

vacuum contributions at an intermediate time t because

⟨vac;t|ĵz|vac;t⟩ = e
∑
s

∫
d3p

(2π)3
−ψ̄

(t)
p,sγ

z
−ψ

(t)
p,s. (2.59)

Now, we are not interested in the vacuum contributions because only the difference from the

vacuum value is physically meaningful. This suggests us to re-define ⟨ĵz⟩ so as to subtract the

vacuum contributions as

⟨ĵz⟩ → ⟨: ĵz :⟩ ≡ ⟨vac; in|ĵz|vac; in⟩ − ⟨vac;t|ĵz|vac;t⟩ , (2.60)

which is now free from the divergence. This subtraction procedure is equivalent to taking a

normal ordering of intermediate operators c(t) as : c(t)c(t)† :≡ c(t)c(t)† − [c(t), c(t)†] = c(t)†c(t).

The above considerations can straightforwardly be extended to other two-point functions

⟨ ˆ̄ψΓψ̂⟩ as well. That is, one can regularize ⟨ ˆ̄ψΓψ̂⟩ by re-defining ⟨ ˆ̄ψΓψ̂⟩ → ⟨: ˆ̄ψΓψ̂ :⟩ as

⟨: ˆ̄ψΓψ̂ :⟩ ≡ ⟨vac; in| ˆ̄ψΓψ̂|vac; in⟩ − ⟨vac;t| ˆ̄ψΓψ̂|vac;t⟩

=
∑
s

∫
d3p

(2π)3
[
ψ̄(in)
p,s Γψ

(in)
p,s − ψ̄(t)

p,sΓψ
(t)
p,s

]
. (2.61)

The above normal ordering regularization is also valid to the Yang-Mills theory discussed in

Section 3 and QCD in Section 4.

One of the advantages of this regularization method is that it does not violate the conserva-

tion laws. Let us take the energy conservation law (2.23) as an example to see this advantage

explicitly. For our homogeneous case, the total energy ⟨: ϵ̂ :⟩ reads

⟨: ϵ̂ :⟩ = ⟨: ϵ̂(A) :⟩+ ⟨: ϵ̂(ψ) :⟩ , (2.62)

3Formally, the second term still contains logarithmic divergences ∼ ln Λ. These divergences can be eliminated

via a charge renormalization procedure [53]. In a practical sense, however, the logarithmic divergences are small

(for a reasonable cutoff scale Λ) and do not modify the spacetime evolution of the system significantly. Hence,

we do not consider to regulate the logarithmic divergences in the following. This simplification is equivalent

to neglecting running coupling effects. We have checked this treatment does no harm by explicitly conducting

numerical simulations with and without regulating the logarithmic divergences.
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where

⟨: ϵ̂(A) :⟩ =
E2

2
, (2.63)

⟨: ϵ̂(ψ) :⟩ = ⟨: Re[iψ̂†∂tψ̂] :⟩ = −Im
∑
s

∫
d3p

(2π)3
[
ψ(in)†
p,s ∂tψ

(in)
p,s − ψ(t)†

p,s ∂tψ
(t)
p,s

]
. (2.64)

The energy contribution from the fluctuation âµ is obviously zero because it obeys the free field

equation of motion (2.15). By using the equations of motion, Eqs. (2.16) and (2.17), and the

definition of ±ψ
(t)
p,s (2.40), one finds

∂t ⟨: ϵ̂(A) :⟩ = −E ⟨: ĵz :⟩ − EJz (2.65)

∂t ⟨: ϵ̂(ψ) :⟩ = −Im
∑
s

∫
d3p

(2π)3
[
ψ(in)†
p,s ∂

2
t ψ

(in)
p,s − ψ(t)†

p,s ∂
2
t ψ

(t)
p,s

]
= eE

∑
s

∫
d3p

(2π)3
[
ψ(in)†
p,s γ

zψ(in)
p,s − ψ(t)†

p,s γ
zψ(t)

p,s

]
= E ⟨: ĵz :⟩ , (2.66)

and hence ∂t ⟨: ϵ̂ :⟩ = −EJz strictly holds.

2.2 e+e− pair production from a constant electric field

Let us dare neglect the backreaction, i.e., artificially set ⟨: ĵz :⟩ = 0 in the coming three sec-

tions, Section 2.2, 2.3, and 2.4; the backreaction problem is discussed in Section 2.5. This

simplification may be justified when the quantum contribution ⟨: ĵz :⟩ is much smaller than the

classical one Jz; this may be realized at the very early times of the pair creation, where the

number of produced particles and the acceleration by the electric field are sufficiently small.

Although this simplification violates the strict energy conservation of the system, it enables

us to better understand the nature of the pair creation because one can analytically solve the

Dirac equation (2.17) for specific configurations of classical fields Aµ (or the classical source

Jµ).

In this section, we consider the case, where the classical field is given by a constant electric

field E(t) = E0, i.e.,

A(t) = −E0t. (2.67)

For this case, one can analytically solve the Dirac equation (2.17) (see Appendix A.2 for details),

which enables us to analytically compute various quantities such as the vacuum persistence

probability P (out), the vacuum decay rate w, the electron and positron spectra, and so on.

One can analytically compute the Bogoliubov coefficient at t → ∞ (see Appendix A.2 for
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details) as

α(out)
p,s =

√
π
m2

e+p2
⊥

|eE0| exp
[
−πm

2
e+p2

⊥
4|eE0|

]
Γ
(
1− i

m2
e+p2

⊥
2|eE0|

) , β(out)
p,s = exp

[
−πm

2
e + p2

⊥
2|eE0|

]
. (2.68)

2.2.1 particle spectrum at t→ ∞

From Eqs. (2.38) and (2.39), one obtains the electron and positron spectra at t → ∞ by

squaring Eq. (2.68) as

d6N
(out)

e± (p, s)

dp3dx3
=

1

(2π)3
exp

[
−πm

2
e + p2

⊥
|eE0|

]
. (2.69)

As is evident from the exponential factor, one understands that the pair creation is genuinely

non-perturbative if the electric field is constant in time. This is because the typical frequency

of the constant electric field is vanishing, so that infinite number of photons involve to excite

real particles from a vacuum.

Equation (2.69) does not have a canonical momentum pz-dependence. Physically speaking,

this is because all the produced particles are accelerated by the electric field with infinite

duration to obtain an infinite kinetic momentum Pz = pz + eE0t −−−→
t→∞

∞, no matter what

values of their canonical momentum pz are. Because of this independence, pz-integration of the

spectra diverges. To estimate the degree of divergence, we assume that the pair creation occurs

at around Pz ∼ 0, where the pair creation threshold ∼ ωP takes its minimum. Then, one finds

that the time t0 when pair creation occurs and the canonical momentum pz of the produced

particle are correlated with each other as pz ∼ −eE0t0. Thus, we have∫
dpz ∼ |eE0|

∫
dt0 = |eE0|T. (2.70)

Note that this estimate has been used in many articles on pair creation from a constant electric

field. In order to obtain pz-dependent spectra and to examine the validity of this estimate, one

has to compute intermediate spectra at −∞ < t <∞; this is done in Section 2.4.

Now, we can integrate the particle spectra d6N
(out)

e± /d3pdx3 to obtain the (average) particle

production rate Γ

Γe± ≡ 1

T

∑
s

∫
d3p

d6N
(out)

e±

d3pdx3

=
1

T

∑
s

∫
d3p

(2π)3
exp

[
−πm

2
e + p2

⊥
|eE0|

]
∼ |eE0|

(2π)3

∑
s

∫
d2p⊥ exp

[
−πm

2
e + p2

⊥
|eE0|

]
=

|eE0|2

4π3
exp

[
−π m2

e

|eE0|

]
, (2.71)
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which is the same as the pair production rate originally obtained by Nikishov (1.5) (note that

Nikishov [8] also utilized the estimate (2.70)).

2.2.2 vacuum persistence probability at t→ ∞

With the help of the estimate Eq. (2.70), one can evaluate Eq. (2.37) to find an expression for

the (average) vacuum decay rate w under a constant electric field as

w =
1

T

∑
s

∫
d3p

(2π)3

∞∑
n=1

exp
[
−nπm

2
e+p2

⊥
|eE0|

]
n

∼ |eE0|
(2π)3

∑
s

∫
d2p⊥

∞∑
n=1

exp
[
−nπm

2
e+p2

⊥
|eE0|

]
n

=
|eE0|
4π3

∞∑
n=1

exp
[
−nπ m2

e

|eE0|

]
n2

, (2.72)

which is nothing but the Schwinger formula for the vacuum decay rate (1.4) (note that Schwinger

[6] also utilized the estimate (2.70)).

2.3 Finite pulse effects

In the last subsection, we have seen that the pair production is genuinely non-perturbative

if the electric field is constant in time, and only a single dimensionless parameter |eE0|/m2
e

characterizes the pair production because there are only two dimensionful parameters me, eE0.

The situation changes if we add another dimensionful parameter in the system. In particular,

time-dependence of the field is important in realistic situations such as intense laser exper-

iments and ultra-relativistic heavy ion collisions. Now, suppose that the electric field has

a finite lifetime τ . Then, since we have three dimensionful parameters me, eE0, τ , one can

construct two dimensionless parameters out of the three to characterize the system. In this

subsection, we will see that the pair production mechanism is largely affected by changing

two dimensionless parameters. In particular, we will explicitly show that an interplay between

non-perturbative and perturbative pair production occurs, whose transition is characterized by

γ ≡ |eE0|τ/me, ν ≡ |eE0|τ 2. In addition to this, we will see that the particle production is

enhanced in the perturbative regime compared to a naive estimate from the non-perturbative

Schwinger formula for a constant electric field.

The rest of this section is organized as follows: In Section 2.3.1, we derive a formula for the

electron spectra produced from a classical electric field within the lowest order perturbation

theory, and discuss how the perturbative particle production mechanism differs from the non-

perturbative one. In Section 2.3.2, we consider a specific type of pulsed electric fields (Sauter-

type electric field). The advantage of this particular choice of electric fields is that one can
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analytically evaluate not only the perturbative formula but also the non-perturbative formulas

(2.38) and (2.39). We directly compare the two evaluations, and explicitly show how the

interplay between a non-perturbative and a perturbative pair production occurs. Although we

concentrate on the Sauter-type pulse throughout this section, we stress that our qualitative

discussion should be valid for more general pulse fields smoothly characterized by its height E0

and width τ . We note that the backreaction is still neglected in this section; see Section 2.5 for

effects of the backreaction.

2.3.1 perturbative formula

We split the electron part of the total Lagrangian (2.14) into an un-perturbed part L̂0 and an

interaction part L̂int as

L̂QED = ˆ̄ψ[i/∂ −me]ψ̂︸ ︷︷ ︸
≡L̂0

−e ˆ̄ψ /Aψ̂︸ ︷︷ ︸
≡L̂int

+(irrelevant terms) (2.73)

We treat the interaction L̂int as a perturbation, and compute an S-matrix element for the e+e−

pair creation from the vacuum, S ≡ ⟨e−(p, s)e+(p′, s′); out|vac; in⟩ = ⟨e−(p, s)e+(p′, s′); in|
T exp[i

∫
d4xL̂int] |vac; in⟩, in the lowest order perturbation theory. The diagrammatic expres-

sion for the lowest-order contribution S(1) reads

S(1) = ⟨e−(p, s)e+(p′, s′); in| i
∫
d4xL̂int |vac; in⟩ = , (2.74)

and it is straightforward to show

S(1) = −ie
∫
d4x ⟨e−(p, s) e+(p′, s′); in| ˆ̄ψ /Aψ̂ |vac; in⟩ = eẼ(2ωp)

2ωp

(ūp,sγ
zv−p,s′) δ

3(p+ p′).

(2.75)

Here, Ẽ(ω) is the Fourier transform of the electric field Ẽ(ω) ≡
∫
dtE(t) eiωt.

Now, we can compute the number density of electrons and positrons, d6N
(out)

e± /dp3dx3,

created from the vacuum in the lowest-order perturbation theory as

d6N
(out)

e− (p, s)

dp3dx3
=
d6N

(out)

e+ (−p, s)

dp3dx3
=

1

V

∑
s′

∫
d3p′|S(1)|2 = 1

(2π)3

(
1− p2z

ω2
p

)
|eẼ(2ωp)|2

4ω2
p

,

(2.76)

where integration over the positron momentum p′ gives a volume factor V = (2π)3δ3(0). The

physical meaning of the formula (2.76) is evident. For an electric field oscillating in time

E(t) = E0 cosωt, Ẽ(2ωp) is proportional to δ(2ωp + ω) + δ(2ωp − ω). For the on-shell electron
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energy ωp > me, the number of produced electrons and positrons vanishes if |ω| < 2me (“2”

comes from the fact that the an electron and a positron are always produced as a pair), which

means that the pair creation does not occur when the energy supplied by a single photon is

below this threshold. This is certainly true for a constant electric field ω → 0, no matter

how strong the electric field is (within the perturbation theory). For a general time-dependent

electric field, the number of produced particles is non-vanishing even for a single photon as long

as the electric field has a nonzero Fourier spectrum Ẽ(ω) above the threshold ω ≥ 2me. It is

also important to note that the formula (2.76) depends on eE/me in positive powers, which is in

contrast to the exponential dependence as was seen in the non-perturbative particle production

formula (2.69).

The total number of produced particles, d3N
(out)

e± /dx3, is obtained after integrating over p

as

d3N
(out)

e±

d3x
=

1

(4π)2

∫ ∞
2me

dω

√
1− 4m2

e

ω2

1

3

(
2 +

4m2
e

ω2

)
|eẼ(ω)|2. (2.77)

The ω integral is not possible in general unless we specify the electric field Ẽ.

2.3.2 comparison of perturbative and non-perturbative evaluation

From now, we consider a special case where the electric field is applied as a pulse in time. In

particular, we work with a Sauter-type pulsed field [142] with height E0 and width τ :

A(t) = −E0τ tanh(t/τ) or E(t) = E0sech
2(t/τ). (2.78)

An advantage of this particular choice of electric fields is one can analytically evaluate both

the non-perturbative formulas (2.38) and (2.39) the perturbative one (2.77). Thus, by directly

comparing these two evaluations, one can discuss, in particular, how the interplay between the

perturbative and non-perturbative particle production occurs with changing the parameters

me, eE0, τ .

perturbative evaluation

We substitute the Sauter-type electric field (2.78) into Eqs. (2.76) and (2.77) to get the number

density d6N
(out)

e± /dp3dx3 and the total number d3N
(out)

e± /dx3, respectively, in the lowest-order

perturbation theory. By using

Ẽ(ω) = −iωÃ(ω) = iπE0τ
2ω

sinh πτω
2

, (2.79)

we find that the number density d6N
(out)

e± /dp3dx3 is given by

d6N
(out)

e− (p, s)

dp3dx3
=
d6N

(out)

e+ (−p, s)

dp3dx3
=

1

(2π)3

(
1− p2z

ω2
p

) ∣∣∣∣eE0

ω2
p

∣∣∣∣2 (πωpτ)
4

π2 |sinh[πωpτ ]|2
. (2.80)
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We obtain a non-vanishing result because the Fourier spectrum of the Sauter-type field Ẽ(ω)

is nonzero at any value of ω, in particular in the region ω ≥ 2me. Also, the total number

d3N
(out)

e± /dx3 is given by

d3N
(out)

e±

dx3
= m3

e

∣∣∣∣eE0

m2
e

∣∣∣∣2 f(πmeτ), (2.81)

where f is given by

f(x) ≡ x4

2π4

∫ ∞
1

dωω2

√
1− 1

ω2

1

3

(
2 +

1

ω2

)
1

|sinh(ωx)|2
, (2.82)

which behaves asymptotically as

f(x) ∼


x

18π2
(x ≲ 1)

x5/2

2π7/2

(
1 +

7

16

1

x

)
e−2x (x ≳ 1)

. (2.83)

It is important to point out that the total number (2.81) does not depend on the mass me in

the short pulse limit πmeτ → 0 as d3N
(out)

e± /dx3 ∼ τ × |eE0|/18π. This is because the typical

frequency of the Sauter-type pulse ∼ 1/τ ≫ me becomes so hard that it can excite arbitrary

heavy particles from the vacuum. The factor τ can easily be understood as the total time of

the interaction with the pulse.

Figure 2.1: The momentum p-dependence of the number density of electrons d6N
(out)

e− /dp3dx3

(2.80) for a particular parameter |eE0|/m2
e = 10,meτ = 0.01.

Figure 2.1 shows the momentum p-dependence of the electron number density d6N
(out)

e− /dp3dx3

(2.80) for |eE0|/m2
e = 10 and meτ = 0.01 as an example. We see that the peak is located at
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Figure 2.2: The total number d3N
(out)

e± /dx3 as a function of πmeτ in the lowest-order pertur-

bation theory (2.81) (solid line). Two asymptotic forms (2.83) are shown in dashed and dotted

lines. The vertical black line indicates the point 1/τ = 2me.

p = 0, which reflects the fact that the energy threshold for creating one e+e− pair ∼ 2ωp ≡ Ethr
takes its minimum Ethr = 2me at p = 0. We also find that the distribution decays exponentially

for large |p⊥| as

d6N
(out)

e−

dp3dx3
−−−−−→
p⊥≫pz ,m

1

2π

∣∣∣∣eE0

m2
e

∣∣∣∣2 (meτ)
4e−2π|p⊥|τ . (2.84)

The p⊥-dependence is solely determined by the pulse duration τ , which is not the case for the

non-perturbative Schwinger mechanism (2.69), where the p⊥-dependence determined by eE0

only. For sufficiently small τ ≲ 1/
√

|eE0|, the spectrum becomes harder than what one naively

expects from the non-perturbative Schwinger formula (2.69) because the typical frequency of

the Sauter-type pulse ∼ 1/τ becomes sufficiently hard.

Figure 2.2 shows the τ -dependence of the total number d3N
(out)

e± /dx3. We find that d3N
(out)

e± /dx3

increases monotonically for small meτ , and it takes its maximum at around meτ = 1/2. After

that, it decreases exponentially with increasing τ for large meτ ≳ 1/2. The emergence of the

threshold duration meτ = 1/2 can be understood as follows: Since the threshold energy of the

pair creation is Ethr ∼ 2me, the electric field must supply energy Ω larger than 2me for the pair

creation to occur. In our computation based on the lowest-order perturbation theory, the en-

ergy Ω is supplied by a single (virtual) photon from the electric field E. Since the typical energy

ω of a photon which forms the Sauter-type electric field is ω ∼ 1/τ , we find Ω ∼ (number of

photons) × (typical photon energy) ∼ 1×ω ∼ 1/τ . Thus, Ω ≳ 2me, i.e., meτ ≲ 1/2 is required

for the pair creation in the lowest order perturbation theory. The upper limit meτ = 1/2 is

shown as a vertical line in Fig. 2.2. In this way, one can understand that pair creation from a

single photon occurs when the pulse duration τ is short enough.
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non-perturbative evaluation

One can obtain analytic solutions to the Dirac equation in the presence of the Sauter-type elec-

tric field (see Appendix A.3 for details), which enables us to compute the number of produced

particles via the formulas (2.38) and (2.39). After some calculations, one finds

d6N
(out)

e− (p, s)

dp3dx3

=
d6N

(out)

e+ (−p, s)

dp3dx3

=
sinh

[
πτ
2
(2eE0τ + ωp−eE0τ − ωp+eE0τ )

]
sinh

[
πτ
2
(2eE0τ − ωp−eE0τ + ωp+eE0τ )

]
sinh [πτωp−eE0τ ] sinh [πτωp+eE0τ ]

. (2.85)

Here, the momentum label pz is the canonical momentum pz, and the corresponding electron

mode originally has the kinetic longitudinal momentum pz − eE0τ in the infinite past and

pz + eE0τ in the infinite future. We stress that this result is clearly non-perturbative with

respect to the coupling constant e, i.e., takes into account an infinite number of interactions

with the electric field, while the lowest order perturbation, whose result is proportional to e2

(Eq. (2.80)), includes only a single interaction with the electric field.

The total number of produced particles, d3N
(out)

e± /dx3, is obtained after integration over the

momentum p. This is numerically feasible.

comparison of the perturbative and non-perturbative evaluations

We compare the non-perturbative evaluation (2.85) with the perturbative one (2.80) and (2.81),

and results are displayed in Figs. 2.3, 2.4, and 2.5.

Figure 2.3: A comparison of the number density of electrons d6N
(out)

e− /dp3dx3. Solid lines

represent the non-perturbative result (2.85), and dashed lines represent the perturbative result

(2.80) at |eE0|/m2
e = 1. [Left] The pz-dependence at p⊥/me = 0 with various duration meτ .

Right: |p⊥|-dependence at pz/me = 0 with various duration meτ .
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Figure 2.4: A comparison of τ dependence of the number density of electrons d6N
(out)

e− /dp3dx3

at pz/me = |p⊥|/me = 0 for the subcritical field strength |eE0|/m2
e = 0.2, 0.4, 0.6 and 0.8 (left),

and for supercritical field strength |eE0|/m2
e = 5, 10, 15 and 20 (right). Solid lines represent the

non-perturbative result (2.85), and dashed lines represent the perturbative result (2.80). The

horizontal lines indicate Schwinger’s result (2.69) obtained in a constant electric field.

Figure 2.5: A comparison of the total number d3N
(out)

e± /dx3 as a function of the duration meτ

for subcritical field strength |eE0|/m2
e = 0.2, 0.4, 0.6 and 0.8 (left), and for supercritical field

strength |eE0|/m2
e = 5, 10, 15 and 20 (right). Dashed lines represent the perturbative result

(2.81) and solid lines represent the non-perturbative result obtained by numerically integrating

(2.85) over p.
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Figure 2.3 shows the comparison of the momentum pz- and |p⊥|-dependence of the number

density of electrons d6N
(out)

e− /dp3dx3. The peak strength of the field is taken as |eE0|/m2
e = 1.

Three lines are for different values of the duration τ . We show only relatively short pulse

cases: meτ = 0.1, 0.3, and 0.6. We immediately observe that the non-perturbative evaluation

(2.85) and the perturbative one (2.80) coincide with each other for short pulses. The deviation

becomes larger as τ increases, which can be explicitly seen in Fig. 2.4. There, τ dependence

is shown for different values of the peak strength. The left panel is for the subcritical4 field

strength |eE0|/m2
e = 0.2, 0.4, 0.6 and 0.8, and the right panel is for the supercritical field

strength |eE0|/m2
e = 5, 10, 15 and 20. We again observe the agreement of the two evaluations

for short pulses meτ ≪ 1 no matter how large the field strength |eE0|/m2
e is. However, the size

of the agreement region in τ heavily depends on the field strength |eE0|/m2
e. For subcritical field

strength |eE0|/m2
e ≲ 1, perturbative contribution dominates the non-perturbative result even

when the pulse is not very short meτ ∼ 1. On the other hand, for supercritical field strength

|eE0|/m2
e ≳ 1, perturbative description is applicable only for very short pulse region meτ ≪ 1.

We will clarify the reason for this behavior in the later discussion. An important point here is

that, for any field strength |eE0|/m2
e, there surely exists a region (short pulse region) where pair

creation can be understood as a purely perturbative phenomenon. We can also observe that

there is a clear deviation between the two in the long pulse region where the non-perturbative

result approaches Schwinger’s result (horizontal lines). In particular, the deviation is larger

for supercritical field |eE0|/m2
e ≳ 1. This can be understood as follows: Notice first that the

perturbative evaluation always approaches zero in the long pulse limit meτ ≫ 1 because the

typical energies of a (virtual) photon which forms the Sauter-type field ω ∼ 1/τ → 0 for

large τ and thus not enough to create a pair. On the other hand, Schwinger’s formula valid

in the long pulse region says that pair creation for subcritical field strength is exponentially

suppressed d6N
(out)

e± /dp3dx3 ∝ exp[−πm2
e/|eE0|]. Therefore, the deviation between the two is

almost negligible for weak field strength |eE0|/m2
e ≲ 1, while it increases with increasing peak

strength |eE0|/m2
e in the supercritical regime |eE0|/m2

e ≳ 1.

The same tendency is found in the comparison of the total number d3N
(out)

e± /dx3 as shown

in Fig. 2.5. Interestingly, the peak structure in the short pulse region is reproduced by the

perturbative result quite well. Although for small pz the perturbative value of the density

d3N
(out)

e− /dx3d3p is somewhat larger than the non-perturbative one, while it becomes smaller

for large pz (see the left panel of Fig. 2.3), these differences cancel out with each other in

integration over pz. Thus we have a nice agreement in the total number d3N
(out)

e± /dx3 as

displayed in Fig. 2.5.

Figure 2.4 also shows an interesting behavior. For relatively short pulses meτ ≲ 1 with sub-

critical field strength |eE0|/m2
e ≲ 1 (left panel), the results of the Sauter-type field are enhanced

4We tentatively use the words “supercritical” and “subcritical” for the cases |eE0|/m2
e > 1 and |eE0|/m2

e < 1,

respectively, but precisely speaking, the condition |eE0|/m2
e = 1 (valid for a constant electric field) does not

play the same role for finite pulses.
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as compared to Schwinger’s value (horizontal lines). Since the pair creation in this region is

dominated by the perturbative contribution, this enhancement should be understood as a purely

perturbative effect. It shows up because Schwinger’s non-perturbative result d6N
(out)

e± /dp3dx3 ∝
exp[−πm2

e/|eE0|] is exponentially small for subcritical field strength |eE0|/m2
e ≲ 1, while the

perturbative result is only power-suppressed as d6N
(out)

e± /dp3dx3 ∝ |eE0/m
2
e|2 (see Eq. (2.76)).

By using the perturbative formula for d6N
(out)

e± /dp3dx3 (2.80), we immediately find that the

peak position τpeak is given by 2 = (πωpτpeak) coth[πωpτpeak] or ωpτpeak ∼ 0.61, which does not

depend on the field strength |eE0| as is seen in Fig. 2.4. Accordingly, the peak value is given

by d6N
(out)

e± /dp3dx3 ∼ (5.0× 10−4)× (1− p2z/ω
2
p)|eE0/ω

2
p|2.

Figure 2.6: The peak value maxτ

[
d6N

(out)

e± /dp3dx3
]
of the non-perturbative evaluation (2.85)

(solid line) as a function of the field strength |eE0|/m2
e. For comparison, Schwinger’s value

and an estimate d6N
(out)

e± /dp3dx3|peak ∼ (5.0× 10−4)× (1− p2z/ω
2
p)|eE0/ω

2
p|2 obtained from the

perturbative evaluation (2.80) are shown in dotted and dashed lines, respectively. Parameters

are set to pz/m = |p⊥|/m = 0.

The peak value, maxτ

[
d6N

(out)

e± /dp3dx3
]
, at p = 0 is displayed in Fig. 2.6 as a function of the

field strength |eE0|/m2
e, together with Schwinger’s value and the peak value of the perturbative

contribution. The extrapolation of Schwinger’s value to the weak field case |eE0|/m2
e ≲ 1

underestimates the pair creation in the Sauter-type pulsed field; the pair creation from the

vacuum in the region |eE0|/m2
e ≲ 1,meτ ≲ 1 is actually more abundant than Schwinger’s

value, owing to the perturbative contribution with a single photon. Indeed, the compact formula

for the perturbative peak nicely describes the enhancement for the subcritical fields, which is

explicitly depicted with a dashed line in Fig. 2.6. Similar behavior was found in Refs. [149, 150],

which however regarded this peak as a result of non-perturbative physics.
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Now we return to the question: To what extent are we able to say a pulse is short? To answer

this, we expand the non-perturbative result (2.85) by the pulse duration τ . More precisely, we

expand (2.85) by the following two dimensionless parameters,

ν ≡ |eE0|τ 2, γ ≡ |eE0|τ
me

, (2.86)

because there are two dimensionful quantities |eE0|, me in addition to τ . The result is

Eq. (2.85)

=

sinh

[
πν
2γ

(
2γ +

√
γ2−2 pz

ωp
γ+1−

√
γ2+2 pz

ωp
γ+1

)]
sinh

[
πν
2γ

(
2γ−

√
γ2−2 pz

ωp
γ+1+

√
γ2+2 pz

ωp
γ+1

)]
sinh

[
πν
γ

√
γ2 − 2 pz

ωp
γ + 1

]
sinh

[
πν
γ

√
γ2 + 2 pz

ωp
γ + 1

]

−→


1

(2π)3

(
1− p2z

ω2
p

) ∣∣∣∣eE0

ω2
p

∣∣∣∣2 (πωpτ)
4

π2 |sinh[πωpτ ]|2
(ν, γ ≪ 1)

exp

[
−π (m

2 + p2
⊥)

|eE0|

]
(ν, γ ≫ 1) .

(2.87)

The asymptotic forms (2.87) exactly reproduce the perturbative result (2.80) for ν, γ ≪ 1 and

the non-perturbative expression (2.69) for the Schwinger mechanism for a constant electric field

for ν, γ ≫ 1. Thus, we conclude that pulses, such that the condition ν, γ ≪ 1, i.e., meτ ≪√
m2

e/|eE0|,m2
e/|eE0| is satisfied, are so short that pair creation becomes purely perturbative,

where the lowest order perturbation theory works very nicely. On the other hand, pulses, such

that the condition ν, γ ≫ 1, i.e., meτ ≫
√
m2

e/|eE0|,m2
e/|eE0| is satisfied, are so long that pair

creation becomes non-perturbative, where perturbation theory completely breaks down. We

can also say that for middle pulses, such that neither condition ν, γ ≫ 1 nor ν, γ ≪ 1 is satisfied,

perturbation theory is still applicable; however, the lowest-order perturbation theory does not

work because higher-order corrections O(|eE|n) (n > 1) become important. We summarize our

picture in Fig. 2.7.

These considerations clearly show that in order to investigate the non-perturbative nature of

pair creation, we must require not only the strength |eE0|/m2
e ≳ 1 but also a sufficient duration

meτ ≫
√
m2

e/|eE0|,m2
e/|eE0|; otherwise pair creation from the vacuum can be understood

simply as a perturbative phenomenon.

The discussion given above is a natural result if we consider the meaning of the dimensionless

parameters ν, γ. Recall the fact that the work W done by a pulsed electric field with height E0

and width τ is given by W ∼ |eE0|τ and that the typical energy ω of a photon that forms the

pulsed background field is given by ω ∼ 1/τ . Then, we can understand the physical meaning

of ν, γ as follows: ν ∼ W/ω is the number of (virtual) photons of the electric field involved

in a scattering process. γ ∼ W/me ∼ νω/me is the work done by the electric field scaled by

the typical energy scale of the system me. Keeping these in mind, we can interpret that the

perturbative condition ν, γ ≪ 1 corresponds to the case where both the number of photons
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Figure 2.7: Sketch of the appropriate picture for pair creation from the vacuum for various

pulses with height E0 and width τ . me is the electron mass.

involved in a scattering process ν and its correction to the system γ are very small. This is

obviously a natural criterion for the lowest order perturbation theory to work. We can also

interpret the non-perturbative condition ν, γ ≫ 1 in the same way.

It is interesting to compare our discussion with Ref. [39] (see also Section 1.1.2), which

claims that the Keldysh parameter γK = |eE0|/(meω) discriminates whether the system is

perturbative or non-perturbative. Note that their discussion is limited to the case where (i) an

oscillating electric field E(t) = E0 sinωt, (ii) ω is sufficiently small compared to the electron

mass ω/me ≪ 1, and (iii) the electric field is sufficiently weak |eE0|/m2
e ≪ 1. If we assume that

the typical frequency ω of a pulsed electric field is given by the inverse of the pulse duration

ω ∼ 1/τ , we find that our discussion obtained in a pulsed electric field (see Fig. 2.7) agrees

with Ref. [39] as long as the limitation (iii) is satisfied. In such a condition, γ determines the

“perturbativeness” of the system in our discussion and is equivalent to the Keldysh parameter

because γ = |eE0|
me(1/τ)

∼ |eE0|/(meω) = γK.

2.4 Dynamical evolution without backreaction

In the preceding two sections, Section 2.2 and 2.3, we have investigated the particle spectra

at t → ∞ only. In this section, in order to understand dynamical aspects of pair creation, let

us compute particle spectra at intermediate times −∞ < t < ∞ by employing the canonical

quantization procedure explained in Section 2.1.4 for a constant electric field initiated at time
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t = 0:

E(t) = E0θ(t), or A(t) = −E0tθ(t). (2.88)

An advantage of this particular electric field is that one can analytically solve the Dirac equation

(2.17) if one neglects the backreaction. Since we know the plane wave solutions ±ψ
(plane)
p,s (see

Appendix A.1 for details) and the solutions under a constant electric field with infinite duration

±ψ
(const;out)
p,s (see Appendix A.2 for details), we can easily construct analytical mode functions

±ψ
(in)
p,s for this case (2.88) by smoothly connecting the two solutions ±ψ

(plane)
p,s , ±ψ

(const;out)
p,s at the

boundary t = 0. By noting that ±ψ
(t)
p,s = ±ψ

(plane)
p,s for t < 0 (where A(t) = 0 holds), one obtains

(
+ψ

(in)
p,s

−ψ
(in)
p,s

)
=



(
+ψ

(t)
p,s(t)

−ψ
(t)
p,s(t)

)
(t < 0)(

α̃p,s(t0) −β̃∗p,s(t0)
β̃p,s(t0) α̃∗p,s(t0)

)(
+ψ

(const;out)
p,s (t)

−ψ
(const;out)
p,s (t)

)
(t > 0)

. (2.89)

The coefficients α̃p,s, β̃p,s are given by

α̃p,s(t) ≡ (+ψ
(const;out)
p,s (t)|+ψ(t)

p,s(t))F

= exp

[
−i
∫ t

−∞
ωp+eE0tdt

]
exp

[
−πm

2
e + p2

⊥
8|eE0|

]
×

[
1√
2

√
1 +

pz + eE0t

ωp+eE0t

eiπ/8D
i
m2

e+p2⊥
2|eE0|

(e−iπ/4

√
2

|eE0|
(pz + eE0t))

+
1√
2

√
1− pz + eE0t

ωp+eE0t

e−iπ/8

√
m2

e + p2
⊥

2|eE0|
D
i
m2

e+p2⊥
2|eE0|

−1
(e−iπ/4

√
2

|eE0|
(pz + eE0t))

]
,

(2.90)

β̃p,s(t) ≡ (+ψ
(const;out)
p,s (t)|−ψ(t)

p,s(t))F

= exp

[
+i

∫ t

−∞
ωp+eE0tdt

]
exp

[
−πm

2
e + p2

⊥
8|eE0|

]
×

[
1√
2

√
1− pz + E0t

ωp+eE0t

eiπ/8D
i
m2

e+p2⊥
2|eE0|

(e−iπ/4

√
2

|eE0|
(pz + eE0t))

− 1√
2

√
1 +

pz + eE0t

ωp+eE0t

e−iπ/8

√
m2

e + p2
⊥

2|eE0|
D
i
m2

e+p2⊥
2|eE0|

−1
(e−iπ/4

√
2

|eE0|
(pz + eE0t))

]
.

(2.91)

The time-dependent Bogoliubov coefficients αp,s(t), βp,s(t) are obtained by expanding the in-

state mode functions ±ψ
(in)
p,s with the intermediate ones ±ψ

(t)
p,s. By using Eqs. (2.46) and (2.47),

one immediately obtains

αp,s(t) = α̃p,s(t0)α̃
∗
p,s(t) + β̃p,s(t0)β̃

∗
p,s(t), (2.92)

βp,s(t) = β̃p,s(t0)α̃
∗
p,s(t)− α̃∗p,s(t0)β̃p,s(t). (2.93)
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Below, we compute the time-evolution of particle spectra (2π)3d6Ne−/dp
3dx3 = |βp,s|2 and

total number d3Ne±/dx
3 =

∫
d3p|βp,s|2/(2π)3. We shall see that the intermediate spectra reveal

the pz-dependence of pair creation and that naturally recover the asymptotic t → ∞ result.

We shall also see that the total number of produces particles increases ultimately as time goes

as ∝ t. This is simply because we neglect the backreation, and particles are endlessly created

from the electric field violating the total energy conservation of the system; we will remedy this

problem in Section 2.5.

2.4.1 electron distribution

Electron spectrum (2π)3d6Ne−/dp
3dx3 = |βp,s|2 is plotted in Figs. 2.8 and 2.9. For the sake of

simplicity, we consider the massless limit me/
√
|eE0| = 0 (or the strong field limit |eE0| → ∞)

here.

Figure 2.8: The time-evolution of the longitudinal kinetic momentum Pz = pz−eA distribution

(2π)3d6Ne−/dp
3dx3 for a fixed transverse momentum |p⊥|/

√
|eE0| = 0.1. The mass me is set

to me/
√

|eE0| = 0.

Figure 2.8 shows the longitudinal kinetic momentum Pz = pz − eA dependence of the

spectrum (2π)3d6Ne−/dp
3dx3 at a fixed transverse momentum p⊥/

√
|eE0| = 0. We observe a

triangle-shaped distribution. The physical meaning of this distribution is evident: Electrons are

constantly created at around P ∼ 0, where the pair creation threshold ωP takes its minimum.

After they are created, the electrons are accelerated uniformly by the electric field as dPz/dt =

eE0. We also find that the Pauli principle is strictly satisfied and the distribution is saturated as

(2π)3d6Ne−/dp
3dx3 ∼ 1. This is consistent with the asymptotic formula (2.71): (2π)3d6Ne−(t =

∞)/dp3dx3 = exp[−π(m2
e + p2

⊥)/|eE0|] ∼ 1.

We study the transverse |p⊥|-dependence of the spectrum in more detail in Fig. 2.9. There,
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Figure 2.9: The time-evolution of the transverse |p⊥|-distribution (2π)3d6Ne−/dp
3dx3 for a

fixed longitudinal kinetic momentum Pz = pz + eE0t = 1.5 ×
√

|eE0|. The mass me is set to

me/
√
|eE0| = 0.

the time-evolution of the transverse distribution (2π)3d6Ne−/dp
3dx3 at a fixed longitudinal

kinetic momentum Pz/
√

|eE0| = 1.5 is plotted. From this figure, one again understands that

the distribution is well reproduced by the asymptotic formula (2.71) shortly after the switch on

of the electric field (
√
|eE0|t ≳ 2.0 in the figure). In the transient regime (

√
|eE0|t ≲ 2.0 in the

figure), however, the spectrum does not agree with the asymptotic formula: The distribution

has a hard |p|⊥-dependence compared to the asymptotic one (2.71). This is relevant to the

finite pulse effects discussed in Section 2.3 because the sudden switch-on of the field at t = 0

contains hard frequencies to excite hard particles (see Eq. (2.84)).

Collecting all the above observations, one understands that the spectra (2π)3d6Ne±/dp
3dx3

are well approximated by

d6Ne±

dp3dx3
∼ 1

(2π)3
exp

[
−πm

2
e + p2

⊥
|eE(t)|

]
θ(∓pz(pz ∓ eA(t))). (2.94)

Notice that positrons are accelerated by the electric field in the opposite direction of electrons.

The approximation (2.94) is valid as long as time-derivatives of the electric field dnE/dtn

are sufficiently small and quantum interferences among electrons are absent. One inevitably

encounters the quantum interferences if one considers pair creation in the presence of other

particles occupying the same phase space point (e.g. pair creation in a thermal bath [34, 91]

and with backreaction [34, 54, 91, 151]). We shall briefly discuss the quantum interferences in

the next section.
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2.4.2 total number of electrons

The total number of produced particles for a single spin and flavor d3Ne±/dx
3 =

∫
d3p|βp,s|2/(2π)3

is plotted in the left panel of Fig. 2.10. From this figure, one finds that the total number grows

in proportion to the time
√
|eE0|t, which implies that particles are constantly produced from

the constant electric field. This feature is consistent with the estimate (2.71). On the other

hand, the estimate (2.71) slightly underestimates the observed numbers. This is because the

sudden switch-on of the field at t = 0 creates additional particles which is not included in the

non-perturbative Schwinger formula for a constant electric field. These particles can be seen

at the excess from the estimate at early times.

Figure 2.10: The total number of produced electrons: [Left] The time-evolution of the to-

tal number of produced electrons for a single spin and flavor d3Ne±/dx
3. The color labels

the electron mass me or the field strength eE0 as me/
√

|eE0| = 0.0 (red), 0.5 (green), 0.7

(blue), 1.0 (purple). The thin lines represent the estimate from the asymptotic formula

(2.71). [Right] The ratio R of the massive electron (or finite field strength |eE0| < ∞)

yield to the massless (or infinite field strength |eE0| → ∞) one: R ≡ (d3Ne± [me/
√

|eE0| ̸=
0]/dx3)/(d3Ne± [me/

√
|eE0| = 0]/dx3). The color again labels me/

√
|eE0| as 0.3 (red), 0.5

(green), 0.7 (blue), 1.0 (purple). Thin lines represent the estimates from the asymptotic for-

mula (2.71) as R(out) = exp[−πm2
e/|eE0|].

In the right panel of Fig. 2.10, we plotted the ratio R of the massive electron (or finite

field strength |eE0| < ∞) yield to the massless (or infinite field strength |eE0| → ∞) one:

R ≡ (d3Ne± [me/
√

|eE0| ̸= 0]/dx3)/(d3Ne± [me/
√

|eE0| = 0]/dx3). The asymptotic formula

(2.71) tempts us to naively expect that the ratio takes values around R(out) = exp[−πm2
e/|eE0|].

The figure, however, shows that this expectation is definitely wrong for early times. This is

because of the finite pulse effects discussed in Section 2.3. The perturbative pair creation

always raises up the ratio R because the typical frequency of the field at early times is so hard

that it can excite arbitrary heavy particles from the vacuum (see Eq. (2.81)). On the other
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hand, the naive estimate becomes accurate for later times, although the time scale depends

on the mass me or the field strength eE0. Indeed, one can observe that heavier mass (or

weaker field strength) requires longer times for converging to the estimate R(out). This aspect

can be understood in terms of the Keldysh parameter γK = |eE0|t/me, which is one of the

dimensionless parameters characterizing the interplay between the non-perturbative Schwinger

particle production (γK ≫ 1) and the perturbative one (γK ≪ 1) (see Fig. 2.7): The Keldysh

parameter becomes smaller for larger (smaller) values of me (eE0), and thus larger time t is

required to realize γK ≫ 1.

2.5 Dynamical evolution with backreaction

In the last three sections, Section 2.2, 2.3, and 2.4, we have neglected the backreaction by

artificially setting ⟨: ĵz :⟩ = 0 and kept the electric field strength E fixed. As was addressed,

this treatment is unphysical because it violates the strict energy conservation of the system,

and is justifiable only at the very beginning of the time-evolution of the system.

In this section, we discuss backreaction effects: By numerically solving the equations of

motion (2.15)-(2.17), we compute the time-evolution of the electron distribution function, the

field strength, the total number of produced particles, and thermodynamic quantities such as

energy density and pressure of the system.

2.5.1 setup

We consider the case where there is a homogeneous electric field initially t = t0 = 0 as

A(t0) = 0, E(t0) = E0,
dE(t0)

dt
= 0. (2.95)

We never supply any external source Jµ during the time-evolution, i.e, Jµ = 0. For the sake of

simplicity, the coupling constant e is set to be unity in the following.

2.5.2 electron distribution

Figures 2.11 and 2.12 display the time-evolution of the electron number density d6Ne−/dp
3dx3,

where me/|eE0| = 0 is taken for simplicity.

Figure 2.11 displays the time-evolution of the kinetic longitudinal momentum Pz = pz − eA

dependence of the electron number density d6Ne−/dp
3dx3. Obviously, the result is distinct

from that without the backreaction (see Fig. 2.8). They coincide with each other only at the

beginning
√
|eE0|t ≲ 10. Thus, one understands that the backreaction effects (or quantum

effects higher than one-loop order) are crucial in describing the time-evolution of the system.

Interestingly, Fig. 2.11 exhibits an oscillating behavior [34, 52, 53, 54, 91] (see Fig. 2.13 also),

which is an analogue of the plasma oscillation well known in the context of plasma physics [152]:
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Figure 2.11: The kinetic longitudinal distribution of electrons d6Ne−/dp
3dx3 at a fixed trans-

verse momentum p⊥/
√
|eE0| = 0.045 for me/|eE0| = 0.

Suppose that we have E0 > 0 initially. The electric field creates particles via the Schwinger

mechanism, and after that those particles are accelerated according to the classical equation of

motion, dPz/dt = eE, in the positive direction. Hence, the current (or the longitudinal kinetic

momentum Pz) is positive ⟨: ĵz :⟩ > 0 in early times, and it diminishes the original electric

field via the Maxwell equation (2.19) as −dE/dt = ⟨: ĵz :⟩ > 0. After some times tosc, the

electric field is completely screened out E(tosc) = 0. At this time tosi, the current still flows in

the positive direction ⟨: ĵz :⟩ > 0, and further decreases the electric field strength as E < 0.

The negative electric field strength, then, decelerates the particles to diminish the current,

which eventually becomes zero and flips its sign as ⟨: ĵz :⟩ < 0. At this point, the electric

field strength takes its minimum, and begins to grow in accordance with the Maxwell equation

(2.19) as −dE/dt = ⟨: ĵz :⟩ < 0. Repeating these steps again and again, the oscillating behavior

appears.

Figure 2.12, shows the time-evolution of the transverse p⊥ distribution d6Ne−/dp
3dx3 at

a fixed kinetic longitudinal momentum Pz/
√

|eE0| = 1.5. We first observe that the spectrum

periodically “disappears” because of the plasma oscillation. Apart from that, the transverse p⊥-

dependence is largely consistent with a Gaussian ∼ exp[−π(m2
e +p2

⊥)/|eE0|] as the asymptotic

formula (2.71) predicts. The deviation from the Gaussian is because of the decay of the electric

field (see Fig. 2.13) and of quantum interference. The quantum interferences occur and the

spectrum is heavily distorted when the created particles come back to the phase space where the

pair production takes place P ∼ 0. This is essentially because the phase of the particles coming

back ∼ exp[−iScl], where Scl is the classical action, and that of newly produced anti-particles

∼ exp[+iScl] are not the same. An overlap of these particles having different phases results in

an interference term in the distribution ∼ | exp[−iScl]+eiθ exp[+iScl]|2 = 2+2 cos(Scl+θ/2) (e
iθ
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Figure 2.12: The transverse distribution of electrons d6Ne−/dp
3dx3 at a fixed kinetic longitu-

dinal momentum Pz = pz − eA = 1.5
√
|eE0| for me/|eE0| = 0.

is a constant relative phase factor), which rapidly oscillates in the phase space. The quantum

interferences disorder the system to increase the entropy, and are important for the seemingly

irreversibility of the system [151].

Now, let us quantitatively estimate the time scale of the oscillation tosc [91]: From the

above arguments (or the discussion without the backreaction (2.94)), one may approximate

the distribution function d6Ne±/dp
3dx3 by neglecting the quantum interferences and setting

E(t) ∼ E0 as

d6Ne±

dp3dx3
∼ 1

(2π)3
exp

[
−πm

2
e + p2

⊥
|eE0|

]
θ(∓pz(pz ∓ eA(t))). (2.96)

We furthermore approximate the current ⟨: ĵz :⟩ by assuming that the quantum interferences

are again negligible and particles are ultra-relativistic in the longitudinal direction ωP ∼ |P |
as

⟨: ĵz :⟩ ∼
∑
e±

(±e)
∑
s

∫
d3p

pz ∓ eA

ωp∓eA

d6Ne±

dp3dx3

∼
∑
e±

(±e)
∑
s

∫
d3p sgn(pz ∓ eA)

d6Ne±

dp3dx3

∼ e3

2π3
E0 exp

[
−π m2

e

|eE0|

]
A(t) (∵ Eq. (2.96)). (2.97)

By substituting the last expression (2.97) into the equation of motion (2.19), one gets

E(t) = E0 cos

[
π

2

t

tosc

]
, (2.98)
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where tosc is the time when the electric field passes zero (or the longitudinal kinetic momentum

flips its sign) for the first time:

√
|eE0|tosc =

π2

e

√
π

2
exp

[
π

2

m2
e

|eE0|

]
. (2.99)

The estimate (2.99) reads
√
|eE0|tosc ∼ 12 for me/

√
|eE0| = 0, and is in good agreement with

the result displayed in Fig. 2.11. Notice that Eq. (2.98) expects that the electric field E(t)

does not decay in time, but simply oscillates with a constant amplitude E0. As we shall see

in Fig. 2.13, however, this expectation is definitely wrong: The electric field not only oscillates

in time but also decays. What is missing is the quantum interferences we have neglected in

the derivation of Eq. (2.98), which tells us the importance of the quantum interference in the

seeming irreversibility of the system. On the other hand, Eq. (2.98) does reproduce well the

oscillating behavior of the electric field. This is because the plasma oscillation is purely classical

dynamics, and is well captured by the approximations made during the derivation.

2.5.3 decay of electric field

Figure 2.13: [Left] The time-evolution of the electric field strength E(t). Different colors

indicate different initial field strength E0 (or the electron mass me) as me/
√
|eE0| = 0.0 (red),

0.5 (green), 0.7 (blue), and 1.0 (purple). [Right] The time-evolution of the current ⟨: ĵz :⟩ of

the produced particles. The colors again indicate the values of me/
√

|eE0| as in the left panel.

Figure 2.13 displays the time-evolution of the electric field strength E (left) together with

that of the current ⟨: ĵz :⟩ (right). One again observes the plasma oscillation in the time-

evolution of the electric field strength and that of the current as was explained in Section 2.5.2.

As was estimated in Eq. (2.99), the typical time scale of the oscillation tosc exponentially grows

with increasing the ratiom2
e/|eE0|. This is because the production of particles that generate the

current to screen the electric field is exponentially suppressed by an inverse power of m2
e/|eE0|.
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Another important point is that the electric field decays. This means that the energy of the

classical field is converted into quantum particles as we shall explicitly see in Section 2.5.5. We

note that the speed of the decay is rather slow in QED. This is because electrons are subjected

to the Pauli principle so that the total number of electrons do not grow so much as we shall

see in Section 2.5.4, i.e., the energy of the classical field can be converted into electrons only

slowly. This is not the case for boson production, which is relevant in QCD. There, gluons are

abundantly produced so that the energy of a classical color field is efficiently converted into

particle degrees of freedom (see Section 4.3).

Note that the electric field is sufficiently adiabatic in time. Indeed, for the infinite field

strength (or the massless) limit me/
√

|eE0| = 0, the typical value of the dimensionless param-

eters ν, γ (see Eq. (2.86)) read ν ∼
√

|eE0|tosc ∼ 100 ≫ 1, γ ∼
√

|eE0|tosc × (me/
√
|eE0|)−1 →

∞. These values of ν, γ guarantee that the effects of the time-dependence of the electric field

are weak and the pair production is purely non-perturbative as was discussed in Section 2.3.

2.5.4 total number of electrons

Figure 2.14: The total number of produced particles: [Left] The time-evolution of the total

number of produced electrons for a single spin and flavor d3Ne±/dx
3. The color labels the

electron mass me or the field strength eE0 as me/
√
|eE0| = 0.0 (red), 0.5 (green), 0.7 (blue),

1.0 (purple). The thin line represents the estimate from the asymptotic formula (2.71) in the

infinite field strength (or massless) limit me/
√
|eE0| = 0.0. [Right] The ratio R of the massive

electron (or finite field strength |eE0| < ∞) yield to the massless (or infinite field strength

|eE0| → ∞) one: R ≡ (d3Ne± [me/
√

|eE0| ̸= 0]/dx3)/(d3Ne± [me/
√
|eE0| = 0]/dx3). The color

again labels me/
√
|eE0| as 0.3 (red), 0.5 (green), 0.7 (blue), 1.0 (purple). Thin lines represent

an estimate from the asymptotic formula (2.71) as R(out) = exp[−πm2
e/|eE0|].

The total number of produced particles for a single spin and flavor d3Ne±/dx
3 =

∫
d3p|βp,s|2/(2π)3

is plotted in the left panel of Fig. 2.14 for various values of the initial field strength E0 or the
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electron mass me. When compared to the result without the backreaction in Section 2.4.2, one

finds that they coincide with each other only for
√

|eE0|t ≲ 10, which implies that the backreac-

tion effects are negligible at the beginning of the pair production. At later times
√

|eE0|t ≳ 10,

they start to deviate because of the backreaction. Indeed, only smaller numbers of particles are

produced when the backreaction is turned on because the average value of the field strength is

much smaller than the initial one E0 due to the decay and to the plasma oscillation as were

observed in Fig. 2.13. Also, the Pauli blocking is important: The Pauli principle forbids elec-

tron production at the phase space point which is already occupied by another electron. The

plasma oscillation strongly bounds the longitudinal momentum extension of the phase space

density of electrons (see Fig. 2.11), which is in contrast to the case without the backreaction,

where electrons are accelerated by the electric field uniformly (see Fig. 2.8) to get much larger

momentum than that of newly produced electrons.

The right panel of Fig. 2.14 displays the ratio R of the massive electron (or a finite initial

field strength |eE0| <∞) yield to the massless (or an infinite initial field strength |eE0| → ∞)

one: R ≡ (d3Ne± [me/
√
|eE0| ̸= 0]/dx3)/(d3Ne± [me/

√
|eE0| = 0]/dx3). We note that the same

quantity without the backreaction was plotted in Fig. 2.10. We again observe that the result

deviates from the naive expectation of the asymptotic formula (2.71) R(out) = exp[−πm2
e/|eE0|],

which is represented by the thin lines in the figure. Interestingly, the deviation is larger than

that without the backreaction (see Fig. 2.10). This is because the backreaction effects are

larger for lighter electron mass (or stronger initial field strength), where stronger current flows.

Hence, particle production is more strongly suppressed for lighter electron mass (or stronger

initial field strength), so that the ratio R becomes larger than that without the backreaction.

2.5.5 energy density

Figure. 2.15 shows the time-evolution of the energy ⟨: ϵ̂ :⟩ = ⟨: ϵ̂(A) :⟩+ ⟨: ϵ̂(ψ) :⟩, where ⟨: ϵ̂(A) :⟩
(Eq. (2.63)) is the energy of the classical electric field and ⟨: ϵ̂(ψ) :⟩ (Eq. (2.64)) is that of the
matter (electrons and positrons).

The left panel of Fig. 2.15 displays the energy balance between ⟨: ϵ̂(A) :⟩ and ⟨: ϵ̂(ψ) :⟩. The
figure shows that the energy of the classical electric field ⟨: ϵ̂(A) :⟩ is smoothly converted into

that of quantum particles ⟨: ϵ̂(ψ) :⟩. The conversion process is seemingly irreversible, and the

energy of the classical field decreases as time goes. Notice that the energy conservation law

(2.23) strictly holds during the time-evolution.

The time-evolution of the matter energy ⟨: ϵ̂(ψ) :⟩ is further investigated in the right panel of

Fig. 2.15. One observes that the matter energy does not increase monotonically, but oscillates

in time. This is because pair creation and annihilation occur at around P ∼ 0 periodically

because of the plasma oscillation explained in Section 2.5.2.
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Figure 2.15: The time-evolution of the energy density ⟨: ϵ̂ :⟩ = ⟨: ϵ̂(A) :⟩ + ⟨: ϵ̂(ψ) :⟩. [Left] The

energy balance between the matter ⟨: ϵ̂(ψ) :⟩ (blue) and the classical electric field ⟨: ϵ̂(A) :⟩ (red).
The black line is the sum of these two contributions ⟨: ϵ̂ :⟩, and is constant because of the

energy conservation. [Right] The energy of the matter ⟨: ϵ̂(ψ) :⟩ for various values of the initial

field strength (or the electron mass) as me/
√
|eE0| = 0.0 (red), 0.5 (green), 0.7 (blue), and 1.0

(purple).

2.5.6 pressure

The transverse pressure ⟨: P̂⊥ :⟩ ≡ (⟨: P̂x :⟩ + ⟨: P̂y :⟩)/2 and the longitudinal pressure ⟨: P̂z :⟩
are plotted in Figs. 2.16 and 2.17, respectively. In the figures, the pressure ⟨: P̂⊥,z :⟩ are further
split into the classical field part ⟨: P̂⊥,z(A) :⟩ and the matter (electrons and positrons) part

⟨: P̂⊥,z(ψ) :⟩ as (see Eq. (2.9))

⟨: P̂⊥(A) :⟩ =
E2

2
,

⟨: P̂⊥(ψ) :⟩ =
⟨
: −iRe

[
ˆ̄ψ
γx∂x + γy∂y

2
ψ̂

]
:

⟩
, (2.100)

and

⟨: P̂z(A) :⟩ = −E
2

2
,

⟨: P̂z(ψ) :⟩ =
⟨
: −iRe

[
ˆ̄ψγz (∂z − ieA) ψ̂

]
:
⟩
. (2.101)

From Figs. 2.16 and 2.17, one again notices that the classical field degree of freedom is

smoothly converted into those of quantum particles. One also finds the matter part of the

transverse pressure ⟨: P̂⊥(ψ) :⟩ is negligible, and hence the total pressure ⟨: P̂⊥ :⟩ is dominated

by the classical field contribution ⟨: P̂⊥(A) :⟩. This is because the transverse distribution of

produced particles form almost the Gaussian distribution ∼ exp[−π(m2
e + p2

⊥)/|eE|] (see Sec-

tion 2.5.2) so that they typically have small transverse momentum (m2
e+p2

⊥)/|eE| ≲ 1. On the
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contrary to this, the longitudinal pressure of the matter ⟨: P̂z(ψ) :⟩ dominates the total pressure

⟨: P̂z :⟩ because the longitudinal acceleration by the classical electric field is significant.

Figure 2.16: The time-evolution of the transverse pressure ⟨: P̂⊥ :⟩ = ⟨: P̂⊥(A) :⟩ + ⟨: P̂⊥(ψ) :⟩.
[Left] The total pressure ⟨: P̂⊥ :⟩ (black) together with the matter ⟨: P̂⊥(ψ) :⟩ (blue) and the

classical electric field ⟨: P̂⊥(A) :⟩ (red) contributions. [Right] The transverse pressure of the

matter ⟨: P̂⊥(ψ) :⟩ for various values of the initial field strength (or the electron mass) as

me/
√

|eE0| = 0.0 (red), 0.5 (green), 0.7 (blue), and 1.0 (purple).

As is evident from Eqs. (2.100) and (2.101), the classical part of the longitudinal pressure

⟨: P̂z(A) :⟩ is negative and the system is highly anisotropic initially. In other words, the system

is far from equilibrium. In order to investigate how the system equilibrates (or does not equi-

librate) through the decoherence of the classical field, we compare the total pressures, ⟨: P̂⊥ :⟩
and ⟨: P̂z :⟩, and examine isotropization of the system. The result is plotted in Fig. 2.18, where

the initial field strength or the electron mass is set to be me/
√

|eE0| = 0 for simplicity; it

only changes the time-scale of the result. The figure shows that the degree of the anisotropy

is relaxed through the decoherence. In particular, the longitudinal pressure ⟨: P̂z :⟩ becomes

positive because the matter contribution ⟨: P̂z(ψ) :⟩, which is always positive because of their

longitudinal motion, dominates the total pressure ⟨: P̂z :⟩. However, complete isotropization

is not achieved in our mean field treatment formulated in Section 2.1. This is because our

framework does not take into account collisions between created particles, i.e., collisions. In

order to take into account collisional effects, one needs to go beyond the mean field treatment.

2.6 Brief summary

We briefly summarize the main results of this chapter:

• We formulated the Schwinger mechanism in QED within mean field approximation in-

cluding backreaction from produced electrons to the classical field (see Section 2.1).
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Figure 2.17: The time-evolution of the longitudinal pressure ⟨: P̂z :⟩ = ⟨: P̂z(A) :⟩ + ⟨: P̂z(ψ) :⟩.
[Left] The total pressure ⟨: P̂z :⟩ (black) together with the matter ⟨: P̂z(ψ) :⟩ (blue) and the

classical electric field ⟨: P̂z(A) :⟩ (red) contributions. [Right] The longitudinal pressure of the

matter ⟨: P̂z(ψ) :⟩ for various values of the initial field strength (or the electron mass) as

me/
√
|eE0| = 0.0 (red), 0.5 (green), 0.7 (blue), and 1.0 (purple).

Figure 2.18: Isotropization of the system. The total transverse and longitudinal pressure

scaled by the total energy, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, are plotted in red and blue line,

respectively.
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• We applied the formalism to a constant electric field ignoring backreaction in Section 2.2

and 2.4: We analytically traced the time-evolution of the electron distribution function

to find that the electron production is consistent with the well-known Schwinger formula.

• Time-dependence of the background field largely affects the particle production mech-

anism. In particular, an interplay between perturbative and non-perturbative particle

production occurs because of the time-dependence. By employing a Sauter-type pulsed

electric field with duration τ and strength E0, we analytically showed in Section 2.3 that

(i) two dimensionless parameters ν = |eE0|τ 2, γ = |eE0|τ/me control the interplay, and

(ii) the electron production is strongly enhanced in the perturbative regime.

• Backreaction effects were discussed in Section 2.5, where we found that the electron

spectrum is dramatically modified from the naive Schwinger formula. In particular, we

found that (i) the classical plasma oscillation occurs; (ii) the quantum interferences among

electrons strongly distort the electron spectrum; and (iii) the Pauli principle suppresses

the electron production.

• Because of the backreaction, the initial field energy is smoothly converted into particle

degrees of freedom and the field attenuates, although the time-scale is rather slow in QED

(see Fig. 2.15).

• A longitudinal classical electric field is highly anisotropic. The degree of the anisotropy

is relaxed as the classical field decoheres into electrons via the Schwinger mechanism.

However, the complete isotropization is never achieved as was plotted in Fig. 2.18 because

our mean field treatment neglects scatterings and collisions between produced electrons.





Chapter 3

Schwinger Mechanism in SUc(Nc = 2)

Yang-Mills theory

As a first step towards formulating the Schwinger mechanism in QCD, we consider the SUc(Nc =

2) Yang-Mills theory without quarks in this chapter. In Section 3.1, we formulate the Schwinger

mechanism in the SUc(Nc = 2) Yang-Mills theory including backreaction from gluon and ghost

fluctuations by extending the mean field framework developed in QED (Section 2.1). In Sec-

tion 3.2 and 3.3, we analytically and numerically apply the formalism to discuss how the

Schwinger mechanism in the Yang-Mills theory is similar to and/or different from that in QED:

In Section 3.2, we consider a constant color electric field neglecting backreaction. By analyt-

ically tracing the time-evolution of the gluon spectrum, we will see that the gluon spectrum

is consistent with the Schwinger formula for a constant electric field. In Section 3.3, we treat

the backreaction numerically, and will see that the backreaction dramatically affects the time-

evolution of the system. In particular, we shall see that the boson statistics of gluons strongly

enhances the gluon production, and the classical gauge field decays much faster than in QED.

3.1 Formalism

3.1.1 SUc(Nc = 2) Yang-Mills theory under a classical gauge field

Lagrangian

Let us consider the SUc(Nc = 2) pure Yang-Mills theory, which is described by the Lagrangian

L̂YM:

L̂YM = L̂(g) + L̂(GF+FP) + L̂(ext), (3.1)

where

L̂(g) = −1

2
trc[F̂

µνF̂µν ], (3.2)

L̂(ext) = 2trc[J
µÂµ] (3.3)

67
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are contributions from the gluon field Âµ, and a classical external source Jµ, respectively. g

is the strong coupling constant. The non-Abelian field strength F̂µν is introduced as F̂µν ≡
∂µÂν − ∂νÂµ + ig[Âµ, Âν ]. trc is a trace operation in the color space. We normalize generators

ta (a = 1, . . . , N2
c − 1) of SUc(Nc = 2) by trc[tatb] = δab/2. The remaining Lagrangian L̂(GF+FP)

represents the contribution from the gauge-fixing and the ghost fields ĉ, ˆ̄c, and is given by [153]

L̂(GF+FP) = −2i trc[δBRS(ˆ̄cθ̂)]. (3.4)

Here, δBRS denotes the BRS transformation (where BRS refers to Becchi, Rouet and Stora

[154]): 
δBRSÂµ = D̂µĉ

δBRSĉ = −igĉ2

δBRSˆ̄c = iB̂

δBRSB̂ = 0

, (3.5)

where D̂µ is the covariant derivative with respect to the gauge field Âµ as D̂µ•̂ ≡ ∂µ•̂ +

ig[Âµ, •̂], and B̂ is the so-called Nakanishi-Lautrap (NL) field [155, 156]. Notice that the BRS

transformation is nil-potent δ2BRS = 0, which guarantees the BRS invariance of the Yang-Mills

Lagrangian L̂YM. The choice of the gauge fixing function θ̂ is arbitrary in principle, but it is

convenient to take a specific function as

θ̂ = ϑ̂[Â] +
1

2
B̂. (3.6)

The newly introduced function ϑ̃ is an arbitrary function depending on the gauge field Â only

(for the explicit expression of ϑ̃ used in this thesis, see Eq. (3.20)). Under this choice of the

gauge fixing function θ̂, L̂(GF+FP) reads

L̂(GF+FP) = 2trc

[
B̂ϑ̂+

1

2
B̂2 + iˆ̄cδBRSϑ̂

]
. (3.7)

Now that the Euler-Lagrange equation for the NL field B̂ is 0 = ϑ̂+ B̂, one can safely replace

the NL field B̂ by −ϑ̂ to obtain

L̂(GF+FP) = −trc[ϑ̂
2]︸ ︷︷ ︸

≡L̂(GF)

+2i trc[ˆ̄cδBRSϑ̂]︸ ︷︷ ︸
≡L̂(FP)

. (3.8)

Color basis

In order to avoid some complexities coming from the non-Abelian algebra of SUc(Nc = 2), it is

useful to expand the color space (gluons Âµ and ghosts ĉ, ˆ̄c) by ladder operators (or a Cartan-

Weyl basis of SUc(Nc = 2)), instead of the usual Pauli matrices {σa}. Namely, we consider the
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following particular generators, H,E, as

H ≡ σ3 =
1

2

(
1 0

0 −1

)
,

E ≡ σ1 + iσ2√
2

=
1√
2

(
0 1

0 0

)
. (3.9)

These generators H,E satisfy the following algebra:

trc[H
2] = trc[EE

†] =
1

2
, trc[HE] = trc[E

2] = 0, (3.10)

and

[H,E] = E, [E,E†] = H. (3.11)

Abelian dominance assumption

From now, we adopt the Abelian dominance assumption for simplicity: We assume that the

Abelian components ∝ H dominate the classical current Jµ and the classical field ⟨Âµ⟩ gener-
ated by the classical current. Under this assumption, one may neglect non-Abelian components

∝ E,E† in the classical current Jµ and the classical gauge field ⟨Âµ⟩ to write

Jµ(x) = J̄µ(x)H, ⟨Âµ(x)⟩ = Āµ(x)H, (3.12)

The Abelian dominance assumption is justified when non-Abelian commutators, in which we

are interested, vanish as ig[•, ∗] → 0. Formally, this criterion is fulfilled in the small coupling

constant limit g → 01. Under this assumption, the problem is reduced to essentially an Abelian

one, and thus one can formulate the Schwinger mechanism in the Yang-Mills theory in an

analogous manner in QED explained in Section 2.1.

expansion around a classical field

Now, we are interested in how the classical gauge field Āµ affects the quantum mechanical

evolution of the system. In order to make this situation manifest, we decompose the total

gauge field Âµ and the ghost fields ĉ, ˆ̄c into the Abelian classical field ⟨Âµ⟩ = ĀµH and quantum

1Strictly speaking, one has to take care about how the unspecified quantities •, ∗ depend on the coupling

constant g. For example, in the CGC framework one is interested in a commutator of the classical fields Aµ.

In CGC, the strength of the classical field Aµ grows as ∼ 1/g with g → 0, so that the commutator ig[Aµ, Aν ]

does not vanish in the small coupling constant limit g → 0. Thus, one cannot theoretically justify the Abelian

dominance assumption with the smallness of the coupling constant g in this example. It is, however, interesting

to note that the Abelian dominance assumption for the classical field Aµ is largely consistent with a full numerical

simulation of the classical Yang-Mills equation initiated by a CGC initial condition [140].
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fluctuations around it, âµ, Âµ,
ˆ(−)
C ,

ˆ(−)
C as

Âµ = (Āµ + âµ)H + ÂµE + Â†µE†, (3.13)(
ĉ

ˆ̄c

)
=

(
Ĉ
ˆ̄C

)
H +

(
Ĉ
ˆ̄C

)
E +

(
Ĉ†
ˆ̄C†

)
E†. (3.14)

Under this decomposition, one can expand the field strength tensor F̂µν as

F̂µν = (F̄µν + f̂µν + δf̂µν)H +
[
(F̂µν + δF̂µν)E + (h.c.)

]
, (3.15)

where 

F̄µν ≡ ∂µĀν − ∂νĀµ

f̂µν ≡ ∂µâν − ∂ν âµ

δf̂µν ≡ ig(Â†νÂµ − Â†µÂν)

F̂µν ≡ D̄µÂν − D̄νÂµ

δF̂µν ≡ ig(âµÂν − âνÂµ)

. (3.16)

Here, D̄µ is the covariant derivative with respect to the classical gauge field denoted by

D̄µ ≡ ∂µ + igĀµ. (3.17)

Now, the Yang-Mills Lagrangian (3.1) reads

L̂(g) =− 1

4
F̄µνF̄

µν

− 1

2
F̄ µν f̂µν

− 1

4
f̂µν f̂

µν − 1

2

[
F̂ †µνF̂µν + F̄ µνδf̂µν

]
− 1

2
f̂µνδf̂

µν − 1

2

[
F̂ †µνδF̂µν + δF̂µν†F̂µν

]
− 1

4
δf̂µνδf̂

µν − 1

2
δF̂ †µνδF̂µν , (3.18)

L̂(ext) =J̄
µĀµ + J̄µâµ. (3.19)

gauge fixing and ghost term

Under the Abelian dominance approximation, it is convenient to fix the gauge along the Abelian

direction of the gauge field 2trc[HÂµ] = Āµ+âµ. Namely, we consider the following gauge fixing

function ϑ̂:

ϑ̂ = ∂µ(Āµ + âµ)H +
[(
∂µ + ig(Āµ + âµ)

)
ÂµE + (h.c.)

]
. (3.20)
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Under this choice of the gauge fixing function, the gauge fixing Lagrangian L̂(GF) and the ghost

Lagrangian L̂(FP) read

L̂(GF) =− 1

2
(∂µĀµ)

2

− (∂µâµ)(∂
νĀν)

− 1

2
(∂µâµ)

2 − |D̄µÂµ|2

− igâµ

[
(D̄νÂν)†Âµ − Âµ†(D̄νÂν)

]
− g2âµâνÂµÂν†, (3.21)

L̂(FP) =i
ˆ̄C∂µ∂

µĈ + i

[
ˆ̄C†
(
D̄µD̄

µĈ
)
−
(
D̄µD̄

µĈ
)† ˆ̄C]

− g
[
2âµ

(
ˆ̄C†(D̄µĈ) + (D̄µĈ)† ˆ̄C

)
+ (∂µâµ)(

ˆ̄C†Ĉ + Ĉ† ˆ̄C)
]

− g
[
Âµ

ˆ̄C(D̄µĈ)† − Â†µ ˆ̄C(D̄µĈ) + (D̄µÂµ)
†( ˆ̄CĈ − ˆ̄CĈ)− (D̄µÂµ)(

ˆ̄C†Ĉ − ˆ̄CĈ†)
]

− ig2
[
ÂµÂµ

ˆ̄C†Ĉ† − ÂµÂ†µ( ˆ̄C†Ĉ − Ĉ† ˆ̄C) + Âµ†Â†µ ˆ̄CĈ
]

+ ig2(âµâ
µ)(Ĉ† ˆ̄C − ˆ̄C†Ĉ) + ig2âµ

[
Â†µ ˆ̄CĈ + Âµ

ˆ̄C†Ĉ
]
. (3.22)

Note that in the limit of âµ → 0, the gauge fixing and ghost Lagrangian L̂(GF), L̂(FP) reduce

to the well-known covariant background gauge fixing term and the corresponding ghost term,

which are useful as long as the backreaction is neglected. The gauge-dependence of our results

presented below must be investigated further, but we leave this topic as a future work.

conserved quantities

There exist some conserved quantities associated with symmetries in the Yang-Mills Lagrangian

L̂YM (3.1):

color current ĵµ

Even after the gauge is fixed by Eq. (3.20), the Yang-Mills Lagrangian L̂YM (3.1) is invariant

under a global color rotation around the Abelian H-direction in the color space:

Âµ → UÂµU
†,

(
Ĉ
ˆ̄C

)
→ U

(
Ĉ
ˆ̄C

)
U †, (3.23)

where

U = exp[−igθH]. (3.24)

The conserved quantity associated with this symmetry is the color current (in the H-direction)

ĵµ, which is obtained via the Noether theorem [143]. The vacuum expectation value of the
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current ⟨: ĵµ :⟩ reads

⟨: ĵµ :⟩ =− ∂ν ⟨: δf̂µν :⟩+ ig

⟨
: Â†ν

(
D̄µÂν

)
−
(
D̄µÂν

)†
Âν :

⟩
− g

⟨
: ˆ̄C†

(
D̄µĈ

)
+
(
D̄µĈ

)† ˆ̄C −
(
D̄µ

ˆ̄C
)†

Ĉ − Ĉ†
(
D̄µ

ˆ̄C
)
:

⟩
. (3.25)

Here, the divergence is eliminated by the normal ordering procedure as was explained in Sec-

tion 2.1.5.

The conservation law for ⟨: ĵµ :⟩ is

0 = ∂µ ⟨: ĵµ :⟩ . (3.26)

symmetric energy-momentum tensor T̂ µν

As in QED (see Section 2.1.1), the symmetric energy-momentum tensor T̂ µν for the Yang-

Mills Lagrangian (3.1) associated with the translational invariance of the system can be obtained

by Eq. (2.8). The vacuum expectation value of the symmetric energy-momentum tensor ⟨: T̂ µν :⟩
reads

⟨: T̂µν :⟩ =ηµν
[
1

4
F̄ ρσF̄ρσ −

1

2
(∂λĀ

λ)2 − Āρ∂ρ∂σĀ
σ

]
−
[
F̄ µ

λF̄
νλ − Āµ∂ν∂λĀ

λ − Āν∂µ∂λĀ
λ
]

+ ηµνRe

⟨
:
1

4
f̂ρσf̂ρσ −

1

4
[M2

(a)]
ρσâρâσ −

1

2
(∂λâ

λ)2 − âρ∂ρ∂σâ
σ :

⟩
− Re

⟨
: f̂µλf̂

νλ − 1

2

[
[M2

(a)]
µρâν âρ + [M2

(a)]
νρâµâρ

]
− âµ∂ν∂λâ

λ − âν∂µ∂λâ
λ :

⟩
+ 2×

(
ηµνRe

⟨
:
1

4
F̂ †ρσF̂ρσ − 1

4
[M(A)]

ρσÂ†ρÂσ −
1

2

∣∣∣D̄λÂλ
∣∣∣2 − Âρ†(D̄ρD̄σÂσ) :

⟩
− Re

⟨
: F̂µ†

λF̂
νλ − 1

2

[
[M(A)]

µλÂν†Âλ + [M(A)]
νλÂµ†Âλ

]
−Âµ†(D̄νD̄λÂλ)− Âν†(D̄µD̄λÂλ) :

⟩)
+Re

⟨
: i×

[
ηµν(∂λ

ˆ̄C)(∂λĈ)− (∂µ ˆ̄C)(∂νĈ)− (∂ν ˆ̄C)(∂µĈ)
]
:
⟩

+ 2×

(
ηµνRe

⟨
: i×

[
(D̄λ

ˆ̄C)†(D̄λĈ)− 1

2
M(C)

ˆ̄C†Ĉ
]
:

⟩

− Re
⟨
: i×

[
(D̄µ ˆ̄C)†(D̄νC) + (D̄ν ˆ̄C)†(D̄µC)

]
:
⟩)

, (3.27)

where we introduced effective mass terms M2
(a),M

2
(A),M

2
(C) whose explicit expressions are given

later in Eq. (3.35).

The conservation law for ⟨: T̂µν :⟩ is

∂µ ⟨: T̂µν :⟩ = J̄µF̄
µν + Āν∂µJ̄

µ, (3.28)
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which is free from non-Abelian commutators and is the same as the Abelian one (2.21) because

of the Abelian dominance assumption (3.12).

As in QED (See Section 2.1.1), we define the energy density ⟨: ϵ̂ :⟩, the transverse pressure

⟨: P̂⊥ :⟩, and the longitudinal pressure ⟨: P̂z :⟩ by the diagonal components of the symmetric

energy-momentum tensor ⟨: T̂ µν :⟩ (3.27) as

⟨: ϵ̂ :⟩ ≡ ⟨: T̂ tt :⟩ ,

⟨: P̂⊥ :⟩ ≡ ⟨: T̂ xx + T̂ yy :⟩
2

,

⟨: P̂z :⟩ ≡ ⟨: T̂ zz :⟩ . (3.29)

3.1.2 assumptions on the system

In addition to the Abelian dominance assumption made in Eq. (3.12), we furthermore assume

the same three assumptions made in the QED study (see Section 2.1.2): (i) Homogeneity in

space by assuming the classical gauge field Āµ is given by

Āµ(x) = (0, 0, 0, Ā(t)) = (0, 0, 0,−
∫ t

−∞
dt′Ē(t′)); (3.30)

(ii) Vacuum initial condition |state; in⟩ = |vac; in⟩; and (iii) Adiabatic hypothesis by requiring

∂tĒ −−−−→
t→±∞

0.

3.1.3 mean field approximation

mean field approximation

Figure 3.1: A diagrammatic illustration of the mean field treatment for gluons Â as an example.

As in the QED study (see Section 2.1.3), we adopt mean field approximation for the non-

linear interactions in L̂YM. As is pictorially illustrated in Fig. 3.1, we approximate the higher

order terms beyond the cubic order in the fluctuations by taking an expectation value of a

product of two fluctuations in higer order terms to obtain an effective Lagrangian which is
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at most quadratic order in the quantum fluctuations. In taking an expectation value of two

fluctuations, we assume that only the following two-point functions are non-vanishing as

ig ⟨: âµâν :⟩ ≡ πµν ,

ig ⟨: Â†µÂν :⟩ ≡ Πµν ,

g ⟨: ˆ̄C†Ĉ − Ĉ† ˆ̄C :⟩ ≡ φ, (3.31)

and that all the other two-point functions such as ⟨âµÂν⟩ , ⟨ĈÂµ⟩ , . . . are vanishing. This

assumption says that the quantum fluctuations do not mix with each other during the spacetime

evolution. We note that this assumption is surely consistent with equations of motion (3.36)-

(3.40) derived later. All the non-linear effects are effectively represented by the two-point

functions, πµν ,Πµν , φ, which are self-consistently solved throughout the computation.

As an example of the mean field treatment, let us consider a quartic term of Â described

by (ig)2Â†µÂνÂ†ρÂσ. We approximate this term by replacing all the possible combinations of

two fluctuations out of the four in the term by their expectation value as

(ig)2Â†µÂνÂ†ρÂσ →igÂ†µÂνΠρσ +ΠµνigÂ†ρÂσ + igÂ†µÂσΠρν +ΠµσigÂ†ρÂν

− [ΠµνΠρσ +ΠµσΠρν ] , (3.32)

where the last term ΠµνΠρσ +ΠµσΠρν is inserted so that the expectation value of the term,

(ig)2 ⟨: Â†µÂνÂ†ρÂσ :⟩ = ΠµνΠρσ +ΠµσΠρν , (3.33)

is not affected by the mean field treatment.

As a result of the mean field treatment, the Yang-Mills Lagrangian (3.1) is approximated

as

L̂YM →− 1

4
F̄µνF̄

µν − 1

2
(∂µĀ

µ)2 + g(∂µĀν)Re[Πµν ] + J̄µĀµ

− (∂µâµ)(∂
νĀν)−

1

2

[
F̄ µν + ⟨: δf̂µν :⟩

]
f̂µν + âµ

[
⟨: ĵµ :⟩+ J̄µ

]
− g∂µ

[
âµ ⟨: ˆ̄C†Ĉ + Ĉ† ˆ̄C :⟩

]
− 1

4
f̂µν f̂

µν − 1

2
(∂µâµ)

2 +
1

2
[M2

(a)]
µν

(
âµâν −

1

2ig
πµν

)
− 1

2
F̂µν†F̂µν − |D̄µÂµ|2 + [M2

(A)]
µν

(
Â†µÂν −

1

2ig
Πµν

)
+ i ˆ̄C∂µ∂

µĈ

+ i ˆ̄C†
[
D̄µD̄

µ +M2
(C)
]
Ĉ − i

([
D̄µD̄

µ +M2
(C)
]
Ĉ
)† ˆ̄C +

1

2ig
M2

(C)φ, (3.34)

where

[M2
(a)]

µν = 2ig
[
Π λ
λ − φ

]
ηµν ,

[M2
(A)]

µν = 2igF̄ µν − ig
[
(2Πµν − Πνµ)− ηµν(Π λ

λ + π λ
λ + φ)

]
,

M2
(C) = −ig

[
Π λ
λ − π λ

λ

]
. (3.35)
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represent effective masses squared for the corresponding particles. These mass terms are dy-

namically generated from the gluon and the ghost condensates πµν ,Πµν , φ. The imaginary part

of the effective masses is responsible for scatterings and collisions between particles, which are

important for thermalization of the system. As the original Lagrangian L̂YM is BRS invariant,

the dynamically generated mass terms do not break the BRS invariance of the system although

the condensates πµν ,Πµν , φ generally depend on the gauge one chooses.

equations of motion

The mean-field-approximated Lagrangian (3.34) is quadratic in the quantum fluctuations and

thus corresponding equations of motion are now linear, which is easy to handle. From the mean

field Lagrangian (3.34), one obtains

⟨: ĵµ :⟩+ J̄µ = ∂ν
[
∂νĀµ + ⟨: δf̂νµ :⟩

]
, (3.36)

0 =
[
∂ρ∂ρη

µν + [M2
(a)]

µν
]
âν , (3.37)

0 =
[
D̄ρD̄ρη

µν + [M2
A]
µν
]
Âν , (3.38)

0 = ∂ρ∂ρ

ˆ(−)
C , (3.39)

0 =
[
D̄ρD̄ρ +M2

(C)
] ˆ(−)
C . (3.40)

Equation (3.36) describes the backreaction to the classical gauge field Āµ, i.e., the color elec-

tromagnetic field on the RHS is screened by the sources on the LHS. As we are assuming the

Abelian dominance (3.12), this equation is essentially the same as the Maxwell equation that

we encountered in the QED problem (Eq. (2.17)). The difference is the appearance of the term

∂ν ⟨: δf̂νµ :⟩, which appears because the produced off-diagonal gluons Â have a non-vanishing

color charge so that they can produce another electromagnetic field in the H-direction in addi-

tion to the original classical electromagnetic field F̄µν . The other four equations (3.37)-(3.40)

determine the spacetime evolution of the quantum fluctuations âµ, Âµ,
ˆ(−)
C ,

ˆ(−)
C , respectively.

Equation (3.39) for the ghost field
ˆ(−)
C is nothing but the free field equation, and no particle

production occurs for this fluctuation
ˆ(−)
C as for photons in QED. Thus, we do not consider

ˆ(−)
C

in the following discussion for simplicity.

If we assume homogeneity in space (assumption (i) in Section 3.1.2), it is convenient to

define the gluon polarization by the direction of the classical electric field as

F̄ µνϵσ,ν = ϵ µσ with Λσ =


Ē (σ = 0)

0 (σ = 1, 2)

−Ē (σ = 3)

, (3.41)
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where ϵσ,µ (σ = 0, 1, 2, 3) represent the polarization vector of gluons, and are normalized as

ηµνϵ∗σ,µϵσ′,µ = −


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 ≡ −ξσσ′ ,
∑
σσ′

ξσσ′ϵ∗σ,µϵσ′,ν = −ηµν . (3.42)

Without loss of generality, one can require ϵσ,µ to be independent of the spacetime coordinates

xµ. Notice that the indefinite metric ξσσ′ has off-diagonal components ξ03 = ξ30 = 1. Because of

this property, the 0-th and the 3-rd polarization modes of gluons become unphysical and they

do not appear in the physical spectrum as we will see later in Section 3.1.4. Now, we expand

the gluon field âµ, Âµ in terms of the polarization vector ϵσ,µ as(
âµ

Âµ

)
=
∑
σ

ϵσ,µ

(
âσ

Âσ

)
. (3.43)

In terms of the polarization label σ, one can rewrite the gluon equations (3.37) and (3.38) as

0 = [∂µ∂
µ +M2

(a)σ]âσ (3.44)

0 = [D̄µD̄
µ +M2

(A)σ]Âσ. (3.45)

Here, the effective masses M2
(a),M

2
(A) in terms of the polarization label σ are given by

M2
(a)σ = [M2

(a)]tt = −[M2
(a)]xx = −[M2

(a)]yy = −[M2
(a)]zz, (3.46)

and 
M2

(A)0 ≡ [M2
(A)]tz − [M2

(A)]zz

M2
(A)1 ≡ −[M2

(A)]xx

M2
(A)2 ≡ −[M2

(A)]yy

M2
(A)3 ≡ −[M2

(A)]tz − [M2
(A)]zz

. (3.47)

Notice that M2
(a)σ for the diagonal gluons is always real, while only the physical σ = 1, 2 modes

of M2
(A)σ for the off-diagonal gluons are real. M2

(A)σ for the unphysical σ = 0, 3 modes are

complex in general, and are related with each other by [M2
(A)0]

∗ =M2
(A)3.

Under the spatial homogeneity, the backreaction equation (3.36) is further simplified as

0 = ⟨: ĵt :⟩ = ⟨: ĵx :⟩ = ⟨: ĵy :⟩ ,

− d

dt
(Ē + δĒ) = ⟨: ĵz :⟩+ J̄z, (3.48)

where

δĒ ≡ ⟨: δf̂tz :⟩ = −2gRe[Πtz] (3.49)

represents an electric field produced by the produced colored gluons Â.
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conservation law

As in the QED study (see Section 2.1.4), the mean field approximation preserves the conserva-

tion law at the mean field level, so that the conservation law for the current ⟨: ĵµ :⟩ (3.26) and
the symmetric energy-momentum tensor T̂µν (3.28) still hold.

For a homogeneous system (assumption (i) in Section 3.1.2), the conservation laws (4.28)

and (4.30) can be simplified as

0 = ∂t ⟨: ĵt :⟩ , (3.50)

and

∂t ⟨: ϵ̂ :⟩ = −EJ̄z. (3.51)

Notice that Eq. (3.50) is trivial because Eq. (3.48) says ⟨ĵt⟩ = 0.

3.1.4 canonical quantization and particle production

Since the equations of motion (3.37)-(3.40) are linear in the quantum fluctuations, one can

safely employ the canonical quantization procedure. The canonical quantization of gluons

and ghosts in the presence of the classical gauge field is done in essentially the same way as

that in QED (see Section 2.1.4) [83], although there are slight differences due to the different

quantum statistics of gluons and ghosts. Here, we only consider the canonical quantization at

intermediate times −∞ < t < ∞ because it naturally coincides with that at the asymptotic

times t→ ±∞.

canonical quantization of gluons

The canonical quantization of gluons can be done in essentially the same way as that of electrons

(see Section 2.1.4), although there are some differences because of the boson statistics of gluons.

Because of the spatial homogeneity (assumption (i) in Section 3.1.2), it is useful to Fourier

expand the fluctuations âµ, Âµ in solving their equations of motion (3.44) and (3.45) as

âσ =

∫
d3p

[
+a

(t)
σ,p(t)ĉσ,p(t) + −a

(t)
σ,p(t)ĉ

†
σ,−p(t)

] eip·x

(2π)3/2
, (3.52)

Âσ =

∫
d3p

[
+A(t)

σ,p(t)ĉσ,p(t) + −A(t)
σ,pd̂

†
σ,−p(t)

] eip·x

(2π)3/2
. (3.53)

Note that the fluctuation âσ is real so that +a
(t)
σ,p = [−a

(t)
σ,−p]

∗ always holds. Here, the posi-

tive/negative frequency mode functions at intermediate times ±a
(t)
σ,p, ±A(t)

σ,p are defined by the

same principle that we employed for electrons (see Section 2.1.4 for the details). That is, we

require ±a
(t)
σ,p, ±A(t)

σ,p to be plane waves at the instant of an intermediate time (for details of the
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plane wave solutions, see Appendix B.1). Namely, we define the mode functions at t = t0 by

the following plane-wave-like functions as ±a
(t0)
σ,p (t0)

d±a
(t0)
σ,p (t0)

dt

 ≡


1√
2|p|

∓i
√

|p|
2

 exp

[
∓i
∫ t0

−∞
|p|dt

]
, (3.54)

 ±A(t0)
σ,p (t0)

d±A(t0)
σ,p (t0)

dt

 ≡


1√

2|p− gĀ(t0)|

∓i
√

|p− gĀ(t0)|
2

 exp

[
∓i
∫ t0

−∞
|p− gĀ(t)|dt

]
, (3.55)

As the fluctuation Âσ has the color charge g, while âσ is chargeless, their kinetic momentum

P is given by p− gĀ and p, respectively. In contrast to the plane-wave-like functions for the

Dirac equation (2.40), as the Klein-Gordon equation is a second order differential equation, one

needs not only a value at the time t = t0 but also its derivative in uniquely expanding the field

operators. Here, we normalize the mode functions ±a
(t)
σ,p, ±A(t)

σ,p as∑
σ′

ξσσ′(±a
(t)
σ,p|±a

(t)
σ′,p)B = ±1,

∑
σ′

ξσσ′(±a
(t)
σ,p|∓a

(t)
σ′,p)B = 0, (3.56)∑

σ′

ξσσ′(±A(t)
σ,p|±A

(t)
σ′,p)B = ±1,

∑
σ′

ξσσ′(±A(t)
σ,p|∓A

(t)
σ′,p)B = 0, (3.57)

where the boson inner product (ϕ1|ϕ2)B is

(ϕ1|ϕ2)B ≡ iϕ∗1
↔
∂tϕ2 = i [ϕ∗1(∂tϕ2)− (∂tϕ1)

∗ϕ2] , (3.58)

which is conserved if ϕ1, ϕ2 obey the same Klein-Gordon equation. Now, we impose canonical

commutation relations

[âµ(t,x), ∂tâν(t,x
′)] = −iηµνδ3(x− x′),

[âµ(t,x), âν(t,x
′)] = [∂tâµ(t,x), ∂tâν(t,x

′)] = 0, (3.59)

[Âµ(t,x), ∂tÂ†ν(t,x′)] = −iηµνδ3(x− x′),

[Âµ(t,x), Â†ν(t,x′)] = [∂tÂµ(t,x), ∂tÂν(t,x
′)] = 0, (3.60)

to obtain commutation relations for the intermediate annihilation operators ĉσ,p for â and

ĉσ,p, d̂σ,p for Â as

[ĉσ,p, ĉ
†
σ′,p′ ] = ξσσ′δ3(p− p′),

[̂cσ,p, ĉ
†
σ′,p′ ] = [d̂σ,p, d̂

†
σ′,p′ ] = ξσσ′δ3(p− p′),

(others) = 0. (3.61)

Noting that the indefinite metric ξσσ′ is not diagonal as Eq. (3.42), σ = 0, 3 modes of gluons

commute with each other.
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The positive/negative frequency mode functions at an intermediate time ±a
(t)
σ,p, ±A(t)

σ,p smoothly

approach the correct mode functions at the asymptotic times ±a
(as)
σ,p , ±A(as)

σ,p (as = in/out) in the

limit of t→ ±∞ because of the adiabatic hypothesis (assumption (iii) made in Section 3.1.2):(
±a

(t)
σ,p

±A(t)
σ,p

)
−−−−→
t→−∞

(
±a

(in)
σ,p

±A(in)
σ,p

)
,

(
±a

(t)
σ,p

±A(t)
σ,p

)
−−−→
t→∞

(
±a

(out)
σ,p

±A(out)
σ,p

)
. (3.62)

Hence, one can obtain the annihilation operators at the asymptotic times ĉ
(as)
σ,p , ĉ

(as)
σ,p , d̂

(as)
σ,p by

taking t→ ±∞ limit of the time-dependent annihilation operators ĉσ,p, ĉσ,p, d̂σ,p asĉ
(in)
σ,p

ĉ
(in)
σ,p

d̂
(in)
σ,p

 = lim
t→−∞

ĉσ,p(t)ĉσ,p(t)

d̂σ,p(t)

 ,

ĉ
(out)
σ,p

ĉ
(out)
σ,p

d̂
(out)
σ,p

 = lim
t→∞

ĉσ,p(t)ĉσ,p(t)

d̂σ,p(t)

 . (3.63)

The Bogoliubov transformation between the in-state annihilation operators ĉ
(in)
σ,p , ĉ

(in)
σ,p , d̂

(in)
σ,p and

those at intermediate times ĉσ,p, ĉσ,p, d̂σ,p is given by(
ĉσ,p(t)

ĉ†σ,−p(t)

)
=

(
α(a)σ,p(t) β(a)σ,p(t)

β∗(a)σ,p(t) α∗(a)σ,p(t)

)(
ĉ
(in)
σ,p

ĉ
(in)†
σ,−p

)
, (3.64)(

ĉσ,p(t)

d̂†σ,−p(t)

)
=

(
α(A)σ,p(t) β(A)σ,p(t)

β∗(A)σ,p(t) α∗(A)σ,p(t)

)(
ĉ
(in)
σ,p

d̂
(in)†
σ,−p

)
, (3.65)

where

α(a)σ,p(t) ≡ (+a
(t)
σ,p|+a(in)σ,p )B = −(−a

(t)
σ,p|−a(in)σ,p )

∗
B

=
i√
2|p|

[
d+a

(in)
σ,p

dt
− i|p|+a(in)σ,p

]
exp

[
+i

∫ t

−∞
|p|dt

]
,

β(a)σ,p(t) ≡ (+a
(t)
σ,p|−a(in)σ,p )B = −(−a

(t)
σ,p|+a(in)σ,p )

∗
B

=
i√
2|p|

[
d−a

(in)
σ,p

dt
− i|p|−a(in)σ,p

]
exp

[
+i

∫ t

−∞
|p|dt

]
(3.66)

and

α(A)σ,p(t) ≡ (+A(t)
σ,p|+A(in)

σ,p )B = −(−A(t)
σ,p|−A(in)

σ,p )
∗
B

=
i√

2|p− gĀ|

[
d+A(in)

σ,p

dt
− i|p− gĀ|+A(in)

σ,p

]
exp

[
+i

∫ t

−∞
|p− gĀ|dt

]
,

β(A)σ,p(t) ≡ (+A(t)
σ,p|−A(in)

σ,p )B = −(−A(t)
σ,p|+A(in)

σ,p )
∗
B

=
i√

2|p− gĀ|

[
d−A(in)

σ,p

dt
− i|p− gĀ|−A(in)

σ,p

]
exp

[
+i

∫ t

−∞
|p− gĀ|dt

]
. (3.67)
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The Bogoliubov coefficients are normalized as

1 = |α(a)σ,p(t)|2 − |β(a)σ,p(t)|2,
= |α(A)σ,p(t)|2 − |β(A)σ,p(t)|2. (3.68)

Notice that we have a minus sign in front of |β|2, which is in contrast to the plus sign for

electrons (2.32). This is because of the boson statistics of gluons, and |β|2 can be larger than

unity. We also note that the Bogoliubov coefficient β(a)σ,p for chargeless âσ gluons can be non-

zero because colored Aσ gluons can merge into âσ gluons through the mass term M(a). This

means that particle production of âσ modes can occur, which is in contrast to QED, where

photon production does not occur (within the mean field treatment).

Finally, let us discuss the ultraviolet (|p| → ∞) behavior of the Bogoliubov coefficients

α(a)σ,p, β(a)σ,p, α(A)σ,p, β(A)σ,p. For this purpose, we first note that the in-state Fourier modes

±ϕ
(in) = ±a

(in)
σ,p or ±A(in)

σ,p satisfy the following Klein-Gordon equation (see Eqs. (3.37) and (3.38))

0 = [∂2t + P 2 +M2]±ϕ
(in)(t), (3.69)

where P 2,M2 is the kinetic momentum and the effective mass for the corresponding particle,

respectively. By substituting the Bogoliubov relation between the in-state Fourier modes ±ϕ
(in)

and those at intermediate times ±ϕ
(t) (see Eqs. (3.54) and (3.55)),

dn

dtn

(
+ϕ

(in)

−ϕ
(in)

)
=

(
α β∗

β α∗

)
dn

dtn

(
+ϕ

(t)

−ϕ
(t)

)
(n = 0, 1), (3.70)

into this equation (3.69), one obtains a differential equation for the Bogoliubov coefficients α, β

as

d

dt

(
α

β∗

)
=

|P |
2

 −i M2

|P |2

[
1
|P |2

d|P |
dt

− i M
2

|P |2

]
e+2i

∫ t
−∞ |P |dt[

1
|P |2

d|P |
dt

+ i M
2

|P |2

]
e+2i

∫ t
−∞ |P |dt i M

2

|P |2

( α
β∗

)
.

(3.71)

One can iteratively solve this equation (3.71) order-by-order in P . By requiring α −−−−→
|P |→∞

1, β −−−−→
|P |→∞

0, one gets

α =

[
1− i

4

1

|P |2
d|P |
dt

+O(|P |−3)
]
exp

[
−i
∫ t

−∞

{
M2

2|P |
− 1

4

1

|P |2
d2|P |
dt2

+O(|P |−3)
}
dt

]
,

β =

[
− i

4

{
1

|P |2
d|P |
dt

+ i
M2

|P |2

}
+O(|P |−3)

]
× exp

[
+i

∫ t

−∞

{
2|P |+ M2

2|P |
− 1

4

1

|P |2
d2|P |
dt2

+O(|P |−3)
}
dt

]
. (3.72)

As for electrons (Eq. (2.56)), |β|2 falls faster than |p|4, which guarantees finiteness of the total

number of produced gluons. With the use of the asymptotic formula (3.72), one can show

that the normal ordering procedure ⟨•̂⟩ → ⟨: •̂ :⟩ explained in Section 2.1.5 surely regulates

divergences in gluon two-point functions.
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canonical quantization of ghosts

Lastly, we consider the canonical quantization of ghosts. This program is essentially the same as

done in the gluon case, although there are slight differences because of unusual anti-commutative

nature of ghosts.

By noting the spatial homogeneity of the system (assumption (i) in Section 3.1.2), we Fourier

expand the fluctuations Ĉ, ˆ̄C to solve the equation of motion (3.40) as(
Ĉ
ˆ̄C

)
=

∫
d3p

[
+C(t)

p (t)

(
êp(t)

ˆ̄ep(t)

)
+ −C(t)

p (t)

(
f̂−p(t)
ˆ̄f−p(t)

)]
eip·x

(2π)3/2
, (3.73)

the positive/negative frequency mode functions at intermediate times ±C(t)
p are defined in the

same way as those for bosons (3.54) and (3.55); namely

 ±C(t)
p (t)

d±C(t)
p (t)

dt

 ≡


1√

2|p− gĀ(t)|

∓i
√

|p− gĀ(t)|
2

 exp

[
∓i
∫ t

−∞
|p− q

(ad.)
A Ā(t)|dt

]
. (3.74)

We consider a normalization condition for the mode function ±C(t)
p given by

(±C(t)
p |±C(t)

p )B = ±1, (±C(t)
p |∓C(t)

p )B = 0. (3.75)

Now, we impose a canonical commutation relation for the ghost modes Ĉ, ˆ̄C as{
ˆ(−)
C (t,x),

ˆ(−)
π (t,x′)

}
= iδ3(p− p′),{

ˆ(−)
C (t,x),

ˆ(−)
C (t,x′)

}
=

{
ˆ(−)
π (t,x),

ˆ(−)
π (t,x′)

}
= 0, (3.76)

where
ˆ(−)
π is the canonical conjugate field to the ghost field

ˆ(−)
C as π̂ = −i∂t ˆ̄C† and ˆ̄π =

i∂tĈ†. Then, we obtain anti-commutation relations for the intermediate annihilation opera-

tors
ˆ(−)
e p,

ˆ(−)
f p as

iδ3(p− p′) =

{
êp,
−̂
e
†

p′

}
=

{
f̂p,
−̂
f

†

p′

}
, (others) = 0. (3.77)

Notice that
ˆ(−)
e p,

ˆ(−)
e

†

p and
ˆ(−)
f p,

ˆ(−)
f

†

p anti-commute with each other because of the canonical com-

mutation relation (3.76) for ghosts. Thanks to this property, it is assured that the unphysical

ghosts are never produced and do not appear in the physical spectrum as we shall see later.
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Just as in the electron and the gluon cases, the positive/negative frequency mode functions

at the asymptotic times ±C(as)
p (as = in/out) and the corresponding annihilation operators

ˆ(−)
e p,

ˆ(−)
f p can be obtained by taking the t→ ±∞ limit of those at intermediate times. Namely,

±C(t)
p −−−−→

t→−∞ ±C(in)
p , ±C(t)

p −−−→
t→∞ ±C(out)

p , (3.78)

and  ˆ(−)
e p

ˆ(−)
f p

 −−−−→
t→−∞


ˆ(−)
e

(in)

p

ˆ(−)
f

(in)

p

 ,

 ˆ(−)
e p

ˆ(−)
f p

 −−−→
t→∞


ˆ(−)
e

(out)

p

ˆ(−)
f

(out)

p

 . (3.79)

The in-state annihilation operators
ˆ(−)
e

(in)

p ,
ˆ(−)
f

(in)

p and those at intermediate times
ˆ(−)
e p,

ˆ(−)
f p are

not independent of each other, and their relationship is given by the following Bogoliubov

transformation: 
ˆ(−)
e p(t)

ˆ(−)
f

†

−p(t)

 =

(
α(C)p(t) β(C)p(t)

β∗(C)p(t) α∗(C)p(t)

)
ˆ(−)
e

(in)

p

ˆ(−)
f

(in)†

−p

 , (3.80)

where

α(C)p(t) ≡ (+C(t)
p |+C(in)

p )B = −(−C(t)
p |−C(in)

p )∗B

=
i√

2|p− gĀ|

[
d+C(in)

p

dt
− i|p− gĀ|+C(in)

p

]
exp

[
+i

∫ t

−∞
|p− gĀ|dt

]
,

β(C)p(t) ≡ (+C(t)
p |−C(in)

p )B = −(−C(t)
p |+C(in)

p )∗B

=
i√

2|p− gĀ|

[
d−C(in)

p

dt
− i|p− gĀ|−C(in)

p

]
exp

[
+i

∫ t

−∞
|p− gĀ|dt

]
. (3.81)

The Bogoliubov coefficients are normalized as

1 = |α(C)p(t)|2 − |β(C)p(t)|2. (3.82)

As the mode functions obey the Klein-Gordon equation, it is obvious that the ultraviolet

(|p| → ∞) behavior of the Bogoliubov coefficients α(C)p, β(C)p are given by Eq. (3.72) as those

for gluons, by which one can justify the use of the normal ordering procedure in regulating

ghost two-point functions.

particle production

Now, we have the intermediate annihilation operators ĉσ,p for chargeless gluons âσ; ĉσ,p, d̂σ,p

for charged gluons Âσ with the color charge g and −g, respectively; êp, f̂p for charged ghosts
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Ĉ with the color charge g and −g, respectively; and ˆ̄ep,
ˆ̄fp for charged anti-ghosts ˆ̄C with the

color charge g and −g, respectively. From these annihilation operators, one can construct a

vacuum state |vac;t⟩ at an intermediate time t. By noting that the annihilation operators

ĉσ,p, ĉσ,p, d̂σ,p, êp, f̂p, ˆ̄ep,
ˆ̄fp do not mix up with each other during the whole spacetime evolution

(because the equations of motion (3.37)-(3.40) are linear within our mean field treatment), one

can decompose the vacuum state |vac;t⟩ into a product of vacua for each fluctuation as

|vac;t⟩ = |vac(a); t⟩ ⊗ |vac(A); t⟩ ⊗ |vac(C); t⟩ , (3.83)

where each vacuum satisfies

0 = ĉσ,p |vac(a); t⟩ ,
0 = ĉσ,p |vac(A); t⟩ = d̂σ,p |vac(A); t⟩ ,

0 = êp |vac(C); t⟩ = f̂p |vac(C); t⟩ = ˆ̄ep |vac(C); t⟩ = ˆ̄fp |vac(C); t⟩ (3.84)

for all values of the quantum numbers σ,p. One can naturally construct the in-vacuum |vac; in⟩
by taking the t→ −∞ limit of |vac;t⟩ as

|vac; in⟩ = lim
t→−∞

|vac;t⟩ = lim
t→−∞

|vac(a); t⟩ ⊗ |vac(A); t⟩ ⊗ |vac(C); t⟩ . (3.85)

The number of produced particles are obtained as an in-vacuum |vac; in⟩ expectation value

of the corresponding number operator; namely

d6Ng0(σ,p; t)

dp3dx3
=

1

V
⟨ĉ†σ,pĉσ,p⟩ =

 0 (σ = 0, 3)
|β(a)σ,p|2

(2π)3
(σ = 1, 2)

(3.86)

for chargeless gluons;

d6Ng+(σ,p; t)

dp3dx3
=

1

V
⟨ĉ†σ,pĉσ,p⟩ =

 0 (σ = 0, 3)
|β(A)σ,p|2

(2π)3
(σ = 1, 2)

d6Ng−(σ,p; t)

dp3dx3
=

1

V
⟨d̂†σ,pd̂σ,p⟩ =

 0 (σ = 0, 3)
|β(A)σ,−p|2

(2π)3
(σ = 1, 2)

(3.87)

for charged gluons with the color charge g and −g, respectively; and

d6N(−)

gh+

(p; t)

dp3dx3
=

1

V

⟨
ˆ(−)
e

†

p

ˆ(−)
e p

⟩
= 0,

d6N(−)

gh−

(p; t)

dp3dx3
=

1

V

⟨
ˆ(−)
f

†

p

ˆ(−)
f p

⟩
= 0 (3.88)
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for charged ghosts (anti-ghosts) with the color charge g and −g, respectively. In deriving the

gluon spectra (3.86) and (3.87), we used that σ = 0, 3 modes of gluons commute with each

other because of the commutation relation (3.61). Also, for the ghost and anti-ghost spectra

(3.88), the use is made of Eq. (3.77) which says that ghosts (anti-ghosts) anti-commute with

themselves. No production of σ = 0, 3 modes of gluons and ghosts is a reasonable result because

two out of the four polarization modes of gluons and ghosts are unphysical particles, and must

not appear in the physical spectra. In contrast to the electron spectra (2.38) and (2.39), gluons

are not subjected to the Pauli principle because of the minus sign in the normalization condition

for the Bogoliubov coefficients (3.68), and the phase space density can exceed unity.

3.1.5 massless approximation

Within the mean field treatment explained in Section 3.1.3, we found that dynamical mass terms

M(a),M(A),M(C) appear in the equations of motion (3.37)-(3.40) because of self-interactions

among gluons. Physically speaking, these mass terms are responsible for scatterings and col-

lisions of produced particles, and hence are important in describing the thermalization of the

system. However, the problem is that the mass terms have a complicated expression and are

somewhat difficult to evaluate. Furthermore, as the mass terms originate from the quartic

interaction of the Yang-Mills Lagrangian, they are higher-order in the coupling g compared

to the other terms and might be negligible in the small coupling constant limit g → 0. In

view of these circumstances, we dare neglect the mass terms and set M(a) = M(A) = M(C) = 0

(which we shall call massless approximation) in the following as the first study of the Schwinger

mechanism in QCD including backreaction effects. This simplification dramatically simplify

the equations of motion (3.36)-(3.40), and thus one can develop a better understanding of the

problem. We stress that this simplification does not violate the current conservation law (3.26)

nor the energy conservation law (3.28).

Under the massless approximation M(a) = M(A) = M(C) = 0, the equations of motion

(3.36)-(3.40) for a homogeneous system read

−dĒ
dt

= ⟨: ĵz :⟩+ J̄z, (3.89)

0 = ∂ρ∂ρâσ, (3.90)

0 = D̄ρD̄ρÂσ, (3.91)

0 = ∂ρ∂ρ

ˆ(−)
C , (3.92)

0 = D̄ρD̄ρ

ˆ(−)
C . (3.93)

Note that δĒ = 0 holds in the massless approximation. Now that not only the fluctuation
ˆ(−)
C

but also the fluctuation âσ becomes trivial, we do not consider them in the following. Notice
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that the equations for charged gluons Âσ (3.91) and charged ghosts Ĉ, ˆ̄C (3.93) are now the

same as the one for massless charged scalar particles with spin 0.

The massless approximation does no harm to the canonical quantization procedure explained

in Section 3.1.4. In the following sections, Section 3.2 and 3.3, we discuss the time-evolution of

the system within this massless approximation.

3.2 Gluon production from a constant color electric field

For now, we neglect the backreaction and treat the classical electric field as a background by

artificially setting ⟨: ĵµ :⟩ = 0. The backreaction effects will be discussed in Section 3.3. This

treatment is, unfortunately, unphysical because it apparently violates the energy conservation

of the system and is justifiable only at the very beginning of the pair production process.

Nevertheless, this treatment is very useful in understanding the basics of the gluon production

and how it is different from the electron production discussed in Chapter 2 because one can

analytically compute the gluon spectrum for some particular types of electric fields.

3.2.1 gluon distribution

In this section, we consider a constant color electric field initiated at t = t0 = 0 , which is given

by

Ē(t) = Ē0θ(t), or Ā(t) = −Ē0tθ(t). (3.94)

Under this field configuration, we compute the intermediate gluon spectrum (2π)3d6Ng±/dp
3dx3 =

|β(A)σ,±p|2 for the physical σ = 1, 2 modes (see Eq. (3.87)). One can analytically evaluate the

intermediate Bogoliubov coefficient β(A)σ,p because the equation of motion (3.91) is analytically

solvable: This can be done easily by smoothly connecting the plane wave solutions ±A(plane)
σ,p

(see Appendix B.1) and solutions under a constant color electric field with infinite duration

±A(const;out)
σ,p (see Appendix B.2) at the boundary t = t0. By noting ±A(plane)

σ,p = ±A(t)
σ,p for t < 0

where Ā = 0, one obtains

(
+A(in)

σ,p

−A(in)
σ,p

)
=



(
+A(t)

σ,p

−A(t)
σ,p

)
(t < t0)(

α̃σ,p(t0) β̃∗σ,p(t0)

β̃σ,p(t0) α̃∗σ,p(t0)

)(
+A(const;out)

σ,p

−A(const;out)
σ,p

)
(t > t0)

, (3.95)
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where the coefficients α̃σ,p, β̃σ,p are given by

α̃σ,p(t) ≡ (+A(const;out)
σ,p (t)|+A(t)

σ,p(t))B

=
−i√

2|p+ gĒ0t|

exp
[
−π p2

⊥
8|gĒ0|

]
(2|gĒ0|)1/4

exp

[
−i
∫ t

−∞
|p+ gĒ0t|dt

]

×

[(
|p+ gĒ0t| − (pz + gĒ0t)

)
D
i

p2⊥
2|gĒ0|

−1/2
(e−iπ/4

√
2

|gĒ0|
(gĒ0t+ pz))

+eiπ/4
√

2|gĒ0|D
i

p2⊥
2|gĒ0|

+1/2
(e−iπ/4

√
2

|gĒ0|
(gĒ0t+ pz))

]
, (3.96)

β̃σ,p(t) ≡ (+A(const;out)
σ,p (t)|−A(t)

σ,p(t))B

=
i√

2|p+ gĒ0t|

exp
[
−π p2

⊥
8|gĒ0|

]
(2|gĒ0|)1/4

exp

[
+i

∫ t

−∞
|p+ gĒ0t|dt

]

×

[(
|p+ gĒ0t|+ (pz + gĒ0t)

)
D
i

p2⊥
2|gĒ0|

−1/2
(e−iπ/4

√
2

|gĒ0|
(gĒ0t+ pz))

−eiπ/4
√
2|gĒ0|D

i
p2⊥

2|gĒ0|
+1/2

(e−iπ/4

√
2

|gĒ0|
(gĒ0t+ pz))

]
. (3.97)

The intermediate Bogoliubov coefficients ασ,p, βσ,p can be computed by Eq. (3.67), and one

finds that

α(A)σ,p = α̃σ,p(t0)α̃
∗
σ,p(t)− β̃∗σ,p(t0)β̃σ,p(t),

β(A)σ,p = β̃σ,p(t0)α̃
∗
σ,p(t)− α̃∗σ,p(t0)β̃σ,p(t). (3.98)

analytic formula at t→ ∞

The analytical expression for the intermediate Bogoliubov coefficient β(A)σ,p (3.98) looks some-

what complicated, however, it takes a remarkably simple form in the infinite future t→ ∞ (or

the infinite longitudinal kinetic momentum Pz = pz + gEt → ∞). By noting the asymptotic

formula for the parabolic cylinder functions Dν(z), [162]

Dν(z) −−−−→
|z|→∞


zνe−z

2/4 (| arg z| < 3π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
iνπz−ν−1ez

2/4 (π/4 < arg z < 5π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
−iνπz−ν−1ez

2/4 (−5π/4 < arg z < −π/4)
, (3.99)

one finds

β(A)σ,p −−−→
t→∞

i exp

[
−π p2

⊥
2|gĒ0|

]
. (3.100)

Hence, the gluon spectrum in the infinite future t→ ∞ becomes

d6Ng±

dp3dx3
−−−→
t→∞

1

(2π)3
exp

[
−π p2

⊥
|gĒ0|

]
. (3.101)



3.2. Gluon production from a constant color electric field 87

This expression is the same as the electron spectrum (2.69), which implies that the gluon pro-

duction in an Abelian dominated constant color electric field is essentially the same as the

electron production in QED. The situation will dramatically change when quantum interfer-

ences, which depend on the quantum statistics of particles, come into play; see Section 3.3,

where backreaction and resulting quantum interferences are treated.

dynamical evolution

We directly evaluate the Bogoliubov coefficient βσ,p (3.98) to discuss the intermediate gluon

spectrum (2π)3d6Ng+/dp
3dx3 = |β(A)σ,p|2. The results are plotted in Figs. 3.2 and 3.3: Fig-

ure 3.2 shows longitudinal kinetic momentum Pz = pz − gĀ distribution (2π)3d6Ng+/dp
3dx3 =

|β(A)σ,p|2 for a fixed transverse momentum |p⊥|/
√
|gĒ0| = 0.1, and Fig. 3.3 shows the trans-

verse momentum p⊥-distribution for a fixed longitudinal kinetic momentum Pz = pz + gĒ0t =

3×
√

|gĒ0|.

Figure 3.2: The time-evolution of the longitudinal kinetic momentum Pz = pz−gĀ distribution

(2π)3d6Ng+/dp
3dx3 = |β(A)σ,p|2 for a fixed transverse momentum p⊥/

√
|gĒ0| = 0.1.

The essential features of the gluon production (without backreaction) are the same as in

the electron production discussed in Section 2.4: Gluons are constantly produced at P ∼ 0,

where the production threshold ∼ |P | becomes smallest. After gluons are created, they are

accelerated in the longitudinal direction by the electric field according to the classical equation

of motion dP /dt = gĒ0. The transverse distribution is given by a Gaussian, and is consistent

with the asymptotic formula (3.101). Thus, the gluon distribution d6Ng±/dp
3dx3 is nicely

approximated by

d6Ng±

dp3dx3
∼ 1

(2π)3
exp

[
−π p2

⊥
|gĒ(t)|

θ(∓pz(pz ∓ gĀ(t)))

]
, (3.102)
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Figure 3.3: The time-evolution of the transverse momentum p⊥-distribution

(2π)3d6Ng+/dp
3dx3 = |β(A)σ,p|2 for a fixed longitudinal kinetic momentum Pz = pz + gĒ0t =

3×
√
|gĒ0|.

which is the same as for the electrons (2.94).

3.2.2 total number of gluons

analytical estimate at t→ ∞

The analytic formula for the gluon distribution at t→ ∞ (3.101) has no pz-dependence, and so

the pz-integration diverges. We estimate the degree of the divergence in the same way as what

we did for the electron production (2.70). That is, by estimating
∫
dpz ∼ |gĒ0|T (which is

consistent with the longitudinal kinetic distribution, Fig. 3.2, and the approximation (3.102)),

we find the total number of produced gluons with the color charge ±g for a single physical

polarization σ = 1 or 2 as

d3Ng±

dx3
−−−→
t→∞

|gĒ0|2T
(2π)3

exp

[
−π p2

⊥
|gĒ0|

|
]
. (3.103)

dynamical evolution

We numerically integrate the Bogoliubov coefficient βσ,p (3.98) over the momentum p to study

the time-evolution of the total number of gluons produced d3Ng±/dx
3 =

∫
d3p|β(A)σ,p|2/(2π)3.

The result is shown in Fig. 3.4. We find that the gluon production is in good agreement

with the estimate (3.103) as for the electron production (see Section 2.4.2). It is interesting to

note that the agreement is better than in the case of the electron production (see Fig. 2.10).

One can understand this difference in terms of the perturbative particle production mechanism
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Figure 3.4: The total number of gluons produced d3Ng±/dx
3 with the color charge ±g per unit

physical polarization. The dashed line is the estimate (3.103).

which dominates particle production at early times (see Section 2.3). As in Section 2.3.1,

one can compute the S-matrix element, S ≡ ⟨g+(σ,p)g−(σ′,p′); out|vac; in⟩, within the lowest

order perturbation theory to perturbatively evaluate the total number of gluons produced with

a particular physical polarization σ from the classical gauge field Āµ as

d3Ng±

dx3
=
∑
σ′

∫
d3pd3p′| ⟨g+(σ,p)g−(σ′,p′); out|vac; in⟩ |2

=
1

48π2

∫ ∞
0

dω|gẼ(ω)|2, (3.104)

where Ẽ(ω) is the Fourier component of the electric field Ẽ(ω) ≡
∫
dtE(t)eiωt. By comparing

the electron formula (2.77), d3Ne±/dx
3 −−−→

me→0
1/(24π2)

∫∞
0
dω|eẼ(ω)|2, one understands that

the perturbative enhancement at early times of the gluon production amounts to just a half

of that of the electron (for the same electric field strength |eE| = |gĒ|). Hence, the gluon

production is not enhanced so much at the early times and the excess from the naive estimate

(3.103) becomes smaller compared to the electron case.

3.3 Dynamical evolution with backreaction

In this section, we consider backreaction effects: By numerically solving the equations of motion

(3.89)-(3.93), we discuss the dynamical evolution of the gluon distribution function, the electric

field strength, the total number of produced gluons, and thermodynamic quantities including

energy density and pressure of the system.
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3.3.1 setup

We consider a spatially homogeneous system without any classical source J̄µ = 0. As an initial

condition at t = t0 = 0, we consider an electric field described by

Ā(t0) = 0, Ē(t0) = Ē0,
dĒ(t0)

dt
= 0. (3.105)

For the sake of simplicity, we set the strength of the coupling constant g as g = 1.

3.3.2 gluon distribution

Figure 3.5: The longitudinal kinetic momentum Pz = pz − gĀ dependence of the gluon distri-

bution d6Ng+/dp
3dx3 at a fixed transverse momentum |p⊥|/

√
|gĒ0| = 0.1.

The time-evolution of the gluon distribution d6Ng+/dp
3dx3 is plotted in Figs. 3.5 and 3.6.

One observes once again that the plasma oscillation occurs just as in the electron case (see

Section 2.5.2). Quantum interferences also occur when the newly produced gluons and the pre-

viously produced gluons meet at the same phase space point around P ∼ 0 in the oscillational

motion. As a result, the gluon spectrum is strongly distorted, which may indicate that entropy

is irreversibly produced as was so for the electron production. What is remarkable here is that

the gluon distribution is dramatically enhanced due to the quantum interferences (the Bose

enhancement [34]) whenever the “old” gluons come back to P ∼ 0 where the gluon production

constantly takes place. This is in contrast to the electron production, which is restricted by

the Pauli principle and hence whose phase space density never exceeds unity. Because of the

quantum interferences, the naive formula (3.102) for the gluon distribution function without

backreaction is valid only at relatively early times t ≲ tosc, where tosc is the typical time-scale

of the plasma oscillation (the time when the longitudinal momentum extension of the gluon
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Figure 3.6: The transverse momentum p⊥-dependence of the gluon distribution d6Ng+/dp
3dx3

at a fixed kinetic longitudinal momentum Pz = pz − gĀ = 1.2×
√
|gĒ0|.

distribution takes its maximum for the first time, i.e., when the electric field strength crosses

zero for the first time). The time-scale of the oscillation tosc may roughly be estimated in the

same way as that for electrons (2.99). By neglecting the quantum interferences, one gets√
|gĒ0|tosc ∼

π2

g

√
π

2
∼ 12 (for g = 1), (3.106)

which indeed turns out to be consistent with the figure.

We stress that because of the quantum interferences, i.e., the Bose enhancement and the

Pauli blocking, the gluon (or boson in general) production is much more abundant than the

electron (or fermion) production (see Section 3.3.4), and hence the initial field energy is more

efficiently converted into the gluon particle degree of freedom as we shall see in Section 3.3.3 -

3.3.5.

3.3.3 decay of color electric field

Figure 3.7 displays the time-evolution of the electric field strength (left) and the current ⟨: ĵz :⟩
(right). We again observe for

√
|gĒ0|t ≲ 50 that the electric field strength and the current

show the plasma oscillation as was discussed in Section 2.5.3. What is more important here is

that the time-scale of the decay is much faster than the electron case (see Fig. 2.13). This is

because the gluon production is much more abundant than the electron one because of the Bose

enhancement of the gluon production (see Section 3.3.2) and the suppression of the electron

production by the Pauli blocking (see Section 2.5.2). Another notable point is that both the

electric field and the current show rapid oscillations at later times
√
|gĒ0|t ≳ 50. By noting

that the gluon spectrum at later times (see Figs. 3.5 and 3.6) is strongly distorted by the
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Figure 3.7: [Left] The time-evolution of the electric field strength Ē(t). [Right] The time-

evolution of the current ⟨: ĵz :⟩.

quantum interferences, one understands that the rapid oscillation is not due to the plasma

oscillation, which is purely a classical effect, but is due to a quantum effect arising from the

quantum interferences.

3.3.4 total number of gluons

Figure 3.8: The total number of produced gluons d3Ng±/dx
3 with the color charge ±g for a

single physical polarization. The dashed line is the estimate (3.103) without the backreaction.

In Fig. 3.8, we plotted the total number of gluons produced d3Ng±/dx
3 with the color charge

±g for a single physical polarization σ = 1 or 2. Just as in the electron production (2.5.4), the

result (red thick line) coincides with that neglecting the backreaction (dashed black line) only

at the beginning of the gluon production process
√
gĒ0t ≲ 10. If one compares this result with
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that of electrons, Fig. 2.14, one finds that the gluon production is much more abundant than

the electron one: The electron production is strongly suppressed by the Pauli blocking, while

the gluon production is, in contrast, enhanced by the Bose enhancement.

3.3.5 energy density

Figure 3.9: The energy balance between the classical field (blue) and the quantum particles,

i.e., gluons and ghosts (red). The total energy of the system is strictly conserved as indicated

by the black line.

Figure 3.9 shows the energy balance between the classical electric field Ā and the sum of

the physical σ = 1, 2 gluons Âσ; unphysical contributions from σ = 0, 3 gluons Âσ, and ghosts
ˆ(−)
C exactly cancel out with each other because they obey the same equation of motion (3.91)

and (3.93). One immediately notices that the initial field energy is quickly converted into

gluon particles. The time-scale of the conversion is much faster than the electron production

(see Fig. 2.5.5) because of the different quantum statistics as was repeatedly addressed in this

section.

We note that the energy conservation is strictly satisfied during the whole time-evolution.

3.3.6 pressure

We plotted the transverse and longitudinal pressures ⟨: P̂⊥ :⟩ , ⟨: P̂z :⟩ of the system in Fig. 3.10.

The basic features of the figure is the same as the QED one (see Figs. 2.16 and 2.17), although

the typical time-scale of the transition from the classical field regime to the quantum particle

regime is much shorter:

• The transverse pressure of particles is negligible because they are created with soft trans-

verse momenta p⊥ ∼ 0 as was seen in Fig. 3.6. Hence, the total transverse pressure of

the system dies away as the classical field decoheres into particles.
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• The longitudinal pressure of particles is sizable because the classical electric field signifi-

cantly accelerates the particles in the longitudinal direction. Hence, the total longitudinal

pressure of the system is dominated by particles as the classical electric field decoheres

into particles.

Figure 3.10: The time-evolution of the transverse pressure ⟨: P̂⊥ :⟩ (left) and the longitudinal

pressure ⟨: P̂z :⟩ (right) from the classical field (blue) and the quantum particles, i.e., gluons

and ghosts (red). The black line is the sum of these two, i.e, the total transverse/longitudinal

pressure of the system.

In Fig. 3.11, we characterize the anisotropy of the system by the total transverse and lon-

gitudinal pressure scaled by the total energy, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩ as in the QED

study (see Fig. 2.18). We observe that the initial anisotropy of the system ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ =

1/2, ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩ = −1/2 is relaxed with relatively shorter time-scale compared to the QED

study. However, the complete isotropization of the system cannot be achieved within the mass-

less approximation, by which we neglect scatterings and collisions between produced gluons.

3.4 Brief summary

We briefly summarize the main results of this chapter:

• We formulated the Schwinger mechanism in the SUc(Nc = 2) pure Yang-Mills theory

including backreaction from gluon and ghost fluctuations to the classical gauge field.

This was done in Section 3.1 by extending the mean field framework developed in QED

(Section 2.1).

• Without backreaction (see Section 3.2), we analytically evaluated the time-evolution of

the gluon spectrum under a constant color electric field background to find that the gluon
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Figure 3.11: Isotropization of the system. The total transverse and longitudinal pressure

scaled by the total energy, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, are plotted in red and blue line,

respectively.

spectrum almost agrees with the well-known Schwinger formula for a constant electric

field.

• Once backreaction is taken into account (see Section 3.3), the classical plasma oscilla-

tion and the quantum interferences among gluons occur, and the gluon production is

dramatically modified from the naive Schwinger formula for a constant electric field.

• The quantum interferences strongly enhance the gluon production (the Bose enhance-

ment), which accelerates the decoherence of the classical gauge field (see Section 3.3).

• Within the mean field treatment together with the massless approximation (see Sec-

tion 3.1.5), the system never isotropitizes (i.e., thermalizes) although the degree of the

anisotropy is relaxed as was plotted in Fig. 3.11.





Chapter 4

Schwinger Mechanism in Quantum

Chromodynamics

In this chapter, we extend the previous SU(Nc = 2) pure Yang-Mills study (see Chapter 3) to

QCD with Nc = 3 colors and Nf flavors of quarks. In Section 4.1, we formulate the Schwinger

mechanism in QCD by applying the mean field approximation and the massless approximation

developed in Chapter 3. In Section 4.2 and 4.3, we extensively study the Schwinger mechanism

in QCD by applying the formalism: In Section 4.2, quark and gluon production is analytically

investigated by neglecting backreaction, and similarities/differences between the two production

are clarified. In Section 4.3, backreaction effects are taken into account numerically. By tracing

the time-evolution of the quark and gluon distribution functions; the color electric field strength;

the total number of quarks and gluons produced; and the thermodynamics quantities such as

the energy density and the pressure, we reveal the dynamics of how an initial classical field

decoheres into quantum quarks and gluons within a realistic QCD framework.

4.1 Formalism

4.1.1 QCD under a classical gauge field

Lagrangian

In the rest of this thesis, we consider the SUc(Nc = 3)⊗ SUf(Nf) QCD Lagrangian L̂QCD:

L̂QCD = L̂(q) + L̂(g) + L̂(GF) + L̂(FP) + L̂(ext), (4.1)

where

L̂(q) =
∑
f

ˆ̄ψf [i/∂ − g /̂A−mf ]ψ̂f , (4.2)

L̂(g) = −1

2
trc[F̂

µνF̂µν ], (4.3)

L̂(GF) = −trc[ϑ̂
2], (4.4)

97
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L̂(FP) = 2i trc[ˆ̄cδBRSϑ̂], (4.5)

L̂(ext) = 2trc[J
µÂµ] (4.6)

are contributions from the quark field ψ̂f of flavor f , the gluon field Âµ, the gauge fixing term,

the ghost fields ĉ, ˆ̄c, and a classical external source Jµ, respectively. ϑ̂ is the gauge fixing

function as was introduced in Eq. (3.6).

Cartan-Weyl basis of SU(3)

We expand the color space by the Cartan-Weyl basis {Hα, EA, E
†
A}, instead of the usual Gell-

Mann matrices {λa}, so as to avoid some complexities coming from the non-Abelian algebra of

SUc(Nc = 3),

The Cartan-Weyl basis of SUc(Nc) is a generalization of the ladder operators in SUc(Nc = 2).

The Cartan-Weyl basis consists of Abelian generators of SUc(Nc = 3) which belongs to the

Cartan subalgebra Hα (α = 1, . . . , Nc−1) and non-Abelian generators EA (A = 1, . . . , Nc(Nc−
1)/2) that are eigen-generators of Hα as [Hα, EA] = vα,AEA (where vα,A is the so-called root

vector). The choice of a Cartan-Weyl basis is not unique, but it is convenient here to choose

H1 ≡ λ3 =
1

2

1 0 0

0 −1 0

0 0 0

 ,

H2 ≡ λ8 =
1

2
√
3

1 0 0

0 1 0

0 0 −2

 ,

E1 ≡
λ6 + iλ7

2
=

1√
2

0 0 0

0 0 1

0 0 0

 ,

E2 ≡
λ4 − iλ5

2
=

1√
2

0 0 0

0 0 0

1 0 0

 ,

E3 ≡
λ1 + iλ2

2
=

1√
2

0 1 0

0 0 0

0 0 0

 . (4.7)

These matrices satisfy the following algebra:

trc[HαHβ] =
δαβ
2
,

trc[EAE
†
B] =

δAB
2
,

trc[HαEA] = trc[EAEB] = 0, (4.8)
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and

[Hα, Hβ] = 0,

[Hα, EA] = vα,AEA,

[EA, EB] =
∑
C

ϵABC√
2
E

†

C ,

[EA, E
†
B] = δAB

∑
α

vα,AHα, (4.9)

where ϵABC is the completely anti-symmetric tensor normalized by ϵ123 = 1. The root vector

vα,A is given by

vα,1 = (Hα)22 − (Hα)33 =

(
−1/2√
3/2

)
α

,

vα,2 = (Hα)33 − (Hα)11 =

(
−1/2

−
√
3/2

)
α

,

vα,3 = (Hα)11 − (Hα)22 =

(
1

0

)
α

. (4.10)

Abelian dominance assumption

As in the Yang-Mills study (see Chapter 3), let us assume the Abelian dominance for simplicity.

We neglect non-Abelian components∝ EA, E
†
A in the classical current Jµ and the classical gauge

field ⟨Âµ⟩, and write

Jµ(x) = J̄µ(x)
∑
α

wαHα, ⟨Âµ(x)⟩ = Āµ(x)
∑
α

wαHα. (4.11)

In contrast to the SUc(Nc = 2) case, as SUc(Nc = 3) has rank Nc − 1 = 2, we have two weight

factors w1, w2 that characterize the color orientation of the Abelian current Jµ and gauge field

⟨Âµ⟩.

expansion around a classical field

We decompose the total gauge field Âµ and the ghost fields ĉ, ˆ̄c into the Abelian classical field

⟨Âµ⟩ = Āµ
∑

αwαHα and quantum fluctuations around it, âα,µ, ÂA,µ,
ˆ(−)
C A,

ˆ(−)
C A as

Âµ =
∑
α

(wαĀµ + âα,µ)Hα +
∑
A

[
ÂA,µEA + Â†A,µE

†
A

]
, (4.12)(

ĉ

ˆ̄c

)
=
∑
α

(
Ĉα
ˆ̄Cα

)
Hα +

∑
A

[(
ĈA
ˆ̄CA

)
EA +

(
Ĉ†A
ˆ̄C†A

)
E†A

]
. (4.13)
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gauge fixing and ghost term

Under the Abelian dominance approximation, it is convenient to fix the gauge along the Abelian

direction of the gauge field 2trc[HαÂµ] = wαĀµ+ âα,µ. Namely, we consider the following gauge

fixing function ϑ̂:

ϑ̂ =
∑
α

∂µ(wαĀµ + âα,µ)Hα +
∑
A

[(
∂µ + ig

∑
α

vα,A(wαĀµ + âα,µ)

)
Â µ
A EA + (h.c.)

]
.

(4.14)

Under this choice of the gauge fixing function, the gauge fixing Lagrangian L̂(GF) and the ghost

Lagrangian L̂(FP) read

L̂(GF) =− 1

2
(∂µĀµ)

2

−
∑
α

wα(∂
µâα,µ)(∂

νĀν)

− 1

2

∑
α

(∂µâα,µ)
2 −

∑
A

|DA,µÂ µ
A |2

−
∑
α

aα,µ
∑
A

igvα,A

[
(DA,νÂ ν

A )†Â µ
A − Â µ†

A (DA,νÂ ν
A )
]

− g2
∑
αβ

∑
A

vα,Avβ,Aâα,µâβ,νÂ µ
A Â ν†

A , (4.15)

L̂(FP) =i
∑
α

ˆ̄Cα∂µ∂
µĈα + i

∑
A

[
ˆ̄C†A
(
DA,µD

µ
A ĈA

)
−
(
DA,µD

µ
A ĈA

)† ˆ̄CA]
− g

∑
α

∑
A

vα,A

[
2aα,µ

(
ˆ̄C†A(D

µ
A ĈA) + (D µ

A ĈA)† ˆ̄CA
)
+ (∂µâα,µ)(

ˆ̄C†AĈA + Ĉ†A ˆ̄CA)
]

− g
∑
α

∑
A

vα,A

[
ÂA,µ

ˆ̄Cα(D
µ

A ĈA)† − Â†A,µ ˆ̄Cα(D
µ

A ĈA)

+(D µ
A ÂA,µ)

†( ˆ̄CAĈα − ˆ̄CαĈA)− (D µ
A ÂA,µ)(

ˆ̄C†AĈα − ˆ̄CαĈ†A)
]

+ g
∑
ABC

ϵABC√
2

[(
D µ
A (Â†B,µĈ

†
C)
)† ˆ̄CA + ˆ̄C†A

(
D µ
A (Â†B,µĈ

†
C)
)]

− ig2
∑
α

∑
AB

vα,Avα,B

[
Â µ
A ÂB,µ

ˆ̄C†AĈ
†
B − Â µ

A Â†B,µ( ˆ̄C
†
AĈB − Ĉ†A ˆ̄CB) + Â µ†

A Â†B,µ ˆ̄CAĈB
]

+ ig2
∑
αβ

∑
A

vα,Avβ,A(âα,µâ
µ

β )(Ĉ†A ˆ̄CA − ˆ̄C†AĈA)

+ ig2
∑
αβ

∑
A

vα,Avβ,Aa
µ

β

[
Â†A,µ ˆ̄CAĈα + ÂA,µ

ˆ̄C†AĈα
]

− ig2
∑
α

∑
ABC

ϵABC√
2
vα,Aa

µ
α

[
ÂB,µĈC ˆ̄CA − Â†B,µ ˆ̄C

†
AĈ
†
C

]
. (4.16)
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4.1.2 assumptions on the system

In addition to the Abelian dominance assumption (4.11), we furthermore assume the same

three assumptions made in the previous studies (see Section 2.1.2 and 3.1.2): (i) Homogeneity

in space by assuming the classical gauge field Āµ is given by

Āµ(x) = (0, 0, 0, Ā(t)) = (0, 0, 0,−
∫ t

−∞
dt′Ē(t′)); (4.17)

(ii) Vacuum initial condition |state; in⟩ = |vac; in⟩; and (iii) Adiabatic hypothesis by requiring

∂tĒ −−−−→
t→±∞

0.

4.1.3 mean field and massless approximation

The QCD Lagrangian (4.1) is so complicated to evaluate as it is. As a workaround of this

difficulty, we again apply the mean field approximation (see Section 2.1.3 and 3.1.3) and the

massless approximation (see Section 3.1.5) as the first study of the Schwinger mechanism in

QCD including backreaction effects.

Lagrangian

By applying the two approximations, the QCD Lagrangian (4.1) is approximated as

L̂QCD → ˆ̄ψf,i[i/∂ − q
(fund.)
i /̄A−mf ]ψ̂f,i

− 1

4
F̄µνF̄

µν − 1

2
(∂µĀ

µ)2 + J̄µĀµ

−
∑
α

wα(∂
µâα,µ)(∂

νĀν)−
1

2
F̄ µν

∑
α

wαf̂α,µν

+
∑
α

âα,µ

[
⟨: ĵ µ

α :⟩+ wαJ̄
µ
α

]
− g

∑
α,A

vα,A∂
µ
[
âα,µ ⟨ ˆ̄C†AĈA + Ĉ†A ˆ̄CA⟩

]
− 1

4

∑
α

f̂α,µν f̂
µν

α − 1

2

∑
α

(∂µâα,µ)
2

− 1

2

∑
A

F̂ µν†
A F̂A,µν −

∑
A

|D̄A,µÂ µ
A |2

+ i
∑
α

ˆ̄Cα∂µ∂
µĈα + i

∑
A

ˆ̄C†A
[
D̄A,µD̄

µ
A

]
ĈA − i

∑
A

([
D̄A,µD̄

µ
A

]
ĈA
)† ˆ̄CA, (4.18)

where the color indices i, j = 1, . . . , Nc for the fundamental representation (quarks ψ̂f,i) are

explicitly written.

DA,µ is the covariant derivative for the adjoint representations with respect to the classical

gauge field Āµ given by

D̄A,µ ≡ ∂µ + iq
(ad.)
A Āµ. (4.19)
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Here, q
(ad.)
A represents an effective color charge for the adjoint presentations (gluons ÂA,µ, Â†A,µ

and ghosts ĈA, ˆ̄CA) given by

q
(ad.)
A ≡ g

∑
α

wαvα,A = g

cos(θ + 4π/3)

cos(θ + 2π/3)

cos θ


A

, (4.20)

where the “color angle” θ, which characterizes the color orientation of the classical gauge field

⟨Âµ⟩, is defined by

w2

w1

≡ tan θ. (4.21)

On the other hand, q
(fund.)
i represents an effective color charge for the fundamental representa-

tions, and is given by

q
(fund.)
i ≡ g

∑
α

wα(Hα)ii =
−1√
3
g

sin(θ + 4π/3)

sin(θ + 2π/3)

sin θ


i

. (4.22)

Although these two charges q
(ad.)
A , q

(fund.)
i are gauge-dependent, the squared sum of the charges

are gauge-independent as [137, 157, 158] as

∑
A

|q(ad.)A |2 = g2Nc

2
=

3g2

2
,

∑
i

|q(fund.)i |2 = g2

2
. (4.23)

The squared sum of q
(ad.)
A is larger than that of q

(fund.)
i , intuitively because there are (approxi-

mately) Nc times as many colors of gluons (Nc(Nc − 1)) as those of quarks (Nc).

f̂α,µν and F̂A,µν are fluctuation part of Abelian and non-Abelian components of the total

field strength tensor F̂µν , respectively, given by

f̂α,µν ≡ ∂µâα,ν − ∂ν âα,µ,

F̂A,µν ≡ D̄A,µÂA,ν − D̄A,νÂA,µ, (4.24)

which are SUc(Nc = 3) extensions of Eq. (3.16).

⟨: ĵ µ
α :⟩ is a vacuum expectation value of the color current associated with a global color

rotation around the Abelian Hα-directions, whose explicit expression is given in Eq. (4.27). We

again take the normal ordering ⟨•̂⟩ → ⟨: •̂ :⟩ to eliminate the unwanted vacuum divergences

(see Section 2.1.5).
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conserved quantities

The approximated Lagrangian (4.18) has certain symmetries and conserved currents associated

with them.

color current ĵ µ
α

The approximated Lagrangian (4.18) is invariant under a global color rotation around the

Abelian Hα-directions of the color space:

ψ̂f → Uψ̂f ,

Âµ → UÂµU
†,(

ĉ

ˆ̄c

)
→ U

(
ĉ

ˆ̄c

)
U †, (4.25)

where

U = exp[−ig
∑
α

θαHα]. (4.26)

The conserved quantity associated with this symmetry is the color current (in theHα-directions)

ĵ µ
α . From the Noether theorem [143], one can compute its vacuum expectation value ⟨: ĵ µ

α :⟩
as

⟨: ĵ µ
α :⟩ =g

∑
f

∑
i

(Hα)ii ⟨: ˆ̄ψf,iγ
µψ̂f,i :⟩

ig
∑
A

vα,A

⟨
: Â†A,ν

(
D̄ µ
A Â ν

A

)
−
(
D̄ µ
A Â ν

A

)†
ÂA,ν :

⟩
− g

∑
A

vα,A

⟨
: ˆ̄C†A

(
D̄A,µĈA

)
+
(
D̄A,µĈA

)† ˆ̄CA −
(
D̄A,µ

ˆ̄CA
)†

ĈA − Ĉ†A
(
D̄A,µ

ˆ̄CA
)
:

⟩
.

(4.27)

The conservation law for ⟨: ĵ µ
α :⟩ is

0 = ∂µ ⟨: ĵ µ
α :⟩ . (4.28)

symmetric energy-momentum tensor T̂ µν

The translational invariance of the approximated Lagrangian (4.18) assures us that the sym-

metric energy-momentum tensor T̂ µν defined by Eq. (2.8) is conserved. The vacuum expectation
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value of the symmetric energy-momentum tensor ⟨: T̂ µν :⟩ is

⟨: T̂µν :⟩ =ηµν
[
1

4
F̄ ρσF̄ρσ −

1

2
(∂λĀ

λ)2 − Āρ∂ρ∂σĀ
σ

]
−
[
F̄ µ

λF̄
νλ − Āµ∂ν∂λĀ

λ − Āν∂µ∂λĀ
λ
]

+ ηµν
∑
α

Re

⟨
:
1

4
f̂ ρσ
α f̂α,ρσ −

1

2
(∂λâ

λ
α)

2 − â ρ
α ∂ρ∂σâ

σ
α :

⟩
−
∑
α

Re
⟨
: f̂ µ

α,λ f̂
λν
α − â µ

α ∂
ν∂λâ

λ
α − â ν

α ∂
µ∂λâ

λ
α :
⟩

+ 2×

(
ηµν
∑
A

Re

⟨
:
1

4
F̂ †A,ρσF̂

ρσ
A − 1

2

∣∣∣D̄A,λÂ λ
A

∣∣∣2 − Â ρ†
A (D̄A,ρD̄A,σÂ σ

A ) :

⟩

−
∑
A

Re
⟨
: F̂ µ†

A,λ F̂ λν
A − Â µ†

A (D̄ ν
A D̄A,λÂ λ

A )− Â ν†
A (D̄ µ

A D̄A,λÂλ) :
⟩)

+
∑
α

Re
⟨
: i×

[
ηµν(∂λ

ˆ̄Cα)(∂
λĈα)− (∂µ ˆ̄Cα)(∂

νĈα)− (∂ν ˆ̄Cα)(∂
µĈα)

]
:
⟩

+ 2×
∑
A

Re
⟨
: i
[
ηµν(D̄A,λ

ˆ̄CA)†(D̄ λ
A ĈA)− (D̄ µ

A
ˆ̄CA)†(D̄ ν

A ĈA)− (D̄ ν
A

ˆ̄CA)†(D̄ µ
A ĈA)

]
:
⟩
,

(4.29)

which is conserved as

∂µ ⟨: T̂ µν :⟩ = J̄µF̄
µν + Āν∂µJ̄

µ. (4.30)

We define the energy density and the transverse/longitudinal pressure of the system by the

diagonal components of the symmetric energy-momentum tensor as

⟨: ϵ̂ :⟩ ≡ ⟨: T̂ tt :⟩ ,

⟨: P̂⊥ :⟩ ≡ ⟨: T̂ xx + T̂ yy :⟩
2

,

⟨: P̂z :⟩ ≡ ⟨: T̂ zz :⟩ . (4.31)

equations of motion

From the approximated Lagrangian (4.18), one obtains a set of linear equations of motion:∑
α

wα ⟨: ĵα,µ :⟩+ J̄µ = ∂ν∂νĀµ, (4.32)

0 = [i/∂ − q
(fund.)
i /̄A−mf ]ψ̂f,i, (4.33)

0 = ∂µ∂µâα,σ, (4.34)

0 = D̄ µ
A D̄A,µÂA,σ, (4.35)

0 = ∂µ∂µ

ˆ(−)
C α, (4.36)

0 = D̄ µ
A D̄A,µ

ˆ(−)
C A, (4.37)
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As the fluctuations âα,µ,
ˆ(−)
C α are chargeless and do not couple to the classical gauge field Āµ,

no particle production occurs for these fluctuations. Hence, we do not consider them in the

following. The first equation (4.32) describes the backreaction effects from the produced par-

ticles. For a spatially homogeneous system as was assumed in assumption (i) in Section 4.1.2,

it reads

0 = ⟨: ĵα,t :⟩ = ⟨: ĵα,x :⟩ = ⟨: ĵα,y :⟩ ,

−dĒ
dt

=
∑
α

wα ⟨: ĵ z
α :⟩ . (4.38)

4.1.4 canonical quantization and particle production

Since the equations of motion (4.33)-(4.37) are linear in the quantum fluctuations, one can apply

the canonical quantization procedure to compute the number of particles produced from the

classical gauge field Āµ. The canonical quantization procedure can be done in completely the

same manner as that for electrons (or fermions) in Section 2.1.4 and that for gluons and ghosts

(or bosons) in Section 3.1.4. Hence, we do not repeat the details of the canonical quantization

procedure, and we briefly write down results only.

quarks

We Fourier expand the quark field operator ψ̂i as

ψ̂f,i =
∑
s

∫
d3p

[
+ψ

(t)
f,i,p,s(t)âf,i,p,s(t) + −ψ

(t)
f,i,p,s(t)b̂

†
f,i,−p,s(t)

]
, (4.39)

where (
+ψ

(t)
f,i,p,s(t)

−ψ
(t)
f,i,p,s(t)

)
≡

 u
p−q(fund.)i Ā(t)

exp
[
−i
∫ t
−∞ ωp−q(fund.)i Ā(t)

dt
]

v−p+q(fund.)i Ā(t)
exp

[
+i
∫ t
−∞ ωp−q(fund.)i Ā(t)

dt
] (4.40)

denotes positive/negative frequency mode functions at an intermediate time −∞ < t < ∞.

The normalization condition for the mode functions is

(±ψ
(t)
f,i,p,s|±ψ

(t)
f,i,p,s′)F = δss′ , (±ψ

(t)
f,i,p,s|∓ψ

(t)
f,i,p,s′)F = 0. (4.41)

By imposing canonical commutation relations

{ψ̂f,i(t,x), ψ̂†f ′,i′(t,x
′)} = δff ′δii′δ

3(x− x′), {ψ̂f,i(t,x), ψ̂f ′,i′(t,x′)} = 0, (4.42)

one obtains anti-commutation relations for the annihilation operators âf,i,p,s, b̂f,i,p,s as

{âf,i,p,s, â†f ′,i′,p′,s′} = {b̂f,i,p,s, b̂†f ′,i′,p′,s′} = δff ′δii′δss′δ
3(p− p′), (others) = 0. (4.43)
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The vacuum at an intermediate time |vac;t⟩ is a state such that it is annihilated by the

annihilation operators âf,i,p,s, b̂f,i,p,s as

0 = âf,i,p,s |vac;t⟩ = b̂f,i,p,s |vac;t⟩ (4.44)

for all values of f, i,p, s.

The positive/negative frequency mode functions ±ψ
(t)
f,i,p,s, the annihilation operators âf,i,p,s, b̂f,i,p,s,

and the vacuum |vac;t⟩ at an intermediate time smoothly approach the correct mode functions

±ψ
(as)
p,s , the annihilation operators â

(in)
f,i,p,s, b̂

(in)
f,i,p,s, and the vacuum |vac; as⟩ at the asymptotic

times (as = in/out) in the limit of t→ ±∞ as

±ψ
(t)
f,i,p,s −−−−→t→−∞ ±ψ

(in)
f,i,p,s, ±ψ

(t)
f,i,p,s −−−→t→∞ ±ψ

(out)
f,i,p,s, (4.45)

(
â
(in)
f,i,p,s

b̂
(in)
f,i,p,s

)
= lim

t→−∞

(
âf,i,p,s(t)

b̂f,i,p,s(t)

)
,

(
â
(out)
f,i,p,s

b̂
(out)
f,i,p,s

)
= lim

t→∞

(
âf,i,p,s(t)

b̂f,i,p,s(t)

)
, (4.46)

and

|vac;t⟩ −−−−→
t→−∞

|vac; in⟩ , |vac;t⟩ −−−→
t→∞

|vac; out⟩ . (4.47)

The Bogoliubov transformation between the in-state annihilation operators â
(in)
f,i,p,s, b̂

(in)
f,i,p,s

and those at intermediate times âf,i,p,s, b̂f,i,p,s are given by(
âf,i,p,s(t)

b̂†f,i,−p,s(t)

)
=

(
α(ψ)f,i,p,s(t) β(ψ)f,i,p,s(t)

−β∗(ψ)f,i,p,s(t) α∗(ψ)f,i,p,s(t)

)(
â
(in)
f,i,p,s

b̂
(in)†
f,i,−p,s

)
, (4.48)

where

α(ψ)f,i,p,s(t) ≡ (+ψ
(t)
f,i,p,s|+ψ

(in)
f,i,p,s)F = (−ψ

(t)
f,i,p,s|−ψ

(in)
f,i,p,s)

∗
F, (4.49)

β(ψ)f,i,p,s(t) ≡ (+ψ
(t)
f,i,p,s|−ψ

(in)
f,i,p,s)F = −(−ψ

(t)
f,i,p,s|+ψ

(in)
f,i,p,s)

∗
F. (4.50)

The Bogoliubov coefficients are normalized as

1 = |α(ψ)f,i,p,s(t)|2 + |β(ψ)f,i,p,s(t)|2, (4.51)

The number of produced quarks and anti-quarks are obtained as an in-vacuum |vac; in⟩
expectation value of number operator â†i,f,p,sâi,f,p,s and b̂

†
i,f,p,sb̂i,f,p,s, respectively, as

d6Nq(i, f,p, s; t)

dp3dx3
=

1

V
⟨â†i,f,p,sâi,f,p,s⟩ =

|β(ψ)i,f,p,s|2

(2π)3
,

d6Nq̄(i, f,p, s; t)

dp3dx3
=

1

V
⟨b̂†i,f,p,sb̂i,f,p,s⟩ =

|β(ψ)i,f,−p,s|2

(2π)3
. (4.52)
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gluons

By Fourier expanding the fluctuation ÂA,µ as

ÂA,µ =
∑
σ

∫
d3p

[
+A(t)

A,σ,p(t)ĉA,σ,p(t) + −A
(t)
A,σ,pd̂

†
A,σ,−p(t)

] eip·x

(2π)3/2
, (4.53)

where ϵσ,µ is the polarization vector introduced in Eq. (3.42). The positive/negative frequency

mode functions for intermediate times ±a
(t)
A,σ,p, ±A

(t)
A,σ,p are defined by

 ±A(t0)
A,σ,p(t0)

d±A(t0)
A,σ,p(t0)

dt

 ≡


1√

2|p− q
(ad.)
A Ā(t0)|

∓i

√
|p− q

(ad.)
A Ā(t0)|
2

 exp

[
∓i
∫ t0

−∞
|p− q

(ad.)
A Ā(t)|dt

]
, (4.54)

We normalize the mode functions ±A(t)
A,σ,p by∑

σ′

ξσσ′(±A(t)
A,σ,p|±A

(t)
A,σ′,p)B = ±1,

∑
σ′

ξσσ′(±A(t)
A,σ,p|∓A

(t)
A,σ′,p)B = 0. (4.55)

We impose canonical commutation relations

[ÂA,µ(t,x), ∂tÂ†B,ν(t,x
′)] = −iηµνδABδ3(x− x′),

[ÂA,µ(t,x), Â†B,ν(t,x
′)] = [∂tÂA,µ(t,x), ∂tÂB,ν(t,x

′)] = 0, (4.56)

to obtain commutation relations for the intermediate annihilation operators ĉA,σ,p, d̂A,σ,p as

[̂cA,σ,p, ĉ
†
A′,σ′,p′ ] = [d̂A,σ,p, d̂

†
A′,σ′,p′ ] = δAA′ξσσ′δ3(p− p′),

(others) = 0, (4.57)

where the indefinite metric ξσσ′ was introduced in Eq. (3.42).

The vacuum at an intermediate time |vac;t⟩ is a state such that it is annihilated by the

annihilation operators ĉA,σ,p, d̂A,σ,p as

0 = ĉA,σ,p |vac;t⟩ = d̂A,σ,p |vac;t⟩ (4.58)

for all values of A, σ,p.

The positive/negative frequency mode functions ±A(as)
A,σ,p, the annihilation operators ĉ

(as)
A,σ,p,

d̂
(as)
A,σ,p, and the vacuum |vac; as⟩ at the asymptotic times (as = in/out) are obtained by taking

t→ ±∞ limit of those at an intermediate time as

±A(t)
A,σ,p −−−−→

t→−∞ ±A(in)
A,σ,p, ±A

(t)
A,σ,p −−−→

t→∞ ±A(out)
A,σ,p, (4.59)

(
ĉ
(in)
A,σ,p

d̂
(in)
A,σ,p

)
= lim

t→−∞

(
ĉA,σ,p(t)

d̂A,σ,p(t)

)
,

(
ĉ
(out)
A,σ,p

d̂
(out)
A,σ,p

)
= lim

t→∞

(
ĉA,σ,p(t)

d̂A,σ,p(t)

)
, (4.60)
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and

|vac;t⟩ −−−−→
t→−∞

|vac; in⟩ , |vac;t⟩ −−−→
t→∞

|vac; out⟩ . (4.61)

The in-state annihilation operators ĉ
(in)
A,σ,p, d̂

(in)
A,σ,p and those at intermediate times ĉα,σ,p, ĉA,σ,p,

d̂A,σ,p are not independent of each other, and their relationship can be expressed by the following

Bogoliubov transformation:(
ĉA,σ,p(t)

d̂†A,σ,−p(t)

)
=

(
α(A)A,σ,p(t) β(A)A,σ,p(t)

β∗(A)A,σ,p(t) α∗(A)A,σ,p(t)

)(
ĉ
(in)
A,σ,p

d̂
(in)†
A,σ,−p

)
, (4.62)

where

α(A)A,σ,p(t) ≡ (+A(t)
A,σ,p|+A

(in)
A,σ,p)B = −(−A(t)

A,σ,p|−A
(in)
A,σ,p)

∗
B

=
i√

2|p− q
(ad.)
A Ā|

[
d+A(in)

A,σ,p

dt
− i|p− q

(ad.)
A Ā|+A(in)

A,σ,p

]
exp

[
+i

∫ t

−∞
|p− q

(ad.)
A Ā|dt

]
,

β(A)A,σ,p(t) ≡ (+A(t)
A,σ,p|−A

(in)
A,σ,p)B = −(−A(t)

A,σ,p|+A
(in)
A,σ,p)

∗
B

=
i√

2|p− q
(ad.)
A Ā|

[
d−A(in)

A,σ,p

dt
− i|p− q

(ad.)
A Ā|−A(in)

A,σ,p

]
exp

[
+i

∫ t

−∞
|p− q

(ad.)
A Ā|dt

]
.

(4.63)

The normalization condition for the Bogoliubov coefficients is

1 = |α(A)A,σ,p(t)|2 − |β(A)A,σ,p(t)|2. (4.64)

The number of produced gluons can be computed as an in-vacuum |vac; in⟩ expectation

value of number operators ĉ†A,σ,pĉA,σ,p and d̂†A,σ,pd̂A,σ,p for charged gluons with the color charge

q
(ad.)
A and −q(ad.)A , respectively, as

d6Ng+(A, σ,p; t)

dp3dx3
=

1

V
⟨ĉ†A,σ,pĉA,σ,p⟩ =

 0 (σ = 0, 3)
|β(A)A,σ,p|2

(2π)3
(σ = 1, 2)

d6Ng−(A, σ,p; t)

dp3dx3
=

1

V
⟨d̂†A,σ,pd̂A,σ,p⟩ =

 0 (σ = 0, 3)
|β(A)A,σ,−p|2

(2π)3
(σ = 1, 2)

. (4.65)

ghosts

We Fourier expand the fluctuations ĈA,
−̂
CA as(

ĈA
ˆ̄CA

)
=

∫
d3p

[
+C(t)

A,p(t)

(
êA,p(t)

ˆ̄eA,p(t)

)
+ −C(t)

A,p(t)

(
f̂A,−p(t)
ˆ̄fA,−p(t)

)]
eip·x

(2π)3/2
, (4.66)
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where the positive/negative frequency mode functions for intermediate times ±C(t)
A,p are

 ±C(t)
A,p(t)

d±C(t)
A,p(t)

dt

 ≡


1√

2|p− q
(ad.)
A Ā(t)|

∓i

√
|p− q

(ad.)
A Ā(t)|
2

 exp

[
∓i
∫ t

−∞
|p− q

(ad.)
A Ā(t)|dt

]
. (4.67)

The normalization condition for the mode function ±C(t)
A,p is

(±C(t)
A,p|±C

(t)
A,p)B = ±1, (±C(t)

A,p|∓C
(t)
A,p)B = 0. (4.68)

Now, we impose canonical commutation relations for the ghost modes ĈA, ˆ̄CA as{
ˆ(−)
C A(t,x),

ˆ(−)
π A′(t,x′)

}
= iδAA′δ3(p− p′),{

ˆ(−)
C A(t,x),

ˆ(−)
C A′(t,x′)

}
=

{
ˆ(−)
π A(t,x),

ˆ(−)
π A′(t,x′)

}
= 0, (4.69)

where
ˆ(−)
π A is the canonical conjugate field to the ghost field

ˆ(−)
C A as π̂A = −i∂t ˆ̄C†A and ˆ̄πA =

i∂tĈ†A. Then, we obtain anti-commutation relations for the intermediate annihilation operators

ˆ(−)
e A,p,

ˆ(−)
f A,p as

iδAA′δ3(p− p′) =

{
êA,p,

−̂
e
†

A′,p′

}
=

{
f̂A,p,

−̂
f

†

A′,p′

}
, (others) = 0. (4.70)

The corresponding vacuum state |vac;t⟩ must be annihilated by
ˆ(−)
e A,p,

−̂
f

†

A,p as

0 =
ˆ(−)
e A,p |vac;t⟩ =

ˆ(−)
f A,p |vac;t⟩ (4.71)

for all values of A,p, s.

The positive/negative frequency mode functions ±C(t)
A,p,s, the annihilation operators

ˆ(−)
e A,p ,

−̂
f

†

A,p, and the vacuum |vac;t⟩ at an intermediate time smoothly approach those at the asymptotic

times (as = in/out) in the limit of t→ ±∞ as

±C(t)
A,p −−−−→

t→−∞ ±C(in)
A,p , ±C

(t)
A,p −−−→

t→∞ ±C(out)
A,p , (4.72)

 ˆ(−)
e A,p

ˆ(−)
f A,p

 −−−−→
t→−∞


ˆ(−)
e

(in)

A,p

ˆ(−)
f

(in)

A,p

 ,

 ˆ(−)
e A,p

ˆ(−)
f A,p

 −−−→
t→∞


ˆ(−)
e

(out)

A,p

ˆ(−)
f

(out)

A,p

 , (4.73)
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and

|vac;t⟩ −−−−→
t→−∞

|vac; in⟩ , |vac;t⟩ −−−→
t→∞

|vac; out⟩ . (4.74)

The in-state annihilation operators
ˆ(−)
e

(in)

A,p,
ˆ(−)
f

(in)

A,p and those at intermediate times
ˆ(−)
e A,p,

ˆ(−)
f A,p

are related with each other by a Bogoliubov transformation:


ˆ(−)
e A,p(t)

ˆ(−)
f

†

A,−p(t)

 =

(
α(C)A,p(t) β(C)A,p(t)

β∗(C)A,p(t) α∗(C)A,p(t)

)
ˆ(−)
e

(in)

A,p

ˆ(−)
f

(in)†

A,−p

 . (4.75)

Here, the Bogoliubov coefficients are given by

α(C)A,p(t) ≡ (+C(t)
A,p|+C

(in)
A,p)B = −(−C(t)

A,p|−C
(in)
A,p)

∗
B

=
i√

2|p− q
(ad.)
A Ā|

[
d+C(in)

A,p

dt
− i|p− q

(ad.)
A Ā|+C(in)

A,p

]
exp

[
+i

∫ t

−∞
|p− q

(ad.)
A Ā|dt

]
,

β(C)A,p(t) ≡ (+C(t)
A,p|−C

(in)
A,p)B = −(−C(t)

A,p|+C
(in)
A,p)

∗
B

=
i√

2|p− q
(ad.)
A Ā|

[
d−C(in)

A,p

dt
− i|p− q

(ad.)
A Ā|−C(in)

A,p

]
exp

[
+i

∫ t

−∞
|p− q

(ad.)
A Ā|dt

]
.,

(4.76)

and are normalized as

1 = |α(C)A,p(t)|2 − |β(C)A,p(t)|2. (4.77)

From the canonical quantization procedure briefly described above, one can easily show that

ghosts are never produced. Indeed, the number of produced ghosts and anti-ghosts are obtained

as an in-vacuum |vac; in⟩ expectation value of number operators
ˆ(−)
e

†

A,p

ˆ(−)
e A,p and

ˆ(−)
f

†

A,p

ˆ(−)
f A,p for

charged ghosts (anti-ghosts) with the color charge q
(ad.)
A and −q(ad.)A , respectively, as

d6N(−)

gh+

(A,p; t)

dp3dx3
=

1

V

⟨
ˆ(−)
e

†

A,p

ˆ(−)
e A,p

⟩
= 0,

d6N(−)

gh−

(A,p; t)

dp3dx3
=

1

V

⟨
ˆ(−)
f

†

A,p

ˆ(−)
f A,p

⟩
= 0. (4.78)
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4.2 Quark and gluon production from a constant color

electric field

In this section, we consider a constant color electric field Āµ initiated at t = t0 = 0 described

by

Ē(t) = Ē0, or Ā(t) = −Ē0tθ(t). (4.79)

By ignoring the backreaction and keeping the electric field strength fixed, we analytically follow

the time-evolution of the quark and the gluon spectra. The analytical calculation can be done

in the same ways as were explained in Section 2.4 and 3.2 because the equation of motion for

the quark field ψ̂f,i (4.33) and the charged gluon field ÂA,σ (4.35) are the same as what we

encountered in QED (2.16) and the SUc(Nc = 2) Yang-Mills theory (3.91), respectively, except

for the additional labels f, i, A.

As were discussed in Section 2.5 within QED and 3.2 within the SUc(Nc = 2) pure Yang-

Mills theory, the neglection of the backreaction is actually problematic (e.g. violation of the

energy conservation), and is justifiable only at the very beginning of the particle production

process, where the number of produced particles and/or the acceleration by the classical field

is negligible. The backreaction effects for our QCD problem will be discussed in Section 4.3.

4.2.1 quark and gluon distribution

One can easily solve Eqs. (4.33) and (4.35) under the constant electric field (4.79) in the same

manner as were explained in Section 2.4 and 3.2, respectively. As a result, one obtains an analyt-

ical expression for the quark and the gluon distribution function d6N(−)
q
/dp3dx3, d6Ng±/dp

3dx3,

respectively, as

d6Nq(f, i,p)

dp3dx3
=
d6Nq̄(f, i,−p)

dp3dx3
=

1

(2π)3

∣∣∣β̃(ψ)f,i,p,s(t0)α̃∗(ψ)f,i,p,s(t)− α̃∗(ψ)f,i,p,s(t0)β̃(ψ)f,i,p,s(t)
∣∣∣2 ,

(4.80)

d6Ng±(A, σ,±p)

dp3dx3
=

1

(2π)3

∣∣∣β̃(A)A,σ,p(t0)α̃∗(A)A,σ,p(t)− α̃∗(A)A,σ,p(t0)β̃(A)A,σ,p(t)
∣∣∣2 .
(4.81)

Here, the coefficients α̃, β̃ are given by

α̃(ψ)f,i,p,s(t) = exp

[
−i
∫ t

−∞
ω
p+q

(fund.)
i Ē0t

dt

]
exp

[
−π

m2
f + p2

⊥

8|q(fund.)i Ē0|

]

×

 1√
2

√√√√1 +
pz + q

(fund.)
i Ē0t

ω
p+q

(fund.)
i Ē0t

eiπ/8D
i

m2
f
+p2⊥

2|q(fund.)
i

Ē0|

(e−iπ/4
√

2

|q(fund.)i Ē0|
(pz + q

(fund.)
i Ē0t))
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+
1√
2

√√√√1− pz + q
(fund.)
i Ē0t

ω
p+q

(fund.)
i Ē0t

e−iπ/8

√
m2
f + p2

⊥

2|q(fund.)i Ē0|

× D
i

m2
f
+p2⊥

2|q(fund.)
i

Ē0|
−1
(e−iπ/4

√
2

|q(fund.)i Ē0|
(pz + q

(fund.)
i Ē0t))

 , (4.82)

β̃(ψ)f,i,p,s(t) = exp

[
+i

∫ t

−∞
ω
p+q

(fund.)
i Ē0t

dt

]
exp

[
−π

m2
f + p2

⊥

8|q(fund.)i Ē0|

]

×

 1√
2

√√√√1− pz + q
(fund.)
i Ē0t

ω
p+q

(fund.)
i Ē0t

eiπ/8D
i

m2
f
+p2⊥

2|q(fund.)
i

Ē0|

(e−iπ/4
√

2

|q(fund.)i Ē0|
(pz + q

(fund.)
i Ē0t))

− 1√
2

√√√√1 +
pz + q

(fund.)
i Ē0t

ω
p+q

(fund.)
i Ē0t

e−iπ/8

√
m2
f + p2

⊥

2|q(fund.)i Ē0|

× D
i

m2
f
+p2⊥

2|q(fund.)
i

Ē0|
−1
(e−iπ/4

√
2

|q(fund.)i Ē0|
(pz + q

(fund.)
i Ē0t))

 , (4.83)

and

α̃(A)A,σ,p(t) =
−i√

2|p+ q
(ad.)
A Ē0t|

exp

[
−π p2

⊥
8|q(ad.)A Ē0|

]
(2|q(ad.)A Ē0|)1/4

exp

[
−i
∫ t

−∞
|p+ q

(ad.)
A Ē0t|dt

]

×

(|p+ q
(ad.)
A Ē0t| − (pz + q

(ad.)
A Ē0t)

)
D
i

p2⊥
2|q(ad.)

A
Ē0|
−1/2

(e−iπ/4
√

2

|q(ad.)A Ē0|
(q

(ad.)
A Ē0t+ pz))

+eiπ/4
√

2|q(ad.)A Ē0|D
i

p2⊥
2|q(ad.)

A
Ē0|

+1/2
(e−iπ/4

√
2

|q(ad.)A Ē0|
(q

(ad.)
A Ē0t+ pz))

 ,
(4.84)

β̃(A)A,σ,p(t) =
i√

2|p+ q
(ad.)
A Ē0t|

exp

[
−π p2

⊥
8|q(ad.)A Ē0|

]
(2|q(ad.)A Ē0|)1/4

exp

[
+i

∫ t

−∞
|p+ q

(ad.)
A Ē0t|dt

]

×

(|p+ q
(ad.)
A Ē0t|+ (pz + q

(ad.)
A Ē0t)

)
D
i

p2⊥
2|q(ad.)

A
Ē0|
−1/2

(e−iπ/4
√

2

|q(ad.)A Ē0|
(q

(ad.)
A Ē0t+ pz))

−eiπ/4
√
2|q(ad.)A Ē0|D

i
p2⊥

2|q(ad.)
A

Ē0|
+1/2

(e−iπ/4
√

2

|q(ad.)A Ē0|
(q

(ad.)
A Ē0t+ pz))

 .
(4.85)
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analytic formula at t→ ∞

In the limit of t→ ∞ (or the infinite kinetic momentum limit Pz = pz+qĒ0t→ sgn(qĒ0)×∞),

one reproduces the well-known Schwinger formula for a constant electric field (see Eqs. (1.17)

and (1.18)) as

d6N(−)
q
(f, i,p)

dp3dx3
−−−→
t→∞

1

(2π)3
exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē0|

]
, (4.86)

d6Ng±(A, σ,±p)

dp3dx3
−−−→
t→∞

1

(2π)3
exp

[
−π p2

⊥

|q(ad.)A Ē0|

]
, (4.87)

where the use is made of the asymptotic formula for the parabolic cylinder function Dν(z)

(3.99).

dynamical evolution

We directly evaluate the expressions (4.80) and (4.81) in order to understand dynamical prop-

erties of the quark and the gluon production from a constant color electric field. Here, we

consider Nf = 3 (i.e., three massless quarks) and set θ = 0 for simplicity.

Figure 4.1: The longitudinal kinetic momentum distribution d6Nq/dp
3dx3 = |β(ψ)f,i,p,s|2/(2π)3

of produced massless (mf/
√
gĒ0 = 0) quarks at a fixed transverse momentum |p⊥|/

√
|gE0| =

0.1. Different panels differentiate values of the color charge q
(fund.)
i (i = 1, . . . , Nc) of quarks

with color i. We set the color angle θ = 0, and the corresponding quark charge q
(fund.)
i read

q
(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and q

(fund.)
3 = 0 (right).

Results are plotted in Figs. 4.1, 4.2, 4.3, and 4.4: Figures 4.1 and 4.2 (4.3 and 4.4) show the

longitudinal (transverse) momentum distribution d6N/dp3dx3 of produced quarks and gluons,

respectively, at a fixed transverse (longitudinal) momentum |p⊥|/
√

|gE0| = 0.1 (Pz = pz−qĀ =

1.5 ×
√
gĒ0, where q = q

(fund.)
i or q

(ad.)
A ). The three panels in each figure differentiate values
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Figure 4.2: The longitudinal kinetic momentum distribution d6Ng+/dp
3dx3 = |β(A)A,σ,p|2/(2π)3

of produced gluons at a fixed transverse momentum |p⊥|/
√
|gE0| = 0.1. Different panels

differentiate values of the color charge q
(ad.)
A (A = 1, . . . , Nc(Nc − 1)/2) of gluons with color A.

We set the color angle θ = 0, and the corresponding gluon charge q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 =

−1/2 (left), q
(ad.)
2 = −1/2 (middle), and q

(ad.)
3 = 1 (right).

Figure 4.3: The transverse momentum distribution d6Nq/dp
3dx3 = |β(ψ)f,i,p,s|2/(2π)3 of pro-

duced massless (mf/
√
gĒ0 = 0) quarks at a fixed longitudinal kinetic momentum Pz =

pz − q
(fund.)
i Ā = 1.5 ×

√
gĒ0. Different panels differentiate values of the color charge q

(fund.)
i

(i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the corresponding

quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and q

(fund.)
3 = 0

(right).
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Figure 4.4: The transverse momentum distribution d6Ng+/dp
3dx3 = |β(A)A,σ,p|2/(2π)3 of pro-

duced gluons at a fixed kinetic longitudinal momentum Pz = pz − q
(ad.)
A Ā = 1.5 ×

√
gĒ0.

Different panels differentiate values of the color charge q
(ad.)
A (A = 1, . . . , Nc(Nc − 1)/2) of glu-

ons with color A. We set the color angle θ = 0, and the corresponding gluon charge q
(ad.)
A read

q
(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and q

(ad.)
3 = 1 (right).

of the color charge of quarks q
(fund.)
i=1,...,Nc

(4.22) and of gluons q
(ad.)
A=1,...,Nc(Nc−1)/2 (4.20). With our

particular choice θ = 0, the color charges q
(fund.)
i , q

(ad.)
A read

q
(fund.)
i =

 1/2

−1/2

0


i

, q
(ad.)
A =

−1/2

−1/2

1


A

. (4.88)

We remark that the momentum distribution of a particular colored particle is, however, not a

physical observable because it is not color singlet; one has to sum up all the color degrees of

freedom to get a physically meaningful (gauge-invariant) observable. Nevertheless, the momen-

tum distribution is very useful in understanding that the basics of quark and gluon production

in QCD is the same as the previous two studies (see Section 2.4.1 and 3.2.1). Indeed, one im-

mediately notices from the figures that the momentum distribution of created particles strongly

depends on the color charges q
(fund.)
i , q

(ad.)
A . This means that the value of the color angle θ, on

which the color charges q
(fund.)
i , q

(ad.)
A are uniquely determined, strongly affects the momentum

distribution. However, the distributions for each color charge is consistent with the Schwinger

formula for a constant electric field. That is, quarks and gluons are constantly created at around

P = 0, and, after they are created, they are accelerated by the electric field in the longitudinal

direction as dP /dt = qĒ0. The transverse distribution, on the other hand, is nicely reproduced

by the asymptotic formulas (4.86) and (4.87). Thus, one understands

d6Ng±

dp3dx3
∼ 1

(2π)3
exp

[
−π p2

⊥

|q(ad.)A Ē(t)|

]
θ(∓pz(pz ∓ q

(ad.)
A Ā(t))),
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d6N(−)
q

dp3dx3
∼ 1

(2π)3
exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē(t)|

]
θ(∓pz(pz ∓ q

(fund.)
i Ā(t))), (4.89)

which are the same as what we found in Section 2.4.1 and 3.2.1.

4.2.2 total number of quarks and gluons

analytical estimate at t→ ∞

One may integrate the asymptotic formulas (4.86) and (4.87) over the momentum space p to

obtain an analytical estimate for the total number of quarks and gluons produced at t→ ∞ as

d3N(−)
q

dx3
−−−→
t→∞

1

(2π)3

∑
f

∑
i

∑
s

|q(fund.)i Ē0|2T exp

[
−π

m2
f

|q(fund.)i Ē0|

]

=
Ns

(2π)3

∑
f

∑
i

|q(fund.)i Ē0|2T exp

[
−π

m2
f

|q(fund.)i Ē0|

]
, (4.90)

d3Ng±

dx3
−−−→
t→∞

1

(2π)3

∑
A

∑
σ=1,2

|q(ad.)A Ē0|2T

=
Nσ

(2π)3

∑
A

|q(ad.)A Ē0|2T, (4.91)

where the use is made of the relation
∫
dpz ∼ |qĒ0|T with q = q

(fund.)
i , q

(ad.)
A . We also used the

fact that the quark and the gluon production is independent of the spin s and the physical

polarization σ = 1, 2, respectively, because these two degrees of freedom do not couple to the

electric field, so that the summation over s, σ trivially gives the factor of Ns = 2 and Nσ = 2.

Unfortunately, one cannot take the flavor f summation analytically, but it may be good to

approximate it as

d3N(−)
q

dx3

∣∣∣∣∣
t→∞

∼ NsNlq

(2π)3

∑
i

|q(fund.)i Ē0|2T, (4.92)

where we neglected contributions from “heavy” quarks satisfying m2
f ≳

√
|gĒ0| and only those

from “light” quarks satisfying m2
f ≲

√
|gĒ0| are counted, which gives the factor of Nlq rep-

resenting the number of “light” quarks. Now, with the help of the color summation formula

(4.23), one can easily take the color summation over i, A to find

d3N(−)
q

dx3

∣∣∣∣∣
t→∞

∼ NsNlq

16π3
|gĒ0|2T =

3

8π3
|gĒ0|2T, (4.93)

d3Ng±

dx3

∣∣∣∣
t→∞

=
NσNc

16π3
|gĒ0|2T =

3

8π3
|gĒ0|2T. (4.94)
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Here, we set Nlq = 3, i.e., we regard the strange quark ms ∼ 100 MeV is sufficiently “light”

because the typical color field strength in actual physical situations is gĒ0 ∼ O(1 GeV) (see

Fig. 4.7 for the justification of this treatment).

Equations (4.93) and (4.94) tell us that the total number of quarks and gluons produced

at t → ∞ is independent of the color angle θ because of the color summation i, A. It is also

interesting to point out that quarks and gluons are equally produced by the classical field as

N(−)
q
/Ng± = 1 at t → ∞ if one neglects backreaction. This is because the non-perturbative

Schwinger mechanism for a constant electric field is independent of statistics of charged parti-

cles. We shall see, however, that the situation changes when one considers intermediate particle

spectra (see Fig. 4.6) and/or backreaction (see Fig. 4.13), where quantum statistics of particles

play some important roles.

dynamical evolution

Let us discuss the total number of produced quarks and gluons, d3N(−)
q
/dx3 =

∑
f,i,s

∫
d3pd6N(−)

q
/

dp3dx3 and d3Ng±/dx
3 =

∑
A,σ

∫
d3pd6Ng±/dp

3dx3, by numerically integrating the Bogoliubov

coefficients squared |β|2. The results are plotted in Figs. 4.5 - 4.7.

Figure 4.5: Total number of produced quarks d3N/dx3 =
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3 (left)

and gluons d3N/dx3 =
∑

A,σ,g±

∫
d3pd6Ng±/dp

3dx3 (right). The different color corresponds

to different color angles θ = 0 (red), π/12 (blue), and π/6 (green). The dashed lines are the

expectation from the estimates (4.93) and (4.94).

The total number of quarks and gluons produced for several values of the color angle θ is

plotted in Fig. 4.5. Here, we consider a massless Nf = 3 flavor case (the quark massmf - and the

number of flavor Nf-dependence in quark production will be discussed in Fig. 4.7). By noting

the definition of the color charges (4.20) and (4.22), it is sufficient to restrict our attention to

0 ≤ θ ≤ π/6 in investigating the color angle θ-dependence. The figures show that the color

angle θ-dependence in quark and gluon production is negligible. This is because the color angle
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Figure 4.6: A ratio Rq−g of total quark number to gluon number R = (Nq +Nq̄)/(Ng+ +Ng−)

for different values of the color angle θ = 0 (red), π/12 (blue), and π/6 (green).

θ-dependence is a higher order effect ∝ |q(fund.)i |n, |q(ad.)A |n (n ≤ 3) in terms of the color charges

q
(fund.)
i , q

(ad.)
A . Indeed, the leading order contribution to quark and gluon production always begin

with |q(fund.)i |2, |q(ad.)A |2 in both the perturbative particle production mechanism which dominates

at early times (see Eqs. (2.76) and Eq. (3.104)) and the non-perturbative particle production

mechanism which dominates for later times (see Eqs. (4.93) and (4.94)). Because of the color

summation formula (4.23), terms proportional to |q(fund.)i |2, |q(ad.)A |2 are always θ-independent

after the color degrees of freedom i, A are summed up. We also find that both quark and gluon

number are consistent with the estimates (4.93) and (4.94), although the agreement is better

in gluon production. This is because of the perturbative enhancement of particle production at

early times as was discussed in Section 3.2.2. That is, the perturbative enhancement of quark

production at early times is greater than that of gluon production, which results in a greater

excess from the naive estimate (4.93) in quark production. This aspect is more clearly visible

in Fig. 4.6, where a ratio Rq−g of the total quark number to the total gluon number is plotted.

From the figure, one understands that quarks are produced about two times more than gluons

at early times because of the perturbative particle production mechanism. Indeed, one can

understand the number “two” within the lowest order perturbation theory: By extending the

QED calculation (2.77) and the Yang-Mills one (3.104) to the case of QCD, one easily finds

within the lowest order perturbation theory that

d3N(−)
q

dx3
=

1

16π2

∑
f

∑
i

∑
s

∫ ∞
2mf

dω

√
1−

4m2
f

ω2

1

3

(
2 +

4m2
f

ω2

)
|q(fund.)i Ẽ(ω)|2

−−−→
mf→0

NsNlq

48π2

∫ ∞
0

|gẼ(ω)|2

=
1

8π2

∫ ∞
0

dω|gẼ(ω)|2, (4.95)
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d3Ng±

dx3
=

1

48π2

∑
A

∑
σ=1,2

∫ ∞
0

dω|q(ad.)A Ẽ(ω)|2

=
NcNσ

96π2

∫ ∞
0

dω|gẼ(ω)|2

=
1

16π2

∫ ∞
0

dω|gẼ(ω)|2, (4.96)

from which one can perturbatively evaluate R as

Rq−g ≡
Nq +Nq̄

Ng+ +Ng−

∼ 2. (4.97)

The lowest order calculation should be valid for t→ 0 limit. The ratio takes values larger than

two, which slightly depends on the color angle θ, at early times 0 ≲ t ≲ 2 because of higher

order perturbative contributions ∝ |q(fund.)i |n, |q(ad.)A |n (n ≥ 3).

Figure 4.7: [Left] The number of flavor Nf-dependence in the total number of quarks produced

d3(Nq +Nq̄)/dx
3 for Nf = 2 (up, down) in red, 2+ 1 (up, down, strange) in blue, and 2+ 1+1

(up, down, strange, charm) in green. [Right] A suppression factor of charm and strange quark

production in Nf = 2 + 1 + 1 case Rq = Nq/(Nu +Nd +Ns +Nc). In both panels, parameters

are set as gĒ0 = 1 GeV2; θ = 0; and mu = md = 0 GeV, ms = 0.1 GeV, mc = 1.2 GeV.

The number of flavor Nf- and the quark mass mf -dependence in quark production are

investigated in Fig. 4.7. Here, we set gĒ0 = 1 GeV2, which is a typical value of the QCD string

tension and/or the color electromagnetic field strength produced in the early stage dynamics

of heavy ion collisions at the RHIC energy scale. The mass of up, down, strange, and charm

quarks are given by mu = md = 0 GeV, ms = 0.1 GeV, and mc = 1.2 GeV, respectively. We

also set the color angle θ = 0 for simplicity; one can explicitly check that the following results

depend on the color angle θ very slightly as in Figs. 4.4 - 4.6.

In the left panel of Fig. 4.7, the total number of produced quarks is plotted with various

values of Nf = 2 (up, down), 2 + 1 (up, down, strange), and 2 + 1 + 1 (up, down, strange,
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charm). We immediately notice that the change of the quark multiplicity from Nf = 2 to

Nf = 2+1 is significant, while that from Nf = 2+1 to Nf = 2+1+1 is negligible. This results

strongly indicate that the inclusion of strange (charm) degree of freedom is inevitable (may be

negligible) in understanding actual physical phenomena involving strong color electromagnetic

fields for the typical field strength of the order of gĒ0 ∼ 1 GeV2.

In the right panel of Fig. 4.7, we plotted a ratio of the multiplicity of massive charm and

strange quarks to the total quark multiplicity for Nf = 2+1+1 case, i.e., Rq = Nq/(Nu+Nd+

Ns +Nc). From this panel, one understands that the strange quark production is comparable

to the production of massless up and down quarks during the whole time-evolution because

the strange quark mass is sufficiently “light” compared to the strength of the electric field we

are considering as m2
s ≪ |gĒ0|. On the other hand, the charm quark production that it is

comparable to the production of the “light” quarks for smaller values of t ≲ 1 GeV−1 because

of the perturbative enhancement of the particle production discussed in Section 2.3. Because

of this, the ratio takes about 1/4 for all species of quarks at the very beginning of the time-

evolution. Whereas, the charm quark production is negligible for larger values of t ≳ 1 GeV−1

because non-perturbative particle production mechanism is strongly suppressed for the heavy

quark production. This is the reason why the ratio for charm quarks decreases to zero, while

that for up, down, and strange quarks takes values at around 1/3. Notice that, from the

non-perturbative Schwinger formula for a constant electric field (i.e., the estimate (4.90)), one

naively expects that the ratio for charm quarks should be exponentially suppressed and hence

very tiny as

Rq ∼

∑
i |q

(fund.)
i | exp

[
−π m2

c

|q(fund.)i Ē0|

]
∑

i

∑
f |q

(fund.)
i | exp

[
−π m2

f

|q(fund.)i Ē0|

] ∼

∑
i |q

(fund.)
i | exp

[
−π m2

c

|q(fund.)i Ē0|

]
3
2
+
∑

i |q
(fund.)
i | exp

[
−π m2

c

|q(fund.)i Ē0|

] ∼ 0.00004

(4.98)

for θ = 0. Our result is much larger than this value because the heavy charm quark mass

requires a long time for the non-perturbative particle production mechanism to dominate as

was discussed in Fig. 2.10.

4.3 Dynamical evolution with backreaction

We discuss the dynamical evolution of the system with backreaction by numerically solving

the equations of motion (4.32)-(4.37) and computing the quark and the gluon distribution

functions, the decay of the color electric field, the total number of quarks and gluons produced,

the energy density, and the pressure of the system.
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4.3.1 setup

We consider the case where there is a spatially homogeneous classical color electric field at an

initial time t = t0 = 0 given by

Ā(t0) = 0, Ē(t0) = Ē0,
dĒ(t0)

dt
= 0, (4.99)

and that there are no classical sources applied on the system J̄µ = 0 for t > t0 = 0.

Throughout this section, we considerNf = 2+1+1 case. We set parameters as gĒ0 = 1 GeV2

for the initial electric field strength; mu = md = 0 GeV, ms = 0.1 GeV, mc = 1.2 GeV for

quark masses; g = 1 for the strong coupling constant; and θ = 0 for the color angle. We note

that one can explicitly demonstrate that our results presented below is insensitive to values of

the color angle θ except for the momentum distributions discussed in Section 4.3.2.

4.3.2 quark and gluon distribution

Figures 4.8 and 4.9 (4.10 and 4.11) display the longitudinal (transverse) momentum distribution

d6N/dp3dx3 of produced quarks and gluons, respectively, at a fixed transverse (longitudinal)

momentum |p⊥| = 0.044 GeV (Pz = pz − qĀ = 1.5 GeV, where q = q
(fund.)
i or q

(ad.)
A ). The

three panels in each figure correspond to different values of the color charge of quarks q
(fund.)
i

and gluons q
(ad.)
A . For our particular parameter choice θ = 0, they are given by q

(fund.)
1 =

1/2, q
(fund.)
2 = −1/2, q

(fund.)
3 = 0 and q

(ad.)
1 = −1/2, q

(ad.)
2 = −1/2, q

(ad.)
3 = 1.

Figure 4.8: The kinetic longitudinal momentum distribution d6Nq/dp
3dx3 = |β(ψ)f,i,p,s|2/(2π)3

of produced massless quarks (up or down) at a fixed transverse momentum |p⊥| = 0.044 GeV.

Different panels correspond to different values of the color charge q
(fund.)
i (i = 1, . . . , Nc) of

quarks with color i. We set the color angle θ = 0, and the corresponding quark charge q
(fund.)
i

read q
(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and q

(fund.)
3 = 0 (right).
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Figure 4.9: The kinetic longitudinal momentum distribution d6Ng+/dp
3dx3 = |β(A)A,σ,p|2/(2π)3

of produced gluons at a fixed transverse momentum |p⊥| = 0.044 GeV. Different panels

correspond to different values of the color charge q
(ad.)
A (i = 1, . . . , Nc(Nc − 1)/2) of gluons

with color A. We set the color angle θ = 0, and the corresponding gluon charge q
(ad.)
A read

q
(ad.)
1 = q

(ad.)
A = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and q

(ad.)
3 = 1 (right).

Figure 4.10: The transverse momentum distribution d6Nq/dp
3dx3 = |β(ψ)f,i,p,s|2/(2π)3 of

produced massless quarks (up or down) at a fixed longitudinal kinetic momentum Pz =

pz − q
(fund.)
i Ā = 1.5 GeV. Different panels correspond to different values of the color charge

q
(fund.)
i (i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the corre-

sponding quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and

q
(fund.)
3 = 0 (right).
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Figure 4.11: The transverse momentum distribution d6Ng+/dp
3dx3 = |β(A)A,σ,p|2/(2π)3 of pro-

duced gluons at a fixed longitudinal kinetic momentum Pz = pz − q
(ad.)
A Ā = 1.5 GeV. Different

panels correspond to different values of the color charge q
(ad.)
A (i = 1, . . . , Nc(Nc − 1)/2) of

gluons with color A. We set the color angle θ = 0, and the corresponding gluon charge q
(ad.)
A

read q
(ad.)
1 = q

(ad.)
A = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and q

(ad.)
3 = 1 (right).

The momentum distributions heavily depend on values of the color charges, or the color

angle θ, as was discussed in Section 4.2 without the backreaction. The shape of the momentum

distributions is, however, very different from what we found without the backreaction (see

Figs. 4.1 - 4.4): The classical plasma oscillation and the quantum interferences (i.e., the Bose

enhancement for gluons, the Pauli blocking for quarks, and the strong distortion of the spectra)

occur as were discussed in QED (see Section 2.5.2) and the Yang-Mills theory (see Section 3.3.2).

As there are larger number of charged particle degrees of freedom in QCD (Nc×Ns×Nlq×Nqq̄ =

36 light quarks and Nc(Nc−1)×Nσ = 12 charged gluons) than in QED (Ne±×Ns = 4 electrons)

and in the SUc(Nc = 2) Yang-Mills theory (Nc(Nc − 1) × Nσ = 2 charged gluons), the time-

scale of the plasma oscillation tosc becomes faster. One can estimate the time scale tosc in an

analogous manner in QED (see Section 2.5.2). By assuming that the quantum interferences are

negligible, one finds

√
|gĒ0|tosc ∼

π2

g

√
2πg3

NsNqq̄Nlq

∑
i |q

(fund.)
i |3 +NσNg±

∑
A |q

(ad.)
A |3

∼ 9.0× g−1, (4.100)

which is in agreement with the figures. We note that the charge summations
∑

i |q
(fund.)
i |3,∑

A |q
(ad.)
A |3 do depend on the value of the color angle θ, however, one can numerically check that

the θ-dependence is so tiny that one can safely approximate these summations as
∑

i |q
(fund.)
i |3 ∼

0.2× g3 and
∑

A |q
(ad.)
A |3 ∼ 1.3× g3.
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4.3.3 decay of color electric field

Figure 4.12 displays the time-evolution of the electric feld strength (left) together with the total

color current ⟨: jz :⟩ ≡
∑

αwα ⟨: j z
α :⟩ (right). We observe that the electric field decays faster

than that in previous two studies (see Section 2.5.3 for QED and Section 3.3.3 for the Yang-

Mills theory). This is because the number of charged particles are larger than in the previous

two studies. In particular, increase of gluon degrees of freedom is essential: Gluon production

is huge because of the Bose enhancement, while quark production is strongly suppressed by the

Pauli blocking (see Fig. 4.13 also). Also, it is important that gluon distribution is more severely

distorted by the quantum interferences than those for quarks, which further drives the classical

field to decohere. Because of these two reasons, gluons create larger color current than that for

quarks as in the right panel of Fig. 4.12, and strongly diminish the classical field strength.

Intuitively speaking, our result indicates that the QCD string (with a typical string tension

∼ 1 GeV2) that binds quarks completely breaks down by producing huge number of quarks and

gluons with a relatively short time scale ∼ 10 fm/c when they are instantaneously extended

macroscopically.

Figure 4.12: [Left] The time-evolution of the electric feld strength Ē(t) [Right] The time-

evolution of the color current ⟨: ĵz :⟩: The quark contribution (red), the gluon and ghost con-

tribution (blue), and the sum of them (black).

4.3.4 total number of quarks and gluons

In Fig. 4.13, the total number of produced quarks
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3 and gluons∑

σ,A,g±

∫
d3pd6Ng±/dp

3dx3 together with their ratio Rq−g ≡ [
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3]/

[
∑

σ,A,g±

∫
d3pd6Ng±/dp

3dx3] are plotted.

One immediately notices from Fig. 4.13 that gluons are produced much more abundantly

than quarks. This is because of the Bose enhancement and the Pauli blocking discussed before.
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Figure 4.13: [Left] Total number of produced quarks
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3 (red) and

gluons
∑

σ,A,g±

∫
d3pd6Ng±/dp

3dx3 (blue), and the sum of them (black). The dashed line

is an expectation from the Schwinger mechanism without the backreaction, i.e., the sum of

Eqs. (4.93) and (4.94). [Right] A ratio of the total of quarks to the total number of gluons

Rq−g ≡ [
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3]/[

∑
σ,A,g±

∫
d3pd6Ng±/dp

3dx3].

The ratio of the total quark number to the total gluon number Rq−g is investigated in the right

panel of Fig. 4.13. As was expected from the perturbative calculation without the backreaction

(4.97), the ratio Rq−g takes values about two around t → 0. On the other hand, the ratio

becomes smaller than unity as time goes in contrast to the naive expectation from the Schwinger

mechanism for a constant electric field, see Eqs. (4.93) and (4.94), because of the backreaction

effects.

In Fig. 4.14, quark production is investigated in more detail. We find that strange quarks

are as abundantly produced as the massless up and down quarks for all values of t. On the other

hand, charm production depends on the time scale: For small values of t, charm production is

comparable to the other three “light” quarks (i.e., up, down, and strange quarks) because of

the perturbative enhancement as was so without the backreaction (see Section 4.7). Whereas,

charm production is strongly suppressed for larger value of t because of the mass effect. It is

interesting to point out that the ratio of charm quark production to the total quark production

Rq asymptotes a constant value which is much larger than the value that the Schwinger formula

for a constant electric field gives (4.98). This is because the electric field quickly dies away and

the ratio stops decreasing before reaching the value of the Schwinger formula gives.

4.3.5 energy density

The time-evolution of the energy density of the system is investigated in Figs. 4.15 and 4.16.

From Fig. 4.15, we find that the total energy of the system is always dominated by the gauge
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Figure 4.14: [Left] Total number of quarks
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3 (black), and the con-

tributions from up (red), down (blue), strange (purple), and charm (green). The dashed line

are the expectation from the Schwinger formula without the backreaction (4.93). [Right] A

suppression factor of charm and strange in quark production Rq ≡ Nq/(Nu +Nd +Ns +Nc).

field (the sum of the classical field and the quantum gluons and ghosts), which implies that

the dominant degrees of freedom of the system are not (quantum) quarks but (classical and/or

quantum) gluons. The ratio of the quark energy to the gauge field energy takes maximum at

early times because quark production is larger than gluon production at early times because

of the perturbative enhancement (see Fig. 4.13). At later times, the ratio takes values about

0.35, which is roughly consistent with the number ratio Nq−g ∼ 0.23 displayed in Fig. 4.13.

The difference is because gluons are free from the Pauli principle and a large amount of soft

gluons is produced.

Details of the total gauge field energy (the left panel) and the quark energy (the right

panel) are shown in Fig. 4.16. From the left panel, one understands that the initial classical

field energy is quickly converted into quantum gluons, and eventually the system is completely

dominated by quantum gluons. The right panel shows that the quark energy is dominated by

the three “light” quarks (i.e., up, down, and strange quarks), and the charm contribution is

rather negligible in our energy scale
√
|gĒ0| = 1 GeV. This is consistent with what we found

in the quark production (see Fig. 4.14). We note that there is no peak structure in the charm

quark energy. This is because the charm quark mass is so heavy that the energy supply due to

the acceleration by the electric field after the production is negligible.

4.3.6 pressure

Finally, we investigate the transverse (longitudinal) pressure ⟨: P̂⊥ :⟩ (⟨: P̂z :⟩) of the system.

The results are plotted in Figs. 4.17 and 4.18 (4.19 and 4.20). Also, the degree of an anisotropy

of the system is measured by the ratios, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, which are plotted
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Figure 4.15: [Left] The energy balance between the total gauge field, i.e., the sum of classical

field, quantum gluons, and ghosts (blue), and produced quarks (red). The total energy of

the system represented by the black line is strictly conserved during the whole time-evolution.

[Right] The ratio of the produced quark energy to the total gauge field energy.

in Fig. 4.21. The results are basically the same as what we found in the previous two studies

(see Section 2.5.6 for QED and Section 3.3.6 for the Yang-Mills theory).

For the transverse pressure of the system displayed in Figs. 4.17 and 4.18, we find that the

transverse pressure of the system is again dominated by the total gauge field (i.e., the sum

of the classical field and the quantum gluons and ghosts). Through the decoherence of the

classical field into quantum gluons and quarks, the total transverse pressure of the system dies

away. This is because quantum particles have only soft transverse momenta, since they are

created with almost zero momentum P ∼ 0 and the transverse momentum is conserved during

the time-evolution. The quark pressure is dominated by the three “light” quarks, and the

contribution from charm quarks is negligible because their production is strongly suppressed

as was explained in Fig. 4.13.

The longitudinal pressure of the system is displayed in Figs. 4.19 and 4.20. The longitudinal

pressure is again dominated by the total gauge field. The contributions from quantum particles

are, in contrast to the transverse pressure, sizable because the longitudinal electric field supplies

sizable longitudinal momenta after quantum particles are created. The quark pressure is again

dominated by the three “light” quarks, and the charm contribution is negligible. Notice that

there is no peak structure in the charm quark pressure. This is because the charm quark

mass is so heavy that the longitudinal acceleration by the electric field after the production

is negligible. An important point here, as for the previous two studies (see Section 2.5.6 for

QED and Section 3.3.6 for the Yang-Mills theory), is that the total longitudinal pressure of the

system eventually becomes positive because of the decay of the classical field triggered by the

quantum interaction of cubic order among gluons and quarks.
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Figure 4.16: [Left] The energy balance of the total gauge field energy (black) in terms of the

classical field (red) and the quantum gluons and ghosts (blue). [Right] The total quark energy

(black) together with the contributions from up (red), down (blue), strange (purple), and charm

(green) quarks.

The isotropization of the system is investigated in Fig. 4.21. We find that the system never

gets isotropitized, although the degree of anisotropy gets relaxed. This may be because of our

theoretical treatment, where the mean field and massless approximations were adopted and

collisional effects among created particles are neglected.

4.4 Brief summary

We briefly summarize the main results of this chapter:

• We formulated the Schwinger mechanism in SUf(Nf) ⊗ SUc(Nc = 3) QCD including

backreaction by adopting the mean field approximation and the massless approximation

in Section 4.1.

• By neglecting backreaction, we analytically traced the time-evolution of quark and gluon

distribution functions under a constant color electric field in Section 4.2. We showed

that quark and gluon production is consistent with what one naively estimates with the

Schwinger formula. Various dependences, such as the color angle θ-, the number of flavor

Nf-, and the quark mass mf -dependences, are examined in detail.

• The backreaction problem was extensively studied in Section 4.3. We revealed that the

classical plasma oscillation and the quantum interferences (the Bose enhancement for

gluons, the Pauli blocking for quarks, and strong distortion of quark and gluon spectra)

occur.
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Figure 4.17: The total transverse pressure of the system (black) together with contributions

from the total gauge field, i.e., the sum of classical field, quantum gluons, and ghosts (blue),

and produced quarks (red).

• As a result of the quantum interferences, the particle production mechanism is dramat-

ically modified. In particular, gluon production is greatly enhanced and they quickly

screen the original classical field. The system is eventually dominated by gluons, and

quarks are only secondary (see Figs. 4.13 and 4.15).

• Quark mass mf -dependences are also investigated including backreaction, and found that

the strange (charm) quark production is comparable (negligible) to the massless up and

down quark production. It is interesting, however, that the charm quark production is

much larger than the value the Schwinger formula for a constant electric field gives (see

Fig. 4.14).

• Our formalism does not describe isotropization (or, thermalization) of the system (see

Fig. 4.21). This is because of our mean field treatment and the massless approximation,

by which we neglect scatterings and collision among quarks and gluons.
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Figure 4.18: [Left] The total transverse pressure of the total gauge field (black) together with

contributions from the classical field (red) and the quantum gluons and ghosts (blue). [Right]

The total transverse pressure of produced quarks (black) together with the contributions from

up (red), down (blue), strange (purple), and charm (green) quarks.

Figure 4.19: The total longitudinal pressure of the system (black) together with contributions

from the total gauge field, i.e., the sum of classical field, quantum gluons, and ghosts (blue),

and produced quarks (red).
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Figure 4.20: [Left] The total longitudinal pressure of the total gauge field (black) together with

contributions from the classical field (red) and the quantum gluons and ghosts (blue). [Right]

The total longitudinal pressure of produced quarks (black) together with the contributions from

up (red), down (blue), strange (purple), and charm (green) quarks.

Figure 4.21: Isotropization of the system. The total transverse and longitudinal pressure

scaled by the total energy, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, are plotted in red and blue line,

respectively.





Chapter 5

Particle Production in

Ultra-relativistic Heavy Ion Collisions

One of the most important applications of the Schwinger mechanism can be found in the pre-

equilibrium stage dynamics of heavy ion collisions. Indeed, the pre-equilibrium stage dynamics

is one of the biggest missing pieces in our current understanding of spacetime evolution of ultra-

relativistic heavy ion collisions. We apply the QCD formalism developed so far to this issue

by modeling the initial strong color electromagnetic flux tubes existing just after a collision of

nuclei with a spatially uniform, boost-invariantly expanding electric field1.

For this purpose, we first explain how we can extend the previous formulation of Schwinger

mechanism in QCD (within the mean field and massless approximation) for non-expanding

electric fields to a boost-invariantly expanding one; this will be explained in Section 5.1. In

Section 5.2, by neglecting backreaction from quark, gluon, and ghost fluctuations, we analyt-

ically show how the Schwinger mechanism for an expanding electric field differs/resembles to

the one for the non-expanding electric field previously studied in Section 4. In Section 5.3, we

consider the backreaction, and discuss some phenomenological consequences of our formalism

to the pre-equilibrium stage dynamics of heavy ion collisions.

We use Latin (Greek) indicesm,n, . . . (µ, ν, . . .) for the Cartesian (τ -η) coordinates through-

out this chapter.

A part of Section 5.1 and 5.2 is based on my own work [137].

5.1 Schwinger mechanism in τ-η coordinates

This section is organized as follows: In Section 5.1.1, we first introduce the τ -η coordinates,

which are very useful in treating boost-invariant dynamics. After briefly addressing certain as-

1In reality, the initial strong color electromagnetic flux tubes existing just after a collision of nuclei are

spatially inhomogeneous with typical transverse correlation length ∼ 1/Qs ∼ 0.1 fm, and have magnetic compo-

nents in addition to the electric ones as were reviewed in Section 1.2. Inclusion of these properties are important

to discuss the pre-equilibrium stage dynamics more realistically, however, we leave these topics for a future work.
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sumptions needed to formulate the Schwinger mechanism in QCD for an expanding electric field

in a theoretically sound way in Section 5.1.2, we employ the canonical quantization procedure

in the τ -η coordinates to define particle picture for a boost-invariant system in Section 5.1.3. In

Section 5.1.4, we explain how one can compute particle spectra produced from a boost-invariant

electric field by using the particle picture by following Refs. [137, 159].

5.1.1 τ-η coordinates

In dealing with boost-invariant dynamics, it is very convenient to use the τ -η coordinates

xµ = (τ, x, y, η), instead of the usual Cartesian coordinates ξm = (t, x, y, z). The τ -η coordinates

are defined by the following change of variables

τ =
√
t2 − z2, η =

1

2
ln
t+ z

t− z
. (5.1)

The line element ds2 is then expressed as

ds2 = ηmndξ
mdξn = gµνdx

µdxν , (5.2)

where

ηmn = diag(1,−1,−1,−1), (5.3)

gµν = diag(1,−1,−1,−τ 2) (5.4)

are the metric of the Cartesian coordinates and the τ -η coordinates, respectively.

For later discussions, it is convenient to introduce a viervein matrix emµ [160], which relates

the Cartesian coordinates ξm and the τ -η coordinates xµ as

dξm = emµdx
µ (5.5)

with

emµ ≡ dξm

dxµ
=


cosh η 0 0 τ sinh η

0 1 0 0

0 0 1 0

sinh η 0 0 τ cosh η

 . (5.6)

The inverse matrix of emµ, which we write eµm, is

eµm ≡ dxµ

dξm
=


cosh η 0 0 − sinh η

0 1 0 0

0 0 1 0

−sinh η

τ
0 0

cosh η

τ

 = ηmng
µνen ν . (5.7)



5.1. Schwinger mechanism in τ -η coordinates 135

With the viervein matrix introduced above, one can define a vector V µ in the τ -η coordinates

for a corresponding vector V m in the Cartesian coordinates as

Vµ ≡ emµVm, (5.8)

V µ ≡ eµmV
m = gµνVν . (5.9)

One can also generalize these definitions (5.8) and (5.9) to general tensors T µ··· ν··· as

T µ··· ν··· = eµm · · · en ν · · ·Tm··· n···. (5.10)

As derivatives acting on tensors ∂µT
ν···

ρ··· are not covariant under a coordinate transformation,

it is convenient to introduce a covariant derivative ∇µ for curvilinear coordinates by

∇µT
ν···

ρ··· = ∂µT
ν···

ρ··· + ΓνµλT
λ···

ρ··· + · · · − ΓλµρT
ν···

λ··· − · · · , (5.11)

where Γµνρ is the Christoffel symbol denoted by

Γµνλ ≡
1

2
gµρ (∂νgλρ + ∂λgρν − ∂ρgνλ) , (5.12)

whose non-zero elements in the τ -η coordinates are

Γηητ = Γητη = 1/τ, Γτηη = τ. (5.13)

One can easily check that the covariant derivative defined above surely preserves the covariance

under an arbitrary coordinate transformation. We note that the covariant derivative commutes

with the metric gµν and the viervein matrix eµm because 0 = ∇λg
µν = ∇λe

µ
m.

equations of motion

One can easily obtain equations of motion in the τ -η coordinates xµ from those in the Cartesian

coordinates ξm by the following replacements2:

ηmn → gµν ,

Tmn··· → T µν···,

∂m → ∇µ, (5.14)

where Tmn··· is an arbitrary tensor.

Now, let us assume the Abelian dominance and apply the mean field and massless approxi-

mations as in Section 4.1. For this case, the corresponding equations of motion of QCD in the

2In general curved spacetime coordinates, there exists an additional term coming from spin connections Γµ

in the fermion covariant derivative, which is zero in the τ -η coordinates.
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Cartesian coordinates are given by Eqs. (4.32)-(4.37). From the replacement rule (5.14), we

find the equations of motion of QCD in the τ -η coordinates as∑
α

wα ⟨: ĵα,µ :⟩+ J̄µ = ∇ν∇νĀµ, (5.15)

0 = [i/∂ − q
(fund.)
i /̄A−mf ]ψ̂f,i, (5.16)

0 = ∇ν∇ν âα,µ, (5.17)

0 = ∇̄ ν
A ∇̄A,νÂA,µ, (5.18)

0 = ∇ν∇ν

ˆ(−)
C α, (5.19)

0 = ∇̄ µ
A ∇̄A,µ

ˆ(−)
C A, (5.20)

where

∇̄A,µ ≡ ∇µ + iq
(ad.)
A Āµ (5.21)

is the covariant derivative with respect to the classical gauge field Āµ. The color current (in the

Abelian Hα-directions) ⟨: jα,µ :⟩ can also be obtained from ⟨: jα,m :⟩ (4.27) by the replacement

rule (5.14), and its explicit expression will be given in Eq. (5.29). We again regulate the vacuum

divergence by the normal ordering procedure ⟨•̂⟩ → ⟨: •̂ :⟩ in terms of intermediate operators

at “time” τ (see Section 5.1.3), not by that at time t, because the proper “time” variable is τ

in a boost-invariantly expanding system.

In solving the gluon field equations (5.17) and (5.18), it is convenient to expand the gluon

fields âα,µ, ÂA,µ by a polarization vector ϵσ,µ(x) (σ = 0, 1, 2, 3), which can depend on spacetime

in general, as (
âα,µ

ÂA,µ

)
≡
∑
σ

ϵσ,µ

(
âα,σ

ÂA,σ

)
. (5.22)

Here, we construct the polarization vector ϵσ,µ by contracting an arbitrary constant four vector

ϵ̃σ,m by the viervein matrix emµ as

ϵσ,µ ≡ emµϵ̃σ,m. (5.23)

The important property of the above defined polarization vector ϵσ,µ(x) is that whose covariant

derivative is vanishing as

∇µϵσ,ν = 0. (5.24)

For later purposes, it is convenient to normalize the constant vector ϵ̃σ,m in the same manner

as was so for the non-expanding polarization vector ϵσ,m (3.42) as

ηmnϵ̃∗σ,mϵ̃σ′,n = −ξσσ′ ,
∑
σσ′

ξσσ′ ϵ̃∗σ,mϵ̃σ′,n = −ηmn. (5.25)
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This normalization condition for ϵ̃σ,m is equivalent to normalizing ϵσ,µ as

gµνϵ∗σ,µϵσ′,ν = −ξσσ′ ,
∑
σσ′

ξσσ′ϵ∗σ,µϵσ′,ν = −gµν . (5.26)

Now, by noting the relation (5.24) and the fact that âα,σ, ÂA,σ are scalar functions, we find that

âα,σ,
ˆ(−)
C α and ÂA,σ,

ˆ(−)
C A obey the same differential equation, respectively, as

0 = ∇ν∇ν

âα,σˆ(−)
C α

 =

[
∂2τ +

∂τ
τ

− ∂2
⊥ −

∂2η
τ 2

]âα,σˆ(−)
C α

 , (5.27)

0 = ∇̄ν∇̄ν

ÂA,σ

ˆ(−)
C A

 =

[
D̄2
τ +

D̄τ

τ
− D̄2

⊥ −
D̄2
η

τ 2

]ÂA,σ

ˆ(−)
C A

 . (5.28)

conservation law

Because of the symmetries in the (approximated) QCD Lagrangian, the color current ⟨: jα,µ :⟩
and the symmetric energy-momentum tensor ⟨: T µν :⟩ are conserved in the τ -η coordinates as

well.

color current ĵα,µ

One can explicitly express the vacuum expectation value of the color current ⟨: jα,µ :⟩ in the

τ -η coordinates as

⟨: ĵ µ
α :⟩ =g

∑
f

∑
i

(Hα)ii ⟨: ˆ̄ψf,iγ
µψ̂f,i :⟩

ig
∑
A

vα,A

⟨
: Â†A,ν

(
∇̄ µ
A Â ν

A

)
−
(
∇̄ µ
A Â ν

A

)†
ÂA,ν :

⟩
− g

∑
A

vα,A

⟨
: ˆ̄C†A

(
∇̄A,µĈA

)
+
(
∇̄A,µĈA

)† ˆ̄CA −
(
∇̄A,µ

ˆ̄CA
)†

ĈA − Ĉ†A
(
∇̄A,µ

ˆ̄CA
)
:

⟩
.

(5.29)

The color current ⟨: jα,µ :⟩ is conserved as

0 = ∇µ ⟨: jα,µ :⟩

=
1

τ
∂µ [τ ⟨: jα,µ :⟩] . (5.30)

Notice that, in the first line, the divergence is taken not by the simple derivative ∂µ as in the

Cartesian coordinates (4.28) but by the covariant one ∇µ in the τ -η coordinates. The factor τ

in the braket of the second line physically means that the current density decreases as ∝ 1/τ

because the system volume increases as ∝ τ due to the longitudinal expansion.

symmetric energy-momentum tensor T̂ µν

The explicit expressions for the vacuum expectation value of the symmetric energy-momentum
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tensor ⟨: T̂ µν :⟩ in the τ -η coordinates read

⟨: T̂µν :⟩ =gµν
[
1

4
F̄ ρσF̄ρσ −

1

2
(∇λĀ

λ)2 − Āρ∇ρ∇σĀ
σ

]
−
[
F̄ µ

λF̄
νλ − Āµ∇ν∇λĀ

λ − Āν∇µ∇λĀ
λ
]

+ gµν
∑
α

Re

⟨
:
1

4
f̂ ρσ
α f̂α,ρσ −

1

2
(∇λâ

λ
α)

2 − â ρ
α ∇ρ∇σâ

σ
α :

⟩
−
∑
α

Re
⟨
: f̂ µ

α,λ f̂
λν
α − â µ

α ∇ν∇λâ
λ
α − â ν

α ∇µ∇λâ
λ
α :
⟩

+ 2×

(
gµν
∑
A

Re

⟨
:
1

4
F̂ †A,ρσF̂

ρσ
A − 1

2

∣∣∣∇̄A,λÂ λ
A

∣∣∣2 − Â ρ†
A (∇̄A,ρ∇̄A,σÂ σ

A ) :

⟩

−
∑
A

Re
⟨
: F̂ µ†

A,λ F̂ λν
A − Â µ†

A (∇̄ ν
A ∇̄A,λÂ λ

A )− Â ν†
A (∇̄ µ

A ∇̄A,λÂλ) :
⟩)

+
∑
α

Re
⟨
: i×

[
gµν(∇λ

ˆ̄Cα)(∇λĈα)− (∇µ ˆ̄Cα)(∇νĈα)− (∇ν ˆ̄Cα)(∇µĈα)
]
:
⟩

+ 2×
∑
A

Re
⟨
: i
[
gµν(∇̄A,λ

ˆ̄CA)†(∇̄ λ
A ĈA)− (∇̄ µ

A
ˆ̄CA)†(∇̄ ν

A ĈA)− (∇̄ ν
A

ˆ̄CA)†(∇̄ µ
A ĈA)

]
:
⟩
,

(5.31)

where F̄µν , f̂α,µν , and F̂A,µν are (a part of) an Abelian and a non-Abelian component of the

total field strength tensor F̂µν ≡ ∇µÂν −∇νÂµ+ ig[Âµ, Âµ] = ∂µÂν −∂νÂµ+ ig[Âµ, Âµ] as was

introduced in Eq. (4.24). In τ -η coordinates, they read

F̄µν ≡ ∇µĀν −∇νĀµ

= ∂µĀν − ∂νĀµ,

f̂α,µν ≡ ∇µâα,ν −∇ν âα,µ

= ∂µâα,ν − ∂ν âα,µ,

F̂A,µν ≡ ∇̄A,µÂA,ν − ∇̄A,νÂA,µ

= D̄A,µÂA,ν − D̄A,νÂA,µ, (5.32)

where the connection contributions cancel out.

The conservation law for the symmetric energy-momentum tensor ⟨: T̂ µν :⟩ becomes

∇µ ⟨: T̂ µν :⟩ = J̄µF̄
µν + Āν∇µJ̄

µ. (5.33)

As was the conservation law for the color current (5.30), the covariant divergence gives the

correct energy conservation law in the τ -η coordinates.

The energy density and the transverse/longitudinal pressure in the τ -η coordinates can be
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obtained by the diagonal components of the symmetric energy-momentum tensor as

⟨: ϵ̂ :⟩ ≡ ⟨: T̂ττ :⟩ ,

⟨: P̂⊥ :⟩ ≡ ⟨: T̂xx + T̂yy :⟩
2

,

⟨: P̂z :⟩ ≡
1

τ 2
⟨: T̂ηη :⟩ . (5.34)

5.1.2 assumptions on the system

So far, we assumed the Abelian dominance and adopted the mean field and massless approxima-

tions to get the equations of motion (5.15)-(5.20). We make some more assumptions to proceed

further as were done in formulating the Schwinger mechanism in a non-expanding system within

QED (Section 2.1.2); the Yang-Mills theory (Section 3.1.2); and QCD (Section 4.1.2):

(i) (Homogeneity in space)

We restrict our attention to the case, where only a boost-invariant and spatially uniform

classical electric field is present, i.e., the electric field does not depend on the spatial

variables x, y, η and depends only on τ . Suppose that we define the z-axis by the direction

of the electric field. Then, we can express the classical gauge field Āµ in the following

form without loss of generality by fixing the residual gauge freedom as

Āτ (x) = Āx(x) = Āy(x) = 0, Āη(x) = −
∫ τ

dτ ′τ ′Ē(τ ′). (5.35)

In terms of the classical source J̄µ, this assumption is equivalent to assuming that the

source is independent of x, y, η and has a current component in the η-direction only

Jµ(x) = δµηJ(τ) .

(ii) (Vacuum initial condition)

We assume that the initial state is given by a vacuum |state; in⟩ = |vac; in⟩, i.e., there are
no particles initially.

(iii) (Adiabatic hypothesis)

We assume that the classical field exists only in the forward light cone region t > |z| by
appropriately switching on and off the classical current J̄µ, and that the classical gauge

field smoothly approaches a pure gauge field (i.e., no interaction with the classical gauge

field) at the boundary t→ 0.

The second assumption is completely the same as the “assumption (ii)” in the non-expanding

studies (see Section 2.1.2, 3.1.2, and 4.1.2). The remaining two assumptions are essentially the

same as those in the non-expanding studies.
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The first assumption is required so as to surely regulate the unwanted vacuum divergences

via the normal ordering procedure as was addressed in Section 2.1.2. This assumption is also

useful because it largely simplifies the backreaction equation (5.15) as

0 =
∑
α

wα ⟨: ĵα,τ :⟩ =
∑
α

wα ⟨: ĵα,x :⟩ =
∑
α

wα ⟨: ĵα,y :⟩ , (5.36)

−1

τ

dĒ

dτ
=
∑
α

wα ⟨: ĵ η
α :⟩+ J̄η. (5.37)

Also, the energy conservation law (5.33) gets simplified as

∂τ (τ ⟨: ϵ̂ :⟩) + ⟨: P̂z :⟩ = −τ 2ĒJ̄η. (5.38)

As was noted in the footnote 1, this assumption is a somewhat strong simplification because

the color electromagnetic flux tubes existing just after a collision have inhomogeneous spatial

structure in the transverse plane, which might modify our phenomenological results presented

below; we leave this improvement for a future work.

The second assumption is required so as to be consistent with the assumption (i) and the

resulting backreaction equation (5.36) as for the non-expanding studies (see Section 2.1.2). In

ultra-relativistic heavy ion collisions, an initial state is actually given by a vacuum state.

The third assumption is useful in uniquely defining a particle picture at time τ → 0 in the

canonical quantization procedure as was explained in detail in Section 2.1. This assumption is

also reasonable in ultra-relativistic heavy ion collisions because projectile nuclei are running on

the light-cone τ = 0 and the classical gauge field created from the nuclei is smoothly connected

between τ = 0+ (color electromagnetic field present) and 0− (only pure gauge fields present).

5.1.3 canonical quantization

Now, we canonically quantize the (charged) fluctuations ψ̂f,i, ÂA,σ,
ˆ(−)
C A in the τ -η coordinates.

Here, we do not consider the fluctuations âα,σ,
ˆ(−)
C α for simplicity because they do not couple to

the classical field so that no particle production occur for these fluctuations.

The canonical quantization in the τ -η coordinates is recently developed by Tanji [159] within

scalar QED, and later extended to the QCD problem, i.e., quark and gluon production by the

author [137] (although both studies neglect backreaction effects). The canonical quantization

procedure is basically done in the same way as was done in the non-expanding case (see Sec-

tion 4.1.4), however, there are some differences because of the expansion:

• Now that the system expands in the longitudinal direction, the longitudinal momentum

label pz is no longer a good quantum number. Instead of pz, one has to use pη, which

is a Fourier conjugate to the spacetime rapidity η, in labeling the momentum space in a

boost-invariant way.
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• The time variable that manifestly treats the boost-invariance of the system is not t, but τ ,

so that one should quantize fluctuations on an equal τ -surface, not on an equal t-surface.

• The Poincare invariance is obviously broken in the τ -η coordinates so that a correct

definition of the positive/negative frequency mode function becomes unclear.

quarks

Let us begin with quantizing the quark fluctuation ψ̂f,i in the τ -η coordinates. By noting the

homogeneity in space (the assumption (i) in Section 5.1.2), we Fourier expand the fluctuation

ψ̂f,i to write

ψ̂f,i(x) =
∑
s

∫
d2p⊥dpη

[
+ψ

(τ)
f,i,p⊥,pη ,s

(τ)âf,i,p⊥,pη ,s(τ) + −ψ
(τ)
f,i,p⊥,pη ,s

(τ)b̂†f,i,−p⊥,−pη ,s(τ)
] eip⊥·x⊥eipηη

(2π)3/2
.

(5.39)

As was noted in the beginning of this section, here we label the momentum space by pη conjugate

to the spacetime rapidity η, not by pz conjugate to z, so as to treat the boost-invariance

of the system manifestly. The physical meaning of the boost-invariant momentum pη is the

longitudinal pz-momentum observed in a frame moving with velocity v = z/t (the co-moving

frame): The change of variable (5.1) tells us that the boost-invariant momentum pη is related to

the momenta pm in the Cartesian coordinates (or in the center-of-mass frame) as pη = emηpm =

zpt + tpz. Now, we consider to boost this relation with the velocity v = z/t (η = tanh−1(z/t)),

by which t, z transform as t → τ, z → 0. Since pη is a boost-invariant quantity, one obtains

pη/τ = p′z, where p
′
z is the longitudinal momentum observed in the co-moving frame.

±ψ
(τ)
f,i,p⊥,pη ,s

are intermediate mode functions at an intermediate time τ . We only consider to

quantize the fluctuation at an intermediate time 0 < τ <∞, where interactions with the classi-

cal gauge field are still present. The identification of the correct intermediate positive/negative

frequency mode functions ±ψ
(τ)
f,i,p⊥,pη ,s

can be done in an analogous manner to the non-expanding

study (see Section 2.1.4). That is, we define the positive/negative frequency mode functions at

an intermediate time by plane waves ±ψ
(τ)
f,i,p⊥,pη ,s

∼ ±ψ
(plane)
f,i,p⊥,pη ,s

by assuming that the classical

gauge field is sufficiently adiabatic in time τ . The difference is that the plane wave solutions in

the τ -η coordinates are not given by the simple exponential waves ∝ e±iωpt, which was the case

for the non-expanding problems, because they do not satisfy the equation of motion (5.15) in

our expanding problem as was noted in the beginning of this section. In view of this circum-

stance, before quantizing the fluctuation, let us first explain what are the correct plane wave

solutions in the τ -η coordinates by explicitly solving the equation of motion (5.15) without the

classical gauge field Āµ = 0.

plane wave solutions

From the equation of motion (5.15) together with the spatial homogeneity (assumption (i)

in Section 5.1.2), one obtains the differential equation for Fourier modes ±ψf,i,p⊥,pη ,s(τ) exp[ip⊥ ·
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x⊥ + ipηη]/(2π)
3/2 as

0 =
[
iγτ∂τ − γ⊥ · p⊥ − γη(pη + q

(fund.)
i Āη)−mf

]
±ψf,i,p⊥,pη ,s. (5.40)

In solving the mode equation (5.40), we first note that the gamma matrices γτ , γη are η-

dependent. In order to remove this complexity, it is convenient to transform ±ψf,i,p⊥,pη ,s by a

boost operator S as

±ψf,i,p⊥,pη ,s ≡ S±ψ̃f,i,p⊥,pη ,s, (5.41)

where

S ≡ exp
[η
2
γtγz

]
. (5.42)

By noting that the gamma matrices γτ , γη are transformed by the boost operator S as(
γτ

γη

)
= S

(
γt

γz

)
S−1, (5.43)

one obtains a differential equation for ±ψ̃f,i,p⊥,pη ,s as

0 =

[
iγt∂τ − γ⊥ · p⊥ − γz

1

τ

(
pη + q

(fund.)
i Āη(τ)−

i

2
γtγz

)
−mf

]
±ψ̃f,i,p⊥,pη ,s. (5.44)

This equation (5.44) can be solved in the same manner as what we did in solving the non-

expanding mode equation (see Appendix A). That is, we decompose ±ψ̃f,i,p⊥,pη ,s by eigen-spinors

of a projection operator P± ≡ (1± γtγz)/2 as

+ψ̃f,i,p⊥,pη ,s = Af,i,p⊥,pη ,sUf,i,p⊥,pη ,s +Bf,i,p⊥,pη ,sVf,i,p⊥,pη ,s,

−ψ̃f,i,p⊥,pη ,s = B∗f,i,p⊥,pη ,s
Uf,i,p⊥,pη ,s − A∗f,i,p⊥,pη ,s

Vf,i,p⊥,pη ,s, (5.45)

where Uf,i,p⊥,pη ,s, Vf,i,p⊥,pη ,s satisfy

P+Uf,i,p⊥,pη ,s = Uf,i,p⊥,pη ,s, P
−Vf,i,p⊥,pη ,s = Vf,i,p⊥,pη ,s, (5.46)

and

δss′ = U †f,i,p⊥,pη ,s′
Uf,i,p⊥,pη ,s = V †f,i,p⊥,pη ,s

Vf,i,p⊥,pη ,s′ , 0 = V †f,i,p⊥,pη ,s
Uf,i,p⊥,pη ,s′ . (5.47)

We also normalize the scalar functions Af,i,p⊥,pη ,s, Bf,i,p⊥,pη ,s by

1

τ
= |Af,i,p⊥,pη ,s|2 + |Bf,i,p⊥,pη ,s|2 (5.48)

so as to properly normalize the mode function ±ψf,i,p⊥,pη ,s as

1

τ
δss′ = [±ψf,i,p⊥,pη ,s|±ψf,i,p⊥,pη ,s′ ]F, 0 = [±ψf,i,p⊥,pη ,s|∓ψf,i,p⊥,pη ,s′ ]F, (5.49)
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where the conserved inner product for fermions in the τ -η coordinates, [ψ1|ψ2]F, is denoted by

[ψ1|ψ2]F ≡ ψ̄1γ
τψ2 = ψ̃1

†
ψ̃2. (5.50)

Here, ψ̄ ≡ ψ†γt as usual. The factor 1/τ in Eq. (5.49) comes from the Jacobian of the τ -η coordi-

nates
√

|g| = τ . The scalar functions Af,i,p⊥,pη ,s, Bf,i,p⊥,pη ,s and the spinors Uf,i,p⊥,pη ,s, Vf,i,p⊥,pη ,s

introduced above are not independent of each other. By substituting Eq. (5.45) into the mode

equation (5.44), one obtains the following relations

i
d

dτ

(
Af,i,p⊥,pη ,s

Bf,i,p⊥,pη ,s

)
=


pη + q

(fund.)
i Āη(τ)− i/2

τ

√
m2
f + p2

⊥√
m2
f + p2

⊥ −pη + q
(fund.)
i Āη(τ) + i/2

τ


(
Af,i,p⊥,pη ,s

Bf,i,p⊥,pη ,s

)
,

(5.51)

and

Vf,i,p⊥,pη ,s = γt
γ⊥ · p⊥ +mf√

m2
f + p2

⊥

Uf,i,p⊥,pη ,s. (5.52)

We note that Eqs. (5.51) and (5.52) can be applicable to classical fields Āη(τ) with arbitrary

time τ -dependence because we have not specified the time τ -dependence of Āη in the above

derivation so far.

For now, let us set Āη = 0 in order to find out plane wave solutions ±ψ
(plane)
f,i,p⊥,pη ,s

of the mode

equation (5.40), or Eq. (5.51) for the scalar functions A
(plane)
f,i,p⊥,pη ,s

, B
(plane)
f,i,p⊥,pη ,s

. By squaring the

both hand sides of Eq. (5.51) to find that A
(plane)
f,i,p⊥,pη ,s

obeys the Bessel differential equation:

0 =

[
d2

dτ 2
+

1

τ

d

dτ
−
(
ipη + 1/2

τ

)2

+ p2
⊥ +m2

f

]
A

(plane)
f,i,p⊥,pη ,s

. (5.53)

The general solution of Eq. (5.53) is given by the linear combination of the Hankel function of

the n-th kind (n = 1, 2) H
(n)
ν (z) as

A
(plane)
f,i,p⊥,pη ,s

= c1 ×H
(2)
ipη+1/2(

√
m2
f + p2

⊥τ) + c2 ×H
(1)
−ipη−1/2(

√
m2
f + p2

⊥τ). (5.54)

By substituting this expression (5.54) back into Eq. (5.51), one obtains the corresponding

solution for B
(plane)
f,i,p⊥,pη ,s

as

B
(plane)
f,i,p⊥,pη ,s

= c1 × iH
(2)
ipη−1/2(

√
m2
f + p2

⊥τ)− c2 × iH
(1)
−ipη+1/2(

√
m2
f + p2

⊥τ), (5.55)

where the use is made of an identity [162]

H
(n)
ν∓1(z) =

[
ν

z
± d

dz

]
H(n)
ν (z). (5.56)
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Now, we wish to identify positive/negative frequency mode out from the general solutions

(5.54) and (5.55). As was noted in the beginning of this section, this identification is non-

trivial because the Poincare invariance is broken due to the expansion so that one cannot

regard e∓iωpt as positive/negative frequency modes. The correct identification can be done in

the following way [159, 161]: Now, the τ -η coordinates are essentially flat because the Ricci

curvature is always vanishing and are simply related to the Cartesian coordinates with the

change of variables introduced in Eq. (5.1). The change of variables must not mix up the

positive and the negative frequency modes since any change of variables is just a matter of how

we compute physical observables and it must not affect the results; otherwise we would have

non-vanishing particle production from free fields in the τ -η coordinates, which is obviously

unphysical3. By noting this, it is natural to require that the correct plane wave solutions

with positive (negative) frequency in the τ -η coordinates +ψ
(plane)
f,i,p⊥,pη ,s

(−ψ
(plane)
f,i,p⊥,pη ,s

) must be a

superposition of that in the Cartesian coordinates +ψ
(plane)
f,i,p⊥,pz ,s

(−ψ
(plane)
f,i,p⊥,pz ,s

) (see Appendix A.1

for details of ±ψ
(plane)
f,i,p⊥,pz ,s

) as

±ψ
(plane)
f,i,p⊥,pη ,s

(τ)
eip⊥·x⊥eipηη

(2π)3/2

=
∑
f ′

∑
i′

∑
s′

∫
d2p′⊥dp

′
z ±wf,i,p⊥,pη ,s;f ′,i′,p

′
⊥,p

′
z ,s

′±ψ
(plane)

f ′,i′,p′
⊥,p

′
z ,s

′(t)
eip

′
⊥·x⊥eip

′
zz

(2π)3/2
. (5.57)

The requirement (5.57) together with the normalization condition (5.48) uniquely determines

the coefficients c1, c2 to obtain the correct plane wave solutions with positive/negative frequency

in the τ -η coordinates. By appropriately choosing the spinor decomposition of ±ψf,i,p⊥,pη ,s and

±ψf,i,p⊥,pz ,s (i.e., we choose Uf,i,p⊥,pη ,s = Uf,i,p⊥,pz ,s) and by using integral representations of the

Hankel functions [162]

H(1)
ν (z) =

e−iπν/2

iπ

∫ ∞
−∞

dt eiz cosh t−νt, H(2)
ν (z) = −eiπν/2

iπ

∫ ∞
−∞

dt e−iz cosh t−νt, (5.58)

one obtains

±ψ
(plane)
f,i,p⊥,pη ,s

eipηη√
2π

=

∫
dpz

e±ipηyp√
2πωp

±ψ
(plane)
f,i,p⊥,pz ,s

eipzz√
2π
, (5.59)

or more explicitly,

(
A

(plane)
f,i,p⊥,pη ,s

B
(plane)
f,i,p⊥,pη ,s

)
=

√
π
√
m2
f + p2

⊥

2
eπpη/2

e−iπ/4H
(2)
ipη+1/2(

√
m2
f + p2

⊥τ)

e+iπ/4H
(2)
ipη−1/2(

√
m2
f + p2

⊥τ)

 (5.60)

3We remark that these arguments are valid only if coordinates are essentially flat, where the Ricci curvature

vanishes. For general curved spacetime coordinates, where the Ricci curvature is non-vanishing, these arguments

do not hold. Indeed, the non-zero curvature can interact with quantum fluctuations, which results in a mixing

of the positive and the negative frequency mode functions, i.e., particle production.
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Here, we introduced the momentum rapidity yp as

yp ≡ 1

2
ln
ωp + pz
ωp − pz

. (5.61)

Notice that the weight factor ±wf,i,p⊥,pη ,s;f ′,i′,p
′
⊥,p

′
z ,s

′ is diagonal with respect to the labels

i, f,p⊥, s because the longitudinal expansion does modify the longitudinal motion pη, pz only

and does not affect the other degrees of freedom.

canonical quantization at intermediate times

Now, we canonically quantize the fluctuation at an intermediate time 0 < τ <∞ by defining

the intermediate mode function ±ψ
(τ)
f,i,p⊥,pη ,s

by the plane waves ±ψ
(plane)
f,i,p⊥,pη ,s

(5.60) as

±ψ
(τ)
f,i,p⊥,pη ,s

≡ ±ψ
(plane)

f,i,p⊥,pη+q
(fund.)
i Āη(τ),s

. (5.62)

Since we are working in the τ -η coordinates, we impose canonical commutation relations on

an equal τ -surface, instead of on an equal t-surface as in the Cartesian coordinates:

{ψ̂f,i(τ,x⊥, η), π̂f ′,i′(τ,x′⊥, η′)} = iδii′δff ′δ
2(x⊥ − x′⊥)

δ(η − η′)

τ
, (5.63)

{π̂f,i(τ,x⊥, η), π̂f ′,i′(τ,x′⊥, η′)} = {ψ̂f,i(τ,x⊥, η), ψ̂f ′,i′(τ,x′⊥, η′)} = 0, (5.64)

where the canonical conjugate field π̂f,i to the quark field ψ̂f,i is given by π̂f,i = δL̂QCD/δ(∂τ ψ̂f,i) =

i ˆ̄ψf,iγ
τ . The factor 1/τ in Eq. (5.63) comes from the Jacobian

√
|g| = τ of the τ -η coordinates.

The canonical commutation relations, Eqs. (5.63) and (5.64), are equivalent to requiring that

the intermediate operators âf,i,p⊥,pη ,s, b̂f,i,p⊥,pη ,s anti-commute as

{âf,i,p⊥,pη ,s , â
†
f ′,i′,p′

⊥,p
′
η ,s

′} = {b̂f,i,p⊥,pη ,s , b̂
†
f ′,i′,p′

⊥,p
′
η ,s

′} = δii′δff ′δss′δ
2(p⊥ − p′⊥)δ(pη − p′η),

(others) = 0. (5.65)

Because of the assumption (iii) made in Section 5.1.2, the positive/negative frequency mode

functions ±ψ
(τ)
f,i,p⊥,pη ,s

and the annihilation operators âf,i,p⊥,pη ,s, b̂f,i,p⊥,pη ,s at an intermediate

time naturally reproduce the correct mode functions ±ψ
(in)
f,i,p⊥,pη ,s

and the annihilation operators

â
(in)
f,i,p⊥,pη ,s

, b̂
(in)
f,i,p⊥,pη ,s

at τ → 0 as

±ψ
(τ)
f,i,p⊥,pη ,s

−−→
τ→0

±ψ
(in)
f,i,p⊥,pη ,s

, (5.66)

and (
âf,i,p⊥,pη ,s(τ)

b̂f,i,p⊥,pη ,s(τ)

)
−−→
τ→0

(
â
(in)
f,i,p⊥,pη ,s

b̂
(in)
f,i,p⊥,pη ,s

)
. (5.67)

The Bogoliubov transformation that connects the in-state annihilation operators â
(in)
f,i,p⊥,pη ,s

,

b̂
(in)
f,i,p⊥,pη ,s

and those at intermediate times âf,i,p⊥,pη ,s, b̂f,i,p⊥,pη ,s is given by(
âf,i,p⊥,pη ,s(τ)

b̂†f,i,−p⊥,−pη ,s(τ)

)
=

(
α(ψ)f,i,p⊥,pη ,s(τ) β(ψ)f,i,p⊥,pη ,s(τ)

−β∗(ψ)f,i,p⊥,pη ,s
(τ) α∗(ψ)f,i,p⊥,pη ,s

(τ)

)(
â
(in)
f,i,p⊥,pη ,s

b̂
(in)†
f,i,−p⊥,−pη ,s

)
, (5.68)
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where

α(ψ)f,i,p⊥,pη ,s(τ) ≡ τ [+ψ
(τ)
f,i,p⊥,pη ,s

|+ψ(in)
f,i,p⊥,pη ,s

]F = τ [−ψ
(τ)
f,i,p⊥,pη ,s

|−ψ(in)
f,i,p⊥,pη ,s

]∗F, (5.69)

β(ψ)f,i,p⊥,pη ,s(τ) ≡ τ [+ψ
(τ)
f,i,p⊥,pη ,s

|−ψ(in)
f,i,p⊥,pη ,s

]F = −τ [−ψ(τ)
f,i,p⊥,pη ,s

|+ψ(in)
f,i,p⊥,pη ,s

]∗F. (5.70)

Because of the normalization condition (5.49), the Bogoliubov coefficients satisfy

1 = |α(ψ)f,i,p⊥,pη ,s(τ)|
2 + |β(ψ)f,i,p⊥,pη ,s(τ)|

2. (5.71)

Because of the plus sign in front of |β|2, |β|2 for quarks never exceeds unity, which is a mani-

festation of the fermion statistics.

gluons

Next, we consider the canonical quantization of gluons ÂA,σ. This can be done in the same

manner as that in quarks, although there are slight differences due to the boson nature of

gluons. We first derive a correct plane wave solution of gluons with positive/negative frequency

in the τ -η coordinates by explicitly solving the equation of motion (5.28). After that, we employ

the canonical quantization procedure to obtain annihilation operators at intermediate times by

defining the intermediate mode functions by the plane wave solutions.

plane wave solutions

By noting the spatial homogeneity of the system (assumption (i) in Section 5.1.2), we Fourier

expand the gluon fluctuation ÂA,σ as ±AA,σ,p⊥,pη(τ) exp[ip⊥ · x⊥ + ipηη]/(2π)
3/2 to solve the

equation of motion (5.28). The differential equation for the Fourier modes ±AA,σ,p⊥,pη read

0 =

 d2

dτ 2
+

1

τ

d

dτ
+

(
pη + q

(ad.)
A Āη
τ

)2

+ p2
⊥

 ±AA,σ,p⊥,pη . (5.72)

For Āη = 0, one can easily solve Eq. (5.72) to find that the plane wave solutions ±A(plane.)
A,σ,p⊥,pη

for the gluon fluctuation can be written as

+A(plane.)
A,σ,p⊥,pη

= c1H
(2)
ipη

(|p⊥|τ) + c2H
(1)
−ipη(|p⊥|τ), −A

(plane.)
A,σ,p⊥,pη

= [+A(plane.)
A,σ,p⊥,pη

]∗. (5.73)

As in the quark case, the coefficients c1, c2 can be uniquely determined by a normalization

condition∑
σ′

ξσσ′ [±A(plane.)
A,σ,p⊥,pη

|±A(plane.)
A,σ′,p⊥,pη

]B = ±1

τ
,
∑
σ′

ξσσ′ [±A(plane.)
A,σ,p⊥,pη

|∓A(plane.)
A,σ′,p⊥,pη

]B = 0, (5.74)

where the conserved boson inner product in the τ -η coordinates is defined by

[ϕ1|ϕ2]B ≡ iϕ∗1
↔
∂ τϕ2, (5.75)
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and the criterion for the positive/negative frequency mode is expressed as

±A(plane.)
A,σ,p⊥,pη

(τ)
eip⊥·x⊥eipηη

(2π)3/2

=
∑
A′

∑
σ′

∫
d2p′⊥dp

′
z±wA,σ,p⊥,pη ;A′,σ′,p′

⊥,p
′
z±A

(plane.)

A′,σ′,p′
⊥,p

′
z
(t)

eip⊥·x⊥eipzz

(2π)3/2
, (5.76)

where ±A(plane.)
A,σ,p⊥,pz

is the plane wave solutions in the Cartesian coordinates (see Appendix B.1

for details). As a result of these conditions and with the use of the integral representation of

the Hankel functions (5.58), one obtains

±A(plane.)
A,σ,p⊥,pη

eipηη√
2π

=

∫
dpz

e±ipηyp√
2πωp

±A(plane.)
A,σ,p⊥,pz

eipzz√
2π
, (5.77)

or more explicitly

+A(plane.)
A,σ,p⊥,pη

=

√
π

2i
eπpη/2H

(2)
ipη

(|p⊥|τ), −A(plane.)
A,σ,p⊥,pη

= [+A(plane.)
A,σ,p⊥,pη

]∗ = −
√
π

2i
eπpη/2H

(1)
−ipη(|p⊥|τ).

(5.78)

We note that the weight factor ±wA,σ,p⊥,pη ;A′,σ′,p′
⊥,p

′
z
coincides with the quark one (5.59). This

is reasonable because the change of variables (5.1) is independent of quantum statistics.

canonical quantization at intermediate times

By noting the spatial homogeneity of the system (assumption (i) in Section 5.1.2), we Fourier

expand the gluon fluctuation ÂA,σ as

ÂA,σ =

∫
d2p⊥dpη

[
+A(τ)

A,σ,p⊥,pη
(τ)cA,σ,p⊥,pη(τ) + −A

(τ)
A,σ,p⊥,pη

(τ)d†A,σ,−p⊥,−pη(τ)
] eip⊥·x⊥eipηη

(2π)3/2

(5.79)

in order to canonically quantize it at intermediate times. Here, we define the intermediate mode

functions ±A(τ)
A,σ,p⊥,pη

by the plane wave solutions ±A(plane)
A,σ,p⊥,pη

(5.78). Namely, the intermediate

mode functions ±A(τ0)
A,σ,p⊥,pη

at the instant of an intermediate time τ = τ0 are defined by

±A(τ0)
A,σ,p⊥,pη

(τ0) = ±A(plane)

A,σ,p⊥,pη+q
(ad.)
A Āη(τ0)

(τ0),

d±A(τ0)
A,σ,p⊥,pη

(τ0)

dτ
=
d±A(plane)

A,σ,p⊥,pη+q
(ad.)
A Āη(τ0)

(τ)

dτ

∣∣∣∣∣∣
τ=τ0

(5.80)

Notice that as the Klein-Gordon equation is a second order differential equation, one needs two

connecting conditions to uniquely expand the field operator ÂA,σ.

Now, we impose canonical commutation relations on an equal τ -surface,

[ÂA,µ(τ,x⊥, η), π̂A′,ν(τ,x
′
⊥, η

′)] = igµνδAA′δ2(x⊥ − x′⊥)
δ(η − η′)

τ
,

[ÂA,µ(τ,x⊥, η), ÂA′,ν(τ,x
′
⊥, η

′)] = [π̂A,µ(τ,x⊥, η), π̂A′,ν(τ,x
′
⊥, η

′)] = 0, (5.81)
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to complete the canonical quantization procedure. Here, the canonical conjugate field π̂A,µ to

the gluon field operator ÂA,µ is π̂A,µ ≡ ∂L̂QCD/∂(∇τÂ µ
A ) = −∇τÂ†A,µ. From the canonical

commutation relation (5.81), one obtains a commutation relation for the intermediate annihi-

lation operators ĉA,σ,p⊥,pη , d̂A,σ,p⊥,pη as

[̂cA,σ,p⊥,pη , ĉ
†
A′,σ′,p′

⊥,p
′
η
] = [d̂A,σ,p⊥,pη , d̂

†
A′,σ′,p′

⊥,p
′
η
] = δAA′ξσσ′δ2(p⊥ − p′⊥)δ(pη − p′η),

(others) = 0. (5.82)

Thanks to the assumption (iii) made in Section 5.1.2, the positive/negative frequency mode

functions ±A(in)
A,σ,p⊥,pη

and the annihilation operators ĉ
(in)
A,σ,p⊥,pη

, d̂
(in)
A,σ,p⊥,pη

at the in-state (τ → 0)

coincides with those at an intermediate time in the limit of τ → 0 as

±A(τ)
A,σ,p⊥,pη

−−→
τ→0

±A(in)
A,σ,p⊥,pη

, (5.83)

(
ĉA,σ,p⊥,pη(τ)

d̂A,σ,p⊥,pη(τ)

)
−−→
τ→0

(
ĉ
(in)
A,σ,p⊥,pη

d̂
(in)
A,σ,p⊥,pη

)
(5.84)

The in-state annihilation operators ĉ
(in)
A,σ,p⊥,pη

, d̂
(in)
A,σ,p⊥,pη

and those at intermediate times

ĉA,σ,p⊥,pη , d̂A,σ,p⊥,pη are not independent of each other. Their relationship is given by the follow-

ing Bogoliubov transformation:(
ĉA,σ,p⊥,pη(τ)

d̂†A,σ,−p⊥,−pη(τ)

)
=

(
α(A)A,σ,p⊥,pη(τ) β(A)A,σ,p⊥,pη(τ)

β∗(A)A,σ,p⊥,pη
(τ) α∗(A)A,σ,p⊥,pη

(τ)

)(
ĉ
(in)
A,σ,p⊥,pη

d̂
(in)†
A,σ,−p⊥,−pη

)
, (5.85)

where

α(A)A,σ,p⊥,pη(τ) ≡ τ [+A(τ)
A,σ,p⊥,pη

|+A(in)
A,σ,p⊥,pη

]B = −τ [−A(τ)
A,σ,p⊥,pη

|−A(in)
A,σ,p⊥,pη

]∗B

β(A)A,σ,p⊥,pη(τ) ≡ τ [+A(tau)
A,σ,p⊥,pη

|−A(in)
A,σ,p⊥,pη

]B = −τ [−A(τ)
A,σ,p⊥,pη

|+A(in)
A,σ,p⊥,pη

]∗B

(5.86)

Because of the normalization (5.74), the Bogoliubov coefficients satisfy

1 = |α(A)A,σ,p⊥,pη(τ)|
2 − |β(A)A,σ,p⊥,pη(τ)|

2. (5.87)

We note the minus sign in front of |β|2, which is in contrast to the plus sign in the quark case

(5.71), and that |β|2 for gluons can exceed unity.

ghosts

The canonical quantization of ghost fluctuations ĈA, ˆ̄CA can be done in the same way as that

of gluons, except for the unusual anti-commutative nature of ghosts.



5.1. Schwinger mechanism in τ -η coordinates 149

Since the ghost fluctuations ĈA, ˆ̄CA obey the same Klein-Gordon equation (5.28) as for

the gluon fluctuation ÂA,σ, one can immediately identify the plane wave solution with posi-

tive/negative frequency for ghost fluctuation ±C(plane)
A,p⊥,pη

by Eq. (5.78).

Now, we expand the ghost fluctuation by Fourier modes in the τ -η coordinates as(
ĈA
ˆ̄CA

)
=

∫
d2p⊥dpη

[
+C(τ)

A,p⊥,pη
(τ)

(
êA,p⊥,pη(τ)

ˆ̄eA,p⊥,pη(τ)

)
+ −C(τ)

A,p⊥,pη
(τ)

(
f̂A,−p⊥,−pη(τ)
ˆ̄fA,−p⊥,−pη(τ)

)]
eip⊥·x⊥eipηη

(2π)3/2
.

(5.88)

Here, the positive/negative frequency mode functions for intermediate times ±C(τ)
A,p⊥,pη

are de-

fined by the plane wave solutions as in the previous quark and gluon cases. Namely, at an

intermediate time τ = τ0, we define ±C(τ)
A,p⊥,pη

as

±C(τ0)
A,p⊥,pη

(τ0) = ±C(plane)

A,p⊥,pη+q
(ad.)
A Āη(τ0)

(τ0),

d±C(τ0)
A,p⊥,pη

(τ0)

dτ
=
d±C(plane)

A,p⊥,pη+q
(ad.)
A Āη(τ0)

(τ)

dτ

∣∣∣∣∣∣
τ=τ0

(5.89)

Next, we impose a canonical commutation relation on an equal τ -surface for the ghost modes

ĈA, ˆ̄CA as {
ˆ(−)
C A(τ,x⊥, η),

ˆ(−)
π B(τ,x

′
⊥, η

′)

}
= iδABδ

2(x− x′)
δ(η − η′)

τ
,{

ˆ(−)
C A(τ,x⊥, η),

ˆ(−)
C B(τ,x

′
⊥, η

′)

}
=

{
ˆ(−)
π A(τ,x⊥, η),

ˆ(−)
π B(τ,x

′
⊥, η

′)

}
= 0, (5.90)

where
ˆ(−)
π A is the canonical conjugate field to the ghost field

ˆ(−)
C A and is defined as π̂A =

∂L̂QCD/∂(∂τ ĈA) = −i∂τ ˆ̄C†A and ˆ̄πA = ∂L̂QCD/∂(∂τ
ˆ̄CA) = i∂τ Ĉ†A. The canonical commutation

relation (5.90) tells us that the intermediate annihilation operators
ˆ(−)
e A,p⊥,pη ,

ˆ(−)
f A,p⊥,pη

anti-

commute as

iδAA′δ2(p⊥ − p′⊥)δ(η − η′) =

{
êA,p⊥,pη ,

−̂
e
†

A′,p′
⊥,p

′
η

}
=

{
f̂A,p⊥,pη ,

−̂
f

†

A′,p′
⊥,p

′
η

}
, (others) = 0.

(5.91)

Just as in the non-expanding case,
ˆ(−)
e A,p⊥,pη ,

ˆ(−)
e

†

A,p⊥,pη
and

ˆ(−)
f A,p⊥,pη

,
ˆ(−)
f

†

A,p⊥,pη
anti-commute

with each other. Because of this property, unphysical ghost modes are never produced and do

not appear in the physical spectrum in our expanding geometry as well.

The positive/negative frequency mode functions at τ → 0, ±C(in)
A,p⊥,pη

, and the corresponding

annihilation operators
ˆ(−)
e

(in)

A,p⊥,pη
,
ˆ(−)
f

(in)

A,p⊥,pη
can be obtained by taking the τ → 0 limit of those
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at intermediate times. Namely,

±C(τ)
A,p⊥,pη

−−→
τ→0

±C(in)
A,p⊥,pη

(5.92)

and  ˆ(−)
e A,p⊥,pη

ˆ(−)
f A,p⊥,pη

 −−→
τ→0


ˆ(−)
e

(in)

A,p⊥,pη

ˆ(−)
f

(in)

A,p⊥,pη

 . (5.93)

The in-state annihilation operators
ˆ(−)
e

(in)

A,p⊥,pη
,
ˆ(−)
f

(in)

A,p⊥,pη
and those at intermediate times

ˆ(−)
e A,p⊥,pη ,

ˆ(−)
f A,p⊥,pη

are not independent of each other, and their relationship is given by the following Bo-

goliubov transformation:
ˆ(−)
e A,p⊥,pη(τ)

ˆ(−)
f

†

A,−p⊥,−pη(τ)

 =

(
α(C)A,p⊥,pη(τ) β(C)A,p⊥,pη(τ)

β∗(C)A,p⊥,pη
(τ) α∗(C)A,p⊥,pη

(τ)

)
ˆ(−)
e

(in)

A,p⊥,pη

ˆ(−)
f

(in)†

A,−p⊥,−pη

 , (5.94)

where

α(C)A,p⊥,pη(τ) ≡ τ [+C(τ)
A,p⊥,pη

|+C(in)
A,p⊥,pη

]B = −τ [−C(τ)
A,p⊥,pη

|−C(in)
A,p⊥,pη

]∗B

β(C)A,p⊥,pη(τ) ≡ τ [+C(τ)
A,p⊥,pη

|−C(in)
A,p⊥,pη

]B = −τ [−C(τ)
A,p⊥,pη

|+C(in)
A,p⊥,pη

]∗B

(5.95)

The Bogoliubov coefficients are normalized as

1 = |α(C)A,p⊥,pη(τ)|
2 − |β(C)A,p⊥,pη(τ)|

2. (5.96)

5.1.4 particle production

vacuum

From the annihilation operators introduced in the last subsection, one can construct a vacuum

state |vac;τ⟩ at an intermediate time τ . Since the equations of motion (5.16) and (5.28) are

linear with respect to the quantum fluctuations, the annihilation operators of quarks (âf,i,p⊥,pη ,s,

b̂f,i,p⊥,pη ,s), gluons (ĉA,σ,p⊥,pη , d̂A,σ,p⊥,pη), and ghosts (êA,p⊥,pη , f̂A,p⊥,pη , ˆ̄eA,p⊥,pη ,
ˆ̄fA,p⊥,pη) do not

mix up with each other during the whole spacetime evolution. Hence, one can decompose the

vacuum state |vac;τ⟩ into a product of vacua for each fluctuation as

|vac;τ⟩ = |vac(ψ); τ⟩ ⊗ |vac(A); τ⟩ ⊗ |vac(C); τ⟩ . (5.97)
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Each vacuum |vac(•); τ⟩ is annihilated by the corresponding annihilation operator as

0 = âf,i,p⊥,pη ,s |vac(ψ); τ⟩ = b̂f,i,p⊥,pη ,s |vac(ψ); τ⟩ ,
0 = ĉA,σ,p⊥,pη |vac(A); τ⟩ = d̂A,σ,p⊥,pη |vac(A); τ⟩ ,

0 = êA,p⊥,pη |vac(C); τ⟩ = f̂A,p⊥,pη |vac(C); τ⟩ = ˆ̄eA,p⊥,pη |vac(C); τ⟩ = ˆ̄fA,p⊥,pη |vac(C); τ⟩ (5.98)

for all values of the quantum numbers i, A, s, σ,p⊥, pη. From the above introduced intermediate

vacuum |vac;τ⟩, one can naturally construct the in-vacuum |vac; in⟩ by taking the τ → 0 limit

of |vac;τ⟩ as

|vac; in⟩ = lim
τ→0

|vac;τ⟩ = lim
τ→0

|vac(ψ); τ⟩ ⊗ |vac(A); τ⟩ ⊗ |vac(C); τ⟩ . (5.99)

pη-spectrum

The number of produced particles is obtained as an in-vacuum |vac; in⟩ expectation value of

the corresponding number operator; namely

d6Nq(f, i,p⊥, pη, s; τ)

dp2dpηdx2
⊥dη

=
1

Vτ
⟨â†f,i,p⊥,pη ,s

âf,i,p⊥,pη ,s⟩ =
|β(ψ)f,i,p⊥,pη ,s|2

(2π)3
,

d6Nq̄(f, i,p⊥, pη, s; τ)

dp2dpηdx2
⊥dη

=
1

Vτ
⟨b̂†f,i,p⊥,pη ,s

b̂f,i,p⊥,pη ,s⟩ =
|β(ψ)f,i,−p⊥,−pη ,s|2

(2π)3
(5.100)

for quarks and anti-quarks;

d6Ng+(A, σ,p⊥, pη; τ)

dp2
⊥dpηdx

2
⊥dη

=
1

Vτ
⟨ĉ†A,σ,p⊥,pη

ĉA,σ,p⊥,pη⟩ =

 0 (σ = 0, 3)
|β(A)A,σ,p⊥,pη |2

(2π)3
(σ = 1, 2)

,

d6Ng−(A, σ,p⊥, pη; τ)

dp2
⊥dpηdx

2
⊥dη

=
1

Vτ
⟨d̂†A,σ,p⊥,pη

d̂A,σ,p⊥,pη⟩ =

 0 (σ = 0, 3)
|β(A)A,σ,−p⊥,−pη |2

(2π)3
(σ = 1, 2)

(5.101)

for charged gluons with the color charge q
(ad.)
A and −q(ad.)A , respectively; and

d6N(−)

gh+

(A,p⊥, pη; τ)

dp2
⊥dpηdx

2
⊥dη

=
1

Vτ

⟨
ˆ(−)
e

†

A,p⊥,pη

ˆ(−)
e A,p⊥,pη

⟩
= 0,

d6N(−)

gh−

(A,p⊥, pη; τ)

dp2
⊥dpηdx

2
⊥dη

=
1

Vτ

⟨
ˆ(−)
f

†

A,p⊥,pη

ˆ(−)
f A,p⊥,pη

⟩
= 0 (5.102)

for charged ghosts (anti-ghosts) with the color charge q
(ad.)
A and −q(ad.)A , respectively. Here,

Vτ ≡
∫
d2x⊥dη denotes the system volume on a constant τ -surface. The quark density never

exceeds unity because of the relation (5.71), which is a manifestation of the Pauli principle. As in

the non-expanding case (see Section 3.1.4), σ = 0, 3 modes of gluons and ghosts are unphysical

and never produced in the expanding geometry as well because of their (anti-)commutation

relation (5.82) and (5.90), respectively.
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momentum rapidity yP -spectrum

So far, we have characterized the “longitudinal” momentum of produced particles by the label

pη because it is a natural quantum number conjugate to the spacetime rapidity η and that

manifestly respects the boost invariance of the system. Consequently, what we have obtained

for the particle spectra in Eqs. (5.100)-(5.102) are pη-spectra. However, what we actually

observe in experiments is not the pη-spectra, but pz-spectra and/or the (kinetic) momentum

rapidity yP -spectra.

The pz-spectra and the momentum rapidity yP -spectra can be obtained from the pη-spectra

in the following way [137, 159]: Let us consider the quark spectrum as an example. The pz-

spectra and the momentum rapidity yP -spectra are obtained as vacuum expectation values of

the number operators labeled by pz, not by pη. The number operator labeled by pz can be

obtained by expanding the fluctuation ψ̂f,i by eipzz, instead by eipηη. This can be easily done

with the help of the integral transformation (5.59) as

ψ̂f,i =
∑
s

∫
d2p⊥dpη

[
+ψ

(τ)
f,i,p⊥,pη ,s

âf,i,p⊥,pη ,s + −ψ
(τ)
f,i,p⊥,pη ,s

b̂†f,i,−p⊥,−pη ,s

] eip⊥·x⊥eipηη

(2π)3/2

=
∑
s

∫
d2p⊥dpz

[
+ψ

(t)
f,i,p⊥,pz ,s

{∫
dpη

e+i(pη+q
(fund.)
i Āη)yP

√
2πωP

âf,i,p⊥,pη ,s

}

+−ψ
(t)
f,i,p⊥,pz ,s

{∫
dpη

e−i(pη+q
(fund.)
i Āη)yP

√
2πωP

b̂†f,i,−p⊥,−pη ,s

}]
eip⊥·x⊥eipzz

(2π)3/2
,

(5.103)

where ±ψ
(t)
f,i,p⊥,pη ,s

is the intermediate mode function in the Cartesian coordinates under the

classical gauge field Āη (see Eq. (2.40)). P ≡ p− q
(fund.)
i Ā is the kinetic momentum. From this

expansion, we can define annihilation operators labeled by pz as(
âf,i,p⊥,pz ,s

b̂f,i,p⊥,pz ,s

)
≡
∫
dpη

ei(pη+q
(fund.)
i Āη)yP

√
2πωP

(
âf,i,p⊥,pη ,s

b̂f,i,p⊥,pη ,s

)
, (5.104)

and we find that the quark pz-spectrum can be related to the pη-spectrum as

d3Nq(f, i,p⊥, pz, s; τ)

dp2
⊥dpz

≡ ⟨â†f,i,p⊥,pz ,s
âf,i,p⊥,pz ,s⟩

=

∫
dpηdp

′
η

ei(pη−p
′
η)yP

2πωP

⟨â†f,i,p⊥,p′η ,s
âf,i,p⊥,pη ,s⟩

= δ2(p⊥ = 0)× 1

2πωP

∫
dpη|β(ψ)f,i,p⊥,pη ,s|

2

= (2π)2δ2(p⊥ = 0)× 1

ωP

∫
dpη

d6Nq(f, i,p⊥, pη, s; τ)

dp2
⊥dpηd

2x⊥dη
. (5.105)

Thus, by noting dyP = dpz/ωP , we finally obtain

ωP
d5Nq(f, i,p⊥, pz, s; τ)

dp2
⊥dpzd

2x⊥
=
d5Nq(f, i,p⊥, pz, s; τ)

dp2
⊥dyP d

2x⊥
=

∫
dpη

d6Nq(f, i,p⊥, pη, s; τ)

dp2
⊥dpηd

2x⊥dη
. (5.106)
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The same arguments hold for the anti-quark spectra, and one can find

ωP
d5Nq̄(f, i,p⊥, pz, s; τ)

dp2
⊥dpzd

2x⊥
=
d5Nq̄(f, i,p⊥, pz, s; τ)

dp2
⊥dyP d

2x⊥
=

∫
dpη

d6Nq̄(f, i,p⊥, pη, s; τ)

dp2
⊥dpηd

2x⊥dη
. (5.107)

Notice that the momentum rapidity yP -spectra do not depend on yP . This is a manifestation

of the perfect boost-invariance of the system (assumption (i) in Section 5.1.2). Indeed, if the

system depends on the spacetime rapidity η, the boost-invariant momentum label pη is no longer

a good quantum number and ⟨â†f,i,p⊥,p′η ,s
âf,i,p⊥,pη ,s⟩ ∝/ δ(pη − p′η) in the third line of Eq. (5.105),

which leaves yP -dependences in the final result.

One can equally apply the above discussion to gluons and ghosts, and obtains the same

results,

ωP

d5Ng±(A, σ,p⊥, pz; τ)

dp2
⊥dpzd

2x⊥
=
d5Ng±(A, σ,p⊥, pz; τ)

dp2
⊥dyP d

2x⊥
=

∫
dpη

d6Ng±(A, σ,p⊥, pη; τ)

dp2
⊥dpηd

2x⊥dη
, (5.108)

ωP

d5Ngh±(A,p⊥, pz; τ)

dp2
⊥dpzd

2x⊥
=
d5Ngh±(A,p⊥, pz; τ)

dp2
⊥dyP d

2x⊥
=

∫
dpη

d6Ngh±(Ap⊥, pη; τ)

dp2
⊥dpηd

2x⊥dη
= 0. (5.109)

This is because the weight factor w that connects the plane wave solutions in the τ -η coordinates

and those in the Cartesian coordinates is independent of quantum statistics (see Eqs. (5.59)

and (5.77)).

We note that we have derived the formulas (5.106)-(5.109) in a quantum field theoretical

manner by following Ref. [137, 159], but one can also obtain the same formulas within classical

mechanics [163, 164], though these two derivations agree with each other only if the system is

perfectly boost invariant [137].

5.2 Dynamical evolution without backreaction

In this section, we dare neglect backreaction from quark, gluon, and ghost fluctuations by

artificially setting ⟨: ĵα,µ :⟩ = 0. For this case, one can analytically compute quark and gluon

spectra for some particular configurations of expanding electric fields. This enables us to

better understand effects of the longitudinal expansion to quark and gluon production, and

to clarify similarities/differences between the quark and gluon production in non-expanding

systems previously studied in Section 4.

To be more specific, we consider a boost-invariantly expanding, homogeneous color electric

field described by

E = Ē0θ(τ)ez, (5.110)

or, in terms of the classical gauge field Āµ, by

Āτ = Āx = Āy = 0,

Āη = −τ
2

2
Ē0θ(τ). (5.111)
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Under the given gauge background field (5.111), one can analytically solve the equations of mo-

tion (5.16) for quarks ψ̂f,i and (5.28) for gluons ÂA,σ (see Appendix C), and can find analytical

expressions for the pη-spectra, d
6N(−)

q
/dp2

⊥dpηdx
2
⊥dη for quarks and d6Ng±/dp

2
⊥dpηdx

2
⊥dη for

gluons.

5.2.1 pη-spectrum of quarks and gluons

The distribution function labeled by the boost-invariant momentum pη for quarks d
6Nq/dp

2dpη

dx2
⊥dη and gluons d6Ng+/dp

2dpηdx
2
⊥dη are plotted in Figs. 5.1 - 5.4: In Figs. 5.1 and 5.2, the

boost-invariant kinetic momentum Pη = pη + qĀη-dependence at a fixed transverse momentum

is displayed. There, we plotted the distribution functions as a function of Pη/
√
gĒ0τ (

√
gĒ0 is a

dimensional factor to make Pη/τ dimensionless), not by Pη itself, because the former has a clear

physical meaning: Pη/
√
gĒ0τ is a kinetic longitudinal momentum Pz/

√
gĒ0 observed in the

co-moving frame as was addressed in Section 5.1.3. Figures 5.3 and 5.4 display the transverse

momentum p⊥-dependence at a fixed boost-invariant kinetic momentum Pη/
√
gĒ0τ . Different

three panels in each figure differentiate the value of the color charges q
(fund.)
i (i = 1, . . . , Nc)

for quarks and q
(ad.)
A (i = 1, . . . , Nc(Nc − 1)/2) for gluons just as in Figs. 4.1 - 4.4 for the non-

expanding study. In these figures, we only consider Nf = 3 (i.e., massless three quarks) case and

set θ = 0 for simplicity. Notice that for Nf = 3 case, gĒ0 is the only dimensionful parameter

characterizing the system, so that any dimensionful quantity can be scaled by gĒ0 to make it

dimensionless.

Figure 5.1: The boost-invariant kinetic momentum Pη = pη + q
(fund.)
i Āη-distribution

d6Nq/dp
2dpηdx

2
⊥dη = |β(ψ)f,i,p⊥,pη ,s|2/(2π)3 of produced massless quarks (up or down) at a

fixed transverse momentum |p⊥|/
√

|gĒ0| = 0.1. Different panels differentiate the color charge

q
(fund.)
i (i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the corre-

sponding quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and

q
(fund.)
3 = 0 (right).



5.2. Dynamical evolution without backreaction 155

Figure 5.2: The boost-invariant kinetic momentum Pη = pη + q
(ad.)
A Āη-distribution

d6Ng+/dp
2dpηdx

2
⊥dη = |β(A)A,σ,p⊥,pη |2/(2π)3 of produced gluons at a fixed transverse mo-

mentum |p⊥|/
√
|gĒ0| = 0.1. Different panels differentiate the color charge q

(ad.)
A (i =

1, . . . , Nc(Nc − 1)/2) of gluons with color A. We set the color angle θ = 0, and the corre-

sponding gluon charge q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and

q
(ad.)
3 = 1 (right).

Figure 5.3: The transverse momentum p⊥-distribution d6Nq/dp
2dpηdx

2
⊥dη =

|β(ψ)f,i,p⊥,pη ,s|2/(2π)3 of produced massless quarks (up or down) at a fixed boost-invariant

kinetic momentum Pη = pη + q
(fund.)
i Āη = 1.5×

√
|gĒ0|. Different panels differentiate the color

charge q
(fund.)
i (i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the

corresponding quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle),

and q
(fund.)
3 = 0 (right).
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Figure 5.4: The transverse momentum p⊥-distribution d6Ng+/dp
2dpηdx

2
⊥dη =

|β(A)A,σ,p⊥,pη |2/(2π)3 of produced gluons at a fixed boost-invariant kinetic momentum

Pη = pη + q
(ad.)
A Āη = 1.5 ×

√
|gĒ0|. Different panels differentiate the color charge q

(ad.)
A

(i = 1, . . . , Nc(Nc − 1)/2) of gluons with color A. We set the color angle θ = 0, and the

corresponding gluon charge q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and

q
(ad.)
3 = 1 (right).

Interestingly, one observes from Figs. 5.1 - 5.4 that the essential features of the quark and

gluon production from an expanding electric field are essentially the same as the non-expanding

case:

• Quarks and gluons are constantly created at approximately zero momentum in the co-

moving frame.

• After created, quarks and gluons are accelerated by the electric field according to the

classical equation of motion dPη/dτ = qdĀη/dτ = qĒ0τ , or Pz ∼ qĒ0τ/2.

• The transverse distribution is nearly Gaussian and is largely consistent with the Schwinger

formula for a non-expanding constant electric field, d6N/dp2
⊥dpηd

2x⊥dη ∼ exp[−π(m2 +

p2
⊥)/|qĒ0|]/(2π)3.

Intuitively speaking, this coincidence is because the system expands with the speed of light so

that effects of the longitudinal boundary may be negligible because of the causality. Collecting

above observations, one understands that the distribution function is well approximated as

d6Ng±

dp2
⊥dpηdx

2
⊥dη

∼ 1

(2π)3
exp

[
−π p2

⊥

|q(ad.)A Ē(τ)|

]
θ(∓pη(pη ± q

(ad.)
A Āη(τ))), (5.112)

d6N(−)
q

dp2
⊥dpηdx

2
⊥dη

∼ 1

(2π)3
exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē(τ)|

]
θ(∓pη(pη ± q

(fund.)
A Āη(τ))). (5.113)
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These expressions are valid when the electric field is sufficiently adiabatic ∂τ Ē ∼ 0 and quantum

interferences among created particles are negligible (see Section 5.3).

5.2.2 momentum rapidity yP -spectrum of quarks and gluons

We integrate the pη-spectra over pη to discuss the (kinetic) momentum rapidity yP -spectra,

d5N(−)
q
/d2p⊥dyP dx

2
⊥ for (anti-)quarks and d5Ng±/d

2p⊥dyP dx
2
⊥ for gluons. Notice that the

momentum rapidity yP -spectra are independent of yP because of the perfect boost-invariance

of the system as was shown in Section 5.1.4. In other words, the pη-integration integrates out

the longitudinal motion in the co-moving frame observed in Figs. 5.1 and 5.2.

Figure 5.5: The time-evolution of the transverse momentum p⊥-dependence of the momen-

tum rapidity yP -spectra. The black dashed lines indicate the estimate from the Schwinger

formulas (5.114) and (5.115). [Left] Quark spectra d5N(−)
q
/d2p⊥dyP dx

2
⊥. [Right] Gluon spectra

d5Ng±/d
2p⊥dyP dx

2
⊥.

We plotted the transverse momentum p⊥-dependence of the momentum rapidity yP -spectra

in Fig. 5.5. We observe that, at later times

√
|q(fund.)i Ē0|τ,

√
|q(ad.)A Ē0|τ ≳ 1, both spectra

approach Gaussian distributions multiplied by a square of the time τ . This observation is

consistent with what we observed in Figs. 5.1 - 5.4: By integrating Eqs. (5.112) and (5.113),

one finds

d5N(−)
q

d2p⊥dyP d2x2
⊥
∼ 1

(2π)3
|q(fund.)i Ē0|τ 2

2
exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē0|

]
, (5.114)

d5Ng±

d2p⊥dyP d2x2
⊥
∼ 1

(2π)3
|q(ad.)A Ē0|τ 2

2
exp

[
−π p2

⊥

|q(ad.)A Ē0|

]
, (5.115)

which are plotted in the dashed lines as “Schwinger estimate” in Fig. 5.5. The τ 2-dependence,

which was t for the non-expanding case, is intuitively because particle production constantly

takes place and the spatial volume of the fields increases as ∝ τ because of the expansion.
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On the other hand, at early times

√
|q(fund.)i Ē0|τ,

√
|q(ad.)A Ē0|τ ≲ 1, the spectra are harder

compared to those for later times and do not decay exponentially in |p⊥| because the typical

frequency ω ∼ 1/τ of the classical field is hard enough to excite hard particles. In other words,

a naive application of the Schwinger formula is valid only for large values of τ , while one should

take care of finite pulse effects for small values of τ .

In the low momentum region |p⊥| ≲
√
|q(fund.)A Ē0|,

√
|q(ad.)A Ē0|, gluons are more abundant

than quarks. This is because the quark production is subjected to the Pauli principle but the

gluon production is not. The gluon spectrum shows a weak divergence for |p⊥| → 0 but the

exponent is weaker than minus one and it approaches zero with increasing τ .

5.2.3 total number of quarks and gluons

We compute the total number of quarks and gluons per unit momentum rapidity yP by inte-

grating the momentum rapidity yP -spectra over the transverse momentum p⊥ and summing up

all the quantum numbers as d3Nq/dyP dx
2
⊥ ≡

∑
f,i,s,qq̄

∫
d2p2

⊥d
5N(−)

q
/d2p⊥dyP dx

2
⊥ for quarks

and d3Ng/dyP dx
2
⊥ ≡

∑
A,σ,g±

∫
d2p2

⊥d
5Ng±/d

2p⊥dyP dx
2
⊥ for gluons. The results are plotted in

Fig. 5.6, where Nf = 3 (massless three quarks) case is considered for simplicity (for the other

values of Nf and quark mass effects, see Fig. 5.8).

Figure 5.6: Total number of produced quarks d3Nq/dyP dx
2
⊥ ≡∑

f,i,s,qq̄

∫
d2p2

⊥d
5N(−)

q
/d2p⊥dyP dx

2
⊥ for Nf = 3 (left) and gluons d3Ng/dyP dx

2
⊥ ≡∑

A,σ,g±

∫
d2p2

⊥d
5Ng±/d

2p⊥dyP dx
2
⊥ with several values of the color angle θ = 0 (red),

π/12 (blue), and π/6 (green). The dashed lines are expectations from the Schwinger estimates

(5.116) and (5.117).

Different colors in Fig. 5.6 correspond to different values of the color angle θ. We immedi-

ately observe that the results are insensitive to the values of the color angle θ, in contrast to

what we observed in the pz- and pη-spectra (see Figs. 5.1 - 5.5). This observation is consistent

with what we found in the non-expanding case (see Fig. 4.5).
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Figure 5.7: The ratioRq−g of the total number of quarks to that of gluons (Nq+Nq̄)/(Ng++Ng−).

Different colors correspond to different values of the color angle θ = 0 (red), π/12 (blue), and

π/6 (green).

One can naively estimate the total number of quarks and gluons via the Schwinger estimates

(5.114) and (5.115) as

d3Nq

dyP dx2
⊥
∼ NsNlqNqq̄

4

|gĒ0|τ 2

(2π)3
(5.116)

d3Ng

dyP d2x2
⊥
∼ 2NcNσ

4

|gĒ0|τ 2

(2π)3
, (5.117)

which is depicted in the dashed line in Fig. 5.6. When comparing these estimates with the

results, one finds that, at later times
√
|gĒ0|τ ≳ 1, quark and gluon production is consistent

with what one naively expects from the Schwinger formula for a non-expanding electric field. On

the contrary to this, at early times
√
gĒ0|τ ≲ 1, our results give much more abundant particles

than what the Schwinger estimates give. This is because the perturbative enhancement of

perturbative production, where high frequency components of classical fields can excite larger

number of particles.

Interestingly, the perturbative enhancement produces more quarks than gluons. This aspect

is more clearly visible in Fig. 5.7, where the ratio Rq−g of the total number of quarks to

that of gluons is plotted. We find that the ratio becomes about two at early times, where

perturbative particle production mechanism dominates. The ratio decreases as time goes, where

non-perturbative particle production begins to dominate, and approachesNsNlqNqq̄/2NcNσ = 1

as the Schwinger estimates give. These observations are consistent with what we found in the

non-expanding study (see Fig. 4.6).

The quark production is investigated in more detail by examining the number of flavor Nf-

(the quark mass mf -) dependence in the left (right) panel of Fig. 5.8. Here, we set gĒ0 =

1 GeV2; ms = 0.1 GeV,mc = 1.2 GeV; and θ = 0 as we parametrized in the non-expanding

study (see Fig. 4.7). As in the non-expanding study, we again find that there is a significant
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Figure 5.8: [Left] The number of flavor Nf-dependence in the total number of quarks produced

d3(Nq + Nq̄)/dx
2
⊥dyP for Nf = 2 (up, down) in red, 2 + 1 (up, down, strange) in blue, and

2 + 1 + 1 (up, down, strange, charm) in green. [Right] The suppression factor of charm and

strange quark production in Nf = 2 + 1 + 1 case Rq = Nq/(Nu + Nd + Ns + Nc). In both

panels, parameters are set as gĒ0 = 1 GeV2; θ = 0; and mu = md = 0 GeV, ms = 0.1 GeV,

mc = 1.2 GeV.

change from Nf = 2 to Nf = 2 + 1, i.e., by inclusion of the strange quark, for all values of

τ . Whereas, the change of the quark multiplicity from Nf = 2 + 1 to Nf = 2 + 1 + 1, i.e.,

by inclusion of charm quarks, is negligible (noticeable) at later (early) times τ because of the

interplay between the parturbative and the non-perturbative particle production mechanism.

In particular, the perturbative enhancement of the charm production is significant, Nc/(Nu +

Nd +Ns +Nd) ≫ 0.0004, even in our expanding case.

5.3 Dynamical evolution with backreaction

Let us discuss the dynamical evolution of the system with the backreaction, and discuss some

phenomenological consequences of our formalism to the pre-equilibrium stage dynamics of ultra-

relativistic heavy ion collisions. For this purpose, we numerically solve the equations of motion

(5.37), (5.16), and (5.28), and compute the time-evolution of the quark and gluon distribution

functions, the color electric field strength, and thermodynamic quantities such as the energy

density and the pressure of the system.

5.3.1 setup

We model the initial color flux tubes existing just after a collision of nuclei (at τ = τ0) by a

spatially uniform, and boost-invariantly expanding electric field described by

Āµ(τ0) = 0, Ē(τ0) = Ē0,
dĒ(τ0)

dτ
= 0. (5.118)
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We also assume that there is no classical current J̄µ = 0 in the forward light-cone region τ > 0

because the projectile nuclei are flying just on the light-cone τ = 0 in the ultra-relativistic limit.

Our parameter setting is as follows: We set the strong coupling constant g as g = 1 for

simplicity. We also set the initial electric field strength Ē0 as gĒ0 = 1 GeV2, which is the

typical value at the RHIC energy scale. As the strange mass scale ms ∼ 0.1 GeV is negligible

and the heavy charm (mc ∼ 1.2 GeV) production heavily suppressed for this value of field

strength gĒ0 (see Figs. 5.3.2 and 5.3.3), we can restrict our attention to Nf = 3 (massless

three quarks) case only. The color angle θ is set to zero; one can numerically demonstrate that

our results presented below (except for momentum distributions in Section 5.3.2 and 5.3.3)

are insensitive to the color angle θ. Since the τ -η coordinates have a coordinate singularity at

τ = 0, we must start our simulation at a finite time τ0 > 0. Here, we choose τ0 = 0.1 GeV−1 for

simplicity; our results presented below is not sensitive to values of τ0 as long as τ0 is sufficiently

small as τ0 ≲ 1. As it is numerically difficult and heavy to evaluate the Hankel functions

with complex orders [165] and due to our limited computer resources, we are reluctant to use

relatively small momentum cutoff scales Λ⊥ = 2 GeV and Λη = 30. Because of these relatively

small cutoff scales, our results slightly depend on the cutoff scales (in particular Λ⊥) for small

values of τ , where perturbative particle production mechanism creates hard particles, however,

the cutoff dependence becomes negligible for larger values of τ , where hard particle production

is suppressed by the non-perturbative particle production mechanism.

5.3.2 pη-spectrum of quarks and gluons

We first examine the pη-spectrum of produced quarks d6Nq/dp
2dpηdx

2
⊥dη and gluons d6Ng+/

dp2dpηdx
2
⊥dη, whose results are shown in Figs. 5.9 - 5.12.

Figures 5.9 - 5.12 tell us that the backreaction significantly affects the spacetime evolution

of the system. The basic features of the results are essentially the same as the non-expanding

one:

• The classical plasma oscillation occurs in the co-moving frame and the kinetic longitudinal

momentum in that frame Pz = Pη/τ oscillates.

• The Pauli blocking occurs and quark production is heavily suppressed.

• The Bose enhancement occurs for gluon production, which strongly enhances soft gluon

production.

• As a result of quantum interferences, the momentum spectra are strongly distorted, and

the distortion is stronger for gluon production.

Some differences appear because of the expansion:
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Figure 5.9: The boost-invariant kinetic momentum Pη = pη + q
(fund.)
i Āη-distribution

d6Nq/dp
2dpηdx

2
⊥dη = |β(ψ)f,i,p⊥,pη ,s|2/(2π)3 of produced massless quarks at a fixed trans-

verse momentum |p⊥| = 0.11 GeV. Different panels differentiate the color charge q
(fund.)
i

(i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the correspond-

ing quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and

q
(fund.)
3 = 0 (right).

Figure 5.10: The boost-invariant kinetic momentum Pη = pη + q
(ad.)
A Āη-distribution

d6Ng+/dp
2dpηdx

2
⊥dη = |β(A)A,σ,p⊥,pη |2/(2π)3 of produced gluons at a fixed transverse momen-

tum |p⊥| = 0.11 GeV. Different panels differentiate the color charge q
(ad.)
A (i = 1, . . . , Nc(Nc −

1)/2) of gluons with color A. We set the color angle θ = 0, and the corresponding gluon charge

q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and q

(ad.)
3 = 1 (right).
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Figure 5.11: The transverse momentum p⊥-distribution d6Nq/dp
2dpηdx

2
⊥dη =

|β(ψ)f,i,p⊥,pη ,s|2/(2π)3 of produced massless quarks at a fixed boost-invariant kinetic mo-

mentum Pη = pη + q
(fund.)
i Āη = 0.1 GeV. Different panels differentiate the color charge q

(fund.)
i

(i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the corresponding

quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and q

(fund.)
3 = 0

(right).

Figure 5.12: The transverse momentum p⊥-distribution d6Ng+/dp
2dpηdx

2
⊥dη =

|β(A)A,σ,p⊥,pη |2/(2π)3 of produced gluons at a fixed boost-invariant kinetic momentum

Pη = pη + q
(ad.)
A Āη = 0.1 GeV. Different panels differentiate the color charge q

(ad.)
A

(i = 1, . . . , Nc(Nc − 1)/2) of gluons with color A. We set the color angle θ = 0, and the

corresponding gluon charge q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and

q
(ad.)
3 = 1 (right).
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• The longitudinal expansion stretches the longitudinal wavelength of created particles (the

same as the cosmological red-shift) so that the kinetic longitudinal momentum in the co-

moving frame Pz = Pη/τ decays at later times.

• The longitudinal expansion dilutes the classical electric field so that the field decays faster

(see Fig. 5.16). Because of this, the amplitude of the plasma oscillation becomes smaller

compared to those for the non-expanding system (see Figs. 4.8 - 4.11).

Let us model the plasma oscillation in our expanding geometry by extending the non-

expanding modeling explained in Section 2.5.2. By noting the approximate expressions (5.112)

and (5.113) for the pη-spectra without the backreaction and assuming the electric field is suffi-

ciently adiabatic in time Ē(τ) ∼ Ē0, we approximate the pη-spectra by

d6Ng±

dp2
⊥dpηdx

2
⊥dη

∼ 1

(2π)3
exp

[
−π p2

⊥

|q(ad.)A Ē0|

]
θ(∓pη(pη ± q

(ad.)
A Āη(τ))), (5.119)

d6N(−)
q

dp2
⊥dpηdx

2
⊥dη

∼ 1

(2π)3
exp

[
−π

m2
f + p2

⊥

|q(fund.)i Ē0|

]
θ(∓pη(pη ± q

(fund.)
A Āη(τ))). (5.120)

Notice that the above approximations discard the quantum interference effects, which largely

modify the spectra from those naively given by the Schwinger estimates. Furthermore, we

approximate the current
∑

αwα ⟨: ĵα,η :⟩ by again discarding the quantum interference effects

to obtain

⟨: ĵα,η :⟩ ∼
∑
qq̄

∑
i

(∓q(fund.)i )
∑
f

∑
s

∫
d2p⊥dpη sgn(pη ± q

(fund.)
i Āη)

d6N(−)
q

dp2
⊥dpηdx

2
⊥dη

+
∑
g±

∑
A

(∓q(ad.)A )
∑
σ

∫
d2p⊥dpη sgn(pη ± q

(ad.)
A Āη)

d6Ng±

dp2
⊥dpηdx

2
⊥dη

∼ 1

8π3

[
Nqq̄NsNlq

∑
i

|q(fund.)i |3 +Ng±Nσ

∑
A

|q(ad.)A |3
]
|Ē0|Āη(τ)

≡ k2Āη(τ), (5.121)

where

k2 ≡ 1

8π3

[
Nqq̄NsNlq

∑
i

|q(fund.)i |3 +Ng±Nσ

∑
A

|q(ad.)A |3
]
|Ē0| ∼ 3.1× 10−2 × g3Ē0. (5.122)

Here, we used
∑

i |q
(fund.)
i |3 ∼ 0.2×g3 and

∑
A |q

(ad.)
A |3 ∼ 1.3×g3 as we did in deriving Eq. (4.100).

By substituting this expression into the backreaction equation (5.37), one finds that Ē satisfies

the Bessel differential equation given by

0 =

[
d2

dτ 2
+

1

τ

d

dτ
+ k2

]
Ē(τ). (5.123)
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The solution of Eq. (5.123) is given in terms of the Bessel functions. With the initial condition

(5.118), one obtains

Ē(τ) = Ē0
J1(kτ0)Y0(kτ)− J0(kτ)Y1(kτ0)

J1(kτ0)Y0(kτ0)− J0(kτ0)Y1(kτ0)

τ0→0−−−→ Ē0J0(kτ), (5.124)

where Jn(x) and Yn(x) are the Bessel function of the first and the second kind, respec-

tively. From Eq. (5.124), one can roughly estimate the time scale of the plasma oscillation

as
√
|gĒ0|τosc ∼ 13× g−1 because the first zero point of the Bessel function J0(x) is x = 2.40.

Equation (5.124) also tells us that the electric field decays as ∝ 1/
√
τ because the Bessel

functions decays as ∝ 1/
√
τ . This is a result of the longitudinal expansion of the system; for

non-expansion systems, what we obtained from the same argument is Eq. (2.98), which says

that electric fields never decay due to classical dynamics. As is evident from the derivation,

this modeling is, unfortunately, a crude estimate mainly because it completely discards quan-

tum interferences, which dramatically changes the spectra. Nevertheless, it nicely captures the

essential features of the plasma oscillation and the effects of the longitudinal expansion because

they are purely classical dynamics.

5.3.3 momentum rapidity yp-spectrum of quarks and gluons

Next, we study the kinetic momentum rapidity yP -spectrum of produced quarks d5N(−)
q
/d2p⊥dyP dx

2
⊥

and gluons d5Ng±/d
2p⊥dyP dx

2
⊥ by integrating the pη-spectra over pη. The results are plotted

in Figs. 5.13 and 5.14.

Figure 5.13: The transverse momentum p⊥-dependence of the momentum rapidity yP -spectra

of massless quarks d5N(−)
q
/d2p⊥dyP dx

2
⊥. Different panels differentiate the color charge q

(fund.)
i

(i = 1, . . . , Nc) of quarks with color i. We set the color angle θ = 0, and the corresponding

quark charge q
(fund.)
i read q

(fund.)
i = q

(fund.)
1 = 1/2 (left), q

(fund.)
2 = −1/2 (middle), and q

(fund.)
3 = 0

(right).
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Figure 5.14: The transverse momentum p⊥-dependence of the momentum rapidity yP -

spectra of gluons d5Ng±/d
2p⊥dyP dx

2
⊥. Different panels differentiate the color charge q

(ad.)
A

(i = 1, . . . , Nc(Nc − 1)/2) of gluons with color A. We set the color angle θ = 0, and the cor-

responding gluon charge q
(ad.)
A read q

(ad.)
A = q

(ad.)
1 = −1/2 (left), q

(ad.)
2 = −1/2 (middle), and

q
(ad.)
3 = 1 (right).

From Figs. 5.13 and 5.14, we find that the p⊥-dependence of the quark spectrum is almost

Gaussian, while the gluon production favors soft p⊥ gluons. This is simply because gluons are

not subjected to the Pauli principle and hence soft gluons are produced ceaselessly without any

bound. We note that the total number of produced gluons are finite (see Fig. 5.15) because

the spectrum only has a weak divergence |p⊥|−α with α < 1 for p⊥ → 0. We also note that

the momentum rapidity yP -spectra of both particles are smoothened by the pη-integral when

compared to the pη-spectra (see Figs. 5.12 and 5.13).

Although the plasma oscillation in the pη-spectra can be observed only in the co-moving

frame and hence is not a direct experimental observable in the center-of-mass frame, the mo-

mentum rapidity yP -spectra possess some traces of it:

• We can see some dips in the quark pη-spectrum in the low transverse momentum region.

This is because quarks and anti-quarks with soft momenta can annihilate with each other

when they overlap at the same phase space. The overlap is possible because of the plasma

oscillation.

• The gluon pη-spectrum shows dramatical increases periodically because of the Bose en-

hancement followed by the plasma oscillation; in particular, soft gluon production is

dramatically enhanced.

5.3.4 total number of quarks and gluons

We compute the total number of quarks and gluons produced per unit momentum rapidity

yP by integrating the momentum rapidity yP -spectra over the transverse momentum p⊥ and
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summing up all the quantum numbers. The results are shown in Fig. 5.15. The left panel

shows the total number of produced quarks (red) and gluons (blue), and the right panel shows

the ratio Rq−g of the total quark number to the total gluon number Rq−g ≡ Nq/Ng.

Figure 5.15: [Left] Total number of produced quarks
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3 (red) and

gluons
∑

σ,A,g±

∫
d3pd6Ng±/dp

3dx3 (blue), and the sum of them (black). The dashed line is an

estimate from the Schwinger formula without the backreaction, i.e., the sum of Eqs. (5.116)

and (5.117). [Right] The ratio of the total number of quarks to the total number of gluons

Rq−g ≡ [
∑

f,i,s,qq̄

∫
d3pd6N(−)

q
/dp3dx3]/[

∑
σ,A,g±

∫
d3pd6Ng±/dp

3dx3].

From Fig. 5.15, we first find that the quark production is very fast: The major part of the

quark production is completed as early as τ ∼ 1 fm/c. Within this short time-scale, about 1000

quarks per unit rapidity (for the typical transverse size of heavy ions such as gold ∼ 7 fm) are

produced and the number is comparable to that of gluons for all values of τ . Notice that the

value “1000” is also comparable to the experimentally observed hadron yield ∼ 1000 charged

hadrons per unit rapidity, and thus one might understand that the huge entropy production in

the pre-equilibrium stage dynamics of heavy ion collisions could be explained by the Schwinger

mechanism (although it is highly non-trivial how to connect the quark and gluon number to

the final hadrons because it involves the physics of confinement, and hence one needs a more

sophisticated treatment to discuss this issue in detail). Hence, one understands that quarks

must have important information about and/or an important role in the pre-equilibrium stage

dynamics of ultra-relativistic heavy ion collisions.

We also find that except at the very early times τ ≲ 1 fm/c, where quark production domi-

nates because of the perturbative particle production mechanism, gluons are more abundantly

produced than quarks because of the Bose enhancement for gluons and the Pauli blocking for

quarks. It is worthwhile to point out that the final ratio Rq−g ∼ 0.5 is larger than what we

found in the non-expanding case (Rq−g ∼ 0.2; see Fig. 4.13). This is because the expansion

makes the electric field decay faster (see Fig. 5.16), and the gluon production, which is slower



168 Chapter 5. Particle Production in Ultra-relativistic Heavy Ion Collisions

than the quark production at the early times τ ≲ 1 fm/c, becomes ineffective before the ratio

grows. If one compares this value Rq−g ∼ 0.5 with that one naively expects for a chemically

equilibrated quark and gluon matter Rq−g = 9/4 (where an ideal gas of massless particles with

Nf = 3 is assumed ), one understands that our result is far away from the chemical equilibrium.

This is because our mean field and massless approximation neglects inelastic processes such as

g → qq̄, gg → g; inclusion of these processes is left to a future work.

5.3.5 decay of color electric field

Figure 5.16 shows how the classical electric field decays (left panel) together with the time-

evolution of the color current
∑

αwα ⟨: ĵ η
α :⟩ (right panel).

Figure 5.16: [Left] The time-evolution of the electric field strength Ē(τ) [Right] The time-

evolution of the color current
∑

αwα ⟨: ĵ η
α :⟩ in terms of the quark contribution (red), the

gluon and ghost contribution (blue), and the sum of them (black).

We again observe the classical plasma oscillating behavior in both the electric field strength

and the color current.

An important point here is that not only the particle production, but also the longitudinal

expansion dilutes the classical electric field to decay (see Eq. (5.124)). As a result, the electric

field decays fast with a typical time-scale τ ∼ 3 fm/c, which is much faster than the value

t ∼ 10 fm/c for the non-expanding case (see Fig. 4.12).

The typical decay time-scale τ ∼ 3 fm/c is roughly consistent with the speculated QGP

formation time τ ∼ 1 fm/c. In this sense, one may say that the Schwinger mechanism supports

the early QGP formation scenario. The deviation may be because of our simplification of

the initial field configuration. In particular, it may be important to include longitudinal color

magnetic field component, which enhances the quark and gluon production as was discussed in

Introduction.
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5.3.6 energy density

Figure 5.17: [Left] The energy balance between the total gauge field, i.e., the sum of classical

field, quantum gluons, and ghosts (blue), and produced quarks (red). The total energy of the

system is represented by the black line. [Right] Power-dependence of the late time evolution of

the energy density.

The time-evolution of the energy density ⟨: ϵ̂ :⟩ is plotted in Figs. 5.17 and 5.18. From these

figures, one understands that our QCD formalism naturally describes the transition from the

field regime to the particle regime in the pre-equilibrium stage dynamics of heavy ion collisions

explained in Section 1.2.2 and reveals the dynamics of the transition quantitatively. Namely,

we find:

field regime (τ0 < τ ≲ 2 fm/c)

The system is dominated by the initial classical gauge field, and the quantum particle

degrees of freedom (quarks and gluons) are negligible. Hence, the specetime evolution of

the system can solely be determined by the (Abelianized) classical Yang-Mills equation

(5.37).

intermediate regime (2 fm/c ≲ τ ≲ 4 fm/c)

The classical gauge field decays because of the longitudinal expansion and the quark and

gluon production via the Schwinger mechanism. A major part of the particle production

completes within a few fm/c as τ ≲ 2 fm/c. At this time-scale, however, the classical

field has not decayed completely and the field energy is still comparable to the quantum

particle energy. Thus, in this intermediate regime (2 fm/c ≲ τ ≲ 4 fm/c), both classical

and quantum degrees of freedom are important in understanding the spacetime evolution

of the system. For example, the time-dependence of the total energy density shows an

oscillating behavior. This is because of the plasma oscillation, which is a result of the

interaction between the quantum particles and the classical field.



170 Chapter 5. Particle Production in Ultra-relativistic Heavy Ion Collisions

Figure 5.18: [Left] A ratio of the produced quark energy to the total gauge field energy. [Right]

The energy balance of the total gauge field energy (black) between the classical field (red) and

the quantum gluons and ghosts (blue).

particle regime (4 fm/c ≲ τ)

After the intermediate regime, the classical gauge field completely passed away, and the

system is dominated by quantum particle degrees of freedom (quarks and gluons). Hence,

the spacetime evolution can solely be determined by the quantum field equations (5.16)

and (5.28).

Now, the energy density shows a monotonic behavior in time. This is because the plasma

oscillation never takes place after the classical field passed away.

In this particle regime, gluon particles dominate the system as ⟨: ϵ̂ :⟩q / ⟨: ϵ̂ :⟩g ∼ 0.64

because of the Pauli blocking for quarks and the Bose enhancement for gluons explained

previously. Notice that this ratio is larger than what we observed for the non-expanding

case, ⟨: ϵ̂ :⟩q / ⟨: ϵ̂ :⟩g ∼ 0.35 (see Fig. 4.15), in the same reasoning why the number ratio

Nq/Ng becomes larger for the present expanding case (see Section 5.3.4). We also note

that the ratio ⟨: ϵ̂ :⟩q / ⟨: ϵ̂ :⟩g ∼ 0.64 is larger than the number ratioNq/Ng ∼ 0.50 because

the gluon production is dominated in the soft momentum region.

We also find that the energy density decays a little bit faster than an inverse of τ as

⟨: ϵ̂ :⟩ ∝ τ−1.2, although one naively expects that the energy density might decrease as

⟨: ϵ̂ :⟩ ∝ 1/τ because the system volume increases as∝ τ . This is because produced matter

composed of quarks and gluons have positive longitudinal pressure that does mechanical

work against the expansion, which decreases energy with the expansion.
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Figure 5.19: [Left] The total transverse pressure of the system (black) together with contri-

butions from the total gauge field, i.e., the sum of classical field, quantum gluons, and ghosts

(blue), and produced quarks (red). [Right] The total transverse pressure of the total gauge field

(black) together with contributions from the classical field (red) and the quantum gluons and

ghosts (blue).

Figure 5.20: [Left] The total longitudinal pressure of the system (black) together with contri-

butions from the total gauge field, i.e., the sum of classical field, quantum gluons, and ghosts

(blue), and produced quarks (red). [Right] The total longitudinal pressure of the total gauge

field (black) together with contributions from the classical field (red) and the quantum gluons

and ghosts (blue).



172 Chapter 5. Particle Production in Ultra-relativistic Heavy Ion Collisions

5.3.7 pressure

The time-evolution of the transverse (longitudinal) pressure of the system is shown in Fig. 5.19

(Fig. 5.20). As observed in the energy density (see Figs. 5.17 and 5.18), we again observe the

transition from the field regime to the particle regime:

field regime (τ0 < τ ≲ 2 fm/c)

The initial classical gauge field dominates the system, and the quantum particle degrees of

freedom (quarks and gluons) are negligible. As a result, the system is highly anisotropic

with negative longitudinal pressure ⟨: P̂z :⟩ ∼ − ⟨: P̂⊥ :⟩ ∼ −Ē2
0/2.

intermediate regime (2 fm/c ≲ τ ≲ 4 fm/c)

The classical gauge field decoheres into quarks and gluons. The longitudinal expansion

also depletes the strength of the classical field. As a result, the magnitude of the transverse

and the longitudinal pressure from the classical field quickly decreases, and that from the

produced quarks and gluons begins to increase.

An important point here is that the isotropization of the system takes place during this

regime. In particular, the anomalous negative longitudinal pressure, which the system

initially has, begins to disappear because the produced particles always have a positive

longitudinal pressure and the classical field, which has a negative longitudinal pressure,

quickly decays.

We also observe that both the transverse and the longitudinal pressure oscillate in time

because of the plasma oscillation due to the interaction between the produced particles

and the classical field.

particle regime (4 fm/c ≲ τ)

Now, the classical gauge field completely passed away and the quantum particle degrees

of freedom (quarks and gluons) dominate the system.

In this regime, the longitudinal and the transverse pressure show a monotonic behavior

in time because of the absence of the plasma oscillation.

Notice that the longitudinal pressure of the system is smaller than the transverse one

⟨: P̂z :⟩ < ⟨: P̂⊥ :⟩, which is in contrast to what we found in the non-expanding case

⟨: P̂z :⟩ > ⟨: P̂⊥ :⟩ (see Fig. 4.21). This is because the longitudinal expansion of the

system strongly decreases the longitudinal momentum of the produced particles as was

explained in Figs. 5.9 and 5.10.

Next, we discuss the isoropization of the system by following the time-evolution of ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩
and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, whose result is shown in Fig. 5.21. Before discussing the result, it is instruc-

tive to see how the quantities, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, are related to the anisotropy
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of the system,

a ≡ ⟨: P̂z :⟩
⟨: P̂⊥ :⟩

, (5.125)

in our expanding problem. To do this, we first assume that QCD is conformal (which is, in

reality, slightly broken by the conformal anomaly [166, 167, 168]). Then, the trace of the

symmetric energy-momentum tensor ⟨: T̂ µν :⟩ vanishes, and we find

⟨: ϵ̂ :⟩ = 2 ⟨: P̂⊥ :⟩+ ⟨: P̂z :⟩ =
(
1 +

2

a

)
⟨: P̂z :⟩ . (5.126)

By substituting this relation (5.126) into the energy conservation law (5.38), one obtains

0 =

[
d

dτ
+

1

τ

2 + 2a

2 + a

]
⟨: ϵ̂ :⟩ . (5.127)

If the system is sufficiently adiabatic in time, or ∂τa ∼ 0, then one can solve Eq. (5.127) to find

⟨: ϵ̂ :⟩ ∝ τ−
2+2a
2+a , (5.128)

and

⟨: P̂⊥ :⟩
⟨: ϵ̂ :⟩

=
1

2 + a
,
⟨: P̂z :⟩
⟨: ϵ̂ :⟩

=
a

2 + a
. (5.129)

From Eqs. (5.128) and (5.129), if the system is completely isotropitized (a = 1), one finds

⟨: ϵ̂ :⟩ ∝ τ−4/3,
⟨: P̂⊥ :⟩
⟨: ϵ̂ :⟩

=
1

3
,
⟨: P̂z :⟩
⟨: ϵ̂ :⟩

=
1

3
. (5.130)

Another interesting value of a is a = 0, which corresponds to the situation where the longitu-

dinal pressure vanishes as ⟨: P̂z :⟩ = 0 because of the expansion. This situation is often called

the free-streaming limit. In this case, one finds

⟨: ϵ̂ :⟩ ∝ τ−1,
⟨: P̂⊥ :⟩
⟨: ϵ̂ :⟩

=
1

2
,
⟨: P̂z :⟩
⟨: ϵ̂ :⟩

= 0. (5.131)

It is known that the classical Yang-Mills evolution favors the free-streaming limit and never

isotropitizes [121, 124, 125, 126, 146] as was reviewed in Section 1.2.2 (see Fig. 1.6).

Now, we are ready to discuss Fig. 5.21. One immediately observes that the anisotropy of

the system relaxes as time goes because of the decoherence of the classical field into quantum

particles. In addition to this, the longitudinal expansion of the system also plays an important

role in the isotropization. By noting that the longitudinal pressure of the system is much larger

than the transverse one in the non-expansing case (see Fig. 4.21), the longitudinal expansion

of the system makes the longitudinal pressure weaker and makes it closer to the value of the

transverse pressure. Because of these effects, the system becomes less anisotropic as a ∼ 0.5
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Figure 5.21: Isotropization of the system. The total transverse and longitudinal pressure

scaled by the total energy, ⟨: P̂⊥ :⟩ / ⟨: ϵ̂ :⟩ and ⟨: P̂z :⟩ / ⟨: ϵ̂ :⟩, are plotted in red and blue

line, respectively. The horizontal lines 1/2 (dotted) and 1/3 (dashed) correspond to the free-

streaming limit (5.131) and the isotropitized limit (5.130), respectively.

within a few fm/c. If we assume that hydrodynamics works even for such a relatively anisotropic

regime (for example, Ref. [129] claims that the hydrodynamics still works for a ∼ 0.2; see Sec-

tion 1.2.2 also), we may understand that our result implies that the hydrodynamization actually

takes place within a few femtoseconds after a collision of nuclei as suggested by experiments.

By noting that our mean field and massless approximations neglect collisions and scatterings

between produced particles, this consistency implies that the quantum decoherence of the clas-

sical field together with the longitudinal expansion are essential in the isotropization in the

pre-equilibrium dynamics of ultra-relativistic heavy ion collisions; that is, collisional effects are

only secondary, although they should further shorten the time-scale and improve the anisotropy

of the system to some extent. This discussion is also consistent with the state-of-art effective

kinetic study [129], which states that the typical time-scale of collisional effects is rather long

∼ 100/Qs ∼ 20 fm/c and hence may be irrelevant to the fast hydrodynamization.

5.4 Brief summary

We briefly summarize the main results of this chapter:

• We formulated the Schwinger mechanism in QCD for an expanding electric field in Sec-

tion 5.1.

• By neglecting the backreaction, we analytically traced the time-evolution of the quark

and gluon distributions in Section 5.2 and find that the quark and gluon production in an

expanding geometry is essentially the same as that in a non-expanding geometry, although
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there are slight differences in what frame we are observing.

• By modeling the initial color flux tubes just after a collision by a spatially homogeneous,

boost-invariantly expanding electric field, we discussed the pre-equilibrium stage dynam-

ics of heavy ion collisions within our QCD formalism including the backreaction (see

Section 5.3).

• The classical plasma oscillation occurs in the co-moving frame (see Figs. 5.9 - 5.12), which

leaves some traces in the momentum rapidity yP -spectra in the center-of-mass frame

because of the quantum interferences induced by the plasma oscillation (see Figs. 5.13

and 5.14).

• We quantitatively revealed how the initial classical field degree of freedom decohere into

quantum particle degrees of freedom in an unified way. In particular, the classical electric

field decays quite fast ∼ 3 fm/c (see Fig. 5.17), which does not contradict with the fast

QGP formation, because of the decoherence and the longitudinal expansion.

• Huge number of quarks ∼ 1000 per unit rapidity are produced very quickly ∼ 1 fm/c

(see Fig. 5.15). This means that not only gluons but also quarks must have important

information about and/or an important role in the pre-equilibrium stage dynamics of

ultra-relativistic heavy ion collisions.

• Because of the decoherence and the longitudinal expansion, the system becomes less

anisotropic as ⟨: P̂z :⟩ / ⟨: P̂⊥ :⟩ ∼ 0.5 within a few fm/c (see Fig. 5.21), although our

mean field and massless approximations do not take into account collisions and scatterings

between produced particles.





Chapter 6

Summary and Outlook

In this thesis, we extensively studied the Schwinger mechanism in QCD and its applications to

the pre-equilibrium stage dynamics of ultra-relativistic heavy ion collisions.

In Section 2, we reviewed the Schwinger mechanism in QED in detail before going into

the QCD study. Firstly, we adopted the mean field approximation to formulate the Schwinger

mechanism in QED including the backreaction from produced electrons. Next, we applied

the formalism to a constant electric field, and saw how one can reproduce the well-known

exponential formula for the electron production rate Γ = exp[−π(m2
e + p2

⊥)/|eE0|]/(2π)3. We,

then, considered a pulsed type electric field to discuss how the time-dependence of the field

affects the particle production mechanism (this part is based on my own work [42]). We

analytically showed that (i) an interplay between the perturbative and the non-perturbative

particle production occurs with changing the field strength E0 and/or the duration of the field

τ ; (ii) two dimensionless parameters ν = |eE0|τ 2, γ = |eE0|τ/me control the interplay; and

(ii) the electron production is strongly enhanced in the perturbative regime. After that, we

briefly discussed the dynamical evolution of the electron spectrum without the backreaction. In

the last half of this section, we discussed the backreaction effects. We found that the electron

spectrum is dramatically modified from the one without the backreaction. In particular, we

found that (i) the classical plasma oscillation occurs; (ii) the quantum interferences among

electrons strongly distort the electron spectrum; (iii) the Pauli principle suppresses the electron

production (the Pauli blocking); and (iv) the decoherence of the classical field to electrons

relaxes the strong anisotropy of the system.

The following three sections are the main parts of this thesis:

In Section 3, we extended the QED formulation to the case of SUc(Nc = 2) Yang-Mills

theory without quarks. By adopting the mean field and the massless approximations, we

derived a set of linear differential equations, which describes gluon production, backreaction,

and partial effects of scatterings. We first applied the formalism to a constant color electric

background field, and analytically followed the time-evolution of the gluon distribution function

by neglecting the backreaction. We found that the basic features of the gluon production are

the same as what we found in the electron production in QED. However, this situation changes

177
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if one treats the backreaction effects: The quantum interferences dramatically enhance the

gluon production (the Bose enhancement) and distort the spectrum stronger than electrons.

These effects accelerate the decoherence of the classical field.

In Section 4, we extensively studied the Schwinger mechanism in QCD (for a non-expanding

electric field) by extending the SUc(Nc = 2) Yang-Mills formulation to SUc(Nc = 3)⊗SUf(Nf)

QCD. We first analyzed the formalism without the backreaction, and analytically followed

the time-evolution of the quark and gluon distribution functions. Differences and similarities

between the quark and the gluon production are discussed; for example, the perturbative

enhancement is two times larger for quarks than gluons. Various effects such as the color angle

θ-, the number of flavor Nf-, and the quark mass mf -effects, are examined in detail. Secondly,

we discussed the backreaction effects. Most importantly, we found that the system is eventually

dominated by gluons because of the Bose enhancement (the Pauli blocking) for gluon (quark)

production, and hence quarks give only secondary contributions. Various effects such as the

color angle θ-, the number of flavor Nf-, and the quark mass mf -effects, are also investigated

with the backreaction. Among them, the quark mass mf -dependence is worth mentioning: We

found that (i) the strange (charm) quark production is comparable (negligible) to the massless

up and down quark production; and (ii) the heavy charm quark production is much larger than

what one naively expects from the Schwinger exponential formula for the particle production

rate Γ.

In Section 5, we applied our QCD formalism to the pre-equilibrium stage dynamics of ultra-

relativistic heavy ion collisions, and discussed some phenomenological consequences. There, we

considered a simple toy model: We modeled the initial color flux tubes existing just after a

collision of nuclei by a spatially homogeneous and boost-invariantly expanding electric field. In

the first part of this chapter, we explained how one can extend the QCD formalism originally

developed for a non-expanding electric field to the expanding one. In the second part of

this chapter, we analytically traced the time-evolution of the quark and gluon distribution

functions without the backreaction (this part is based on my own work [137]). By doing this,

we studied effects of the longitudinal expansion in detail, and found that quark and gluon

production for an expanding electric field is essentially the same as that for a non-expanding

one, although there are slight differences in what frame we are observing (the co-moving frame

for the expanding one, and the center-of-mass frame for the non-expanding one). In the last

part of this chapter, the backreaction is considered and the phenomenological consequences

of our model was investigated in detail. An advantage of our formalism is that it enables

us to quantitatively discuss the transition from the field regime to the particle regime in a

unified way. We found, in particular, that (i) the classical plasma oscillation takes place in

the co-moving frame, which leaves some traces in the momentum rapidity yP -spectra observed

in the center-of-mass frame because of the quantum interferences; (ii) the classical electric

field decays quite fast ∼ 3 fm/c because of the decoherence and the longitudinal expansion;

(iii) huge number of quarks ∼ 1000 per unit rapidity are produced very quickly ∼ 1 fm/c;
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and (iv) because of the decoherence and the longitudinal expansion, the system becomes less

anisotropic as ⟨: P̂z :⟩ / ⟨: P̂⊥ :⟩ ∼ 0.5 within a few fm/c, although our mean field and massless

approximations do not take into account collisions and scatterings between produced particles.

There are many possible future directions of this work:

The first direction is to improve our formalism to include the higher order quantum correc-

tions such as the effective mass terms M . The higher order terms are responsible for collisions

and scatterings of produced particles, and are important in describing the thermalization; the

isotropization; the hydrodynamization; and the chemical equilibration of the system. Inclusion

of these terms and evaluating its impacts on the spacetime evolution are also important in

justifying our theoretical simplifications (e.g. the mean field and the massless approximations)

made in this thesis from a theoretical point of view. Besides, it is discussed vigorously that

momentum exchanges due to the scatterings induce spectral cascades (for a recent review cov-

ering this topic, see [169]), which result in some interesting behaviors such as a formation of

gluonic Bose-Einstein condensates [170, 171, 172, 173].

Another direction is to improve the initial configuration of the classical field: In realistic

situations, the classical field has finite extent in the transverse direction and has random fluctu-

ations with a typical transverse correlation length ∼ Q−1s . Besides, it is known that the classical

color field has magnetic components in addition to electric ones in the longitudinal direction

[121]. Inclusion of these non-trivial structure in the initial field configuration is important in

making a reliable theoretical prediction of various experimental observables and thus in justi-

fying our theoretical framework from an experimental point of view. Also, it is important in

constructing a physical initial condition for hydrodynamical simulations (e.g. transverse energy

or entropy density and formation time), which was determined by ad hoc ways previously. More

or less, these non-trivial structure would modify our results for a homogeneous pure electric

field configuration. For instance, as was stated in Introduction, the existence of longitudinal

magnetic fields may enhance particle production rate [33, 34, 91, 174, 175]. In addition to

this, such field configuration is known to invoke the Nielsen-Olesen type instability [13, 14],

although its typical timescale is rather slow. It is interesting to study the particle production

under the presence of such instabilities; for non-expanding, static color electromagnetic fields,

it was discussed that the instability may dramatically enhance the gluon production [15].

The last direction which we would like to mention is about quark dynamics. As was dis-

cussed so far, quarks are abundantly produced at very early times and hence they may have

important information about and/or an important role in the pre-equilibrium stage dynamics

of ultra-relativistic heavy ion collisions. Since quarks have an U(1) electromagnetic charge,

which does not suffer from the strong interactions, one can investigate the quark dynamics by

using U(1) electromagnetic probes such as photons [176] and dileptons [177, 178]. Studying the

U(1) electromagnetic probes are, hence, very important because it may provide us novel exper-

imental probes for the pre-equilibrium stage dynamics. Another interesting topic involving the

quark dynamics is the existence of strong U(1) electromagnetic fields just after a collision of
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nuclei [24, 25]. Although such strong U(1) electromagnetic fields die away immediately after a

collision within the time less than 1 fm/c, they could significantly influence the quark dynamics

because the strong U(1) electromagnetic fields are as strong as the pion mass scale and the

quark production is fast enough. Thus, one can expect some experimental traces of them, for

instance, in U(1) charge dependences in observables. In particular, an U(1) charge dependent

directed flow v±1 in asymmetric heavy ion collisions [179, 180] is recently measured by the STAR

collaboration [181]. This should provide important insights in the quark production, or possibly

the pre-equilibrium stage dynamics of heavy ion collisions, although theoretical understanding

of this observable is still lacking. Another interesting physics that involves the strong U(1)

electromagnetic fields is the Chiral Magnetic Effect [182], whose real time dynamics from the

microscopic point of view is still incomplete (although there are some primitive works on this

topic [183, 184]) and hence is worth to be investigated further by extending our work.
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Appendix A

Analytic Mode Functions for Fermions

in a Box

We consider the Dirac equation under a classical gauge potential Aµ = (0, 0, 0, A(t)):

0 = [iγt∂t + iγ⊥ · ∂⊥ + iγz(∂z − igA)−m]ψ. (A.1)

By noting the spacial homogeneity, we Fourier expand ψ to obtain an equation for posi-

tive/negative frequency mode functions ±ψp,s as

0 = [iγt∂t − γ⊥ · p⊥ − γz(pz − gA(t))−m]±ψp,s. (A.2)

In order to solve Eq. (A.2), it is convenient to decompose the mode functions ±ψp,s as

+ψp,s = Ap,sUp,s +Bp,sVp,s,

−ψp,s = B∗p,sUp,s − A∗p,sVp,s (A.3)

where Up,s, Vp,s are eigenvectors of a projection operator P± ≡ (1± γtγz)/2 satisfying

P+Up,s = Up,s, P
−Vp,s = Vp,s, (A.4)

δss′ = U †p,sUp,s = V †p,sVp,s, 0 = V †p,sUp,s. (A.5)

We also normalize the scalar functions Ap,s, Bp,s by

1 = |Ap,s|2 + |Bp,s|2. (A.6)

From these normalization conditions, Eq. (A.5) and (A.6), one immediately obtains an or-

thonormality relation for ±ψp,s as

δss′ = ±ψ
†
p,s±ψp,s′ , 0 = ±ψ

†
p,s∓ψp,s′ . (A.7)
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The scalar functions Ap,s, Bp,s and the spinors Up,s, Vp,s are not independent with each

other. By substituting Eq. (A.3) into the mode equation (A.2), one obtains the following linear

relation

i
d

dt

(
Ap,s

Bp,s

)
=

(
pz − gA(t)

√
m2 + p2

⊥√
m2 + p2

⊥ −(pz − gA(t))

)(
Ap,s

Bp,s

)
, (A.8)

and

Vp,s = γt
γ⊥ · p⊥ +m√
m2 + p2

⊥
Up,s. (A.9)

A.1 Plane wave solutions

If the system is free from the classical gauge potential, i.e., A(t) = 0, then one can easily

diagonalize Eq. (A.8) to obtain a positive frequency solution ∝ exp[−iωpt] as(
Ap,s

Bp,s

)
=

 1√
2

√
1 + pz

ωp

1√
2

√
1− pz

ωp

 e−iωpt. (A.10)

From Eq. (A.3), one can immediately construct positive/negative frequency mode functions

±ψp,s as

+ψp,s = up,se
−iωpt, −ψp,s = v−p,se

+iωpt (A.11)

where the free-spinors up,s, v−p,s are given by

up,s = [Ap,sUp,s +Bp,sVp,s] e
+iωpt =

1√
2

[√
1 +

pz
ωp

+

√
1− pz

ωp

γt
γ⊥ · p⊥ +m√
m2 + p2

⊥

]
Up,s, (A.12)

v−p,s =
[
B∗p,sUp,s − A∗p,sVp,s

]
e−iωpt =

1√
2

[√
1− pz

ωp

−
√

1 +
pz
ωp

γt
γ⊥ · p⊥ +m√
m2 + p2

⊥

]
Up,s. (A.13)

By noting the normalization condition for Up,s, Vp,s (Eq. (A.5)), it is easy to see

δss′ = u†p,sup,s′ = v†p,svp,s′ , 0 = v†−p,sup,s′ . (A.14)

A.2 Under a constant electric field

Under a constant electric field A(t) = −E0t (for now we assume gE0 > 0 for simplicity),

Eq. (A.8) reads

i
d

dt

(
Ap,s

Bp,s

)
=

(
pz + gE0t

√
m2 + p2

⊥√
m2 + p2

⊥ −(pz + gE0t)

)(
Ap,s

Bp,s

)
. (A.15)
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By squaring this equation, one obtains a second order differential equation for Ap,s:

0 =

[
d2

dt2
+ (pz + gE0t)

2 + p2
⊥ +m2 + igE0

]
Ap,s. (A.16)

Now, we change the variable,

ξ ≡
√

2

gE
(gE0t+ pz), (A.17)

to find that Eq. (A.16) is reduced to a parabolic cylinder differential equation:

0 =

[
d2

dξ2
+
ξ2

4
+

(
a+

i

2

)]
Ap,s (A.18)

with

a =
m2 + p2

⊥
2gE0

. (A.19)

Solutions of Eq. (A.16) are given by the parabolic cylinder function Dν(z) as

Ap,s = c1Dia−1(−e−iπ/4ξ) + c2D−ia(e
iπ/4ξ). (A.20)

From Eq. (A.15) and identities [162][
d

dz
− z

2

]
Dν(z) = −Dν+1(z),

[
d

dz
+
z

2

]
Dν(z) = νDν−1(z), (A.21)

one gets

Bp,s =
1√
a

[
i
d

dξ
− ξ

2

]
Ap,s

= c1 ×
eiπ/4√
a
Dia(−e−iπ/4ξ) + c2 ×

√
aeiπ/4D−ia−1(e

iπ/4ξ) (A.22)

The coefficients c1, c2 are determined by a boundary condition and the normalization con-

dition (A.6). Now, we require the plane wave boundary condition at the asymptotic times

t→ ±∞ (Eq. (2.27) and (2.28)) as in the main text. By using the asymptotic formula for the

parabolic cylinder functions Dν(z) [162]

Dν(z) −−−−→
|z|→∞


zνe−z

2/4 (| arg z| < 3π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
iνπz−ν−1ez

2/4 (π/4 < arg z < 5π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
−iνπz−ν−1ez

2/4 (−5π/4 < arg z < −π/4)
, (A.23)

one finds that (
A

(in)
p,s

B
(in)
p,s

)
= e−πa/4

(
e−iπ/8

√
aDia−1(−e−iπ/4ξ)

e+iπ/8Dia(−e−iπ/4ξ)

)
, (A.24)(

A
(out)
p,s

B
(out)
p,s

)
= e−πa/4

(
e−iπ/8D−ia(e

iπ/4ξ)

e+iπ/8
√
aD−ia−1(e

iπ/4ξ)

)
(A.25)
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correspond to the positive frequency solutions at t → −∞ (as = in) and t → ∞ (as = out)

properly normalized by the condition (A.6).

These two solutions A
(as)
p,s , B

(as)
p,s (as = in, out) are not linearly independent of each other.

With the use of an identity [162]

Dν(z) =
Γ(1 + ν)√

2π

[
e−iπν/2D−ν−1(−iz) + eiπνD−ν−1(iz)

]
, (A.26)

one obtains the following linear relation:(
A

(in)
p,s

B
(in)∗
p,s

)
=

(
αp,s −β∗p,s
βp,s α∗p,s

)(
A

(out)
p,s

B
(out)∗
p,s

)
(A.27)

with

αp,s =

√
2πae−πa/2

Γ(1− ia)
, βp,s = e−πa. (A.28)

The linear relation is the same as the Bogoliubov transformation for the mode functions ±ψ
(as)
p,s .

Indeed, from Eq. (A.27), one finds(
+ψ

(in)
p,s

−ψ
(in)
p,s

)
=

(
A

(in)
p,s B

(in)
p,s

B
(in)∗
p,s −A(in)∗

p,s

)(
Up,s

Vp,s

)

=

(
αp,s −β∗p,s
βp,s α∗p,s

)(
A

(out)
p,s B

(out)
p,s

B
(out)∗
p,s −A(out)∗

p,s

)(
Up,s

Vp,s

)

=

(
αp,s −β∗p,s
βp,s α∗p,s

)(
+ψ

(out)
p,s

−ψ
(out)
p,s

)
. (A.29)

A.3 Under a Sauter-type electric field

Now, we consider a Sauter-type electric field with height E0 and width τ described by [142]

A(t) = −E0τ tanh(t/τ), or E = E0sech
2(t/τ). (A.30)

Under this choice of electric field, the differential equation (A.8) for the scalar function Ap,s, Bp,s

read

i
d

dt

(
Ap,s

Bp,s

)
=

(
pz + E0τ tanh(t/τ)

√
m2 + p2

⊥√
m2 + p2

⊥ −(pz + E0τ tanh(t/τ))

)(
Ap,s

Bp,s

)
. (A.31)

By squaring the both hand sides of (A.31) to obtain a second order differential equation for

Ap,s as

0 =

[
d2

dt2
+ (pz + gE0τ tanh(t/τ))

2 + igE0sech
2(t/τ) +m2 + p2

⊥

]
Ap,s. (A.32)
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By changing the variable as

u ≡ 1

2
[1 + tanh(t/τ)] , (A.33)

Eq. (A.32) reads[
4

τ 2
u(1− u)

d

du

(
u(1− u)

d

du

)
+ ω2(u) + 4igE0u(1− u)

]
Ap,s, (A.34)

where

ω2(u) ≡ m2 + p2
⊥ + (pz + gE0τ tanh(t/τ))

2 ≡ m2 + p2
⊥ + Pz(u)

2. (A.35)

In order to solve Eq. (A.34), we furthermore make an ansatz of a form

Ap,s = u−iτω(0)/2(1− u)iτω(1)/2Ãp,s. (A.36)

By substituting this ansatz into Eq. (A.32), one finds that Ãp,s satisfy the hypergeometric

differential equation of a form

0 =

[
u(1− u)

d2

du2
+ {c− (a+ b− 1)u} d

du
− ab

]
Ãp,s, (A.37)

where

a = −igE0τ
2 − iτω(0)

2
+
iτω(1)

2
,

b = 1 + igE0τ
2 − iτω(0)

2
+
iτω(1)

2
,

c = 1− iτω(0). (A.38)

Solutions of (A.37) are given by the hypergeometric function 2F1(a, b, c; z), and we obtain

Ap,s = c1u
−iτω(0)/2(1− u)iτω(1)/22F1(a, b, c;u)

+ c2u
iτω(0)/2(1− u)−iτω(1)/22F1(1− a, 1− b, 2− c;u). (A.39)

The coefficients c1, c2 are determined by a boundary condition and the normalization con-

dition (A.6). Now, we require the plane wave boundary condition at the asymptotic states

t→ ±∞ (Eq. (2.27)) as in the main text. By using [162]

2F1(a, b, c; z) =
Γ(x)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a; c− b, c− a− b+ 1; 1− z),

(A.40)
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one can find

A(in)
p,s =

1√
2

√
1 +

Pz(0)

ω(0)
u−iτω(0)/2(1− u)iτω(1)/22F1(a, b, c;u),

B(in)
p,s =

1√
2

√
1− Pz(0)

ω(0)
u−iτω(0)/2(1− u)iτω(1)/22F1(1− a∗, 1− b∗, 2− c∗;u), (A.41)

and the out-state solutions A
(out)
p,s , B

(out)
p,s are obtained from the in-state solutions A

(in)
p,s , B

(in)
p,s by

the following linear relation:(
A

(in)
p,s

B
(in)∗
p,s

)
=

(
αp,s −β∗p,s
βp,s α∗p,s

)(
A

(out)
p,s

B
(out)∗
p,s

)
, (A.42)

where

αp,s =

√
ω(1)

ω(0)

√
ω(1)− Pz(1)

ω(0)− Pz(0)

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

βp,s = −

√
ω(1)

ω(0)

√
ω(1) + Pz(1)

ω(0)− Pz(0)

Γ(c∗)Γ(a∗ + b∗ − c∗)

Γ(a∗)Γ(b∗)
. (A.43)



Appendix B

Analytic Mode Functions for Bosons in

a Box

We consider the Klein-Gordon equation under a classical gauge potential Aµ = (0, 0, 0, A(t)):

0 =
[
∂2t − ∂2

⊥ − (∂z − igA(t))2 +m2
]
ϕ. (B.1)

As the gauge potential is homogeneous in space, it is useful to Fourier expand ϕ to obtain an

equation for positive/negative frequency mode functions ±ϕp as

0 =
[
∂2t + p2

⊥ + (pz − gA(t))2 +m2
]
±ϕp. (B.2)

It is convenient to normalize the mode functions ±ϕp as

±1 = i±ϕ
∗
p

↔
∂±ϕp, 0 = i∓ϕ

∗
p

↔
∂±ϕp, (B.3)

where
↔
∂ ≡

→
∂ −

←
∂ . The second condition is automatically satisfied when −ϕp = [+ϕp]

∗.

B.1 Plane wave solutions

One can easily solve Eq. (B.2) when there is no classical field A = 0. The solutions satisfying

the normalization condition (B.3) read

+ϕp =
1√
2ωp

e−iωpt, −ϕp = [+ϕp]
∗, (B.4)

where ωp is the on-shell energy ωp ≡
√
m2 + p2.

B.2 Under a constant electric field

For a constant electric field with infinite duration Ā(t) = −E0t (for now, we assume gE0 > 0

for simplicity), Eq. (B.2) reads

0 =
[
∂2t + p2

⊥ + (pz + gE0t)
2 +m2

]
±ϕp. (B.5)
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By changing the variable

ξ ≡
√

2

gE0

(gE0t+ pz), (B.6)

Eq. (B.5) is reduced to a parabolic cylinder differential equations as

0 =

[
d2

dξ2
+
ξ2

4
+ a

]
±ϕp, (B.7)

where

a =
m2 + p2

⊥
2gE0

. (B.8)

Solutions of Eq. (B.7) are given by the parabolic cylinder function Dν(z) as

+ϕp = c1Dia−1/2(−e−iπ/4ξ) + c2D−ia−1/2(e
iπ/4ξ), −ϕp = [+ϕp]

∗. (B.9)

The coefficients c1, c2 are determined by a boundary condition and the normalization con-

dition (B.3). Now, we require ±ϕ
(in)
p (±ϕ

(out)
p ) to be the plane waves (B.4) at asymptotic times

t→ −∞ (t→ ∞). By noting the asymptotic formula for the parabolic cylinder function Dν(z)

[162]

Dν(z) −−−−→
|z|→∞


zνe−z

2/4 (| arg z| < 3π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
iνπz−ν−1ez

2/4 (π/4 < arg z < 5π/4)

zνe−z
2/4 −

√
2π

Γ(−ν)e
−iνπz−ν−1ez

2/4 (−5π/4 < arg z < −π/4)
, (B.10)

one finds

+ϕ
(in)
p =

e−πa/4

(2gE0)1/4
Dia−1/2(−e−iπ/4ξ), −ϕ

(in)
p = [+ϕ

(in)
p ]∗. (B.11)

and

+ϕ
(out)
p =

e−πa/4

(2gE0)1/4
D−ia−1/2(e

iπ/4ξ), −ϕ
(out)
p = [+ϕ

(out)
p ]∗. (B.12)

These two solutions ±ϕp (as = in, out) are linearly dependent with each other, and their

relationship is given by (
+ϕ

(in)
p

−ϕ
(in)
p

)
=

(
αp,s β∗p,s
βp,s α∗p,s

)(
+ϕ

(out)
p

−ϕ
(out)
p

)
(B.13)

with

αp = −eiπ/4
√
2πe−πa/4

Γ(1/2− ia)
, βp = ie−πa, (B.14)

where the use is made of an identity [162]

Dν(z) =
Γ(1 + ν)√

2π

[
e−iπν/2D−ν−1(−iz) + eiπνD−ν−1(iz)

]
. (B.15)



Appendix C

Analytic Mode Functions under an

Expanding Electric Field

We analytically solve the Dirac equation and the Klein-Gordon equation under a boost-invariantly

expanding homogeneous electric field E = E0θ(τ − τ0)ez described by a gauge potential Aµ as

Aτ = Ax = Ay = 0, Aη =


E0τ

2
0

2
(τ < τ0)

E0τ
2

2
(τ > τ0)

. (C.1)

C.1 fermion

The Dirac equation for Fourier modes,

ψ(x) ≡
∑
s

∫
d2p⊥dpηψp⊥,pη ,s(τ)

eip⊥·x⊥eipηη

(2π)3/2
, (C.2)

reads

0 = [iγτ − γ⊥ · p⊥ − γη(pη + qAη)−m]ψp⊥,pη ,s. (C.3)

As was explained in the main text (see Section 5.1.3), Eq. (C.3) has two independent solutions

±ψp⊥,pη ,s of a form:

+ψp⊥,pη ,s(τ) =

[
Ap⊥,pη ,s(τ)e

η/2 +Bp⊥,pη ,s(τ)e
−η/2γt

γ⊥ · p⊥ +m√
m2 + p2

⊥

]
Up⊥,pη ,s,

−ψp⊥,pη ,s(τ) =

[
B∗p⊥,pη ,s

(τ)eη/2 − A∗p⊥,pη ,s
(τ)e−η/2γt

γ⊥ · p⊥ +m√
m2 + p2

⊥

]
Up⊥,pη ,s (C.4)

where Up⊥,pη ,s is an eigen-spinor of a projection operator P+ ≡ (1 + γtγz)/2 satisfying

P+Up⊥,pη ,s = Up⊥,pη ,s,

U †p⊥,pη ,s
Up⊥,pη ,s′ = δss′ . (C.5)
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The differential equation for the scalar functions Ap⊥,pη ,s, Bp⊥,pη ,s read

i
d

dτ

(
Ap⊥,pη ,s

Bp⊥,pη ,s

)
=

pη + qAη(τ)− i/2

τ

√
m2 + p2

⊥√
m2 + p2

⊥ −pη + qAη(τ) + i/2

τ

(Ap⊥,pη ,s

Bp⊥,pη ,s

)
, (C.6)

or, by squaring the both hand sides, one obtains a second order differential equation for Ap⊥,pη ,s

as

0 =

[
d2

dτ 2
+

1

τ

d

dτ
+

(
pη + qAη − i/2

τ

)2

+ iqE(τ) +m2 + p2
⊥

]
Ap⊥,pη ,s. (C.7)

It is convenient to normalize the scalar functions Ap⊥,pη ,s, Bp⊥,pη ,s as

1

τ
= |Ap⊥,pη ,s|2 + |Bp⊥,pη ,s|2 (C.8)

so as to properly normalize the mode function ±ψp⊥,pη ,s as

1

τ
δss′ = [±ψp⊥,pη ,s|±ψp⊥,pη ,s′ ]F, 0 = [±ψp⊥,pη ,s|∓ψp⊥,pη ,s′ ]F. (C.9)

Our strategy to solve the Dirac equation (B.5), or Eq. (C.7) for Ap⊥,pη ,s, is as follows: We

divide the problem into three steps. In the first step, we solve Eq. (C.7) for τ < τ0, where the

gauge field vanishes Aη = 0 and the solution is given by the plane wave solutions explained in

Section 5.1.3. In the second step, we find out particular solutions of Eq. (C.7) for τ > τ0. In

the third step, we smoothly connect these two solutions obtained in the first and the second

step at the boundary τ = τ0 to obtain the solution for all values of τ . Note that here we just

consider to derive “in-state” mode functions, for which we require ±ψp⊥,pη ,s to be plane waves

with positive/negative frequency at τ → 0.

(step 1) For τ < τ0, the solution of Eq. (C.7) is given by the plane wave solutions (5.60), whose

derivation was explained in detail in Section 5.1.3:(
Ap⊥,pη ,s

Bp⊥,pη ,s

)
=

√
π
√
m2 + p2

⊥

2
eπ(pη+qE0τ20 /2)/2

×

(
e−iπ/4H

(2)

i(pη+qE0τ20 /2)+1/2
(
√
m2 + p2

⊥τ)

e+iπ/4H
(2)

i(pη+qE0τ20 /2)−1/2
(
√
m2 + p2

⊥τ)

)
(for τ < τ0). (C.10)

We note that the above scalar functions have a positive frequency in the τ -η coordi-

nates, so that the resulting mode function +ψp⊥,pη ,s (+ψp⊥,pη ,s) has a positive (negative)

frequency for τ < τ0 and hence satisfies the plane wave boundary condition at τ → 0.

(step 2) For τ > τ0, Eq. (C.7) reads

0 =

[
d2

dτ 2
+

1

τ

d

dτ
+

(
pη + qE0τ

2/2− i/2

τ

)2

+ iqE0 +m2 + p2
⊥

]
Ap⊥,pη ,s. (C.11)
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By changing the variables as

ξ ≡
√
m2 + p2

⊥τ, a ≡ qE0

m2 + p2
⊥
, (C.12)

and by making an ansatz of a form,

Ap⊥,pη ,s ≡ ξ−ipη−1/2e−iaξ
2/4Ãp⊥,pη ,s, (C.13)

one obtains a hypergeometric differential equation for Ãp⊥,pη ,s as

0 =

[
ξ
d2

dξ2
+
(
−iaξ2 − 2ipη

) d
dξ

+ ξ

]
Ãp⊥,pη ,s, (C.14)

Two independent solutions of Eq. (C.14) are given by the Tricomi hypergeometric

function U(a, b; z) [162], and thus we find

Ap⊥,pη ,s = c1 × 1χp⊥,pη ,s + c2 × 2χp⊥,pη ,s,

Bp⊥,pη ,s = c1 × [2χp⊥,pη ,s]
∗ − c2 × [1χp⊥,pη ,s]

∗, (C.15)

where

1χp⊥,pη ,s ≡
1√
τ
exp

[
−πm

2 + p2
⊥

4|qE0|
− i

qE0τ
2

4

]
×
(√

m2 + p2
⊥

)−ipη
U

(
i
m2 + p2

⊥
2qE0

,
1

2
− ipη; i

qE0τ
2

2

)
,

2χp⊥,pη ,s ≡
−i
2

1√
τ
exp

[
−πm

2 + p2
⊥

4|qE0|
+ i

qE0τ
2

4

]
×
(√

m2 + p2
⊥

)1+ipη

U

(
1− i

m2 + p2
⊥

2qE0

,
3

2
+ ipη;−i

qE0τ
2

2

)
(C.16)

Here, we normalized the functions nχp⊥,pη ,s (n = 1, 2) as

1

τ
= |1χp⊥,pη ,s|2 + |2χp⊥,pη ,s|2. (C.17)

(step 3) The coefficients c1, c2 in Eq. (C.15) can be determined by smoothly connecting the

two solutions Eq. (C.10) for τ < τ0 and Eq. (C.15) for τ > τ0. With the help of the
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normalization condition (C.17), one can easily determine the coefficients c1, c2 as

c1 = τ0 ×
[
Ap⊥,pη ,s(τ0)[1χp⊥,pη ,s(τ0)]

∗ +Bp⊥,pη ,s(τ0)2χp⊥,pη ,s(τ0)
]
,

=

√
π
√
m2 + p2

⊥τ0

2
eπ(pη+qE0τ20 /2)/2

×
[
[1χp⊥,pη ,s(τ0)]

∗e−iπ/4H
(2)

i(pη+qE0τ20 /2)+1/2
(
√
m2 + p2

⊥τ0)

+ 2χp⊥,pη ,s(τ0)e
+iπ/4H

(2)

i(pη+qE0τ20 /2)−1/2
(
√
m2 + p2

⊥τ0)

]
(C.18)

c2 = τ0 ×
[
Ap⊥,pη ,s(τ0)[2χp⊥,pη ,s(τ0)]

∗ −Bp⊥,pη ,s(τ0)1χp⊥,pη ,s(τ0)
]
,

=

√
π
√
m2 + p2

⊥τ0

2
eπ(pη+qE0τ20 /2)/2

×
[
[2χp⊥,pη ,s(τ0)]

∗e−iπ/4H
(2)

i(pη+qE0τ20 /2)+1/2
(
√
m2 + p2

⊥τ0)

− 1χp⊥,pη ,s(τ0)e
+iπ/4H

(2)

i(pη+qE0τ20 /2)−1/2
(
√
m2 + p2

⊥τ0)

]
, (C.19)

and hereby one obtains the solution of Eq. (C.7) for all values of τ .

C.2 boson

The Klein-Gordon equation for Fourier modes,

ϕ(x) ≡
∫
d2p⊥dpη(τ)

eip⊥·x⊥eipηη

(2π)3/2
(C.20)

reads

0 =

[
d2

dτ 2
+

1

τ

d

dτ
+

(
pη + qAη

τ

)2

+m2 + p2
⊥

]
ϕp⊥,pη . (C.21)

There are two independent solutions, which we write ±ϕp⊥,pη , for this equation (C.21). It is

convenient to normalize the modes ±ϕp⊥,pη as

±1

τ
= [±ϕp⊥,pη |±ϕp⊥,pη ]B, 0 = [±ϕp⊥,pη |∓ψp⊥,pη ]B. (C.22)

Our strategy to solve the Klein-Gordon equation (C.21) is the same as the previous fermion

case, i.e., We divide the problem into three steps. We derive particular solutions for τ < τ0 (step

1) and τ > τ0 (step 2), and connect them smoothly at the boundary τ = τ0 to construct the

solution for all values of τ (step 3). Note that here we just consider “in-state” mode functions,

for which we require ±ϕp⊥,pη to be plane waves with positive/negative frequency at τ → 0.
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(step 1) For τ < τ0, the solution of Eq. (C.21) is given by the plane wave solutions (5.78),

whose derivation was explained in detail in Section 5.1.3, as

+ϕp⊥,pη =

√
π

2i
eπ(pη+qE

2
0τ

2
0 /2)/2H

(2)

i(pη+qE0τ20 /2)
(
√
m2 + p2

⊥τ)

−ϕp⊥,pη = [+ϕp⊥,pη ]
∗ = −

√
π

2i
eπ(pη+qE

2
0τ

2
0 /2)/2H

(1)

−i(pη+qE0τ20 /2)
(
√
m2 + p2

⊥τ) (for τ < τ0).

(C.23)

We note that the above mode function +ϕp⊥,pη (−ϕp⊥,pη) have a correct positive (neg-

ative) frequency in the τ -η coordinates and surely satisfies the plane wave boundary

condition at τ → 0.

(step 2) For τ > τ0, Eq. (C.21) reads

0 =

[
d2

dτ 2
+

1

τ

d

dτ
+

(
pη + qE0τ

2/2

τ

)2

+m2 + p2
⊥

]
ϕp⊥,pη . (C.24)

By changing the variables as

ξ ≡
√
m2 + p2

⊥τ, a ≡ qE0

m2 + p2
⊥
, (C.25)

and by making an ansatz of a form,

ϕp⊥,pη ≡ ξ−ipηe−iaξ
2/4ϕ̃p⊥,pη , (C.26)

one obtains a hypergeometric differential equation for ϕ̃p⊥,pη as

0 =

[
ξ
d2

dξ2
+
(
−iaξ2 + 1− 2ipη

) d
dy

(1− ia)ξ

]
ϕ̃p⊥,pη . (C.27)

Two independent solutions of Eq. (C.27) are given by the Tricomi hypergeometric

function U(a, b; z) [162], and thus we find

+ϕp⊥,pη = c1 × 1χp⊥,pη + c2 × 2χp⊥,pη ,

−ϕp⊥,pη = [+ϕp⊥,pη ]
∗. (C.28)

where

1χp⊥,pη ≡ 1√
2
exp

[
−π
2

(
m2 + p2

⊥
2|qE0|

+ pη

)
− i

|qE0|τ 2

4

]
×
(
|qE0|τ 2

2

)ipη/2
U

(
1

2
+ i

m2 + p2
⊥

2|qE0|
+ ipη, 1 + ipη; i

|qE0|τ 2

2

)
,

2χp⊥,pη ≡[1χp⊥,pη ]
∗ (C.29)

The scalar function nχp⊥,pη (n = 1, 2) satisfy the following normalization condition

[1χp⊥,pη |1χp⊥,pη ]B = −[2χp⊥,pη |2χp⊥,pη ]B =
1

τ
,

[1χp⊥,pη |2χp⊥,pη ]B = 0. (C.30)
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(step 3) The coefficients c1, c2 in Eq. (C.28) can be determined by smoothly connecting the

two solutions Eq. (C.23) for τ < τ0 and Eq. (C.28) for τ > τ0. With the help of the

normalization condition (C.30), one can easily determine the coefficients c1, c2 as

c1 = τ0 ×
[
2χp⊥,pη(τ0)

d+ϕp⊥,pη(τ0)

dτ
−
d2χp⊥,pη(τ0)

dτ
+ϕp⊥,pη(τ0)]

]
, (C.31)

c2 = −τ0 ×
[
1χp⊥,pη(τ0)

d+ϕp⊥,pη(τ0)

dτ
−
d1χp⊥,pη(τ0)

dτ
+ϕp⊥,pη(τ0)]

]
, (C.32)

and hereby one obtains the solution of Eq. (C.21) for all values of τ .
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