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Abstract

We searched for hidden photon cold dark matter at 115.79 µeV – 115.84 µeV
mass region based on a dish antenna method. We achieved a sensitivity to
exceed the cosmological constraints based on a combination of a cryogenic
receiver and a condition of small thermal radiation under the atmospheric
radiation. We detected no signal in data sets of 9.3 hours with 26 cm2

aperture. We set upper limits χ < 1.5 – 3.9 ×10−10 at 95% confidence level.
This is the most stringent limit to date at this mass range.
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Chapter 1

Introduction

To reveal properties of cold dark matter is one of the most important subjects
in both the fields of particle physics and the cosmology. Experimental results
today determine that its composition in the universe is one forth of total
energy budget [1]. We also understand the dark matter is the dominant
gravity source in galaxies, i.e. it is massive particle and its momentum is
in equilibrium state in the current universe [2]. Experimental searches for
heavy mass candidates at least above MeV scale, Weakly Interacting Massive
Particles (WIMPs), have been major research topic. However, there is no
convincing results yet [3]. Light mass particles, Weakly Interacting Slim
Particles (WISPs), are recently suggested, and many experimental efforts
are ongoing [4].

This thesis focuses on “hidden photon”, one of the WISP candidates. The
misalignment mechanism allows the hidden photon becomes to be the cold
dark matter [5]. The hidden photon weakly couples with the electromagnetic
field. This coupling results in a transition from the hidden photon to the or-
dinary photon and the opposite transition. Cosmological observations such
as a blackbody spectrum of cosmic microwave background radiation (CMB)
and astronomical knowledge like the age of the Sun give constraints for its
coupling with ordinal photons as a function of its mass. Thus far, experi-
mental upper limits which exceed the the cosmological constraints are given
at the mass region from 10−6 eV to 10−4 eV. Our experiment is the first
experiment to exceed the cosmological constraints at 115.79 µeV – 115.84
µeV region based on a dish antenna method [6]. A combination of a plane
mirror and a parabolic antenna is recently suggested[7, 8]. Similar to this,
we employ a method with a combination of the plane plate and a horn an-
tenna. To achieve a low system noise, we use a cryogenic receiver under the
atmospheric radiation. An effective radiation temperature at this frequency
range is low (∼ 100 K). It results in low thermal noise condition compared
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with the setup under the radiation of room temperature. photon search.
The structure of this thesis is as follows. In Chapter 2, we describe

details of the hidden photon. Motivations for the particle physics as well as
the properties as the cold dark matter candidate are discussed. We review
direct detection methods for the hidden photon cold dark matter (hereafter,
HPCDM). Their search results are also reviewed. In Chapter 3, we describe
details of our experimental setup. In Chapter 4, we define our data sets as
well as measurement condition. We also explain about basic treatments prior
to analysis. In Chapter 5, we describe details of calibrations. In Chapter 6
we explain methodology of analysis including validation tests and systematic
error studies. In Chapter 7, we show our results. We conclude in Chapter 8.
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Chapter 2

Hidden photon cold dark
matter

2.1 Existence of cold dark matter

There are cosmological observations that conclude the existence of the cold
dark matter. Its classical evidence is a homogeneous speed of galaxy rotation
as a function of distance from each center. The velocity v(r) of objects (stars
and gases) in the galaxy should follow Newtonian mechanics,

v(r)2 = G
M(r)

r
, (2.1)

where M(r) is the total mass within the radius r and G is the gravitational
constant. We expect simple relation; v(r) ∝ r−1/2. However, measured
velocity curve is flat up to far outside of the visible components as shown in
Fig. 2.1. This results lead an interesting conclusion, there should be invisible
massive halo in the galaxy. Density distribution of the halo is ρ ∝ r−2.
Therefore, it satisfies the observed results, M ∝ r.

Our galaxy also has a halo, and a recent analysis [9] shows the density of
cold dark matter near the Solar system is

ρlocalCDM = (0.39± 0.03)
GeV

cm3
. (2.2)

2.2 Hidden photon

2.2.1 Theoretical motivation of hidden photon

The standard model in the particle physics precisely explains many experi-
mental results. Despite of its remarkable success, it is not ultimate theory
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Figure 2.1: Rotational speeds of spiral galaxies as a function of radius. Points
are observational results, and solid line is a fitted result with floating com-
positions of matters: visible star, gas, and dark matter halo. Curves for each
component are shown with dash-dot line (the dark matter halo), dashed line
(visible components), and dot line (gas). They are taken from [2].

because it does not explain the existence of the dark matter, strong CP prob-
lem and so on. Therefore, various extensions of the standard model have been
proposed to solve these issues. In the many extension theories, an extra U(1)
symmetry frequently arises. This symmetry should be in a hidden sector be-
cause we do not observe its contribution. The gauge boson corresponding to
this hidden sector symmetry is referred to as hidden photon, para photon,
dark photon, or sterile photon. The hidden photon was originally proposed
by Okun as a test of electromagnetic force [10]. Then, Holdom discussed its
mixing with ordinary photon through mediation of fermions [11]. This model
is represented by the following lagrangian:

L = −1

4
FµνF

µν − 1

4
XµνX

µν +
m2

γ′

2
XµX

µ − χ

2
FµνX

µν + JµAµ, (2.3)

where Aµ and Fµν are ordinary photon field and field strength, Xµ is the hid-
den photon field, Xµν = ∂µXν − ∂µXµ is strength of the hidden photon field,
χ is a dimensionless parameter describing kinetic mixing, mγ′ is the mass of
the hidden photon, and Jµ is the ordinary electromagnetic current. There
are two additional parameters to the standard model, i.e. mγ′ and χ. Higgs
mechanism or Stückelberg mechanism explains the mechanism of its mass
generation. Preferred mass range in the string theory with the Stückelberg
mechanism is typically ! 10−4 eV [4]. The kinetic mixing term −χ

2FµνXµν is
generated from a one-loop contribution from heavy mass messengers which
have both of ordinary and hidden U(1) charges.
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We can choose bases eliminating the kinetic mixing term by following
re-definitions,

(1) A → Ãµ − χXµ, (2.4)

(2) Xµ → X̃ − χAµ. (2.5)

Each of them provides two different physical pictures described in following
subsections.

2.2.2 Picture (1): Mass basis

The equation (2.4) results in the following Lagrangian.

L = −1

4
F̃µνF̃

µν − 1

4
XµνX

µν +
m2

γ′

2
XµX

µ + Jµ(Ãµ − χXµ). (2.6)

In this picture, Ã andX are the massless and massive states, The hidden pho-
ton field (X) interacts with the ordinary matter through the term −χJµXµ.
This massive boson field modifies the Coulomb potential in short distance
approximately below 1/mγ′ . Tests for this effect exclude the hidden photon
parameter region as shown in Fig. 2.3.

2.2.3 Picture (2): Interaction basis

The equation (2.5) results in the following Lagrangian.

L = −1

4
FµνF

µν − 1

4
X̃µνX̃

µν +
m2

γ′

2
(X̃µ

µ − 2χAµX̃
µ + χ2AµA

µ) + JµAµ.

(2.7)

A and X̃ are identified to be fields with and without interaction with ordi-
nary matter in this picture. The mass term is not diagonal in this picture.
This means oscillation between these two states along propagation similar to
neutrino oscillation. Experimental approach to search for the hidden photon
is detection of the ordinal photon generated from this mixing.

LSW (Light Shining through a Wall) experiments, schematically shown
in Fig. 2.2, use a intense source of the ordinary photon. A part of the
photons oscillates to the hidden sector (X̃) at an upstream of the wall. The
oscillated hidden particles through the wall oscillate to the ordinal photons,
again. The detection of regenerated photons is an evidence of the hidden
photon. The most stringent limit by this method is given by ALPS[12] as
shown in Fig.2.3.
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photon HP

Wall

photonHP

Figure 2.2: Schematic of LSW experiments. Taken from [13].

Helioscope experiments use the Sun as a source of hidden photon. An
effective mass caused by plasma in the Sun generates the hidden photon.
Experiments in this method, include SHIPS[14], CAST[15, 16](results trans-
lated from axion search), and Tokyo[17, 18](the first experiment for solar
hidden photon search), give limits as shown in Fig.2.3.

The lifetime of the Sun also set constraint for the hidden photon. A
coincidence between the effective mass of the ordinal photon and the hidden
photon mass enhances their oscillation. WIMP search experiments with low
energy threshold also give constraint to the hidden photon from the Sun [19,
20, 21].

2.3 Hidden photon as a dark matter candi-
date

2.3.1 Generation scenarios as Cold Dark Matter

The possibility of hidden photon as the cold dark matter (hereafter HPCDM)
is pointed out by several authors[24, 4]. Constraints assuming the dark mat-
ter is dominated by the hidden photon are shown in Fig. 2.4. In this al-
lowed region, the thermal production scenario makes inconsistency of the
cold condition (i.e., non-relativistic momentum). One of possible scenarios
of non-thermal generation is the misalignment mechanism. A field which has
random initial value was frozen at the early stage of the universe . This field
is expanded from small patch into large volume. This is the same scenario
as axion dark matter [4].

Another possibility for non thermal scenario is proposed recently grav-
itational generation of hidden photon [25]. This scenario explains abun-
dance of HPCDM mass (mγ′) by Hubble scale at inflation era (HI), mγ′ ≈
10−5eV × (1014GeV/HI)4. Current constraint for HI favor mγ′ ! 10−5 eV.
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Figure 2.3: The regions and current limits for hidden photon parameter
space. The region denoted as “Coulomb” excluded by experiments exam-
ining Coulomb law precisely. The region “LSW” is excluded by LSW ex-
periment. “Sun-T” is excluded when considering only contribution from
transverse modes of hidden photon, whereas “Sun-L” is the excluded region
when longitudinal mode is also considered[22, 23]. “HB” is the region ex-
cluded from the lifetime of stars of horizontal branch. “CAST”, “Tokyo”,
“SHIPS” are region excluded from helioscope experiments. “CMB” is the
region excluded from observation of CMB spectrum.

Note that, although this scenario generates longitudinal mode, the relation
between the momentum direction and polarization is lost because the momen-
tum direction is determined by the gravitational potential. In this scenario,
the detection of HPCDM implies the existence of the cosmic inflation.

2.3.2 Constraints from cosmological and astronomical
observations

Universe was in plasma state in its early age. The ordinary photons have
effective mass mγ in plasma, and their conversion to the hidden photons is
enhanced in the condition of mγ ≃ mγ′ . This condition generates additional
number of the ordinal photons from the initial HPCDM. This effect should
make deviations in various cosmological observations. The effective number
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Figure 2.4: Constrains for HPCDM parameters. The region shaded pink
represents the space where hidden photon can be the main component of
dark matter. Regions designated as “BS antenna”[8, 7, 26], “PMT”[27, 7],
and “FUNK”[28] is region excluded using dish antenna method. “CCD” is
excluded using the experiment of photo-electric-type effect. “Haloscope”2.4
is the limit translated from cavity experiments.

of relativistic neutrino species Neff , and the CMB spectrum distortion give
constraints shown in Fig. 2.4. In case of mγ′ < 10−9 eV, this effect happened
after the recombination era. On the other hand, HPCDM decays into three
photons if hidden photon is heavy (≫ 104 eV) [29]. Observation of the diffuse
X-ray background constraints for this scenario. These constraints are also
shown in Fig. 2.4.

2.4 Direct search for hidden photon cold dark
matter by dish antenna method

2.4.1 Dish antenna method principle

Detection of HPCDM by using dish antenna is proposed by Horns[6]. We
explain the principle based on the lagrangian Eq. (2.7). Assuming the plane
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Mirror

k≃k ≃ 0mγ'out in

Figure 2.5: Schematic for reason of near-perpendicular emission of conversion
photon. The four momentum conservation causes the direction of a converted
photon almost perpendicular to the mirror surface.

wave solution, the equation of motion derived from the lagrangian is,

[
(ω2 − k2)

(
1 0
0 1

)
−m2

γ′

(
χ2 −χ
−χ 1

)](
A
X̃

)
=

(
0
0

)
, (2.8)

where ω is frequency and k is momentum. Since HPCDM is non-relativistic
(k ≪ ω), we can take suitable gauge choice and neglect the 0th component[30].
We obtain A0 ≈ X0 ≈ 0 by choosing Lorenz gauge (∂µAµ = 0 and ∂µXµ = 0,
hence A0 = k ·A/ω and X0 = k ·X/ω).

This equation has two nontrivial solutions. The massive one (ω =
√
m2

γ′ + k2)

corresponds to the dark matter state (DM):

(
A
X̃

)∣∣∣∣
DM

= X̃DM

(
−χ
1

)
exp(−iω(ωt− kx)). (2.9)

For the case of the misalignment mechanism described in Sec. 2.3.1, the
direction of the generated HPCDM field XDM is the same everywhere. How-
ever, The direction might be influenced by the structure formation[4]. Two
possibilities for the direction can be considered.

(i) XDM has the same orientation everywhere.

(ii) XDM is random in its direction.
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In this thesis we assume the case (ii). The same argument also applies for
the gravitational scenario, because HPCDM is generated before structure
formation. Assuming hidden photon is the main component of dark matter,
we find

ρHP =
m2

γ′

2
⟨|X̃2

DM|⟩ = ρlocalCDM = (0.39± 0.03) GeV/cm3, (2.10)

where we use the value of Eq. 2.2 for ρlocalCDM. This dark matter component
has small electromagnetic field,

EDM = −∂0XDM = χmγ′X̃DM. (2.11)

Combining Eq. (2.10) and (2.11), we obtain the amplitude of electric field
from HPCDM, which can be used for experimental search.

√
⟨|EDM|2⟩ = χ

√
2ρlocalCDM ∼ 3.3× 10−9V

m

( χ

10−12

)( ρlocalCDM

0.3GeV/cm3

)
. (2.12)

To explain experimental method using dish antenna, let us assume we
have a highly conductive surface at z = 0. Then the boundary condition on
the plane is given by

E∥ = 0, (2.13)

where the suffix ∥ means directions parallel to the plane. As a result, an
ordinary electric field with the same frequency ω is required:

(
E

Ehid

)

out

= EDM,∥ exp (−i(ωt− px))

(
1
χ

)
. (2.14)

Then the boundary condition
(

E
Ehid

)

total,∥
= EDM,∥

[(
1
χ

)
exp(−i(ωt− px)) +

1

χ

(
−χ
1

)
exp(−i(ωt− kx))

]
|z=0

(2.15)

= EDM,∥
1

χ

(
0
1

)
. (2.16)

From this we obtain

p · x|z=0 = k · x|z=0 (2.17)

⇔ p∥ = k∥. (2.18)
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We determined two components of the momentum for the conversion photon.
The remaining components is determined from energy conservation

|p| = ω =
√
mγ′ + k2. (2.19)

Therefore we arrive to the formula

p =
√

m2
γ′ + k2

⊥n+ k∥ (2.20)

where k is the perpendicular component of k to the mirror, and n is a unit
vector of the same direction as k. The outgoing wave is nearly perpendicular
to the surface, because HPCDM is non-relativistic. By using a spherical
reflector, the emitted waves can be focused to the center of the sphere, as
shown in Fig. 2.6. The concentrated power is

Pcenter ≈ ⟨|EDM,∥|2⟩⟨α2⟩dishχ2ρlocalCDMAdish, (2.21)

where Adish is the area of dish, and α = cos θ with θ is the angle between
n and EDM. We assume the case (ii), which means α =

√
2/3. From Eq.

(2.12) and (2.21), we measure XDM as follows,

χ = 4.5× 10−14

(
Pdet

10−23W

)1/2(0.3GeV/cm3

ρCDM,halo

)1/2( 1m2

Adish

)1/2
(√

2/3

α

)
,

(2.22)

where Pdet is the detected power. The uncertainty of the detected power
(∆Pdet) determines the sensitivity for χ. This uncertainty is proportional to
the noise equivalent power of the system (NEP), and it is also inversely pro-
portional to the square root of observation time (t), i.e., ∆Pdet ∝ NEP/

√
t.

2.4.2 Methodology of the experiment

An experimental search for HPCDM using the dish method were carried
out by Horie. et al [8, 7, 26], where a large parabolic antenna for satellite
broadcast reception was used to search HPCDM at the mass region around
50 µeV.

Set up

A spherical antenna is not commercially readily available in BS or CS region.
To overcome this problem, they invented a method of using a parabolic an-
tenna which is more easily available. The method is shown schematically in
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Detector

Dish

Figure 2.6: Schematic of the original dish antenna method proposed by
Horns. The converted photons are emitted perpendicular to the mirror sur-
face, focusing to the center of the dish.

Fig. 2.7. In this method, an plane mirror is used as a plane wave source which
converts HPCDM to ordinary photons. Then a parabola antenna is used only
for collecting the outgoing wave. Figure 2.8 shows the pictures of the setup
of this experiment, including a plane mirror (upper left), a parabolic antenna
(upper right), and the frame for combining and fixing their relative positions
(bottom). 4 aluminum plates were combined to form a reflector as a plane
wave source. The flatness of the plates are confirmed using a theodolite. The
parabolic antenna is 2.2 m diameter and 77 cm. Its gain was calibrated us-
ing the intensity of satellite broadcast signal, and the result agrees with the
value provided by the manufacturer. A low noise block down-converter with
feed horn (Norsat 4506B, Fig. 2.9) was employed as receiver. The receiver
accepts 12.25 GHz to 12.75 GHz and down convert the signal to 950 –1450
MHz. The amplifier gain of the receiver was calibrated using a ECCOSORB
AN-73 as a blackbody source. The down-converted signal were feeded to a
signal analyzer (FSU-4, Rohde&Schwarz).

Measurement

As described in Sec. 3.1., the signal from HPCDM have a frequency of
ω ∼ mγ′ , and its width is ∆ν/ν ∼ O(10−6). The resolution of spectrum
analyzer was set to resolve this signal shape effectively.

The measurement was carried out from November 24th to 28th, 2014.
They found no peak except for spurious peaks which are not from HPCDM.
To examine if the spurious peaks are HPCDM origin, they carried out mea-

15



Receiver

Plane reflector

Parabolic dish

Figure 2.7: The method employed by Horie et al. Converted photons are
emitted from a plane mirror and collected using a parabola antenna.

surement changing the distance between the mirror and parabola antenna
and checked if the peaks appear at the same position. The result is shown
in Fig. 2.4 designated as “BS antenna”.

Figure 2.4 also shows upper limits of experiments which employ this
method [27, 7, 28].

2.5 Other experimental limits

Microwave cavity

The haloscope results for axion can be translated into that of hidden photon
[4]. The constraints is shown in Fig. 2.4, in red and blue regions. The red
part assumes random direction of HPCDM, and the blue part assumes fixed
direction of HPCDM.

Photoelectric type effect

Contrary to the case of dish antenna method, where material with good
conductivity is used, HPCDM also interacts with lossy material in a manner
of photoelectric effect. A search using CCD[31] excludes mγ′ ∼ 10 eV region
as shown in Fig. 2.4.

Hidden photon “radio” in future

Another method, hidden photon “radio” is proposed[32, 33]. This method
amplifies the signal using a LC resonator. The prospects of the sensitivity is

16



Figure 2.8: The set up of the HPCDM search experiment by Horie et al. A
plane mirror (upper left) was made of 4 pieces aluminum plate. A parabola
antenna (upper right) is used for collecting converted plane wave from the
mirror. They are combined in HPCDM search measurement (bottom).

Figure 2.9: The block converter (Norsat 4506B) which was used as receiver
in the experiment by Horie et al.

17



shown in Fig. 2.10.

Figure 2.10: The expected sensitivity of HPCDM search using LC circuit [33].
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Chapter 3

Overview of experiment and
instruments

We employ the dish antenna method similar to that of Horie et al. (described
in Sec. 2.4.2). We use a plane mirror for conversion of HPCDM to ordinal
photons as shown in Fig. 3.1. We achieve a low noise condition using a
cryogenic receiver under the blue sky.

We search HPCDM in the mass range just above 10−4 eV, which is higher
than ∼ 5 × 10−5eV of Horie et al. This mass region is interesting in some
models. String theory with Stückelberg mass typically favors mγ′ ! 10−4 eV
(as noted in Sec. 2.2.1). In addition, in gravitational production scenario of
HPCDM limits mγ′ ! 10−5eV (Sec. 2.3.1). In this mass region upper limit
for mixing angle (χ ∼ 10−9 at 95% C.L.) comes from observation of CMB
spectrum.

In this chapter, we first discuss the spectral shape of the signal converted
from HPCDM. Then, we introduce our experimental briefly, then in detail.

	

Figure 3.1: The method of our experiment. A plane mirror emits converted
photons as plane wave. A horn antenna collects the emitted photons.
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3.1 The distribution function of HPCDM sig-
nal

Photons converted from HPCDM have a sharp distribution because of low
velocity (β ≃ 10−3). Its distribution is calculated with HPCDM mass (mγ′)
and their speed. We assume the velocity distribution obeys the Maxwell-
Boltzmann distribution (isothermal model) with the velocity dispersion v0,
with an offset of the Earth’s velocity vE relative to the dark matter halo:

fMB(v,vE) =
1

(πv0)3/2
e−|v+vE |2/v20 . (3.1)

The value of v0 is discussed in several literatures[34, 35]. We took v0 as
220km/s, which is commonly used value. The velocity of Earth vE can be
described by

|vE| = v⊙ + vorb cos γ cos(Ωt), (3.2)

where v⊙ is the solar system velocity the γ ≃ 60◦ is the inclination angle of
the plane of earth orbit between the galactic plane, Ω = 2π/year, t is the
time from June 2nd in years. In case of our measurement, we use the value
for 26th Oct. 2016,

vE ≃ 220km/s (3.3)

throughout the analysis. The photon converted from HPCDM with velocity
vDM have frequency of

ν(vDM,mγ′) =
1

h

mγ′
√
1 + (vDM/c)2

. (3.4)

Combining Eq. 3.4 and 3.1 we obtain a narrow peak in frequency starting
at ν0 and width of about (v0/c)2 = O(10−6), as shown in Fig. 3.2. The
hidden photon mass of our interest mγ′ ∼ 10−4 corresponds to ν0 = 20–30
GHz (0.8–1.2×10−4 eV).

3.2 Experiment overview

As described in the previous chapter, HPCDM is converted into the ordinal
photons at the surface of a metal mirror. The generated plane wave is ex-
pected to be very faint. Therefore, we have to gather and amplify the signal
for its detection. Because HPCDM has small momentum distribution (we
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Figure 3.2: The peak shape of HPCDM signal. The black dashed curve is the
distribution assuming isothermal model. The blue solid line shows histogram
integrated over 5 kHz, which is used for fitting. ν0 = 28.003 GHz is assumed
in this plot.

assume isothermal model), the conversion signal has sharp (∼ 100 kHz) dis-
tribution as a function of electromagnetic wave frequency with corresponding
peak at the mass of HP. Power spectrum measurements provides us high sig-
nal to noise ratio. We extract the power of the converted photon for each
frequency by using a fit for corresponding HPCDM mass and its momen-
tum distribution. The schematics of apparatus is shown in Fig. 3.3. The
faint conversion signal from the mirror is collected by a horn antenna, then
amplified by a low-noise cryogenic amplifier, and further amplified a room-
temperature amplifier. Finally the power spectrum of the signal is measured
by a signal analyzer.

Our measurement apparatus locates at the rooftop of Building No.4 of
KEK, at East longitude 140◦04′26′′, North latitude 36◦08′53′′. The mirror
is aligned horizontally. We explain each of these components further in this
section.

3.3 HPCDM to photon converter

3.3.1 Mirror material

For the conversion of ordinal photons from HPCDM, we need a mirror which
is high conductivity (i.e., high reflectance) and thin skin depth material.
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Figure 3.3: Schematics of the experiment setup. The mirror converts
HPCDM to ordinary photons. The converted photons are coherent over
the mirror plane (because mirror is smaller than HPCDM coherent length
∼ 10 m), resulting in plane wave. This plane wave is collected using a horn
antenna. The collected power is amplified by a cryogenic low-noise amplifier.
Then it is further amplified by a room-temperature amplifier, and the power
spectrum of the signal is measured by a spectrum analyzer. The measured
spectrum is fit by a peak shape at hidden photon mass mγ′c2/h. As the
mass is unknown, this fitting is tried changing the assumed mass, within the
measured frequency range.

We choose an aluminum plate (500 mm × 500 mm × 6 mm, A5052-H112
purchased from MISUMI) shown in Fig. 3.4. The reflectance (Pref) and skin
depth (δ) at a conductive surface are approximated as follows,

Pref ≃ 1− 4

√
πνε0
σ

, (3.5)

δ ≃
√

1

πσνµ
, (3.6)

where ν is the frequency of electromagnetic waves, ε0 is the permittivity in
vacuum, σ is conductivity, and µ is magnetic permeability. The conductivity
of this plate is σ = 2.03 × 107/Ω ·m. By using ε0 = 8.85 × 10−12F/m and
µ ≃ µ0 = 1.26× 10−6A ·m, we obtain,

1− Pref = 4

√
πfε0
σ

≃ 7.8× 10−4 (at ν = 28GHz), (3.7)

δ = 6.7× 10−7m. (3.8)

The conversion loss of this mirror is at most 7.8× 10−2%, which is negligible
for our experiment.

The conversion photon should be plane waves under a condition that
the size of mirror is small compared with the coherent length of hidden

22



Figure 3.4: The aluminum plate mirror used in our experiment.

photon field. For standard dark matter velocity profile, v ∼ ∆v ∼ 10−3c, the

coherent length of HPCDM is λcoherent ≈
1

νv
≈ 100km× (10−8eV/mγ′) [33],

which is approximately 10 m at ν = 20–30 GHz. Our mirror is 1/20 of the
coherent length. Our experiment conserves the condition of the plane wave
emission.

3.3.2 Support structure

We construct a support structure of the mirror along the receiver (explained
in the next section) as shown in Fig. 3.5. The structure materials are alu-
minum frames (MISUMI). We set the aluminum plate at its top section. We
make 4 holes on the aluminum plate, and we hang the plate using screws and
nuts(Fig. 3.6). We align the horn antenna of receiver by using a pocket gra-
dient meter (PL-150, TRUSCO) as shown in Fig. 3.8. This gradient meter
has sensitivity of 0.5 mm/m = 0.0286◦. Hidden photon has velocity disper-
sion of 10−3c, which results in an angular dispersion of 10−3rad = 0.057◦.
Therefore, alignment precision is sufficient.

Our setup satisfies “far field condition”. We do not need to consider effects
of standing waves as well as possible interference between the conversion
signal from the mirror and the signal from inside of the horn antenna. This
condition can be preserved to maintain the distance between the mirror and
the antenna is longer than 2D2/λ (D is the largest aperture of antenna).
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Dimensions of our experiment, D = 58mm and λ = 10.7mm, require the
distance more than 670 mm. We take the distance of 1030 ± 9 mm. Here,
the uncertainty of the length is incorporated into the calibration uncertainty
of an antenna effective area (Sec. 5.2).

Figure 3.5: Support structure of the mirror above the receiver.

3.4 Cryogenic receiver

We employ a cryogenic receiver for the detection of the faint conversion
signal. It has capability to measure the power spectrum as a function of
the frequency. In KEK, a low-noise millimeter spectrometer was practically
developed, for a meteorological application[36, 37]. It is named KUMODeS
(Fig. 3.12). This spectrometer consists of two bands, 20 to 30 GHz and
50 to 60 GHz. KUMODeS measures characteristic spectra of atmospheric
radiations from water vapor and Oxygen molecules. We use the system for
20–30 GHz band in our HPCDM experiment. Hereafter, we simply call it
“receiver”. Its specifications are summarized in Table 3.1. The intrinsic noise
level of the system is defined with “receiver temperature” which is defined
as an effective intensity of the thermal radiation. Figure 3.13 shows the
receiver temperature as a function of frequency. Responsivity of the receiver
(amplifier gain) is shown in Fig. 3.14.

3.4.1 Horn antenna

We use a horn antenna SGH-42-SC000 (millitech), to collect plane waves.
Its geometry is shown in Fig. 3.20 and typical specifications are summarized
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Figure 3.6: The aluminummirror is hinged above the receiver. We replace the
mirror to styrofoam plate for antenna area calibration described in Section
5.2. Plates have four holes at their corners. We used screws and nuts to set
them with alignment for their direction to the line of sight of the receiver.

in Table 3.2. “Gain” is the ratio of effective aperture area to that of an
ideal isotropic antenna. This term is confusing with the gain of amplifier.
Therefore, we use “effective area” (Aeff) in the following discussion. The
effective area of antenna is the power it can collect compared with the power
flux it sees. This parameter should be measured to determine the absolute
scale of measured flux. Details are described in Sec. 5.2. The antenna has
axisymmetric dependence on angle. The “Beam width” is defined as the
angle where the power diminishes to half.
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Figure 3.7: Photograph for the corner of mirror. It is fixed using a screw and
washers and nuts.

Parameter Value
Frequency range 20 – 30 GHz
Gain 60 dB
Noise temperature 50 K

Table 3.1: Rough characteristics of the receiver.

3.4.2 Amplifiers

We use two amplifiers. The first one is maintained at approximately 10 Kelvin
(LNF-LNC15 29A, Low Noise Factory). The second one is maintained at the
ambient temperature (ALM-1826S210, ALDETEC). Their specifications are
summarized in Tab. 3.4 and 3.5.

3.5 Spectrum analyzer

The amplified signal is measured by using a spectrum analyzer. We use
the N9010A, Agilent Technologies shown in Fig. 3.18. Its specification is
also summarized in Table 3.6. This spectrum analyzer measures power for
each frequency bin based on Fast Fourier Transform method1. The time-

1The spectrum analyzer has another measurement mode, Swept mode (contrary to FFT
mode). However, we do not use this mode because it looses measurement time effectively.
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Figure 3.8: We align the direction of horn antenna by using a pocket gradient
meter PL-150. We measure gradients in two orthogonal direction. The horn
antenna and mirror are separately aligned in horizontal direction within the
precision of 0.03◦. This is smaller than angular dispersion of signal (0.057◦).

Parameter Value
Frequency range 18-26.5 GHz
Midband gain 21 dB Typ.

Midband beam width 16◦ Typ.
VSWR 1.2:1

Table 3.2: Specifications of the conical horn antenna, SGH-42-SC000 (mil-
litech).

domain data of input power within “analysis bandwidth” is once collected.
Then, the collected data is transformed into the frequency-domain space.
A window function defined with “resolution bandwidth” is applied in this
calculation. We take the frequency bin width and resolution bandwidth to
be identical. The adjacent frequency bins are correlated because of sideband
effect of the window function. As shown in Fig. 3.17, we see its effect in re-
Fourier transformed spectrum (therefore returning to time-domained data).
To avoid this effect, we set the resolution bandwidth and the bin width should
be finer than analysis bin width, and we diminish the correlation in analysis
stage. We choose the analysis bin width of 5kHz and the resolution band of
1 kHz. We sum up 5 bins prior to the analysis.
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Figure 3.9: Block diagram of the receiver. Horn antenna receives radiation.
Cold amplifier (C-LNA) provides gain of about 30 dB with low noise. Isolator
rejects return power from C-LNA. Another amplifier at room temperature
(W-LNA) has 40 dB amplification gain.

Parameter Value
Frequency range 20.0-30.0 GHz

Isolation 18 dB MIN
Insertion loss 0.70 dB MAX

VSWR 1.40 MAX

Table 3.3: The specification for cryogenic isolator D3I2030 (DITOM MI-
CROWAVE INC.).

3.6 Environmental monitors

We attach a thermocouple to the warm amplifier, and connected it to a logger,
as shown in Fig. 3.19. We also measure temperature and humidity inside and
outside of our apparatus. The background noise level is driven by emissions
from atmosphere and leakage emission from the ground. Because there is
a broad emission peak from water molecules around 20-30 GHz range (the
peak center is 22 GHz), the background noise level depends on the weather.
The temperatures inside receiver housing are recorded using thermocouples
and logger as shown in Fig. 3.19. The ambient temperature and humidity
are measured by a thermometer/hygrometer shown in Fig. 3.21. We record
them every a few hours. This is the timing of the gain calibration explained
in Sec. 5.1.
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Figure 3.10: A cryostat of the cold receiver. The signals in millimeter wave
range are collected by the horn antenna which is set on the left wall in this
picture. Then, the signals go into an isolator via waveguide. A cryogenic
amplifier amplifies the intensity of the signal. The amplified signals go outside
of the receiver by using a coaxial cable and a feed through. A mechanical
refrigerator maintains the isolator and the amplifier at the cold condition of
≃ 10 K.

Parameter Test condition Value
Gain 15-26 GHz 28 dB
Noise 15-26 GHz 9.9 K
IRL 15-26 GHz 12 dB
ORL 15-26 GHz 17 dB
P1dB 15-26 GHz -7 dBm
OIP3 1-12 GHz 3 dBm

Table 3.4: The typical RF characteristics of Cryogenic Low Noise Amplifier
LNF-LNC15 29A (LOW NOISE FACTORY).
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Figure 3.11: The housing of the receiver. The horn antenna sees sky through
a microwave-transparent window. This housing holds the cryostat (Fig. 3.10)
and other facilities, such as spectrum analyzers, room temperature amplifiers,
computers, an uninterruptible power supply (UPS).

Figure 3.12: KUMODeS (the receiver). The housing protects facilities inside
from rains and winds.
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Figure 3.13: Receiver temperature (intrinsic noise level in a unit of effective
blackbody temperature) as a function of frequency.
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Figure 3.14: Typical responsivity (amplifier gain) of the receiver.
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Figure 3.15: Cryogenic Low Noise Amplifier, LNF-LNC15 29A (LOW
NOISE FACTORY). This is set in the cryostat. Photo Courtesy of KEK
IPNS/Shota Takahashi.

Parameter Value
Frequency range 18.0–26.5 GHz

Gain 38-44 dB
Gain Flatness ± 2.5 dB
Noise Figure 4.0 dB Typ.

P1dB 10 dBm min.
IP3 20 dBm Typ.

VSWR In 2.2:1
VSWR Out 2.2:1
+12 Vdc 300

Table 3.5: The specification of room temperature amplifier ALM-1826S210
(Aldetec).
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Figure 3.16: Room temperature amplifier, ALM-1826S210 (Aldetec).

Frequency range 10 Hz – 32 GHz
Resolution bandwidth 1 Hz – 8 MHz
Signal analysis bandwidth 10 Hz – 10 MHz
Displayed average noise level (DANL)

20–26.5 GHz −142 dBm Spec., −145 dBm Typ.
26.4–34 GHz −140 dBm Spec., −144 dBm Typ.

Phase noise (1 GHz Carrier frequency) −101 dBc/Hz nominal at 1 kHz offset
Carrier frequency accuracy ±[(time since last adjustment × aging rate)

+ temperature stability
+ calibration accuracy)]

aging rate ± 1× 10−6 / year
temperature stability ± 2× 10−6, 0 to 55 ℃
achievable initial accuracy ± 1.4× 10−6

Table 3.6: Specification of spectrum analyzer N9010A (option 532)

33



Figure 3.17: Raw data of the spectrometer (top panel). We set both reso-
lution band width and the bin width at 1 kHz. Therefore, we have 10,001
samples in the range of 1 MHz. The adjacent bins may have correlation.
We check correlation in Fourier space. If the correlation exists, it appears as
a cut off at certain frequency. The Fourier transformed spectra are shown
in the middle panel. Green curve is averaged spectrum to be smooth. The
cut off which arise from correlation between adjacent bins can be seen above
O(10−4) /Hz. The bottom panel shows self correlation coefficients between
bins, calculated using the first 1000 points of data.
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Figure 3.18: Spectrum analyzer N9010A (Agilent Technologies).

Figure 3.19: The room temperature amplifier is clamped to an aluminum
plate as a heat radiator. A temperature sensor is attached here with an
adhesive tape.
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Figure 3.20: Schematics of the conical horn SGH-42-SC000 (millitech).
A=59.690 mm and B=111.354 mm [38].

Figure 3.21: Thermometer/hygrometer CTH-203 (CUSTOM) to monitor
ambient condition.
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Chapter 4

Data sets

This chapter describes about our data sets. Configuration of spectrum ana-
lyzer setting, and basic data treatments prior to the analysis are also defined
here. They are identical both in HPCDM search and calibration.

4.1 Weather conditions

We took HPCDM search data from 18:17 on 26th to 11:34 AM on 28th in Oct.
2016. As shown in Fig. 4.1, the data was taken under the sky to minimize the
effect of background noise. The weather during the measurements is shown
in Tab. 4.1. As noted in Sec. 3.6, the noise level is related to the weather
condition, because of the broad emission peak of water molecules. We select
data in analysis stage to maintain its quality.
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Figure 4.1: The receiver system and mirror, for HPCDM search.
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time \ date 10/26 10/27 10/28
Temp. Hum. Weather Tload Temp. Hum. Weather Tload Temp. Hum. Weather Tload

℃ % K ℃ % K ℃ % K
1:00 12.3 90 cloudy 18.1 86 rainy 235 8.6 93 sunny 141
2:00 12.7 85 cloudy 17.2 90 cloudy 209 8.0 94 sunny 140
3:00 13.0 86 cloudy 15.5 95 cloudy 193 7.6 92 sunny 140
4:00 13.1 89 cloudy 14.7 97 sunny 196 7.6 94 sunny 147
5:00 13.5 89 cloudy 14.3 97 sunny 202 8.5 94 cloudy 148
6:00 14.1 91 cloudy 13.1 97 sunny 207 9.4 91 cloudy 147
7:00 14.6 81 cloudy 14.7 98 sunny 214 11.1 82 cloudy 154
8:00 16.3 73 sunny 17.7 85 sunny 12.6 72 cloudy 148
9:00 18.0 67 sunny 19.7 62 sunny 11.5 81 cloudy 170
10:00 20.1 63 sunny 19.9 62 sunny 11.0 80 cloudy 174
11:00 21.7 63 sunny 20.5 52 sunny 11.3 79 cloudy 177
12:00 22.4 58 sunny 21.3 39 sunny 11.6 81 rainy
13:00 23.4 57 sunny 22.2 27 sunny 10.9 91 rainy
14:00 24.7 54 sunny 21.9 26 sunny 11.3 95 rainy
15:00 25.4 59 sunny 22.0 24 sunny 142 12.6 97 rainy
16:00 24.0 63 sunny 20.2 25 sunny 140 12.5 96 rainy
17:00 20.3 84 sunny 17.5 62 sunny 143 11.3 97 rainy
18:00 20.1 86 sunny 15.9 70 sunny 145 11.9 97 rainy
19:00 19.2 89 sunny 155 14.9 72 sunny 142 12.0 97 rainy
20:00 19.3 88 sunny 150 11.8 89 sunny 139 11.8 97 rainy
21:00 19.2 84 cloudy 159 11.0 91 sunny 139 11.8 97 rainy
22:00 18.1 91 cloudy 168 10.3 94 sunny 140 11.7 98 rainy
23:00 17.8 92 cloudy 160 9.7 95 sunny 142 11.8 98 rainy
24:00 17.9 90 cloudy 167 9.8 95 sunny 139 12.1 98 sunny

Table 4.1: The weather conditions including temperature and humidity during the HPCDM search. They were
monitored at Tateno(East longitude 140◦07.4′, North latitude 36◦3.4′, Tsukuba Prefecture), which is about 10 km
distance from our experiment site [39]. The loading temperature (Tload = Tsys − Trec), the noise level as effective
thermal load, is also quoted. Tload depends on the weather because of emission peak from water molecules.
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4.2 Settings of spectrum analyzer

Settings of the spectrum analyzer is summarized in Table 4.2. They are
identical for all data acquisition, HPCDM search, calibrations, and system-
atic error studies about frequency responses. The spectrum analyzer has two
measurement modes, Swept mode and FFT mode. We choose FFT mode,
as it provides effectively longer measurement time. We can choose an upper
limit value of FFT analysis bandwidth from 9 different settings: 25 MHz, 10
MHz, 7.99 MHz, 411.9 kHz, 167.4 kHz, 28.81 kHz, 4.01 kHz. Based on the
comparison of noise level, we choose the setting of 7.99 MHz. We also choose
the bin width is 1kHz. It takes 4 seconds to measure the spectrum whose
dynamic range is 10 MHz. The duty factor is approximately 1/300 in these
parameters.

Frequency Range 27.998 – 28.012 GHz
Frequency span 10 MHz
Sweep mode FFT mode

Resolution Band Width 1 kHz
Band width shape Flat-top
number of points 10001

FFT analysis bandwidth < 7.99 MHz

Table 4.2: Setting parameters of spectrum analyzer for our experiment.

4.3 Basic data treatments prior to analysis

4.3.1 Avoiding the structure from analysis bandwidth

There is a baseline gap at the center of the frequency range (the 5001th
point of 10001 points). They corresponds to edges of the FFT analysis band-
width. This gap arises at 5001th point even if we slightly change the starting
frequency. The spectrum analyzer makes this gap. The spectrum analyzer
internally divides their data every 5 MHz range, the boundary point is calcu-
lated as the average of each edge. This is the reason to make the gap. This
gap has potential risk to make a fake signal peak.

To avoid this effect, we take data in two steps. First, we measure over
three over-wrapping frequency ranges, with frequency shifts of ∆f = −2
MHz, 0 MHz, +2 MHz as described above. Second, we divide the 10001
points into two regions and treat the two regions as separate measurements.
After binning the spectrum as described in Sec. 4.3.2, we discard a bin
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which contains the 5001 th point. These treatments result in 6 frequency
regions as shown in Fig. 4.3. For HPCDM search, we repeat 9 times of the
measurements for these 6 regions. We call “run” for each measurement set
of 6 regions, and we call “sub-run” for each 6 region measurement. We have
9 × 6 = 54 sub-runs for each run. We perform analysis for each sub-run,
separately. Then, we combine the all sub-run results, and we obtain the
results for each frequency bin.

Figure 4.2: Average of 10000 measurements of 10 MHz span sweeps. There
is a gap at the 5001th point in 10001 points. We do not use a bin which
contains this gap point in our analysis.

4.3.2 Rebin

The raw data has correlation between adjacent bins. We add 5 points to
diminish this effects as mentioned in 3.5.
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Figure 4.3: Definition of 6 frequency regions. The regions 1 and 4 are si-
multaneously measured, the regions 2 and 5 are measured in next, then the
regions 3 and 6 are measured. We repeat measurements for these 6 regions.
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Chapter 5

Calibration

In this chapter, we describe details about calibrations: the responsivity of
the receiver, the effective area of the antenna, and precision of the frequency.
Precisions of the responsivity and the effective area of the antenna deter-
mine the uncertainty of measured power (i.e. HPCDM - photon coupling
constant χ). The frequency response determines HPCDM mass (mγ′), and
its instability potentially causes inefficiency of the measured power.

Figure 5.1: The schematics of power at each part of system. Assuming an
unpolarized plane wave of power flux density S, the horn antenna collects one
of the two polarization components (thus Ssingle = S/2), within its effective
area Aeff . The collected power (Preceived) is amplified by a factor of G. We also
have an extra power derived from the intrinsic noise of the system (Pnoise).
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5.1 Responsivity and receiver temperature

There are two amplifiers in the receiver system. Suppose the antenna is
covered by blackbody of temperature T , the output power from the system
is represented by

Pout = GPreceived + Pnoise = G× kB(T + Trec)∆ν, (5.1)

where G is the responsivity which is a dimensionless amplification factor,
Preceived is the power collected by antenna, Pnoise is power of noise from system
itself, kB is Boltzmann constant, ∆ν is band width of measurement, and Trec

is the receiver temperature. The responsivity is frequently represented in the
unit of dB:

G[dB] = 10 log10 G. (5.2)

The comparison of response for two different temperature determines
them as shown in Fig. 5.2. We take an average of 5 measurements for
each calibration. Typical results are G ≃ 63dB and Trec ≃ 45K at 28 GHz
as shown in Fig. 3.13 and 3.14.

Figure 5.2: The schematics of gain calibration measurement.

We calibrate the responsivity every a few hours during the HPCDM
search. We also calibrate the responsivity before and after the antenna ef-
fective area measurements. The measured results for each frequency region
are summarized in Fig. 5.3, Table 5.1 and 5.2. A drift of the responsivity
is mainly caused by changing of the ambient temperature as shown in Fig.
5.4 while there is hysteresis in time response. We adopt linearly interpolated
numbers for each run. We assign a systematic error as an uncertainty of this
model. It is conservatively assigned half numbers of difference among two
calibrations. The level of drift is also used for the data selection to maintain
the data quality (see 6.1).
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Figure 5.3: The gain calibration results during HPCDM measurement. The
top is for gain and the bottom is for receiver temperature. Linearly inter-
polated gain is used for measurements between any two calibration. If two
calibrations discrepancy cannot be ignored, the measurements between the
two are rejected as explained in Sec. 6.1.
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G [dB]
Date \ Region # 1 2 3 4 5 6
2016-10-26 16:31:28 64.276(11) 64.348(28) 64.437(8) 64.365(9) 64.388(25) 64.401(42)
2016-10-26 19:28:57 64.577(63) 64.607(38) 64.658(52) 64.572(69) 64.697(49) 64.683(62)
2016-10-26 21:54:51 64.745(28) 64.778(19) 64.785(19) 64.825(18) 64.838(6) 64.862(28)
2016-10-27 04:50:51 65.628(35) 65.681(29) 65.697(41) 65.753(34) 65.759(24) 65.787(24)
2016-10-27 07:29:45 65.533(32) 65.557(21) 65.556(26) 65.563(34) 65.647(19) 65.661(24)
2016-10-27 12:00:22 64.530(34) 64.548(42) 64.547(29) 64.626(48) 64.620(29) 64.634(51)
2016-10-27 14:26:36 64.464(23) 64.476(17) 64.521(24) 64.523(23) 64.576(31) 64.617(32)
2016-10-27 16:44:08 64.828(25) 64.862(24) 64.927(11) 64.927(28) 64.931(22) 64.952(25)
2016-10-27 18:34:39 65.618(26) 65.645(22) 65.657(25) 65.676(17) 65.688(23) 65.731(16)
2016-10-27 19:39:13 65.677(11) 65.696(14) 65.763(21) 65.827(22) 65.844(20) 65.897(23)
2016-10-27 21:34:22 65.910(22) 65.994(14) 65.959(13) 66.049(11) 66.052(19) 66.084(14)
2016-10-27 23:41:04 66.059(29) 66.080(31) 66.102(21) 66.174(12) 66.164(35) 66.195(14)
2016-10-28 02:03:32 66.494(31) 66.536(26) 66.568(31) 66.542(14) 66.601(16) 66.661(33)
2016-10-28 03:03:29 66.697(19) 66.724(35) 66.765(22) 66.784(19) 66.827(14) 66.856(14)
2016-10-28 04:03:42 66.723(40) 66.782(10) 66.840(19) 66.799(18) 66.872(19) 66.860(15)
2016-10-28 05:30:38 66.827(16) 66.862(20) 66.960(14) 66.941(31) 66.960(28) 67.045(26)
2016-10-28 07:01:18 66.735(21) 66.723(17) 66.809(33) 66.803(21) 66.794(37) 66.830(26)
2016-10-28 08:33:58 66.421(9) 66.466(31) 66.490(18) 66.508(27) 66.575(18) 66.543(33)
2016-10-28 10:05:34 66.377(32) 66.436(14) 66.503(27) 66.517(26) 66.519(23) 66.521(30)
2016-10-28 11:34:20 66.357(25) 66.381(10) 66.404(30) 66.387(30) 66.461(34) 66.453(26)

Table 5.1: Responsivity (amplifier gain) of the receiver. They were measured
every 1–2 hour during the HPCDM search.

Receiver temperature [K]
Date \ Region # 1 2 3 4 5 6
2016-10-26 16:31:28 49.85(44) 47.29(114) 45.43(47) 49.01(78) 49.28(79) 51.74(175)
2016-10-26 19:28:57 65.55(375) 64.55(286) 64.84(347) 67.91(473) 66.01(322) 67.65(399)
2016-10-26 21:54:51 54.78(200) 53.56(63) 55.17(21) 54.17(168) 54.95(89) 55.73(119)
2016-10-27 04:50:51 56.19(239) 54.98(267) 55.98(239) 54.57(275) 55.97(163) 56.34(157)
2016-10-27 07:29:45 48.85(148) 48.94(102) 50.32(118) 50.81(155) 49.50(122) 50.29(79)
2016-10-27 12:00:22 48.82(25) 47.92(108) 49.71(127) 47.86(93) 48.99(40) 50.03(114)
2016-10-27 14:26:36 51.23(115) 50.79(80) 51.41(32) 51.00(58) 51.32(74) 50.39(115)
2016-10-27 16:44:08 49.09(51) 48.76(64) 48.02(30) 47.83(70) 49.78(62) 49.80(97)
2016-10-27 18:34:39 47.26(91) 47.51(77) 48.31(108) 48.24(87) 49.04(86) 48.86(93)
2016-10-27 19:39:13 47.47(26) 46.92(38) 46.71(98) 45.54(68) 46.45(104) 45.54(89)
2016-10-27 21:34:22 46.48(73) 45.48(66) 46.53(56) 44.74(29) 45.65(72) 46.39(58)
2016-10-27 23:41:04 45.18(126) 45.51(90) 45.96(84) 44.49(32) 46.43(113) 46.53(50)
2016-10-28 02:03:32 44.29(117) 44.41(100) 45.31(95) 47.11(56) 46.14(60) 45.09(96)
2016-10-28 03:03:29 44.25(89) 45.12(120) 44.76(73) 46.10(84) 45.52(62) 45.59(71)
2016-10-28 04:03:42 46.43(164) 45.38(41) 44.63(74) 46.37(62) 45.58(94) 47.33(73)
2016-10-28 05:30:38 46.07(83) 46.51(103) 44.04(63) 45.22(100) 45.68(111) 43.68(101)
2016-10-28 07:01:18 48.24(88) 50.61(83) 48.46(156) 49.41(99) 50.66(145) 51.21(137)
2016-10-28 08:33:58 54.40(32) 53.95(107) 54.57(75) 54.99(109) 53.20(105) 55.43(105)
2016-10-28 10:05:34 55.90(168) 55.17(105) 53.60(142) 53.75(141) 54.84(140) 55.96(174)
2016-10-28 11:34:20 54.42(98) 55.18(68) 55.39(117) 56.82(124) 55.36(158) 57.34(126)

Table 5.2: The receiver temperatures calibrated during HPCDM measure-
ment.
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Figure 5.4: The relation between gain of receiver and temperature of room-
temperature amplifier. The shown is result of frequency region 1, and results
of other regions are similar.
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5.2 Antenna effective area and beam profile

We measure the horn’s effective area. We also measure the angular depen-
dence of the effective area to estimate the systematic error caused by an
angular uncertainty (alignment and hidden photon angular dispersion).

5.2.1 Radiation from blackbody and Sky temperature

Brightness temperature and sky temperature

Brightness is a quantity defined as power divided by solid angle, area, and fre-
quency. The brightness of blackbody of temperature T , in the low frequency
region hν/kBT ≪ 1, is proportional to T and described by Reighley-Jeans
law,

Iν =
dP

dνdAdΩ
=

2ν2kBT

c2
, (5.3)

where ν is the frequency, kB is Boltzmann constant, T is the temperature
of blackbody, A is the area of the destination, Ω is solid angle the source
blackbody extends from the destination. The “brightness temperature” Tb is
a variable used in astronomical observation, which is defined as

Tb =
Iνc2

2kBν2
, (5.4)

even in the case the source is not blackbody. In case the entire view of the
antenna is covered with a blackbody of T , Tb coincides with T in the Reighley-
Jeans’ region. From Eq. 5.1, we can calculate this brightness temperature
using G and Trec obtained from gain calibration,

Tb =
Pout

GkBB
− Trec, (5.5)

where Pout is output power of the receiver, kB is Boltzmann constant, B is
the band width of measurement, Trec is the receiver temperature.

The “sky temperature” Tsky is the brightness temperature of the sky.
Tsky is calculated using this equation, from measurement data taken without
blackbody, and takes value of ≈ 50 K with low humidity at up sky. The mea-
sured power is proportional to brightness temperature because our condition
satisfies: hν/kBT ≪ 1 holds for ν =28GHz and T = 300 or ≈ 50 K.
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Power from blackbody

Assume an antenna is oriented vertically upwards, under the sky of sky tem-
perature Tsky. When a blackbody of temperature TBB = 0 K is placed in
front of the antenna, it blocks a part of atmospheric radiation. From the
definition of sky temperature, the power that arrives an antenna changes by,

−2ν2kBTsky

c2
Ageom · Ω ·∆ν, (5.6)

where Ageom is the geometrical aperture of antenna, Ω is the solid angle the
blackbody source extends, ∆ν is the bandwidth. Therefore, if TBB is within
Reighley-Jeans’ region, the difference of powers that arrives antenna between
two conditions (with and without blackbody) is described as follows,

Pdiff,0 =
2ν2kB(TBB − Tsky)

c2
Ageom · Ω ·∆ν. (5.7)

The ratio between the geometrical area Ageom of horn aperture and effective
area Aeff is “antenna efficiency” η, which is obtained by

η =
2Pdiff,obs

Pdiff,0
, (5.8)

where Pdiff,obs is the difference of power received by antenna, between the two
conditions. The factor of two in Eq. 5.8 comes from the fact the antenna
receives only one component of polarization.

5.2.2 Set up

We place a small blackbody source at the same location of the mirror. It
satisfies far-field condition, and the distance from the horn aperture is 1030±9
mm. We use ECCOSORB AN-72 as blackbody source. We cut it to be round
shape of 60 mm diameter. We carry out two types of measurements: one
is antenna beam pattern measurement, and the other is consistency check
about the area of blackbody source. In beam pattern measurement, we
measure power from blackbody at various locations, by measuring power
received by antenna with and without blackbody and take the difference
between them. As sky temperature fluctuates with atmospheric condition,
we conduct measurement alternatively and use the difference between the
nearest measurements.

The schematics of measurement setup is shown in Fig. 5.5. We measure
output power from horn antenna, with and without blackbody source, and
take the difference between them at each blackbody positions. We built the
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Figure 5.5: Setup schematic of antenna calibration measurement. We mea-
sure difference of output power from horn antenna between two condition:
with and without blackbody source. We repeat the measurement at various
locations of the blackbody source.

measurement setup as shown in Fig. 5.6. On top of the frame, a styrofoam
plate (t = 21 mm) is placed above horn. A 50 mm grid is imprinted on the
plate for the purpose of alignment of the blackbody (Fig. 5.7). The attenu-
ation from the styrofoam plate is estimated and we found it negligible [40].
We also use styrofoam piece (100 mm × 100 mm) as the blackbody source
folder because we use various size of them for the variation of our measure-
ments 5.8. The blackbody is attached on this folder by using double-sided
adhesive tape. We varied the size of the blackbody source. We confirmed
the measured power is properly proportional to the area of blackbody (Fig.
5.10).

We measured the antenna effective area on 24th and 26th in Oct. 2016.
The temperature of blackbody target are measured several times during mea-
surement by using a thermometer CTH-203 (CUSTOM). Measured black-
body temperatures are summarized in Table 5.3. Average temperatures dur-
ing the calibration in each day are 299 K in Oct. 24th and 302 K in Oct.26th,
respectively. For the sky temperature, measured results are summarized in
Fig. 5.15. Their averages are 31.6 ± 1.7 K in Oct. 24th and 42.2 ± 1.6 K in
Oct. 26th, respectively.

We calibrate the responsivity of the receiver before and after each mea-
surement. We adopt interpolated responsivity model as described in Sec. 5.1.
The position of source is aligned based on grid lines marked on the styrofoam
board. As shown in Fig. 5.11, we measure at 25 locations in total; 5×5 steps
along x and y axes with a spacing of 50 mm. Figure 5.12 shows example of
these measurements.
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Figure 5.6: Photograph of antenna measurement setup.

5.2.3 Analysis

Angular response of the antenna (hereafter “beam”) is modeled by two-
dimensional Gaussian function. We fit measured data by using a formula,

f(x, y; x0, y0, σ, Pdiff,obs) = Pdiff,obse
− (x−x0)

2+(y−y0)
2

2σ2 cos θ, (5.9)

where θ = arctan

(√
(x−x0)2+(y−y0)2

d

)
is the angle between the line of sight

to the blackbody and the axis of horn antenna. We multiply cos θ as a
correction factor for the blackbody area. The error for d is contained in

date TBB [K]
10/24 10:52 297.9
10/24 11:12 300.7
10/24 11:20 299.9
10/24 11:27 299.1
10/26 15:42 302.9
10/26 15:52 302.0
10/26 16:00 301.7

Table 5.3: The temperatures of blackbody source (TBB) during the antenna
calibration measurements. The precision of the record time of is about 3
minutes.
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Figure 5.7: Grid lines are marked on styrofoam board for the beam calibra-
tion.

cos θ, while its effect is a second order, (∆d/d)2. The first order effect,
(∆d/d)1, is included in the systematic error for Pdiff,0 (Eq. 5.7, through Ω).
There are 4 parameters in this fit; Pdiff,obs is the maximum output power
difference, x0 and y0 are coordinate of the center of beam relative to the
center of styrofoam board, and σ is a beam width. We have 300 sub-runs in
total for this calibration in each day: 6 (frequency regions) × 25 (blackbody
locations) × 2 (with or without blackbody). We use averaged number for
each frequency region. We extract the parameters for each of them. Fit
results are summarized in Table 5.4 and 5.5. Examples of fit results are
shown in Fig. 5.13.

We have 6 fit results in each day. We combine these 12 results to obtain
the value η. Fit errors for each 12 measurement is independent because they
are statistical error. On the other hand, parts of systematic errors are not
independent among the measurements.

• Common systematic errors for each day

The systematic error from temperatures and amplifier gain are common
in a day.

1. Amplifier gain (G)

We calibrated the amplifier gain before and after antenna measure-
ment, and take the half of difference as ∆G, in the same manner
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Figure 5.8: We use black body piece in various dimensions for the purpose
of linearity check of the measurements. Their dimension are (from top left
to top right, and bottom left to bottom right), circle of φ 60 mm, circle of
φ 30 mm, circle of φ 10 mm, 10mm x 10mm square. They are attached on
a styrofoam socket piece in photos, and they are aligned along the grids as
shown in Fig. 5.9.

as in HPCDM measurement. The calibration results are shown in
Fig. 5.14. We used ∆G = 0.17 dB (3.9 %) for 24th Oct. and 0.10
dB (2.4 %) for 26 th Oct.

2. Sky temperature (Tsky)

We have 6 × 25 measurements for Tsky in total, as shown in
Fig. 5.15. We conservatively take half number of their maximum
difference of 25 for each frequency region. We used the maximum
of 6 values of ∆Tsky/Tsky, 5.4% (1.7 K / 31.6 K) for 24th Oct. and
3.9% (1.6 K / 42.2 K) for 26th Oct.

3. Black body temperature (TBB)

We conservatively assign the maximum difference during each cal-
ibration. Based on Table 5.3, we assign systematic errors ∆TBB.
∆TBB/TBB are 0.9% for 24th Oct. and 0.4% for 26th Oct., respec-
tively.

• Common systematic error among 12 measurements
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Figure 5.9: The socket containing black body piece (Fig. 5.8) is placed on
the styrofoam board. Here, we aligned it at the center, (x, y) = (0, 0).

Uncertainty of solid angle (Ω) is common for all measurements. We
assign the error of the distance d (= 1030 ± 9 mm) and the diameter
of the black body source φBB (= 60 ± 1 mm), because Ω = ABB/d2 =
π(φBB/2)2/d2, where ABB is the area of the black body source. We
obtain

Ω = (2.67± 0.10)× 10−3.

5.2.4 Results

The results of 12 measurements are summarized in Fig. 5.16. We calculate
weighted average for each day, i.e. 6 measurements for each. Then, we take
average of two numbers for each day with weights of the systematic errors
for each day. Finally, we obtain η = 0.560± 0.032. The effective area for the
horn antenna is,

Aeff = ηAgeom (5.10)

= (1.48± 0.08)× 10−3[m2]. (5.11)

We also obtain the beam width (θ1/2) using the fitting results (Tab. 5.4,
5.5). Combining the fitting results, the radius of beam at the styrofoam board
is σ = 95.9 ± 1.7mm. Combining this and the distance d = 1030 ± 9mm
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Figure 5.10: Power from blackbodies of various sizes.

between the horn antenna and the blackbody source, we obtain the beam
width

θ1/2 = 2 arctan
(√

2 log 2 · σ
d

)
= 12.52± 0.05 deg. (5.12)

The beam width is inversely proportional to frequency. In the specification of
this horn antenna (Tab. 3.2), the beam width is 16◦ at the center of its band,
23 GHz. Therefore the beamwidth at 28 GHz is 16◦/(28GHz/23GHz) = 13◦,
which is roughly consistent with the obtained result.
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Figure 5.11: Locations of blackbody source for measurement on 24th Oc-
tober. For each of this positions, measurement was carried out with and
without blackbody. The coordinate is relative to the center of styrofoam
board. The resulting measurement data are shown in Fig. 5.12.

Region # x0 [mm] y0 [mm] σ [mm] Pdiff,obs [W/kHz]
1 -67.9 ± 3.8 -10.9 ± 3.7 101.8 ± 4.3 1.253(43)×10−19

2 -65.7 ± 3.6 -2.6 ± 3.5 95.7 ± 3.8 1.235(45)×10−19

3 -60.9 ± 3.6 -12.9 ± 3.6 99.0 ± 4.0 1.276(44)×10−19

4 -55.9 ± 3.5 -10.2 ± 3.5 97.8 ± 3.9 1.284(45)×10−19

5 -69.8 ± 3.3 -11.1 ± 3.2 91.6 ± 3.3 1.366(47)×10−19

6 -55.1 ± 3.4 -12.4 ± 3.4 96.0 ± 3.6 1.329(46)×10−19

Table 5.4: The fitting results for each frequency regions, for 24th Oct., 2016.

Region # x0 [mm] y0 [mm] σ [mm] Pdiff,obs [W/kHz]
1 -64.6 ± 4.9 1.1 ± 4.7 103.2 ± 5.5 1.129(49)×10−19

2 -77.3 ± 4.7 -7.1 ± 4.4 96.2 ± 4.8 1.171(51)×10−19

3 -80.7 ± 5.2 0.6 ± 4.7 104.1 ± 5.6 1.176(50)×10−19

4 -72.3 ± 4.2 1.3 ± 3.9 95.4 ± 4.3 1.292(52)×10−19

5 -77.1 ± 5.1 -8.3 ± 4.7 106.1 ± 5.7 1.220(50)×10−19

6 -71.3 ± 3.5 -3.5 ± 3.4 84.8 ± 3.3 1.405(57)×10−19

Table 5.5: The fitting results for each frequency regions, for 26th Oct., 2016.
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Figure 5.12: Examples of measured powers for each location. They are results
for frequency region 1 (top panel) and 2 (bottom panel). Order of points
follows Fig. 5.11.
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Figure 5.13: Fit results for the frequency region 1 (middle panel) and 2
(bottom panel). The top panel shows the order of measurements in the same
manner as Fig. 5.11. They are measurement on 24th October. The blue
points are measured data, and red surface is the fit result.
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measurement�
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Figure 5.14: The amplifier gain calibration results for antenna measureemnt.
The antenna measurement was conducted in the time range designated as
arrows. We use half number of difference for systematics. We use the maxi-
mum value of 6 regions, ∆G = 0.17 dB for 24th Oct. and ∆G = 0.10 dB for
26 th Oct.
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Figure 5.15: The sky temperature calculated from measurement data without
blackbody source, for each frequency regions. The top panel shows the results
for measurement on 24th Oct. 2016, and the bottom panel shows that for
measurement on 26th Oct. 2016.
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Figure 5.16: Measured results of the antenna efficiency (η) for each frequency
region for each day. Small circles (blue) are individual results. Cross markers
(green) are combined results for each day. The black error bars of combined
results show the statistical error, and colored error bars include systemat-
ics from amplifier gain (G), sky temperature (Tsky), and black body source
temperature (TBB). The statistical error is larger in 26th Oct, whereas the
systematic error is larger in 24th Oct. A large circle marker (red) is all com-
bined result including systematic errors of solid angle (Ω). The result η =
0.560 ± 0.032 is consistent with the typical value for conical horn antenna
(≈ 0.5).
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Figure 5.17: Schematics about the effect of frequency response instability. If
the frequency response is stable (left), the noise component is averaged out
with multiple runs. On the other hand, if the frequency response is unstable
(right), the HPCDM peak is smeared out. This results in the bias to the
power of the signal.

5.3 Frequency response

The frequency response is important because of following two reasons,

• Instability for the frequency response potentially smear the height of
the signal shape, as shown schematically in Fig. 5.17. It results in
inefficiency for the mixing angle χ,

• The signal peak represents the HPCDM mass.

The signal analyzer is the only unit to vary the frequency response. A
built-in oscillator used for down conversion of input signals is the most critical
part to cause such instabilities. This is because that the oscillator is sensitive
for the variation of the ambient temperature in general. In this section,
we first quote the uncertainty of the absolute value. Then we measure the
instability of frequency response of spectrum analyzer, using a signal source.

5.3.1 Absolute uncertainty

For spectrum analyzer

For the absolute value, the catalog specification is the most conservative
number of its systematic uncertainty. From Tab.3.6, we obtain

∆νabs ≤ ν × [(the time from last measurement)× (aging rate)

+ (initial accuracy)]

= 28GHz× [2 year× (1× 10−6/year) + 1.4× 10−6]

= 95kHz.

62



For calibration source

Here we also quote the absolute uncertainty of Vector Network Analyzer
(N5224A, Agilent), which we use as a signal source in the instability mea-
surement. The relevant specification of the source is summarized in Table
5.6. We expect absolute frequency precision to be less than

∆νabs,VNA ≤ ν × [(the time from last adjustment)× (aging rate)

+ (initial accuracy)]

= 28GHz× [2 year× (0.1× 10−6/year) + 1× 10−6]

= 34kHz.

This is the upper bound of the calibration, which corresponds to the uncer-
tainty of the HPCDM mass as follows,

∆mγ′ = h×∆νabs,VNA = 1.4× 10−10eV. (5.13)

The drift of the generated signal from the VNA is guaranteed to be very
small. Therefore, we ignore the frequency drift of signal source 1.

5.3.2 Instability

We evaluate effects associated with the ambient temperature change. We
monitor the measured frequency with changing the ambient temperature
while the signal generator is maintained in the stable condition. The spec-
trum analyzer has a built-in thermometer. The setup of this calibration is
shown in Fig. 5.18. The settings of the spectrum analyzer is identical to
them for HPCDM search. We use a Vector Network Analyzer (N5224A, Ag-
ilent) as a signal source. The instability of the output signal is negligible as
shown in Table 5.6. We generate a monotone signal at 28.003 GHz, of -30
dBm. We insert an attenuator of 10 dB at the input port of the spectrum
analyzer.

Measurement

We measured the uncertainties for the frequency response on 5th Dec. 2016
(5.19 and 5.20). Shutter was opened a 11:05 to lower the temperature around
the spectrum analyzer. The temperature inside spectrum analyzer changed
from 40.25 to 27.75 ℃ (Fig. 5.21). The rate of temperature change is about
30 ℃/hour, which is tighter condition compared with the condition for the

1if we still calculate it, ∆fdrift,VNA = 1.4kHz, for temperature from −10 to 70 ℃.
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HPCDM search (0.8℃/hour) as shown in Fig. 6.34. During this measure-
ment, the peak position remained the 1 kHz frequency bin (Fig. 5.22). The
difference between the frequency specified by source and the frequency re-
ported by spectrum analyzer is 1 kHz, which is much less than ∆νabs,VNA

= 34 kHz. We also conclude the frequency stability is below 1 kHz. This
corresponds to 0.9% uncertainty for the power of HPCDM signal, which is
negligible as discussed in 6.5.5.

Figure 5.18: Schematics of the setup for frequency instability. VNA generates
a monotone wave of 28.003 GHz. The spectrum analyzer measures attenuated
signal at -40 dBm. The VNA was maintained in the stable room temperature
condition. Temperature of the spectrum analyzer was varied by opening and
closing of the shutter. The cold air entered there by opening it.

Description Specification Typical
Frequency range 10 MHz – 43.5 GHz
Frequency resolution 1 Hz
Frequency accuracy ±1 ppm
Frequency stability ± 0.05 ppm, −10 – 70 ℃

± 0.1 ppm/year max.

Table 5.6: Relevant specification of the Vector Network Analyzer (N5224A,
Agilent) used as signal source.
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Figure 5.19: Picture of the setup described in Fig. 5.18. The front instrument
is VNA used as generate a monotone signal. Spectrum analyzer is under the
desk, and surrounded by boards. The shutter in the back was opened to
lower ambient temperature around the spectrum analyzer.

Figure 5.20: Picture of spectrum analyzer under the desk in Fig.5.19. A
thermocouple to measure environmental temperature is also shown (the tem-
perature shown in Fig. 5.21 is not from this thermometer, but one built in
the spectrum analyzer).
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Figure 5.21: The temperature inside the spectrum analyzer during the fre-
quency precision measurement. The temperature dropped as the shutter near
the spectrum analyzer was opened at 11:05. Also the ambient temperatures
near the spectrum analyzer and signal source (VNA) are shown.

Figure 5.22: The data corresponding to Fig. 5.21. The horizontal axis is dif-
ference between the frequency specified by source and the frequency reported
by spectrum analyzer. The absolute frequency precision is 1 kHz, which is
within the specification of spectrum analyzer and VNA. The instability of
frequency position is less than 1 kHz.
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Chapter 6

Analysis and systematic errors

In this chapter, we describe the methodology of analysis and systematic
errors.

6.1 Data selection

To ensure the quality of measurement data, we selected out runs by the
following three selection criteria.

1. Responsivity is stable within ± 7.7%

We require that the drift of the responsivity is less than the uncertainty
of CDM density, 7.7% (ρCDM,local = 0.39± 0.03GeV/cm3). We employ
the linear interpolation model for the responsivity application to data.
The conservative boundary condition is selecting runs whose respon-
sivity varied less than ± 7.7 % from the middle of run. It corresponds
to the less than 0.64 dB change. The changes between two successive
calibrations are shown in Tab. 6.1.

2. Measured power is stable within 7.7%

Instability of weather change the condition of measurement. We se-
lected runs where the ratio max(power) / min(power) < 1.077.

3. Receiver temperature is stable within 7.7%

The receiver temperature should be stable. Large change of it indicates
malfunctions of the system such as dew condensation of the aperture
window. We select runs receiver temperature smaller than 1.077 of (the
minimum number in all calibrations).
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The systematic error for amplifier gains [%]
Calibration Dates \ Region # 1 2 3 4 5 6

2016-10-26 16:31:28, 10-26 19:28:57 3.52 3.02 2.58 2.42 3.62 3.30
2016-10-26 19:28:57, 10-26 21:54:51 1.96 1.99 1.48 2.95 1.64 2.08
2016-10-26 21:54:51, 10-27 04:50:51 10.70 10.95 11.06 11.29 11.19 11.24
2016-10-27 04:50:51, 10-27 07:29:45 1.09 1.42 1.61 2.17 1.28 1.44
2016-10-27 07:29:45, 10-27 12:00:22 10.91 10.96 10.96 10.23 11.16 11.15
2016-10-27 12:00:22, 10-27 14:26:36 0.76 0.83 0.30 1.18 0.50 0.20
2016-10-27 14:26:36, 10-27 16:44:08 4.29 4.54 4.78 4.76 4.17 3.93
2016-10-27 16:44:08, 10-27 18:34:39 9.52 9.44 8.78 9.01 9.10 9.39
2016-10-27 18:34:39, 10-27 19:39:13 0.68 0.59 1.23 1.75 1.81 1.93 run 1
2016-10-27 19:39:13, 10-27 21:34:22 2.72 3.49 2.28 2.60 2.43 2.17 run 2
2016-10-27 21:34:22, 10-27 23:41:04 1.74 0.99 1.66 1.44 1.29 1.28 run 3–5
2016-10-27 23:41:04, 10-28 02:03:32 5.13 5.40 5.50 4.32 5.16 5.51 run 6
2016-10-28 02:03:32, 10-28 03:03:29 2.38 2.18 2.30 2.83 2.63 2.27 run 7
2016-10-28 03:03:29, 10-28 04:03:42 0.29 0.67 0.87 0.17 0.52 0.05 run 8
2016-10-28 04:03:42, 10-28 05:30:38 1.20 0.92 1.38 1.65 1.01 2.16 run 9
2016-10-28 05:30:38, 10-28 07:01:18 1.05 1.58 1.71 1.58 1.89 2.45
2016-10-28 07:01:18, 10-28 08:33:58 3.55 2.92 3.61 3.34 2.49 3.25
2016-10-28 08:33:58, 10-28 10:05:34 0.51 0.35 0.15 0.11 0.64 0.25
2016-10-28 10:05:34, 10-28 11:34:20 0.22 0.64 1.13 1.49 0.66 0.77

Table 6.1: The systematic error for gains, calculated as half of difference be-
tween two successive gain calibration results, for each of 6 frequency regions.
They are less than 7.7 % for selected runs. For raw values of gain, see Tab.
5.1.

We select 9 runs for our analysis (Tab. 6.2). The system temperature as a
function is shown in Fig. 6.3. Background noise level is maintained to be
low and stable for the selected runs. We repeat a series of measurements of
6 frequency regions as mentioned in Sec. 4.2. We average the data for each
region for each run, i.e., we have 6 sub-runs for each run. Therefore, we have
54 sub-runs in total. Examples of the data for sub run is shown in Fig. 6.2.
The noise characteristic for them is shown in Fig. 6.3, by checking the data
in Fourier space.

Figure 6.1: Loading temperature Tload = Tsys − Trec as a function of time.
Selected data sets are indicated with color points. Data selection ensures low
background noise condition as well as the stability of data.
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Figure 6.2: Examples of selected data. Top is subrun 1 (run 1, frequency
region 1) and bottom is subrun 12 (run 2, frequency region 6).
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Figure 6.3: The data of Fig. 6.2, viewed in Fourier space to check noise
characteristics. The Fourier transformed spectra are shown in blue. Green is
averaged spectrum to be smooth. Top figure is for subrun 1 (run 1, frequency
region 1) and bottom is for subrun 12 (run 2, frequency region 6). For white
noise, this flat spectrum is expected. We see an effect of drift in bottom panel,
as a slope upward to the left. The average of rightmost 200 points (! 6×10−5

/Hz) is identified as the level of white noise, and used as measurement error
in fitting HPCDM peak.
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run # started time number of repeats
1 2016-10-27 18:44:10 301
2 2016-10-27 19:44:05 603
3 2016-10-27 21:48:05 406
4 2016-10-27 23:05:56 56
5 2016-10-27 23:18:57 118
6 2016-10-27 23:56:08 692
7 2016-10-28 02:13:07 274
8 2016-10-28 03:10:00 291
9 2016-10-28 04:23:03 363

Table 6.2: Selected runs for the analysis. It takes 12 seconds to measure
the data for 6 regions. We continuously repeat this data taking. Number of
repeats between responsivity calibrations is almost proportional to the length
of run.

6.2 Methodology of signal extraction

6.2.1 Extraction for each sub-run

We extract the HPCDM signal by the least-square fit for each sub-run. For
HPCDM signal we use binned probability density function (PDF) with the
analysis bin width (5 kHz): fsig(ν). We model the baseline gradient (i.e.,
background noise distribution) with one dimensional polynomial, aν + b,
where a and b are floating parameters. We extract powers of HPCDM signal
(P ) for each frequency (ν0) by using following PDF,

f(ν;P, a, b; ν0) = P · fsig(ν; ν0) + (aν + b). (6.1)

The peak shape depends on the hidden photon mass mγ′ , and we use the
peak shape using mγ′ corresponding to the bin (mγ′ = ν0). An example
of the fit with Monte Carlo data is shown in Fig. 6.4. Fit range is 240
kHz; 60 kHz to the left, and 180 kHz to the right. We use 48 bins for fit.
For measurement error, we used the white noise component of the data, by
using the average of rightmost 200 points in Fourier space (Fig. 6.3, 6.8).
We assume the measurement error is same for all bins. We scan the signal
powers with changing ν0 in the range of each sub-run data. We obtain the
powers (P ±∆P ) for each frequency.

6.2.2 Accumulation of results for each sub-run

We combine the results of each sub-run. We simply take weighted average
of for each frequency [3]. Suppose we have a set of measurement results,
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Figure 6.4: An example of fit (red solid line) for Monte Carlo data (blue
points) based on PDF of Eq. (6.1). The fit range is 60 kHz (12 bins) to the
left of peak and 180 kHz (36 bins) to the right of the peak, 48 bins in total.

xi ± δxi and we want to combine them. We calculate it by the standard
weighted average,

x̄± δx̄ =

∑
i wixi∑
i wi

± (
∑

i

wi)
−1/2. (6.2)

Then, we calculate χ2 =
∑

wi(x̄ − xi)2 to check the consistency among the
values. The expected value for χ2 is N − 1 for measurement with Gaussian
error. We check compare the value χ2/(N − 1) with 1. If χ2/(N − 1) ≫
1, we associate the result as unaccounted systematic error, and rescale the
error δx̄ by a factor

S = [χ2/(N − 1)]1/2. (6.3)

If S ≫ 1, the results are not statistically consistent. There are three possible
cases under this situation[41].

• some (or all) results are wrong,

• some (or all) results have underestimated errors,

• the results do not represent the same quantity (systematic errors).

Though it is best to resolve these contributions, it is not straightforward. In
our case, we cannot investigate them before unblinding results, and transient
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spike noises may have some effects on results. We cannot determine their
contributions only from statistics, therefore we assume all results have un-
derestimation in their errors and multiply by the same scale factor S. Note
the central value x̄ is not affected by this procedure.

The distribution of scale factor S

Let us assume errors are underestimated for all results. If we write S =
max(1, S+) ≡ max(1,

√
χ2
k=N−1/(N − 1)). When Xi is independent random

variables which follow standard normal distribution,

Yk =

√√√√
k∑

i=1

X2
i (6.4)

is referred to as chi distribution. Chi distribution is the square root of chi-
squared distribution.

Assume we have N independent normally distributed random variable,
with the common mean µ = 0 and standard deviation δxtrue. When we take
the weighted average assuming the error δxgiven, S+ obeys chi distribution
times a factor:

S+ ∼ YN−1 ·
1√

N − 1
· δxtrue

δxgiven
(6.5)

( =
√

(reduced chi square) · δxtrue

δxgiven
). (6.6)

We examined the distribution of S by toy Monte Carlo samples. We use
50 random variable, with the mean µ = 0 and standard deviation δxtrue ̸= 1.
We apply weighted average assuming error to be 1 (δxgiven = 1). We use 1000
different seeds to obtain the distribution of S. The result for δxtrue = 0.95
(overestimation of error) and δxtrue = 1.05 (underestimation of error) are
shown in Fig. 6.5. The distribution of S has a sharp peak at 1 for the case
of overestimation (no rescaling). On the other hand, S corrects the error in
the case of underestimation.
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Figure 6.5: The distribution of the scale factor S from toy Monte Carlo
simulation, with wrong errors. The blue histogram shows the distribution of
S. The blank histogram shows the distribution of S+, which is not clipped
at 1. The red curve shows the chi distribution, which describes S+.
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6.3 Validations prior to unblinding results

6.3.1 Null tests

Validation tests before opening the box are sometimes useful to check hidden
systematics in data. We make “null sample” as shown in Fig. 6.6. We use
the null samples for the analysis validation. We confirm stationarity of data
quality among sub-runs (Fig. 6.14) as well as the no bias in the null samples.
The example of null samples are shown in Fig. 6.7. Their noise characteristic
is shown in Fig. 6.8, by checking the null sample in Fourier space.

Figure 6.10 shows the combined results of 2752 points of P and ∆P . We
use this result for checking possible biases in our analysis. We use the fact
the fitting result should be zero-consistent if there is no signal. We want to
check

• fit result P is not biased from zero.

• the error distribution is as expected (P/∆P is symmetric).

• if there is effect of accidental spike noises.

Figure 6.9 shows the distribution of error, P/∆P . We fit this histogram
using bins ≥ 10 counts, and obtained the average µ = −0.002 ± 0.020 and
standard deviation σ = 0.998 ± 0.015. This is consistent with standard
Gaussian distribution. with There are three points with P/∆P > 3, which
agrees well with 3.7 from 2752 points from standard Gaussian distribution.
The regions around these three “peaks” are shown in Fig. 6.11–6.13.

Figure 6.6: Schematics of null sample. We divide measurement data in a
run into two, and subtract one from another. The noise remains. However,
HPCDM signal is canceled out in this “null sample”. We can increase number
of noise-only samples by changing the criteria to divide the data.

Stationarity of the width of P/∆P distribution

For the same motivation with the check of χ2, we further checked outliers.
by checking the distribution width of P/∆P i.e. std(P/∆P ). We compare it
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Figure 6.7: Examples of null sample. Top is a null sample made from data
of subrun 1 (run 1, frequency region 1) and bottom is one from subrun 12
(run 2, frequency region 6).
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Figure 6.8: The null sample of Fig. 6.7, viewed in Fourier space to check noise
characteristics. The Fourier transformed spectra are shown in blue. Green is
averaged spectrum to be smooth. Above is subrun 1 (run 1, frequency region
1) and bottom is subrun 12 (run 2, frequency region 6). For white noise,
this spectrum is flat. The average of rightmost 200 points (! 6× 10−5 /Hz)
is considered as the level of white noise, and used as measurement error in
fitting HPCDM peak.
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Figure 6.9: The P/∆P distribution for fitting results in Fig. 6.10. It is
fitted with Gaussian distribution N(µ, σ) using bins with ≥ 10 counts, and
obtained results is consistent with standard Gaussian distribution: µ, σ =
−0.002± 0.020, 0.998± 0.015.

with the same variable calculated for null data. We normalize the values using
the first of 54 values, to see its stationarity among sub runs, without seeing
effect of broadening of the distribution, which may be caused by outliers in
P/∆P distribution from HPCDM signal or common mode noise. We do not
observe significant difference among the data and null samples as shown in
Fig. 6.15.
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Figure 6.10: The combined results of 54 null samples. No significant power
is observed in 2752 frequency bins. The level of ∆P reflects of difference of
statistics from overwrapping of frequency range (Fig. 4.3)
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Figure 6.11: The fit results for #1 of 3 peaks exceeding 3σ for null sample.
Top panel shows the first three subrun data in this frequency region (dot) and
fitting results (solid line, the same color as data). The middle panel shows
all subrun data in gray, and fit results in colored solid lines. The bottom
panel shows fit results P , ∆P for each subrun in blue dots, and combined
results in red.
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Figure 6.12: The fit results for #2 of 3 peaks exceeding 3σ for null sample.
The top panel shows the first three subrun data in this frequency region
(dot) and fitting results (solid line, the same color as data). The middle
panel shows all subrun data in gray, and fit results in colored solid lines.
The bottom panel shows fit results P , ∆P for each subrun in blue dots, and
combined results in red. The error bar for combined results is rescaled by
S = 1.27 (the error bar before rescaling is shown in black).
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Figure 6.13: The fit results for #3 of 3 peaks exceeding 3σ for null sample.
The top panel shows the first three subrun data in this frequency region
(dot) and fitting results (solid line, the same color as data). The middle
panel shows all subrun data in gray, and fit results in colored solid lines.
The bottom panel shows fit results P , ∆P for each subrun in blue dots, and
combined results in red. The error bar for combined results is rescaled by
S = 1.06 (the error bar before rescaling is shown in black).
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Figure 6.14: The chi-square plot for data sanity check. Max, average, min-
imum of about 100 values of χ2 are designated by symbols △,× and ▽
respectively. Results from different methods are compared: blue, red, green
corresponds to null sample, data, data with modified fitting (P fixed to be
zero). We observe no apparent discrepancy among sub runs.

Figure 6.15: Widths of P/∆P distributions, among 54 sub runs. We found
no apparent outlier among them.
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Figure 6.16: An example of generated MC data and fit. Pgiven = 1000 is used
in this data.

6.4 Estimation of errors

We check if the fitting error ∆P represents the actual distribution of fitting
results, using Monte Carlo samples.

6.4.1 White noise

We generate a Monte Carlo data of noise and HPCDM signal. First we
assume white noise. We generate a Gaussian noise of width 100. We add the
HPCDM signal of strength Pgiven. We change Pgiven and check the consistency
between the fitting error ∆Pfit and the actual distribution std(Pfit). An
example of data and fit is shown in Fig. 6.16. We use 6 different Pgiven: 0,
200, 400, 600, 800, 1000. We check the distribution of fit result Pfit using
1000 different random seeds. The histogram of the difference Pgiven −Pfit for
each Pgiven is shown in Fig. 6.17, 6.18. Figure 6.18 also shows the ratio of
std(Pfit) and average(∆Pfit). From these 6 points, std(Pfit) = 246.4± 0.4 and
average(∆Pfit) = 247.8 ± 3.4. Therefore the fitting error ∆Pfit is consistent
with actual distribution.

6.4.2 Drift noise

Instruments like amplifiers and detectors suffer drift noise (1/f noise), in
addition to white noise. It obeys power-law when viewed in Fourier space
(which is obtained by re-Fourier transformation of the original FFT data), as
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Figure 6.17: The difference of the given power Pgiven and the fit result Pfit,
for each Pgiven., for white noise.
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Figure 6.18: The fitting results for white noise Monte Carlo data. The top
and middle panels show the consistency between Pgiven and Pfit. The bottom
panel shows the actual distribution of Pfit and fitting error ∆Pfit. The fitting
error is consistent with the actual distribution.
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shown in Fig. 6.19. The index α typically have value between 1 and 2. The
point where drift component reaches the same level as white noise is called
“knee”. The spectrum can be specified by two parameters i.e. α and the knee
position, when white noise level is fixed. Figure 6.20 schematically shows how
to generate drift noise. First we generate a white noise spectrum. Next we
switch to Fourier space. Then we deform the spectrum by power-law. Finally
we go back from Fourier space to obtain the drift noise.

We check the consistency between the fit error ∆Pfit and the actual dis-
tribution of fit result by fitting Monte Carlo data. We combine three com-
ponents to make the Monte Carlo data. The first and second are white
noise with standard deviation 100 and HPCDM signal of Pgiven, as same as
Sec. 6.4.1. We add drift noise as the third component, with specified α and
knee position. We use 7 different position of knee: 1/(50kHz), 1/(100kHz),
1/(200kHz), 1/(400kHz), 1/(800kHz), 1/(1600kHz), 1/(3200kHz). We use 3
different α: 1.0, 1.5, 2.0. We check the distribution of fit result Pfit using 1000
different seeds. We use 6 different Pgiven: 0, 200, 400, 600, 800, 1000. We
check the distribution of fit result Pfit using 1000 different random seeds. Fig-
ure 6.21 and 6.22 shows the case of α = 2.0 and knee positions of 1/100kHz.
In the presence of drift noise, the Pgiven is consistent with Pfit. However,
std(Pfit) is significantly larger than fitting error average(∆Pfit). Figure 6.23
shows the dependence of this deviation on drift knee and α. For small α, the
discrepancy between Pfit and ∆Pfit arises even when the knee is low.
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Figure 6.19: The schematic of drift noise in Fourier space (obtained by re-
Fourier transformation of the original FFT data). The drift component (red)
obeys power law. The index α typically have value between 1 and 2. The
point where the drift component crosses white noise level (green) is called
“knee”.

Figure 6.20: The schematic about generating drift noise.
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Figure 6.21: The difference of the given power Pgiven and the fit result Pfit,
for each Pgiven. The MC data is composed of white noise (width 100), drift
noise (α = 2 and knee 1/100kHz), and HPCDM signal.
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Figure 6.22: The fitting results for Monte Carlo data with drift noise (α =
2 and knee 1/100kHz). The top and middle panels show the consistency
between Pgiven and Pfit. The bottom panel shows the actual distribution of
Pfit and fitting error ∆Pfit. Contrary to the white noise case (Fig. 6.22), the
fitting error is under estimated in the presence of drift noise.
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Figure 6.23: The dependence of discrepancy between the distribution of fit
result Pfit and fitting error ∆Pfit, on α knee position of drift noise. The
left panels show standard deviation of Pfit and average of ∆Pfit in 6 points,
whereas the right panels show the ratio of the two. For small α, the discrep-
ancy arises even when knee is low.
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6.5 Systematic errors

6.5.1 Flatness of mirror

ℓ

L(d)

d

r(d)

R

mirror

horn antenna

r-d r

≒ℓ/2

(imaginary center
      of deformation)

Figure 6.24: Deformation of mirror reduces the collection efficiency of the
converted photons. Mirror deforms by d by its weight, changing its shape
from line to circular arc.

In our setup, mirror is suspended horizontally at its 4 corners. It can
deform by its weight (∼ 4kg). Assuming two dimensional modeling, the
deformation is approximately circular arc, as shown in Fig. 6.24. The plane
wave from mirror becomes spherical. This weakens the power flux by a factor
of l

L in two dimensional model, where l is the width of mirror, and L is some
width larger than l (Fig. 6.24). In three dimensional case, this weakening
occurs in the two orthogonal directions. Therefore, the collection efficiency
is reduced by a factor of

(
l
L

)2
in our experiment. The radius r of the circular

arc is a function of d and l, where d is the deformation at the center of the
mirror. L is also a function of d and R, where R is the distance between
the mirror and the horn antenna. The deformation d is much smaller than
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Figure 6.25: The deformation of mirror that we used is small and we conclude
it less than 0.5 mm.

l. The dimension of spherical wave is written as follows,

r2 = r2 − 2rd+ d2 +

(
l

2

)
(6.7)

∴ r =
d

2
+

l2

8d
, (6.8)

L

R + r
=

l

r
(6.9)

∴ L(d = 0)

L(d)
= 1/

(
1 +

R
d
2 +

l2

8d

)
. (6.10)

The deformation d of a plate whose both side are supported as modeled
in Fig. 6.26 ,

δ = 5Fl3/384EI, (6.11)

I = bh3/12, (6.12)

where F is the force which acts uniformly on the plane, I is a value called
moment of inertia of area which describes, E is the Young’s modulus which is
70.6×109N/m2 for aluminum A5052 we use. Calculating F from the density
of aluminum ρ = 2.68 g/cm3 and the constant of gravitational acceleration
g = 9.8 m/s2, and substituting L = 500mm , we obtain δ = 0.15 mm. As
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Figure 6.26: Schematic of deformation of a plate

this deformation occurs both direction of mirror, we take twice of this value:
d = 2δ = 0.29 mm.

We directly measure the deformation d at the center of mirror. We obtain
the upper bound, d < 0.5 mm. This is consistent with above calculation (i.e.
d = 0.29 mm) . We conservatively take d = 0.5 mm in our calculation.

Using R = 1030mm, L = 500 mm, and d < 0.5 mm in Eq. (6.7), we obtain
the loss of power by mirror deformation is 1− (L(d = 0)/L(d))2 < 1.63%.

94



6.5.2 The surface roughness of the mirror

If the plane has some irregularity, it causes a phase error of

δ = 2π
ε

λ
, (6.13)

where λ is the wavelength. The effect of this phase error is discussed by Ruze
[42, 43]. Assuming the deviation obeys Gaussian distribution of standard
deviation σδ, the effective power is degraded as

Peff = P0e
−σ2

δ , (6.14)

σδ = 2π
σε

λ
, (6.15)

where P0 is the total power if there is no phase error.
Roughness of the mirror surface of material is defined by using a pa-

rameter Ra as shown in Fig. 6.27. It is the average of the absolute value
of irregularity. If the height of surface is Z(x) at position x, it is defined

as Ra = 1
lr

∫ lr
0 |Z(x)|dx, where lr was the length where height is measured

along.
Assuming the Z(x) obeys Gaussian distribution 1√

2πσε
e−z2/(2σ2

ε), Ra can
be converted into σε,

Ra =

∫
1√
2πσ

e−x2/(2σ2
ε)|z|dz (6.16)

=
√

2/πσε. (6.17)

We measured the roughness on the surface using a surface roughness
measurement machine (SURFCOM, ACCRETECH, Fig. 6.28), as shown in
6.29. The printout of measurement result is shown in Fig. 6.30. We repeated
the measurement 4 times and used the worst value. We obtain

Peff = P0 × (1− 9.55× 10−10), (6.18)

which is negligible effect.

6.5.3 Alignment and the angular dispersion of HPCDM

The beam width of the horn antenna is θ1/2 = 12.52 ± 0.05 deg (Eq. 5.12).
The alignment precision of mirror and horn is within 0.03 deg. The plane
wave converted from HPCDM itself has angular dispersion of 10−3rad =
0.06deg, from its velocity dispersion β ∼ 10−3. These angular uncertainty
corresponds to the loss of 1− 2−0.03/(12.25/2) = 0.33% and 1− 2−0.06/(12.25/2) =
0.66%, respectively.
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Ra =
1
ℓr

∫ ℓr

0 |Z(x)|dx
Z(x)

Ra

x

ℓr

Figure 6.27: Definition of surface roughness parameter Ra. Heights of surface
at each location are described by Z(x). Ra is an average of absolute value of
distance from average.

6.5.4 Amplifier gain

We used linear model for gain variation as explained in Sec. 5.1. As we
selected out data by imposing the systematic bias lower than 7.7%, we con-
servatively assign the error from responsivity to be 7.7%. The ratio of gains
for each of two successive calibrations are summarized in Tab. 6.1.
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Figure 6.28: The surface roughness measurement machine we used

Figure 6.29: The measurement of surface roughness.
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Figure 6.30: The parameters and results of surface roughness measurement.
We measured the surface roughness 4 times and used the worst result, i.e.
the result of the largest Ra, shown here. The bottom is the plot of rough-
ness profile. The top part shows the measurement parameters. The length
measured along (evaluation length) is 2.40 mm, with measurement speed of
0.3 mm/s. A filter of two cutoffs, 2.5 µm and 0.8mm, are applied to obtain
the roughness profile. The shape of this filtering is of Gaussian form. The
measurement range for the surface roughness is ±400.0µm. The baseline is
linearly detrended. The middle part shows the roughness parameters ob-
tained from the measurement. The parameter Ra = 0.264µm is the surface
roughness parameter defined in Fig. 6.27. Rz = 1.611µm is the difference of
the maximum and the minimum point in the roughness profile. Pt = 2.080µm
is also difference of maximum and the minimum calculated for (instead of
roughness profile) primary profile which is obtained applying only the lower
cutoff.
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6.5.5 Possible fit biases

Pseudo Monte Carlo samples for the bias study

To study biasing from fitting procedure, we prepare Monte Carlo data, in
the following steps.

(1). For HPCDM signal, we generate a list of random frequencies according
to the distribution, assuming vE, ν0 as parameter.

(2). For random noise, we generate a list of random frequencies from uni-
form distribution.

(3). We make histogram of the frequencies by binning, using the binwidth
of 5kHz.

An example of the generated data is shown in Fig. 6.31. To examine the
biasing in estimation of signal power P , we specify a specific power Pgiven in
generating Monte Carlo data, and take the ratio to the fitting result Pfit. We
used Pgiven = 10000 throughout this biasing study. We generated noise of
100 counts per 1 kHz. We used 10 different seeds.
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Figure 6.31: The example of signal generated by Monte Carlo, at ν0 = 28.003
GHz. The generated frequencies are binned 5 kHz.

Effects of frequency bin

As shown in Fig. 6.32, finite frequency resolution of 5 kHz causes the uncer-
tainty. This effect is examined by changing ν0. We examined this effect by
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Figure 6.32: The shape of distributions, for different integration starting
point.

generating Monte Carlo data of slightly different peak positions. Then, we
fit them. Fig. 6.33 shows biases as a function of shift frequency. The P is
estimated least when the peak locates the boundary of bins, bias of −4.8%.
The green solid line in Fig. 6.32 corresponds it. We conservatively assign
this value as one of systematic errors.

Possible instability in frequency response

When frequency response of measurement is instable, the signal would be
smeared out and degrading the sensitivity to power P , hence deteriorating
sensitivity of the mixing angle χ.

We examined the effect of frequency instability by generating data by
Monte Carlo. We add a random variable of uniform distribution of width
fblur to the each frequency generated step (1) in 6.5.5. We follow steps (2)
(3) unchanged. Examples of blurred signal generated, for fblur =0.1, 0.3, 1.0,
3.0, 10.0, 30.0, 100.0 kHz, are shown in Fig. 6.35.

Fit results with changing seeds are shown in Fig 6.36. We already con-
firmed blur < 1 kHz in Sec. 5.3. Therefore, the bias is 0.69 ± 0.58%.
Their sum of quadrature is conservatively assigned as the systematic error,√
0.692 + 0.582 = 0.90.
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Figure 6.33: The bias in signal power estimation from peak position, relative
to 5kHz binning boundaries. The error bar is assigned by standard deviations
for 10 different random Monte Carlo seeds. The bias has the same period
with the bin width 5 kHz, and largest when the edge of the peak locates at
the middle of 5kHz bin boundary (the case shown green in Fig. 6.32) .

6.5.6 Error distribution

Distribution of error potentially causes bias. In particular, upper limit cal-
culation is sensitive to it. It is worthwhile to check if the distribution is
consistent with the standard Gaussian distribution. We use null sample for
this study of the effect of P/∆P distribution for confidence level. We have
2975 fit results P/∆P in each null sample. We calculate the 95 % percentile
for each null sample. We have 10 null samples by using 10 different seeds.
The results for each sample are shown in Fig. 6.37. We estimate the position
of 95% level to be (P∆/P )× (1.658± 0.037). This is consistent with Gaus-
sian case. We conservatively assign the systematic error with the ratio of the
estimation of this error 0.037 to the value Gaussian case 1.645, 0.037/1.6448
= 2.3 %. This systematic error is also incorporated in our upper limit calcu-
lation in chapter 7.
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Figure 6.34: The temperature inside the spectrum analyzer during the
HPCDM search. The colors corresponds to each run shown in Fig. 6.1.
The rate of temperature change is low by more than a magnitude compared
to that in frequency precision measurement (Fig. 5.21).

Figure 6.35: The smearing effect of HPCDM peak from blur of various size,
made by changing Monte Carlo signal data using a uniform distribution.
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Figure 6.36: The bias in signal power estimation from blur in frequency,
obtained by applying fitting procedure to the smeared shapes in Fig. 6.35.
The bottom plot is enlarged figure above. In case of fblur = 1 kHz, the bias
is 0.69 ± 0.58%. Their sum of quadrature is conservatively assigned as the
systematic error.
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Figure 6.37: The cumulative distribution for Gaussian distribution (black
solid line) and null sample results (green). The bottom is enlarged figure.
The 95 % percentile of null samples are consistent with the standard Gaussian
distribution within 2.3 % precision.
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6.5.7 Summary of systematic errors

The systematic error for power of HPCDM signal is summarized in Tab. 6.3.
Total uncertainty for the power is

√
10.82 + 1.82 = 10.9 %. Systematic error

for error distribution is 2.3 % (Sec. 6.5.6). In case of zero signal hypothesis,
we combine these systematic errors. It is 11.0 % for the calculation of 95 %
confidence level.

The systematic error for hidden photon mass mγ′ is negligible: it is 1.2
ppm, (i.e. 1.4× 10−10 eV) in our scan range.

Source of error Error [%] Loss [%]
Mirror flatness 1.6

alignment 0.33
DM angular dispersion 0.67
roughness 9.6×10−8

reflectivity 0.079
Horn antenna (Aeff) 5.7
Responsivity (G) 7.7
Frequency response 0.90
Binning effects and fit bias 4.8
Total 10.8 1.8

Table 6.3: Summary of systematic biases for signal power, which affects the
sensitivity for HPCDM power P .
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Chapter 7

Results and discussion

7.1 The distribution of fit result and rescale
factors

As we checked the validity of analysis and sanity of data, we unblinded the
data, i.e. conducted fitting procedure described in Sec. 6.2.1. for each of 54
subruns, then combined them. An example of fit for a subrun is shown in
Fig. 7.1. We combined results of 54 subruns to obtain final search results. We
fit the distribution of P/∆P by Gaussian for 9 runs using bins ≥ 10 counts.
The example for run 1 is shown in Fig. 7.2. The results for 9 runs are
summarized in Fig. 7.3. The result of standard deviation σ = 1.047± 0.005
indicates the under estimation of error.

The data has drift component. Figure 7.4 shows examples of fit to de-
termine the drift component of subrun. The obtained parameters for all of
54 subruns are summarized in Fig. 7.5. This suggests α ∼ 1.5 and knee po-
sition 10−6–10−5 Hz−1, consistent with 5% underestimation of error by drift
component (the middle panel of Fig.6.23).

This underestimation of 5% is corrected by the weighted average proce-
dure. Figure 7.6 shows the rescaling factor S. There exist a region where 9
data is combined, one where 18 data is combined, and one where 27 data is
combined. The distributions of S is common within each of these regions,
and shown in Fig. 7.7–7.9.
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Figure 7.1: An fitting result for subrun 1 (run 1, frequency region 1). The
top panel shows the zoom up around fitting region, and the bottom panel
shows the position of fit range in the entire subrun 1 data.
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Figure 7.2: The distribution of P/∆P of run 1 (subrun 1 to 6). Blue his-
togram shows the data, and the red solid line shows the result of fit by
Gaussian using bins with ≥ 10 counts. The mean µ = 0.00± 0.01 is consis-
tent with zero, whereas the standard deviation σ = 1.04± 0.01 is larger than
one.
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Figure 7.3: The distribution of P/∆P for each of 9 runs. The mean µ =
0.002 ± 0.004 is consistent with zero, whereas the standard deviation σ =
1.047± 0.005 is larger than one by 5 %, indicating underestimation of error.
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Figure 7.4: Examples of fit result of subruns to obtain the parameters of drift
component. The blue curve shows the data of subrun in Fourier space, and
Green shows averaged curve to be smooth. The red curve shows fit result.

Figure 7.5: The distribution of parameters of drift component for 54 subruns.
The region with small error suggests α ∼ 1.5 and knee position 10−6–10−5

Hz−1, consistent with 5% underestimation of error by drift component (the
middle panel of Fig.6.23).
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Figure 7.6: The rescaling factors, with different color corresponding different
number of subruns to be combined (see Fig. 4.3).

Figure 7.7: The distribution of rescaling factor S (blue histogram) in the
region where 9 results are combined (blue in Fig. 7.6). The transparent
histogram shows the rescaling factor without clipping at 1 as in Fig. 6.5.
The solid curves shows the chi distributions. The curve with 1.05 % (red,
5% under estimation of error) well describes the distribution.
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Figure 7.8: The distribution of rescaling factor S (blue histogram) in the
region where 18 results are combined (green in Fig. 7.6). The transparent
histogram shows the rescaling factor without clipping at 1 as in Fig. 6.5.
The solid curves shows the chi distributions. The curve with 1.05 % (red,
5% under estimation of error) well describes the distribution.

Figure 7.9: The distribution of rescaling factor S (blue histogram) in the
region where 27 results are combined (red in Fig. 7.6). The transparent
histogram shows the rescaling factor without clipping at 1 as in Fig. 6.5.
The solid curves shows the chi distributions. The curve with 1.05 % (red,
5% under estimation of error) well describes the distribution.
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7.2 Search results

The search results are shown in Fig. 7.10. No significant excess is found.
Figure 7.11 shows P/∆P distribution. This is well consistent with the Gaus-
sian distribution as confirmed in the null tests. Consistency with the null
tests are also shown in Fig. 7.12.

Local p-values for seven samples in 2752 frequency bins exceed 3σ while
the expectation assuming Gaussian distribution is 3.71 samples: 3.03σ, 3.05σ,
3.21σ, 3.46σ, 3.69σ, 3.70σ, 3.88σ for each. They are shown in Fig. 7.14–
7.18. The count obeys Possion statistics. The survival function of Poisson
distribution with λ = 3.71 gives a probability for 7 events or more to exceed
(PTE) 3σ,

∞∑

k=7

λke−k/k! = 0.0359. (7.1)

This is at most 2.10σ significance for the case of null signal. For the sample
with the largest local p-value (3.88σ i.e., plocal = 7.67× 10−5), PTE is

1− (1− plocal)
2752 = 0.19,

which corresponds to 0.88σ significance. We also check the P/∆P distribu-
tion is consistent with null sample results(Fig. 7.12 and 7.13). We confirm
that the error distribution is consistent with the analysis validation of the null
tests. We conclude there is no significant excess from zero-signal hypothesis.

7.3 Upper limits

As described in 2.4.1, the sensitivity to χ is written in following formula,

χsens = 4.5× 10−14

(
PDM

10−23W

) 1
2
(
0.3GeV/cm3

ρHP

) 1
2
(
1m2

Aeff

) 1
2

(√
2/3

α

)
.

(7.2)

We assume HPCDM comprises the entire part of dark matter (ρHP = ρDM).
We use value ρCDM,local = 0.39 GeV/cm3 as quoted in Chap. 2.1. The calibra-
tion in 5.2.4 gives the effective area, Aeff = 1.48× 10−3m2. The evolution of
the direction of HPCDM field is parameterized by α (see 2.4.1). We assume
the random direction, in which α =

√
2/3. In case of no systematic effect,

we would set the 95% confidence upper limit for the power P of HPCDM by

Plimit = max(0, P ) + 1.65∆P. (7.3)

113



Figure 7.10: The combined results of 54 sub-runs. No significant power is
observed in 2752 frequency bins. The level of ∆P reflects of difference of
statistics from overwrapping of frequency range (Fig. 4.3)

We have to multiply the power of factor two because the antenna receives
only one polarizations of two,

PDM = 2× Plimit. (7.4)

We set 95 % confidence level limits for the mixing angle χ, as shown in Fig.
7.26 and 7.27). Here, we incorporate the systematic uncertainty of 11 %
which is summarized in which is summarized in Sec. 6.5.7. The limits are
χ < 1.54 – 3.9 × 10−10 at the mass range between 115.79 µeV and 115.84
µeV.

7.4 Discussion and future prospects

The low noise level of 200 K effective thermal load enabled us to reach an
unprecedented sensitivity, despite small effective area and short measurement
time. This was realized by combining techniques for low noise instruments
for astronomical observation, and also by the setup of using the blue sky as
background.

As prospects, larger Aeff will greatly increase the available parameter
space. By using a optics of effective area 1 m2 would increase sensitivity
to χ by a factor of (1m2 / 1.48 × 10−3m2)

1
2 = 26. Broadening the search

frequency span from 14 MHz to 10 GHz diminishes the sensitivity by a factor
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Figure 7.11: The P/∆P distribution for fit results in Fig. 7.10. It is fitted
with Gaussian distributionN(µ, σ) using bins with≥ 10 counts, and obtained
results is consistent with standard Gaussian distribution: µ, σ = −0.01 ±
0.02, 1.00± 0.02.

of (10GHz/14MHz)1/4 = 2.9. Together we can search a 10 GHz span, without
changing total measurement time, with sensitivity increase of a factor 8.9,
as shown in Fig. 7.28. We can extend the mass region by changing the
specifications for the detection frequency. For example, a cassegrain reflector
antennas of diameter 1.22 m is commercially available for 18 – 110 GHz[44].
We, however, have to study the effect of near field effect for this case. for
diameter ∼ 1 m, the far field condition requires the distance between mirror
and the antenna d > 2D2/λ = 200m, which is not realistic. Instead we can
use a lens of 30 cm diameter (which is also commercially available), for which
the far field condition requires d > 2D2/λ = 18 m, which is easier to realize.
The similar experimental approach will cover up to 10−3 eV region in future.
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Figure 7.12: The comparison of P/∆P for null sample and data. In Sec.
6.3.1 we observed that, the P/∆P distribution from null sample is consistent
with the standard Gaussian distribution. We check the difference between
the distribution for data and null sample. We see no apparent discrepancy
in the two distributions.
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Figure 7.13: The same cumulative distribution of Fig. 6.37, but also the
cumulative distribution of the result is shown in blue. The 95% percentile
is consistent with Gaussian case (black), within the error estimated with
Gaussian (red). We can see the 95 % percentile is consistent with the result
for null sample result. They are zoomed up in Fig. 7.15–7.18.
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Figure 7.14: The distribution of local p-values. The position of 7 peaks
exceeding 3σ significance is also designated.

Figure 7.15: The peak #1 – 3 of 7 peaks exceeding 3σ (green circle). These
are adjacent to each other.
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Figure 7.16: The peak #4 of 7 peaks exceeding 3σ (green circle).

Figure 7.17: The peak #5 and #6 of 7 peaks exceeding 3σ (green circle).
These are adjacent to each other.
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Figure 7.18: The peak #7 of 7 peaks exceeding 3σ (green circle).
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Figure 7.19: The fit results for #1 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
The error bar for combined results is rescaled by S = 1.34 (the error bar
before rescaling is shown in black).
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Figure 7.20: The fit results for #2 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
The error bar for combined results is rescaled by S = 1.22 (the error bar
before rescaling is shown in black).
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Figure 7.21: The fit results for #3 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
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Figure 7.22: The fit results for #4 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
The error bar for combined results is rescaled by S = 1.14 (the error bar
before rescaling is shown in black).
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Figure 7.23: The fit results for #5 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
The error bar for combined results is rescaled by S = 1.06 (the error bar
before rescaling is shown in black).
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Figure 7.24: The fit results for #6 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
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Figure 7.25: The fit results for #7 of 7 peaks exceeding 3σ. The top panel
shows the first three subrun data in this frequency region (dot) and fitting
results (solid line, the same color as data). The middle panel shows all subrun
data in gray, and fit results in colored solid lines. The bottom panel shows
fit results P , ∆P for each subrun in blue dots, and combined results in red.
The error bar for combined results is rescaled by S = 1.08 (the error bar
before rescaling is shown in black).
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Figure 7.26: The result described in this thesis.
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Figure 7.27: The result described in this thesis.
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Figure 7.28: Expected sensitivity (black solid, hatched as \\\ ), assuming
with optics of Aeff = 1m2, with the same measurement time O(1 day): χ =
1.73× 10−11 in mass range 82.7µeV – 124.1 µ eV.
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Chapter 8

Conclusions

We search for the hidden photon cold dark matter at the mass region around
10−4 eV: 115.79 µeV – 115.84 µeV. This mass range corresponds to 27.998
– 28.012 GHz radio waves for the conversion photon on the surface of the
aluminum mirror. The experimental sensitivity to the mixing parameter χ
is improved with the fourth root of observation time. It is also improved
with the square root of the system temperature of the instruments. We
employ the low system temperature setup, and we achieve the sensitivity
to search HPCDM below the cosmological constraints. The combination
of the cryogenic receiver and the low thermal radiation condition under the
atmospheric radiation provides us the low system temperature of 200 K which
is about the half of past experiment in close mass region. In data sets of two
days with 26 cm2 aperture, we did not detect HPCDM, and we set the upper
limits: χ < 1.5–3.9×10−10 at 95% confidence level. This is the most stringent
limit to date at this mass region. Our results also give a prospects that the
similar instruments with large aperture (∼ 1m2) improve the sensitivity for χ
approximately one order of magnitude. It is also possible to extend the mass
region of the search. We establish the experimental method for the particle
physics based on the technologies for the radio-astronomy.
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