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Abstract

This dissertation is dedicated to experimental studies on collective motion of
swimming bacteria from the viewpoint of nonequilibrium statistical physics. Col-
lective motion of self-propelled elements has fascinating properties that are often
different from those of orientationally-ordered equilibrium systems due to its in-
trinsic nonequilibrium nature. To further understand such properties, we explore
emergent order and fluctuations in two major classes of collective motion: the Vicsek
universality class and active turbulence.

First, we study the collective dynamics of elongated microswimmers in a very
thin fluid layer between two walls by devising long, filamentous, non-tumbling bac-
teria. The strong confinement and the high aspect ratio of cells induce weak nematic
alignment upon collision, which, for large enough density of cells, gives rise to global
nematic order. This homogeneous but highly-fluctuating phase, observed on the
largest experimentally-accessible scale of millimeters, exhibits the properties pre-
dicted by standard models for collective motion, especially the Vicsek-style model
of polar particles with nematic alignment: true long-range nematic order and non-
trivial giant number fluctuations. Therefore, our experimental system falls into the
Vicsek universality class, and gives the first experimental example of the Toner-Tu-
Ramaswamy phases.

Secondly, we investigate active turbulence formed by swimming bacteria in dense
suspensions. We explore how order emerges as a result of the interplay between bac-
terial turbulence and periodic structures. When bulk unconstrained bacterial turbu-
lence encounters rectangular lattices of pillars, it self-organizes in vortex lattices with
antiferromagnetic order. The antiferromagnetic order is the strongest and the vor-
tices are the most stabilized in the structures with the periodicity comparable with
a correlation length of unconstrained bacterial turbulence, which can be interpreted
as a sort of resonance. The obtained results highlight the existence of characteristic
length scale in bacterial turbulence and its importance for the emergence of order
out of chaotic and fluctuating bacterial turbulence.
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Chapter 1

General introduction

1.1 Active matter physics

Self-propelled objects and their collective motion are so ubiquitous [1]. Flocks of
birds fly coherently and sometimes exhibit dynamical deformations as if they were
single huge creatures. Schools of fish spontaneously form vortices as we can see in
aquariums. Herds of sheep escape from sheep dogs as if they were large ‘droplets’
with consciousness [2]. On a much larger scale, wildebeest migration spans more
than kilometers. When we turn our eyes into the microscopic world, we can find
bacteria swarming in their colonies [3]. These fascinating phenomena have captured
scientists’ imagination.

What is ‘self-propulsion’? We need to define this term before moving on to
physical arguments. Self-propelled objects are objects whose directions of motion
are determined not solely by any external fields but by their internal or hidden
degrees of freedom such as their polarities, their shapes, and their internal chemical
signaling1. It is also important to note that as a natural requirement of their motility
each self-propelled object converts some kind of energy source into kinetic energy.

To better understand collective dynamics of self-propelled elements, many arti-
ficial non-living self-propelled particles have been devised, such as nm-scale biofil-
aments driven by molecular motors [4–6], µm-scale colloids consuming chemical
[7, 8], thermal [9], or electric energy [10–12], and mm-scale shaken granular materi-
als [13–15]. These artificial systems are more controllable than living systems and
have provided us insight into collective dynamics of motile elements. Thus we now
have a wide range of collective phenomena of self-propelled objects, from nano-scales
to meter-scale or even kilometer-scales.

From the viewpoint of statistical physics, collective motion of self-propelled ele-
ments is a fascinating subject not only because of its ubiquity and possible universal-
ity but because it is an intrinsically nonequilibrium phenomenon. Thermodynamics

1One might oppose to this definition by raising chemotaxis and collective motion. In these
cases, the directions of motion are indeed ‘modified’ by the external chemical gradient or by their
neighbors. However, each self-propelled object can still move at a certain direction even without
such external fields, and thus these are upper-level phenomena exhibited by self-propelled objects
in response to the external fields.



2 Chapter 1. General introduction

and statistical physics, which deal with macroscopic systems composed of micro-
scopic elements, have had a great success in describing passive equilibrium systems.
On the other hand, humankind has not yet succeeded in understanding nonequi-
librium systems comprehensively. There is indeed some progress in fundamental
theories on nonequilibrium states, but they are only applicable in restricted regimes
such as linear response regime close to equilibrium, steady states, and fluctuating
small systems where stochastic thermodynamics can be applied.

Typical nonequilibrium systems that physicists have ever tried to understand
were (a) driven out of equilibrium just by boundary conditions or external fields,
or (b) relaxing extremely slowly to equilibrium: Fluid turbulence and convection
are driven by shear, pressure gradient, or temperature gradient set at boundaries;
electrophoresis and electric conduction are triggered by an electric field applied at
boundaries; glass and granular systems have enormously long relaxation time that
cannot be achieved in realistic time scales. In these systems, energy is injected
at boundaries or just as an initial condition, and then it eventually dissipates in
bulk. On the contrary, in the case of collective motion of self-propelled elements,
both energy injection and dissipation take place in bulk. Each element transforms
some sort of energy into kinetic energy, which means energy injection occurs at the
smallest scale of the system. This injected energy is then transferred toward larger
spatial scale through interactions among self-propelled objects and eventually dis-
sipate again in bulk, leading to the emergence of spectacular dissipative structures.
As such, collective motion of self-propelled elements is one of the most difficult but
interesting problems in nonequilibrium statistical physics.

The term ‘active matter’ is frequently used for denoting such a field of study, but
its definition is rather obscure compared with self-propulsion. This word is often
used for describing a group of self-propelled elements, although some people call a
single self-propelled object, a single living organism, and even a single cell by active
matter. Hence ‘active matter’ can be recognized as a hypernym of self-propelled
objects. Anyhow, there is no doubt that endeavor to understand collective motion
of self-propelled objects is at the heart of ‘active matter physics’.

At the end of this section, we would like to mention the role of active matter
physics in relation to other disciplines in biological/bio-related science. What is life?
What are principles behind biological activities? Answering these crucial questions
is one of the ultimate goals in science. Biological activities range in vast length
scales, and scientists have been involved in these phenomena from microscale to
macroscale: gene expression, molecular motors, cytoplasmic streaming, cell motility,
development, morphogenesis, ecosystem, etc. Not only biologists but also physicists
have been working on these questions. Along this line, active matter physics can be
recognized as a new discipline tackling mesoscale biological/biomimetic activities to
connect knowledge obtained in other fields.
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1.2 Exploration of universality in collective mo-

tion

When we start to think about collective motion from the viewpoint of statistical
physics, simple but crucial question comes to us: How and why can birds flock
together, even though each bird cannot see the whole flock from inside? Of course,
the same question can be raised for other systems such as wildebeests, fish and
bacteria. In other words, how can such coherent collective motion of self-propelled
elements emerge from their local short-ranged interactions? This reminds us of basic
mathematical models in equilibrium statistical physics such as the Ising model and
the XY model, and of their great capabilities of capturing universality.

With the success of mathematical models in equilibrium systems in mind, in 1995,
Tamás Vicsek et al. devised a flying XY model—now called the Vicsek model— in
which each spin moves to its own spin direction [16]. They demonstrated a transition
from a disordered random state to a highly ordered state even in two dimensions
(2D). Only four months after Vicsek’s paper came out, John Toner and Yuhai Tu
published their seminal paper [17] proving that this ordered state have true long-
range order which cannot be achieved in equilibrium 2D systems as stated in the
Mermin-Wagner theorem [18]. As such, this transition is a strikingly novel type of
nonequilibrium phase transition that physicists have never thought about. It has
attracted much attention from physicists and motivated them to search for possibly
universal properties of collective motion.

In these two decades after the Vicsek model was introduced, following the seminal
works by Toner, Tu, Ramaswamy et al. [13, 17, 19–21], evidence for such universal-
ity has been indeed provided by many theoretical studies and large scale numerical
simulations on simple flocking models where orientationally-ordered flocking states
emerge as a result of competition between local alignment and noise [22–27]. It is
now understood that the nonequilibrium phase transition from incoherent random
motion to orientationally-ordered collective motion in such models is described by a
phase-separation between a disordered ‘gas’ state and an orientationally-ordered ‘liq-
uid’ state separated by a coexistence phase whose nature depends on the symmetries
of the system [28,29]. This homogeneous but highly fluctuating liquid phase observed
in such models, which we call the Toner-Tu-Ramaswamy (TTR) phase hereafter, has
abundant new physics. It is characterized by unique properties often distinctively
different from those of equilibrium orientationally-ordered phases as seen in the clas-
sical XY model and nematic liquid crystals. As we have already mentioned above,
under a certain condition it can develop true long-range order even in 2D, which is
prohibited in equilibrium systems by the Mermin-Wagner theorem [18]. Among all
the theoretical predictions, the most striking one is anomalously-large density fluc-
tuations, or ‘giant number fluctuations’ (GNF), generated from both the algebraic
correlations in this spontaneously symmetry broken phase and the crucial coupling
between the orientational order and the density field [13, 17, 19–21]. Because GNF
represent fundamental mathematical properties inherent in the TTR phase, GNF
are now considered and treated as a hallmark of collective motion. These simple



4 Chapter 1. General introduction

flocking models exhibiting the TTR phase are now considered to constitute ‘the
Vicsek universality class’.

Although series of theoretical and numerical works have clarified the properties of
the TTR phase and the Vicsek universality class, no experiments have demonstrated
such universality in a fully convincing way due to experimental difficulties and many
pitfalls. Due to relatively easy experimental accessibility of number fluctuations,
many experiments have reported ‘GNF’, although they are not their main claims.
Several experimental systems were elaborated and employed for detecting ‘GNF’,
such as biofilaments driven by molecular motors [6], colloids consuming electric
energy [12], shaken granular materials [14,15,30], monolayers of fibroblast cells [31],
and common bacteria [3, 32]. However, none of these experiments could exhibit
the TTR phase with GNF, as we will explain in detail in Section 2.6. The ‘GNF’
reported there were measured out of the TTR phase where necessary conditions for
discussing GNF in the sense of the TTR phase were overlooked, and were originated
from uninteresting clustering or boundary effects. Hence some physicists still believe
that GNF as predicted by Toner, Tu, Ramaswamy et al. can trivially be obtained in
active matter systems, which is a widespread troublesome misconception on GNF.

In actual experimental systems on microswimmers such as usual bacteria and self-
propelled colloids, what we observe instead of the TTR phase are spatio-temporally
chaotic phases with short-range orientational order, which are now termed ‘ac-
tive turbulence’ or ‘mesoscopic turbulence’ in analogy with classical fluid turbu-
lence [32–37]. This another class of collective motion stems from hydrodynamic
flow created by these microswimmers that destabilizes TTR-like globally ordered
states or aligned configuration of microswimmers, whose effect was not present in
the simple flocking models [38–42]. Thanks to experimental accessibility of bacterial
turbulence, or active turbulence in bacterial suspensions, many experimental works
and corresponding theoretical modeling were performed, and active turbulence is
now well described by hydrodynamic equations [32, 37, 43]. Although active tur-
bulence cannot exhibit global order as seen in the Vicsek universality class, recent
experiments have demonstrated that we can still obtain a kind of ‘order’ in active
turbulence as a result of the interplay between active turbulence and boundaries:
directed transport of a wedge [44], directed rotation of microscopic gears [45], spon-
taneous spiral vortex formation under circular confinement [46, 47], ferromagnetic
and antiferromagnetic vortex lattice formation [48], directed collective motion under
channel confinement [49], etc. How can we obtain such ‘order’ out of fluctuating
chaotic regime? The study on active turbulence is evolving into the next stage.

In this thesis, by utilizing suspensions of swimming bacteria as model active mat-
ter systems, we present the experimental studies on two major classes of collective
motion mentioned above: the homogeneous but highly fluctuating orientationally-
ordered phase (the TTR phase) and active turbulence. Our experimental system
with swimming filamentous bacteria in quasi-two-dimensions falls into the Vicsek
universality class, which is the first unambiguous experimental realization of the
TTR phase [50]. This observation gives us deep insight into what is necessary for
the emergence of the TTR phase. The other experiment on active turbulence treats
the interplay between bacterial turbulence and periodic obstacles [51]. We obtain a
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resonant state at certain periodicity, which gives us an explicit answer to the ques-
tion on what happens when bulk active turbulence meets obstacles. The obtained
results highlight the existence of characteristic length scale in bacterial turbulence
and its importance for the emergence of order out of chaos. Through these stud-
ies, we address the state-of-the-art understanding of the emergent order and the
universality in active matter systems.

1.3 Organization of the thesis

The following of this thesis is divided into two parts. The first part, Chapter 2
and Chapter 3, focuses on the Toner-Tu-Ramaswamy phases of collective motion of
self-propelled elements. The second part, Chapter 4 and Chapter 5, describes the
dynamics of bacterial turbulence.

In Chapter 2, we review existing theoretical and numerical studies on collective
motion of self-propelled elements. Specifically, we introduce Vicsek-style models and
corresponding hydrodynamic theories. The outcomes of these numerical and theo-
retical studied suggest universality in collective motion. At the end of this chapter,
we summarize experimental studies that have strived to find such universality, and
point out the crucial discrepancies between those experimental works and the theo-
retical/numerical studies.

Being aware of such problems, we present our experimental study on collec-
tive motion of filamentous bacteria in Chapter 3. Our experimental results clearly
demonstrate that this system falls into the Vicsek universality class. This gives the
first experimental realization of the Toner-Tu-Ramaswamy phases, which have been
theoretically predicted and studies in depth but have never been observed experi-
mentally due to many pitfalls. Our findings give insights on what is necessary for
the emergence of the Toner-Tu-Ramaswamy phases in real experimental systems,
and provide clues for future theoretical/experimental development.

From Chapter 4, we move on to investigate active turbulence, in particular,
bacterial turbulence. In Chapter 4, we review basic properties of bacterial turbulence
and existing experimental works. Although bacterial turbulence exhibits chaotic
behavior, ordered coherent motion was found under confinement. However, such
confined experiments could not be run for a long time, and it remained elusive what
happens when unconstrained bacterial turbulence encounters some structures.

In Chapter 5, we present our experimental study on resonance between bacte-
rial turbulence and periodic structures. We explore how order emerges as a result
of the interplay between them by devising microarrays of pillar lattices in which
we can simultaneously measure behavior of bacterial turbulence both in the bulk
and in the periodic structures with various periodicities. At the resonant periodic-
ity, bacterial turbulence self-organize in highly stabilized antiferromagnetic vortex
lattices. The obtained results highlight the existence of characteristic length scale
and its importance for the emergence of order out of fluctuating chaotic bacterial
turbulence.

Finally, in Chapter 6, we aim to clarify the significance and the implications of
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our studies. We conclude by mentioning possible future directions of active matter
physics.
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Chapter 2

Standard models on collective
motion

In this chapter, we review previous theoretical and numerical studies on collective
motion of self-propelled elements. Especially, we review standard models on collec-
tive motion: Vicsek-style models and corresponding hydrodynamic theories.

2.1 Overview of standard models

If generic and robust features of active matter systems exist, they should also be
present in the emergent phenomena observed in simple models. We expect, from the
statistical physics point of view, that coarse-grained simple models possess univer-
sality regardless of details of actual flocks such as interaction rules. In this spirit, in
1995, Tamás Vicsek et al. devised a flying XY model, which is now called “the Vic-
sek model”. Later theoretical studies and large-scale numerical simulations on this
simple model have revealed its fundamental properties, most of which are shared
by its variant models with different symmetries. Hence the Vicsek model is now
regarded as the most basic model on collective motion.

In the following of this chapter, we introduce three basic classes of models
of collective motion: the Vicsek model, active nematics, and self-propelled rods.
These model can be classified by symmetries of motility and interaction of their
self-propelled elements as shown in Table. 2.1. We also introduce corresponding hy-
drodynamic theories. These continuum descriptions are analytically tractable and
give us clear and intuitive understandings of collective motion.

Table 2.1: Classification of models of collective motion

the Vicsek model active nematics self-propelled rods

motility polar apolar polar
interaction ferromagnetic nematic nematic
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All of the models and the hydrodynamic descriptions exhibit the same, or at
least similar, phenomenology and we can regard that they constitute a kind of
nonequilibrium universality class, ‘the Vicsek universality class’.

2.2 The original Vicsek model

2.2.1 Definition

The Vicsek model is a discrete-time stochastic model on point-like overdamped self-
propelled particles with constant speed v0 and with short-ranged interaction. Its
dynamics in two spatial dimensions is given as1,

Vicsek model� �
θt+1
j = arg

∑
k∼j

eiθ
t
k + ηtj, (2.1)

rt+1
j = rt

j + v0eθt+1
j

. (2.2)� �
Here the single time step of the dynamics is normalized as 1, rt

j and θtj represent the
position and the direction of j-th particle at time t respectively, eθt+1

j
is a unit vector

directing the θt+1
j -direction, arg is a function returning the argument of a complex

number, ηtj is a white noise uniformly distributed on [−η/2,+η/2] with the strength
η (> 0), and

∑
k∼j indicate a summation over the particles within the interaction

radius R from the j-th particle including itself. Because it is easy to generalize
its dynamics to higher spatial dimensions and experimentally two dimensional (2D)
models are more realistic, we hereafter restrict ourselves to treat two-dimensional
models in a L × L plane with periodic boundary conditions otherwise explicitly
stated.

The schematic picture of this dynamics is depicted in Fig. 2.1. At each time step,

Figure 2.1: Schematic figure of the dynamics of the Vicsek model. Each particle
tries to reorient itself and moves to the average direction of their neighbors closer
than a certain interaction radius R. Although in this figure only the red particle is
evolving in time, in the actual algorithm all particles are updated simultaneously.

1In the definition here, θtj is updated prior to the update of rtj . It is known that the Vicsek
model is robust against the order of updating these two variables.
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each particle looks around its neighbors, and then aligns and moves to the average
direction. However, there exist noise because each particle cannot exactly calculate
the average direction or some intrinsic/extrinsic fluctuations are present. Therefore,
in this model, alignment competes with noise just like ferromagnetic interaction
competes with thermal fluctuations in the Ising model.

From the next subsection, we will look at abundant properties of the Vicsek
model.

2.2.2 Physical properties

Order-disorder phase transition

Which parameters play fundamental roles when we think about the behavior of the
Vicsek model? The Vicsek model have following parameters: the self-propulsion
speed v0, the interaction radius R, the noise strength η, and the mean number
density of particles ρ0 := N/L2, where N is the number of particles and L is the
linear size of the system. In the case of v0 > R, some particles pass by each other
without any interaction, which is unrealistic and unphysical. Hence we have to take
v0 ≤ R, and it has been verified that under this condition the choice of v0 and R
does not affect macroscopic results. So we can assume, for example, R = 1 and
v0 ≃ 1/2 without loss of generality. Therefore, remaining significant parameters in
the Vicsek model are η and ρ0. The noise strength η and the number density ρ in the
Vicsek model corresponds to temperature and strength of interaction in equilibrium
models such as the Ising model and the classical XY model.

As a result of the competition between alignment and noise, the Vicsek model
exhibits an order-disorder phase transition as depicted in Fig. 2.2 and Fig. 2.3. At
sufficiently high noise strength or at low number density of particles (i.e. weak
interactions), the system of self-propelled particles is disordered as a whole with
no preferred directions. As we decrease the noise strength or increase the number
density, it transits to an ordered flocking state in which the whole system migrates
toward a certain direction. In other words, continuous rotational symmetry gets
broken in this phase transition. This ordered phase, after waiting for a sufficiently
long time before it reaches steady states, is spatially homogeneous without any
clusters2.

At the transitional region, there exists a coexistence phase. The ordered region
appears in the disordered phase as band structures. These bands span orthogonally
to the average direction of the particles inside the bands, and therefore the bands
propagates in the system. These banding structures are called ‘Vicsek wave’.

The phase boundary at the onset of the order (the black solid line in Fig. 2.3)
can be approximated by estimating the mean free path lf and the persistence length
lp of self-propelled particles. In d-dimensional systems, the mean free path, or the
mean interparticle distance is lf ∼ 1/ρ0

1/d. The persistence length of each particle
should be inversely proportional to the noise strength η, thus we obtain lp ∼ 1/η.

2Note that, if you do not wait until the system relaxes to steady states, there exist apparent
clusters.
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: large
: small

: small
: large

disordred phase ordered phaseVicsek wave

Figure 2.2: Phases of the Vicsek model. As we decrease the noise strength η or
increase the number density of particles ρ0, we observe a phase transition from the
disordered phase to the ordered phase. At the transitional region, coexistence of
the ordered region and the disordered region is observed, which indicates the first
order nature of this phase transition. In this coexistence phase, band structures are
formed orthogonal to the average direction of the particles in the ordered region.
Hence this bands propagate and they are called ‘Vicsek wave’. In each phase, only
some fractions of particles are shown for clarity. Figures of each phase are kindly
provided by Dr. Hugues Chaté.

At the transition point, these two length scales are expected to become comparable
and thus from lf ∼ lp we obtain,

η ∼ ρ0
1/d. (2.3)

Therefore, when d = 2, the phase boundary between the disordered and the ordered
phases scales as η ∼ √

ρ0. This rough estimation was confirmed to be valid by the
numerical simulations [52].

The phase transition can be quantified by the polar order parameter,

φt =
1

N

∣∣∣∣∣
N∑
j=1

eiθ
t
j

∣∣∣∣∣ (2.4)

which is defined in the same way as the magnetization in the classical XY model.
This φt represents the average direction of motion of the system. Because φt fluc-
tuates in time, the temporally averaged value ⟨φ⟩t in steady states can capture how
ordered the system is. It is important to note that, although ⟨φ⟩t in the disordered
phase is 0 in a large system size limit, in a finite system size with N particles ⟨φ⟩t
has positive values even in the disordered phase and it scales as ⟨φ⟩t ∝ 1/

√
N due

to the law of large numbers.
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disordered

homogeneously ordered

Vicsek wave

Figure 2.3: Schematic figure of a phase diagram of the Vicsek model. Depending
on the values of the noise strength η and the mean number density ρ0, the Vicsek
model takes the disordered phase, the Vicsek wave, or the ordered phase. The
phase boundary at the onset of the order (black solid line) is almost η ∼ √

ρ0. From
the arguments at the hydrodynamic description level, the black solid line and the
red dashed line represent the linear stability lines where the ordered state and the
disordered state gets unstable respectively.

Historically speaking, the Vicsek wave phase was not discovered for a while
because the limited system size of earlier simulations had obscured the transitional
region. When Vicsek introduced his model in 1995, he regarded the phase transition
as being second-order because the accessible system size was small [16]. However,
as depicted in Fig. 2.4, later large-scale simulations with finite size scaling and with
analysis using the Binder cumulant have clearly demonstrated that the transition is
first-order (discontinuous) [23,52] 3.

Giant number fluctuations (GNF)

Giant number fluctuations (GNF) are now regarded as a landmark property of the
collective motion that belongs to the Vicsek universality class, because it reflects
fundamental mathematical properties of the ordered phase: breaking of rotational
symmetry and coupling between orientation and density. GNF were first predicted
in seminal works on hydrodynamic theories by John Toner, Yuhai Tu, Sriram Ra-
maswamy et al., which we will detail later [13,17,19–21].

The definition of the number fluctuations is the following. Let us consider the
number of the observed particles N(t) inside a certain observation box at time t.
This N(t) is a stochastic variable. From the time series of N(t), we can calculate
its mean value ⟨N⟩t and its standard deviation ∆N =

√
⟨(N − ⟨N⟩t)2⟩t, where ⟨ ⟩t

denotes temporal average over sufficiently long period4. This standard deviation

3In the first Vicsek’s paper [16], the number of simulated particles was 104 at the largest. On
the other hand, in [52], the number of particles was more than 5× 105.

4The period T should be long enough so that the N(t) and N(t+ T ) are decorrelated.
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transition point

system size

: large

: small

Figure 2.4: Schematic figure of behavior of ⟨φ⟩t as a function of noise intensity η
at the transition point become discontinuous as we increase the system size. Such
discontinuity has been quantified by using the Binder cumulant [52].

∆N is called ‘number fluctuations’. In steady states of ergodic systems, which we
usually discuss, temporal averages taken above can be replaced by spatial average.
However, temporal averages are often experimentally more accessible than spatial
averages due to experimental constraints such as inhomogeneity of the setup, limited
observation field of view, etc. Hence here we introduce number fluctuations by using
temporal averages, and hereafter we omit the subscript t.

Both ⟨N⟩t and ∆N increase with increasing the observation box size as depicted
in Fig. 2.5. In a large box size limit, ∆N scales asymptotically as ∆N ∝ ⟨N⟩α.
In equilibrium systems and random systems, the central limit theorem assures that
the fluctuations are ‘normal’ with the exponent α = 0.5. On the other hand, the
homogeneous ordered collective phase of the Vicsek model exhibits ‘giant number
fluctuations (GNF)’ with the exponent α > 0.5. Large scale simulations indicate
that the exponent is close to 0.8 for the Vicsek model, whose value is also derived
analytically from the hydrodynamic theory by Toner and Tu under some approxi-
mations [17, 19–21, 53]. Of course, in the disordered phase of the Vicsek model, we
obtain normal fluctuations with α = 0.5.

Physical and intuitive interpretation of GNF

From the physical and mathematical point of view, GNF in the ordered phase of
the Vicsek model are manifestation of spontaneous symmetry breaking of rotational
symmetry in the collective state. In the transition from the disordered phase to the
ordered phase, rotational symmetry of the system gets spontaneously broken. Such
spontaneous breaking of continuous symmetry is accompanied by long-wavelength
fluctuations, which is called ‘the Nambu-Goldstone mode (NG mode)’. In the or-
dered phase with broken rotational symmetry, each particle can be simultaneously
rotated by the same angles without any frustrations nor any energy cost, which
means there is no restoring force.

This can be understood by imagining the wine bottle potential. In Fig. 2.6, the
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Figure 2.5: (a) Schematic image of how to calculate number fluctuations. Both
number fluctuations ∆N and mean values ⟨N⟩ increase as increasing the field of
view. There is an asymptotic scaling relation ∆N ∝ ⟨N⟩α. (b) The exponent α
can be extracted from the log-log plot. In equilibrium systems and random systems,
normal fluctuations with α = 0.5 are obtained due to the central limit theorem. On
the other hand, in the homogeneous ordered collective phase of the Vicsek model
exhibits giant fluctuations with exponent α ∼ 0.8 for both two dimensions (2D) and
three dimensions (3D). Data taken from [52].

state of the whole system is represented by a red ball. With the parameter values
η and ρ0 inside the homogeneous ordered phase in the phase diagram in Fig. 2.3,
the state of the system at the beginning of numerical simulations can be regarded
as an unstable state with rotational symmetry (Fig. 2.6a). As time goes by, the
particles get aligned and global order eventually develops, which corresponds to the
red ball falling down the slope toward the valley of the wine bottle potential. When
the global order has completely developed and the system reaches a steady state,
it corresponds to the red ball settled at the bottom of the potential. After that,
when the ball is subjected to even infinitesimal perturbations, the ball can freely
move around along the potential minimum at the bottom of the potential without
any restoring force. Such motion of the ball corresponds to the NG mode. If we
interpret this in the context of collective motion, the orientation of the global order
corresponds to the azimuthal position of the ball from the center of the potential.
Hence, just like the position of the ball fluctuates, the orientation of the collective
phase does fluctuate.

Slow and long-wavelength fluctuations of orientation arising from the NG mode
then couple with the density field and increase the density fluctuations. Fluctuations
of the orientation field, or the coarse-grained velocity field v, in the ordered phase
exist, which correspond to splay instability often discussed in liquid crystals. If such
fluctuations, divv < 0 or divv > 0, are present at a certain time, in the next time
step the coarse-grained density field ρ either increase or decrease in the comoving
frame of the flock respectively, as shown in Fig. 2.7. Mathematically, it can be
understood from the continuity equation of the density field which comes from the
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ba

Figure 2.6: Spontaneous breaking of rotational symmetry and the associated
Nambu-Goldstone mode. Red ball represents the state of the whole system. (a)
Before the symmetry breaking. The system has rotational symmetry and there is
no preferred direction. (b) The symmetry broken state. Infinitesimal perturbations
can drive the red ball to move around in the valley of the wine bottle potential
without any restoring force. This is the Nambu-Goldstone mode.

a b

Figure 2.7: Schematic figures of the crucial coupling between orientation and density
in the collective motion. Splay instability in the orientation field divv < 0 or
divv > 0 leads to the increase Dρ

Dt
> 0 or the decrease Dρ

Dt
< 0 of the density field

ρ in the comoving frame of the flock. Here the derivative D
Dt

is the Langrangian
derivative defined as D

Dt
= ∂

∂t
+ v ·∇.

number conservation of the particles in the system,

∂ρ

∂t
+∇ · (vρ) = 0. (2.5)

This can be rewritten by introducing the Lagrangian derivative D
Dt

= ∂
∂t
+ v ·∇ as,

Dρ

Dt
= −ρ divv, (2.6)

which clearly demonstrates the coupling between the orientational fluctuations and
the density fluctuations.

In summary, the orientation field of the particles in the ordered phase with broken
rotational symmetry can fluctuate due to the absence of restoring forces (the NG
mode), and then these orientational fluctuations increase the density fluctuations.
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As a result, we observe GNF in the homogeneous ordered phase of the Vicsek model.
Hence it is very important to recognize that the GNF in the Vicsek model need to be
discussed in the homogeneous ordered phase without any clusters, because existence
of clusters trivially increase the density fluctuations which are not the manifestation
of the NG mode in the symmetry broken state.

We note that the NG mode causes algebraic correlations of the orientation field
and the density field of the Vicsek model, which mean the ordered state is scale-free
and thus has no clusters with characteristic length scale. These algebraic correlations
are closely related to GNF and the value of the exponent α. These correlations
and their relations were calculated analytically in the hydrodynamic theories, but
numerically they were quite difficult to obtain due to the limited system size.

Superdiffusion

Each particle in the ordered phase exhibits anomalous diffusion in the transverse
direction of the global order. Of course, it is natural that the particles exhibit
superdiffusive behavior due to their motility, but the point here is that, even if
we subtract the mean velocity of the flock, each particle still shows superdiffusive
behavior in the direction transverse to the mean velocity of the flock.

To evaluate the behavior of each particle, let us consider mean square displace-
ment (MSD) in the transverse direction,

∆r2
⊥ :=

⟨
[r⊥(t)− r⊥(0)]

2⟩
ensemble

, (2.7)

where r⊥(t) denotes transverse components of the position of each particle at time t.
This MSD ∆r2

⊥ scales in the long time limit as ∆r2
⊥ ∼ tν with the exponent ν = 4/3

in the ordered phase of the 2D Vicsek model [52]. This exponent is also derived by
the hydrodynamic theory that we will describe in the next section [17, 19, 21, 54].
Note that ν = 1 in normal diffusion processes like Brownian motion.

Numerically, it is quite difficult to extract this exponent by directly calculating
r⊥(t). Although we need to track particles for a very long time to see asymptotic
behavior, temporal fluctuations of the direction of the global order complicate this
procedure. Instead of such direct calculation, the doubling time τ2 of the separation
distance between a pair of particles in the transverse direction δ⊥ was calculated
(Fig. 2.8). We can extract ν from the relation,

τ2 ∼ δ⊥
2/ν . (2.8)

We note that this superdiffusive behavior is quite difficult to detect even in
numerical simulations with periodic boundary conditions in which we can track
particles in principle as long as we want. Therefore, detecting this superdiffusion in
experiments would be a very hard task.
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Figure 2.8: Schematic figure on how to detect superdiffusive behavior numerically.
We can estimate the exponent of superdiffusion in the transverse direction by cal-
culating the duration τ2 required to double the separation distance δ⊥ of a pair of
particles in the ordered phase.

2.3 Toner-Tu theory

2.3.1 Idea & Definition

Although the Vicsek model demonstrates fascinating phenomena, it is a numerical
model and hard to obtain any concrete analytical predictions. Therefore, John
Toner and Yuhai Tu devised a hydrodynamic theory of polar flocks as seen in the
Vicsek model in their pioneering papers [17,19,20], which is now referred to as ‘the
Toner-Tu theory’.

What we are interested in is the macroscopic behavior of flocks, not microscopic
variables such as all the positions and the velocities of the particles. The macroscopic
behavior of the system is captured by looking at the slow and long-wavelength
variations of physical quantities. Such quantities, called ‘hydrodynamic variables’,
in the Vicsek model are the coarse-grained velocity field v(r, t) and the coarse-
grained density field ρ(r, t), where r is the spatial coordinates and t is the time.

Just by writing down the terms allowed by the symmetry of the Vicsek model
up to their lowest order derivatives, Toner and Tu constructed phenomenological
hydrodynamic equations for polar flocks in d-dimensional space, which is similar to
the Navier-Stokes equations, as,

∂tv + λ1(v ·∇)v + λ2(∇ · v)v + λ3∇(|v|2)
= αv − β|v|2v −∇P1 − v(v ·∇P2) +DB∇(∇ · v) +DT∇2v +D2(v ·∇)2v + f ,

(2.9)

∂tρ+∇ · (vρ) = 0, (2.10)

P1 =
∞∑
n=1

σn(|v|)(ρ− ρ0)
n, (2.11)

P2 =
∞∑
n=1

µn(|v|)(ρ− ρ0)
n, (2.12)

where λ1, λ2, λ3, α, β, P1, and P2 are, in general, functions of the local density ρ and
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the magnitude of the local velocity |v|, and Eqs. (2.11) and (2.12) are correspond-
ing Taylor expansions. P1 is the isotropic pressure term and P2 is the anisotropic
pressure term. β, DB, DT , D2 are all positive. The DB, DT , D2 terms represent
diffusion of fluctuations of the velocity field via interactions among particles. The
terms αv − β|v|2v represent a Ginzburg-Landau type potential −1

2
α|v|2 + 1

4
β|v|4

that leads to spontaneous symmetry breaking depending on the sign of α. Negative
and positive values of α correspond to the disordered phase and the ordered phase,
and hence we can describe the order-disorder transition with these terms. The or-
dered phase has non-zero self-propulsion speed v0 =

√
α
β
. The f term is a white

Gaussian noise with delta correlations,

⟨fi(r, t)fj(r′, t)⟩ = ∆δijδ
d(r − r′)δ(t− t′), (2.13)

where ∆ is a constant, and i and j denote Cartesian components.
The λ terms in the left-hand side of Eq. (2.9) correspond to the advection terms,

and are allowed due to the absence of Galiean invariance. In usual hydrodynamic
equations like the Navier-Stokes equations, Galiean invariance of the system requires
the total momentum of the system to be conserved. In accordance with this require-
ment, such λ terms are not allowed and the values of λ1, λ2, and λ3 have to be λ1 = 1
and λ2 = λ3 = 0. However, in systems such as the Vicsek model, bird flocks, fish
schools, and mammalian herds we consider here, there is no Galilean invariance and
the total momentum of the system is not conserved because there exist single ab-
solute frames of reference in which the surrounding environment such as air, water,
the ground is at rest and we just look at the dynamics of each particle separated
from the surroundings. In a sense, we assume implicitly the existence of some sort
of invisible ‘momentum sinks’ and neglect their dynamics. For example, dynamics
of water is often neglected when looking at schools of fish or bacterial suspensions,
and that of air is also neglected when looking at flocks of birds. We usually do not
consider momentum of the earth or the substrate when we think about mammalian
herds and bacterial swarms on agar plates, and here the earth and the agar really
work as momentum sinks. Such active matter systems without momentum conser-
vation are called ‘dry’ active matter systems, and the systems in which we explicitly
consider surrounding fluids and the total momentum is conserved are called ‘wet’
active matter systems such as bulk bacterial suspensions.

The anisotropic pressure term P2 in Eq. (2.9) is allowed due to nonequilibrium
nature of polar flocks and such terms cannot appear in equilibrium systems due to
Pascal’s law. When the Toner-Tu equations were proposed in 1995 [17, 19, 21], this
term had been overlooked. In 2012, Toner incorporated this term and reanalyzed
the equations. However, it turned out that this term complicates their dynamical
renormalization group analysis on their equations because the additional nonlinear
terms emerging from this anisotropic pressure term are relevant under a dynamical
renormalization group.

Although some of the results obtained in their previous works [17,19,21,54] were
invalidated by the new analysis with the P2 term [20], some other important results
are still undoubtedly valid. Furthermore, there is no other analytical theory for polar
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flocks. So it is still worthwhile to review their results and compare experimental
results with these Toner-Tu results in order to gain insight on collective motion.

Finally, we remark that the value of coefficients in such hydrodynamic equations
cannot be determined solely by symmetry arguments. These hydrodynamic equa-
tions can be derived by applying the Boltzmann equation approach to microscopic
Vicsek-style models, and then we can obtain the representations of coefficients in
hydrodynamic equations in terms of microscopic variables [55–57]. However, the
Boltzmann approach relies on some assumptions such as molecular chaos and dilute
limit to ensure binary collisions, so such representations may not be quantitatively
precise.

2.3.2 Predictions from Toner-Tu theory

True long-range order

The most important and rigorous result from the Toner-Tu theory is that the polar
flocks considered there have true long-range order (true LRO). Because the Toner-
Tu theory is based on just symmetry arguments on the Vicsek model, its results
should also be applied to microscopic simulations on the Vicsek model. The result
on LRO is unchanged after the reanalysis that includes the P2 term.

The presence of true LRO in the Vicsek model is a nonequilibrium and nonlinear
effect. The Vicsek model exhibits true long-range order even in d = 2, which is
impossible in equilibrium systems. In equilibrium, 2D systems with short-ranged
interactions such as the classical XY model and nematic liquid crystals cannot break
continuous symmetry, which is stated in the Mermin-Wagner theorem [18]. The long
wave-length fluctuations originating from the NG mode cannot be suppressed and
they cannot achieve true long-range order, resulting in quasi-long-range order with
many topological defects5. Therefore, what we can observe in such 2D equilibrium
systems with rotational symmetry is not phase transitions associated with broken
symmetry but a topological phase transition called ‘Kosterlitz-Thouless transiton’
[58].

Intuitive explanation for true long-range order

The existence of true LRO in the Vicsek model can be understood by thinking
about spreading of information on orientations. Intuitively, neighboring particles
of each particle in the Vicsek model are continuously changing due to orientational
fluctuations. Therefore, particles in the Vicsek model can interact more particles
than fixed particles, and the interaction radius can be effectively much larger than
that of the equilibrium models such as the classical XY model in which spins are fixed
on lattices. Here we follow the argument introduced by John Toner and published
in Francesco Ginelli’s lecture note [53].

5True and quasi-long-range order can be distinguished by correlation functions. If the correla-
tion remains positive at the large system size limit, the system has true long-range order. On the
other hand, the correlation decays algebraically in the case of quasi-long-range order.
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Figure 2.9: Schematic figures on how the information of orientational fluctuations
spreads inside (a) the XY model on a lattice and (b) the polar flocks of the Vicsek
model. Pink regions represent the areas in which the orientational information has
spread out. In the XY model, information spreads isotropically. On the other hand,
in the off-lattice Vicsek model, information spreads more rapidly in the transverse
direction than in the longitudinal direction due to the advection of particles.

To look at the difference between the equilibrium XY model and the Vicsek
model, let us first examine the XY model on a d-dimensional lattice. Suppose all
the spins are directing in exactly the same direction except for one single spin. Our
questions are the following: What happens if this spin deviates from the direction
of the other spin by an angle δθ0 as shown in Fig. 2.9a? How does the information
on this fluctuation, or error, spread among the lattice? On this lattice, such a
deviation propagates just by diffusion. Hence after a certain period of time τ , this
error diffuses over a distance r ∼

√
τ , or a volume V ∼ rd ∼ τ d/2. If we assume

that the total error inside this volume is conserved, the error per spin δθ scales
as δθ ∼ δθ0/V ∼ δθ0τ

−d/2. So far we have calculated information spreading of
a single error, but in reality there exist multiple errors whose numbers should be
proportional to the duration and the volume of interest. Hence in the volume V we
have ne ∼ τV errors. Because errors can be both positive and negative and they
are subject to the central limit theorem, the total amplitude of the noise Ω can be
estimated as Ω ∼ √

ne ∼
√
τV . Therefore, the total error amplitude per spin ∆θ

can be estimated as,

∆θ ∼ Ω

V
∼

√
τ

V
∼ r1−d/2 →


0 (d > 2)
lnL → ∞ (d = 2)
∞ (d < 2)

(2.14)

This means that in d > 2 such orientational errors are damped algebraically and
the global order is resistant to such fluctuations, resulting in true long-range order.
In d < 2, the fluctuations grow algebraically in space and the global order present
at first is completely destroyed, resulting in no long-range order. The marginal case
in d = 2, the global order is destroyed extremely slowly with the increase of the
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system size L and end up with quasi-long-range order. These results are consistent
with the Mermin-Wagner theorem [18].

Because the Vicsek model is an off-lattice model, orientational fluctuations are
coupled to motion and the information on orientational fluctuations spreads not only
by diffusion but also by particle motion, or advection, which is absent in equilibrium
models. If a single particle in the Vicsek model have orientational fluctuations ∆θ,
the position of this particle deviates from the global mean direction of motion by
δx⊥ ∼ v0τ sin∆θ ∼ τ∆θ in the transversal direction and δx∥ ∼ v0τ(1 − cos∆θ) ∼
τ∆θ2 in the longitudinal direction. Due to the anisotropy of polar flocks in the
Vicsek model, it is natural to decompose the volume V in which the information
on error has spread out as V ∼ w⊥

d−1w∥ as depicted in Fig. 2.9b. From the same
argument as in the equilibrium XY model, ∆θ is given by,

∆θ ∼
√

τ

V
=

τ 1/2√
w⊥d−1w∥

∼ τ γ, (2.15)

where we defined an exponent γ. The transversal and the longitudinal length scales,
w⊥ and w∥, over which the information on error has reached are estimated in terms
of advection and diffusion,

w⊥ ∼ δx⊥ +D⊥τ
1/2 ∼ τ∆θ +D⊥τ

1/2 ∼ τ γ⊥ , (2.16)

w∥ ∼ δx∥ +D∥τ
1/2 ∼ τ∆θ2 +D∥τ

1/2 ∼ τ γ∥ , (2.17)

where D∥ and D⊥ are diffusion constants, and we defined the exponents γ, γ⊥, and
γ∥ so that γ⊥ = max(1+γ, 1/2) and γ∥ = max(1+2γ, 1/2). By inserting Eqs. (2.16)
and (2.17) into Eq. (2.15), we obtain,

γ =
1

2
− d

4
, γ⊥ = γ∥ =

1

2
for d ≥ 4, (2.18)

γ =
3− 2d

2(d+ 1)
, γ⊥ =

5

2(d+ 1)
, γ∥ =

1

2
for

7

3
≤ d < 4, (2.19)

γ =
1− d

d+ 3
, γ⊥ =

4

d+ 3
, γ∥ =

5− d

d+ 3
for d <

7

3
, (2.20)

all of which give negative γ for any d > 1. This means that orientational fluctu-
ations are suppressed and the Vicsek model can possess true long-range order at
any dimension d > 1. Although, of course, the arguments presented here are not
precise compared with dynamical renormalization group analysis done by Toner and
Tu [17,19,21], this captures intuitive understanding on how and why true long-range
order is possible in the Vicsek model. The coupling between positions and orienta-
tional fluctuations leads to faster information spreading of orientational fluctuations
via advection.

Correlation functions

Toner and Tu defined correlation functions on the velocity field and the density field
in the ordered phase. Their asymptotic behaviors were calculated by dynamical
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renormalization group analysis [17, 19]. These results were later invalidated by the
P2 term [20].

Definitions of the correlation functions are the followings6.

C(R) := ⟨v(r +R, t) · v(r, t)⟩, (2.21)

CC(R) := ⟨v(r +R, t) · v(r, t)⟩ − |⟨v⟩|2 = ⟨v⊥(r +R, t) · v⊥(r, t)⟩, (2.22)

Cij(q, ω) := ⟨v⊥i (q, ω)v⊥j (−q, ω)⟩, (2.23)

Cij(q) := ⟨v⊥i (q, t)v⊥j (−q, t)⟩, (2.24)

Cρ(q) := ⟨|ρ(q, t)|2⟩ = ⟨ρ(q, t)ρ(−q, t)⟩, (2.25)

where average ⟨ ⟩ is taken over space, time or ensembles, v⊥ is a velocity component
perpendicular to the direction of the global order, v⊥i is the i-direction component
of v⊥. q is a wave vector in the Fourier space. We note that the equal-time density
correlation function in the Fourier space Cρ(q) defined in Eq. (2.25) is also called
the structure factor S(q).

The exponents of the asymptotic behaviors of correlation functions are defined
as follows:

CC(R) ∝ R2χ
⊥ , (2.26)

CC(R) ∝ R
2χ/ζ
∥ , (2.27)

where the subscript ⊥ and ∥ denote transverse and longitudinal components with
respect to the direction of the global order respectively. The exponent ζ is a measure
of anisotropy of the ordered phase.

Their dynamical renormalization group analysis gives asymptotic behaviors of
other correlation functions in terms of the exponents defined above,

Cρ(q) = S(q) = ⟨|ρ(q, t)|2⟩ ∼


q1−d−ζ−2χ
⊥ (q∥ ≪ q⊥)

q−2
∥ q3−d−ζ−2χ

⊥ (q⊥ ≪ q∥ ≪ qζ⊥)

q
−3+(1−d−2χ)/ζ
∥ q2⊥ (qζ⊥ ≪ q∥)

(2.28)

Cij(q) = ⟨v⊥i (q, t)v⊥j (−q, t)⟩ ∼ q1−d−ζ−2χ
⊥ (2.29)

∆N ∝ ⟨N⟩α = ⟨N⟩
1
2
+−1+d+ζ+2χ

2d (2.30)

Note that Cij(q) can be calculated from CC(R) from the following relation,

CC(R) = ⟨v⊥(r +R, t) · v⊥(r, t)⟩ =
∫

ddq

(2π)d
Cii(q)e

iq·R. (2.31)

Giant number fluctuations

Here we estimate the exponent of the number fluctuations α defined as,

∆N ∝ ⟨N⟩α. (2.32)
6In their original papers [17,19,21], there are ‘fluctuations of notation’, which we have corrected

in this thesis.
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Number fluctuations are generally related to the structure factor as,

S(q → 0) = ρ0

[
∆N2

⟨N⟩

]
N→∞

∼ ⟨N⟩2α−1. (2.33)

From the Eq. (2.28), we can see that the divergence of Cρ(q) = S(q) when q → 0
is dominated in the q∥ ≪ q⊥ region, so we can write,

S(q → 0) ∼ 1

qσ
∼ lσ ∼ ⟨N⟩σ/d with σ = −(1− d− ζ − 2χ), (2.34)

where l is a typical length scale.
Then, by equating the exponents in Eqs. (2.33) and (2.34), we obtain

α =
1

2
+

σ

2d
=

1

2
+

−(1− d− ζ − 2χ)

2d
. (2.35)

Hence the exponent α is larger than 1/2, so the Toner-Tu theory also predicts giant
number fluctuations in the ordered phase.

Summary on predictions for d = 2

Only in d = 2, they obtained the exact values of the exponents. This is because in
d = 2 the term λ2(∇ · v)v in Eq. (2.9) become equivalent to the term λ1(v ·∇)v
when we rewrite Eq. (2.9) by inserting v = v0ê∥ + δv and neglecting irrelevant
terms, where ê∥ is a unit vector along the global order.

The theoretical prediction for the exponents in d = 2 is χ = −1
5
, ζ = 3

5
, and

α = 4
5
. Therefore, all the predictions for the exponents in d = 2 by the Toner-Tu

theory are the following:

CC(R) = ⟨v⊥(r +R, t) · v⊥(r, t)⟩ ∝

{
R2χ

⊥ = R
−2/5
⊥ = R−0.4

⊥
R

2χ/ζ
∥ = R

−2/3
∥ = R−0.667

∥ ,
(2.36)

Cij(q) = ⟨v⊥i (q, t)v⊥j (−q, t)⟩ ∼ q1−d−ζ−2χ
⊥ = q

−6/5
⊥ = q−1.2

⊥ , (2.37)

Cρ(q) = S(q) = ⟨|ρ(q, t)|2⟩ ∼ q1−d−ζ−2χ
⊥ = q

−6/5
⊥ = q−1.2

⊥ , (2.38)

∆N ∝ ⟨N⟩α = ⟨N⟩
1
2
+

−(1−d−ζ−2χ)
2d = ⟨N⟩4/5 = ⟨N⟩0.8. (2.39)

We note that the exponent for GNF α = 0.8 obtained here is consistent with
numerical results of the Vicsek model.

2.3.3 Remarks for analysis with a finite system size

Except for the exponent α for number fluctuations, the other exponents in cor-
relation functions are hard to calculate mainly due to the limited system sizes of
simulations. In the Toner-Tu theory, we can treat infinitely large space and can
exactly define the direction of the global order and the mean velocity. On the other
hand, in numerical studies we have to estimate them from finite system sizes and



2.4. Vicsek-style models with different symmetry 23

need to subtract the mean velocity from the velocity field for obtaining fluctua-
tions of the velocity field v⊥ and calculating CC(R) = ⟨v⊥(r +R, t) · v⊥(r, t)⟩ and
Cij(q) = ⟨v⊥i (q, t)v⊥j (−q, t)⟩. Because v⊥ and v⊥i are deviation from the global
mean velocity, there are constraints: ⟨v⊥(r, t)⟩r = 0 and ⟨v⊥i (r, t)⟩r = 0. Hence
correlation functions of fluctuations in the real space such as CC(R) have to become
negative at a certain distance away from the origin R = 0. The same problem
occurs in experiments because we have to estimate the direction of the global order
from finite observation areas.

2.3.4 Toner-Tu-Ramaswamy phase

In the above subsections, we have examined the properties of the ordered state in
the Toner-Tu theory. This broken symmetry state has true long-range order even
in d = 2 and exhibits algebraic correlations associated with the Nambu-Goldstone
mode both in the velocity field and in the density field. Because the correlations are
algebraic and scale-free, there are no clusters with characteristic length scale and this
phase is spatially homogeneous. However, both the density field and the velocity
field is highly fluctuating, which results in the giant number fluctuations. All of
these properties are arising from nonlinear nonequilibrium nature of the system and
the Nambu-Goldstone mode in this broken symmetry state.

This state is now often referred to as ‘the Toner-Tu phase’. However, GNF
were originally predicted in the hydrodynamic theory for collective motion of apolar
particles with nematic interactions (active nematics) by Sriram Ramaswamy et al.
[13], so we call this phase ‘the Toner-Tu-Ramaswamy phase (the TTR phase)’.

2.4 Vicsek-style models with different symmetry

2.4.1 Definitions on active nematics and self-propelled rods

So far we have reviewed the numerical results and the hydrodynamic theories on
the original Vicsek model, which deals with collective motion of polar particles with
ferromagnetic interactions. As we have already mentioned in the beginning of this
chapter, we can also consider Vicsek-style models with other symmetries on motility
and interactions. Here, ‘Vicsek-style’ means that (i) particels are point-like and (ii)
their interactions are local, short-ranged, and calculated by averaging the directions
of neighbors within the interaction radius. By considering these models, we can gain
more clear view both on how the true long-range order emerges in the Vicsek model
and on the universality of these simple models.

The two Vicsek-style models we consider here are called ‘active nematics’ [25,27]
and ‘self-propelled rods’ [26], both of which have nematic interactions but different
motilities. Dynamics of each particle in these models is given as follows.
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active nematics� �
θt+1
j =

1

2
arg

∑
k∼j

e2iθ
t
k + ηtj, (2.40)

rt+1
j = rt

j ± v0eθt+1
j

, (2.41)

where the sign ± in Eq. (2.41) is chosen at 1/2 probabilities at every time step.� �
Note that θtk inside the exponential function in Eq. (2.40) is multiplied by 2, which
represents nematic interactions.

self-propelled rods� �
θt+1j = arg

∑
k∼j

sign
[
cos(θtk−θtj)

]
eiθ

t
k+ηtj, (2.42)

rt+1
j = rt

j + v0eθt+1
j . (2.43)� �

In self-propelled rods systems, each particle moves persistently toward its head di-
rection without directional reversal.

These two models are purely modifications of the Vicsek model, because all of
the models have in common that particles are point-like and their interactions are
calculated by averaging the directions of neighbors within the interaction radius.
Hence these variant models are called Vicsek-style models.

Particles in the active nematics systems have head-tail symmetry, and they are
apolar. They stochastically move back and forth, and interact with each other
nematically. This model corresponds to experimental systems of collection of sym-
metric rods vibrated on a plate [30]. Particles in self-propelled rods imitate some
kinds of bacteria swarming on agar plates as depicted in Fig. 2.10a [3]. They align
in either parallel or antiparallel configurations.

The interaction terms in Eqs. (2.40) and (2.42) are unchanged under the trans-
formations θtk → θtk + π or θtj → θtj + π. This π-symmetric interactions represent
nematic interactions.

2.4.2 Properties of the models

Let us look at the properties of active nematics and self-propelled rods in comparison
with the original Vicsek model. All the properties are summarized in Fig. 2.11.

First-order phase transition

Both of the two models exhibit discontinuous first-order phase transitions. There
exist coexistence phases, and ordered regions emerge as band structures inside the
disordered regions. Although in the Vicsek model the band structures, or the Vicsek
wave, stably propagate in the system, band structures in active nematics and self-
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a) b)

Figure 2.10: (a) Nematic interactions between self-propelled rods. They can align
both in parallel and antiparallel configurations. (b) The ordered phase of self-
propelled rods model. It exhibits nematic order.

propelled rods exhibit spatiotemporally chaotic behavior by deforming, splitting,
and merging irregularly.

Giant number fluctuations

GNF are obtained in the ordered phases both in active nematics [27] and self-
propelled rods [26]. Numerical studies have shown that the GNF exponent α is
around 0.8 in both models, and α is slightly smaller than 0.8 in self-propelled
rods [26]. Although corresponding hydrodynamic descriptions for d = 2 are de-
vised/derived for both active nematics [13, 56] and self-propelled rods [55] as the
Toner-Tu equations for the Vicsek model, no exact results for the exponents have
been obtained. This is because these systems have another hydrodynamic variable
other than the velocity field v and the density field ρ, which is the tensor order
parameter Q used for nematic liquid crystals. Q is defined by using unit orientation
vectors a of particles as Qij = ⟨aiaj⟩l − 1

d
δij, where ⟨ ⟩l is a local average. This

additional variable Q complicates the dynamics and makes it difficult to obtain
analytical results.

The hydrodynamic description for active nematics is much simpler than that
for self-propelled rods and some analytical calculations, because the velocity field v
relaxes quite rapidly to 0 due to apolar motility of each particle and v does not play
any role at the macroscopic hydrodynamic level. So the hydrodynamic equations
for active nematics are written by two variables ρ and w = ρQ as [56,59],

∂ρ

∂t
=

1

2
∇2ρ+

1

2
Γ : w, (2.44)

∂w

∂t
= µw − 2ξw(w : w) +

1

2
∇2w +

1

8
Γρ, (2.45)

where µ and ξ are coefficients, and Γ is a tensor differential operator with compo-
nents Γ11 = −Γ22 = ∂1∂1 − ∂2∂2 and Γ12 = Γ21 = 2∂1∂2.

Ramaswamy et al. calculated correlation functions using linearized equations of
Eqs. (2.44) and (2.45), and accordingly discovered the existence of giant number
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fluctuations in the ordered phase for the first time. This linear theory predicts the
exponent α = 1, or ∆N ∝ ⟨N⟩1 [13]. However, α ≤ 1 by definition and therefore
this estimate by the linear theory corresponds to the upper bound.

At the nonlinear level, a perturbative renormalization group treatment has been
performed for active nematics without the density field, and concluded that the
linear predictions should hold [60]. However, as already pointed out by themselves
in [21,60], nonlinear effects, especially some involving the density field, could change
all of the above renormalization group arguments. Therefore, no exact values for
the exponents of correlation functions and GNF in the case of active nematics as
well as self-propelled rods are known.

True vs Quasi long-range order

The crucial difference in these models is whether they have true long-range order or
not. Active nematics do not have true long-range order, which has been confirmed by
numerical simulations [25,27,59] and both the linear and the nonlinear hydrodynamic
theories [60]. On the other hand, self-propelled rods exhibit true long-range order at
least numerically. However, due to the complexity of the hydrodynamic equations for
self-propelled rods, there is still no analytical calculation on whether self-propelled
rods can really show true long-range order or not.

In the cases of active nematics and self-propelled rods, whether their nematic
phases are true long-ranged or not can be evaluated by calculating a scalar nematic

order parameter S = 1
N

∣∣∣∑N
j=1 e

2iθtj

∣∣∣, or its time-averaged value ⟨S⟩t, as a function

of the system size. In the case of active nematics, ⟨S⟩t decays algebraically with a
very small exponent toward 0 in the large system size limit, which means quasi-long-
range order. On the other hand, in self-propelled rods, ⟨S⟩t algebraically converges
to a positive finite value in the large system size limit, which means true long-range
order.

As we have seen above, the symmetry of the particles’ motility changes the nature
of the ordered phase: true or quasi-long-range order. However, in fact, there is a
legitimate question raised in past works [22], which is whether or not self-propelled
‘rods’ are an entirely different class from polar flocks and active nematics. The
globally nematic phase in self-propelled rods might be seen as the superposition of
two polar systems exchanging particles at some rate. As remarked in [26], this rate
is very low and it defines a finite but large time/length, over which particles go in
one of the two main directions defining the global nematic order. This length scale
requires enormously large system size simulations which are almost inaccessible.
Hence analytical calculation on the hydrodynamic equations for self-propelled rods
is needed as future work.

However, there is still a reasonable reason to believe the numerical result that
the self-propelled rods have true long-range order. In the original Vicsek model, as
we have seen before, true long-range order is a consequence of advection of orienta-
tional fluctuations arising from particles’ persistent motion. In active nematics, each
particle does not move persistently, so the information of orientational fluctuations
is not advected by particles’ motion transverse to the global order. Hence, active
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Vicsek model active nematics self-propelled rods

schematics

motility

interaction

(numerics)

(continuum theory)

order

polar apolar polar

ferromagnetic nematic nematic

no calculation

true long-range quasi-long-range true long-range

(d=2, Toner-Tu) (linear theory)

Figure 2.11: Classification of three basic Vicsek-style models: the original Vicsek
model, active nematics, and self-propelled rods. These models can be classified ac-
cording to polarities of motility and interactions of particles. All the models exhibit
giant number fluctuations with the exponent α around 0.8 in their homogeneous
ordered states, or the Toner-Tu-Ramaswamy phases.

nematics cannot attain true long-range order, resulting in quasi-long-range order.
On the other hand, in self-propelled rods systems, each particles move persistently
without directional reversals, so the information of orientational fluctuations can be
advected by transversal velocity fluctuations. Therefore, we can still believe that
the same mechanism for the emergence of true long-range order in the Vicsek model
works for self-propelled rods.

2.5 Vicsek universality class

As we have seen so far, all the Vicsek-style models have many common properties:
first-order phase transition, giant number fluctuations in the ordered phase, etc.
Corresponding hydrodynamic descriptions, which are derived just by symmetry ar-
guments, also reproduce such properties. The phase transitions in these models and
field equations are now understood by a phase-separation scenario between a dis-
ordered ‘gas’ state and an orientationally-ordered ‘liquid’ state with a coexistence
phase [28, 29]. However, unlike equilibrium liquid-gas phase transitions, there is no
supercritical region in this far-from-equilibrium liquid-gas phase transition, in which
liquid states and gas states cannot be distinguished.

As such, these models and field equations are considered to constitute a sort
of nonequilibrium universality class, ‘the Vicsek universality class’, although there
is still no concrete definition on this because of controversy on whether the Vicsek
model, active nematics, and self-propelled rods are indeed in the same class or not.



28 Chapter 2. Standard models on collective motion

From the discussion above, sometimes we divide them into two classes according
to their nature of long-range order: the Vicsek class and the active nematics class.
In this case, self-propelled rods are classified into the Vicsek class in this ‘narrow’
definition. However, there is a consensus that the ordered phases of these models and
field equations, or the Toner-Tu-Ramaswamy phases, are undoubtedly have universal
properties: giant number fluctuations in the homogeneous long-range ordered phase.
Whether or not such universality can really be observed experimentally remained
elusive, for which we have given the first example that will be detailed in Chapter 3
[50].

2.6 Experimental efforts to find the TTR phases

2.6.1 Experimental difficulties

Motivated by biological collective motion such as flocks of birds, schools of fish,
swarms of bacteria, and herds of mammals, numerical and theoretical studies on
collective motion have revealed its fundamental properties from the viewpoint of
statistical physics. However, these results are restricted to ‘imaginary flocks’ in the
models or the field equations, so as a discipline of natural science it is important to
verify whether these properties are really present in real flocks.

Although the studies on collective motion were motivated by biological flocks,
those flocks cannot belong to the Vicsek universality class. Biological flocks such
as flocks of birds and schools of fish are spatially localized and do not have long-
range order. Past theoretical works deal with spatially-homogeneous ordered col-
lective phases that are phenomenologically different from spatially-localized flocks
of birds, etc. Furthermore, it is almost impossible to conduct controlled experi-
ments with birds or fish because we cannot demand them to interact differently or
to form denser/sparser flocks. On the other hand, we need to pursue ‘homogeneous
long-range ordered phases’ as seen in the Vicsek-style models and corresponding
hydrodynamic equations.

In need of controllable systems simpler than bird flocks and fish schools, various
experimental systems are devised and utilized in order to search for GNF in the TTR
phases. Examples of such experiments include biofilaments driven by molecular
motors [6], colloids consuming electric energy [12], shaken granular materials [14,
15, 30], monolayers of fibroblast cells [31], and common bacteria [3, 32]. However,
none of these experiments has been fully convincing in demonstrating the presence
of GNF in the true sense of the Vicsek universality class as predicted from the
works of Toner, Tu, Ramaswamy et al. [13, 17, 19–22], and observed in Vicsek-
style models [23, 24, 26, 27]: In some cases, only normal number fluctuations were
found [6, 12]. In others, GNF were reported for systems not in the fully ordered
phase [3, 6, 14, 30, 31]. Finally, Refs. [15, 32] show some evidence of GNF only in
numerical models of the experiments described.

Difficulties and pitfalls indeed abound to observe unambiguous Toner-Tu-Ramaswamy
phenomena: Very large systems are typically needed; external boundaries thus pre-
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vent their observation; it is often difficult to distinguish the coexistence phase from
the orientationally-ordered liquid phase, leading one to confuse the non-asymptotic
fluctuations due to clustering with the GNF of the orientational liquid; strong steric
interactions in dense systems may overcome alignment effects; additional long-range
interactions may tame density fluctuations. Due to such experimental difficulties and
complicated theoretical background, there has been a misconception even among the
active matter community that ‘GNF’ have been detected experimentally and are not
such surprising/important property.

Before moving on to discussion on each existing experiment, let us summarize
and state clearly again here what we mean by the ‘Toner-Tu-Ramaswamy phase’:
a fluctuating, orientationally-ordered phase with the sort of long-range correlations
and anomalous fluctuations without phase-separation into dense clusters sitting in a
disordered sparse gas. With this definition in mind, we will detail above experiments
one by one in the following subsection.

2.6.2 Experimental systems

Here we detail existing experimental studies reporting ‘giant number fluctuations’,
which is not actually in the sense of Toner-Tu-Ramaswamy phenomena. In most
cases, observation of ‘GNF’ was not the main claims of those paper, but such reports
have made many people confused about the original meaning of ‘the genuine GNF’
predicted by Toner, Tu, Ramaswamy et al.

There are, of course, many other studies on collective motion of active matter
systems, but here we introduce studies that report ‘GNF’.

Shaken granular rods

Narayan, Ramaswamy et al. conducted experiments using granular rods vibrated
on a plate [30] as shown in Fig. 2.12. The symmetry of the system corresponds
to active nematics, and they indeed observed quasi-long-range order in correlation
functions. In this quasi-long-range ordered state, they report ‘GNF’. However, as
is often the case for granular experiments, this experiment suffered from boundary
effects and small system size. The lengths of the rods were ∼ 4.6 mm and the
diameter of the plate was 13 cm, and the number of rods was 2820 at the largest.
Therefore, the rods were strongly affected by the boundary and aligned along the
boundary. As a result, there exist many topological defects in the director field
of rods. The ‘GNF’ here were reported in such phases, so we cannot exclude the
possibility that such ‘GNF’ are a consequence of the existence of topological defects
(Fig. 2.12). We cannot conclude that the ‘GNF’ obtained here are originating from
the Nambu-Goldstone mode of the symmetry broken TTR phase. The GNF in the
sense of the Vicsek universality class should be discussed in a certainly long-range
ordered phase without apparent defects, even in quasi-long-range ordered phases.

Furthermore, due to the small experimental system size, they observed the ‘GNF’
only over less than a decade. Extracting the exponents of algebraic behavior from
such a narrow range is not a good idea.
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Figure 2.12: (A) Snapshot of experiments on shaken granular rods with the number
of rods Ntotal = 2820. The upper-left region is sparse, which leads to ‘GNF’. Many
topological defects exists and no real global order emerges. Yellow arrows indicate
examples of topological defects. (B) The magnitude of normalized number fluctua-
tions ∆N/

√
⟨N⟩ vs ⟨N⟩. At high density with Ntotal ≥ 2500, they observe ‘GNF’.

However, it is limited only over one decade. The dashed line represents ∆N ∝ ⟨N⟩1
to guide the eye, which is the prediction from the linear theory by Ramaswamy et
al. [13]. Inset: the orientational correlation function G2(r) = ⟨cos 2(θi−θj)⟩⟩, where
i, j run over pairs of particles separated by a distance r, and θi, θj denote orien-
tations of particles. For Ntotal ≥ 2500 (upper two data), G2(r) exhibits algebraic
decay, characteristic of quasi-long-range order, again only over one decade. Figures
modified and reproduced from [30].

Vibrated polar disks

The Olivier Dauchot group devised a monolayer system of polar disks vibrated on
a horizontal plate [14] as shown in Fig. 2.13. Each particle has symmetrical circular
shape for avoiding nematic interactions usually present in granular systems, but
its center of mass is displaced from its geometrical center. Hence when vibrated
vertically, it moves persistently according to its polarity. Particles undergo polar
alignment during collisions due to self-propulsion and hard core repulsion. At high
density, they observed ordered motion at the center of the system showing ‘GNF’
with the exponent α ∼ 0.725 (Fig. 2.13d), but later this ‘GNF’ were found not to
be the genuine GNF predicted in the TTR phases.

The most significant problem they suffered was that they could not disentangle
three possible number fluctuations: those from the boundary effects, those arising
from the proximity of the transition, and the genuine GNF. Although their measure-
ment was done in the most ordered conditions they could attain, their later study [61]
proved that, unfortunately, their experiments were done right in the transitional re-
gion, so the ‘GNF’ obtained in their experiments are not the genuine GNF predicted
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in the TTR phases. Furthermore, again, this experiment suffered from boundary ef-
fects and small system size. In this study, the diameter of the particles is d0 = 4 mm
and the diameter of the shaken plate is ∼ 160 mm. The particles are largely affected
by the boundary and they often accumulate along the boundary. To exclude such
boundary effects, they elaborated a flower-shaped boundary that ‘reinjects’ parti-
cles accumulated along the boundary into the bulk. Although they elaborated such
nice conditions, such a boundary can also reinject clusters of particles into the bulk,
which is unfavorable to realize the homogeneous TTR phases. They also need to
decrease the size of their observation region of interest (ROI) for analysis in order
to surely extract their bulk behavior. The size of ROI that they could reliably use
for extracting bulk statistics was up to the diameter 20d0 = 80 mm. At the highest
density of their experiments, they used 890 particles but only ∼ 160 particles were
inside the ROI on average. Hence, the system size is not so large.

Although they could not bring their system to function deep in the ordered phase
experimentally, their numerical simulation with periodic boundary conditions could
exhibit a true long-range ordered phase with the genuine GNF, which is a TTR
phase.

a

b

c d

Figure 2.13: (a) Photo of the fabricated polar disk. (b) Schematic of the polar disk.
Its center of mass is displaced from its geometrical center, which leads to persistent
motion under vibration. (c) Snapshot of the experiment. Overlaid colors indicate
the directions of particles. Boundary effects and clustering are hardly removable.
(d) ‘GNF’ obtained in this experiment. Figures (a) and (b) reproduced from [61],
(c) from [14]. Figure (d) is modified from [14].

Bullets shaken in a sea of spherical beads

Kumar, Ramaswamy et al. conducted a nice experiment combining the knowledges
on granular active matter experiments. They prepared millimeter-sized tapered rods
like bullets and put them in a monolayer sea of spherical beads on a flower-shaped
plate (Fig. 2.14) [15]. Under vertical vibrations, the bullets moves inside the sea of
beads, eventually align to each other, and exhibit polar order along the boundary
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at sufficiently high density. Their interactions are mediated by the flow of bead in
between them.

Of course, this granular experiment again has a limited system size. The num-
ber of self-propelling bullets are ∼ 300, which is even smaller than other granular
experiments. However, they also conducted surprisingly faithful three-dimensional
granular simulations with periodic boundary conditions using experimentally ex-
tracted parameters. These simulations clearly demonstrated the existence of GNF
and the true long-range order in the ordered phase, hence we can conclude that
this experimental system can ideally exhibit a TTR phase (Fig. 2.14c). However,
accessing that phase experimentally is impossible due to the limited system size and
the boundary effects.

a

b

Figure 2.14: (a) Schematic of a tapered bullet-like rod. Such rods are dispersed
in the sea of spherical beads between two horizontal walls. (b) Collective flocking
state obtained in this experiments. Due to the boundary, the obtained order is polar
order along the boundary. (c) Homogeneous long-range ordered phase obtained in
a faithful numerical simulation. The genuine GNF are observed only numerically.
Figures reproduced from [15].

Swarming bacteria on agar plates

Zhang, Swinney et al. reported ‘GNF’ in bacteria Bacillus subtilis swarming on an
agar plate as shown in Fig. 2.15a [3]. Bacteria are micrometer-sized, so bacterial
experiments are less affected by boundaries and easier to observe bulk statistics than
granular experiments. However, the regimes they observed were not globally-ordered
(see Fig. 2.15a,c). What they observed as ‘GNF’ is number fluctuations originating
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from the existence of finite-size ordered clusters moving around in different direc-
tions. The existence of clusters trivially increase the density fluctuations because the
observed particle number fluctuates quite a lot depending on whether there are any
clusters inside the field of view at that time or not (see Fig. 2.15c). Their orientation
correlation and the velocity correlation were calculated inside the ordered clusters.
Even inside such ordered clusters, the analyzed orientation/velocity correlations de-
cay so rapidly at the length scale as small as 8 µm (Fig. 2.15b), which is smaller
than 2 bacterial body lengths. They also depend on the cluster size (Fig. 2.15b).
Therefore, the system is actually short-ranged, and cannot be a TTR phase.

Gliding myxobacteria

Myxobacteira Myxococcus xanthous glide on an agar surface, and exhibit pattern
formation and social behavior such as formation of fruiting bodies. Peruani et al.
investigated collective motion of a mutant strain of M. xanthus that does not exhibit
directional reversal of their motility [62]. Such simple motility without reversal is
suitable for testing theoretical predictions, especially that of self-propelled rods.

These myxobacteria show phase separation into dense ordered clusters moving
around in different directions that do not order globally. They do exhibit ‘GNF’,
which is a trivial consequence of the phase separation and clustering. Hence, as
originally claimed in their paper, the reported behavior was qualitatively different
from that of the Vicsek-style models, but they succeeded to reproduce some of the
behavior by a simulation on explicit rods with excluded volume.

Mesoscale turbulence of bacteria

In papers by Wensink et al. [32, 63], they investigated turbulent phases of dense
suspension of Bacillus subtilis. They conducted both experiments and simulations,
and found ‘GNF’ only in their simulations [63]. In their case, number fluctuations
were inaccessible in their experiments. They simulated ∼ 104 self-propelled rods
composed of connected chains with exclusive volume in a two-dimensional space,
which are different from the Vicsek-style self-propelled rods model. This model
exhibit many phases depending on the aspect ratio and the density of rods, and
they obtained ‘GNF’ in swarming phases with clusters and in incoherent disordered
phases without long-range order (Fig. 2.17). All the ‘GNF’ results were limited to
numerical simulations.

Fibroblast cells

Duclos et al. investigated collective behavior of a monolayer sheet of fibroblast
cells [31]. The fibroblast cells have elongated spindle-shapes, align nematically, and
exhibit back-and-forth motion with no preferred directions. The obtained phase at
high density is a domain phase with many topological defects (Fig. 2.18a). The
fibroblast cells do form locally aligned domains but do not exhibit long-range order.
The correlation function of their orientation field were quite nicely fitted by an
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a b

c d

Figure 2.15: (a) Snapshot of the experiment with bacterial velocity vectors overlaid.
Colors of arrows indicate different ‘clusters’, which clearly demonstrates both the
existence of clusters and the absence of long-range order. (b) Correlation of bacterial
orientations measured inside clusters. Inset: Correlation of bacterial velocity mea-
sured inside clusters. Black: inside a cluster with 343 particles. Red: inside a cluster
with 718 particles. Both correlations decay so rapidly at the length scale ∼ 8µm,
which demonstrates the short-range order of the system. (c) Time series of the num-
ber of observed bacteria. Its fluctuations are caused by clusters. (d) ‘GNF’ obtained
in this expeiment, originating from clustering without any long-range order. Green
line: ∆N ∝ ⟨N⟩0.75. Figures modified and reproduced from [3].
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15 min

a b

Figure 2.16: (a) MyxobacteriaMyxococcus xanthous exhibit nematic alignment upon
collisions. However, because of strict two-dimensionality, they cannot cross or over-
lap each other. In this sense, their interactions are qualitatively different from the
Vicsek-style self-propelled rods. (b) Collective phase of M. xanthous. There are
many clusters moving in different directions. Arrows indicate the moving direc-
tions of the clusters. The average speed of bacteria is 3.10 ± 0.35µm/min. Figures
modified and reproduced from [62].

a b

small

giant

Figure 2.17: (a) Snapshot of the numerically obtained ‘swarming phase’. Large
clusters exist and no long-range order is observed. (b) ‘GNF’ reported only for such
swarming phases (S: swarming, B: bionematic) and the incoherent disordered phase
(D: disordered), both of which do not have long-range order. Other numerically
obtained phases only exhibit smaller fluctuations with α < 0.5 due to excessively
high density and excluded volume. Figures modified and reproduced from [32].
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exponential function, which clearly demonstrates that there exists a finite correlation
length ξ and they only have short-range order (Fig. 2.18b).

Furthermore, there is another puzzling result with this experiment. Duclos et al.
observed ‘GNF’ even at low density with very small nematic order before confluence.
In Fig. 2.18, they obtained ‘GNF’ even at the lowest density they observe, which is
10 times more dilute than that of confluence. Therefore, it makes even difficult to
extract what is the dominant origin of these ‘GNF’.

Although Duclos et al. reported ‘GNF’ in such a domain phase with short-
range order, again this is not what we can compare with the series of studies on the
Vicsek-style models and corresponding hydrodynamic theories.

cba

500 µm

Figure 2.18: (a) Snapshot of the domain phase obtained in a monolayer of fibroblast
cells. Colors are overlaid according to the orientations of cells. (b) Correlation
function of the orientation field. It is very nicely fitted by an exponential function,
which suggests the existence of characteristic length scale and short-range order. (c)
‘GNF’ are obtained even in the disordered phase at low density as well as in the
domain phase after confluence. The total number of particles in the field of view
Ntot ≃ 1000 corresponds to the confluence. Figures reproduced from [31].

Actomyosin motility assay

Systems of biofilaments driven by molecular motors have been devised and it turned
out to exhibit collective motion at high density of filaments [4–6,64]. Experimental
technique called ‘motility assay’ is utilized for studies on collective motion thanks
to its controllability.

Motility assays were originally used to investigate behavior of molecular motors
at the single molecule levels. In motility assays, molecular motors such as myosins,
dyneins, and kinesins are attached and fixed on a glass substrate. Then the cy-
toskeletal filaments such as actin filaments and microtubules are spread onto the
carpet of the molecular motors, and accordingly those filaments are driven by the
molecular motors and move around. In biophysical studies on molecular motors,
properties of molecular motors such as their forces, fluctuations, and step-wise mo-
tion can be extracted from motility assay experiments at low density of filaments.

In the studies of collective motion, density of filaments is some order of magni-
tude larger than single molecule studies. As the density increases, we can observe
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transitions from disordered phases with almost independent motion of filaments to
coordinated ordered motion [4–6,64]. Because motility assay systems are composed
of nano-/micro-scale filaments, the number of filaments in the whole system can
be huge. Furthermore, interactions and motility can be tuned by changing lengths
of filaments and density of driving motor proteins, adding polymers into solutions,
and controlling the height uniformity of motor proteins attached on the substrate.
Due to such controllability and large system size, motility assay systems are now
becoming very important model systems in active matter physics.

In the motility assay system with actin filaments and myosin motors—actomyosin
systems— (Fig. 2.19a), ‘GNF’ were reported by the Andreas Bausch group [6]. How-
ever, they could not achieve homogeneous ordered phases as the TTR phase. The
system only exhibits swarming clusters whose directions of motion change continu-
ously and a banding phase similar to the Vicsek wave (Fig. 2.19c). The ‘GNF’ in
this system were measured when the global flow is not straight and the system is
disordered on large-scales as shown in Fig. 2.19b,d. They do obtain homogeneously
ordered phase only at the beginning of experiments as a transient state, but this
ordered state can only show normal fluctuations with the exponent α ∼ 0.5 (see
the red data points and the caption in Fig. S5B of the Supplementary Material of
Schaller and Bausch [6]).

a

b

d

c

Figure 2.19: (a) Schematic of the actomyosin motility assay system. (b) Number
fluctuations are estimated by the fluorescent intensity I of images. (c) At banding
states similar to the Vicsek wave, they naturally observe the exponent α ≃ 1 due
to clustering. In the dilute regime, α ≃ 0.5 is obtained as expected. (d) In the
collective phase at high density without long-range order, they observe ‘GNF’ with
α ≃ 0.8. Topological defects exist and there is no global order. Inset: velocity field.
Scale bars: 50µm Figures (a)(c) and (b)(d) modified and reproduced from [4] and [6]
respectively.
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Quincke rollers

By utilizing an electrohydrodynamic phenomenon called Quincke rotation, the Denis
Bartolo group realized self-propelled colloids rolling on a two-dimensional electrode
placed horizontally [12]. They applied a vertical electric field to insulating spheres
immersed in a conducting fluid between two horizontal two-dimensional electrodes.
As shown in Fig. 2.20a, above a certain critical amplitude of the electric field, the
charge distribution induced on the surfaces of the spheres get unstable to infinites-
imal fluctuations. The symmetry of charge distribution spontaneously get broken,
which results in an electrostatic torque driving particles’ rotations. Such rotations
are then transformed into translational motion on a two-dimensional electrode.

These rolling colloids interact with each other via both hydrodynamic and elec-
trostatic interactions. These interactions effectively align the particles in polar con-
figurations, and at high enough density they observed macroscopically ordered col-
loidal flocks moving in the same direction. The transition from the disordered phase
to the ordered phase was clearly observed with a coexisting phase at the transi-
tional region and such behavior is nicely explained by theoretical calculations on
the interactions of particles (Fig. 2.20b-e).

However, the number fluctuations obtained in this system were only normal
with the exponent α ∼ 0.5 (Fig. 2.20f). This behavior was also explained by their
theoretical calculation that long-range hydrodynamic interaction had suppressed the
density fluctuations, leading to normal fluctuations. Such an additional long-range
interaction absent in the Vicsek-style models hinders experimental observation of
GNF in the TTR phases.

a b

c d e f

Figure 2.20: (a) Schematics of the mechanism of Quincke rotation and subsequent
self-propulsion on a plane. (b) Dark-field image of a flock of the Quincke rollers in
a channel. Scale bar: 3 mm. (c) Isotropic disordered phase. (d) Banding phase. (e)
Homogeneous ordered phase. Scale bar: 500 µm. (f) Number fluctuations in the
ordered phase like (e) are normal with α = 1. Note that in this plot the variance ∆N2

is shown instead of the standard deviation ∆N . Figures modified and reproduced
from [12].
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2.6.3 Summary on experimental approach

As we have detailed above, there are many studies reporting ‘GNF’ due to their
relatively easy experimental accessibility. However, most of those ‘GNF’ were orig-
inating from clustering or boundary effects, which are not deeply rooted in the
mathematical properties of symmetry broken states. Understanding the theories on
collective motion and implementing theoretical requirement in experimental systems
simultaneously have actually been quite difficult due to many pitfalls. This situation
makes people unfamiliar with the theoretical background confused to think that the
‘GNF’, or sometimes even active matter physics, are trivial and not so interesting.

Vibrated grains are relatively easy realization of active systems and often give
us new insight [14, 15, 30]. However, they always suffer from the small system size
and the boundary effects due to the millimeter-size of the particles. Although corre-
sponding faithful simulations sometimes clearly demonstrate that those experimental
systems can belong to the Vicsek universality class [14,15], the TTR phase is quite
difficult to achieve experimentally.

Bacterial systems do not so much suffer from the small system size or the bound-
ary effects, due to their micrometer-size. However, it is rather difficult to control
their interactions and the existing studies could only achieved clustering phase [3,62]
or turbulent phase [32] without global long-range order.

Motility assays are rather controllable experiments, although they require so-
phisticated experimental techniques. However, for the moment, in all the reported
motility assay systems, filaments at high density often form clusters/bands [4, 6]
or cannot move straight persistently [5]. Therefore they do not possess long-range
order. Furthermore, their interactions are still unclear. For example, there is some
debate on whether hydrodynamic interactions play some role in such motility assay
systems or not.

Quincke rollers are a nice system very close to exhibit a TTR phase, but un-
fortunately their long-range hydrodynamic interactions tamed giant density fluctu-
ations [12].

In summary, it is difficult but important to experimentally realize homogeneous
but highly-fluctuating orientationally-ordered phase with long-range order. The
existence of long-range order should be confirmed before moving on to the discussion
on the genuine GNF in the sense of the Vicsek universality class.

So, then, what kind of experimental system is required for realizing the Toner-
Tu-Ramaswamy phenomena that belong to the Vicsek universality class? We will
answer this question in the next chapter.
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Chapter 3

Collective motion of filamentous
bacteria

In this chapter, we describe our experiments on collective motion of long, filamen-
tous, non-tumbling bacteria swimming in a thin fluid layer. Their ordered phase
gives the first example of the Toner-Tu-Ramaswamy phases, and therefore this ex-
perimental system falls into the Vicsek universality class.

3.1 Introduction

As we have detailed in Chapter 2, standard models on collective motion—the Vicsek
style models [16, 23–27] and corresponding hydrodynamic theories [13, 17, 19–22]—
have revealed their universal properties, which are often distinctively different from
those of equilibrium orientationally-ordered phases. In particular, the spontaneous
breaking of continuous rotational symmetry and the crucial coupling between the
orientation and the density field generate anomalously-large giant number fluctu-
ations (GNF) along with algebraic correlations of orientation and density in their
long-range ordered phases. Such phases are now called ‘the Toner-Tu-Ramaswamy
phases (the TTR phases)’.

Experimental attempts to find the TTR phases have failed because of many
experimental pitfalls and overlooked theoretical requirements as we have detailed
in Section 2.6. Therefore, although there exist a huge number of theoretical and
numerical studies on collective motion which are mostly based on the Vicsek-style
models, their experimental basis has been lacking. The lack of experimental evidence
for such universality has also hindered the understanding of necessary/sufficient
conditions for realizing the Toner-Tu-Ramaswamy phenomena in real systems.

Here we study the collective dynamics of elongated microswimmers in a very thin
fluid layer between two walls by devising long, filamentous, non-tumbling bacteria.
The strong confinement and the high aspect ratio of cells induce weak nematic
alignment upon collision, which, for sufficiently high density of cells, gives rise to
global nematic order. This homogeneous but highly-fluctuating phase, observed
on the largest experimentally-accessible scale of millimeters, exhibits the properties
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predicted by standard flocking models, especially the Vicsek-style self-propelled rods
(polar particles with nematic interactions) [26]: true long-range nematic order and
non-trivial GNF. Therefore, our experimental system has turned out to fall into the
Vicsek universality class, and gives the first unambiguous example exhibiting the
Toner-Tu-Ramaswamy phase.

3.2 Strategy: use of filamentous cells in confine-

ment

The collective behavior of bacteria is a vast topic of research with obvious and crucial
biological interest. Bacteria have also been widely used by physicists as attractive
active matter systems because their small size enables large system size experiments
far away from boundaries. Both crawling/sliding and swimming bacteria have been
used, but so far, no very long-range ordering/collective motion has been observed
as we have detailed in Section 2.6. Sliding myxobacteria, for example, align, collide
and form very dense ordered clusters, but these clusters are of limited size, being
easily destroyed upon collision and moving in various directions [62]. Bacillus subtilis
swimming/swarming on agar surfaces form loose ordered clusters with anomalous
density fluctuations, again of limited size and moving in various directions [3]. Dense
suspensions of swimming bacteria typically give rise to ‘bacterial turbulence’ [3,32,
35–37, 65], i.e. a chaotic regime with a dominant length scale of about 10-20 cell
lengths. We will detail such turbulent states, ‘active turbulence’, in Chapter 4.

Two factors are often invoked to explain this situation:

• Long-range hydrodynamic interactions are theoretically known to destabilize
ordered states [38,40–42].

• The aspect ratio of cells is too small to lead to strong alignment upon collision
[32].

As for the first factor, the hydrodynamic flow field created by a single bacterium
can be nicely approximated by flow created by a force dipole [66]. Bacteria swim
by pushing fluid behind them, and accordingly their heads also push fluid in front
of them. Therefore, a single bacterium exerts two forces in opposite directions,
and it can be represented by a force-dipole directing outward. In this sense, bac-
teria are so-called ‘pusher-type microswimmers’. Dipolar flow created by bacteria
are schematically shown in Fig. 3.1. If two bacteria are aligned in a parallel con-
figutation, they push each other by their dipolar flow and such a configuration gets
unstable, leading to bended configurations as shown in the right side of Fig. 3.1.
Hence, when hydrodynamics can play significant role in bacterial dynamics, glob-
ally ordered states cannot develop and what we observe is turbulent states without
long-range order [32,35–37,65]. These explanations were also confirmed by numeri-
cal simulations on Stokesian dynamics [38,40–42,67].

As for the second factor, even without hydrodynamics, it is still difficult to
achieve long-range ordered states. As we have seen already, bacterial experiments
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on agar plates, in which bacteria are gliding/crawling and hydrodynamics does not
apparently play significant roles, also cannot exhibit long-range order [3, 62]. In
numerical studies [32,63] on self-propelled rods with exclusive volumes and without
hydrodynamics, they explored how aspect ratios affect macroscopic behavior. They
found that, even without hydrodynamics, self-propelled rods with aspect ratio ≲ 14
cannot develop global order and result in turbulent states at high density. However,
they achieved to observe laning states in which counter-going lanes coexist with
aspect ratios ≳ 14. Although these states are different from the ordered phase
observed in the Vicsek-style models and corresponding field equations1, we can learn
that sufficiently high aspect ratios are required for attaining global order. Commonly
used bacteria cannot reach such high aspect ratios. Typical aspect ratios of bacterial
bodies are∼ 3 for E. coli and∼ 6 for B. subtilis, which nicely correspond to turbulent
regimes in numerical studies [32,63].

To prevent these two pitfalls, we devised a system of filamentous cells of Es-
cherichia coli bacteria [68,69] confined between two solid walls with a small, micro-
meter-sized gap. Confinement suppresses fluid flow created by bacteria and thus
prevents instability of the ordered states. By making filamentous cells of E. coli, we
achieved higher aspect ratios.

instability

Figure 3.1: Flow field created by bacteria destabilize aligned configurations of bac-
teria. This instability prevents dense bacterial suspension from exhibiting global
order, resulting in turbulent states.

1This is because particles cannot overlap in this model due to excluded volume but can overlap
in the Vicsek-style point-like particles models.
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3.3 Experimental procedure & Setup

3.3.1 Preparation of non-tumbling filamentous cells

The filamentous bacteria were obtained by incubating usual E. coli cells under the
influence of the antibiotic ‘cephalexin’ (20 µg/ml), which allows cell growth but
inhibits cell division.

To avoid complicated dynamics and possible artifacts originating from chemo-
tactic behavior, we used a non-tumbling chemotactic mutant strain of Escherichia
coli (RP4979, ∆cheY, [70]) that had been transformed to express yellow fluorescent
protein (plasmid: pZA3R-YFP) (Fig. 3.2). The plasmid used here contains a gene
for resistance against an antibiotic chloramphenicol. The strain RP4979, unlike a
wild type stain RP437, lacks CheY protein responsible for flagella rotational switch.
This CheY deleted mutant exclusively rotates flagella in counterclockwise (CCW)
direction and swim persistently without tumbling.

wild-type: run & tumble chemotactic mutant: smooth swimming

Figure 3.2: Schematic figures of run&tumble motion of wild-type bacteria and
smooth swimming of chemotactic mutant bacteria. Usual bacteria which are wild-
type for chemotaxis exhibit so-called run&tumble motion. At tumbling phases, they
change the directions of motion in order to climb up/down chemical gradients. On
the other hand, chemotactic mutant bacteria like the strain PR49479 used in our
study do not exhibit tumbling motion and just swim smoothly.

The bacteria taken from a frozen stock were grown overnight for 16 hours in
Luria Broth (LB) with a selective antibiotic (chloramphenicol 33 µg/ml) shaken at
200 rpm at 30 ◦C. Then this culture was diluted 100-fold in 10ml of Tryptone Broth
(TB, 1 wt% tryptone and 0.5 wt% NaCl) with the selective antibiotic (chloram-
phenicol 33 µg/ml) and incubated in a 125 ml flask shaken at 200 rpm at 30 ◦C.
We waited bacteria to reach the exponential growth phase. After 2 hours, the an-
tibiotic cephalexin was added at the final concentration 20 µg/ml and we continued
growing bacteria for another 3 hours to obtain filamentous cells (Fig. 3.3). Thus we
obtained sufficiently dense suspensions of filamentous cells with both high motility
and moderate body lengths.

The filamentous cells have flagella all around their bodies at the same density as
usual bacteria, and are still able to swim [68, 69]. Although lengths of cells can be
controlled by varying the duration of incubation after adding the antibiotic, their
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Figure 3.3: Bright field images of (a) normal cells and (b) filamentous cells. Contrast
and brightness are adjusted for visibility. Lengths of normal cells are ∼ 2–3 µm.
After adding the antibiotic ‘cephalexin’, cells start to elongate and their lengths can
reach more than 20–100 µm. Diameters of bacteria are smaller than 1 µm, and
around 0.8 µm.

swimming speed gradually decreases with their lengths [69,71]. We chose moderate
body lengths of ∼ 19 ± 5 µm (±: standard deviation) to obtain cells with both
sufficient nematic interactions and sufficient swimming speed (Fig. 3.4). Thus the
filamentous cells above have aspect ratios of ∼ 25.

To concentrate the obtained suspension, 1ml of the suspension was mildly passed
through a membrane filter with 0.22-µm pores (Merck Millipore, Isomer GTBP01300)
and we retrieved the concentrated suspension from the membrane2.

3.3.2 Observation devices

The suspension of filamentous cells, after concentration, was placed on a cover-
slip (MATSUNAMI, thickness 0.12-0.17 mm) and then sealed with a polydimethyl-
siloxane (PDMS) plate without any spacers to make the gap as small as possible
(Fig. 3.5). The PDMS plate was patterned with some wells which the excess fluid
can escape into and can work as bacterial reservoirs (Fig. 3.6). Well patterns on
the PDMS plate were fabricated by a standard soft-lithography technique using a
photoresist SU-8. We thus achieved a gap of about ∼ 2 µm. We used PDMS be-
cause it transmits oxygen required to sustain higher motilities of bacteria. Thanks

2We used a membrane filter, because concentrating suspensions by centrifugation does not work
well. Centrifugation often damages such long filamentous bacteria, leading bacteria to die or to be
almost non-motile.
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Figure 3.4: Distribution of bacterial lengths before (blue) and after (yellow) one
typical experiment. The average lengths were 18.86± 0.21 µm and 18.83± 0.21 µm
(mean ± standard error) respectively. Thus there is no detectable change of bac-
terial lengths during the experiment. Lengths of bacteria were measured by fitting
polygonal lines with ImageJ.

to the permeability of PDMS to oxygen, typical experiments could be run for about
30 minutes without discernible changes in the behavior of the cells. Prior to putting
the suspension onto the coverslip, the coverslip and the PDMS plate were soaked
in 1 wt% bovine serum albumin (BSA) solution for more than 1 hour in order to
prevent the bacteria from sticking on the surfaces. To reduce the gap width, we
slightly pressed the PDMS plate. Such strong confinement contributed to suppress
the destabilizing fluid flow created by bacteria due to no-slip boundary conditions
on the walls.

The confinement also helped preventing bacterial circular motion near solid walls
[71] as depicted in Fig. 3.7. Because bacteria swims by rotating their flagella and
their chiral symmetry is broken, bacteria exhibit circular swimming trajectories
near a single wall due to hydrodynamic coupling between their chiral propulsion
mechanism and the solid wall. However, when bacteria are sandwiched between
two solid walls with a sufficiently small gap width, the hydrodynamic effects by two
walls compensate each other [72], enabling our bacteria to swim straight with some
rotational diffusion over the largest distances (millimeters) considered below. Note
that the gap width required for straight motion is larger for longer bacteria, so the
use of the filamentous cells made it much easier to design our experimental setup.

After waiting for initial fluid flow —triggered when introducing the suspension—
to be suppressed, we captured movies by a CMOS camera (Baumer HXG40, 2048×
2048 pixels, 12 bit) at 5 Hz through an inverted fluorescent microscope (Leica DMi8
with Adaptive Focus Control) with an objective lens (HC PL FLUOTAR, 10×,
NA=0.30). The area of the field of view was 1.12× 1.12 mm2, a size limited mainly
by our will to be able to distinguish individual cells on the recorded images for
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Figure 3.5: Schematic figure of experimental setup. Concentrated suspension of
filamentous bacteria was placed on a coverslip and then a PDMS plate was put onto
the suspension. Thanks to the permeability of PDMS to oxygen, sufficiently high
motility of cells was kept during experiments. Well patterns on PDMS were not
depicted for clarity.
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observation area
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Figure 3.6: Schematic figure of well patterns made on PDMS. White circles are
wells with the depths of ∼ 10 µm. Wells are made on the PDMS plate to work as
bacterial reservoirs that diminish boundary effects. Observation of ordered states is
done in between these well patterns.

insuring reliability of our analysis, especially for analysis on GNF. The microscope
was equipped with an adaptive autofocusing system to reduce unfavorable intensity
fluctuations. The duration of the analyzed movies was 400 seconds (2000 frames)
and there was no detectable change in bacterial lengths during the experiments as
seen in Fig. 3.4. Hence this fact of no cell elongation together with inhibition of
cell divisions insures that there is neither gradual increase of the total number of
bacteria nor the area fraction, although in other usual bacterial experiments the
number of bacteria doubles in approximately 20 minutes in the best conditions.
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Figure 3.7: Schematic figures of circular swimming motion near a single wall and
straight swimming motion between two walls with sufficiently small gap. Bacteria
near a single wall exhibit circular trajectory due to hydrodynamic coupling between
their rotating flagella/bodies and the solid surface. However, when they are confined
between two walls with a sufficiently small gap width, such effects are compensated
and they swim straight.

Here we note the importance of the choice of the magnification above. Because we
are trying to extract large-scale long-time properties precisely from the fluorescent
images, we need to probe as large area as possible but the obtained images have to be
reliable for estimating both nematic order and number fluctuations simultaneously3.
As a result, we chose the above setup in accordance with the following constraints:

• Lower magnification observations require a stronger excitation light source in
fluorescent microscopy. Such strong excitation light harms the bacteria and
diminishes the duration of the observation.

• Otherwise we need to increase the sensitivity (gain) of the camera, which
results in stronger noise. However, we need to eliminate such noise as much as
possible to see the reliable number fluctuations, because such noise can also
contribute to unwanted fluctuations and spurious GNF.

• The use of lower magnification objectives also reduces spatial resolution. This
lead to blurred or dilated images of bacteria, and, consequently, our bacterial
counting method using binarization (explained below) can become unreliable.

3Because we are trying to find GNF in the true long-range ordered states, both order parameter
and number fluctuations have to be reliably quantified in the same images.



3.4. Analysis & Results 49

3.4 Analysis & Results

3.4.1 Overview of the system’s behavior

In experiments at low density of cells, or with a larger spacing (∼ 10 µm) between the
two surfaces, cells do not align enough to order on large scales (Fig. 3.8a,b). But at
high concentration (average area fraction∼ 0.25), their collisions are so frequent that
global nematic order emerges in spite of the weakness of alignment in terms of binary
collisions. This ordered phase is strongly fluctuating but statistically homogeneous,
without clusters. Bacteria then swim in opposite directions in approximately equal
numbers (Fig. 3.8c,d). This nematic phase has turned out to exhibit long-range
order and giant number fluctuations, which are consistent with the predictions on
the Toner-Tu-Ramaswamy phase of the Vicsek-style self-propelled rods model.

3.4.2 Collision statistics

To understand interactions of bacteria in this system, we first quantified their binary
collisions. Our setup was thin enough to make it difficult for bacteria to cross each
other without collisions. Some clear events of ‘nematic alignment’ upon collisions
are shown in Fig. 3.9. We investigated binary collisions using movies taken at a
relatively low density of bacteria and quantified interactions due to collisions. To
decrease the number of multi-particle collisions, suspension of filamentous bacteria
prepared in a way described above was diluted 3-fold in fresh Tryptone Broth with
chloramphenicol. This diluted suspension was sandwiched between a coverslip and
a PDMS plate with a small gap in the same manner as in the experiment for the
global nematic phase, which we will describe later. We detected and tracked the
center of mass of each bacterium from binarized images. We note that the movies for
collision analysis here were captured through another microscope (Nikon ECLIPSE
TE2000-U) with different objective lenses (Nikon Plan Fluor ELWD, 40×, NA=0.60
for Fig. 3.9, and Nikon Plan Fluor, 10×, NA=0.30 for Figs. 3.10&3.11) .

Binary collisions were analyzed with binarized images. We defined the begin-
ning of a collision as a merger event of two white objects in the binarized images
that were isolated in the previous frame, and the end of the collision as a splitting
event of that connected object. We inspected thousands of automatically detected
merger events by eye and excluded multi-particle collisions. Thus we obtained 2204
collision events with accurate tracking. To quantify binary collisions, we calculated
an incoming angle θin and an outgoing angle θout for each collision event. θin and
θout are defined as angles formed by instantaneous velocity vectors of two colliding
bacteria just before and after the collision events respectively (Fig. 3.10). The ve-
locity vectors are calculated from differences of positions in two successive frames
separated by 0.2 seconds. Collision events with durations longer than 15 frames (3
seconds) are defined as complete polar alignment events (θout = 0◦). All the ana-
lyzed data are shown in Fig. 3.11. Red data points in Fig. 3.11 are mean values and
standard deviations of θout calculated via binning θin at every 10◦. We note that
the number of observed events in acute angles is biased to be smaller than that in
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Figure 3.8: Typical snapshots. (a) Zoom of the disordered phase at low density in a
2-µm thin experiment. (b) Zoom of the disordered phase at high density in a 10-µm
thick experiment. (c) Zoom of the nematically-ordered phase at high density in a
thin experiment with superimposed, manually tracked, 10-second trajectories of a
few cells. (d) Full field of view in the same experiment as in (c).
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time
0 s 0.2 s 0.4 s 0.6 s

20 µm

Figure 3.9: Aligning collision events between two bacteria. Top: acute angle collision
leading to alignment. Bottom: obtuse angle collision leading to anti-alignment.
Dashed line: mean outgoing angle. The mean incoming angle is not shown for
visibility, as it is only slightly different from the outgoing angle.

obtuse angles, because durations of collisions with acute angles are usually longer
and the probability of ending up multi-particle collisions is higher.

As we can see from Fig. 3.11, on average, two bacteria incoming at some acute
(obtuse) angle θin end up parallel (antiparallel). Overall, however, alignment is weak
and many events do not result in such ideal nematic alignment with the outgoing
angle θout ≃ 0◦ or 180◦. In Fig. 3.11b, we show that the difference between in-
coming and outgoing angles ∆θ = θout − θin is on average negative for θin < 90◦

and positive for θout > 90◦, which are characteristic of nematic alignment. We note
also that our setup allows a significant fraction of events where bacteria cross each
other undisturbed (Fig. 3.12a). (On the other hand, we recorded no events where
alignment occurs without collision, ruling out long-range hydrodynamic effects.) We
believe this makes our system even closer to the Vicsek-style models where strong
noise allow for non-alignment or even disalignment, which is impossible in strictly
two-dimensional experiments [3,32,62]. Such ‘quasi-two-dimensionality’ might play
a crucial role in our experiment.
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20 µm

time
0 s 1 s 2 s 3 s

20 µm

Figure 3.10: Trajectory of colliding two bacteria and schematic definitions of the
incoming angle θin and the outgoing angle θout. Trajectories of typical collision events
with parallel alignment (top) and anti-parallel alignment (bottom) are superimposed
on the experimental movies.
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Figure 3.11: Statistics on binary collisions show nematic tendency. (a) Incoming
angles θin vs outgoing angles θout. (b) Incoming angles θin vs difference between
incoming and outgoing angles ∆θ = θout − θin. Green: experimental data points.
Red points: mean values and standard deviations calculated via binning θin at every
10◦. Blue lines: non-interaction lines to guide the eye. All the 2214 analyzed binary
collision events are shown in (a), but events with |∆θ| > 40◦ are not shown in (b)
for visibility.
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Figure 3.12: Trajectories of (a) a collision event with almost no interaction and (b)
a rare event with an obtuse incoming angle θin > 90◦ and an acute outgoing angle
θout < 90◦. Such non-interacting/disaligning events make the system even similar
to the Vicsek-style models.
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3.4.3 Image processing

Before moving on to analysis on number fluctuations and nematic order, we cali-
brated spatial inhomogeneity of epifluorescence illumination in acquired images in
the following procedure as shown in Fig. 3.13.

We subtracted time-averaged dark current images from the obtained images of
fluorescent E. coli (Fig. 3.13a) and divided them by fluorescent images of homoge-
neous fluorophore (fluorescein) (Fig. 3.13b) to calibrate the spatial inhomogeneity
of the excitation light source. The dark current images were also subtracted from
the fluorescent images beforehand. In short,

(calibrated image) =
(fluorescent E. coli image)− (dark current image)

(fluorophore image)− (dark current image)
. (3.1)

Thus we obtained intensity-calibrated images (Fig. 3.13c).
To ensure our analysis methods, we applied the same image processing proce-

dures and the same analysis to both the ordered phase (Fig. 3.8d) and the disordered
phase (Fig. 3.14).

3.4.4 Existence of true long-range order

Because we have obtained the ordered phase, we would like to quantify number fluc-
tuations and to know whether the system exhibits giant number fluctuations (GNF)
or not. However, as we have stressed many times, the genuine GNF associated with
the Nambu-Goldstone modes in broken symmetry states predicted by Toner, Tu,
Ramaswamy, et al. should be discussed after confirming the existence of long-range
order.

Since it is very difficult to determine the polarity θ of each bacterium from the
acquired images at such large concentration, a direct estimate of the nematic order
parameter Q = |⟨e2iθ⟩| previously used even in experiments [11] is out of reach,
and we instead introduced the ‘structure tensor’ method used previously, e.g., for
measuring the orientation of collagen fibers in tissues [73]. Specifically, given an
intensity-calibrated image f(x, y), one calculates the following tensor over a given
region of interest (ROI):

J =

[
⟨∂xf, ∂xf⟩ ⟨∂yf, ∂xf⟩
⟨∂xf, ∂yf⟩ ⟨∂yf, ∂yf⟩

]
(3.2)

where ⟨g, h⟩ =
∫∫

ROI
g h dx dy. The eigenvalues λmin and λmax of J then give an

estimate of the scalar nematic order parameter, called the ‘coherency parameter’,

C ≡ λmax − λmin

λmax + λmin

, (3.3)

whereas the eigenvector corresponding to λmin gives the orientation of the global
nematic order in the ROI.

We have measured the nematic order parameter ⟨C⟩ for square ROIs of various
area S, where the average is taken over both space and time. We changed the box
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Figure 3.13: (a) Raw image after the dark current subtraction. Intensity is adjusted
in the range [0, 1] and contrast is enhanced for visibility. This image corresponds
to the numerator in Eq. (3.1). (b) Intensity distribution of excitation light source
for fluorescent microscopy. Fluorescence intensity of homogeneous fluorophore was
obtained by the 12-bit camera and then after dark current subtraction it is used
as the denominator of Eq. (3.1). (c) Calibrated image. Intensity is adjusted in the
range [0, 1] and contrast is enhanced for visibility. (d) Binarized image used for
analysis on number fluctuations.
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50 µm

Figure 3.14: Whole field of view of the disordered phase at low density. This movie
was used for verifying our analysis methods and for comparison with the ordered
phase.
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size S and moved the boxes in such a way that each box does not overlap each other
in order to ensure that all the pixels are used only once for the calculation. In the
disordered phases observed either at low density or at high density but in a thicker
layer of fluid, we find that ⟨C⟩ ∼ 1/

√
S, the same behavior as the conventional

nematic order parameter Q = |⟨e2iθ⟩| in the case of finite spatial correlation length
(Fig. 3.15). In the ordered regime observed at the high density and with thin
apparatus, on the other hand, we observe no topological defects and a very slow
decay of the nematic order parameter (red points in Fig. 3.15a). The nematic order
persists more than millimeters. As shown by the curvature of the log-log plot in
Fig. 3.15b, this decay is slower than a power law. This is the signature of true long-
range order, and is distinctively different from short-range exponential correlations
found in the coexisting clustering phases of the previous bacterial experiments [3,62].
As a matter of fact, an excellent fit of the data is an algebraic approach to some finite
asymptotic value, ⟨C⟩ − C∞ ∼ Sβ, with C∞ = 0.505 and β = −0.66 (Fig. 3.15b).
Similar finite-size scaling was found in the Vicsek-style self-propelled rods model
studied in [26].

From the discussion above, we can conclude that nematic order persists even in
the large system size limit, which means the existence of true long-range order4.

3.4.5 Existence of giant number fluctuations

Because we have already checked that the ‘ordered’ state of our experimental system
is indeed deep in the ordered regime with true long-range order without any clusters,
now we can safely discuss GNF genuinely in the sense of the Vicsek universality class.

To quantify number fluctuations, instead of directly detecting each bacterium
(again a difficult task), we binarized our images using the commonly-used Otsu’s
method [74] and counted, in each square ROI centered at the field of view, the num-
ber of pixels N(t) covered by bacteria at time t in the same way as in Fig. 2.5a. We
calculated a binarization threshold for each frame by applying Otsu’s method with
MATLAB and used their average value. The boxes used for calculating N(t) were
all centered at the field of view in order to avoid incorporating the possible spatial
inhomogeneity of the setup into uninteresting ‘number fluctuations’. The binariza-
tion process has the advantage of correcting for the slight differences in intensity
resulting from variations of the height of bacteria or fluctuations of the excitation
light intensity (Fig. 3.13d)5. On the other hand, it leads to small systematic un-
derestimates in the case of overlapping cells. In this analysis, a single filamentous
bacterium corresponds to approximately N ∼ 100 pixels.

We calculated the standard deviations ∆N =
√

⟨(N(t)− ⟨N⟩)2⟩ (all averages

4While, of course, on much larger (inaccessible) scales, this order may break down due to
experimental limitations such as imperfectness or boundaries of our setup, our observation done
in area with true long-range order far away from boundaries can extract bulk properties that we
are interested in.

5When we did not apply binarization and just used calibrated intensity, we could not obtain
normal fluctuations with the exponent α = 0.5 but spurious giant fluctuations with α > 0.5 even
in the disordered state.
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Figure 3.15: (a) Log-log plot of nematic order parameter ⟨C⟩ vs area S of the ROI.
Red circles: the globally nematically ordered state at high density in a very thin
sample shown in Fig. 3.8c,d. Blue squares: the disordered state at low density
shown in Fig. 3.14. Cyan solid line: slope of exponent −0.5 as a guide to the eye.
The data of the disordered state deviate from ⟨C⟩ ∝ 1/

√
S in small S because

the number of ROIs without any bacteria (C ≃ 0) increases. The nematic order
⟨C⟩ stays at high values over the whole field of view in the ordered state (the red
data). (b) Same data as in (a) for the ordered state in a magnified range on the
log-log scale. The last 3 points were excluded from the fit because they are not
reliable due to longer correlation times and inhomogeneities at such large-scales.
Inset: same data from which the estimated asymptotic value of C∞ = 0.505 has
been subtracted (log-log scale). The curvature in this log-log plot indicates slower
decay than a power law. Magenta solid lines: fit ⟨C⟩ = C∞ + kSβ with C∞ = 0.505,
β = −0.66, and k = 4.6. Error bars in (a) and (b): standard error. (c) (d)
Scaling of number fluctuations ∆N vs ⟨N⟩, and ∆N/

√
⟨N⟩ vs ⟨N⟩ on the log-log

scale respectively. Blue squares: normal fluctuations in the disordered, low-density
phase. Red circles: anomalous, ‘giant’ fluctuations recorded in the high-density
nematically-ordered state of Fig. 3.8c,d. ∆N of red data points in (c) are multiplied
by 2 and shifted to avoid overlapping with blue data points. Cyan dashed line:
normal fluctuations ∆N ∝ ⟨N⟩0.5 as a guide to the eye. Magenta dashed line:
fitted curve ∆N ∝ ⟨N⟩0.63 for the ordered state. A single filamentous bacterium
corresponds to approximately N ∼ 100 pixels.
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over time) for square ROIs of various sizes. The results are shown in Fig. 3.15c,d.
In the disordered phase, we estimate its number fluctuations ∆N ∼ ⟨N⟩α with
the exponent α = 0.511(12) from linear regression analysis. Here the uncertainty
means 95 % confidence level estimated from Student’s t-test. This is consistent
with normal fluctuations ∆N ∼ ⟨N⟩0.5 as we expected, which ensures the validity
of our experimental analysis. On the other hand, in the dense nematically-ordered
phase, we estimate ∆N ∼ ⟨N⟩α with α = 0.632(14) > 0.5 (the uncertainty: 95 %
confidence level), i.e. anomalous, giant number fluctuations.

3.4.6 Interpretation on true long-range order and GNF

So far, we have confirmed that our experimental system exhibit giant number fluc-
tuations (GNF) in the long-range ordered nematic phase, which gives the first ex-
perimental realization of the Toner-Tu-Ramaswamy phases. However, because we
estimated the exponent α in our system by binarization and counting the pixels cov-
ered by bacteria, the estimated exponent α = 0.632(14) may not be so precise and
cannot simply be compared with theoretical predictions. The important point here
is that we obtained the statistically significantly larger exponent α in the ordered
phase than in the disordered phase over 3-4 decades.

Our system can be seen as a collection of self-propelled rods without velocity
reversals that align nematically. It should thus be compared a priori to the Vicsek-
style self-propelled rods model (polar particles with nematic interactions) studied
in [26]. Indeed, this model was numerically shown to have true long-range nematic
order over all numerically tested scales, as well as GNF with a scaling exponent
α ≃ 0.75. Our experimental findings are thus in full qualitative if not quantitative
agreement with [26]. Our estimate of α is somewhat smaller than that of this
numerical study, but this could be ascribed to excluded volume effects, which, after
all, rule most if not all interactions. Excluded volume gives finite upper bound to
local density, although local density in the Vicsek-style models can take arbitrary
positive values due to the absence of excluded volume of point-like particles.

Furthermore, the theoretical predictions are also not exact. As we have detailed
in Chapter 2, the value of α in Toner-Tu-Ramaswamy orientationally-ordered phases
is still the matter of debate, even in the case of polar flocks in the original Vicsek
model. The value predicted by the Toner-Tu theory in 1995-1998 [17, 19], α = 4

5

in spatial dimension d = 2, is not exact, as originally claimed by Toner’s later
reanalysis in 2012 [20], and it was only approximately confirmed numerically on the
original Vicsek model in [23, 52]. For ‘pure’ active nematics (apolar particles with
fast velocity reversals), the latest numerical estimate of α is again around 4

5
[27], in

contradiction with the linear hydrodynamic theory by Ramaswamy et al. [13]. Here
and in [26] a slightly smaller value of α was again found.

3.4.7 Correlation functions

To further confirm theoretically predicted properties of the Toner-Tu-Ramaswamy
phases, we moved on to compare correlation functions in our system with those of
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theoretical studies. As we have seen in Section 2.3.2, the Toner-Tu theory predicts
long-range algebraic correlations with characteristic exponents associated with the
Nambu-Goldstone mode. Unfortunately, to the best of our knowledge, there are still
no analytical results on hydrodynamic equations for the Vicsek-style self-propelled
rods, whose symmetry is the same as that of our experimental system. However,
we can still try to compare our results with the predictions by the Toner-Tu theory,
because both the Vicsek model and the self-propel rods model have true long-range
order in their ordered states and we can expect similar phenomenology (see Fig. 2.11
and Section 2.4.2). Again, we still need to be careful that the Toner-Tu theory is not
exact, because the derived analytical results are based on the equations without the
anisotropic pressure P2 term that have to be considered as we noted in Section 2.3.1
[20].

Correlations of director fluctuations

We measured correlations in the director n of the nematic phase in our experiment.
From the structure tensor analysis, we have the local director field n and thus we
can calculate the two-point correlation function [75] of director fluctuations δn⊥ =
n− n0:

Cδn⊥(R) := ⟨⟨δn⊥(r, t)δn⊥(r +R, t)⟩r⟩t , (3.4)

where n0 is the global director obtained by spatially averaging n and δn⊥ is a signed
norm of δn⊥, which is shown in Fig. 3.16a,b. Details of culculation of Cδn⊥(R) can
be found in Appendix Section 3.6.2. The counterpart of this correlation function of
director fluctuations δn⊥(t, r) in the Toner-Tu theory is the correlation function of
velocity fluctuations CC(R) defined in Eq. (2.22), and the prediction in d = 2 was
given in Eq. (2.36) as,

CC(R) = ⟨v⊥(r +R, t) · v⊥(r, t)⟩ ∝

{
R2χ

⊥ = R
−2/5
⊥ = R−0.4

⊥
R

2χ/ζ
∥ = R

−2/3
∥ = R−0.667

∥ ,
(3.5)

As we have already remarked on analysis with the finite field of view in Sec-
tion 2.3.3, the constraint ⟨δn⊥(t, r)⟩r = 0 makes the experimentally estimated corre-
lation function Cδn⊥(R) become negative at certain distances. This makes extracting
asymptotic algebraic behavior from experimental data quite difficult. Nonetheless,
we have strived to extract its asymptotic behavior and the exponents. In both lon-
gitudinal and transverse directions against n0, Cδn⊥(R) decays algebraically from
the cell length of ∼ 20 µm up to the scale where the inhomogeneities of the setup
and such effects of the finite field of view are more pronounced (Fig. 3.16b). Linear
fitting on the log-log scale gives us the estimates of the exponents,

Cδn⊥(R) = ⟨⟨δn⊥(r, t)δn⊥(r +R, t)⟩r⟩t ∝

{
R

−0.405(14)
⊥

R
−0.333(6)
∥ ,

(3.6)

where fitting ranges are [60 µm, 131 µm] for the transverse direction and [60 µm, 250 µm]
for the longitudinal direction respectively, and the uncertainty means 95 % confi-
dence level estimated from Student’s t-test.
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Figure 3.16: (a) Colormap of the correlation function Cδn⊥(R). The director n0

is aligned to the x-direction. (b) Log-log plot of the correlation function Cδn⊥(R).
Blue circles: the transverse direction (perpendicular to n0). Red squares: the lon-
gitudinal direction (along n0). Linear fitting gives the exponent −0.405(14) for
transverse direction (cyan solid line) and −0.333(6) for the longitudinal direction
(yellow solid line) respectively. (c) The Fourier transformed correlation function of
director fluctuations C̃δn⊥(q) in the transverse direction. It exhibits algebraic be-
havior over a wide range. Red line: the result of linear fitting gives the exponent
−1.94(11). Wavenumber q⊥ is not multiplied by 2π.

By equating Eqs. (3.5) and (3.6), we obtain experimental estimates of the expo-
nents χexp and ζexp as,

2χexp ∼ −0.405(14) ⇒ χexp ∼ −0.202(7) (prediction: χ = −1/5 = −0.2), (3.7)

2χexp

ζexp
∼ −0.333(6) ⇒ ζexp ∼ 1.22(5) (prediction: ζ = 3/5 = 0.667). (3.8)

The experimentally obtained exponent χexp is nicely consistent with the predicted
value in the Toner-Tu theory [17,19]. However, the anisotropy exponent ζexp deviates
from the predicted value. Therefore, the correlations of director/velocity fluctuations
in our experimental system and in the Toner-Tu theory match well only in the
transverse direction.

We also investigated this correlation function in the Fourier space,

C̃δn⊥(q) =

∫
d2r Cδn⊥(R)eiq·R. (3.9)

From the experimental data in the transverse direction, we obtained an algebraic
correlation as shown in Fig. 3.16c. We applied linear fitting in q⊥ < 0.03 µm−1 and
obtained the scaling,

C̃δn⊥(q) ∼ q
−1.94(11)
⊥ , (3.10)

where the uncertainty means 95 % confidence level estimated from Student’s t-test.
The behavior of C̃δn⊥(q) should be compared with the correlation function in

the Toner-Tu theory defined in Eq. (2.29) and predicted for d = 2 in Eq. (2.37) as,

Cij(q) = ⟨v⊥i (q, t)v⊥j (−q, t)⟩ ∼ q1−d−ζ−2χ
⊥ = q

−6/5
⊥ = q−1.2

⊥ . (3.11)
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The experimentally obtained exponent, −1.94(11), is significantly different from the
Toner-Tu prediction, −1.2. However, if we substitute the experimentally obtained
values χexp and ζexp into the exponent in Eq. (3.11), we obtain

1− d− ζexp − 2χexp = −1.81(5), (3.12)

which overlaps with the experimentally obtained exponent −1.94(11) of C̃δn⊥(q)
within the range of uncertainty. This relation, derived under some assumptions by
Toner and Tu, is a kind of hyperscaling relation among scaling exponents. Our
experimental data suggest the possibility of validity of this hyperscaling relation,
although there is no rigorous proof in the Tone-Tu theory and our system’s symmetry
is different from that of the Toner-Tu theory.

We also note that both the linear approximation of the Toner-Tu equations
[19,21] and the linear theory on hydrodynamic equations of active nematics (apolar
particles with nematic interactions) by Ramaswamy et al. [13,21] yield the following
scalings on Cij(q) and C̃δn⊥(q) respectively,

Cij(q) ∼ q−2, C̃δn⊥(q) ∼ q−2. (3.13)

The same ∼ q−2 behavior can also be observed in equilibrium nematic liquid crystals
[75]6. In this sense, our global nematic phase with fluctuations C̃δn⊥(q) ∼ q

−1.94(11)
⊥

might be said to be ‘idealy nematic’. Nonetheless, we need to be careful about
whether the exponent of our system is different from −2 or not, because this ex-
ponent should be connected to other exponents such as α for number fluctuations.
However, unfortunately, there is no analytical calculation on correlation functions
in active nematic phases except for the linear theory for active nematics [13], so we
have to develop such theories in the future.

Density correlation functions

We calculated equal-time density correlation functions, or the structure factors S(q).
The corresponding definitions and predictions in the Toner-Tu theory were given in
Eqs. (2.28) and (2.38) as,

Cρ(q) = S(q) = ⟨|ρ(q, t)|2⟩ ∼ q1−d−ζ−2χ
⊥ = q

−6/5
⊥ = q−1.2

⊥ . (3.14)

Because we cannot know the exact positions and the exact density field ρ of bacteria
from the images in such high concentration, we estimated the local density from the
binarized images, which are the same images used for the GNF analysis above.
From each binarized black/white (0 or 1) image BW(r, t) at time t, we obtained an
estimate of the equal-time density correlation functions in the Fourier space as,

C̃ρ(q) ∝ C̃BW(q) =

⟨∣∣∣∣∫ BW(r, t)e−iq·rdr

∣∣∣∣2
⟩

t

, (3.15)

6In equilibrium liquid crystals and in active nematics, this ∼ q−2 fluctuations of director arising
from the Nambu-Goldstone mode break the global order, leading to only quasi-long-range order.
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where the constant of proportionality is required due to the binarization process.
In the actual computational process, in order to reduce artifacts caused by non-
periodicity of BW(r, t) in the finite field of view, we first removed the DC (q = 0)
components by subtracting the mean value of the images and then multiplied a
window function to BW(r, t) before applying Fast Fourier Transform. As a window
function, we chose the two-dimensional hanning window Hann(x, y) defined over
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 as,

Hann(x, y) = 0.5(1− cos 2πx)× 0.5(1− cos 2πy). (3.16)

After obtaining the Fourier transform, we corrected their amplitude because it is
modified by multiplication with the window function.

As we have explained in Section 3.4.5, calibrated fluorescent images f(r, t) of
bacteria still contains unwanted intensity fluctuations. Therefore, we used binarized
images as the estimate of the bacterial density field. Of course, this binarization
process dismisses overlapping bacteria and underestimates the local density, so this
approximation might lead to wrong results on the density correlation functions at
length scales comparable to the size of a single bacterium. However, this approxima-
tion cannot affect the density correlation at the large scale where we are interested
in. We have checked with our experimental data that the binarization process af-
fects only at short length scales (large wavenumbers) not at large length scales (small
wavenumbers).

The calculated C̃BW(q) for both the ordered state and the disordered state is
shown in Fig. 3.17. In the disordered state, C̃BW(q) both the x- and the y-directions
in the images exhibit the same behavior due to the isotropy of the system. It
converges to a finite value in q → 0 limit. This convergence is characteristic of
normal fluctuations with α = 0.5. This result is consistent with our results presented
in Section 3.4.5. On the other hand, in the ordered state, algebraic behavior and
divergence at small q were found both in the transverse and in the longitudinal
direction with respect to the global order, although the spatial inhomogeneity in the
experimental setup restrict the ranges in which we can see the algebraic behavior.
The divergence in the q → 0 limit implies the existence of the genuine GNF, as we
have seen in Eq. (2.34). Linear fitting was applied to extract the exponents. We
obtained,

C̃BW(q) ∼

{
q
−1.2011(72)
⊥ for the transverse direction

q
−1.780(13)
∥ for the longitudinal direction

(3.17)

Here, fitting ranges are [5× 10−2 µm−1, 3× 10−1 µm−1] for the transverse direction
and [2× 10−2 µm−1, 5× 10−1 µm−1] for the longitudinal direction respectively, and
the uncertainty means 95 % confidence level estimated from Student’s t-test.

The Toner-Tu prediction in Eq. (3.14) and our results in Eq. (3.17) coincide
surprisingly well in the transverse direction. If we believe the Toner-Tu theory,
this exponent −1.2 in the transverse direction of the Fourier-transformed density
correlation function Cρ(q) corresponds to the GNF exponent α = 0.8, as we can see
from Eqs. (2.34) and (2.35). In this sense, we might be able to argue that our ordered
phase can actually have the GNF exponent α ≃ 0.8 instead of our experimental
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Figure 3.17: The Fourier-transformed equal-time density correlation function
C̃BW(q). This corresponds to Cρ(q) in the Toner-Tu theory, or the structure factor
S(q). (a) C̃BW(q) in the ordered phase. Blue circles: transverse to the global direc-
tor n0. Red squares: along the global director n0. Algebraic behavior is observed
in both directions, which indicates giant number fluctuations with α > 0.5. The
estimated exponents are −1.2011(72) and −1.780(13) for the transverse and the
longitudinal directions respectively. Cyan and green solid lines are results of linear
fitting. (b) C̃BW(q) in the disordered phase. Blue circles: the x-direction of the
images. Red squares: the y-direction of the images. C̃BW(q) converges to a finite
value in the limit of q → 0, which means normal number fluctuations with α = 0.5.
Wavenumbers, q⊥, q∥, q, are not multiplied by 2π.

observation α = 0.63, if we could perform ideal experiments by removing all the
experimental difficulties such as the inhomogeneity of the setup. Furthermore, this
estimate of α from the correlation function C̃BW(q) can be more robust against the
binarization process than the direct estimate obtained by counting the pixels covered
by bacteria, the method we used in Section 3.4.5. However, we need to be careful
about interpretation of this results due to the limited range of algebraic behavior
both in the GNF (Fig. 3.15c,d) and in the correlation function (Fig. 3.17a).

We note that the exponent in the longitudinal direction is difficult to compare
with the Toner-Tu theory due to the complicated functional form given by Toner
and Tu [19,21].

Short summary on correlation functions

The algebraic correlations we have seen above are manifestations of the Nambu-
Goldstone mode in the ordered states with broken rotational symmetry, which are
closely connected to the emergence of GNF [13, 17, 19–21]. Especially, these alge-
braic scale-free correlations support our claim that the ordered state obtained in
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our experiments are homogeneous without any clusters, excluding the possibility of
existence of clusters with characteristic length scales. Therefore, the ordered state
of our system is indeed an example of the Toner-Tu-Ramaswamy phase.

Although the predictions in the Toner-Tu theory relies on some assumptions and
also may not be applicable to our system due to the different symmetries, some of our
experimental data are still consistent with the Toner-Tu predictions. The asymptotic
exponents of the correlation functions of director fluctuations in real space Cδn⊥(R)
turned out to be the same only in the transverse direction as the prediction on the
correlation function of velocity fluctuations CC(R) in the Toner-Tu theory on the
polar flocks, but they do not coincide in the longitudinal direction. This means
that our experimental system and the Toner-Tu theory share the exponent χ but
not the anisotropy exponent ξ. The correlation function of director fluctuations
in the Fourier space C̃δn⊥(q) has the exponent −1.94(11), which is close to the
equilibrium nematics or the prediction by Ramaswamy’s linear theory on active
nematics rather than that in the Toner-Tu theory. However, still we have confirmed
that the hyperscaling relation predicted in the Toner-Tu theory might hold within
the experimental uncertainty. The Fourier transformed density correlation function
C̃BW(q), or the structure factor S(q), exhibits the same exponent as in the Toner-Tu
theory in the transverse direction.

We have examined the correspondence between our experimental results and
the existing theories, but we still need to seek for more precise analytical results
for collective motion, especially for self-propelled rods (polar particles with nematic
interactions), to better understand our experimental systems and to find out the
validity of hydrodynamic theories. Our experimental results challenge the existing
theories by raising many questions, and give clues for developing better theories.

3.4.8 Boltzmann approach

Idea & Claim

So far, we have mainly examined the statistical properties of the ordered state.
Here we focus on the transition from the disordered to the ordered phases from
the microscopic point of view. Because we have collected the statistics on binary
collision events, our next question is whether we can understand the transition to
the nematically-ordered state from the microscopic collision dynamics or not. To
clarify this point, we employed a kinetic approach using the Boltzmann equation,
and investigated the linear stability of the isotropic disordered state.

As a result of the analysis we present below, it has turned out that the disor-
dered, isotropic, homogeneous phase is linearly stable on the kinetic level, hence
binary collisions alone cannot account for the transition to neither a polar phase nor
a nematic phase. The weak alignment interactions induced by collisions are not suf-
ficient for transition to the ordered phase in terms of the Boltzmann equation, which
apparently contradicts with our experimental observation of the ordered phase. This
apparent conundrum is resolved by the fact that, in our high-density experiment,
isolated binary collisions almost never happen. As we can see from our experimental
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images (Fig. 3.8), the number density of bacteria is so high that every bacterium
is almost always in contact with at least another bacterium. Therefore, assump-
tions of dilute limit and molecular chaos —uncorrelated velocities of two colliding
bacteria— in the Boltzmann approach are too strong to explain the experiments,
which suggests the importance of multi-particle collisions in the transition to the
ordered phase. A similar argument can be found in a motility assay experiment [64].

Formalism

We start from the Boltzmann equation for self-propelled particles [55, 57, 64, 76]7.
It can describe the time evolution of the one-particle distribution function f(r, θ, t)
under the assumption of dilute limit, where r is the particle position, θ is the particle
orientation, and t is time. It can be written as,

∂

∂t
f(r, θ, t) + v0v̂(θ) · ∇f(r, θ, t) = Dθ

∂2

∂θ2
f(r, θ, t) + C[f (2)], (3.18)

where v0 is the speed of the particles which is assumed to be a constant here, v̂(θ) is
a unit vector directing to the θ-direction, Dθ is the angular diffusion constant, and
C[f (2)] is the collision integral. The collision integral can be calculated from the two-
particle distribution f (2)(r, θ1, θ2, t), which can be rewritten using the one-particle
distribution as f (2)(r, θ1, θ2, t) = f(r, θ1, t)f(r, θ2, t) in the absence of correlations
(molecular chaos assumption)8, where θj is the orientation of the j-th particle. The
collision integral can be written as,

C[f (2)(r, θ1, θ2, t)] = −
∫ π

−π

dθ′Γ(θ12)f
(2)(θ, θ′)

+

∫ π

−π

dθ1

∫ π

−π

dθ2
1

2

2∑
j=1

Γ(θ12)f
(2)(θ1, θ2)

∫ +∞

−∞
dηj pj(ηj|θ12)δ(θj + ηj − θ),

(3.19)

where θ12 is the signed incoming angle or the angle difference of the two colliding
particles, ηj is the difference between the orientations of the j-th particle before and
after the collision, and δ is a generalized Dirac delta imposing that the argument
is equal to zero modulo 2π: δ(θ) =

∑+∞
m=−∞ δ(θ + 2πm). Here, Γ(θ12) is a collision

kernel describing the collision rate, which depends solely on the incoming angle θ12
due to a global rotational invariance of the system. If we assume that our filamentous
bacteria can be treated as rods with the diameter d, the length L, and the aspect

7In the following, we neglect the positional diffusion term, which is small in our experiment and
does not affect the linear stability analysis.

8Of course, at the onset of collective motion, there should be a strong correlation in the angles
θ1 and θ2 of the two colliding particles. Taking this into account, in [64, 76], the angular correla-
tions was given in the form of f (2)(r, θ1, θ2, t) = (1 +A/|θ12|) f(r, θ1, t)f(r, θ2, t). However, this
dependence cannot be justified by experiments and, furthermore, this does not modify the obtained
results qualitatively.
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ratio ξ = L/d, we can theoretically derive a functional form of Γ(θ12), just by a
geometrical construction called ‘the Boltzmann scattering cylinder’ [77], as,

Γ(θ12) = 4dv0

∣∣∣∣sin(θ12
2

)∣∣∣∣ (1 + ξ − 1

2
| sin θ12|

)
. (3.20)

For a given incoming angle θ12, the orientation of the j-th particle changes by ηj(θ12)
with probability pj(ηj|θ12)dηj. We note that our experimental binary collision statis-
tics will be used for calculating pj(ηj|θ12)dηj later.

To analyze the linear stability of the disordered phase on the kinetic level, we
apply an angular Fourier expansion defined as

f(r, θ, t) =
1

2π

+∞∑
k=−∞

f̂k(r, t)e
−ikθ, (3.21)

where the Fourier coefficients f̂k(r, t) are defined as,

f̂k(r, t) =

∫ π

−π

dθ f(r, θ, t)eikθ. (3.22)

Note that f̂−k = f̂ ∗
k for all k, where ∗ denotes the complex conjugate. It is important

to understand the physical meaning of each Fourier coefficients f̂k(r, t), especially for
k = 0, 1, 2. Because f̂0(r, t) is obtained by integrating out the angular dependence of
the one-particle distribution function f(r, θ, t), it is equal to the density field ρ(r, t).
The higher Fourier modes f̂k(r, t) (k ≥ 1) can be regarded as ‘order parameter
fields’ for corresponding spontaneous symmetry breaking from isotropic states to
k-fold rotational symmetry states. In particular, f̂1(r, t) and f̂2(r, t) encode the
momentum field and the tensorial nematic order parameter field respectively as,

ρP =

(
Ref̂1
Imf̂1

)
, ρQ =

1

2

(
Ref̂2 Imf̂2
Imf̂2 −Ref̂2

)
. (3.23)

Here, P is a coarse-grained polarity field with components Pi = ⟨ai⟩ and Q is the
coarse-grained traceless tensorial nematic order parameter field with components
Qij = ⟨aiaj⟩−δij/2, where a is a unit vector representing orientation of each particle
and ⟨ ⟩ denotes a local average over the distribution f(r, θ, t). More details of the
order parameters are given in Section 3.6.3 as Appendix.

As a result of the Fourier expansion, for the k-th Fourier mode f̂k, we obtain,

∂

∂t
f̂k +

v0
2

[
∂

∂x
(f̂k+1 + f̂k−1)− i

∂

∂y
(f̂k+1 − f̂k−1)

]
= −k2Dθf̂k −

4Lv0
π

+∞∑
n=−∞

f̂nf̂k−n[2In − Jn,k], (3.24)
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where

In =

∫ π

−π

dθ12 cos(nθ12)
1

ξ

∣∣∣∣sin(θ12
2

)∣∣∣∣ (1 + ξ − 1

2
| sin θ12|

)
, (3.25)

Jn,k = J (1)
n,k + J (2)

n,k , (3.26)

J (2)
n,k =

∫ π

−π

dθ12e
−inθ12G2(k|θ12)

1

ξ

∣∣∣∣sin(θ12
2

)∣∣∣∣ (1 + ξ − 1

2
| sin θ12|

)
, (3.27)

Gj(k|θ12) =
∫ ∞

−∞
dηj e

ikηjpj(ηj|θ12). (3.28)

Gj(k|θ12) is the characteristic function of the probability distribution pj(ηj|θ12).
BecauseG1(k|θ12) = G∗

2(k|θ12), the relation J (1)
n,k =

(
J (2)

n,k

)∗
holds, where the asterisk

∗ represents complex conjugation. In the above Eqs. (3.25)-(3.28), the representation
of Γ(θ12) given in Eq. (3.20) is already substituted.

Because we are interested in whether the transition from the isotropic disordered
state to the ordered state can be triggered from the viewpoint of the Boltzmann
equation, we investigate the linear stability of the isotropic disordered state. There-
fore, we linearize Eq. (3.24) around the solution for the isotropic state, f̂0 = ρ0
and f̂k = 0 (|k| ≥ 1), with ρ0 the global mean density. We obtained the linearized
equations for k = 1, 2 as,

∂

∂t
f̂1 =

[
−Dθ +

Lv0ρ0
π

{J0,1 + J1,1 − 2I1 − 2I0}
]
f̂1, (3.29)

∂

∂t
f̂2 =

[
−4Dθ +

Lv0ρ0
π

{J0,2 + J2,2 − 2I2 − 2I0}
]
f̂2. (3.30)

Whether polar/nematic order emerges or not can be understood by looking at coeffi-
cients of f̂k in the right hand side of the linearized equations for k = 1, 2 respectively.
If the coefficients are negative, the Fourier modes f̂k = 0 are linearly stable. If they
are positive, the Fourier modes f̂k grow and thus the isotropic disordered phase is
linearly unstable, which results in the polar/nematic states.

Inferring from experimental data

In order to estimate the coefficients in Eqs. (3.29) and (3.30), we need to substitute
the experimental values of Dθ, L, v0, ρ0, J0,1, J1,1, J0,2, J2,2, I0, I1, and I2. Because
Dθ, L, v0, and ρ0 are all positive constants and do not encode the interactions
through collisions, the most important part in the coefficients is the terms of J and
I in the brackets. In fact, the experimentally obtained collision statistics enter the
J terms.
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From Eq. (3.25), we have analytical representations of I0, I1, and I2, as,

I0 = 4 (3.31)

I1 = −4(−2 + 5ξ)

9ξ
(3.32)

I0 =
4(−32 + 17ξ)

225ξ
. (3.33)

Next, we calculate the J terms. From the collision statistics we have obtained in
Fig. 3.11, we can construct the probability distribution pj(ηj|θ12)dηj that appear
inside the integral of the definitions of J in Eqs. (3.26)-(3.28). Although we did
not consider the signs of the incoming angles θin before in Fig. 3.11, here we need
that information. So we defined the signs of the signed incoming angles θ12 and
the angular changes due to collisions ηj as shown in Fig. 3.18. The sign of θ12 is
positive (negative) when the particle of interest (i.e. j = 1) collides with another
particle coming from its left (right) side. The sign of ηj is positive in the clockwise
direction. The reason for these definitions is just to simplify the computations. Of
course, different definitions of the signs do not change the results presented here.

Figure 3.18: Definitions of the signs of the singed incoming angles θ12 and the angular
difference before and after collisions θj.

We can extract two sets of the incoming angles θ12 and the angle change ηj for
the particles j = 1, 2, which can be used to increase the statistics. For this purpose,
we utilized (i) particle exchange symmetry p1(η1|θ12) = p2(η2|θ12), and (ii) mirror
symmetry pj(ηj| − θ12) = pj(−ηj|θ12). These two symmetries lead to the relation
p1(η1|θ12) = p2(−η2|θ12). By using this relation, we can increase the statistics for
calculating pj(ηj|θ12)dηj from the collision events.

By binning the obtained collision statistics at every 5◦ in both θ12 and θj, we
obtained the probability distribution pj(ηj|θ12)dηj as shown in Fig. 3.19. This dis-
tribution is normalized so that

∫
pj(ηj|θ12)dηj = 1. Then, we apply the Fourier

transform to pj(ηj|θ12) to obtain its characteristic function Gj(k|θ12) according to
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Figure 3.19: Color plot of the probability distribution pj(ηj|θ12)dηj. It is normalized
so that the summation over ηj equals 1 for each θ12. Bin size: 5◦ for both θ12 and
ηj.

Eq. (3.28). Therefore, by using (3.26)-(3.28), we obtained the values of J terms as,

J0,1 = 0.0428, (3.34)

J0,2 = −0.0086, (3.35)

J1,1 = 0.0251, (3.36)

J1,1 = 0.0165, (3.37)

where we substituted the aspect ratio of bacteria ξ ≃ 20, because the length of our
bacteria L ≃ 19 µm and their diameter is smaller than 1 µm. The overall results
were robust against varying the value of ξ.

Finally, we obtained,

J0,1 + J1,1 − 2I1 − 2I0 = −16.8, (3.38)

J0,2 + J2,2 − 2I2 − 2I0 = −8.5, (3.39)

both of which are negative. Negativity of these values were robust against variation
of the value ξ and the binning size. Therefore, taking into account that the diffusion
constant Dθ and Lv0ρ0

π
are both positive, the coefficients of both f̂1 and f̂2 in the

linearized Boltzmann equations Eqs. (3.29) and (3.30) are negative, irrespective the
values of Dθ, L, v0, and ρ0. Hence, both f̂1 = 0 and f̂2 = 0 are linearly stable, which
means that neither polar nor nematic order emerges spontaneously from the kinetic
arguments presented above.
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Short summary on the Boltzmann approach

In conclusion, we cannot account for the transition to the collective phase from the
binary collisions inducing weak nematic alignment, which indicates the importance
of multi-particle collisions in the collective dynamics of our filamentous bacteria as
we have expected. This fact suggests that, in the high-density regime, systematic
strong alignment is not required for the emergence of order. Multiple collisions with
weak average alignment, repeated in space and time, can suffice. In fact, even if
alignment effects are too weak at the binary collision level to produce order (in
the ‘Boltzmann-like regime’), they can nevertheless lead to order when many-body
collisions are taken into account. As a matter of fact, in our high-density case, a
given bacterium is almost always in contact with at least one other cell. A rough
estimate of the inter-bacterial distance linter, calculated from the area fraction of
our bacteria ∼ 0.25 in the ordered state and the number of pixels covered by a
single filamentous cells N ∼ 100, is approximately linter ∼ 11 µm, which is indeed
shorter than the lengths of our filamentous bacteria. This supports the importance
of continuous/multi-particle collisions.

To further understand this point, future work should focus on developing both
theoretical tools to describe multi-particle collisions and experimental methods to
capture their dynamics.

3.5 Discussion & Conclusion

We have realized a homogeneous nematically-ordered phase of filamentous bacteria
swimming in a very thin fluid layer between two solid walls. This phase has turned
out to have true long-range order, and in this true long-range ordered phase we con-
firmed the existence of giant number fluctuations (GNF) and algebraic correlations
both in the director fluctuations and the density field. All of these results signify
that the ordered phase in our system is indeed a first experimental realization of the
Toner-Tu-Ramaswamy phases and that our system falls into the Vicsek universality
class.

To the best of our knowledge, other works reporting the Toner-Tu-Ramaswamy
features like GNF either clearly deal with regimes actually disordered [3,31] and/or
are strongly limited by boundaries [14, 15, 30]. Here, our system is ordered at least
as long as we can observe it, the boundaries are far away, and the interactions,
which are essentially due to collisions, are very short-range. Thus our system can
undoubtedly be regarded as a Toner-Tu-Ramaswamy phase.

Any existing experiments and observations of bacterial systems have never found
long-range order, although theoretical and numerical works on the Vicsek-style mod-
els and the hydrodynamic theories predict universality. Even in two-dimensional
(2D) numerical simulations on realistic particles with excluded volume, most of
them end up clustering or swarming phases without long-range order. Until our
experimental realization, there has been no clue for understanding why such ‘uni-
versality’ is not universally found in real flocking systems. Our experiments give
insight on necessary conditions for developing the Toner-Tu-Ramaswamy phases.
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We speculate that the crucial difference from the other experiments, especially
those of bacterial experiments, is quasi-two-dimensionality (quasi-2D) of our setup,
unlike strictly 2D experiments on agar plates. The quasi-two-dimensionality al-
lows bacteria to cross/overlap during collisions, which is prohibited in strictly 2D
systems. In strictly 2D systems, collisions induce formation of clusters because
particles cannot escape from the dense regions by crossing other particles and the
orientations of clusters fluctuate due to continuous collisions leading to swarming
phases [3,32,62]. On the other hand, in our quasi-2D setup, bacteria can escape from
the dense regions thanks to the another tiny but finite dimension, which prevents
cluster formation. As a matter of fact, we observe large fluctuations in the collision
statistics (Fig. 3.11) and rare non-interacting or even disaligning events (Fig. 3.12),
which make our system even closer to the Vicsek-style interactions than those in
other bacterial experiments. Furthermore, such strong confinement kills long-range
hydrodynamic interactions that lead to turbulent states in three-dimensional (3D)
systems [32, 35–37]. In line with this speculation, future work should focus on ex-
periments with variable dimensionality (2D, quasi-2D, and 3D) of the system and
numerical studies on quasi-2D systems.

It is still quite surprising that, although actual interactions of filamentous bac-
teria are far more complicated than those in the Vicsek-style models and we do not
know governing equations for all the bacterial activities, our system can be reduced
to the Vicsek-style models and the corresponding hydrodynamic theories. Interac-
tions of bacteria are basically dominated by excluded volume interaction, which is
actually very difficult to model accurately in the numerical studies. Short-range
(near-field) hydrodynamic interactions might also required to model our experimen-
tal systems precisely because our filamentous bacteria are still swimming in such a
thin layer of fluid by rapidly rotating their multiple flagella.

In comparison with numerical studies, the number of such ‘microswimmers’ with
excluded volume that a numerical simulation is capable of handling well depends on
the modeling level, and such simulations are usually challenging. For instance, ∼ 106

size-less point-like particles with simple interactions (as in the Vicsek-style models)
are easily handled numerically. However, simulations of actual rod-like, or even
spherical, swimmers with hydrodynamic interactions can hardly deal with ∼ 104

elements [40–42, 78]. In our experiments, the number of bacteria in the observed
area is 103-104, and > 106 in the chamber. This number is thus comparable, if not
overwhelming, to that reachable in simulations of swimmers. For the moment, there
is no numerical study with excluded volume and/or near-field hydrodynamics that
is reduced to the Vicsek class. We hope that future numerical studies will confirm
what is going on inside quasi-2D microswimmer systems like ours.

Our findings, like those of the Vicsek-style self-propelled rods [26], challenge
existing theoretical works on the original Vicsek model and active nematics. The
legitimate question we introduced in Section 2.4.2, raised in past works [22], is
whether self-propelled ‘rods’ constitute an entirely different class from polar flocks
and active nematics. Due to the symmetry of the ordered phases, some speculate
without any theoretical basis that self-propelled rods should be the same as active
nematics. However, our experimental results, especially the existence of true long-
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range order, do support that the self-propelled rods are different from active nematics
but exhibit similar phenomenology as the original Vicsek model.

Our experimental results also challenge the validity of hydrodynamic theories
and can contribute further theoretical development. Because there are still no ex-
isting analytical results on the Vicsek-style self-propelled rods, we compared our
experimentally obtained exponents of GNF and correlation functions with those in
the Toner-Tu theory for the original Vicsek model. Some exponents coincide, but
the others do not. This raises many questions and possibilities: Are the exponents
for self-propelled rods different from those for the Vicsek model? If not, does the
forgotten anisotropic pressure term P2 modify the first theoretical predictions? Do
some factors that are present in actual experiments such as excluded volume alter
the exponents, although the Toner-Tu predictions are correct?

Though such controversy should still be resolved by rigorous theoretical calcula-
tions, our results provide the first unambiguous, large-scale, experimental evidence
of the characteristic properties of order and fluctuations in globally-ordered homo-
geneous active phases predicted by the standard models of aligning self-propelled
particles. In this context, future work will focus on obtaining better control on the
density of bacteria so as to be able to study the transition to nematic order. At
the biological level, one could speculate that the long-range correlations put forward
here might provide a means to collectively probe scales far beyond the individual
cell’s capacity.
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3.6 Appendix

3.6.1 Structure tensor method & Coherency

Here we summarize the structure tensor method and the coherency C [73, 79]. The
structure tensor method is used for detecting the ‘orientation’ of images9. Here we
define the ‘orientation’ of images as the direction with the minimal variation, in
accordance with the direction of nematic director fields that we want to measure.
In the grayscale images such as fluorescent images, it corresponds to finding the
direction with the smallest intensity gradient.

Suppose we have an image data f(x, y) in a region of interest. In order to find the
orientation of f(x, y), then we consider the derivative in a certain direction specified
by a unit vector uθ directing in the θ-direction,

uT
θ ∇f(x, y), (3.40)

where,

uθ :=

(
cos θ
sin θ

)
, (3.41)

and the superscript T means transposition. Then, we look for the direction that
gives the smallest norm of uT

θ ∇f(x, y). If we define the inner product as,

⟨g, h⟩ =
∫ ∫

ROI

g h dx dy, (3.42)

then the squared norm is given by,

∥uT
θ ∇f(x, y)∥2 = ⟨uT

θ ∇f(x, y),∇f(x, y)Tuθ⟩ = uT
θ Juθ, (3.43)

where J is the structure tensor,

J =

[
⟨fx, fx⟩ ⟨fx, fy⟩
⟨fx, fy⟩ ⟨fy, fy⟩

]
. (3.44)

Then, the problem of finding the directions of minimal/maximal ∥uT
θ ∇f(x, y)∥2 is

reduced to the eigenvalue problem of the 2 × 2 symmetric positive-definite matrix
J .

By explicitly solving this problem, we can obtain the direction θ that gives
the maximal of the intensity gradient ∥uT

θ ∇f(x, y)∥2, which is different from the
orientation in our definition by 90◦, as,

θ =
1

2
arctan

(
2⟨fx, fy⟩

⟨fy, fy⟩ − ⟨fx, fx⟩

)
. (3.45)

9In the field of image analysis, the term ‘orientation’ is often used to represent the direction of
images in which periodic patterns appear. The ‘orientation’ in this definition is different by 90◦

from the direction of nematic director field that we want to know.
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The coherency C is defined as,

C :=
λmax − λmin

λmax + λmin

=

√
(⟨fy, fy⟩ − ⟨fx, fx⟩)2 + 4⟨fx, fy⟩2

⟨fx, fx⟩+ ⟨fy, fy⟩
. (3.46)

Note that the coherency C takes the value between 0 and 1, C ∈ [0, 1]. This
coherency C is a measure of anisotropy of images.

The coherency C and the θ calculated for some test images are shown in Fig. 3.20
in order to grasp intuitive idea of them. Although C can be used as an estimate of
the nematic order parameter, there is no analytical relation because this structure
tensor analysis depend on shapes of each object inside the images and even the
complete nematic alignment cannot sometimes give C = 1 as in Fig. 3.20e.

max.
min.

a b c d e

Figure 3.20: The direction θ and the coherency C are calculated for 5 test images.
The two eigenvectors for each image are depicted. The smallest eigenvector of
J depicted as blue arrows gives the orientation of images that correspond to the
nematic director field as we can see from (c). C = 0 for Isotropic images like (b),
and C ≃ 1 for strongly anisotropic images. Because the structure tensor detects the
gradients, even the images like (e) cannot give C = 1, although such images have
the scalar nematic order parameter Q = 1.
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3.6.2 Calculation of correlation function of director fluctu-
ations Cδn⊥(R)

The correlation function Cδn⊥(R) was calculated from the director field obtained by
the structure tensor method. We took ROIs of 64× 64 pixels shifted by 8 pixels in
either direction (87.5 % overlap, 249× 249 boxes in total). We calculated the local
direction θ(r, t) of the director field for each 64 × 64-pixel ROI from the structure
tensor method [73]. Using θ(r, t), we can calculate a correlation function,

⟨δn⊥(r, t)δn⊥(r +R, t)⟩r , (3.47)

which is used for nematic liquid crystals [75]. As is often the case, we assume the
deviation δn⊥ = n − n0 of the local director n from the global mean director n0

is small. Because |n|2 = |n0|2 = 1 holds by definition,

|n|2 = |n0|2 + n0 · δn⊥ + |δn⊥|2 (3.48)

≃ 1 + n0 · δn⊥ , (3.49)

and hence n0 · δn⊥ = 0 holds, meaning the fluctuations of the director field have
only transverse components. The transverse component δn⊥ of δn⊥ can be obtained
as,

δn⊥(r, t) = sin

[
θ(r, t)− 1

A

∫
θ(r, t)d2r

]
, (3.50)

where the integral is over the whole field of view and A is its area. Then we calculated
⟨δn⊥(t, r)δn⊥(t, r +R)⟩r and then averaged over time t,

Cδn⊥(R) := ⟨⟨δn⊥(r, t)δn⊥(r +R, t)⟩r⟩t . (3.51)

To reduce the computational cost and to avoid calculating correlated successive
images, we used every 20 frame of the movie (100 frames in total).
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3.6.3 Relations among nematic order parameters: |⟨e2iθ⟩|, S,
S, Q, f̂2

Here we summarize the relations among 4 nematic order parameters: a frequently
used parameter |⟨e2iθ⟩|, the scalar nematic order S, the tensorial nematic order Q,
and the 2nd order Fourier mode f̂2(r, t) of the one-particle distribution function
f(r, θ, t).

Definition

When a denotes the unit vector representing the orientation of particles such as
liquid crystal molecules and self-propelled particles, the usual definitions of nematic
order parameters in d-dimensional space are given as,

Sij =
d

d− 1
(⟨aiaj⟩ −

1

d
δij), (3.52)

Qij = ⟨aiaj⟩ −
1

d
δij, (3.53)

where ⟨ ⟩ is a local average, and i and j denote spatial coordinates. The above Sij

is normalized so that its largest eigenvalue takes the maximum value 1 when all the
particles are aligned exactly in the same direction. The largest eigenvalue of Sij is
called ‘the scalar order parameter’ and often denoted as S.

On the other hand, Qij is not normalized and its eigenvalue in the complete
alignment is d−1

d
. In the present-day studies, we often denote the above Sij as Qij.

However, in the studies on kinetic theories of collective motion [55–57], Qij defined
in Eq. (3.53) above is frequently used due to a useful relation with the Fourier mode
as we describe below.

Hereafter, we will consider only in d = 2.

Qij and f̂2(r, t)

First, let us clarify the relation between Qij and f̂2(r, t). Because Qij is a traceless
symmetric tensor, the components of Qij can be simplified as,

Qij = ⟨aiaj⟩ −
1

2
δij (3.54)

=

(
Q11 Q12

Q21 Q22

)
(3.55)

=

(
Q11 Q12

Q12 −Q11

)
.

(3.56)

Here, if we denote the one-particle distribution function as f(r, θ, t) with θ mea-
sured with respect to the x-axis, then the local density field ρ(r, t) is given by,

ρ =

∫ π

−π

dθ f(r, θ, t) =

∫ π

−π

dθ f(r, θ, t)e0iθ = f̂0(r, t). (3.57)
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Therefore, the 0th order Fourier mode f̂0(r, t) is nothing but the local density field
ρ(r, t), and according to this fact, we have to be careful about how the distribution
function is normalized: The distribution function is not a simple probability distri-
bution function whose integrated value equals 1. With this in mind, we can rewrite
the components of Qij as,

Q11 = ⟨a12⟩ −
1

2
δ11 (3.58)

= ⟨cos2 θ⟩ − 1

2
(3.59)

=

⟨
cos 2θ + 1

2

⟩
− 1

2
(3.60)

=
1

2
⟨cos 2θ⟩ (3.61)

=
1

2
Re

∫ π

−π

dθ
f(r, θ, t)

ρ
e2iθ, (3.62)

Q12 = ⟨a1a2⟩ −
1

2
δ12 (3.63)

= ⟨cos θ sin θ⟩ (3.64)

=

⟨
1

2
sin 2θ

⟩
(3.65)

=
1

2
Im

∫ π

−π

dθ
f(r, θ, t)

ρ
e2iθ. (3.66)

Therefore, by using the 2nd order Fourier mode f̂2(r, t) defined as,

f̂2 =

∫ π

−π

dθ f(r, θ, t)e2iθ, (3.67)

we can represent Qij in terms of f̂2 as,

ρQij =
1

2

(
Ref̂2 Imf̂2
Imf̂2 −Ref̂2

)
.

(3.68)

Such relations are very useful for analyzing the Boltzmann equation and obtaining
hydrodynamic equations from that.

|⟨e2iθ⟩|, S, and Qij

In some experiments [11], |⟨e2iθ⟩| is often used as an estimate of nematic order. This
can be rewritten as,

|⟨e2iθ⟩| = |⟨cos 2θ⟩+ i⟨sin 2θ⟩| (3.69)

= 2|Q11 + iQ12| (3.70)

= 2

√
Q11

2 +Q12
2. (3.71)
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On the other hand, eigenvalues λ of Qij are easily calculated from the characteristic
equation of Qij as,

λ2 − (Q11
2 +Q12

2) = 0 (3.72)

⇔ λ = ±
√
Q11

2 +Q12
2. (3.73)

Therefore, |⟨e2iθ⟩| is the same as the the largest eigenvalue of the normalized tensorial
order parameter Sij = 2Qij, i.e. the scalar order parameter S.
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Chapter 4

Active turbulence

In this chapter, we review existing studies on active turbulence, especially bacterial
turbulence. Properties of bulk unconstrained bacterial turbulence are getting well
understood both experimentally and theoretically. Recently, behavior of bacterial
turbulence confined in droplets or in microfluidic devises have been investigated.

4.1 Bacterial turbulence

In Chapters 2 & 3, we have investigated collective motion that belongs to the Vicsek
universality class. However, such collective motion has never been found before
our experiment on filamentous bacteria in quasi-two-dimensions. Instead, what
we frequently observe is turbulent collective motion. Such turbulent motion can
be observed in dense bacterial suspensions [32–35, 37], sperms [80], self-propelling
colloids [11], and even disastrous crowd dynamics of people [81]. Especially, due to
experimental accessibility, bacterial turbulence is well investigated.

Such turbulent states, especially those seen in microswimmer suspensions, are
now termed ‘active turbulence’, ‘mesoscopic turbulence’, or ‘mesoscale turbulence’.
This is another class of collective motion that is also well investigated both theoret-
ically and experimentally.

Unlike the Vicsek-style models, hydrodynamics plays an important role in dy-
namics of bacterial turbulence. Steric interactions of bacteria usually work to align
bacteria as we have seen in Chapter 3, but hydrodynamic flow created by bacteria
usually destabilizes such alignment, leading to turbulent states without any long-
range order (Fig. 4.1). Hydrodynamics triggers not only such instability but also
interesting collective acceleration. Characteristic speed of emergent flows in active
turbulence is surprisingly 3−5 times faster than that of an isolated single bacterium.
Therefore, active turbulence is genuinely a collective phenomenon.

Although we call such states ‘active turbulence’, of course, active turbulence is
distinctively different from classical fluid turbulence as seen in water. Turbulent flow
in a fluid is usually associated with high Reynolds numbers (Re > 5×104), at which
inertia dominates viscosity. On the other hand, swimming bacteria, such as Bacillus
subtilis or Escherichia coli, are living in extremely low Reynolds number. Because
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instability

a b

100 µm

Figure 4.1: (a) Schematics of hydrodynamic instability arising from bacterial pusher-
type flow. (b) Snapshot of bacterial turbulence overlaid with instantaneous velocity
field. The velocity field is calculated from particle image velocimetry (PIV).

they are usually only∼ 5 µm long and swim at the speed of≈ 20 µm/s, the Reynolds
number for fluid flow created by a single bacterium is of the order of 10−5 − 10−4

[82]. However, at high concentration of bacteria, their dynamics resembles fluid
turbulence in that their macroscopic velocity field continuously changes and there
exist many jets, flows, and vortices [32–35]. In this sense, it is a good idea to
investigate active turbulence in analogy with fluid turbulence.

4.2 Basic properties of bacterial turbulence

4.2.1 Constant correlation length

In bacterial turbulence, we can observe collective motion of bacteria over the length
scale larger than individual bacteria. As a simple measure of collective motion, we
can define a correlation function of velocity field of bacterial turbulence which can
be estimated by particle image velocimetry (PIV) programs (Fig. 4.1b).

Andrey Sokolov et al. conducted series of well-controlled experiments on the
measurements of the correlation length of bacterial turbulence [35, 36]. They first
controlled the density of bacteria Bacillus subtilis in a suspension by utilizing their
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chemotactic response [35]. By applying electric current, they tuned pH of suspen-
sions locally. This allowed them to vary the density in a single trial of experiments.
As a result, above threshold density for the onset of turbulent states, they obtained
a constant correlation length. Even though the collective swimming speed changes
as increasing the bacterial density, the correlation length stays constant (Fig. 4.2a).

They also varied individual swimming speed by tuning oxygen concentration of
surrounding air [36]. Because Bacillus subtilis is an aerobic bacterium, its swimming
speed strongly depends on oxygen concentration. They constructed a chamber that
can control the concentration of oxygen inside, and they succeeded in repeatedly
increasing and decreasing the individual swimming speed of bacteria. Using this
setup, they measured the correlation length as a function of the individual swim-
ming speed. Surprisingly, the correlation length was again almost constant above
threshold swimming speed for turbulent states (Fig. 4.2b). This indicates that the
individual swimming speed just affects the time scale of bacterial turbulence and
does not alter other properties.

Such constant correlation lengths can be understood as a result of competition
between steric interactions and hydrodynamic interactions [36]. Steric interactions,
or collisions, alone work to align bacteria, as we have seen in our experiments on
filamentous bacteria in Chapter 3 [50]. The expansion rate of such aligned regions
can be estimated from the mean free time t0 of bacteria between collisions in 3-
dimensions,

t0 =
1

ρl2V
, (4.1)

where ρ is the number density of bacteria, l is the length of bacteria, and V is the ve-
locity of bacteria. Therefore, if we assume that the linear size of the region increases
by l at every collision, the expansion speed of the aligned regions is estimated as,

Vc ∼
l

t0
= ρl3V. (4.2)

On the other hand, hydrodynamic interactions destabilize such alignment (Fig. 4.1).
Hydrodynamic flow created by a single bacterium, or a single force dipole, swimming
in the x-direction can be written as,

u(r) =
pr

8πr3

(
3x2

r2
− 1

)
∝ p

r2
, (4.3)

where p = aV l2 is the strength of the force dipole with a geometrical constant a.
The flow Vh created by the bacteria inside the aligned region at the distance R can
be estimated as,

Vh ∼ ρ · 4
3
πR3 · p

R2
∼ ρpR. (4.4)

Then, we consider the distance R at which both the collision induced expansion
speed of the aligned region and the strength of destabilizing flow field are balanced,
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and obtain.

Vc ∼ Vh (4.5)

⇒ R ∼ l2V

p
=

l

a
≃ 5− 10l, (4.6)

which gives a value consistent with experiments. Here, the experimentally obtained
value for a was inserted [66]. Therefore, the density ρ and the swimming speed V
are cancelled out and do not appear in the final representation Eq. (4.5).

The above two experimental facts mean that bacterial turbulence is a very nice
system with a constant correlation length irrespective of the density and the individ-
ual swimming speed. These assure that we can almost always reproduce the same
result from other trials of experiments. We do not need to care so much about the
reproducibility of experiments on bacterial turbulence.

(a)

Figure 4.2: (a) Correlation length L and collective swimming speed V vs the filling
fraction of bacteria ρ. Correlation length stays constant above threshold density. (b)
Correlation length vs individual swimming speed. By changing the concentration of
oxygen in the air, they repeatedly varied the swimming speed of bacteria. Correla-
tion length is again almost constant above threshold swimming speed. Figures (a)
and (b) reproduced from [35] and [36] respectively.

4.2.2 Power spectrum

In analogy with classical fluid turbulence, power spectra of velocity fields of bacterial
turbulence and active turbulence of self-propelling colloids were investigated [11,32].

According to Kolmogorov’s law [83], the power spectrum of usual fluid turbulence
exhibits algebraic decay with a characteristic negative exponent. This algebraic
behavior comes from the existence of conserved quantities. In usual fluid turbulence,
energy is injected externally by boundary conditions such as pressure gradient and
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Black: Experiment (2D)

Red: Experiment (3D)
Blue: Rod simulation
Green: Continuum theory

Figure 4.3: Power spectrum of velocity fields of bacterial turbulence shows a peak,
which testifies the existence of characteristic length scale of ∼ 10 bacterial body
length (correlation length). The wavenumber is normalized by the length of bacteria.
The power law behavior was suggested in [32], but later studies on an agent-based
model and continuum theories indicate the exponents of the power law are non-
universal. Figure modified and reproduced from [32]

shear stress. This injected energy is then transferred to smaller scales and finally
dissipates into heat at small eddies. Such energy cascade in the intermediate length
scale is the origin of the power law1.

Crucial difference between classical fluid turbulence and active turbulence is in
the spatial scales where energy is injected into the systems. In usual fluid turbulence,
energy injection from the boundary occurs at the scale of its system size, i.e. the
largest length scale. In contrast, in the active turbulence of the Janus particles [11]
or bacteria [32], energy is injected at the particle level.

For active turbulence, characteristic power spectra were obtained in bacterial
turbulence (Fig. 4.3) [32]. They have a peak at around ∼ 10 bacterial body length,
which corresponds to the correlation length of bacterial turbulence. Beside the peak,
algebraic behavior was observed for both higher and lower wavenumber regimes, al-
though the observed range was quite limited. Such behavior was reproduced by
simulations on self-propelled rods with excluded volume [32, 63] and a continuum
theory [32]. However, later studies on an agent-based model [84] that exhibits ac-
tive turbulence and on the continuum theory [85] have proved that the exponents of
the power law in the power spectrum of active turbulence are not universal and do
depend on the values of parameters. In accordance with these theoretical studies,
we found that, in our previous experiments, turbulent states of self-propelling asym-
metrical colloidal particles (Janus particles) under an AC electric field also exhibit

1In addition to energy conservation, enstrophy is also conserved in two-dimensional fluid turbu-
lence. This additional conservation law modifies the exponent in two-dimensional turbulence from
that in tree-dimensional turbulence.
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Figure 4.4: Our previous experiment on asymmetrical colloidal particles (Janus
particles) driven by an AC electric field. (a) Schematics of our particles. Half
hemispheres of the dielectric colloids are coated with metal. (b) Experimental setup.
Vertical electric field was applied to the Janus particles by using two transparent
planar electrodes, and consequently they propel in a horizontal plane close to the
bottom electrode. (c) Colors indicating directions of motion were overlaid on an
experimental snapshot. There are clusters with characteristic lengths of ∼ 4 particle
diameters. (d) Power spectrum of the velocity field of the Janus particles has a
similar shape but different exponents. Inset: velocity correlation function. Solid
lines are just to guide the eye. Figures reproduced from [11]

a similar power spectrum shape but with different exponents (Fig. 4.4).

4.3 Continuum theory

4.3.1 Formalism

To describe active turbulence, continuum hydrodynamic theories have been devised.
Most of them include many parameters and many variables such as local density
fields, velocity fields, tensorial nematic order parameters, etc. [86] and hence they
are quite difficult to test experimentally. In need of tractable models comparable
with experiments, a minimal model with a few variable was devised [32, 37, 43]2.
Using this model, the power spectrum of the velocity field was reproduced (Green
line in Fig. 4.3).

First, because we are thinking about very dense suspensions, it is a good ap-
proximation to postulate incompressibility,

∇ · v = ∂ivi = 0, (4.7)

2Of course, such a model with a few variable might not precisely describe actual phenomena,
but this can be a first step toward full understanding of active turbulence.
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where v is the velocity field of bacteria, and vi is the i-component of v. Then, the
generalized Navier-Stokes equation is assumed,

(∂t + v · ∇)v = −∇p− (A+ C|v|2)v +∇ ·E, (4.8)

where the pressure p(r, t) is the Lagrange multiplier for the incompressibility con-
straint. The second term on the right hand side, (A + C|v|2)v, is similar to one in
the Toner-Tu equations in Eq. (2.9) that again comes from a Ginzburg-Landau type
potential A

2
|v|2 + C

4
|v|4. This term represents self-propulsion of bacteria, meaning

non-zero v. The last term is the most important for the emergence of active tur-
bulence. As we have schematically explained in Fig. 4.1a, hydrodynamic instability
that bends the orientation field of bacteria has to be included in the equation. In
this spirit, the symmetric traceless strain rate tensor E is given by,

Eij = Γ0(∂ivj + ∂jvi)− Γ2∆(∂ivj + ∂jvi) + Sqij, (4.9)

where S is a constant and qij is the tensorial nematic order parameter. The first
Γ0 term is required for the equation to contain the Navier-Stokes equations as a
limiting case. The Γ2 term is introduced so that the equations to be damped at
higher wavenumbers. To further reduce the variables, qij is approximated as,

qij = vivj −
δij
d
|v|2, (4.10)

where d is the spatial dimension. This is a mean-field approximation by assuming
that the director field n, or the orientation field, of bacteria relaxes sufficiently fast
so that n can be effectively replaced by v. As for the constant S, from the phys-
ical arguments, S < 0 for pusher-type swimmers like Escherichia coli and Bacillus
subtilis, and S > 0 for puller-type swimmers3 like algae Chlamydomonas.

By substituting Eq. (4.9) and Eq. (4.10) into Eq. (4.8), we finally obtain the
equation of motion for active turbulence,

(∂t + λ0v · ∇)v = −∇p+ λ1∇v2 − (A+ C|v|2)v + Γ0∆v − Γ2∆
2v, (4.11)

where λ0 := 1− S and λ1 := −S/d.

4.3.2 Difficulty in boundary conditions

Although this equations with experimentally extracted parameters successfully de-
scribed the behavior of bulk unconstrained bacterial turbulence and reproduced the
power spectrum shown in Fig. 4.3 [32], it remains unclear how to treat boundary
conditions on bacterial turbulence. If we want to understand what happens when
bacterial turbulence is in contact with some boundaries, we have to incorporate
boundary conditions to solve these partial differential equations as we usually do
for the Navier-Stokes equations. However, we do not know what the boundary
conditions are for the bacterial velocity field v 4. Boundary conditions for bacterial

3Puller-type microswimmers swim by pulling fluid in front of them, and consequently the fluid
behind the body is drugged toward the swimmers. Therefore, a single puller-type microswimmer
can be denoted as a force dipole directing inward.

4Note that this v is the velocity field only for bacteria, not for fluid. We neglect the dynamics
of ambient fluid.
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turbulence are far more complicated than those of usual fluid: Bacteria are attracted
to walls due to hydrodynamic coupling and the density distribution gets inhomoge-
neous; bacteria may be trapped at the interfaces due to hydrodynamic coupling and
surface tensions; individual bacteria exhibit circular trajectories near solid surfaces
(Fig. 3.7) or at water-air interfaces [71,87]; bacteria sometimes swim upstream with
respect to flow of ambient fluid along the walls [88].

Therefore, we still do not know in general how to implement boundary condi-
tions into continuum theories. In this sense, bacterial turbulence in contact with
some boundaries remains elusive. Experiments have been conducted to seek for the
phenomena arising from the interplay between bacterial turbulence and boundaries.

4.4 Bacterial turbulence in confinement

To understand the interplay between bacterial turbulence and boundaries, behav-
ior of bacterial turbulence confined in small droplets or in microfluidic devices has
been investigated. Furthermore, many wild bacteria usually live in geometrically
constrained environment, such as soil, porous media, and host cells. Therefore, it is
also of biological importance to investigate dynamics of bacteria close to boundaries.

4.4.1 Spiral formation in a droplet

Wioland et al. conducted experiments on bacterial turbulence of Bacillus subtilis
confined in droplets [46]. By pipetting dense bacterial suspensions in mineral oil
and then sandwiching them between two coverslips, they made flattened droplets of
bacterial turbulence inside mineral oil (Fig. 4.5a). The size of typical droplets were
h ∼ 25 µm in height and d = 10− 150 µm in diameter. At around d = 30− 70 µm,
they observed vortex formation with spiral configuration of bacterial orientations
(Fig. 4.5b,c).

The velocity fields of those vortices in droplets have counter-rotating structures.
For example, in Fig. 4.5b, bacteria in the bulk (away from the boundary) are swim-
ming counterclockwise, but bacteria close to the boundary are swimming clockwise.
Bacteria at the boundary spontaneously start to swim along the wall, forming ‘edge
currents’, and consequently they make counter-rotating fluid flow in the bulk. Then,
bacteria in the bulk are driven by this flow and rotate in that direction. In fact,
such behavior was reproduced by their numerical simulations on continuum equa-
tions [46] and agent-based model [47] that incorporate the fluid velocity field and
the bacterial orientation field. Also individual behavior of bacteria swimming along
the wall was experimentally confirmed by using fluorescent microscopy [47]. The
orientations of bacteria exhibit spiral configuration as shown in Fig. 4.5c.

4.4.2 Vortex lattices in connected circular cavities

As a next step, Wioland et al. investigated dynamics of multiple vortices [48]. They
fabricated microfluidic chambers with many circular cavities connected via small
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(b) (c)

Figure 4.5: (a) Schematic of experimental setup in [46]. (b) Experimental snapshot
with velocity field measured by PIV. Counter flow exists along the boundary. (c)
Schematic explanation for the counter flow. Bacteria swimming along the wall in the
clockwise direction make counterclockwise flow in the bulk, which then drives bac-
teria in the bulk. Thus, counter-rotating spiral vortex is formed. Figures modified
and reproduced from [46]

channels (Fig. 4.6). Interestingly, the interaction through the small channels gave
rise to macroscopic ‘ferromagnetic’ or ‘antiferromagnetic’ order depending on the
channel gap width.

They quantified the vortices by defining the spin Vi(t) of i-th cavity at time t as
the normalized planar angular momentum, and calculated the spin-spin correlation,

χ =

⟨ ∑
i∼j Vi(t)Vj(t)∑
i∼j |Vi(t)Vj(t)|

⟩
, (4.12)

where
∑

i∼j denotes sum over all the pairs of adjacent cavities, and ⟨ ⟩ denotes an
average over all the experimentally obtained frames. When the gap width was small,
antiferromagnetic order χ < 0 emerged. On the other hand, ferromagnetic order
χ > 0 was observed for the large gap width case (Fig. 4.6).

The emergence of ferromagnetic and antiferromagnetic order was explained by
the competition between hydrodynamic continuity and edge currents induced by
bacteria swimming along the walls (Fig. 4.7). As we have seen in Section 4.4.1,
bacteria at the boundary tend to swim along the walls, forming ‘edge currents’ [46].
These edge currents then drives internal vortices. In the case of large gap widths,
bacteria can easily swim through the gap, and then the edge currents drive bulk
flow in adjacent cavities in the same direction. On the other hand, for small gaps,
it is quite difficult for bacteria to cross the channel to reach the adjacent cavities.
Here, due to hydrodynamic continuity, the opposite rotations in adjacent cavities
are more stable.
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ferromagneticantiferromagnetic

50 µm 50µm

Figure 4.6: Ferromagnetic (right) and antiferromagnetic (left) order of bacterial
vortices in connected microfluidic cavities. Small/large gap widths give rise to an-
tiferromagnetic/ferromagnetic order respectively. Such order was quantified by the
spin-spin correlation χ defined in Eq. (4.12). Color denotes spin magnitude. White
dashed lines: domain boundaries. Figures modified and reproduced from [48]
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Figure 4.7: Explanations for the emergence of ferromagnetic and antiferromagnetic
order depending on the gap widths. Bacteria swimming along the wall forms edge
currents, which drive internal vortical flow in cavities. For small gap widths, bacteria
cannot easily cross the channel, but for large gap widths, they can swim across the
cavities. Whether such edge currents dominate hydrodynamic continuity or not
modifies the emergent order. Figures modified and reproduced from [48]

4.4.3 Summary and interpretations

Through experiments above, it has turned out that bacterial turbulence can some-
times self-organize in some sort of ordered collective states by imposing boundary
conditions. It is interesting to know that we can still observe order in chaotic bac-
terial turbulence.
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However, these experiments are done in confined geometry. What was explored
in the second experiment [48] was the dynamics of connected bacterial vortices. As
in the first experiment [46], bacteria inside each cavity were originally forced to form
vortices due to boundaries. Therefore, it remained unexplored what happens when
unconstrained bulk bacterial turbulence meets some structured obstacles. Especially,
it was not clear how the size or the periodicity of structures affects the dynamics of
bacterial turbulence.

Furthermore, such microfluidic experiments with dense suspensions of aerobic
Bacillus subtilis cannot be run for long due to the shortage of oxygen. Bacterial
turbulence rapidly decelerates and it is difficult to perform long measurements in
steady states. As a matter of fact, the analysis in [48] was done with only 10-second
movies. They could not observe the switching dynamics of spins or persistence of
vortices.

Being aware of these problems, we performed our experiments on bacterial tur-
bulence that will be presented in Chapter 5.
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Chapter 5

Encounter of bacterial turbulence
with periodic structures

In this chapter, we describe our experiments on active turbulence formed by swim-
ming bacteria in dense suspensions. We present that even a small number of periodic
obstacles can trigger emergence of stable antiferromagnetic vortex lattices from such
highly-chaotic and fluctuating bacterial turbulence.

5.1 Introduction

As we have seen in Chapter 4, properties of active turbulence formed by dense
suspensions of bacteria—bacterial turbulence—have been investigated. Especially,
its bulk properties have been clarified in detail experimentally [32–37, 89], numeri-
cally [32, 63, 84], and theoretically [32, 37, 43]. Recently, the studies on active tur-
bulence are moving forward to the next stage: How can we extract ‘order’ from
spatio-temporally chaotic active turbulence? Along this line, it has turned out that
bacterial turbulence confined in microfluidic chambers sometimes shows directed
motion such as spontaneous spiral vortex formation [46,47], ferromagnetic and anti-
ferromagnetic vortex lattice formation [48], directed collective motion under channel
confinement [49], etc.

However, it remains elusive and numerically/theoretically inaccessible how bulk
unconstrained bacterial turbulence behave when it encounters some obstacles and
structures. Such studies are required to fill the gap between existing studies on bulk
bacterial turbulence and confined bacterial turbulence.

Here we present our experimental study that treats the interplay between bacte-
rial turbulence and periodic obstacles [51]. We rectify a turbulent dynamics in sus-
pensions of swimming bacteria Bacillus subtilis by imposing periodical constraints
on bacterial motion. Bacteria, swimming between periodically placed microscopic
vertical pillars, self-organize in a stable lattice of vortices. We demonstrate the
emergence of a strong antiferromagnetic order of bacterial vortices in a rectangu-
lar lattice of pillars. This antiferromagnetic order seemingly contradicts with the
results of the experiment on confined bacterial turbulence [48], but it should be



94 Chapter 5. Encounter of bacterial turbulence with periodic structures

ascribed to hydrodynamic continuity which is weak in such confined experiments.
Hydrodynamic interaction between vortices increases the stability of an emerged
pattern. The highest stability of vortices in the antiferromagnetic lattice and the
fastest vortices speed were observed in structures with the periods comparable with
a correlation length of bacterial unconstrained motion. This can be interpreted as a
sort of resonance between bacterial turbulence and periodic structures, which gives
us an explicit answer to the question on what happens when bulk active turbulence
meets obstacles. The obtained results highlight the existence of characteristic length
scale in bacterial turbulence and its importance for the emergence of order out of
chaos.

5.2 Experimental procedure & Setup

We investigate the properties of suspension of swimming bacteria Bacillus subtilis in
the presence of periodic arrays of microscopic vertical pillars. The bacteria (strain
1085) were grown in a Terrific Broth (TB) medium and concentrated by centrifuga-
tion at final concentration of 1010 cm−3. A small drop of concentrated suspension
is placed on a glass slide with the array of microscopic pillars in such a way that
air-liquid interface is a few microns below top surfaces of pillars. The drop on a
slide was enclosed by a plastic spacer and another microscope slide with an air gap
≈ 0.5 mm. The enclosure minimized evaporation of water still providing oxygen
to bacteria. After enclosure, the whole experimental cell is inverted so that the
bacteria accumulate at the surface of the suspension due to gravity and aerotaxis.
The dynamics of bacteria were captured by an Olympus IX71 inverted microscope
and a high-resolution (5120×3840) HS20000C camera at 10× magnification at 32.7
fps. By enlarging aperture stop, we captured the turbulent dynamics of bacteria
at the surface. The experiments could run for minutes, but the speed of bacterial
turbulence gradually decelerates. Therefore, we used first 61 seconds of movie (2000
frames) for analysis, in which we have confirmed that the properties of unconstrained
turbulence (the red region in Fig. 5.3) could be regarded as steady (see Appendix
in Section 5.5).

The pillars were printed by direct laser lithography [90] on Photonic Professional
GT system from Nanoscribe GmbH. Being 150 µm tall and 20 µm wide in diagonal
lines, the pillars are arranged in 9 square lattices of the period a ranging from 50 µm
to 130 µm with 10 µm increment (Fig. 5.1). The central part of the experimental
cell is free of pillars. This area was used to measure parameters of unconstrained
bacterial motion. In our experiments, we were able to track the dynamics of bacterial
suspension simultaneously in all lattices with different a. That significantly reduces
the noise of collected data associated with variations of bacterial swimming speed,
length, or fitness in different bacterial colonies, and makes it possible to reliably
investigate how the period of structures affects the dynamics of bacterial turbulence.

The velocity field v(r, t) of bacteria was obtained by using custom particle image
velocimetry (PIV) MATLAB scripts (Fig. 5.2b). Estimation of bacteria velocity in
proximity of pillars is a technically challenging problem due to several effects. A
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Figure 5.1: (a) Snapshot of our experiment. Sets of 4 × 4 pillar lattices are con-
structed on a glass substrate, and bacterial turbulence was introduced so that bac-
teria can swim between pillars. Pillar sets are organized in 9 arrays with different
lattice constants a increasing from 50 µm to 130 µm (clockwise). The 40-µm lattice
are excluded due to damaged pillars. The central region is left for bulk bacterial
turbulence. Contrast is adjusted. Scale bar: 50 µm. (b) Schematic of a pillar. It has
a square shape with the diagonal lengths 20 µm. (c) Schematic of our experimental
setup. For clarity, only one set of pillars is depicted. The lattice constant a ranges
from 50 µm to 130 µm.
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Figure 5.2: (a) Color plot of the magnitude of the vorticity field ⟨rotv(r, t)⟩t. (b)
Close up of the rectangular area shown in (a). Arrows indicate instantaneous veloc-
ities. Yellow dashed line depicts a single ROI area. Scale bars: 50 µm.
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meniscus creates an optical distortion in the vicinity of each pillars complicating
bacteria tracking. In addition, the imposed geometrical confinements on bacterial
motion near the pillars lead to a significant vertical motion and reduce the accuracy
of spatial tracking. To avoid this problem, we excluded areas around each pillar from
our analysis and measured all bacterial swimming parameters only in square regions
of interest (ROI) between pillars, see Fig. 5.2b. We also excluded ROIs adjacent to
distorted pillars, and ROIs shown in Fig. 5.3 are used for the following analysis.

Figure 5.3: The square ROIs used for analysis. Green regions for pillar lattices, and
the red region for unconstrained bulk bacterial turbulence. Scale bar: 50 µm.

5.3 Results

5.3.1 Antiferromagnetic vortex lattice

We observed the emergence of stable lattices of bacterial vortices. As shown in
Fig. 5.2a, the time-averaged magnitude of the vorticity field ⟨rotv(r, t)⟩t demon-
strates emergence of antiferromagnetic order between a = 60 µm and a = 90 µm.

In contrast with the recent work by Wioland et al. [48], the volume/area fraction
of obstacles is much smaller, imposing effectively much less constrains on bacte-
rial motion. Wioland et al. confined dense bacterial turbulence in the lattice of
connected circular cavities. Each cavity imposes strong constraints on bacterial sus-
pensions and triggers rotational motion inside itself [48]. In spite of the tiny size of
pillars in our setup, we observed the emergence of stable lattices of bacterial vortices
(Fig. 5.2a,b). Effectively large gaps between pillars increased hydrodynamic binding
between vortices.

However, surprisingly, the emerged lattice demonstrate only antiferromagnetic
order and we could not observe ferromagnetic order in any case (Fig. 5.2a,b), in a
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seeming contradiction with previous results [48]. If we naively compare our results
with those in [48], our setup corresponds to the large gap width case in [48]. In
that case, Wioland et al. obtained ferromagnetic order, which is different from
antiferromagnetic order in our case. This paradox can be explained by a different
mechanism of interaction between vortices inside cavities [48] and between pillars
(our case). Since the pillars are only 20 µm wide in diagonal lengths and have square
shapes, the bacteria are not able to self-organize in a stable circulating loop around
each pillar. Correspondingly, the dynamics of this system cannot be described by
dual interacting lattices, between and around pillars [48]. Instead, an array of tiny
pillars creates a periodic set of stationary points with zero bacterial velocities, while
the velocity field between pillars changes continuously.

5.3.2 Vorticity & Enstrophy

To capture the properties of the emerged dynamical patterns, we measured the abso-
lute values of mean vorticity ⟨|⟨rotv(r, t)⟩t|⟩r∈ROIa and enstrophy ⟨⟨[rotv(r, t)]2⟩t⟩r∈ROIa

of the bacterial velocity field in ROIs. Here, ROIa denotes the ensembles of ROIs
at the lattice constant a. For small lattice constant a < 60 µm, bacteria are not
able to develop turbulent motion, and collective swimming is suppressed by densely
placed pillars. As the lattice constant a increases, absolute values of magnitude
for both the mean vorticity and the mean enstrophy also increase while a < 90
µm (Fig. 5.4a). For lattice periods of a = 60 − 90 µm, we observed an emergence
of stable antiferromagnetic lattices of vortices. These lattice periods are compara-
ble with a doubled correlation length or the scale of flows and vortices observed in
unconstrained (unbounded) bacterial suspension. The stability of vortices is charac-
terized by large magnitude of vorticity and small temporal fluctuations (Fig. 5.4b).
For large periods a > 100 µm, the bacterial suspension is quasi-turbulent, while the
influence of sparsely placed pillars is reduced. The mean vorticity is reduced due to
large temporal fluctuations, while the mean enstrophy remains almost a constant.
Remarkably, in a previous study, bacteria swimming in a microfluidic confined chan-
nel exhibit a sharp transition from stable flow to a turbulent state with the increase
of the channel width over ≈ 70 µm [49]. This as well as our results highlights the
importance of this characteristic scale for both fully enclosed and slightly confined
systems, and suggests new methodology to efficiently control and rectify bacterial
behavior at microscopic scales.

We characterized the temporal stability of vortices by calculating temporal fluc-
tuation of velocity vf and fluctuation of tangential component of velocity vt in a
vortex for each lattice constant a,

σf,t(a) =
⟨√

⟨[vf,t(r, t)− ⟨vf,t(r, t)⟩t]2⟩t
⟩
r∈ROIa

(5.1)

The tangential component of velocity is measured relative to the center of each ROI.
Since the average magnitude of velocity is different for each a, we normalized σf and
σt by the root mean square (rms) velocities vrms

f and vrms
t respectively for each a,

vrms
f,t (a) =

⟨√
⟨[vf,t(r, t)]2⟩t

⟩
r∈ROIa

. (5.2)
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Figure 5.4: (a) Mean enstrophy ⟨⟨[rotv(r, t)]2⟩t⟩r∈ROIa (blue circles) and absolute
values of mean vorticity ⟨|⟨rotv(r, t)⟩t|⟩r∈ROIa (red square) as a function of lattice
constant a. (b) Dependence of temporal fluctuations of full velocity σf/v

rms
f (blue

circles) and tangent velocity σt/v
rms
t (red squares) on the lattice constant a. Both

fluctuations have minima at 70 µm, at which the vortices exhibit stable antiferro-
magnetic order. Error bars are estimated as the standard deviations among ROIs
with the same a.

Normalized fluctuations are shown in Fig. 5.4b as functions of the lattice constant
a. Both σf/v

rms
f and σt/v

rms
t show minima at a = 70 µm, at which the vortices

are stabilized. Bacterial suspension self-organizes in a coherent vortex lattice at this
lattice constant. As we have already mentioned above, the vorticity field ⟨rotv(r, t)⟩t
calculated from the PIV clearly demonstrates the antiferromagnetic order inside the
lattice if the spacing between pillars is between 60 to 90 µm (Fig. 5.2a).

Error bars represent standard errors estimated from standard deviations among
the ROIs in the same lattice. For quantities F (r) such as vorticity |⟨rotv(r, t)⟩t|
before taking average ⟨ ⟩r∈ROIa and fluctuations

√
⟨[vf,t(r, t)− ⟨vf,t(r, t)⟩t]2⟩t, error

bars are calculated as,

√∑
i

[
⟨F (r)⟩r∈ROIia

− ⟨F (r)⟩r∈ROIa

]2
N(a)− 1

, (5.3)

where ROIia denotes the i-th ROI in the lattice with the period a, and N(a) is the
number of the analyzed ROIs in the lattice with the period a.
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5.3.3 Antiferromagnetic order parameter

The antiferromagnetic order can be quantified with a spin-spin correlation, similar
to what was used in the early study [48]. We introduce a spin variable for each ROI
in the lattice at time t,

Si,a(t) :=
ẑ ·

[∑
r∈ROIia

(r − ri)× v(r, t)
]

∑
r∈ROIia

|r − ri|
, (5.4)

where ri is the geometrical center of ROIia, and ẑ is the unit vector in the vertical
direction. The magnitude of the spin represents the relative strength of a vortex
and the sign of the spin reflects a predominant direction of rotation, positive for
counterclockwise and negative for clockwise. For the ferromagnetic order, signs of
neighbor spins are the same, while for antiferromagnetic order the sign is alternating
along both main lattice axes. To introduce the order parameter, we calculated the
adjacent spin correlation χa(t) for each lattice constant a,

χa(t) :=

∑
i∼j Si,a(t)Sj,a(t)∑
i∼j |Si,a(t)Sj,a(t)|

, (5.5)

where the sums
∑

i∼j runs over all the adjacent pairs in the single lattice structure.
We applied Savizky-Golay filter with degree 3 and a duration of 0.3 s (11 frames)
to eliminate high-frequency noise associated with PIV and data processing errors.
The results are presented in Fig. 5.5.

For a small lattice period a = 50 µm the order parameter fluctuates near −0.25
and occasionally drops to ≈ −0.75. Densely placed pillars reduce bacterial speed
and prevents self-organization into a stable lattice. The antiferromagnetic order
observed for a = 60 − 90 µm is characterized by strong anti-correlation between
adjacent vortices, χa ≈ −1. For a > 100 µm, we observe the quasi-turbulent regime
of bacterial swimming and χa(t) fluctuates strongly as shown in Fig. 5.5a. For a
short period of time, swimming bacteria may self-organize in a large-scale coherent
structure. However, since the characteristic scale of such motion is larger than a
preferable vortex size, large vortices quickly break down in smaller ones resulting in
large fluctuations of spins and chaotic hydrodynamic interaction between adjacent
ROIs. Importantly, we did not observed a tendency to self-organize in a coherent
structure for a = 130 µm which is roughly the doubled value of stabilizing lattice
constant a = 70 µm and intrinsic length scale of vortices. That emphasizes the high
sensitivity of bacterial vortices pattern to the periodicity of pillar lattices.

5.3.4 Persistence of vortices: Life times

Since the period of the antiferromagnetic lattice of bacterial vortices is equal to twice
the period of the pillar lattice, the stable antiferromagnetic lattice has two possible
spatial realizations. One realization translates to the other by shifting along main
axes by a. Although such a transition requires simultaneous sign flipping of all the
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Figure 5.5: (a) Temporal dynamics of spin correlations χa(t) for different lattice
constants a represented by different colors. (b) Time averaged values of adjacent
spin correlations ⟨χa(t)⟩t vs the lattice constant a. Strong antiferromagnetic order
(⟨χa(t)⟩t ≃ −1) is observed around a ≃ 70 µm. Error bars: standard deviations of
time series of χa(t).

spins in a single lattice and is hardly observable in experiments, occasionally, a single
bacterial vortex may switch the direction of rotation or flip the spin. The interesting
question is how the size of the vortex and the spin-spin interaction in a lattice of
different period affects the stability of a single vortex. To answer this question we
measured the mean persistence time or life times of the vortices in different lattices.

To explore the stability of bacterial vortices, we track orientations of all bacte-
rial spins in pillar lattices with different a. During the experiment, some vortices
may disappear or switch the direction of rotations, causing certain spins Si,a to flip
(Fig. 5.6). By processing the collected data, we found the probability Pa(t) of a
spin in a lattice with the period a to remain oriented in the same direction for a
period of time t. Pa(t) drops quickly for a < 60 µm and a > 90 µm (Fig. 5.7a). The
exponential decay of Pa(t) is an evidence of a Poisson random process: The prob-
ability of switching remains the same for any given period of time. We estimated
the persistence time or the life time of a vortex τa by fitting experimental data with
Pa(t) = Aexp(−t/τa), where A is a constant. The fitting range was [0 s, 2.5 s].

Existence of stable lattices of interacting spins complicates the spin switching dy-
namics and requires careful analysis. Because the vortex lattices for a = 60−90 µm
is stable, there are favorable and unfavorable directions of rotation for each ROI
in these lattices. We do observe that temporal fluctuations lead to rotations with
unfavorable directions, but such rotations are short-lived compared with ones with
favorable directions. Therefore, there exist two distinct life times τ longa and τ shorta cor-
responding to favorable and unfavorable directions respectively. In other words, due
to the hydrodynamic interaction between vortices, the short time τ shorta corresponds
to switching from local ferromagnetic (unstable) order to antiferromagnetic (stable)
order (Fig. 5.6b). In a stable antiferromagnetic configuration a vortex remains its
orientation for a much longer period of time τ longa . We calculated the probability



5.3. Results 101

0 s 0.58 s 1.16 s

a

b

time

Figure 5.6: Instantaneous signs of spins are overlaid on experimental snapshots.
Clockwise rotations (Si,a(t) < 0) and counterclockwise rotations (Si,a(t) > 0) are
represented by red and blue respectively. (a) Typical snapshot of the whole field
of view. (b) Emergence of unstable short-lived ferromagnetic configuration at a =
70 µm. Scale bars: 100 µm.

Pa(t) of favorable and unfavorable directions for each ROI separately (Fig. 5.7b),
and fitted them with Pa(t) = Aexp(−t/τa) again. The fitting range was [0 s, 2.5 s]
for unfavorable directions. For favorable directions, there is a short-time behavior
that comes from small values of spins Si,a(t), and this captures properties of unfa-
vorable rotations rather than favorable directions. Therefore, we chose the fitting
range for favorable directions as [3 s, 15 s], which is longer than τ shorta .

As a result, we obtained the life time τa as a function of the period a (Fig. 5.7c).
It clearly exhibits a sharp peak, which demonstrates that there is a sort of resonance
between bacterial turbulence and the periodic pillar lattices at around 70 µm.
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Figure 5.7: (a)(b) Semi-log plot of persistence probability of vortices P (t). The
curves clearly show exponential tail, which allows us to extract life times τa of
vortices. P (t) for a = 50, 100, 110, 120, 130 µm are shown in (a). For a =
60, 70, 80, 90 µm where strong antiferromagnetic order is observed, we calculated
Pa(t) for favorable (solid lines) and unfavorable (dashed lines) directions of rotation
separately. (c) Life time of vortices τa as a function of the lattice constant a. Red
squares: τ longa . Blue circles: τ shorta . Error bars: 95% confidence level of the fitting
(smaller than symbols except at a = 70 µm). (d) Correlation functions of velocity
field v(r, t) inside lattice structures with different lattice constants. Color coding
is the same for (a)(b)(d). Inset: Correlation length La as a function of the lattice
constant a. Error bars: standard deviations among different ROIs.
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5.3.5 Correlation function of velocity field

Interaction of swimming bacteria inside the same ROI can be quantified by a spatial
correlation function and the correlation length of the velocity field v(r, t). The
velocity field was obtained by PIV with subwindows 32 × 32 pixels separated by
every 8 pixels (75% overlap), smaller than any characteristic scales of observed
collective motion. The correlation function was calculated in each i-th ROI for each
lattice constant a and then averaged over i and time,

Ca(r) :=
⟨⟨⟨v(ri, t) · v(ri + r, t)⟩ri∈ROIia

⟩i⟩t
⟨⟨⟨|v(ri, t)|2⟩ri∈ROIia

⟩i⟩t
. (5.6)

As expected, Ca(r) decays with r. The existence of a vortical type of motion inside
each ROI is demonstrated by negative values of Ca at large r, which is especially
noticeable for a = 70 − 90 µm. The increase of Ca(r) with r for r > 70 µm is
observed in pillar lattices with large period a > 100 µm. It indicates that diameters
of observed vortices are smaller than the periods of pillar lattices and that they
are ≈ 70 µm. Therefore, when a > 70 µm, more than one vortices can coexist
in a single ROI, which results in frustrated configurations of vortices and leads to
destabilization of the antiferromagnetic vortex lattices.

The correlation length La is defined as the distance at which Ca(r) becomes
smaller than 1/e. La increases with a as expected and approaches the correlation
length of unconstrained suspension L∞ ≃ 45 µm (Fig. 5.7d).

5.3.6 Hexagonal lattice

While the main focus of our work was on dynamics of swimming bacteria in the
square lattices of pillars, we also performed additional experiments for hexagonal
lattices (Fig. 5.8). As we can infer from the results on square lattice experiments,
hydrodynamic continuity cannot be fulfilled without any frustration between spins
in hexagonal lattices.

Because we obtained the strong antiferromagnetic order in the square lattices
with the lattice constant a ≃ 70 µm, we investigated hexagonal lattices whose
diagonal distance is comparable to 70 µm. In these hexagonal lattices, we defined
the lattice constant a as the distance between two nearest pillars, and we chose
appropriate lattice constants a so that the diameter of inscribed circles of hexagons√
3a ≃ 70 µm, or a ≃ 40.4 µm. Therefore, we tested a = 40 µm and a = 45 µm.

In this experiment, we captured a movie at 52.7 fps and analyzed 4112 frames (78
seconds).

In spite of such choice of length scale that is favorable to vortex formation, we
could not observe neither ferromagnetic nor antiferromagnetic order in hexagonal
lattice (Fig. 5.9). We analyzed the adjacent spin correlation χa(t) defined in Eq. (5.5)
by defining the ROIs as shown in Fig. 5.10a. The spin correlation χa(t) fluctuates
a lot for both a = 40 µm and a = 45 µm, but it is almost always around 0 and
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100 µm

Figure 5.8: Snapshot of the experiments on hexagonal lattice. The distances between
the two nearest pillars, or the lattice constant, a are a = 40 µm for the left lattice
and a = 45 µm for the right lattice.
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Figure 5.9: Colormap of the time averaged vorticity field overlaid on the snapshot of
Fig. 5.8. Neither ferromagnetic nor antiferromagnetic order is observed as expected.

|χa(t)| < 0.5, which means that there is no stable emergent order1. This again
contradicts with the results in [48], in which they observed strong ferromagnetic
order of bacterial turbulence confined in a hexagonal lattice of a microfluidic device.

These results demonstrate again that the vortex lattice formation is triggered in
accordance with hydrodynamic continuity conditions, and the underlying mechanism
of vortex lattice formation is distinctively different from the previous study [48].

10 ≪ χa(t) ≤ 1 and −1 ≤ χa(t) ≪ 0 correspond to ferromagnetic and antiferromagnetic order
respectively.
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Figure 5.10: (a) ROIs used for analysis. Red circular ROIs were used inside the
lattices. Regions adjacent to distorted pillars were neglected for analysis. Green
rectangular area represents the reference area for the unconstrained turbulence. (b)
Temporal dynamics of spins χa(t) for different lattice constants a. Blue: a = 40 µm.
Orange: a = 45 µm. The spin correlation χa(t) fluctuates around 0 by frequently
changing its sign, and no clear order emerges.
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5.4 Conclusion

In conclusion, we have shown that dense suspensions of swimming bacteria self-
organize into antiferromagnetic vortex lattices. We have addressed what happens
when bulk unconstrained bacterial turbulence encounters obstacles. Such situation
is natural for bacteria rather than confined geometry if we think about their natural
environment. We have demonstrated that such chaotic turbulent phases can even
self-organize into ordered motion just by imposing a small number of constraints at
the periodicity comparable with the correlation length.

This experimental observation of antiferromagnetic order is in contradiction with
the naive comparison with the previous study on bacterial turbulence in confinement
[48]. The difference can be explained by two possible reasons: (i) hydrodynamic
continuity and (ii) absence of circulating swimming along pillars. In the microfluidic
experiment [48], the size of the wall was larger than our pillars and bacteria can swim
along the wall and exhibit circulating motion along the boundary. This circulating
motion then drives vortices inside cavities, and this effect dominated hydrodynamic
continuity at the large gap width case. However, in our pillar experiments, the size of
the pillars is smaller and the square shapes prevent bacteria from swimming along the
pillars. Therefore, circulating swimming has little effect on the collective dynamics
and the hydrodynamic continuity is dominant, leading to the antiferromagnetic order
in the square lattices. This explanation is also consistent with the experimental
results on hexagonal lattices.

Furthermore, our experiments could run for a much longer time than previous
experiments in microfluidic confinement. Typical durations of such previous exper-
iments were shorter than 10 seconds [46, 48], because bacterial turbulence rapidly
decelerates due to the shortage of oxygen. On the other hand, in our setup, bac-
terial suspension is in contact with air and our experiments could run for minutes.
Although we restricted ourselves to use only the first 1-minute movies to avoid pos-
sible changes of bacterial dynamics, our longer observation enabled us to extract
stability of vortex lattices in terms of persistence probability and life times, which
had not been experimentally accessible. Our results have clearly proved that there
is resonance between bacterial turbulence and periodic structures. The resonant
periodicity gives rise to persistent and stabilized vortex lattices.

Theoretically speaking, the hydrodynamic theories on active turbulence are far
from perfect. Even how to implement boundary conditions is still unknown. As we
can see from our experimental results in comparison with the microfluidic experiment
[48], the boundary conditions are crucial to understand macroscopic behavior of
active turbulence. Even slight differences in boundary conditions can change the
types of the emergent order. In this sense, our experimental results can be used for
testing future theoretical works.

Our experimental results give us insight on means to extract some kind of order
out of the chaotic regime. If our experimental results are combined with studies to
extract directed transport of objects [44] or directed rotations of gears [45], we might
be able to devise some ways to extract energy or work from bacterial suspension.
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5.5 Appendix: Properties of reference area

Here we summarize experimentally obtained properties of unconstrained bacterial
turbulence in our reference area, the red rectangle region in Fig. 5.3.

We calculated the root mean square velocity vrms, the mean vorticity, and the
mean enstrophy defined as following.

vrms
f (a) =

⟨√
⟨[vf(r, t)]2⟩t

⟩
r∈ROIref

, (5.7)

mean vorticity = ⟨⟨rotv(r, t)⟩t⟩r∈ROIref , (5.8)

mean enstrophy = ⟨⟨[rotv(r, t)]2⟩t⟩r∈ROIref , (5.9)

where ROIref represents the ROI for the bulk unconstrained turbulence, which is
shown as the red rectangle in Fig. 5.3. We also calculated the correlation function,

C∞(r) :=
⟨⟨v(r′, t) · v(r′ + r, t)⟩r′∈ROIref⟩t

⟨⟨|v(r′, t)|2⟩r′∈ROIref ⟩t
. (5.10)

All the results are shown in Fig. 5.11.
Although the mean enstrophy gradually changes about ∼ 10% (Fig. 5.11c), vrms

stays almost constant, which assures that our experiment was done in a steady state
(Fig. 5.11a). The mean vorticity shown in Fig. 5.11b naturally stays around 0,
which means there is no a priori favored direction of rotations. This assures that
emergence of each vortex formed in the lattices is a consequence of spontaneous
macroscopic chiral symmetry breaking.

From the correlation function C∞(r), we can extract the correlation length of
the unconstrained bacterial turbulence L∞ ≃ 45 µm. This value was compared with
the correlation lengths in the lattice structures in Section 5.3.5.
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Figure 5.11: Experimentally obtained properties of bulk unconstrained bacterial tur-
bulence in the reference area ROIref in the red rectangle shown in Fig. 5.3. (a) Time
series of the root mean square velocity vrms. vrms is steady and we do not observe any
discernible change. (b) Time series of the mean vorticity ⟨⟨rotv(r, t)⟩t⟩r∈ROIref . (c)
Time series of the mean enstrophy ⟨⟨[rotv(r, t)]2⟩t⟩r∈ROIref . (d) Velocity correlation
function C∞(r). Red dashed line represents the correlation length L∞ ≃ 45 µm at
which C∞(r) becomes smaller than 1/e.



109

Chapter 6

General conclusion and outlook

Throughout this dissertation, we have explored properties of emergent order and
fluctuations in collective dynamics of swimming bacteria from the viewpoint of sta-
tistical physics. We have experimentally investigated the two major classes of collec-
tive motion: the Toner-Tu-Ramaswamy phases (the Vicsek universality class) and
active turbulence.

Starting from the introduction of the Vicsek model in 1995, active matter physics
has seen a great expansion of its community. As we have reviewed in Chapter 2,
the large-scale numerical studies and corresponding hydrodynamic theories have re-
vealed many fascinating universal properties of the Vicsek-style models, especially
giant number fluctuations (GNF) in their homogeneous but highly fluctuating long-
range ordered states with broken rotational symmetry (the Toner-Tu-Ramaswamy
phases). However, those theoretical/numerical predictions have never been convinc-
ingly tested in experiments.

Inspired by these studies, ‘GNF’ were reported in many experimental studies.
However, we pointed out that those ‘GNF’ observed experimentally were actually
measured out of the Toner-Tu-Ramaswamy phases. All the reported ‘GNF’ were
not deeply rooted in the mathematical properties of symmetry broken states, or
the Nambu-Goldstone modes, but originated mainly from clustering or boundary
effects. No GNF measurement has been done in long-range ordered phases. Due
to theoretical and experimental pitfalls on ‘GNF’, there has been a widespread
misunderstanding on GNF that ‘GNF’ have been trivially observed in experiments.

Our experimental system on filamentous Escherichia coli bacteria has turned out
to exhibit GNF in the true long-range ordered phase, as we described in Chapter 3.
Therefore, it gives the first experimental realization of the Toner-Tu-Ramaswamy
phases, and hence it falls into the Vicsek universality class. This is surprising because
our bacteria with both complicated interactions and fluctuating internal degrees
of freedom can even be reduced to the Vicksek universality class. Our finding of
the first example of the Toner-Tu-Ramaswamy phenomena provides experimental
grounds for many theoretical and numerical works.

Our results give many insights on the Vicsek universality class and on future
directions of active matter physics. (i) By comparing our experimental system with
other experimental systems and numerical simulations, we can extract what is nec-
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essary for the emergence of the Toner-Tu-Ramaswamy phases. The reasons why
the Toner-Tu-Ramaswamy phases have been so difficult to observe experimentally
or numerically except for the Vicsek-style models (e.g. simulations on rods with
excluded volume) have remained elusive until our experiment came out. We might
argue that the quasi-two-dimensionality (quasi-2D) is crucially important to make
the system close to Vicsek-style. In this spirit, our experiment gives new ideas
for future numerical and theoretical studies, such as testing quasi-2D simulations on
self-propelled rods with excluded volume. (ii) Furthermore, our experimental results
can contribute to the development of better theories. Only a part of our experimen-
tal results on the exponents of GNF and the correlation functions were consistent
with the predictions by the Toner-Tu theory and the Vicsek-style simulations on
self-propelled rods, which gives us many questions on the applicability of the theory
and possible corrections required for application on real experimental systems. (iii)
Because we have found the first system that belong to the Vicsek universality class,
we might be able to find conditions for other systems to fall into the Vicsek class
by utilizing our knowledge that we have learnt from our experiments. This is a very
important future direction to understand robustness of the Vicsek class.

So far, studies on collective motion, especially for the Vicsek universality class,
were mostly numerical. However, because we have found the first example in that
class, we can contribute and expect complementary development of theoretical, nu-
merical, and experimental works.

In Chapter 4 and Chapter 5, we reviewed and investigated the emergence of order
out of chaotic bacterial turbulence of Bacillus subtilis. Although bulk unconstrained
bacterial turbulence is well investigated, the interplay between bacterial turbulence
and boundaries is far more difficult to treat theoretically, and we can still find
unexpected phenomena of bacterial turbulence in contact with boundaries.

To address the question on what happens when bulk unconstrained bacterial
turbulence encounters periodic structures, we devised an experimental system, us-
ing microfabrication technique, in which we can observe bacterial turbulence in the
structures in the different periodicity at the same time and for a long time. As
a result, we have succeeded to observe strong stabilization of vortices and emer-
gence of antiferromagnetic vortex lattice in a periodic pillar lattice with the lattice
constant comparable to the correlation length of the bulk unconstrained bacterial
turbulence, which can be recognized as a sort of resonance. The emergence of the
antiferromagnetic order was seemingly in contradiction with the existing study in
microfluidic chambers [48], which highlights the importance of boundary conditions
on macroscopic behavior of bacterial turbulence and its experimental investigation.
We anticipate that our results will lead to better understanding of bacterial turbu-
lence in contact with boundaries.

As a possible future direction, it is worthwhile to think about biological, eco-
logical, or evolutionary meanings of collective motion. Interest of our studies so
far was in extracting physics, especially universality, from collective motion that is
distinctively different from individual behavior. Our studies as well as other studies
on collective motion are sometimes far away from real biology. However, because
we have provided some model biological experimental systems, future studies might
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fill the gap between active matter physics and biological science. Active matter
physics still has a lot to learn from biology, and vice versa. We anticipate that both
disciplines will coevolve into higher frameworks with broad applicability.
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Theraulaz, and Richard Bon. Intermittent collective dynamics emerge from
conflicting imperatives in sheep herds. Proceedings of the National Academy of
Sciences, Vol. 112, No. 41, pp. 12729–12734, 2015.

[3] H. P. Zhang, Avraham Be’er, E-L Florin, and Harry L. Swinney. Collective
motion and density fluctuations in bacterial colonies. Proceedings of the Na-
tional Academy of Sciences of the United States of America, Vol. 107, No. 31,
pp. 13626–13630, 2010.

[4] Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, and An-
dreas R Bausch. Polar patterns of driven filaments. Nature, Vol. 467, No. 7311,
pp. 73–77, 2010.

[5] Yutaka Sumino, Ken H Nagai, Yuji Shitaka, Dan Tanaka, Kenichi Yoshikawa,
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Vibrated Polar Disks. Physical Review Letters, Vol. 105, No. 9, p. 098001,
2010.

[15] Nitin Kumar, Harsh Soni, Sriram Ramaswamy, and A.K. Sood. Flocking at
a distance in active granular matter. Nature communications, Vol. 5, p. 4688,
2014.
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[77] Christoph A. Weber, Florian Thüroff, and Erwin Frey. Role of particle conser-
vation in self-propelled particle systems. New Journal of Physics, Vol. 15, p.
045014, 2013.

[78] Takuji Ishikawa and T J Pedley. Coherent structures in monolayers of swimming
particles. Physical Review Letters, Vol. 100, No. 8, p. 088103, 2008.

[79] Bernd Jähne. Spatio-Temporal Image Processing: Theory and Scientific Appli-
cations. Springer-Verlag Berlin Heidelberg, 1st edition, 1993.

[80] Adama Creppy, Olivier Praud, Xavier Druart, Philippa L. Kohnke, and Franck
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