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Abstract

In this thesis, we show our development of the first-principles GW+Bethe-
Salpeter equation (BSE) method, which is based on many-body perturbation
theory (MBPT), to extend its applicability and improve its accuracy. The
GW+BSE method is recognized as a powerful and predictive tool for inves-
tigating optical spectra of condensed matter. However, there are still much
room for development to maximize the potential. Our direction to go is
in the development of the post-calculation analysis, or the exciton analysis.
The conventional analysis method has been based on state-by-state visu-
alization of the one-electron wave function, which is not only cumbersome
and ambiguous but also illegitimate. In chapter 6, we propose a method to
analyze the exciton wave function and to classify excitons using two dimen-
sionless parameters automatically and quantitatively. We expect that this
method is an important step toward realization of an automatic classifica-
tion required for a data-driven material design of organic solar cells. The
second direction to go is to develop numerical procedures to solve GW+BSE
to adapt to the recent massively parallel computers, which make it possible
to increasing larger scale calculation year by year. In Chapter 7, we demon-
strate that our GW+BSE code can accurately calculate carbon nanocages
involving 198 atoms. By this, we can greatly extend the target of the study.
The third direction to go is to improve the accuracy of the GW+BSE cal-
culation. The inaccuracy is often associated with applying the GW+BSE
method originally developed for extended systems to an isolated system. In-
deed, the excitation energy of small molecules is seriously underestimated.
This is considered due to neglect of the functional derivative of the electron-
hole interaction kernel of BSE. In Chapter 4, we newly formulate this term
as the second-order correction, and in Chapter 8, we investigate the effect
of the second-order correction on small molecules. We find that the second-
order correction close to the experimental results, but the amount of the
correction is insufficient to overcome the underestimated excitation energies
by about 1 eV. The result suggests that the second-order correction should
be taken into account under the self-consistent GW scheme instead of the
G0W0 scheme taken in the present study.
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Chapter 1

Introduction

In condensed matter sciences, optical properties are extremely important
in various fields such as optoelectronics, photovoltaics and photochemistry.
The materials science will be greatly advanced if the optical properties can
be accurately simulated from first-principles, and in addition, if the optical
properties can be done systematically, the advance will be accelerated via a
data-driven approach.

The first-principles calculation based on the many-body perturbation
theory (MBPT) is particularly important in understanding the spectroscopic
measurement, such as photoemission spectroscopy (PES) and absorption
spectroscopy, because the calculation directly corresponds to the spectro-
scopic process. In PES, light is incident on a sample to measure the kinetic
energy of the photoelectron, and the electronic property such as the ioniza-
tion potential is investigated. In absorption spectroscopy, light is incident
on a sample to measure the amount of the transmitted light, and the ab-
sorbance is expressed as a function of the photon energy: the peak position
of the spectrum gives the excitation energy of the sample, and the peak
intensity gives the transition probability. That is, in those spectroscopic
measurement, light is incident as an external perturbation or a probe, and
the excited state is investigated by measuring the response of the system.
Therefore, a spectroscopy is considered as one of the perturbative methods
to study linear or nonlinear response to an electron and a photon, to which
MBPT is directly relevant.

One may consider the density functional theory (DFT)1–3) is also rele-
vant to the spectroscopy, but the standard DFT cannot be legitimately used
because the theory is justified to the ground state calculation. Of course,
DFT was extended to time-dependent (TD) systems, or to excited states,
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but the exchange-correlation functional of the TD-DFT has so far been de-
veloped only for a nearly adiabatic electron dynamics and, in addition, the
charge-transfer excitation and the Rydberg excitation are often inaccurately
predicted.

In order to treat the excited state, the first-principles Green’s function
method has been developed on the basis of MBPT and provided us with a
post-DFT approach to the excitation of a real material. The excitation or
quasi-particle (QP) spectra are directly probed in a wide range of spectro-
scopic experiments, which is highly advantageous to intuitively understand
the calculation results. The development was independently pioneered by
Hybertsen et al.4) and Strinati et al.5,6). They showed, for several semicon-
ductors and insulators, that the band gap comparable to the experimental
one can be obtained by using the GW approximation (GWA)7–9) to describe
the self-energy operator simply as a product of the one-particle Green’s func-
tion (G) and the dynamically screened Coulomb interaction (W ) within the
random phase approximation (RPA). Thereafter, GWA has been success-
fully applied to wide variety of materials. Later, theGWA was applied to the
self-energy operator appearing in the equation of motion of the two-particle
Green’s function, known as the Bethe-Salpeter equation (BSE)10–17). Ap-
plication of the GW+BSE method was pioneered by Onida et al. 13) who
demonstrated, for an isolated sodium tetramer, that the optical spectra com-
parable to the experimental one are successfully obtained by incorporating
the excitonic effect beyond the one-particle picture. The GW+BSE method
has now been recognized as one of the most reliable first-principles methods
for the calculation of optical spectra.18–20)

In spite of the methodological developments done so far, the GW+BSE
method is not as popular as DFT yet. This is not solely due to the fact
that the GW+BSE calculation is much more time-consuming. We consider
it is also due to the fact that the potential ability of this method has not
been made clear yet. For example, it is not clear what is the maximum size
of the system practically accessible with the modern supercomputers and
what is the typical accuracy feasibly achievable within GWA. In addition,
methods to get relevant information from the calculation have not been well
prepared yet. The aim of this thesis is to answer some of these questions via
demonstration calculations. We use a massively parallelized code to perform
an unprecedentedly large scale calculation, to remove approximations so far
made in addition to GWA, and to develop an analysis method of the exciton
wave function.

To answer the first question, we will demonstrate in Chapter 7 that
the GW+BSE method with our program can accurately calculate carbon
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nanocages involving 198 atoms.
To answer the second question, we will demonstrate in chapter 6, a prac-

tical classification method of excitons. Although excitons are conceptually
classified into local-, Rydberg-, or charge-transfer type, their classification
has been ambiguous so far. The conventional analysis method has been
based on state-by-state visualization of the one-electron wave function. In
chapter 6, we will propose a quantitative characterization method of exci-
ton as a step toward enabling a data-driven material design of organic solar
cells.21)

To answer the third question, we will analyze the excitation energy of
small molecules. In GW+BSE formalism, the electron-hole (e-h) interac-
tion kernel K have been approximated in addition to GWA. The e-h in-
teraction kernel K is defined by the functional derivative of the self-energy
operator Σ with respect to the one-particle Green’s function G, that is,
K := iδ(ΣH + Σxc)/δG, where ΣH and Σxc are the Hartree and exchange-
correlation (xc) term, respectively. As Σxc = iGW , the kernel can be writ-
ten as K = Kx −W − GδW/δG, where the first term Kx(:= iδΣH/δG) is
called the bare Coulomb exchange interaction, the second term corresponds
to the screened Coulomb direct interaction Kd := −W and the third term
GδW/δG =: K ′ corresponds to the second-order correction of W which has
been neglected so far. This approximation was justified for semiconductor
systems in which excitons are weakly bound and the binding energy is typi-
cally dozen of meV.22) However, this approximation has been controversial
for molecular systems. It was recently reported that the calculated optical
gaps of small molecules are underestimated by about 1 eV and their binding
energies are extremely large (about 10 eV)23,24), which implies the screen-
ing is significantly small and the second-order correction is not negligible.
In Chapter 8, we will demonstrate the effect of the second-order correction
on small molecules.

This thesis is organized as follows: In Chapters 2-5, we will describe
basic theories and methods in our GW+BSE method. In Chapter 2, we will
briefly describe DFT. In Chapter 3, we will describe the Hedin’s equations
and GWA. In Chapter 4, we will describe not only GW+BSE formalism,
but our formulation of the second-order correction. In chapter 5, we will
describe our all-electron mixed basis approach.

In Chapter 6-8, we will describe demonstrations and applications by
our GW+BSE method. In Chapter 6, we will develop an exciton analysis
method to extend practicability of the GW+BSE method. In Chapter 7,
we will calculate carbon nanocages involving 198 atoms to demonstrate ap-
plicability of the GW+BSE method. In Chapter 8, we will investigate the
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effect of the second-order correction to develop further improvement of the
GW+BSE method.

In Chapter 9, we will give summary and conclusion.
We use the Hartree atomic unit in this thesis.
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Figure 1.1: Physics and corresponding calculation method.
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Chapter 2

Density Functional Theory

The density functional theory (DFT)1–3) is one of the most successful meth-
ods for calculating the many-electron system. DFT is important in our
theory because the solution of the Kohn-Sham (KS) equation is taken as a
unperturbed term in the Green’s function method. Here, we briefly describe
DFT.

Hamiltonian of an interacting N -electron system is given as

H = T + Vee + Vext, (2.1)

where the first, second and third term corresponds to the kinetic energy,
the electron-electron Coulomb repulsive interaction and the electron-nuclear
attractive interaction or external potential, respectively. These are written
explicitly as

T =

N∑
i=1

(
−1

2
∇2

i

)
(2.2)

Vee =
1

2

N∑
i̸=j

1

|ri − rj |
(2.3)

Vext =
N∑
i=1

vext(ri), where vext(r) = −
Allnuclei∑

J

ZJ

|r −RJ |
. (2.4)

The Schrödinger equation is given as follows:

HΨ(rN ) = EΨ(rN ), (2.5)
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where rN is an abbreviation of r1, r2, ..., rN . We introduce the density

operator n̂(r) =
N∑
i=1

δ(r − ri). By using this operator, the density n(r) is

expressed as follows:

n(r) = (Ψ, n̂(r)Ψ)

=

∫
Ψ∗(rN )n̂(r)Ψ(rN )drN . (2.6)

In addition, the expectation value of an external potential Vext is expressed
as follows:

(Ψ, VextΨ) =

∫
Ψ∗(rN )

[ N∑
i=1

Vext(ri)

]
Ψ(rN )drN

=

∫
Ψ∗(rN )

[∫ N∑
i=1

vext(ri)δ(r − ri)dr

]
Ψ(rN )drN

=

∫
vext(r)n(r)dr. (2.7)

In 1964, Hohenberg-Kohn (HK) proved the basic theorem of DFT1). The
theorem is divided into two parts.
Hohenberg-Kohn theorem 1
If a ground state is not degenerated, the external potential Vext(r) is uniquely
determined by the density n(r), besides a trivial additive constant.

(proof)
We assume that there exists two external potentials Vext and V ′

ext which are
different more than an additive constant and give a common electronic den-
sity n. Let the Hamiltonians H and H ′ include Vext and Vext′ , respectively.
As a preparation, we prove that H and H ′ do not have a common eigenstate
Ψ . Here we assume that

HΨ = EΨ,

H ′Ψ = E′Ψ.

Taking difference between the above two equations, we obtain

(Vext − V ′
ext)Ψ = (E − E′)Ψ.

Ψ identically is not equal to zero, and Vext − V ′
ext = E − E′, which is a

contradiction to the assumption that two potentials are different more than
an additive constant.
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From here on, let Ψ and Ψ′ are eigenstates for H and H ′, respectively.
Let us consider the following two Schrödinger equations

HΨ = EΨ,

H ′Ψ′ = E′Ψ′.

By considering Ψ ̸= Ψ′ and the Schrödinger-Ritz variational principle, we
obtain the following inequality

E = (Ψ, ĤΨ) < (Ψ′, ĤΨ′)

= (Ψ′, (Ĥ ′ − V̂ ′
ext + V̂ext)Ψ

′)

= E′ +

∫
[vext(r) − v′ext(r)]n(r)dr.

Similarily for E′, we obtain

E′ < E +

∫
[v′ext(r) − vext(r)]n(r)dr.

Adding two above inequalities, we obtain

E + E′ < E + E′,

which is a contradiction.
Since n(r) uniquely determines Vext, it also determines the ground state

wave function Ψ, which should be obtained by solving the full many-body
Schrödinger equation. Therefore, there exists a unique and universal func-
tional of the electronic density n(r) which determines the ground state.
Defining the functional F as

F [n(r)] := (Ψ, (T + Vee)Ψ), (2.8)

we can express the ground state energy as follows:

Ev[n(r)] =

∫
vext(r)n(r)dr + F [n(r)]. (2.9)

Next we prove the HK second theorem which corresponds to the variational
principle to the ground state energy.
Hohenberg-Kohn theorem 2
Ev[n(r)] takes the minimum value for the exact n(r).
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(proof)

Ev[Ψ′] = (Ψ′, VextΨ
′) + (Ψ′, (T + Vee)Ψ

′)

=

∫
vext(r)n′(r)dr + F [n′(r)]

> Ev[Ψ] =

∫
vext(r)n(r)dr + F [n(r)].

The HK second theorem states that if Ev[n] takes the minimum value,
n[r] is the correct density of the ground state. As a preparation, we trans-
form Ev[n] as follows:

Ev[n] = Ts[n] +

∫
vext(r)n(r)dr + J [n] + Exc[n], (2.10)

J [n] :=
1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′. (2.11)

Here, Ts[n] is the kinetic energy of the non-interacting reference system, and
the subscript ”s” indicates single-particle; J [n] corresponds to the classical
electrostatic energy (so-called Hartree term), Exc is the exchange-correlation
(xc) energy which is the sum of the exchange and the correlation energy. Exc

is defined as follows:

Exc[n] := F [n] − Ts[n] − J [n]. (2.12)

Defining T [n] := (Ψ, TΨ) and Eee[n] := (Ψ, VeeΨ), we have

Exc[n] = (T [n] − Ts[n]) + (Eee[n] − J [n]). (2.13)

The first term of r.h.s is the difference between the kinetic energies of the real
and reference system, the second term is the electron-electron interacting
energy except for the classical electrostatic energy. In this reference system,
each electron is in motion under an effective potential veff[

−1

2
∇2 + veff [n](r)

]
ϕi(r) = εiϕi(r). (2.14)

Since there is no interaction in this reference system, the many-body wave
function is expressed by the Slater determinant consisting of the one-electron
orbital (KS orbital) {ϕi}. Therefore the density n(r) is given as follows:

n(r) =
N∑
i=1

|ϕi(r)|2. (2.15)
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Since the kinetic energy operator is the one-body operator, kinetic energy
Ts in the reference system is given as follows:

Ts[n] =

N∑
i=1

⟨ϕi| −
1

2
∇2|ϕi⟩ . (2.16)

By using Eq. (2.14), Ts is also expressed as follows:

Ts =
N∑
i=1

εi −
∫
veff(r)n(r)dr. (2.17)

We determine veff(r) by using the variational method. In Eq. (2.17), taking
variance as ϕi → ϕi + δϕi, we obtain

N∑
i=1

(
⟨δϕi| −

1

2
∇2|ϕi⟩ + c.c.

)
=

N∑
i=1

δεi −
∫
δveff(r)n(r)dr −

∫
veff(r)

N∑
i=1

(δϕ∗iϕi + c.c.) dr

N∑
i=1

(
⟨δϕi| −

1

2
∇2 + veff |ϕi⟩ + c.c.

)
=

N∑
i=1

δεi −
∫
δveff(r)n(r)dr

N∑
i=1

εiδ ⟨ϕi|ϕi⟩ =

N∑
i=1

δεi −
∫
δveff(r)n(r)dr

∴
N∑
i=1

δϵi =

∫
δveff(r)n(r)dr. (2.18)

By using Eqs. (2.17), (2.18), a variation of Ev[n] is given as follows:

δEv[n] = −
∫
δn(r)veff(r)dr +

∫
δn(r)

[
vext(r) +

∫
n(r′)

|r − r′|
dr′ +

δExc[n]

δn(r)

]
dr.

(2.19)

Under the constraint of a fixed number of electrons∫
drδn(r) = 0, (2.20)

if δEv = 0 for δn(r), then we obtain

veff(r) = vext(r) +

∫
n(r′)

|r − r′|
dr′ + vxc(r), (2.21)
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besides a trivial additive constant. Here, we defined the xc potential vxc(r)

vxc(r) :=
δExc[n]

δn(r)
. (2.22)

Substitung Eq. (2.17) into Eq. (2.10), we obtain

Ev[n] =
∑
i

εi − J [n] + Exc[n] −
∫
vxc(r)n(r)dr. (2.23)

Consequently, if we obtain the eigenvalues {εi} and the eigenfunctions {ϕi}
for the KS equation, we can immediately calculate the total energy from the
above equation.

Summarizing the above, if we solve the one-body problem or KS equa-
tion, we can calculate the exact total energy of the ground state. However,
we have never mentioned specific expression of the xc energy Exc and its
functional derivative vxc. That is, in order to perform specific calculations,
we need the expression for Exc even though it is approximate.

If we find the exact xc energy Exc and its functional derivative vxc(r) =
δExc[n]/δn(r), we can generally resolve the many-electron problem. How-
ever, it is highly difficult. We introduce the local density approximation
(LDA) for the xc energy

Exc[n] ≃
∫
n(r)εxc(n)dr, (2.24)

where εxc(n) denotes the xc energy per particle of a homogeneous electron
gas of density n. The corresponding xc potential vxc(r) becomes

vxc(r) = εxc(n(r)) +
dεxc(n)

dn

∣∣∣∣
n=n(r)

. (2.25)

The xc energy density εxc is a sum of the exchange part εx and the correlation
part εc. The exchange energy density is exactly given by

εx(rs) = −0.4582

rs
Ha, (2.26)

where rs is the dimensionless parameter defined by

rs =

(
3

4πn

) 1
3

.
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The most accurate correlation energy was calculated using quantum Monte
Carlo simulations by Ceperley and Alder25), and has been parametrized by
Perdew and Zunger26)

εc(rs) =

{
−0.1413/(1 + 1.0529

√
rs + 0.3334rs) Ha for rs ≥ 1

−0.0480 + 0.0311 ln rs − 0.0116rs + 0.0020rs ln rs Ha for rs ≤ 1.

Although the KS equation is the eigenvalue equation, the potential veff [n](r)
is dependent on the eigenfunction {ϕi} which we seek. Thus, we need to
self-consistently solve the KS equation. Firstly, we specify an initial den-
sity which, in general, is expressed by a sum of the density of each atom.
Next we calculate veff or the KS Hamiltonian and subsequently calculate the
eigenvalue εi and the eigenfunction ϕi via diagonalization. Finally, we check
the difference of the input and output density. If the difference is sufficiently
small, we terminate the calculation, otherwise we make a new density for
the next step. We iterate this procedure until it is converged.
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Figure 2.1: Flowchart of the SCF calculation.
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Chapter 3

Hedin’s equations and GW
approximation

3.1 Schwinger’s trick

From this section, we introduce the second quantization and abbreviated
notations i = {ri, σi} and i = {ri, σi, ti}. The Hamiltonian of interacting
electrons is given as follows:

H =

∫
d1ψ†(1)h(r1)ψ(1) +

1

2

∫
d11′ψ†(1)ψ†(1′)v(r1, r

′
1)ψ(1′)ψ(1), (3.1)

where

h(r) = −1

2
∇2 + Vext(r), (3.2)

v(r, r′) =
1

|r − r′|
. (3.3)

We also consider the following external perturbation H ′

H ′(t2) =

∫
d2u(2)n(2), (3.4)

where u(2) is an arbitrary external potential which is put to zero at the end,
and n(2) = ψ†(2)ψ(2) is the number density operator. Note that we consider
the Hamiltonian H including two-body operator is the unperturbed term,
and H ′ is the perturbation. We define the interaction picture as follows:

ψ(1) := eiHt1ψ(1)e−iHt1 . (3.5)
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In the interaction picture, Eq. (3.4) becomes

H ′
I(t2) = eiHt2H ′(t2)e

−iHt2 (3.6)

=

∫
d2u(2)n(2). (3.7)

We introduce the (formal) operator S(ta, tb)

S(ta, tb) = exp

[
−i

∫ ta

tb

dt2H
′
I(t2)

]
, (3.8)

and its simplified operator S

S := S(−∞,∞) = exp

[
−i

∫
d2u(2)n(2)

]
. (3.9)

Note that T [S(ta, tb)] and T [S] are the time evolution operator and S-matrix,
respectively, where T is the Dyson’s time-ordering operator. By using the
above preparation, the generalized one-particle Green’s function G is defined
as follows:

G(1,1′) := −i⟨N, 0|T [Sψ(1)ψ†(1′)]|N, 0⟩
⟨N, 0|T [S]|N, 0⟩

, (3.10)

where |N, 0⟩ is the ground state of the unperturbed N -electrons system.
Similarly, the generalized two-particle Green’s function G2 is defined as fol-
lows:

G2(1,1
′,2,2′) := (−i)2 ⟨N, 0|T [Sψ(1)ψ(2)ψ†(2′)ψ†(1′)]|N, 0⟩

⟨N, 0|T [S]|N, 0⟩
. (3.11)

Eqs. (3.10) and (3.11) reduce to the definition of the ordinary Green’s func-
tions as u → 0. Notice also that all the u-dependence in the generalized
Green’s functions is contained in the operator S. Applying the chain rule
shown in Appendix B, first order variation of G caused by u is given as

δG(1,1′) = −i⟨N, 0|T [δSψ(1)ψ†(1′)]|N, 0⟩
⟨N, 0|T [S]|N, 0⟩

−G(1,1′)
⟨N, 0|T [δS]|N, 0⟩
⟨N, 0|T [S]|N, 0⟩

,

(3.12)
where

δS = −iS
∫
d2δu(2)n(2). (3.13)

We obtain the Schwinger’s trick7,17,27) from the above equation

δG(1,1′)

δu(2)
= −G2(1,1

′,2,2+) + iG(1,1′) ⟨n(2)⟩ . (3.14)
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This identity allows us to truncate the hierarchy of Green’s functions. In
the hierarchy, the equation of motion for the one-particle Green’s function
includes the two-particle Green’s function, and similarly the equation of mo-
tion for the two-particle Green’s function include the three-particle Green’s
function and so on. It is conceivable that this hierarchical structure makes
impossible to exactly solve the Green’s function of many-electron systems.
However, the Schwinger’s trick shows that the two-particle Green’s function
can be expressed by the one-particle Green’s function although the func-
tional derivative term with respect to u is unknown. Since linear-responce
functions such as the polarizability are naturally defined as the functional
derivative with respect to an external perturbation, this form is advanta-
geous for relating to physical quantities. From the next section, we will
derive the Hedin’s equations from the Schwinger’s trick (3.14).

To discuss coupling of external perturbations to momentum, energy, or
angular momentum densities, as well as to number density, it is convenient
to consider a nonlocal external potential u(2,2′) in space and time. That
is, the operator S is generalized as follows:

S = exp

[
−i

∫
d22′ψ†(2)u(2,2′)ψ(2′)

]
. (3.15)

We find that u(2,2′) represents a disturbance in which a particle is removed
from the system at 2 and added at 2′. In addition, the Schwinger’s trick
(3.14) is easily generalized as follows:

δG(1,1′)

δu(2,2′)
= −G2(1,1

′,2′,2) +G(1,1′)G(2′,2). (3.16)

In Chapter 4, the above generalization plays an essential role.

3.2 The Dyson equation

Before considering the equation of motion for the one-particle Green’s func-
tion G, we summarize the following properties of the operator S

• group property

T [S(ta, tb)] = T [S(ta, tb)]T [S(tb, tc)]; (3.17)

• assuming ta > t1 > t2 > tb, decomposition property

T [S(ta, tb)ψ(1)ψ(2)] = T [S(ta, t1)]ψ(1)T [S(t1, t2)]ψ(2)T [S(t2, tb)];
(3.18)
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• time derivatives

∂

∂ta
T [S(ta, tb)] = −iH ′

I(ta)T [S(ta, tb)], (3.19a)

∂

∂tb
T [S(ta, tb)] = iT [S(ta, tb)]H

′
I(tb). (3.19b)

Moreover, the time derivative of the field operator is given as

∂

∂t1
ψ(1) = −i

[
h(1) +

∫
d3v(1,3)ψ†(3)ψ(3)

]
ψ(1), (3.20)

where v(1,3) = v(r1, r3)δ(t1 − t3). From here on, we consider the time-
derivative of the one-particle Green’s function and omit the denominator
⟨N, 0|T [S]|N, 0⟩ for simplicity. Then, we have

i
∂

∂t1
G(1,1′) =

∂

∂t1

[
θ(t1 − t′1)⟨N, 0|T [S(∞, t1)]ψ(1)T [S(t1, t

′
1)]ψ

†(1′)T [S(t′1,−∞)]|N, 0⟩

−θ(t′1 − t1) ⟨N, 0|T [S(∞, t′1)]ψ
†(1′)T [S(t′1, t1)]ψ(1)T [S(t1,−∞)]|N, 0⟩

]
. (3.21)

Now we evaluate the time-derivative appearing on the r.h.s of Eq. (3.21).
Firstly, noting that ∂/∂tθ(t) = δ(t) and S(t, t) = 1, the derivative of θ yields

R1 = δ(t1 − t′1)⟨N, 0|T [SeiHt1{ψ(1), ψ†(1′)}e−iHt1 ]|N, 0⟩
= δ(1,1′).

Secondly, taking the derivative of four Ss, we get

R2 =
[
iθ(t1 − t′1)⟨N, 0|T [S(∞, t1)][H

′
I(t1), ψ(1)]T [S(t1, t

′
1)]ψ

†(1′)T [S(t′1,−∞)]|N, 0⟩

−iθ(t′1 − t1) ⟨N, 0|T [S(∞, t′1)]ψ
†(1′)T [S(t′1, t1)][H

′
I(t1), ψ(1)]T [S(t1,−∞)]|N, 0⟩

]
,

by using [AB,C] = A{B,C} − {A,C}B, we obtain

[H ′(t1), ψ(1)] = −u(1)ψ(1),

that is, the above equation becomes

R2 = −u(1)G(1,1′).

Thirdly, taking the derivative of the field operator ψ, we get

R3 = h(1)G(1,1′) − i

∫
d2v(1,2)G2(1,1

′,2+,2++),
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where we wrote ψ†(2)ψ(2)ψ(1) = −ψ(1)ψ(2+)ψ†(2++) in order to remain
the time order. Summing R1-R3, we obtain[
i
∂

∂t1
− h(1) − u(1)

]
G(1,1′) + i

∫
d2v(1,2)G2(1,1

′,2+,2++) = δ(1,1′).

(3.22)

Substituting the Schwinger’s trick (3.14) to the above equation, we can
rewrite Eq. (3.22) as[
i
∂

∂t1
− h(1) − u(1) − vH(1)

]
G(1,1′) − i

∫
d2v(1+,2)

δG(1,1′)

δu(2)
= δ(1,1′),

(3.23)

where we defined the Hartree potential vH as follows:

vH(1) :=

∫
d2v(1,2) ⟨n(2)⟩ . (3.24)

Here we define the self-energy operator Σ as follows:

Σ(1,1′) := vH(1)δ(1,1′) + i

∫
d23v(1+,2)

δG(1,3)

δu(2)
G−1(3,1′) (3.25)

=: ΣH(1,1′) + Σxc(1,1′) (3.26)

Finally, we obtain the differential form of the Dyson equation[
i
∂

∂t1
− h(1)

]
G(1,1′) −

∫
d2Σ(1,2)G(2,1′) = δ(1,1′), (3.27)

where we omitted the infinitesimal potential u. We introduce the unper-
turbed one-particle Green’s function G(0) as follows:[

i
∂

∂t1
− h(1)

]
G(0)(1,1′) = δ(1,1′), (3.28)

using the above, Eq. (3.27) becomes∫
d2G(0)−1

(1,2)G(2,1′) −
∫
d2Σ(1,2)G(2,1′) = δ(1,1′)

∴ G(1,1′) = G(0)(1,1′) +

∫
d23G(0)(1,2)Σ(2,3)G(3,1′). (3.29)

This is the integral form of the Dyson equation.
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3.3 Polarizability, vertex function and dynamically
screened Coulomb interaction

The self-energy operator Σ still depends on the infinitesimal potential u. In
this section, by introducing liner response functions, we remove this depen-
dency. As a preparation, we introduce the total potential V which is the
sum of the infinitesimal potential u and the Hartree potential vH

V (1) := u(1) + vH(1). (3.30)

We define the irreducible vertex function Γ as follows:

Γ(1,2;3) := −δG
−1(1,2)

δV (3)
(3.31)

= − δ

δV (3)

[
G(0)−1

(1,2) − V (1)δ(1,2) − Σxc(1,2)
]

= δ(1,2)δ(1,3) +
δΣxc(1,2)

δV (3)
. (3.32)

We can rewrite the vertex function Γ as an integral form by using the chain
rule and Eq. (B.5) in Appendix B

Γ(1,2;3) = δ(1,2)δ(1,3) +

∫
d45

δΣxc(1,2)

δG(4,5)

δG(4,5)

δV (3)

= δ(1,2)δ(1,3) −
∫
d4567

δΣxc(1,2)

δG(4,5)
G(4,6)

δG−1(6,7)

δV (3)
G(7,5)

= δ(1,2)δ(1,3) +

∫
d4567

δΣxc(1,2)

δG(4,5)
G(4,6)G(7,5)Γ(6,7;3).

(3.33)

We define the irreducible polarizability P as follows:

P (1,2) :=
δ ⟨n(1)⟩
δV (2)

(3.34)

= i

∫
d34G(1,3)

δG−1(3,4)

δV (2)
G(4,1+)

= −i
∫
d34G(1,3)G(4,1+)Γ(3,4;2). (3.35)
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We define the longitudinal dielectric function ϵ as follows:

ϵ−1(1,2) :=
δV (1)

δu(2)
(3.36)

= δ(1,2) +

∫
d3v(1,3)

δ ⟨n(3)⟩
δu(2)

=: δ(1,2) +

∫
d3v(1,3)χ(3,2), (3.37)

where we defined the reducible polarizability χ. ϵ is a measure of the effect
of shielding classical Coulomb interaction. By using the dielectric function
ϵ, we define the dynamically screened Coulomb interaction W as follows:

W (1,2) :=

∫
d3ϵ−1(1,3)v(3,2) (3.38)

= v(1,2) +

∫
d345v(1,4)

δ ⟨n(4)⟩
δV (5)

δV (5)

δu(3)
v(3,2) (3.39)

= v(1,2) +

∫
d34v(1,3)P (3,4)W (4,2). (3.40)

Finally, we can rewrite the xc self-energy operator Σxc without the infinites-
imal potential u

Σxc(1,2) = i

∫
d34v(1+,3)

δG(1,4)

δu(3)
G−1(4,2)

= −i
∫
d34567v(1+,3)

δV (5)

δu(3)
G(1,6)

δG−1(6,7)

δV (5)
G(7,4)G−1(4,2)

= i

∫
d56W (1+,5)G(1,6)Γ(6,2;5). (3.41)

23



Here we summarize the above results as the Hedin’s equations and show
those Feynman diagrams in Fig. 3.1.

G(1,2) = G(0)(1,2) +

∫
d34G(0)(1,3)Σ(3,4)G(4,2) (3.42a)

Σxc(1,2) = i

∫
d34W (1+,3)G(1,4)Γ(4,2;3) (3.42b)

P (1,2) = −i
∫
d34G(1,3)G(4,1+)Γ(3,4;2) (3.42c)

W (1,2) = v(1,2) +

∫
d34v(1,3)P (3,4)W (4,2) (3.42d)

Γ(1,2;3) = δ(1,2)δ(1,3) +

∫
d4567

δΣxc(1,2)

δG(4,5)
G(4,6)G(7,5)Γ(6,7;3)

(3.42e)

W

=
v

+ P

Γ = +
δΣ

xc

δG
Γ

Σ
xc

=

W

Γ

Figure 3.1: Feynman diagrams of the Hedin’s equations

3.4 GW approximation

We can, in principle, solve the Hedin’s equations because they include five
unknown functions and five equations. Firstly, setting the xc self-energy
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operator Σxc equal to zero, the second term on r.h.s of Eq. (3.42e) is equal
to zero, thus the irreducible vertex function Γ becomes

Γ(1,2;3) = δ(1,2)δ(1,3). (3.43)

Secondly, substituting the above equation into Eq. (3.42c), the polarization
function P becomes

P (1,2) = −iG(1,2)G(2,1+). (3.44)

Thirdly, substituting the above equation into Eq. (3.42d), we obtain the
dynamical screened Coulomb interaction W

W (1,2) = v(1,2) +

∫
d34v(1,3)P (3,4)W (4,2). (3.45)

Finally, we obtain renewed xc self-energy operator Σxc

Σxc(1,2) = iW (1+,2)G(1,2), (3.46)

thus, we obtain renewed Green’s function G. Iterating procedures mentioned
above, in principles, we obtain exact Green’s function G. This scheme is
called the GWΓ scheme since Σxc = −iGWΓ. However, this scheme is not
only highly complicated, but also specific expression of the vertex function Γ
is still unknown. In general, the xc self-energy operator Σxc is calculated by
the GW approximation (GWA)4–7,9), which is simply given as a product of
G and W , i.e., Σxc = iGW or Γ = 1. Furthermore we call the one-shot GW
orG0W0

28,29) which truncatesGWA with a single update and call it the self-
consistent GW (scGW )30–34) to repeat it until convergence. The one-shot
GW has been successfully applied to wide variety of materials to calculate
(inverse) photoemission spectra. The scGW calculation does not always
improve the one-shot GW , usually the QP energy gap is overestimated.35)

However, it is advantageous that scGW allows to calculate the total energy
of the system with the Luttinger-Ward (LW) functional36).

From here on, we show the one-shot GW scheme in practice. We assume
hamiltonian H conserves each spin of electrons so that Green’s functions
are diagonal for spin components; G(1,1′) = G(1,1′)δσ1σ′

1
. We refer to

|N ± 1, nkσ⟩ as nth eigenstates added or removed one-electron with spin
σ to ground states of a N electron system. Substituting the completeness
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Γ = 1 +
δΣ

xc

δG
GGΓ

Σ
xc

= iGWΓ

P Γ

GW

Σ
xc

Figure 3.2: Symbolitical representation of the practical solution of the
Hedin’s equations or GWΓ Scheme.

relation
∑

nkσ |N ± 1, nkσ⟩ ⟨N ± 1, nkσ| to Eq. (3.10), we obtain

G(1,1′) = −iδσ1σ′
1

∑
nk

⟨N, 0|ψ(1)|N + 1, nkσ1⟩ ⟨N + 1, nkσ1|ψ†(1′)|N, 0⟩ θ(t1 − t′1)

+iδσ1σ′
1

∑
nk

⟨N, 0|ψ†(1′)|N − 1, nkσ1⟩ ⟨N − 1, nkσ1|ψ(1)|N, 0⟩ θ(t′1 − t1).

(3.47)

Intermediate states of the first and second term correspond to a N+1 and a
N − 1 electron system, respectively. The former corresponds to adding one
electron to empty states, while the latter corresponds to removing one elec-
tron from occupied states. That is, these quasiparticles correspond to “elec-
tron” and “hole”, respectively. By using ψ(1) = eiHt1ψ(1)e−iHt1 , ψ†(1′) =
eiHt′1ψ†(1′)e−iHt′1 , H may be replaced by its eigenvalues

⟨N, 0|ψ(1)|N + 1, nkσ1⟩ = ⟨N, 0|ψ(1)|N + 1, nkσ1⟩ e−i(EN+1
nkσ1

−EN
0 )t1

⟨N − 1, nkσ1|ψ(1)|N, 0⟩ = ⟨N − 1, nkσ1|ψ(1)|N, 0⟩ e−i(EN
0 −EN−1

nkσ1
)t1 .

We define the QP wave functions ϕn and the QP energy ϵnkσ of “electron”
and “hole” as follows:

ϕnk(1) :=

{
⟨N, 0|ψ(1)|N + 1, nkσ1⟩ (emp)
⟨N − 1, nkσ1|ψ(1)|N, 0⟩ (occ)

, (3.48)
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Σ
xc

= iG0W0

Σ
xc

G0P0

W0

(a) one-shot GW or G0W0

P G

W Σ
xc

Σ
xc

= iGW

P = −iGG

(b) scGW

Figure 3.3: Symbolical GWA schemes are shown. (a) one-shot GW or G0W0

(b) self-consistent GW (scGW )

ϵnkσ :=

{
EN+1

nkσ − EN
0 (emp)

EN
0 − EN−1

nkσ (occ)
. (3.49)

By using the above equations, we can rewrite Eq. (3.47) as follows:

G(1,1′) = − iδσ1σ′
1

∑
ck

e−iϵckσ1 (t1−t′1)ϕck(1)ϕ∗ck(1′)θ(t1 − t′1)

+ iδσ1σ′
1

∑
vk

e−iϵvkσ1 (t1−t′1)ϕvk(1)ϕ∗vk(1′)θ(t′1 − t1),

(3.50)

where c and v are running for empty and occupied states, respectively. When
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G is Fourier transformed in time, we have

G(1, 1′, ω) :=

∫ ∞

−∞
d(t1 − t′1)e

iω(t1−t′1)G(1, 1′, t1 − t′1)

= δσ1σ′
1

∑
nk

ϕnk(1)ϕ∗nk(1′)

ω − ϵnkσ1 − iδnkσ1

, (3.51)

where δnkσ1 is 0+(−0+) for occupied (empty) states. The QP wavefunction
also satisfies the following Dyson equation

H0ϕnk(1) +

∫
dr2Σxc(r1, r2; εnkσ1)ϕnkσ1(r2) = εnkσ1ϕnk(1), (3.52)

where H0 is the one-body part of the hamiltonian which includes the Hartree
potential. By using Eqs. (3.44), (3.47), the polarizability P in GWA is given
as follows:

P (r1, r2;ω) = −i
∑
σ

∫ ∞

−∞

dω′

2π
G0

σ(r1, r2;ω)G0
σ(r2, r1;ω

′ − ω)

=
∑
σ

∑
nk

∑
n′k′

ϕnkσ(r1)ϕ
∗
n′k′σ(r1)ϕ

∗
nkσ(r2)ϕn′k′σ(r2)

ω − εnkσ + εn′k′σ − iδnkσ
(fn′k′σ − fnkσ),

(3.53)

where fnkσ is the Fermi distribution function, and each term of the sum-
mation is non-zero if and only if one of nkσ and n′k′σ is occupied and
the another one is unoccupied. Defining the Fourier transform for space-
coordinates as follows:

P (r1, r2;ω) =
∑
q

∑
GG′

e−i(q+G)·r1PGG′(q, ω)ei(q+G′)·r2 , (3.54)

we obtain

PGG′(q, ω) =
∑
σ

∑
nn′k

⟨nkσ|e−i(q+G)·r|n′k + qσ⟩ ⟨n′k + qσ|ei(q+G′)·r′ |nkσ⟩
ω − εnkσ + εn′k′σ − iδnkσ

(fn′k+qσ − fnkσ),

(3.55)

where G and q are the reciprocal lattice vector and the wave vector in
the first Brillouin zone, respectively. Next we can calculate the dielectric
function in the reciprocal space

εGG′(q, ω) = δGG′ − v(q + G)PGG′(q, ω). (3.56)
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Next we can calculate the dynamically screened Coulomb interaction W as
follows:

WGG′(q, ω) = [εGG′(q, ω)]−1 v(q + G′). (3.57)

W within GWA is equivalent to the random phase approximation (RPA)
which is described by the sum of the ring diagrams shown in Fig. 3.4(a).
The xc self-energy operator Σxc is given by the product of G and W

Σxc
σ (r, r′) = i

∫
dω′

2π
eiω

′0+Gσ(r, r′;ω + ω′)W (r, r′;ω′), (3.58)

which corresponds to the diagrams shown in Fig. 3.4(b).

W

=
v

+ + + · · ·

(a) W within RPA

Σ
xc =

(b) Σxc within GWA

Figure 3.4: The Feynman diagrams of the dynamically screened Coulomb
interaction W within RPA and xc self-energy operator Σxc within GWA are
shown.

In practice, it is convenient to separate Σxc into the exchange part Σx

and the correlation part Σc

Σx
σ(r, r′) = iv(r − r′)

∫
dω′

2π
eiω

′0+Gσ(r, r′;ω′), (3.59a)

Σc
σ(r, r′;ω) = i

∫
dω′

2π
eiω

′0+Gσ(r, r′;ω + ω′)[W (r, r′;ω′) − v(r − r′)].

(3.59b)
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We describe the matrix element sandwiched by the QP states

⟨nkσ|Σx
σ|n′kσ⟩ = −

occ∑
l,k′

∫
drdr′

ϕ∗nkσ(r)ϕ∗lk′σ(r′)ϕlk′σ(r)ϕnkσ(r′)

|r − r′|

= −4π

Ω

occ∑
l

BZ∑
q

∑
G

⟨nkσ|ei(q+G)·r|lk − qσ⟩ ⟨lk − qσ|e−i(q+G)·r′ |n′kσ⟩
|q + G|2

,

(3.60a)

⟨nkσ|Σc
σ|n′kσ⟩ = i

occ∑
l

BZ∑
q

∑
GG′

∫
dω′

2π
eiω

′0+ [WGG′(q, ω′) − v(q + G)δGG′ ]

ω + ω′ − εlk−qσ − iδlk−qσ

× ⟨nkσ|ei(q+G)·r|lk − qσ⟩ ⟨lk − qσ|e−i(q+G)·r′ |n′kσ⟩ .
(3.60b)

We find the ω integral is necessary for only the correlation term. Generalized
plasmon pole (GPP) models4,37,38) are often used to avoid this integral. In
the GPP model, it is assumed that the energy dependence of the imaginary
part of the dielectric function can be approximated well by one delta function
corresponding to the plasma frequency ωp. For instance. the GPP model of

Hypertsen and Louie4) is based on the f summation rule, which defines

ω̃2
GG′(q) :=

Ω2
GG′(q)

δGG′ − ε−1
GG′(q;ω = 0)

, (3.61a)

Ω2
GG′(q) := ω2

p

(q + G) · (q + G′)

|q + G|2
n(G−G′)

n(0)
, (3.61b)

which is need to rewrite Eq. (3.60b) as

⟨nkσ|Σc
σ|n′kσ⟩ =

∑
l

∑
qGG′

v(q + G′)

×
Ω2
GG′(q) ⟨nkσ|ei(q+G)·r|lk − qσ⟩ ⟨lk − qσ|e−i(q+G)·r′ |n′kσ⟩

2ω̃2
GG′(q)[ω − εlk−qσ − sgn(εlk−qσ)ω̃GG′(q)]

.

(3.62)

In actual GW calculation, choice of the initial QP wave function should be
important39). Since the LDA wave function is considered reasonably close
to the QP wave function, it is often chosen as the initial wave function. The
QP spectrum within GWA is obtained from the following equation

εGW
nkσ = εLDA

nkσ +

∫
drdr′ϕLDA

nkσ
∗
(r)

[
Σσ(r, r′; εGW

nkσ) − vLDA
xc σ (r)δ(r − r′)

]
ϕLDA
nkσ (r′).

(3.63)
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In this equation, since the GW QP energy εGW
nkσ to be solved is contained in

the self energy, this dependency is numerically treated by using a linear ex-
trapolation, which corresponds to so-called renormalization of energy. Then
the above equation becomes

εGW
nkσ = ε0nkσ + (ε0nkσ − εLDA

nkσ )
∂Σnkσ(ε)

∂ε

∣∣∣∣
ε=εLDA

nkσ

Znkσ, (3.64a)

ε0nkσ := εLDA
nkσ +

∫
drdr′ϕLDA

nkσ
∗
(r)

[
Σσ(r, r′; εLDA

nkσ ) − vLDA
xc σ (r)δ(r − r′)

]
ϕLDA
nkσ (r′),

(3.64b)

Znkσ :=

[
1 − ∂Σnkσ(ε)

∂ε

∣∣∣∣
ε=εLDA

nkσ

]−1

, (3.64c)

where Znkσis the renormalization factor, and we defined Σnkσ(ε) := ⟨nkσ|Σσ(ε)|nkσ⟩.

31



Chapter 4

Optical spectra with
Bethe-Salpeter equation

本章については 5年以内に雑誌などで刊行予定のため、非公開。
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Chapter 5

All-electron mixed basis
approach

5.1 Feature

Our calculations are executed on our all-electron mixed basis program54–61),
in which the KS wave function is expanded as a linear combination of plane
waves (PWs) and atomic orbitals (AOs). In this study, the second-order
correction in the dynamically screened Coulomb interaction was newly im-
plemented. The GW+BSE method requires, in principle, all the information
on electronic states including localized states in the core region and free elec-
tron states above the vacuum level. Our all-electron program can take those
states into account.

The all-electron mixed basis approach has the following features:

1. The number of basis functions can be greatly reduced. For example, for
the ethylene calculated in this study, the PW cutoff is sufficiently con-
verged at about 18 Ry, whereas in the conventional pseudo-potential
method, about 80 Ry is required.

2. AOs are numerically generated on the logarithmic mesh by using the
Herman-Skillman technique62), which gives us accurate core electron
states.

3. The algorithm is simpler than use of the norm-preserving63–66) and
ultrasoft67–69) pseudopotentials.

4. Since the core AOs have values only in non-overlapping atomic spheres,
there is no need to evaluate their overlap matrices and there is no basis-
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set superposition error (BSSE). In addition, the over-completeness
problem hardly occurs.

5.2 Outline of plane wave expansion method

Here, we briefly summarize the PW expansion approach which is a general
method of band calculations.

We consider the following Schrödinger equation within an one-electron
approximation in a crystal potential

Hϕik(r) = ϵikϕik(r), (5.1)

where, the subscripts i and k are a band index and a k point in a first Bril-
louin zone (BZ), respectively. Let the potential be invariant to the transla-
tional vector R of the crystal

V (r) = V (r + R). (5.2)

According to Bloch’s theorem, the electronic wave function ϕik(r) in a pe-
riodic system can be written by the function uik(r) having translational
symmetry as follows:

ϕik(r) = eik·ruik(r), (5.3)

uik(r) = uik(r +R). (5.4)

The Fourier expansion of uik(r) is given by

ϕik(r) =
1√
Ω

∑
G

cik+Gexp(i(k + G) · r), (5.5)

where G is a reciprocal vector and Ω is the volume of the unit cell. We
define the PW basis as follows:

⟨r|k + G⟩ =
1√
Ω

exp(i(k + G) · r), (5.6)

The PW basis satisfies the following orthonormality

⟨k + G|k + G′⟩ =
1

Ω

∫
Ω

exp(−i(G−G′) · r)dr = δGG′ . (5.7)

Consequently, the Fourier coefficient cik+G is given as follows:

cik+G =
1√
Ω

∫
Ω
ψik+G(r)exp(−i(k + G) · r). (5.8)

34



In practice, the PW expansion is truncated at a finite number of terms, so
that we introduce some cutoff wavenumber Gmax and expand within |k +
G| < Gmax. Gmax/2π corresponds to the spatial resolution, and changes at
smaller scale cannot be described.

Substituting Eq. (5.5) into the Schrödinger equation and using the or-
thonormality, we obtain the following eigenvalue equation∑

G′

[
1

2
(k + G)2δGG′ + ⟨k + G′|V |k + G⟩

]
cik+G′ = εikcik+G, (5.9)

where, the second term in parenthesis is the Fourier transform of the poten-
tial

V (G−G′) := ⟨k + G′|V |k + G⟩ =
1√
Ω

∫
Ω
V (r)exp(i(G−G′)·r)dr. (5.10)

Note that the KS equation in the reference system is formally equal to
Schrödinger equation within the one-electron approximation. In practice,
Calculations are performed using both the real and reciprocal space because
the xc potential is easy to integrate in the real space, while kinetic energy is
easy to integrate in the reciprocal space. This method is called “dual space
formalism”. By combining this method with the fast Fourier transform
(FFT), computational cost can be greatly reduced.

Real space Reciprocal space

FFT

Inverse FFT

Gmax

Figure 5.1: Dual space formalism. The real and reciprocal space mesh are
transformed by FFT.
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5.3 Electronic density and potential

We described the PW expansion approach above, here we introduce the basis
function ϕAO

jnlm for AOs, which is expressed as a product of radical function
Rjnl(r) and spherical harmonics Ylm(r̂)

ϕAO
jnlm(r) = Ylm(r̂)Rjnl(r). (5.11)

Here, j, n, l and m are atomic species, principal quantum number, angular
momentum quantum number and magnetic quantum number, respectively.
Since an isolated atom has a spherical symmetry, the ordinary differential
equation for Rjnl(r) is accurately solved over the logarithmic mesh.62) There
is generally no overlap with the core AOs with other AOs, while the valence
AOs overlap with other AOs. We avoid the overlap by restricting the am-
plitude of the valence AOs inside the non-overlapping atomic sphere with a
cutoff radius rc.

The total wavefunction is described as a linear combination of PWs and
AOs as follows:

ϕν(r) =
1√
Ω

∑
G

cPWν (G)eiG·r+
∑
j

∑
nlm

cAO
ν (jnlm)ϕAO

jnlm(r−Rj) =:
∑
ξ

cν,ξfξ(r),

(5.12)
where, ν denotes both the band index and the k point. Since the basis
function fξ is not orthogonal to each other, we need to solve the following
generalized eigenvalue equation for the KS equation∑

ξ′

Hξξ′cν,ξ′ = εν
∑
ξ′

Sξξ′cν,ξ′ , (5.13)

where Hξξ′ := ⟨fξ|H|fξ′⟩ and Sξξ′ := ⟨fξ|fξ′⟩ are the Hamiltonian and over-
lap matrix elements, respectively. In our program, the above equation is
transformed to the usual eigenvalue problem by using Choleski decomposition70).

The electronic density consists of three kind of contributions (PW-PW,
AO-PW and AO-AO)

n(r) = nPW−PW(r) +
∑
j

nAO−PW
j (r) +

∑
j

nAO−AO
j (r), (5.14)
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these contributions are given, respectively, as

nPW−PW(r) =
1

Ω

occ∑
ν

∑
G

∑
G′

cPWν
∗
cPWν ei(G−G′)·r, (5.15)

nAO−PW
j (r) =

1√
Ω

occ∑
ν

∑
nlm

∑
G

cAO
ν

∗
(jnlm)cPWν (G)ϕAO

jnlm(r −Rj)e
iG·r + c.c.,

(5.16)

nAO−AO
j (r) =

occ∑
ν

∑
n′l′m′

∑
nlm

cAO
ν

∗
(jn′l′m′)cAO

ν (jnlm)ϕAO
jn′l′m′(r −Rj)ϕ

AO
jnlm(r −Rj).

(5.17)

Here,
occ∑
ν

represents sum of all occupied states including spin degeneracy. It

is convenient to treat the first contribution nPW−PW in the reciprocal space
at the grid points in the global mesh space (in our calculation, an unit cell is
discretized into 64 × 64 × 64). We write together the rest two contributions
involving AOs

nAO
j (r) := nAO−PW

j (r) + nAO−AO
j (r), (5.18)

which is non-zero only inside the non-overlapping atomic sphere. We divide
nAO
j (r) into two parts; one of them is the spherical symmetric part σj(|r −

Rj |), which is given as the spherical average

σj(|r −Rj |) :=
1

4π

∫
nAO
j (r)dΩj , (5.19)

where Ωj is the solid angle around the jth atom. The another one is the
asymmetric part, however, this term is generally negligible because nAO

j (r)
exhibits a high spherical symmetry within the atomic sphere. Consequently,
we treat the total electronic density as follows:

n(r) = nPW−PW(r) +
∑
j

σj(|r −Rj |). (5.20)

Once the electronic density is obtained both in the global mesh space
and the radical mesh, we can evaluate the xc potential vxc(r). In the radical
mesh, we construct the truncated potential vxcj (|r − Rj |) as well as the
electronic density, which is easily Fourier transformed in the radical mesh.
In order to evaluate the Fourier transform of vxc(r) in the global mesh space,
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we define the following global part

vxc rest(r) := vxc(r) −
∑
j

vxcj (|r −Rj |), (5.21)

which is a smooth function without cusp-like behavior.
In the PW-PW part, the Fourier transform of the external potential

V ext(G) is given as follows:

V ext(G) = −4π

Ω

∑
j

Zj

G2
e−iG·Rj . (5.22)

By using the Fourier transform of the electronic density n(G), the Fourier
transform of the Hartree potential vH(G) is given as follows:

vH(G) =
4π

G2
n(G). (5.23)

Other details and benchmark tests are given in Ref. [61]
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Chapter 6

Quantititatve
characterization of exciton

本章については、5年以内に雑誌などで刊行予定のため、非公開。
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Chapter 7

Optical spectra of carbon
nanocages

本章については、5年以内に雑誌などで刊行予定のため、非公開。

7.1 short introduction
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Chapter 8

Effect of second-order kernel

本章については、5年以内に雑誌などで刊行予定のため、非公開。
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Chapter 9

Summary and conclusion

本章については、5年以内に雑誌などで刊行予定のため、非公開。
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Appendix A

Schrödinger-Ritz variational
principle

We prove the Schrödinger-Ritz variational principle. We consider the ground
state of the following Schrödinger equation

HΨ0({ri}, {RJ}) = E0Ψ0({ri}, {RJ}),

and seek the lowest eigenvalue satisfying the above equation.
We define the following energy functional with respect to arbitrary wave-

functions Ψ

E[Ψ] :=
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

.

E[Ψ] takes the stationary value at Ψ = Ψ0 and the following relation is
satisfied

E[Ψ] ≥ E0.

(proof) If Ψ is variated from Ψ0 by δΨ, then

E[Ψ] =
E0(⟨Ψ0|Ψ0⟩ + ⟨δΨ|Ψ0⟩ + ⟨Ψ0|δΨ⟩) + ⟨δΨ|Ĥ|δΨ⟩

⟨Ψ|Ψ⟩

=
E0 ⟨Ψ|Ψ⟩ + ⟨δΨ|Ĥ − E0|δΨ⟩

⟨Ψ|Ψ⟩
= E0 +O(δΨ2).

Since there is no first order term of δΨ, E[Ψ] satisfies the stationary condi-
tion δE[Ψ]/δΨ = 0 as δΨ → 0. Furthermore, exploring δΨ =

∑
n cnΨn by
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eigenfunctions {Ψn} of H, we obtain

E[Ψ] = E0 +
∑
n

|cn|2

⟨Ψ|Ψ⟩
(En − E0).

Since En − E0 ≥ 0, we can conclude E[Ψ] ≥ E0.

44



Appendix B

Functional derivative

We summarize some useful formulae of functional derivatives17) as follows:

• derivative for itself
δF (1)

δF (2)
= δ(1,2), (B.1)

• derivative of the product

δ

δH(2)
(F [H](1)G[H](1)) =

δF [H](1)

δH(2)
G[H](1)+F [H](1)

δG[H](1)

δH(2)
,

(B.2)

• derivative of the quotinent

δ

δH(2)

F [H](1)

G[H](1)
=

1

{G[H](1)}2

[
δF [H](1)

δH(2)
G[H](1) − F [H](1)

δG[H](1)

δH(2)

]
,

(B.3)

• definition of the inverse∫
F−1(1,3)F (3,2)d3 = δ(1,2), (B.4)

• transformation of a derivative of a function to include its inverse

δF (1,1′)

δG(3)
= −

∫
F (1,3)

δF−1(3,3′)

δG(2)
F (3′,1′)d33′, (B.5)

• chain rule

δF [G[H]](1,1′)

δH(2,2′)
=

∫
δF [G](1,1′)

δG(3,3′)

δG[H](3,3′)

δH(2,2′)
d33′. (B.6)
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Appendix C

Second-order correction
without the static
approximation

本章については、5年以内に雑誌などで刊行予定のため、非公開。
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