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Abstract

Although QCD has a rich phase structure at finite temperature and den-
sity, the investigations based on first—principles calculations are limited in
small density regions due to so—called the sign problem. However, in finite—
temperature and density QCD systems, a lot of physically interesting targets
such as the early Universe, neutron stars and quark matters are waiting to
be explored. Therefore, it is quite meaningful to seek for methods for ac-
curate computation of thermodynamic quantities at large baryon chemical
potential. This is an urgent subject also in the fields of particle and nuclear
physics. The canonical approach which is studied in this thesis corresponds
to a fugacity expansion of a grand canonical partition function and it could
have a potential to overcome the sign problem. However, it is reported that
it has its particular numerical difficulties and it is somewhat unclear whether
it can produce reliable results. Taking this situation into consideration, in
this thesis, the author discusses the validity of the canonical approach and
calculates the pressure, the baryon number density, and the baryon suscep-
tibility at finite density through lattice QCD simulation based on the canon-
ical approach. The results are also compared with those obtained using the
multi—-parameter reweighting method and the Taylor expansion method on
the lattice which are considered as the valid method for finite density QCD
at a small baryon chemical potential. The results obtained by the canonical
approach are found to be in very good agreement in the regions where the
statistical errors in the multi-parameter reweighting method and Taylor ex-
pansion method are under control. Moreover, our canonical approach works
beyond pug/T ~ 3 while the validity range of other lattice method for finite
density QCD is practically limited to pug/T < 3.
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Chapter 1

Introduction

In this chapter, basic concepts of quantum chromodynamics (QCD) are first
overviewed and then a theoretical conjecture of the QCD phase diagram on
a temperature-baryon chemical potential plane is introduced. Because we
have no definitive method based on first—principles calculation at present to
analyze the QCD phase diagram, proposed QCD phase diagrams so far have
a lot of uncertainties.

1.1 QCD in a nutshell

Quantum chromodynamics (QCD) is the theory of strong interaction. The
QCD Lagrangian in Euclidian space is given with bare coupling constant g
and quark mass my as follows;

1 a a a a
Lqcp = ZFWFW + E V5 Dy + my )iy, (1.1)
f.a

The indices a and f on the quark field are the degrees of freedom of color
and flavor, respectively. Here, F7j, is a tensor called the field strength defined
with a gluon field A7, as follows;

Fi, = 0,A, +igf* A A (1.2)

The degree of freedom of color on the gluon field is N> — 1 and the degree
of freedom of color on a quark field N,. Here, f2° is the structure constant
defined with generators A\® of Lie group SU(N,) as follows;

(AP A = dfebene, (1.3)
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D,y is called Dirac operator and the definition is
Dy = (Op +ig AT A" ). (1.4)

The second term in the Dirac operator corresponds to the term describing
the interaction between quarks and gluons. It is considered that there are six
quark flavors (up, down, charm, strange, top, and bottom). In theoretical
calculations of QCD in thermal equilibrium, only two flavors (i.e. up and
down) or three flavors (i.e. up, down, and strange) are usually included.
This is because these quark masses are lighter than Agcep ~ 200MeV which
is the typical energy scale of QCD. According to the Particle Data Group [1]
these quark masses reads,

m, = 2.2758% MeV, (1.5)
mg = 4.770% MeV, (1.6)
ms = 9675 MeV. (1.7)

Moreover, only up and down quarks with approximately degenerated mass
are often considered in lattice QCD formalism. This type of lattice QCD
formalism is called 2-flavor lattice QCD.

The QCD Lagrangian is invariant under the following local gauge trans-
formation;

Y(z) = Q(x)w(.x), (1.8)
Ay = Q) A (2)Q(z) — éQ(m)@NQ_I(JL’). (1.9)

Here, Q(z) € SU(3) and A,(x) = Al (2)\* € su(3).

1.2 Conjecture of QCD phase diagram at fi-
nite temperature and density

QCD has the property called asymptotic freedom [2, 3]. This is the phe-
nomenon that the magnitude of the coupling constant g depends on the
energy scale of a QCD system due to the polarizations of gluons. Using
the one-loop calculation, the effective coupling constant as(Q) is given as

follows;
127

@)= (33— 2N log (2-)

Aqcep

(1.10)
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Figure 1.1: Conjecture of QCD phase diagram at finite temperature and
density. The Blue line indicates the phase transition line between confining
and deconfining phase and the red point corresponds to the critical point of
the transition. The green line is the liquid—gas phase transition.

Here, @ is the energy scale we are interested in. From this expression, we
can say that the effective coupling constant decreases as () increases. This
fact suggests that the quark—gluon plasma phase where quarks almost freely
move realizes at high temperature and the hadronic phase where quarks form
bound states realizes at low temperature.  Figure 1.1 is one of conjectures
of the QCD phase diagram at finite temperature and density. Some phe-
nomenological models predict that low density and high temperature region
corresponds to the quark—gluon plasma phase and low temperature region
corresponds to the hadronic phase [4]. The phase transition between con-
fining and deconfining phase at vanishing baryon density has been discussed
in detail by lattice QCD calculation. For the realistic QCD case with up,
down, and strange quark with physical quark masses, it is established that
the phase transition is crossover from analysis using staggered fermions and
Wilson fermions [6, 7]. Considering lattice spacing dependence and volume
dependence of thermodynamic observables, we have strong evidences to con-
clude that the typical value of pseudo critical temperature is 150 — 200 MeV.
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Figure 1.2: Theoretical predictions for the location of the critical point of the
QCD phase diagram. This figure is adopted from the reference [13]. The label
of the points are explained in the table 1.1. The blue and magenta dashed
lines correspond to the slopes of d*T'/du% of the transition line evaluated by
lattice simulation at vanishing baryon chemical potential.

The most recent lattice QCD simulation using 2 + 1 flavors with physical
quark masses indecates that T, is 155(1)(8) MeV [8]. A lot of chiral mod-
els indicate that the “QCD critical point” of chiral phase transition line at
(Tep, ptep) in Fig.1.1 exits on the QCD phase diagram. This means that the
phase transition is crossover for up < pp,. and first order for up > p,. for
physical up, down, and strange quark masses [9, 10, 11, 12]. Thus, the phase
transition at the QCD critical point is second order. The predicted QCD
critical points are widely spread on the QCD phase diagram as shown in
Fig.1.2 and there are some models which predict that the critical point does
not exist in finite temperature and density QCD.

Near the phase transition line between confining and deconfining phase
transition, we expect that anomalous features of observables closely related
to the phase transition occur. For example, an order parameter to character-
ize the QCD critical point is the chiral condensate <1Zl/1> and the correlation
length and the fluctuation diverge at the critical point. The fluctuation of the
baryon number at finite baryon chemical potential 15 with finite quark mass
also diverges at the critical point because the baryon number couples with
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Table 1.1: Labels for Fig.1.2. This table is adopted from [13].

Label Technique Source
NJL89%a Nanbu—Jona—Lasinio (NJL) 9]
NJL89b NJL 9]

CO9%4 Composite operator [10, 14, 15]
INJL98 Instanton NJL [12]

RMO98 Random matrix [16]
LSMO01 Linear sigma model [17]
NJLO1 NJL [17]

HB02 Hadronic boostrap [18]
CJT02 Effective potential [19]
3NJLO05 3-flavor NJL [20]
PNJLO06 NJL with Polyakov loop [21]

LR0O1  Lattice multi-parameter reweighting [22]

LR04  Lattice multi-parameter reweighting [23]
LTEO03 Lattice Taylor expansion [24]
LTE04 Lattice Taylor expansion [25]

the chiral condensate. This fluctuation can be explained physically as the
response of the baryon number density to an infinitesimal change of baryon
chemical potential. Therefore, the behavior of the baryon susceptibility xp
which is the first order derivative of the baryon number density in terms of
baryon chemical potential is important and a chiral effective model actually
tells us that the baryon number susceptibility shows a peak on the crossover
line between the chiral broken and symmetric phases on a QCD phase di-
agram. Figure 1.3 is an example of this feature. Here, let us focus on the
relation between high energy experiments with accelerators and theoretical
trials for searching for the chiral phase transition and the critical point. Inter-
esting quantities for this purpose include higher order cumulants of conserved
charges. They are sensitive to the correlation length [29] and they behave
anomalously around the critical point. The higher baryon number cumulants
Xni1 are given as follows.

— <Nn+1>c _ a <Nn+1>c _ Xn
N = T S S T = Bl /T (1.11)
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Figure 1.3: Temperature 7" and baryon chemical potential up dependence
of baryon number susceptibility x obtained by the 2-flavor Nambu-Jona—
Lasinio model [26, 27]. This figure is taken from [28]. The bold line in this
figure corresponds to the first order phase transition and the end of this line
indicates the critical point.

In particular, x» is just the baryon number susceptibility xp.

(N?) 0 (N)

Vi 0(us/T) V
From this definition, we can conclude that the signs of x5 and x4 change
around the phase transition line due to the behavior of x» [28]. In high
energy experiments, skewness S and kurtosis K defined below have been
measured by event—-by—event analysis to pick up the anomalous behavior of
the fluctuation of observables. The definition of the skewness is,

X2 = (1.12)

N3
S = < X3>c, (1.13)
2
and the definition of the kurtosis is,
N4
K = <X4>C' (1.14)
2



The skewness and the kurtosis also give us important information; these
quantities show sign flip near the QCD critical point. In event-by—event
analysis in relativistic heavy ion collisions, the numbers of specific particles
are measured in each event. For example, the net—proton distribution has
been observed by STAR Collaboration as shown in Fig.1.4. From this result,
we can extract the probability distribution function for the particle and we
can evaluate the skewness and the kurtosis [31, 32]. Ideally, this measurement
of the net—proton distribution should be replaced by the measurement of the
net—baryon distribution because the net—proton number is not a conserved
charge. However, measuring the net-baryon number is quite difficult because
detectors cannot identify neutral baryons.
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Figure 1.4: Net—proton number distribution measured by STAR Collabora-
tion. This figure is taken from [30].

1.3 Purpose of the present thesis
As stated in previous chapter, there are lots of physically interesting targets

of QCD on a temperature—baryon density plane. For example, in addition to
the topics (chiral phase transition and QCD critical point) explained in the
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Figure 1.5: Region where conventional lattice QCD technique for finite den-
sity works on a temperature-baryon density plane.

previous chapter, the early Universe, neutron stars, and quark matter could
be relevant to the QCD phase diagram research [4].

At this stage, we have the multi-parameter reweighting method [22, 33]
and the Taylor expansion method [34, 35, 36, the imaginary chemical poten-
tial method [37, 38], and the density of states method [39, 40, 41] as major
approaches to finite density QCD from first—principles calculation. However,
it is considered that these methods are valid only for QCD with a small chem-
ical potential which corresponds to QCD in low density region. To be more
specific, it is empirically known that these methods safely work only up to
pup/T ~ 3, where pup is a baryon chemical potential. This restriction comes
from the so—called sign problem [4, 42, 43] discussed in Chapter 4 in detail.
Therefore, it is highly important to explore other methods for investigating
finite-density QCD systems quantitatively from ab initio calculations; this is
also an urgent subject in the fields of particle and nuclear physics.

In this thesis, the canonical approach to finite density lattice QCD [44,
45, 46, 47, 48, 49] is adopted and studied. The main reasons are as follows.

1. The canonical approach can avoid the sign problem in principle.

14



In the canonical approach, first we compute a set of canonical partition
functions and then we construct a fugacity expansion of a grand canon-
ical partition function. Canonical partition functions can be calculated
through the Fourier transformation of the grand canonical partition
functions calculated at purely imaginary chemical potential. This pro-
cedure does not suffer from the sign problem.

2. The canonical approach can relate theoretical results and experimental
results directly.

Iml¢]

A

é = euc/T (:uc € (C)

et Refg]

/ zero on positive real axis
unit circle

Figure 1.6: Conceptual diagram of Lee—Yang zeros. Cross marks indicate the
zero points of a grand canonical partition function with a complex chemical
potential.

For instance, the canonical partition functions Z,, are closely related to
a multiplicity distribution of protons P(n = N, — N;) where N, and N;
are the numbers of protons and anti-protons, respectively, measured at
Brookhaven National Laboratory [50] as follows;

Zne™T = P(n, u/T). (1.15)

That is, using the canonical approach allows for a unique suggestion
for experiments that cannot be obtained from other methods. Thus,

15



we can extract information on the phase transition from results of the
experiment with the canonical approach using Lee-Yang zeros analysis
[51]. The Lee—Yang zeros analysis can be performed as follows. Consid-
ering the fugacity expansion of the grand canonical partition function
Zao(pe) with complex chemical potential ., we can search the zero
points h; of the grand canonical partition function,

Zao(T, pe) = [ J (/" = hy). (1.16)
(2

These zero points h; are called the Lee—Yang zeros and the distribution
on a fugacity plane includes information of the phase structure of the
corresponding statistical system. In thermodynamic limit, the number
of zeros becomes infinite and the zeros coalesce onto one—dimensional
curves on a fugacity plane as shown in Fig.1.6. If a system has first
order phase transition at p/T', the coalescing zero points touch the
phase transition point on a positive real axis on a fugacity plane. On
the other hand, if a system has second order phase transition, the
coalescing zero points pinch the point. In case of crossover, coalescing
zeros do not reach to the point. Therefore, we can indentify a phase
transition point and the order using this analysis. In actual numerical
simulation, it is important to analyze the volume dependence of Lee-
Yang zeros because no zero point appears on the real axis for a finite
volume system.

Considering above, it can be said that the canonical approach could be
a hopeful candidate to analyze the thermodynamics of QCD at large baryon
density. The main purpose of this thesis is to check if the canonical approach
could work for finite-density QCD in an actual numerical simulation. The
canonical approach has not only the good points as stated above but some
problems also. To search for clues to overcome these problems, we will make
comprehensive and quantitative estimates using the canonical method.

In this thesis, chapter 2 is devoted to the formulation of quantum field
theory on a lattice at zero temperature and vanishing density. In chapter 3,
brief descriptions of finite temperature and density QCD on a lattice are given
and the sign problem is also explained in detail. In chapter 4, conventional
lattice QCD methods including the canonical approach for finite density QCD
are briefly explained. Chapters 2-4 correspond to the review part of my
thesis. In Chapter 5, difficulties of the canonical approach are discussed and
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my new solutions for them are also presented. This part is mainly based on
the following paper.

e Ryutaro Fukuda, Atsushi Nakamura, and Shotaro Oka, “Canonical ap-
proach to finite density QCD with multiple precision computation”
Phys. Rev. D 93, 094508 (2016) [52]

In chapter 6, my numerical set up is first given and then the validity of
my new solutions for the difficulties of the canonical approach is discussed.
After that, results of the thermodynamic observables such as the pressure,
the baryon number density, and the baryon susceptibility from my strategy
are presented and compared to preceding works in chapter 5. This part is
mainly based on [52] and the following paper.

e Ryutaro Fukuda, Atsushi Nakamura, and Shotaro Oka, “Validity range
of canonical approach to finite density QCD” Proceeding of Science
(LATTICE 2015) 167 (2015) [53]

Thus, chapters 5 and 6 correspond to the description of my original work.

17






Chapter 2

Lattice field theory at zero
temperature and vanishing
density

In this chapter, a method for introducing interaction fermions at zero tem-
perature and vanishing density on a lattice is shortly explained. The clue
which can support us to achieve it is an invariance under the local gauge
transformation that QCD on a lattice should hold.

2.1 Naive QCD action on a lattice

2.1.1 Fermionic part of the QCD action on a lattice

As stated in the previous chapter, the fermionic part Sp[v, 1, A] of the QCD
action in Euclidian space is given by a bilinear functional in the quark fields

1 and 1) as follows;

S, 1, A Z/dx Ol () vu)a5(5“ Oy + 1A, (2)™) +mf5a55ab]¢(x)%.

(2.1)
Before considering the discretization of interacting fermions, we discuss the
discretization of free fermions. After this step, we introduce gauge fields on
a lattice.

19
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Figure 2.1: Discretization of spacetime coordinates. n indicates a spacetime
coordinate (nja, nga,nsa, nsa) on a lattice with a lattice spacing of a. p and
v simply present the orientation of the spacetime coordinate. Note that n+ /i
corresponds to (nia, nqa, n3a, nya) £ (6,10, 6,2a, 6,30, 6,4a).

Free fermions

In the continuum theory, the free single flavor fermion action S is given
by the expression

S = [ datio) (0, + m) (o) 22

On a lattice, we need to discretize space-time coordinates (see Fig.2.1)
so that discretized ones can be labeled sets of four integer numbers n =
(n1,n92,n3,n4) which run from 1 to N,. Therefore, the corresponding lattice
volume V' can be calculated as (N,a) x (Nya) x (N,a) x (Nia) with a lattice
spacing a. Using the following symmetric discretized derivative

) o L) =)

2a
and discretized 4-dimensional integration

(2.3)

Nz Ny Nz Nt

JEEETD 35 30 D ST (2.4)

ng=1ny=1n,=1n;=1 n

20



the free fermion action on a lattice can be given by

SEel, ] = a* > d(n) (Z%w(n L) 2—(11#(77/ A miﬁ(”)) - (29)

This is the starting point for a discretized fermionic part for the interacting
case of Eq.(2.1) on a lattice.

Interacting case

To consider an interacting fermion case, as in the continuum theory, we need
to take into account the invariance of the action under the following local
gauge transformation with a SU(3) matrix Q(z);

() = P(x) = Q)Y (), (2.6)
Y(x) = ' (2) = ()2 (2). (2.7)

We can easily find that the mass term in Eq.(2.5) is invariant under this
transformation. On the other hand, the discretized derivative term is not
gauge invariant. Therefore, we need to introduce a field U,(z) to keep the
term invariant under the transformation. To be more specific, we consider

P(n)Usp(n)p(n £ f1) (2.8)

instead of 1) (n)y(n=+ 1) in Eq.(2.5). This new term with Uy, is transformed
under the gauge transformation as follows;

V() UL, ()Y (n £ 1) = D) Q' (n)UL,(m)Q(n = @) (n £ f).  (2.9)

Consequently, ¥(n)Uy,(n)y(n= 1) becomes gauge invariant if we regard that
the gauge transformation of Uy, (n) is given by

UL, (n) = Q(n)Us,(n)Q (n £ ). (2.10)

Therefore, the interacting fermionic action can be given by the following
form;

Se— S b (Zw Upln)(n + ) = Uy(m)ln — 1) | m¢<n>) |

2a
(2.11)
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Figure 2.2: Location of fermion fields ¢) and link variables U, on a lattice.
Fermion fields live on a discretized point and link variables are attached
geometrically on a link of a lattice.

This fermionic action holds the gauge invariant property thanks to the matrix
U,. This matrix U,(n) is called a link variable because this has an orientation
1 and can be considered to be attached geometrically on a link of a lattice as
shown in Fig.2.2. We also easily find that U_,(n) is equivalent to U} (n — ).
In the following section, the relation between a link variable U, and a gauge
field A, is discussed.

2.1.2 Gauge part of the QCD action on a lattice

Constructing the gauge part of the QCD action on a lattice, it is crucial
to make use of the plaquette U,,(n) which is a closed loop composed by a
product of four link variables. This plaquette is defined as

Uiw(n) = Up(n)Uy(n + @)U (n + 2)U () (2.12)

and this can be sketched as shown in Fig.2.3. Using this plaquette, the gauge
part of the QCD action on a lattice can be given by

SY[U] = % S5 Re tifl — Uy (n)] (2.13)

n  pu<v

and this type of the gauge action was introduced by Wilson for the first time
[54]. Thus, this gauge action is usually called Wilson gauge action. The

22



Figure 2.3: Schematical view of a plaquette. A plaquette at n is the closed
loop from n composed by a product of four link variables.

problem we have to consider is if this gauge action is gauge invariant and
it can produce the continuum gauge action when taking a continuum limit
a — 0.

Gauge invariance of Wilson gauge action

We have only to check if the trace of a plaquette is gauge invariant for making
sure that Wilson gauge action is gauge invariant;

tr U;D(n) = tr [Q(n)U,(n)U,(n + ,tl)UjL(n + ) Ul (n)QF(n)] = tr Uw,(zz). |
2.14
Therefore, it can be said that Wilson gauge action is gauge invariant.

Continuum limit of Wilson gauge action

First of all, we need to discuss the relation between a link variable U, and
a gauge field A, to study the continuum limit of Wilson gauge action of
(2.13). The starting point is the gauge transformation of a link variable of
(2.10). In the continuum theory, it is known that the following quantity

23



T(x,y) is transformed in the same way as a link variable under the gauge
transformation;

y
T(z,y) =Pexp (z/ Au(z)dz“)
N-1
_ : "
A}l_r}(l)o | <1+2Au(xn)Aa: ), (2.15)
where z,, and |Az| are defined by = + nAx and |y — z|/N, respectively. Let
us actually check the gauge transformation of T'(z,y);

T'(z,y) = lim T <1+¢A;(xn)Ax“), (2.16)
Al (i) = %Q@n)aﬁ(%) + Q) Ay ()2 (2). (2.17)

Therefore, we can reach to the expression

1+ iA) (z0) Ax* = 1+ Q(2,) 0,07 (2) Az + iQ(w) Ay (2,) U (2,) At
— () (1 v Z'Au(:cn)A:v“) O (2ns1) + O((Aw)2>. (2.18)

To obtain the second line of Eq.(2.18), the expressions
0,0 (x,) Azt = QN (z,41) — QO (2,), (2.19)
QN (2p11) = QA (z,) + O(Ax) (2.20)
are used. Consequently, we can get the following gauge transformation;
T'(x,y) = Qa)T(z,)Q(y). (2.21)

Taking into account this similarity between U, and T, we can conclude that
U,(n) is equivalent to T'(n,n + /1) in case of an enough small lattice spacing.
This apparently means that a link variable can be written with a gauge field
A, as follows;

Uu(n) = exp (iaAM(n)) (2.22)
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Using the relation (2.22) between a link variable and a gauge field, let us
consider the continuum limit of Wilson gauge action. Plaquettes in Wilson
gauge action can be expanded with Baker—-Campbell-Hausdorff formula

exp(X)exp(Y) = exp <X +Y + %[X, Y]+ -- -), (2.23)

where X and Y are arbitrary matrices. Then, we obtain

Uw(n) = i0Au(n) giaAu(ntii) ,—iaA,(nt0)  —iaA, (n)

= exp [iaAu(n) +iaA,(n+ 1) —iaA,(n+0) —iaA,(n)

= S 1AU). Al )]+ AL, Al + )]
+ S lA 0+ ), Au(n +9)] 4+ [ Au(n). A, (n)]
+ S A+ 1), A ()] = A+ 9), A (m)] + O(a?)]
— exp [m? (aMAV(n) — 8,A,(n) +i[A,(n), A,,(n)]) n O(a?’)}
= exp [ia2FW + O(a?’)} : (2.24)
The expansion
A (n+70) = A,(n) + ad,A,(n) + O(a?) (2.25)

is repeatedly used to get the third line from the second line in Eq.(2.24).
Using the expression (2.24), Wilson gauge action can be written in terms of
a field strength F},,;

nz
2
SYA] = — Z Z Re tr [1 — exp (iaQFW)}
g n  pu<v
1 4 4
=2 Z Z Z Re tr[—ia’F,,(n) + a'F.,] + O(a®)
n p=1rv=1
o 4 4
Ay S 220
9 n p=1v=1
Getting the third line in Eq.(2.26), two relations ReX = (X + XT)/2 and
UIZV = U,, are used. Thus, we can conclude that Wilson gauge action is

equivalent to the continuum gauge action in the continuum limit.

25



2.1.3 Summary: naive QCD action on a lattice

From the above discussion, the naively discretized QCD action on a lattice
can be given by

S5 =o' 3 ln (Z% vt U“(”>w<”‘ﬂ)+mw<n>>

2a

+ = ZZRetrl— Uy (n)]. (2.27)

n  u<v

Unfortunately, this is not appropriate as an interacting single flavor fermion
action on a lattice because the fermion part of the naive QCD action has
the problem called the fermion doubling. In the next section, the doubling
problem is explained and one solution is also introduced.

2.2 Fermion doubling and Wilson fermion ac-
tion

2.2.1 Fermion doubling

For studying the fermion part of the naive QCD action in more detail, we
rewrite the fermion part in the following style;

Spl, 0, Ul =a* Y > > " d(n)eD(nlm)shib(m)s, (2.28)

nm c¢d o,

4
U, (0)% s iom — U ()60 .
Dlnpm)zh = 3 () e Ortion ~ Ul iy,

p=1

(2.29)
Let us see the Dirac operator for free case (U,(n) = 1 for all n) in momentum
space using the Fourier transformation;

1
Z e*lp naD(n’m) ig-ma

Dola) = 3 5, o, 2

s S

=6(p — q)D(p). (2.30)
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This expression means that the Dirac operator is diagonal in momentum
space for free case. Moreover, the inverse of the Dirac operator in momentum
space can be computed easily as follows;

1
m+ Zi—l VuSin(pua)

_m- L Zi L Y Sin(pa) (2.31)

m? + o Zu:1 sin®(p,a)

D' (p) =

To simplify our discussion, let us consider massless fermions. For this case
in the continuum limit, Eq.(2.31) becomes

- ~i 31 WP
DY (p;m =0,a —0) = #
p

(2.32)
This propagator has a pole at p = (0,0, 0,0) and this corresponds to a single
flavor massless fermion. Therefore, this propagator is surely correct in the
continuum limit as expected. However, the propagator in momentum space
on a lattice has a fatal problem. The expression

—ia Zi:1 Yy sin(p,a)

D™ p;m =0,a #0) = :
Zi:l v, sin®(pLa)

(2.33)

implies that there are fifteen unphysical poles in addition to a physical pole.
Particles corresponding to these extra poles are called doublers and we need
to remove them to get physically meaningful results on a lattice.

2.2.2 One solution for doubling problem

One solution for the doubling problem in case of free theory is to add the
extra term Dfree which has no contribution in the continuum limit to the
Dirac operator D as follows;

4
r
Dfree<n|m _% ; ( n+pgm nm + 6n ,m > (234)

This method was introduced by Wilson for the first time [55, 56]. Thus, the
extra term is called the Wilson term and r is called the Wilson parameter. In
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the continuum limit, this term corresponds to —% > i 0,00 This Wilson
term can be generalized for interacting case considering the invariance under
the gauge transformation discussed in previous section as follows;

4

.

DY (nfm) = —7- ( Yo 5nm+U_u(n)5n_ﬂ,m). (2.35)
n=

Therefore, the Dirac operator DV for interaction case with Wilson term is
given by

. 1) — U_ ()5,
DWF n+Q,m — n—p,m cd
n]m Z o + MO0 Opnm,
pn=1
r cd
- <5n+ﬂ,m 2 + 5nfﬂ7m>5 Sus
pn=1
Ay =
= (m + ) 5“6 050mm — % Z (r — fyu)agUﬁd(n)(SnJrﬂ,m.
p==1
(2.36)

For this case, the free Dirac operator in momentum space can be obtained
as follows;

DVF(p)=m+ = Z <1 — cos(p,a) ) Z% sin(p,a) (2.37)

,LL 1

From this expression, we can find that the mass of the particle whose mo-
mentum is p = (0, 0,0, 0) is m and the Wilson term has no mass contribution
to this particle. In addition, it can be said that masses of doublers are
proportional to 1/a thanks to cos(p,a) which comes from the Wilson term.
Thus, masses of all doublers are heavy enough to have no contribution to
the theory in case of a fine lattice, namely in case of a small enough lattice
spacing. Consequently, the physical particle we are interested in can survive
and doublers cannot exist in our system in the Wilson fermion formalism.
In my work, I adopt this Wilson fermions as fermions on a lattice and the
Wilson parameter r is set to 1 as we usually do so for simplicity. In principle,
r can be set to any value expect 0. Accordingly, the fermion action used in
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my work can be written as

+4

4 1

DVE(n|m) = (m + 5) Opm — % Z (1 —7,)Up(1) 0t fim- (2.38)
p==1

2.3 Improvement of QCD action on a lattice

When we construct the effective QCD action on a lattice, we need to dis-
cretize the derivatives included in the continuum action and the discretized
errors for the fermion action and the gauge action are O(a) and O(a?), re-
spectively. Taking a continuum limit, the result is free from this discretized
error. However, this is a tough work because we need to adopt a larger lattice
to keep the lattice volume constant in the case with a smaller lattice spacing.
Therefore, it is reasonable to reduce the statistical error originating from the
discretization adding extra terms to a lattice action because the lattice action
is not unique.

O(a)—improved Wilson fermion action

Let us consider O(a)-improvement of the Wilson fermion action Seg defined
as

Seff = / dz* (T 4 aT™) . (2.39)

T© is the usual Lagrangian of the Wilson fermions. To achieve this improve-
ment, we simply need to deal with the following quantities;

1Y = g0, Fu, (2.40)

13" = 4D, D, + D, Dy, (2.41)
75" = mTa(F, Fu), (2.42)

T = m [ 03Dy — bt | (2.43)
T = m2). (2.44)

The tilde on the operator D, in above definitions indicates that the operator
works on a field on the left—-hand side of the operator. Using the equation
(7D, +m)y = 0 for these candidates, we can obtain the following relations;

T — 1V 421V = 0, (2.45)

29



T 427 = 0, (2.46)

These relations can be used to eliminate T and T from these candidates.
Therefore, we have only to consider Tl( ), TSU, and T5( ), However, T3( ) and
Tél) are already included in the naively discretized QCD action. Thus, only

Tl(l) should be included as an extra term to reduce O(a) discretization error
and we reach the following improved action SV for the Wilson fermions;

SWE — gWF | C’Swa D) d(n)ouFu(n)e(n). (2.47)
n  pu<v

The real coefficient Csyy is called the Sheikholeslami-Wohlert coefficient [66].
F,,, in this improved action is a discretized version of a field strength and
the choice is not unique. In this work, the choice

Fiu(n) = =5 [@uu(n) = Quu(n)] (2.48)
is adopted with
QW’( n) = ( )+ U, u( n) + U—u,—V(n) + U—V,u(n)' (2.49)

O(a*)—-improved gauge action

For the standard Wilson gauge action which consists of only plaquettes, we
can add extra terms which consist of loops with six link variables to reduce the
O(a?) discretization error. The improved gauge action S7 can be expressed
as follows;

S9 = co(gg)TrP + aci(g3) Tr R + a’ca(gg) TrC + a*e3(gy) Tr L. (2.50)

P, R, C', and L correspond to the simple plaquette loop, the rectangle loop,
the chair-type loop, and the three-dimensional loop in Fig.2.4, respectively.
Note that these loops become zero in the continuum limit. Because the link
variable U, can be written as U, = exp[iaA,(n)], the action also can be
written with the gauge field A,. Imposing that the action (2.50) can be
expressed as

S, = —% / d'zF}, F, (2.51)

in the naive continuum limit, we reach the relation

Co + 801 + 1662 + 803 =1 (252)
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(a) (®)

(c) (d)

Figure 2.4: Four types of loops included in the improved gauge action. This
figure is taken from [65]. (a), (b), (c), and (d) are called a simple plaquette
loop, a rectangle loop, a chair-type loop, and a three-dimensional loop.

among the coefficients ¢, c1, co, and c3. Because ¢y and c3 can be neglected
at the one—loop level, the terms associated with the chair—type loop and the
three—dimensional loop are usually dropped and the improved gauge action
is given as follows with effective coupling constant 3 = 6/¢° defined by the
gauge coupling constant g for SU(3) case.

p
Syause = 3 [(1 —8¢1) n; TeP,,(n) + ¢ n%; TrRW} , (2.53)
Py = Uu(m)U,(n+ @)U (n + 0)U(n), (2.54)

Ryu(n) = Un(m)U(n + UL (n + 20U (n + i+ 9)UL(n + iU (n), (2.55)
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The improved gauge action with the coefficient ¢; = —0.331 are called Iwasaki
gauge action and the estimation of the coefficient is based on the renormal-
ization group approach [65].
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Chapter 3

Finite temperature and density
QCD on a lattice

In this chapter, a method for introducing at finite temperature and density
on a lattice is shortly explained. In an actual calculation of lattice QCD,
Monte Carlo method needs to be used to obtain an expectation value of
an observable. However, at finite density lattice QCD, Monte Carlo method
breaks down because the probability density used for Monte Carlo integration
becomes complex in general. This problem is called the sign problem. The
sign problem is discussed from the point of view of not only the continuum
theory but also the discretized one.

3.1 QCD partition function and introduction
of temperature and quark chemical po-
tential

According to statistical mechanics with path integral quantization in imagi-
nary time, the QCD grand canonical partition function Zge (7, p,) at finite
temperature 7' and finite quark chemical potential (corresponding to finite
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density) p, can be given as

Zao(T, pg) = tr (e—%(ﬁ—#qﬂf))
= /DUDQED#} exp [_ /OT dt/d3;p () D (1g) () — Sgange

= / DU det D(j1,) e~ Semuse, (3.1)

where D is the Dirac operator at vanishing density discussed in the previous
chapter and D(p,) = D + p,ya for the simplicity. Note that the interval of
the integration in the time direction becomes finite and temperature should
appear in the upper limit as 1/7" in the finite temperature theory in con-
trast with the theory at zero temperature. Therefore, temperature can be

introduced on a lattice in the following manner;
1
Nta = T (32)

Moreover, we should pay attention to the following anti—periodic boundary
condition for the quark fields;

(2, 1)T) = —(Z,0). (3.3)

This condition can be checked considering the thermal two point correlation
function G(Z,y;t,0) defined as follows;

tr (e TN £)9(7,0))
G(#,:1,0) = T . (3.4

Using the cyclic property of a trace and the anti-commutation relation for
fermion fields, this function can be rewritten as

tr (e T (7, 1) (7, 0)
Zac
tr (e—m—uqm/Te(H—qu)/%(yj 0)e~(H=1aM)/T3) (7, t))

G(Z,y;t,0) =

Zae
tr (e a7 1T )
- Zao
= —G(&, i t,1/T). (3.5)
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This relation exactly implies the condition (3.3).

Next, let us consider how to introduce the quark chemical potential on a
lattice. Introducing the quark chemical potential, Lagrangian of interacting
quarks should be changed as follows;

@ [%(au A + m] b — ¢ [%(au +iA,) +m— qu4]w. (3.6)

This simply implies that the chemical potential can be introduced by the
replacement Ay — A4 —ip,. Consequently, the quark chemical potential can
be introduced on a lattice by the replacement

U, = eiods _y gialAi=ing) — ghasy], (3.7)

for link variables in the time direction [57]. Therefore, the Dirac operator for
Wilson fermions at finite chemical potential can be given as

4
DWF(n|m; ,u)g% = <m + a) 5Cd5a55nm

+3

1 c
- % (1 - 'Yi)aﬂUz‘d(n)(an,m
i=%+1
1 pgagred
- %(1 - 74)045 e U4 (n)5n+21,m
1 —pgayre
- %(1 + Ya)ap € UL (N)0, 4 e (3.8)

Note that the Wilson gauge action is invariant under this replacement (3.7)
because it consists of plaquettes. Just in case, let us check if this Dirac
operator at finite density on a lattice can reproduce the continuum Dirac
operator at finite density in the continuum limit. For this check, we have
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only to consider the continuum limit of the last two terms of Eq.(3.8);

~

—iZzb( )[(1—74) e Uyg(n)p(n +4) + (1 + 74) e—“an_4(n)¢(n_4)]
- > () [(1 — ) Us(n)ih(n +4) + (1 + ) U_s(n)db(n — 4)]

—%Zﬂmdu—mmm<><uw@Mwm+ow

~

——=> ¥(n )[(1 — 1) Us(n)y(n +4) + (1 + ) U—4(n)¢(n—4)]
+Zqu )yatb(n) + O(a). (3.9)

Therefore, the last line corresponds to the term with the quark chemical
potential in the continuum theory when taking the continuum limit.

In numerical calculation, we cannot handle quantities which have physical
dimension. Thus, the Dirac operator of (3.8) cannot be on a computer. To
avoid this problem, we usually adopt the following redefinition of quark fields;

Y=Y = m+%¢. (3.10)

Then, we can reach the following dimensionless Dirac operator for Wilson
fermions;

+3
DY (n|m; )25 = 6 Sasbm — £ Y (1= 1%)apUf" (1)6,,4;
i==+1
— k(1 = Ya)ap €U (n)0, 44
— k(1 + )ap € U ()6, 4 m; (3.11)
where
__ (3.12)
 2ma+ 8’ ’

Note that the quark mass can be tuned by the value of x in actual numerical
computations. In the following from here, D" means this dimensionless
Dirac operator on a lattice.
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3.2 Lattice QCD and Monte Carlo method

Now, let us consider how to calculate the grand canonical partition function
(3.1) on a lattice. If we can get the QCD grand canonical partition function
at finite density, we can easily calculate dimensionless thermodynamic ob-
servables such as the pressure p, the number density n and the susceptibility
x at finite density as follows;

Ap(luq?T) . p(:uan) . p(O,T)

T T4 T4
3

B N, Zao (g, T)

_<—NINyNy> log <—ZGC(O,T) , (3.13)
n(pg,T) 0 Ap(pg,T)

T T 0T T4 314
X(,UmT) o 0° Ap(:“an)

T B TR T (3.15)

The path integral representation of the grand canonical partition function
can be written apparently as follows;

ZGC<T’ Mq) - /DU det D(,uq) e_Sgauge

z

N, Ny N. N, 4
:/ H H H H HdU#(‘rl’I%xi&,QM) detD(Nq) e_sgauge‘

r1=12x2=123=124=1 p=1
(3.16)

In QCD, link variables U,, can be represented by eight parameters with the
eight generators for SU(3). The number of dimensions of the integral is
Nagim = 8 x4 x N x Ny, x N, x N; and this is a highly multiple integral.
Therefore, it is not realistic for us to estimate the integral using a quadrature
by parts. In an actual calculation, we evaluate the integral making use of
Monte Carlo integration with importance sampling. For this strategy, the
grand canonical partition function can be rewritten in the following expres-
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sion as a most naive way;

Zac(T, pg) = /DU det D(p44) e~ Ogauge

z/DU det D(u,

(
(
E/DU detDEuq

The most important point of this rewriting is that we regard P(U, p) as the
probability density (Boltzmann weight). Making use of this interpretation,
we can generate suitable sets of link variables according to the probability
density P(U, po). Then, we calculate the grand canonical partition function
as the statistical average of the ratio of the determinant using the sets of link
variables as follows;

det D (/L(]) G_Sgauge

P(U, 1) (3.17)

N .
1 det D Ut
Zao(T, ) = lim et Dlp, U')

— —_—. 1
N—oo N i1 detD(,uo,UZ) (3 8)

The remaining problem is how to choose p for the probability density
P(U, o). To come right to the point, o can be set to 0 or purely imag-
inary value. This is because P(U, ug) has complex value for real value of
po and we cannot handle P(U, po) as the probability density in this case.
If pg is small enough, we can calculate the grand canonical partition func-
tion at the chemical potential using Monte Carlo integration according to
the P(U, o) at o = 0 or purely imaginary valued po. However, we can
no longer evaluate the grand canonical partition function at a large quark
chemical potential because P(U, 1) at po = 0 or purely imaginary valued
fto is not suitable probability density for the large p, case. This problem is
called the overlap problem. That is, at finite density QCD, it is important
to weaken the overlap problem.

3.3 Sign problem at finite density QCD

3.3.1 Sign problem

In this section, let us consider the sign problem [4, 42, 43] in view of the eigen-
values of the Dirac operator in the continuum theory. As stated previously,
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the Dirac operator at finite density is given by
D(pq) = Dy +m =+ pigs.- (3.19)
Case at vanishing density
In this case, the Dirac operator is
D(0) = D,vy,+m (3.20)
and we can easily find that this operator is anti-hermitian
D(0) = —D(0). (3.21)
Therefore, the eigenvalues of the Dirac operator are purely imaginary;
D(0)p; = &by, (3.22)

where 1); is the eigenstate of the Dirac operator and the eigenvalue &; € R.
Using the anti-commutation relation between 75 and -,

{75, 7} =0, (3.23)
we can say that vys1); is also the eigenstate of the Dirac operator satisfying
D(0)vs¢hi = —i&iys¢i- (3.24)

Consequently, we can calculate the determinant of the Dirac operator for
these sets of the eigenstates as follows;

det D(0) = [ [ (i&, + m)(—i&, + m)
=[[(&+m?). (3.25)

This means that the determinant always has a real value and the probability
density P(U, 0) for Monte Carlo integration is real at vanishing density. Thus,
we can conclude that Monte Carlo method can work for the case at vanishing
density.
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Case at finite density

In contrast to the case at vanishing density, the Dirac operator at finite
density is no longer anti-hermitian;

DT(MQ) = =Dy +m+ pgva (3.26)

Accordingly, the eigenvalues are generally complex as follows;

D(pg)vsti = —Xivsii, (3.28)

where \; € C. Therefore, we obtain

det D(pg) = [ [(An + m) (=X, +m)

n

== +m?). (3.29)

n

In this case the determinant is complex in general and the corresponding
probability density P (U, p1;) becomes complex. Thus, we cannot regard
P(U, p1) as the probability density and Monte Carlo method breaks down.

Case at purely imaginary chemical potential

From above discussion, we can say that the probability density becomes real
in case of purely imaginary chemical potential p, = ip¢;. This is because the
corresponding Dirac operator is anti-hermitian for this case;

D(pg = ipr) = _DT(Nq = ipur). (3.30)

Thus, the purely imaginary chemical potential is sometimes used for the cal-
culation of an expectation value of an observable at finite density. In usual
attempts with purely imaginary chemical potential for finite density QCD,
expectation values are calculated in purely imaginary chemical potential re-
gion at first and then the results are extrapolated to real chemical potential
region by analytic continuation using a polynomial of the chemical potential
squared. This method is explained in the next chapter more precisely.
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3.3.2 Interpretation of sign problem in view of lattice
field theory

In this section, let us consider the sign problem in view of field theory on a
lattice. In order to consider the physical interpretation of each term in the
Dirac operator, let us rewrite the Dirac operator as follows;

+3
D (nlm; )2l =" 0apbnm — £ > (1= %)apUi"(0)6,,45
i==+1
— K(1 = Ya)ap 1" UL (1)6, 1 4.1m
— K1+ )ag € U (0)0, 4,
1 r Q). (3.31)

Using this expression, we can obtain the quark propagator D! in the fol-
lowing way by the expansion in terms of x;

D= s = Y (w0 (332)

From this expansion, we can find that Q(u,) denotes the quark hopping; the
term including d,,+;,, denotes the quark hopping from n to n+ fi. Note that
the hopping n — n+ i — n is excluded because the product (1F7,)(1£~,)
is included in Dirac space for this quark hopping and this product always
becomes zero. It also can be found that x means the mobility of quarks
as this parameter depends on the quark mass. This parameter is usually
called a hopping parameter. Using this hopping parameter expansion, we
can calculate the logarithm of fermion determinant as follows;

log det D* (p,) = logdet D" () = Trlog (1 - /@Q(uq)>

_ i Tr—“lQ?(’“‘q) . (3.33)

We can choose a basis vector characterized by spacetime (n), Dirac (1) and
color (a) indices for the calculation of the trace. Therefore, we can reach the
following expression;

log det DV (jg) = = > Z a, i1, n| Q' (11g) la, p;m) . (3.34)

a,pu,n =1
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Figure 3.1: Some examples of closed loops starting from n on a lattice. A
red arrow denotes a quark hopping starting from a point n and a green arrow
denotes the quark hopping coming through anti—periodic boundary condition
in the time direction. Closed loops on the right and left hand side are wind-
ing around time direction through an anti—periodic boundary condition and
this type of closed loops only have a chemical potential dependence. In con-
trast to these loops, the closed loop in the middle has no chemical potential
dependence.

From this expression, we can find that quark hoppings from n to n only have
non—zero contribution to this summation. Namely, this type of the quark
hoppings form a variety of closed loops on a lattice. Moreover, we can say that
the closed loops winding around time direction through anti-periodic bound-
ary condition only have a chemical potential dependence. Consequently, we
can rewrite the expansion of the logarithm of the fermion determinant using
sets of complex constants C), and C_,, in the following expression [47, 49];

log det DY¥(p,) = Co + Z {Cne”“‘I/T + C_ne_”“Q/T}. (3.35)
n=1

Here, n denotes a number of windings around the time direction.
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Chapter 4

Canonical approach and other
methods to finite density
lattice QCD

In this chapter, several methods frequently used for finite density lattice
QCD are shortly introduced with the explanation about the difficulties. Af-
ter that, basic concepts of the canonical approach are introduced [44, 45,
46, 47, 48, 49]. The canonical partition functions correspond to coefficients
of the fugacity expansion of the grand canonical partition function. The
canonical approach is free from the sign problem in principle because the
canonical partition functions are given by the Fourier transformation of the
grand canonical partition functions calculated at purely imaginary quark
chemical potential.

4.1 Several methods for finite density lattice
QCD

In this section, the multi-parameter reweighting method [22, 33], the Taylor
expansion method [34, 35, 36], the imaginary chemical potential method
[37, 38|, and the density of states method [39, 40, 41] which are used to
analyze finite density QCD at a small quark chemical potential are briefly
introduced.
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4.1.1 Multi—parameter reweighting method

For N;flavor QCD case, the grand canonical partition function Zg¢ at finite
quark chemical potential y, is given with effective coupling 8 = 6/¢* as
follows;

Zoo(ny) = [ 10 det D(uy)| e S (4.1

In the multi—-parameter reweighting approach, this grand canonical partition
function identically needs to be rewritten with an artificial parameter 3, in
the following expression;

N
Zaco(pg) = / [aU %] fe—w—ﬁo)%awe[detD(O)}Nfe—ﬁoSgwge
— / AU R (11, B: 0, Bo) [det D(o)} M o= BoSsenae. (4.2)
where N,
R(pq, 350, Bo) = [%] e~ (P=Po)Sgauge (4.3)

An important point of this approach is that gauge configurations are pro-
duced according to the probability P(8y) = [det D(0)]Nse~FoSsause and this
procedure does not suffer from the sign problem.

What we have to consider as a next step is how to vary 8 and p, keep-
ing on having suitable contribution from Monte Carlo integration with the
probability P (/). We can obtain an ideal guideline for this trial by consider-
ing the minimization process of the dispersion X (p,, 5, 5o) of R(ug, 5;0, 5o)
defined as

X(H’qa ﬁv 50) = <R2(H’q7 ﬁv 07 /80)>50 - <R(:U“q7 57 Oa BO»ZO (44)

under the infinitesimal transformation (5, 1g) = (5 + AB, g + Apy,). Note
that (O) 5, denotes an expectation value of an operator O as a statistical
average over configurations produced according to the probability P(fy).
Let us consider the deviation of X (g, 5, o) defined under the infinitesimal
transformation as follows;

0X :X(,Uq‘i‘A,Uq,B"i_AﬁaﬁO) _X(,uqvﬁ>ﬁ())

90X Ap, OX
—m T +%A5. (4.5)
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From Eq.(4.4), we can get the following expressions;

0X OR OR
—— =2( ——R —2{(R _— 4.6
ANp1q/T) < Apg/T) >50 < >ﬂ0 <8(MQ/T> >ﬁo ’ o
0X OR OR
% < 5 R> 2R, <%>50 / 47
Ny
OR _ 1 [det D( Q>] det D(MQ) 6—(5—50)59au96
Npg/T)  [det D(pg)]Nr (pg/T) det D(0)
1 Oldet D(py)]"™
[detD(Mq)] (Uq/ )
= C(u) R, (48)
where OR
% = _SgaugeR- <49)
Therefore, we can get the following expression;
60X ) A 2
7 = <C(/lq)R (;uqa ﬂa 07 BO)>3O T - <SgaugeR (:uqa 6a 07 BO)>3O Aﬁ
A
= (R(110: 850, 5o))g, (C o) Rl 50, o)) 5, =
+ (Rl11q: 550, B0)) g, (Sgauge R(11q: 5: 0, o)) 5, AB. (4.10)

From the minimization condition 0X = 0, we can obtain the following rela-
tion between AS and Ay, /T.

TAS B <C(:U’Q)R2(/“LQ7B;0760)> - <R(Nqaﬁ'0 60)) (C(u q)R(Nqa& 0750»50
A/J“q <SQGU93R2(/“LQ7B;0750)> <R(M(]7670 60» < gauge (Mquﬁ;o’ﬁﬁ»go
(4.11)
Using this relation, we can determine suitable values of Ay, and Af for the
probability P(f3y) and perform the multi-parameter reweighting method for
finite density lattice QCD.
In this approach, we need to calculate the factor R to get an expectation
value of an observable. In the factor R, the fermion determinant det D(s,)
is included. Let us rewrite the fermion determinant as follows;

det D(p1q) = | det D(pg)]e™. (4.12)
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(cos )

u/T

Figure 4.1: Schematical view of the expectation value of § in fermion deter-
minant against quark chemical potential.

It is known that the expectation value of cosf approaches zero rapidly as a
quark chemical potential increases as shown in Fig.4.1 [34]. Therefore, we
cannot get an expectation value with high precision at a large quark chemical
potential even if we adopt the multi—parameter reweighting method discussed
above.

4.1.2 Taylor expansion method

Let us consider to expand the thermodynamic observable in terms of the
quark chemical potential p,. First, we assume that the pressure can be
expand as follows;

MR A (O (@13

Now, let us recall the following two facts. One is that pressure can be ob-
tained from the logarithm of grand canonical partition function Zge (g, T').
The other is that the grand canonical partition function has the relation

ZGC<_NQ7T) = ZGC(:Uq?T) (4'14)

46



because of symmetry of charge conjugation. From these facts, we can reach
the following expression for pressure;

ppg, T)/T" = i Cay, (%W (4.15)

n=0

The coefficients Cs,, can be calculated as follows;

1 /N\® o
czn:—(—t> a(—logZGC(,uq,T) (4.16)

@) \N.) 3, /T

Note that these coefficients can be calculated by Monte Carlo simulation at
vanishing quark chemical potential. Therefore, this method is free from the
sign problem. However, this method can work only up to /T ~ 1 (ug/T ~
3) considering the convergence of the expansion. From the expansion of the
pressure, we can also calculate the number density and the susceptibility as
follows;

tq/T=0

n(p1g, T)/T* = 3 (20)Co (%)2"_1 , (4.17)
i T)/T? = 3 (@20 — 1)(20)Ch (%)2"_2 | (4.18)

4.1.3 Imaginary chemical potential method

If we adopt a purely imaginary chemical potential fi,, the fermion determi-
nant det D(fi,) in the grand canonical partition function

Zeo(i) = [1a0)[det Dy 5 (4.19)

is real. Therefore, we can calculate the thermodynamic observables in pure
imaginary region and it can be back to a real chemical potential p, region
by the analytic continuation

O =Y e (2) = O = e (1) a2

n=0
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4.1.4 Density of states method

There are several types of a density of states method for finite density lattice
QCD according to a choice of quantity for a density of state p. Here, the case
of a phase 6 of the fermion determinant is considered as a basic example. In
this case, the density of state can be chosen as follows;

p(0) = {56 = 0(U)))q - (4.21)

(--+)o is an expectation value calculated with the link variables U generated
according to the phase quenched probability | det D(u,)|e™seusc. Using this
density of state, an expectation value of an observable at a finite quark
chemical potential p, can be calculated as

Ola)) = 5 [ dbo()e” (0),. (4.22)

Here, Z and (- - -), are defined as

7 / d0p(6)e, (4.23)

where
1

p(0)
Note that these quantities can be calculated by lattice QCD simulation and
the difficulty is in the determination of the density of states in this method.
Let us consider the difficulty of the phase quenched simulation. For 2-flavor
case, the phase quenched fermion determinant corresponds to the simulation

at a finite isospin chemical potential (y, = y). That is, the quenched fermion
determinant can be expressed as

(0), (Oxd60—-0(U))),- (4.24)

| det D(11,)|* = det D(j14) det D(—p1,)- (4.25)

However, in the phase quenched fermion determinant case, it is well known
that the exotic phase with pion condensation exists in the region i, > m,/2.
Because the high precision determination of the density of states are required
in this region, the actual validity range of this density of states method is
limited to a small value of p,/7".
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4.2 Canonical approach to finite density QCD

The canonical approach was introduced in [44] for the first time and this
section is devoted to review the basic concept of the canonical approach.

4.2.1 How to escape from the sign problem in canoni-
cal approach

According to statistical mechanics, the canonical ensemble is a statistical
system corresponding to a representation of thermodynamics with tempera-
ture T, volume V' and number N. In contrast to this ensemble, the grand
canonical ensemble is a statistical system of thermodynamics described by
T, V and chemical potential . An important fact is that thermodynamic
functions obtained by both ensembles are related to each other by the Leg-
endre transformation and have equivalent thermodynamic information in the
thermodynamics limit. Therefore, it is guaranteed that these ensembles can
provide us the same thermodynamic results. This fact is called equivalence
of ensembles. Thanks to this equivalency, we can choose a suitable ensem-
ble freely when we consider thermodynamic properties of the system we are
interested in.
The grand canonical partition function Zge(pu,, T') is given as

Zao(iig, T) = Tr e~ H-1aM)/T (4.26)

where H s Mg s Nand T correspond to Hamiltonian, a quark chemical poten-
tial, a number operator and temperature of the system described by QCD,
respectively. If we choose the eigenstate |n) of the number operator N
which leads to the eigenvalue equation N |n) = n|n) to calculate the trace
in Eq.(4.26), the grand canonical partition function can be written by the
following polynomial;

Zac (g, T) = Y (n]e” =M/ )
= > Zy(T)e"alT. (4.27)
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To get the second line, the relation [H, N] = 0 is used. This Z,(7T’) is the
canonical partition.f Now, let us consider the grand canonical partition func-
tion at a purely imaginary quark chemical potential u, = ius (u; € R)

ZGC ’L,u], Z Z mu;/T' (428)

n=—oo

From this relation, we can easily find that the canonical partition function can
be calculated by the Fourier transformation of the grand canonical partition
function calculated at purely imaginary quark chemical potential;

Z(T) = - / d(“f)zgc(w, T)e~inut/T, (4.29)
2m Jo T

As stated in the previous chapter, the canonical approach is free for the sign
problem in principle and this is a strong point of the canonical approach.
Once we get the grand canonical partition functions at purely imaginary
quark chemical potential in the range of 0 to 27i, we can calculate the canon-
ical partition functions through the Fourier transformation Eq.(4.29). Then,
we can reconstruct the grand canonical partition function at any real quark
chemical potential considering the fugacity expansion Eq.(4.27).

4.2.2 Constraint on canonical partition functions

To consider the property the canonical partition function should have, let us
discuss an introduction of quark chemical potential on a lattice again. In the
previous chapter, the fermionic part Sr of QCD action with Wilson fermions
is given as follows;

Sp=a Zw ) D" (nfm; pw)ip(m),
where

DWF(nlm :uq) _5Cd5a65nm ”Z — %i)apU; ( )5n+%,m

i==+1
= 6(1 = 7a)ap U (1)0, 14,1,
- I{<]‘ + 74)016 e_uanicéldn)(snffl,m'
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For this action, we introduce the following change of variables [58];
¢<ﬁ7 n4) — e*nzl,lw« w(ﬁv n4>7 (430)
(7T, nyg) — "M h(T, ny). (4.31)

Under this transformation, the first two terms of (4.30) are not changed. The
third term and forth term are transformed as follows.

nyg # Ny or N; # 1 case for the third and the forth terms

— K(l + 74)€iuan:|:4(ﬁ7 n4)5n:|:21,m
— — ke (1 ) e ULy (7, n4)€7(n4ﬂ)uqa5nizl,m

= —Ii(]_ + ’)/4)U:t4(7_7:, n4)§nﬂ’m (432)

ny = N, case for the third term
— I{(l — ’74)€Man4(ﬁ7 Nt)5n+21,m
— —H@Nt“qa(l - 74)€uan4(ﬁ> Nt)eiuqaén—kﬁ,m
= —k(1 — y0)e M Uy(7, Ni)6, 4 m

- _KJ(l - 74)ellq/TU4(ﬁ’ Nt>5n+21,m (433)

n4 = N; case for the forth term
— K(1+ya)e " U_4 (11, Ni)0, i,
— —reNH(1 4 e P U_y (7, Ny e~ N Dmaes

= —R(1 + ya)U_4(77, N¢)d

n—4,m

,m

(4.34)

ny = 1 case for the third term
— K(1 = ya)e" Ua(7i,1)0,, 45 1,
— —ke! (1 —qy)et 1" Uy(it, 1)e %6, 4

= (1 = ) Ua(7, 1)0, 4.m (4.35)

n4 = 1 case for the forth term
— k(1 +ya)e " U_4(77,1)0, 3,
— —kelY(1 + g )e MU _y (7, 1)6’Nt“q“(5n_;17

= —r(1+ya)e "/ TU_4(77,1)6

n—4,m

m

(4.36)
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From the above, we can say that the quark chemical potential can also be
introduced using the replacement

Ui4(ﬁ, Nt) — €iﬂq/TUi4(ﬁ, Nt) (437)

for the link variables only on the time slice ny = N;.

4.2.3 Roberge—Weiss periodicity for grand canonical
partition function

In this section, we discuss the periodicity of grand canonical partition func-
tion at purely imaginary quark chemical potential which is closely related to
Zs3 transformation for link variables. Z3 group is a center group of SU(3).
This means that any element of Z3 group can commute with any element
of SU(3) group. In particular, the elements {z} of Z3 group are given as
2z =1,e?™/3 /3 Now, let us consider the following grand canonical parti-
tion function;

ok ork
Zeo <zm+z%> = / U] detD(im+i%,U>e‘SW“96[U]. (4.38)

Considering the replacement (4.37) to introduce a finite quark chemical po-
tential, this grand canonical partition function can be rewritten as

ok
Zac (W} + @%> = / [dU] det D (ipy, U')e Soanaclt] (4.39)
where
Ull(ﬁ7 n4) - Uz(ﬁa n4)7 (440)
Ui, ng) = €5 onaNe Uy (i, ny). (4.41)

These new link variables U’ can be interpreted as the result of Z3 transfor-
mation of original link variables U only on ny = N, plane. It is obvious that
the Wilson gauge action is invariant under this transformation because it
consists of the sum of plaquettes. This means that Syauge[U] = Sgauge[U’]-
Moreover, Haar measure in path integral representation is also invariant un-
der the Z3 transformation. Therefore, we can state that the right hand side of
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(4.39) is equivalent to Zgc(iur). Consequently, we can finally find the follow-
ing periodicity of the grand canonical partition function at purely imaginary
chemical potential;

ch(’i,u]> = ch(i,u] + 27TZTL/3) (TL = 1, 2) (442)

This periodicity is usually called the Roberge-Weiss periodicity [60]. Using
the Roberge-Weiss periodicity, we can rewrite the grand canonical partition
function as

2
. 1 . .
ch(lluj) = = Z ch(lluj + 27TZ]€/3) (443)
3 k=0
and then, we can obtain the following relation;

1+ 627rin/3 + e47rin/3

. l (4.44)

1 [ A
Zn(T) = 2—/ d(%)zgc(w])e—mﬂﬂ X
T Jo

From this relation, the following important constraint on the canonical par-
tition functions is given [60, 61];

Zyasn(T) =0 (k € N). (4.45)

Note that this constraint holds true in both the confining and the deconfining
phases. Thus, the grand canonical partition function can be written as

Zao(ps, T) = Y Zp(T)ePs!T, (4.46)

B=—0c0

where B € N. Because the quantum number B can be interpreted as a net
baryon number, up can be regarded as a baryon chemical potential, which
is related to a quark chemical potential as g = 3.

93






Chapter 5

Difficulties of canonical
approach to finite density
lattice QCD and the solutions

5.1 Multiple precision calculation as a new
solution for difficulty of Fourier transfor-
mation

As the fugacity expansion of the grand canonical partition function should
converge at a real baryon chemical potential, the canonical partition function
Zp must decrease when the absolute value of net baryon number B increases.
This means that we have to work with very small values in the Fourier trans-
formation results. This Fourier transformation is difficult from the viewpoint
of numerical calculation because it is an oscillatory integral.

In the numerical calculation, the Fourier transformation computed by the
discrete Fourier transform (DFT) as

1 2= 1 2k
M . j2rk
Zp=— Zec (Z?:ZT)Q N B (5.1)
where N is the interval number of the DFT. As the DFT is simply a dis-
cretized version of the Fourier transform in a continuum theory, the difficulty
of the DFT in the canonical approach is caused by the numerical errors, the
types of which are classified as rounding error, truncation error, cancellation

95



of significant digits, and loss of trailing digits. The difficulty of the DFT
does not arise from truncation error because the DFT is not an infinite se-
ries. Accordingly, it is natural to consider that the instability originates from
the cancellation of significant digits.

The cancellation of significant digits occurs in the following type of cal-

culation:
1.234567 — 1.234566 = 0.000001.

(7 significant digits) (1 significant digit) (52)

In this case, six significant digits are lost.

To reduce the effect of this cancellation, the number of significant digits
should be increased. Consider the following calculation with 22 significant
digits:

1.234567444444444444444 — 1.234566111111111111111
(22 significant digits)

= 0.000000133333333333333. (5.3)
(16 significant digits) '
Although six significant digits are still lost in this calculation, 16 significant
digits remain in the final result.

Summarizing the above process, the precision of a calculation result can
be retained by increasing the significant digits of the input variables in this
way. Therefore, the multiple precision calculation should be needed for the
canonical approach. This is a new point of view in the context of the Fourier
transformation in the canonical approach.

5.2 Winding number expansion method as a
new solution for numerical cost for calcu-
lations of Wilson fermion determinants

As stated in the previous section, the canonical partition functions can be
calculated by the DFT of the grand canonical partition functions computed
at purely imaginary chemical potential. This apparently means that Wilson
fermion determinants computed at many different values of purely imaginary
chemical potentials must be needed. A standard method to calculate Wilson
fermion determinants is to perform LU decomposition of the Wilson fermion
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matrix. However, in this case, we need to perform the LU decomposition of
matrices whose rank is 12N, N, N, N, for several hundreds of gauge configu-
ration at each chemical potential. Therefore, the LU decomposition method
is not realistic even with recent computer resources even in case of a small
size lattice.

5.2.1 Reduction formula for Wilson fermion determi-
nant

The most reliable method to overcome the above problem on numerical costs
is to adopt a reduction formula for the calculation of Wilson fermion deter-
minant (62, 63, 64]. In this method, the Wilson fermion determinant can be
calculated as follows.

The Wilson fermion matrix is given as

3
DYl prg) = 1= 5> [(r = 30U+ O+ 23U ()5,

1
— R = 1) €Us(n)d, 14,4, — K(r +7a) € UL (M), g1

(5.4)

Note that the Wilson parameter r is not set to 1 at this stage. In the middle

of the process to construct the reduction formula, we take the limit r — 1.
For later convenience, we rewrite this Wilson fermion matrix as follow;

DYE (n|m; uy) = B(n,m) — 22" tkr_V(n,m) — 2zkr, Vi(n,m),  (5.5)

where

B(n,m)=1-k Z [(7’ =) Ui(n)0,, 5 + (7 + %)U;(m)én_;m . (5.6)

V(n,m) = Us(n)S,, . 1, (5.7)

Vi(n,m) = Uj(m)s,,., 1. (5.8)
+

z=e M pryL= r 274. (5.9)
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From the definition of B, we can easily find that B is a diagonal matrix in
the time—plane.

B, 0 - 0
p=|" P (5.10)
: 0
0 --- 0 By,
Matrix V' can be represented in the time—plane as follows;
0 Uy(Z, 1) 0 e 0
: 0 Uy(Z,2) :
V= 0 . (5.12)
U4(f, Nt - 1)
_[]4(1_37 Nt) . 0

The negative sign on the (N, 1) element of V' comes from anti-periodic
boundary condition.
As a next step, we consider the matrix P defined as

P(n,m) =7r_6pm+rV(n,m)z"". (5.13)

The determinant of this matrix P can be calculated in the following manner;
det P =det <r§t> det (1 + (rTr )N TN UL (T L) - - Uy (7, Nt)>

— det ((r_)Nt ()N NUL(E ) - Ua(F, Nt)>. (5.14)

Note that the determinants on the right hand side are taken with respect to
the space indices, the color indices and the Dirac indices. This expression
can be obtained from the following formula with regular block matrices A;
and B;;

AL B, 0 -0
A2 B2
det 0
Bn—l
_B, .. A,
— det <A1 . An> det (1 4 (~1)"ATIB, - A;an>. (5.15)
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This formula can be applied to the calculation of det P as r_ has its inverse

4
~1
— T+

(5.16)

In Eq.(5.14), we can take the limit » — 1 because inverses of r_ are no
longer included. In the following discussion from here, we can set r to 1. To
calculate the right hand side of Eq.(5.14) for Dirac indices, let us consider
matrices r, and r_ in Dirac representation;

0 00O

N |0 000

0 001

1000

N |01 00

0000
Using these matrices, we can get the expression.

2
det P = det (z‘”“ll403,1)---l]g@f,ﬁh)) . (5.19)

Note that the determinants on the right hand side are taken with respect to
the space indices and the color indices. It is easy to calculate the determinant
and the final result is

det P = 7 6NNy NN, (5.20)

The next step we should consider is the product of matrices D" and P and
the determinant. We can write down the product D" P as follows;

(D" P)(n,m) =Y _D"F(n,1)P(l,m)
l

- (B(n, m)r_ — 2/<;r+6n7m)
+ Z (B(n, Dry — 2’“’—571,1)‘/(1, m)z"!
!

Xi(n,m) + Xao(n,m). (5.21)
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We can easily find that the matrix X, is a diagonal matrix in the time-plane;

(05} 0
6%)
X, = ) , (5.22)
0 an,
where
() (7, m) = B(i, i, 17, ) 0 (r—)on — 26(74) 1007 . (5.23)

On the other hand, the matrix X5 is not diagonal in the time—plane. However,
X5 has the particular form as follows;

0 Brz7t 0 0

. 0 Bazt :
Bny—127!

_ﬁNtZ_l 0

where
(B:)o (7, m) = B(7t, i, 1)e (1) U (171, 1) — 26(r_ ), US" (113, 4) 8555 (5.25)

Therefore, the matrix D" P can be written as

ay Pzt 0 - 0
: ay ezt :
DVEp = 0 : (5.26)
Bny—127
—Brnzt - an,

The determinant of this matrix can be calculated using Eq.(5.15);

Ny
det (DWFP> = det (H al-) det (1+27Q), (5.27)

=1

where

N
Q=]]a'5: (5.28)
=1
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Note that the determinants on the right hand side are are taken with respect
to the Dirac indices, the space indices and the color indices. Consequently,
we can obtain the fermion determinant as follow using Eq.(5.20);

det (D""'P) N,
det (DWF) = W — Z—GNzNyNth det H a; det (ZNt + Q) )

i=1

(5.29)
The notable fact is that the rank of the matrices «; and @) is not N =
AN N N,N,N; but N,.q = N/N;. This means that the reduction formula
makes the computation of the determinant less by 1/N2. To be more specific,
we calculate the determinant according to the following procedure. First of
all, we need to calculate the eigenvalues {\,} of the matrix @). Using the set
of eigenvalues, we can get the series

Nred Nred/2
NN ot (N 4+ Q) = [ (M +2Y) = D0 ™ (5.30)
n=1 n:*Nred/Z

in terms of fugacity ¢ = e™/T with a set of complex constants {c,}. Then,
we can finally obtain the final result

Nt Nred/2 Nred/2
a0 <o (T[] 32 e 5 cemn
i=1 n:_Nred/2 n=—Nyeq/2

(5.31)

N
C, = det (H ai> Cn- (5.32)
i=1

Note that C), is a complex number which does not depend on a quark
chemical potential i, Therefore, if we calculate a set of complex numbers
{C.,} once for a gauge configuration, we calculate the Wilson fermion deter-
minants at all desired purely imaginary chemical potential using the fugacity
expansion without additional computational effort. However, we cannot deal
with a large lattice if we adopt this reduction formula for the calculation
of Wilson fermion determinant. As explained above, we need to consider
the eigenvalue problem of the matrices whose rank is 12N, N, N.. In this
procedure, we need to store the matrices on a computer to compute the
eigenvalues. For lager lattice case, we can no longer store them considering

where

61



the current computer resources. In addition, the time complexities for the
reduction formula can be estimated to O((N,N,N.,)? x N;). This means that
we need to develop the method which allows us to perform the calculation
of fermion determinants at various values of purely imaginary chemical po-
tentials within more reasonable time if we want to compute on the lattice
with more lattice sites. Taking this current situation into consideration, we
have decided to develop the winding number expansion base on the hopping
parameter expansion to overcome these problems for numerical calculation.

5.2.2 Winding number expansion method

Let us recall again the discussion of the hopping parameter expansion in
chapter 2 in detail to obtain the numerical method of the winding number
expansion. The logarithm of the Wilson fermion determinant can be calcu-
lated as follows;

log det DY* (u,) = logdet D (1) = Trlog (1 - RQ(,uq)>

=— f: Trw. (5.33)
=1

Because () has space-time, Dirac and color indices, we can calculate the trace
using a set of basis vectors characterized by the indices as follows;

TrQ" = (n,a,u| Q" |n,a, ). (5.34)

n,a,1

Moreover, we can rewrite this expression as follows from the discussion in
chapter 2;

log det DWF(Mq) =, + Z {Cnen#q/T + C,nein#q/T}. (535)
n=1

Note that n denotes a number of windings of a closed quark hopping loop
around the time direction. It is apparent from this expression that we can
evaluate the fermion determinants at all desired purely imaginary chemical
potentials if we have a set of complex valued constants {C,,}. Therefore,
we can drastically reduce the numerical cost for the calculation of fermion
determinants in this case. Moreover, we do not need to keep any matrices
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on the computer. Thus, we do not need to consider the problem of main
memory on a computer.

Let us consider how to calculate this {C),} numerically. For later conve-
nience, we rewrite the Wilson fermion matrix as follows;

DY (nm; pg) = 1 — kQy(nlm) — kQ (nlm; pg) — kQ (nlm; ), (5.36)

where »
Qu(nfm) = > (1= 7)apU* (1)5, 5 - (5.37)

=21
QY (nlm; p1g) = (1 — 74) €4°Us(n)6,,_ 5 (5.38)
Q) (nlm; g) = (1 + ) e 1°U_y(n)0, 5., (5.39)

What we need to consider is how to get a set of complex valued constants
{C,} numerically from the following series.

WF _ o H'Q' (k)
log det D (luq) - Z <7’L, a, :u‘ Z f |TL, a, :u> (540)
=1

7,4

Before considering the method, let us consider how to calculate this trace.
This is because, in case of a large lattice, it is apparent that the summation
over space—time indices n for the trace is numerically expensive. To overcome
this problem, the following noise method is used in our calculation.

We introduce random numbers (") which satisfy

Nnoise

im Z (ngzzhﬂ) n7(7:,)b71/ - 6nm5ab5,u1/‘ (541)

Nnoise—r00 Nnoise —1

Using this random number, we can calculate the trace as follows;

N, -
. 1 noise ) :
TI‘QZ - Nn}z‘lsren%% notse Zl (77( ))T an( ) (542)

The number of noise vectors V,,.;se should be chosen properly for the problem
we are interested in. However, NV, 4;s. might be much less than 4N N, N, N, N,
in our case because () is a sparse matrix. Therefore, the noise method could
reduce the numerical cost for the trace effectively.
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Let us go back to the numerical calculation of {C,,}. The helpful guidance
to evaluate {C),} is the number of quark hoppings in the time direction. The
contribution from the trace of any quark loops whose winding number is n
can be calculated as Cy,e#a/T (in detail, see chapter 2). In an actual numerical
calculation, we calculate the product x'Q" x n") for each noise vector n™ and
sort the result in terms of the number of hoppings in the time direction. After
that, we consider the summation over noise vectors and this corresponds to
the result for one configuration. Because this numerical procedure is not
straightforward, let us consider how to perform the calculation on a computer
in detail to make our understanding clear.

First of all, we make a noise vector n1). Then, we calculate the quantities

X (+1) = 5@ (g = 0)n, (5.43)
X1(0) = kQun™W, (5.44)
XW(=1) = kQ§ (g = 0)n™ (5.45)

which correspond to the contribution of the leading term of the hopping
parameter expansion. The variable n and a in X (a) denote the number
of times of the hopping parameter expansion and the total quark hoppings
in time direction. Because we now consider the leading term of the hopping
parameter, n is 1 and the maximum(minimum) value of « is +1(—1). Note
that the operation xk@Q)s; has no contribution for the quark hoppings in the
time direction. On the other hand, kQ\" (g = 0) and ,%Qf[)(uq = 0) have
the contribution for one time quark hopping in the positive and the negative
time direction. In this procedure, we do not need to consider finite chemical
potential case. This is because we have only to evaluate a set of complex
valued constants {C),} and {C),} has no chemical potential dependence. After
this procedure, these X™(«) need to be saved on a memory to calculate the
trace in Eq.(5.40) as follows;

Y (+1) = = XD (1), (5.46)
Y(0) = —X(0)Y, (5.47)
Y(-1) = -X(-1)V, (5.48)

The next step is the following calculation;

X (+2) = 5Q{" (g = 0)X D (+1), (5.49)
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X (41) =6Q, XV (+1) + Q{7 (11, = 0) XD (0), (5.50)

X®(0) =5QXD(0) + 5QY” (g = )X D (+1)

+ RQY (g = 0)X D (=1), (5.51)
X (=1) = kQX M (=1) + kQY (1 = 0)X1(0), (5.52)
X®(=2) = kQ{7 (1t = )XV (~1). (5.53)

This procedure corresponds to the next leading order contribution of the
hopping parameter expansion. Then, the array Y (n) needs to be overwritten
as follows;

Y(+2) = -———, (5.54)
YV(+1) = = XD (+1) - X(2)2<+1), (5.55)
Y(0) = —XD(0) — w (5.56)
YV(-1)=-XW(-1) - X(Q)Q(_l), (5.57)
Y(-2) = _XO(-2) (5.58)

It it obvious that this array contains the contribution of the hopping param-
eter expansion up to the next leading order.

In the same manner, we can get the contribution of the next next leading
order of the hopping parameter expansion as follows;

XO(+3) = kQ{" (1y = 0) XD (+2), (5.59)
X®(+2) =kQ. X P (+2) + £Q\™ (g = 0)X (1), (5.60)

XO(+1) =6Q. X O (+1) + 54" (g = 0)X*(0)
+ 50 (g = 0)X P (+2), (5.61)
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X(0) =wQ:X(0) + 5Q4” (g = )X P (+1)
+ 55" (g = 0) X (1), (5.62)

XO(=1) =kQuXO(=1) + 55" (1, = )X (-2)

+KQY (11g = 0)X@(0), (5.63)
XO(=2) = kQXD(=2) + kQY (1, = )X (=1),  (5.64)
XO(=3) = kQY (ny = 0)X P (-2). (5.65)

The corresponding array Y (n) in given as follows;
Y(4+3) = —w, (5.66)
Y(42) = -~ (2)2(”) _ X (3)?E+2), (5.67)
Y(+1) = = XD (41) - X(Q)Q(H) - X(g)?fﬂ), (5.68)
Y (0) = —X1(0) - X (22)(0) _ X (2@), (5.69)
V(-1) = —XW(=1) - X(Q)z(_l) - X(g)?f_l), (5.70)
Y(-2) = —X(Q)Q(_Q) - X(3)§—2)7 (5.71)
Y (+2) = _X<3>§_3) (5.72)

Repeating this procedure up to N-th order of the hopping parameter expan-
sion, we can finally obtain the following array Y ()(n) for the noise vector

YW (£N) = —w, (5.73)
YW(£(N -1) = —X(N)(i](VN —2)_ X(N_lj\(,i_(]f “D

(5.75)

66



YD (£2) = — — (5.76)
YW (£1) = - w (5.77)
Y(0) = - X (i)(o). (5.78)

Note that we need to calculate the array Y (n) for each noise vector n(").
Using a set of arrays {Y ) (n)}, we can obtain the logarithm of the fermion
determinant at zero chemical potential for one configuration as follows;

N [ 1 Nnoise

log det D" (11, = 0) = > N > RSO (5.79)

i=—N r=1

At this stage, we need to recall the fact that the non—zero contribution of
the trace in Eq.(5.40) comes only from closed loops on a lattice. Therefore,
the non-zero contribution of Eq.(5.79) comes only from specific terms whose
index ¢ in Eq.(5.79) is multiples of N,. Therefore, we can finally obtain the
expression

T T)( 4
log det D (g =0) = 3 |5 D (1) YOUN

J=—=[N/Ni]

[N/Nt] Nnaise
1
[ . (5.80)

r=1

For finite quark chemical potential case, it it obvious that (7)(”)T Y (£5N,)
has the quark chemical potential dependence e™#¢/T.  Consequently, the
following formula can be obtained for any quark chemical potential case;

log det DV¥ (p,) = Z

[N/Nt] [ 1 Nnoise
J=—[N/N¢]

A (1) v (m)] ealT. (5.81)
noise r=1

Figureb.1 shows some schematical examples of quark loops for the calculation
of Y'(i). Here, we define the following coefficients W, for later convenience.

Nnoise
W, = Nl. Y () YO (5.82)
noise r=1



Loop W Loop P1 Loop P2
(Winding Number=0)  (Winding Number=+1) (Winding Number=-1)

Figure 5.1: Schematical view for the calculation of Y ()

Using a set of the coefficients {WW,,}, we obtain the following expansion for-
mula for the Wilson fermion determinant.

[N/Ny]
det D™ (1u,) —exp[ Z W, en“q/T] (5.83)
—[N/N¢]

Now, let us compare the numerical complexities for the reduction formula
and the winding number expansion again. To come right to the point, time
complexities for the reduction formula and the winding number expansion
can be estimated to O((N,N,N.)? x N;) and O(N,N,N, x N}), respectively.
Therefore, in an actual finite temperature-density system, numerical cost for
the reduction formula is much higher than the winding number expansion
in a large lattice. Moreover, as I stated before, the reduction formula needs
much main memory because eigenvalues of a large—scale dense matrix must
be calculated directly. To be more specific, we need main memory of ap-
proximately (12N,N,N,)? x 16 bytes at least in case of a double precision
calculation in reduction formula. This procedure also hinders us from a nu-
merical simulation on the large size of the lattice at this stage. However, in
the winding number expansion, we do not need to deal with a large-scale
dense matrix and there is no problem on main memory of a computer.
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5.2.3 Summary of our numerical calculation for the

winding number expansion method

In this section, we summarize essential features to construct the winding
number expansion for reader’s convenience.

1.

2.

The Wilson fermion matrix: DY (1,) = 1 — kQ(u,)

The logarithm of the Wilson fermion matrix: log det DV = Trlog(1—
KQ) = — >, KFTrQ* /k

All of @ makes quark hopping lines, but only closed lines remain in
TrQ*.

Wilson loops have no y, dependence (Loop W in Fig.5.1).

Only loops which wind along the temporal direction have s, depen-
dence: exp(+kp,alN;) = exp(£ku,/T) (Loop P1 and P2 in Fig.5.1).

In calculation of TrQ*, we use the noise method.

Finally, we construct det D" at any quark chemical potential u, € C
with {W,,} as follows;

[N/N¢]
det DV (1) —expl > W ewq/T] (5.84)
n=—[N/Ny]

Note that N is a number of maximum order of the hopping parameter
expansion.
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Chapter 6

Numerical results

In this chapter, my lattice design and my parameter setting are shortly in-
troduced. Then, we discuss the validity of the noise method for numeri-
cal calculation of the trace that appears in the winding number expansion
method. The multiple precision calculation for the Fourier transformation of
the grand canonical partition function at purely imaginary chemical poten-
tial is also discussed. After that, the baryon chemical potential dependence
of the thermodynamic observables (pressure, baryon number density, baryon
susceptibility) are discussed.

6.1 Simulation parameters

In this work, we employ the Iwasaki gauge action in Eq.(2.53) and the
two—flavor O(a)-improved Wilson fermion action in Eq.(2.47) with Csy =
(1 — 0.8412/B)73/* evaluated by a one-loop perturbation theory [66]. All
simulations to obtain thermodynamic quantities were performed with the
following lattice volume;

Ny X Ny x N, x Ny =8 x 8 x 8 x4. (6.1)

Parameter sets for this work are summarized in table.6.1. The values of the
hopping parameter x were determined for each value of g by following the
line of constant physics for the case of m,/m, = 0.8, as in Ref. [68].

We generated gauge configurations at zero baryon chemical potential us-
ing the hybrid Monte Carlo (HMC) method. The step size d7 and number of
steps N, of HMC were set as dr7 = 0.02 and N, = 50 so that the simulation
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5} T/T. K

2.00 1.35(7) 0.136931
1.95 1.20(6) 0.137716
1.90 1.08(5) 0.138817
1.85 0.99(5) 0.140070
1.80 0.93(5) 0.141139
1.70 0.84(4) 0.142871

Table 6.1: Parameters for numerical calculation.

time is N dr = 1. After the first 2000 trajectories to achieve the thermaliza-
tion, we sampled a gauge configuration every 200 trajectories and collected
400 configuration for each parameter set.

6.2 Validity of the noise method for calcula-
tion of the trace

As explained in the previous section, we adopt a noise method to calculate
the trace in Eq. (5.42). Therefore, the problem we have to verify is if fermion
determinants obtained through the noise method are consistent with those
calculated exactly by LU decomposition so that we can safely neglect errors
from the truncation in the noise method. To check this, we calculate fermion
determinants at various values of purely imaginary chemical potential using
both the noise method and LU decomposition at 7'/7, = 1.08 as a test. In
this test analysis, we adopt the Iwasaki gauge action and the standard Wilson
fermion action on a 4* lattice, and fermion determinants are averaged over
100 configurations generated at zero quark chemical potential. We use 16
noise vectors for the traces appearing in the winding number expansion.
Figure 6.1 shows that the noise method can produce consistent results with
those obtained by LU decomposition within the range of statistical errors. It
should be noted that the error bars in Fig.6.1 are attributed to fluctuations
over 100 configurations, and exactly the same magnitude of the error bars
must be reproduced if the noise method works properly. Consequently, our
winding number expansion method with the noise vectors works reliably in
our analyses and we do not have to take account of errors from this part of
the approximation.
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Figure 6.1: Pure imaginary chemical potential dependence of fermion deter-
minants. Red and blue points are calculated by the winding number expan-
sion with 16 noise vectors and LU decomposition, respectively. Error bars
reflect the statistical error and they are estimated by Jackknife method.

6.3 Validity of multiple precision calculation

We actually monitored the behavior of all variables in the DFT process to
study the effects of the cancellation of significant digits and the loss of trail-
ing digits. As a result, we found that the cancellation of significant digits
is not negligible in the DFT program and Fig.6.2 shows canceled digits in
our DFT program. We also found that the cancellation of significant digits
occurs regardless of temperatures in our system. To overcome this problem,
we adopt multiple precision calculation for DFT as stated in the previous
chapter. Figure 6.3 shows the effect of canceled digits in the calculation of
Zp with 16, 32,48, and 64 significant digits. According to this figure, when
evaluating Zg for a large baryon number B, it is essential to increase the
number of significant digits of the variables in the DFT. In this work, we
calculate the Fourier transformation with 400 significant digits.
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Figure 6.2: Canceled significant digits in the DF'T calculation at tempera-
tures above (upper red points) and below (lower green points) 7.
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Figure 6.3: Relationship between the behavior of Zp and the precision of the
variables in the DFT at temperatures above (right) and below (left) T.. Both
include 16 (double precision, upper red points), 32 (second green points), 48
(third blue points), and 64 (lowest cyan points) significant figures. Errors
are estimated by Jackknife method.
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6.4 Calculation process in lattice simulation

Coefficients of the winding number expansion {W,,} in Eq.(5.84) were com-
puted up to n = 120 using the hopping parameter expansion up to the 480—th
order with 400 configurations in all temperature cases. We used 64 and 128
noise vectors for temperatures above and below T, respectively, to calculate
the trace in the fermion determinant. In section 6.3, we confirmed that 16
noise vectors can reproduce the consistent results with exact ones for a 44
lattice case. Thus, from simple extrapolation to make the number of the
noise vectors proportional to the lattice size, we anticipate that we need to
use 128 noise vectors to ensure the same precision for a 8 x 4 case. Impos-
ing the relation W,, = W*  on the numerical results reduces the necessary
number of the noise vectors by a half. Therefore, we conclude that 64 noise
vectors for a 8 x 4 lattice are sufficient to achieve the same precision with
16 noise vectors for a 4* lattice. We note that the previous work[67] used
only 16 noise vectors for a 8 x 4 lattice case. In addition, we checked that
thermodynamic observables with {W,,} up to n = 120 are identical, apart
from negligibly small deviation, with those with {W,,} up to n = 110 with
the direct method explained in section 6.6.

We evaluated the grand canonical partition functions at various pure
imaginary chemical potentials using the winding number expansion with the
sets of {W,,}. After that, we evaluated the normalized canonical partition
function Zp/Zp—_o through the Fourier transformation and the thermody-
namic observables. In the following, Zp denotes the normalized canonical
partition function for notational brevity. For our calculations other than the
generation of gauge configurations and the calculation of W,,, the multiple
precision calculation was adopted with 400 significant digits to ensure suffi-
cient precision. The gauge configurations and the sets of W,, were computed
with double precision, i.e., 16 significant digits.

6.5 Numerical results of the canonical parti-
tion function Zp(7T)

Figure 6.4 shows the behavior of canonical partition functions at all temper-
atures. Because these results satisfy the relation

Zp(T) = Z_p(T), (6.2)
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Figure 6.4: Temperature dependence of canonical partition functions. The
vertical axis is in log scale. The red, green, blue, magenta, light blue, and
brown points are the results at 7'/7T, = 0.84,0.93,0.99,1.08,1.20, and 1.35
respectively. Error bars reflect the statistical error and they are estimated
by Jackknife analysis.

which originates from the symmetry between a particle and an anti—particle,
the region for B > 0 only is plotted for convenience. From this figure, it can
be said that the canonical partition function rapidly decreases as a baryon
number B becomes large. This behavior is quite natural considering the
fugacity expansion of the grand canonical partition function. In the grand
canonical ensemble, Zp(T)eB*2/T | Z4o(T, up) corresponds to the probability
for the realization of the states whose baryon number is B at (T, ug). There-
fore, the behavior of the canonical partition functions can be understood
from the fact that the states whose baryon number is large is less likely to
be realized. Figure 6.4 also tells us that the lower the temperature becomes,
the more rapidly the canonical partition functions decrease. This behavior
originates from the thermal weight. The statistical error becomes larger as
the temperature becomes lower especially below T,.. One of the reasons for
this error behavior is that we need to deal with smaller values in the Fourier
transformation for lower temperatures.
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6.6 Results of thermodynamic observables

In this section, we analyze the chemical potential dependence of the ther-
modynamic observables calculated by the direct method and the canonical
approach. In the direct method, the winding number expansion

n=—0o0

det D"F (up) = exp [ Z Wne”"B/T] (6.3)

is used for the calculation of the thermodynamic observables at a real baryon
chemical potential. When we calculate the thermodynamic observables, the
imaginary part of the thermodynamic observables is not zero for each con-
figuration. The imaginary part should be consistent with zero within the
statistical error after taking the statistical average over gauge configurations.
Therefore, in this work, the behavior of the imaginary part of the thermody-
namic observable is used to judge the validity ranges of the baryon chemical
potential in the direct method and the canonical approach. In the following,
we consider the thermodynamic observables at T'/T, = 1.08 as examples to
explain the strategy. Comparing the thermodynamic observables computed
by the direct method and the canonical approach, we check the consistency
between these methods. In addition, we also compare our canonical results
with those obtained by the multi-parameter reweighing (MPR) method with
the same numerical setup as Ref.[59]. It is known that the MPR method is
valid and frequently used for a low density system. In Ref.[59], the authors
also discussed the consistency between the MPR and the Taylor expansion
methods and concluded that both methods produced consistent results in
the small chemical potential region where statistical errors of both methods
could be under control. Therefore, our present work enables us to augment
the consistency check among our canonical approach, the MPR method, and
the Taylor expansion method.

6.6.1 Estimation of validity range of the direct method
and the canonical approach

Figures 6.5, 6.6, and 6.7 show the imaginary part of the pressure, the baryon

number density, and baryon susceptibility, respectively, obtained by the di-

rect method and the canonical approach at T'/T, = 1.08. These figures tell
us that the imaginary part of the thermodynamic observables calculated by
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Figure 6.5: Baryon chemical potential dependence of the imaginary part of
the pressure. The red and green points are the results calculated by the
direct method and the canonical approach at T'/T, = 1.08. Error bars reflect
the statistical error and they are estimated by Jackknife analysis.

the direct method and the canonical approach is consistent with zero within
the statistical errors over the baryon chemical potential region shown the
figure. To estimate the validity range of the baryon chemical potential quan-
titatively in the direct method and the canonical approach, we focus on how
large the statistical errors are. From Fig.6.8, it is found that the statistical
errors of the imaginary part of the pressure are always smaller in the canon-
ical approach than in the direct method up to around pug/T ~ 4.4. In the
canonical approach, we first determine the maximum value of the baryon
chemical potential p5** in a way that we will explain soon later. We esti-
mate the magnitude oy of the statistical error of the imaginary part of the
thermodynamic observables at p5*! /T. Then, in the direct method, we de-
termine the maximum value of the baryon chemical potential %52 /T from
the condition that the magnitude of the statistical error coincides with o;.
Now let us explain how to determine p5*! /T below.

In our numerical calculations, the fugacity expansion of the grand canon-
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Figure 6.6: Baryon chemical potential dependence of the imaginary part
of the baryon number density. The red and green points are the results
calculated by the direct method and the canonical approach at T'/T, = 1.08.
Error bars reflect the statistical error and they are estimated by Jackknife
analysis.

ical partition function must be truncated with finite series as

Nmaz

Zoo(T,pp) = Y Zp(T)eP/T. (6.4)

B=—Nmax

The method to analyze the effect of the truncation error is as follows. First,
we evaluate expectation values (O(ug))y.  using Eq.(6.4). Next, we cal-
culate expectation values (O(up))y, _, in Eq.(6.4). We then evaluate the
relative error Rop(up) from these expectation values as

<O(MB)>Nmax—1
(O(1B) Ny

In this study, we choose Rg, (1) < 1073 as a reliability criterion.

Using this criterion, we can deduce that the validity range of the baryon
chemical potential for the pressure is pp/T < 5. From this value of the
baryon chemical potential and the method as explained above, we can con-
clude that the validity range is up/T" < 3.7 in the direct method. In this

Ron(pp)=1— (6.5)
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Figure 6.7: Baryon chemical potential dependence of the imaginary part of
the baryon susceptibility calculated. The red and green points are the results
calculated by the direct method and the canonical approach at T'/T, = 1.08.
Error bars reflect the statistical error and they are estimated by Jackknife
analysis.

work, the validity ranges of the baryon chemical potential for all other ther-
modynamic observables are determined likewise.

6.6.2 Baryon chemical potential dependence of pres-
sure

First, we examine the pressure. Figure 6.9 shows the baryon chemical po-
tential dependence of the pressure calculated by the canonical approach and
the direct method at T'/T. = 1.35,1.20,1.08,0.99,0.93, and 0.83. From this
figure, we see that the pressure calculated by the canonical approach above
T. do not suffer from large errors up to ug/T ~ 5, and the results below T,
are reliable up to up/T ~ 3. In contrast, the results computed by the canon-
ical approach just below T are reliable only up pup/T ~ 3. This is possibly
because we generated gauge configurations at zero quark chemical potential,
and they have enhanced fluctuations caused by the phase transition. We
may have obtained clearer signals if we generated gauge configurations at
pure imaginary chemical potentials because T, at a pure imaginary chem-
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Figure 6.9: Baryon chemical potential dependence of the pressure cal-
culated by the canonical approach and the direct method at T/T, =
1.35,1.20,1.08,0.99,0.93, and 0.83. Error bars reflect the statistical error
and they are estimated by Jackknife analysis.
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Figure 6.10: Comparison of the pressure calculated by the canonical approach
and the MPR method. The colors of the data points are the same as in
Fig.6.9 with some additional colors. The data points plotted in the additional
colors of dark red, dark green, dark blue, dark cyan, dark magenta, and dark
brown points are the results at T/T, = 1.35,1.20, 1.08,0.99,0.93, and 0.83,
respectively, as calculated by the MPR method.

ical potential is higher than that at zero chemical potential. In addition,
Fig.6.9 tells us that the results calculated by the canonical approach agree
very well with those calculated by the direct method within the statistical
error. This is an evidence supporting that the canonical approach does not
lose any physical information that the direct way should have. Figure 6.10
shows that the pressure calculated by the canonical approach also agrees
very well with the pressure obtained using the MPR method. Moreover, this
figure tells us that our canonical approach can provide us with the results at
larger baryon chemical potential.

6.6.3 Baryon chemical potential dependence of baryon
number density

In this subsection, we consider the expectation value of the baryon num-

ber density. Figure 6.11 demonstrates that for temperatures above 7, (and

blow T), the results calculated by the canonical approach are reliable up to
pp/T ~4 (and pup/T ~ 3 ~ 3.5, respectively). The reliable baryon chemical
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Figure 6.11: Baryon chemical potential dependence of the baryon number
density calculated by he canonical approach and the direct method at T'/T, =
1.35,1.20,1.08,0.99, 0.93, and 0.83. Error bars reflect the statistical error and
they are estimated by Jackknife analysis.
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potential range for temperatures just below 7Ty is limited pg/T < 2.4. This
is possibly because of the same reason as in the pressure case. In addition,
Fig.6.11 tells us that the results calculated by the canonical approach agree
very well with those calculated by the direct method within the statistical
errors. Figure 6.12 demonstrates good agreement between the results of the
canonical approach and the MPR method. Moreover, we see that the slope
of ng/T? becomes smaller as the temperature decreases. In zero tempera-
ture case, np should be zero up to pup/T = mp/T, where mp is the lightest
baryon mass in the system, and thus the slope is completely flat then. The
data at T'/T. = 0.84 in Fig.6.11 does in fact show such a tendency. In case
of the analyses of the baryon number density, it can be said again that our
canonical approach can provide us with the results at larger baryon chemical
potential.

6.6.4 Baryon chemical potential dependence of baryon
number susceptibility

Finally, we investigate the baryon number susceptibility. Figure 6.13 shows
that the results obtained by the canonical approach at temperatures above
T. are reliable up to ug/T ~ 3.5., whereas those at temperatures below T,
are reliable up to up/T ~ 2.4 ~ 2.9. In addition, Fig.6.13 tells us that
the results calculated by the canonical approach agree very well with those
calculated by the direct method within the statistical errors. From Fig.6.14,
we find that the susceptibility results in the canonical approach are in very
good agreement with those of the MPR method. Moreover, Fig.6.14 tells us
that our canonical method produces fewer statistical errors than the MPR
and the Taylor expansion method even at small baryon chemical potential
for the same number of gauge configurations.
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Figure 6.13: Baryon chemical potential dependence of the baryon num-
ber susceptibility calculated by both the canonical approach and the direct
method explained in previous section at 7'/7T. = 1.35,1.20,1.08,0.99,0.93,
and 0.83. Error bars reflect the statistical error and they are estimated by
Jackknife analysis.
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Figure 6.14: Comparison of the baryon number susceptibility calculated by
the canonical approach and the MPR method. The colors of the data points
are the same as in Fig.6.10
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Chapter 7

Summary and outlook

In this thesis, the canonical approach as a method for finite density QCD
is studied in detail. Because the fermion determinant becomes complex in
finite density QCD in general, the Monte Carlo integration with the complex
fermion determinant does not work. This is the sign problem. In the case of
the canonical approach, the fermion determinant is kept to be real and the
Monte Carlo method can work safely.

The grand canonical partition function Zgc(py,T) is expressed as the
fugacity expansion with the expansion coefficients given by the canonical
partition functions Z,(T"). The canonical partition functions {Z,} can be
obtained by the Fourier transformation of the grand canonical partition func-
tion calculated at purely imaginary chemical potential. In the theory with
purely imaginary chemical potential, the fermion determinant is real and the
grand canonical partition function can be evaluated using a standard Monte
Carlo method for lattice QCD simulation. Therefore, we can calculate the
canonical partition functions without the sign problem. This means that,
once {Z,} are given, we can compute the grand canonical partition func-
tion for any real chemical potential via the fugacity expansion. However, we
encounter some difficulties inherent in the canonical approach as a price to
pay for avoiding the sign problem. In the calculation to obtain the canon-
ical partition function at large baryon number, the Fourier transformation
becomes a highly oscillating integral. Thus, it is difficult to numerically com-
pute the integral because of cancellation of significant digits in the Fourier
transformation. To avoid this problem, the multiple precision computation
was adopted and the validity was also checked in this work. Another problem
is the numerical cost for the calculation of fermion determinants. To perform
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Figure 7.1: Upper bound of the baryon chemical potential pp/T, in the cal-
culation of thermodynamic observables using the canonical approach. Error
bars reflect the error originated from the determination of the pseudo critical
temperature T, at vanishing baryon chemical potential.

the Fourier transformation, the grand canonical partition functions at many
different values of purely imaginary chemical potential are needed. An ideal
way to calculate the fermion determinant is to adopt the reduction formula
that is exact. However, the numerical cost for the reduction formula increases
as O((N,N,N,)? x N;). Moreover, the reduction formula needs much more
memory. Even considering recent computer resources, we cannot perform
numerical simulation with a large lattice size using the reduction formula.
To reduce this numerical cost, the winding number expansion method of the
fermion determinant is developed in this work. The numerical cost for the
winding number expansion increases as O(N, N, N, x N?) and we do not need
to store any matrices in this case and so we can save the memory.

Using the above method, our canonical approach could provide reliable
results beyond pp/T =~ 3 for all thermodynamic observables (except for
the case near T,). Figure 7.1 summarizes the upper bounds of the baryon
chemical potential up normalized by the critical temperature 7, using the
canonical approach. From this figure, it is found that the validity range of
the calculation for the pressure is wider than that for the baryon number
density and the baryon number susceptibility. This is because derivatives in
terms of pup/T are included in the baryon number density and the number
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baryon susceptibility, which makes the convergence of the fugacity expansion
worse.

In addition, we also compared our results obtained by the canonical ap-
proach with those obtained by the direct calculation with the winding number
expansion. In this analysis, we could check that these results are consistent
and no physical information is lost in the canonical approach. This is very
encouraging for future developments on finite density QCD based on the
first—principles calculation. We note that the validity range is so far limited
up to pup/T =~ 3 in other methods such as the multi-parameter reweighting
method, the Taylor expansion, the imaginary chemical potential, and the
density of states method. Thus, it can be said that the canonical approach
could be one of the most promising candidates to overcome the sign problem.

Getting more reliable signals in a large baryon chemical potential region
with the canonical approach, we need to calculate the canonical partition
functions more accurately at large baryon numbers. In this work, we calcu-
late the grand canonical partition functions at all pure imaginary chemical
potential with the gauge configurations generated at zero chemical potential
through the simplest reweighting method. However, we could have calcu-
lated them with gauge configurations generated at suitable pure imaginary
chemical potentials to realize the appropriate importance sampling as follows;

Zeolin) Z Jiao) [ qer gy e . ()
This is one of the future problems to be studied.

The canonical approach has been investigated in the several previous
studies [69, 70, 71, 72, 73]. Our method may be improved further to obtain
results under more realistic conditions, i.e., lighter quark mass, larger volume,
finer lattice spacing, and higher density. In particular, the following strategy
could give us successful results to achieve simulations with lighter quarks for
example. Let us consider the identity transformation of the logarithm of the
fermion determinant for Wilson fermions;

log det D" (p1,) = Trlog (1 — KkQs — /{Qt(uq)>
= Trlog(1 — k@) + Trlog <1 — liﬁ@%/@)) . (7.2)

Here, Qs and @, in Eq.(7.2) represent propagations of the fermions in three
dimensional space and along the time direction, respectively. In an ac-
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tual numerical calculation, we do not need to consider the contribution
from the first term in Eq.(7.2). This is because we have only to evaluate
(det DY (i) / det D) to obtain the grand canonical partition functions
at purely imaginary chemical potential and the first term in Eq.(7.2) has no
contribution to this quantity. Using this identity transformation, we expand
the second term in Eq.(7.2) in terms of x and the following approximation
formula can be obtained;

>  .n 1 n
Trlog <1 - ﬁl——/ﬁQth(M(D) = ; %TT {1_—%25@(%)1 - (73)

Note that the factor D;' = 1/(1 — kQ,) physically corresponds to a quark
propagator in three dimensional space. Therefore, this expansion can evalu-
ate the exact quark propagations in three dimensional space and the hopping
parameter expansion is used to estimate the contribution of quark propaga-
tions only in the time direction. In this improved expansion, D ! needs to
be calculated in advance and operated to a vector X with color, Dirac, and
spacetime indices many times in an actual simulation. The number of ele-
ments of the factor D! is (12Nvy)?, where Ny is N, x N, x N, and the factor
12 comes from the degree of freedoms of color and Dirac space. Therefore,
numerical costs to obtain D;! and to operate the factor to the vector X
are more expensive than the winding number expansion because D;! is a
dense large—scale matrix in general. An idea to overcome this difficulty is
to solve an equation X = D, x Y in terms of Y by the conjugate gradient
method instead of calculating Y = D;! x X. Using the conjugate gradient
method, the approximate solution Y can be evaluated iteratively with the
stopping condition | X — DSY/\Q < € and the exact solution Y can be obtained
by 12Ny times iterations. Because D, is a sparse matrix, we could hope that
the number of the iterations are much less than 12Ny even if we adopt a
suitable stopping condition. The fact that we do not need to calculate D;!
in advance is also a strong point of this strategy with conjugate gradient
method.

Although the hopping parameter expansion yielded very interesting re-
sults in this study, the final step is to calculate the fermion determinant
without this approximation; we have learned from this study that the key
point is to calculate the determinant at imaginary chemical potential values
that can undergo the Fourier transformation with high accuracy. This re-
quires more computational resources than what has been reported here but
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is within the scope of the next-generation high-performance computing.
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