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Abstract

In this thesis, we present both analytical and numerical treatment of classical
spins on networks. This thesis consists of renormalization-group studies of
two systems. The first one is the self-avoiding walk on a complex network
and the second one is the Ising model on a square lattice. At first glance, the
first system is not a spin model and the second system is not on a network
but on a lattice, so that the title of this thesis may not be appropriate. We,
however, explain that both problems can be actually treated as spin models
on networks. Although renormalization-group study of classical systems have
a long history and have been studied by many people, we will delve into the
problem from a new viewpoint.

In the study of the first model, we focus on an analytical aspect. We
treat complex networks, which have been a hot topic for the last fifteen years.
The network has a repeated fractal structure like a matrioshka and is espe-
cially suitable to study by renormalization-group technique. We study the
self-avoiding walk on the complex fractal networks called the (u, v)-flower by
mapping it to the N -vector model in a generating-function formalism and car-
rying out the renormalization-group calculation of the generating function.
First, we analytically calculate the critical exponent ν and the connective
constant by a renormalization-group analysis in arbitrary fractal dimensions.
We find that the exponent ν is equal to the displacement exponent, which
describes the speed of diffusion in terms of the shortest distance. Second,
by obtaining an exact solution for the (u, u)-flower, we provide an example
which supports the conjecture that the universality class of the self-avoiding
walk on graphs is not determined only by the fractal dimension.

In the study of the second model, we focus on a numerical aspect. We
discuss dynamics of the model by using a new data structure, called tensor
network. We propose a tensor-network algorithm for discrete-time stochastic
dynamics of a homogeneous system in the thermodynamic limit. We map a d-
dimensional nonequilibrium Markov process to a (d+1)-dimensional infinite
tensor network by using a higher-order singular-value decomposition. As an
application of the algorithm, we compute the nonequilibrium relaxation from
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a fully magnetized state to equilibrium of the one- and two-dimensional Ising
models with the periodic boundary condition. Utilizing the translational
invariance of the systems, we analyze the behavior in the thermodynamic
limit directly. We estimated the dynamical critical exponent z = 2.16(5) for
the two-dimensional Ising model. Our approach fits well with the framework
of the nonequilibrium-relaxation method. On one hand, our algorithm can
compute the time evolution of the magnetization of a large system precisely
for a relatively short period. In the nonequilibrium-relaxation method, on
the other, one needs to simulate dynamics of a large system for a short time.
The combination of the two provides a new approach to the study of critical
phenomena.
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Chapter 1

Introduction

The critical phenomenon is one of the central interests of statistical me-
chanics. Systems at criticality show various interesting behavior because the
typical spatial and the temporal length scales vanish. One of the most im-
portant tools to understand critical phenomena is the renormalization group;
we repeat coarse-graining and observe the change of physical quantities. De-
spite of many years after the first proposal, it is still important to broaden the
range of application of the renormalization group for deeper understanding
of critical phenomena.

To this end, we study by means of the renormalization group classical spin
systems on networks both theoretically and numerically. The new feature
here is that the spins are on the nodes (vertices) of networks (graphs). This
leads us to renormalization of networks, and opens ways to new renormalization-
group analyses of classical spins.

The first half of the thesis presents a theoretical study of the self-avoiding
path in terms of zero-component spins on fractal networks. We will show that
this model is particulary suitable for exact and rigorous renormalization-
group study. The second half presents development of a numerical algo-
rithm for analyzing dynamics of classical spin systems. We will represent
the dynamics of the probability distribution of an n-dimensional system as
an (n + 1)-dimensional network. This network representation enables us to
study dynamical critical phenomena of infinite systems by renormalization
of infinite networks.
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1.1. THE SELF-AVOIDING WALK ON COMPLEX NETWORKS

1.1 The self-avoiding walk on complex net-
works

In Chap. 3, we will delve into the study of classical spin models on net-
works. We will consider the self-avoiding walk on fractal graphs called the
(u, v)-flower. The self-avoiding walk is important both in graph theory and
statistical mechanics. In graph theory, a self-avoiding walk is usually called a
path. Enumeration of paths is a classical problem in computer science [1] and
enumeration algorithms of all paths connecting two nodes (s-t paths) have
been actively studied [2]. Furthermore, paths appear in many graph algo-
rithms such as the depth-first search [3]. On the other hand, the self-avoiding
walk in the Euclidian spaces is one of the simplest models of a polymer and its
scaling properties have been of statistical physicists’ interest [4]. This model
of a polymer can be mapped to the N → 0 limit of the N -vector model as
de Gennes pointed out [5, 4]; the connection enabled us to understand the
model from the viewpoint of critical phenomena of usual spin systems.

The properties of the self-avoiding walk is poorly understood in the Eu-
clidian space, in particular in two, three, and four dimensions. For the prob-
lems of the self-avoiding walk on fractals embedded in the Euclidian space,
analysis becomes easier and we can obtain exact solutions on some frac-
tals, e.g., the Sierpinski gasket [6, 7]. Such exact solutions have helped us
deepen our understanding of the self-avoiding walk. For example, the three-
dimensional Sierpinski gasket and the two-dimensional square lattice have
the same fractal dimension, while the critical exponents ν of the self-avoiding
walk on them are different (Table 1.1).

12



CHAPTER 1. INTRODUCTION
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1.2. SIMULATION OF GLAUBER DYNAMICS BY TENSOR
NETWORKS

This suggests that there is no one-to-one correspondence between the
fractal dimension and the universality class. Fractals on which the model is
exactly solvable in arbitrary fractal dimensions have not been obtained to
the author’s knowledge. In this thesis, generalizing the problem to the self-
avoiding walk on fractal graphs, we obtain exact results in arbitrary fractal
dimensions. We thereby verify that critical exponents in fractal graphs are
not solely determined by the fractal dimension. This fact was conjectured in
the 1980s [6, 9, 10], but has never been proved because of the lack of exactly
solvable models in arbitrary fractal dimensions.

Song et al. found that a few graphs in real networks are indeed frac-
tal [11, 12]. They noticed that complex networks that had been studied many
times were fractal, e.g., the WWW network, actors’ collaboration network,
and biological networks of protein-protein interactions. After the discovery
in the real networks, several artificial fractal complex networks have been
devised [13]. One of such networks is the (u, v)-flower [14]. As deterministic
fractals such as the Sierpinski gasket and the Cantor set helped us understand
real fractals in the Euclidian spaces, deterministic fractal complex networks
can deepen our understanding of dynamics on fractal complex networks in
the real world.

Is it possible to understand the scaling properties of paths on graphs
in terms of critical phenomena? In Chap. 3, through the mapping to the
N -vector model, we extend the theory of the self-avoiding walk on regular
lattices to that on graphs by using the shortest distance as a distance rather
than the Euclidian distance. We perform an exact renormalization-group
analysis on the self-avoiding walk on the (u, v)-flower in order to obtain the
effective coordination number of a walker (namely, the connective constant)
and a critical exponent of the mapped N -vector model in the limit N → 0,
namely the zero-component ferromagnet. We thereby answer the questions
as to (i) how the number of paths with a fixed length and a fixed starting
point increases and (ii) how the mean shortest distance between the two end
points grows as the path length increases.

1.2 Simulation of Glauber dynamics by ten-
sor networks

In Chap. 5, we develop algorithms to analyze stochastic processes of spin sys-
tems using tensor networks. Stochastic processes often appear in statistical
mechanics. Monte Carlo methods are most often used to simulate stochastic
processes. The density-matrix renormalization group (DMRG) is also some-
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CHAPTER 1. INTRODUCTION

times used to analyze them [15, 16, 17, 18, 19, 20]. Tensor-network algo-
rithms are generalization of DMRG and transfer-matrix methods to higher
dimensions [21, 22, 23] and can handle models in two and higher dimen-
sions straightforwardly. We combine our algorithm with the nonequilibrium-
relaxation method [24, 25] to evaluate critical exponents. The computational
time of our algorithm does not depend on the system size when the system
is homogeneous, whereas the computational time of Monte Carlo simulation
generally depends on the system size.

Monte Carlo methods are stochastic processes that are often used in stud-
ies of statistical mechanics. Although Monte Carlo methods have advantages,
such as wide applicability and easiness of implementation, they also have
drawbacks, e.g., the dependence of computational complexity on the sys-
tem size. As another drawback, equilibrium Monte Carlo analysis of critical
phenomena become extremely difficult as the system approaches a critical
point because of the divergence of the relaxation time. The nonequilibrium-
relaxation method [24, 25], on the other hand, determines critical exponents
including dynamical ones by observing relaxation from an ordered state to an
equilibrium state. This method is especially suitable for systems with large
fluctuation and long relaxation, e.g., frustrated and random systems [26].

Other than Monte Carlo simulations, DMRG is also popular, having been
very successful in one-dimensional quantum systems [27]. Recently, develop-
ments in the field of quantum information have stimulated extensions of
DMRG to higher-dimensional systems. Tensor-network algorithms are such
extension [21, 22, 23]. One of the reasons why tensor-network algorithms
have called attention is that they can handle systems with large degrees of
freedom with small computational cost as long as the system is homoge-
neous. For example, static critical exponents of two- and three-dimensional
Ising models have been obtained in high accuracy by tensor renormalization-
group methods [28, 29, 30, 31, 32, 33]. On the other hand, calculation of a
two-dimensional quantum system by tensor networks is not so successful as
classical cases [34].

DMRG studies of stochastic processes [15, 16, 17, 18, 19, 20] have been
limited to one-dimensional systems until recently. T. H. Johnson et al. stud-
ied nonequilibrium stochastic processes in one and two dimensions using a
tensor-network algorithm called time-evolving block decimation [35, 36, 37].
It discretizes the time of the dynamics of a finite system, using the Suzuki-
Trotter decomposition [38]. They showed that their algorithm can compute
in high accuracy observables with large-variances that strongly depend on
the time-evolving path of configuration, while Monte Carlo methods require
a large number of samples for such variables.

One of the most important dynamics of classical spin systems is the
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1.2. SIMULATION OF GLAUBER DYNAMICS BY TENSOR
NETWORKS

Glauber dynamics [39], for which equilibrium distribution is usually stud-
ied. It is important to study the Glauber dynamics for two reasons. First,
the Glauber dynamics in discrete time can be regarded as an approximation
of dynamics of real condensed matters, which actually obey the Schrödinger
equation. Although it is not a priori ensured that the approximation is good,
the Glauber dynamics shows interesting behavior, such as the divergence of
correlation time and the spatial correlation [40], which are experimentally
observable [41]. Therefore, the Glauber dynamics is a good starting point of
studying nonequilibrium critical phenomena. Second, study of the Glauber
dynamics in one dimension is a good test bench of numerical algorithms, be-
cause it is exactly solvable. In this thesis, we compare the exact solution of
relaxation of one-dimensional Ising model [42, 43] with our numerical calcula-
tion, and assess the performance of our algorithm. Third, combining it with
nonequilibrium relaxation [24, 25], we can derive static critical exponents
as well as the dynamical critical exponent. Thus, considering the Glauber
dynamics is also useful to study static properties of critical phenomena.

We can consider either a continuous-time version [39] or a discrete-time
version [42] of the Glauber dynamics. Physically speaking, both versions are
approximations of reality, so that it is just a matter of preference which ver-
sion we study. However, both of them have pros and cons. The continuous-
time version is mathematically equivalent to the Schrödinger equation, and
hence we can directly apply algorithms of quantum many-body systems to
the classical dynamics, e.g., the time-evolving block decimation [35, 36, 37].
It can, however, have the difficulty of numerical error associated with the
discretization of time, which is inevitable in numerical simulation. On the
other hand, the discrete-time version is different from the time evolution
of quantum systems, and therefore we need to develop a special algorithm
that is not applicable to quantum systems. Since it is formulated as the dis-
crete Markov process, we do not have numerical error associated with time
discretization.

Simulation of Markov processes of physical systems with tensor networks
is a promising approach because the data structure of tensor networks rep-
resents the spatial structure of the system and its correlation. It is thus
suited to computation of time evolution of systems with spatial correlations,
in particular systems at criticality. The dynamical critical exponent is a
quantity that characterizes dynamical critical phenomena [41]. We are usu-
ally interested in dynamical critical phenomena for systems with dimensions
greater than two because the dynamical critical exponents take nontrivial
values there. Their analytical calculation is usually intractable, and we need
to rely on numerical methods.

In Chap. 5, we propose a tensor-network algorithm for discrete-time

16



CHAPTER 1. INTRODUCTION

Markov chains in d-dimensional infinite homogeneous systems. Representing
the probability distribution with a tensor-network state and the transition
probability with a tensor-network operator, we map d-dimensional nonequi-
librium processes to (d + 1)-dimensional infinite tensor networks. While
other tensor-network algorithms for dynamics usually make use of the Suzuki-
Trotter decomposition [35, 36, 37], we construct a tensor-network operator of
the transition probability in an entirely different way. We construct a tensor-
network operator for a sublattice-flip update, using a higher-order singular-
value decomposition [44]. Taking advantage of the homogeneity of the sys-
tems, we treat infinite systems directly just as the infinite time-evolving block
decimation algorithm [45, 46]. The correlation length diverges in a critical
system, for which we need to study a large system. Our algorithm is es-
pecially suitable for the study of dynamical critical phenomena because the
computational complexity of our algorithm does not depend on the system
size.

We analyze nonequilibrium relaxation of the magnetization of the one-
and two-dimensional Ising models as an application of our algorithm. In par-
ticular, we determine the dynamical critical exponent z of the two-dimensional
Ising model. Our algorithm of time evolution particularly goes well with the
nonequilibrium-relaxation method [25], for which one prepares a large sys-
tem and compute time evolution for a relatively short time. Our method
has common features with the nonequilibrium-relaxation method, which also
prepares a systems so large that it can be treated as the thermodynamic
limit and computes the time evolution for a short period.

1.3 Outline of the thesis

In Chap. 2, we briefly review the self-avoiding walk and complex networks.
Based on this prerequisite knowledge, we present our theory of the self-
avoiding walk on complex networks in Chap. 3. In Chap. 4, we review
prerequisite knowledge that we need in Chap. 5, in particular about tensor
networks from the point of numerical computation. In Chap. 5, we develop
tensor network algorithms to simulate dynamics of classical spin systems.
By combining the nonequilibrium relaxation method, we show that we can
estimate the dynamical critical exponent. Finally, in Chap. 6, we summarize
the achievements of this thesis.
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Chapter 2

Review of complex network
and self-avoiding walk

In this chapter, we briefly review previous studies and introduce the minimum
amount of concepts which are required to understand Chap. 3. The present
chapter is made as self-contained as possible.

First, we introduce the concept of the fractal. Because distinguishing var-
ious fractal dimensions is important to understand the fractality of complex
networks, we introduce several definitions of fractal dimension. Next, we re-
view the basics of complex networks and present a model of fractal networks
called the (u, v)-flower. We will consider the self-avoiding walk on the (u, v)-
flower in the following chapters. Finally, we describe well-known conjectures
on the self-avoiding walk and review the mapping of the self-avoiding walk
on a graph to a zero-component ferromagnet.

2.1 Fractal

Structures that appear in nature are really rich in variety [47, 48, 49]. Crys-
tals possess discrete translational and rotational symmetries, and are classi-
fied by the point groups. On the other hand, molecules in gas and liquid are
randomly distributed. Not all structures that appear in nature, however, are
categorized to these two extreme classes. Many materials, such as polymers,
liquid crystals, and glasses, indeed fall in between these two classes; they
possess partly a periodic structure and partly a random one. If we consider
objects in a wide sense, say, branching of trees, shapes of coastlines and
rivers, and wrinkles of brains, most of them probably fall into the third class.
When we discuss complexity, we do not say that objects with complete peri-
odicity or complete randomness are complex; we regard objects which have
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2.1. FRACTAL

both order and randomness as complex.

2.1.1 Fractal dimension

Among the interesting properties of complex systems, a notable one is the
self-similarity. The self-similarity is a symmetry in which a part of a system
is similar to the whole part. Of course we cannot expect that real objects in
nature are self-similar in a mathematically rigorous sense, but many are so in
a statistical sense. For instance, if we enlarge a picture of a ria coast, it will be
as complex as the original picture is. If we are not told which is an enlarged
one, we will not be able to answer which one is which. This means that a
ria coast lacks a typical length. If there were a typical length, the ria coast
would look completely different after magnification beyond the length scale.
On the other hand, if we magnify a picture of a coastline and the picture
looks different when the picture is bigger than some size, it tells us that that
size is the typical length of the coastline. Therefore, the self-similarity and
lack of the typical length scale are equivalent.

When the ‘size’ M of an object is related with the ‘length’ L as

M ∝ Ldf , (2.1)

we say that the fractal dimension of that object is df . There are many math-
ematically rigorous definitions, but we introduce three definitions relevant to
this thesis: the similarity dimension, the box-counting dimension, and the
cluster dimension [48].

2.1.2 Similarity dimension

Let us consider how to define a dimension of an object consisting of many
small components. For instance, a cubic lattice is a collection of small cubes
of edge length l. We use the smallest component as a unit to measure the
‘volume’ of the whole object; we consider that the ‘volume’ of the whole
object is proportional to the number of the smallest components contained
in the object. Let N(b) be the number of the smallest components needed
to fill a cube of edge length L = bl. We immediately see that N(b) and b are
related as

N(b) = b3 (2.2)

in three dimensions. This is consistent with Eq. (2.1).
Generalizing this argument, we want to define a dimension which is ap-

plicable to objects without the smallest unit, such as the Sierpinski gasket
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Figure 2.1: The Cantor set. Taken from Wikipedia [50]. One third of a line
segment is eliminated at each step. The similarity dimension of this set is
log3 2.

and the Cantor set. If an object of length scale L consists of bdsim pieces of
objects of length scale L/b , then we call dsim the similarity dimension. For
instance, the Cantor set (Fig. 2.1) is created by deleting the middle one third
of a line segment repeatedly. Thus, the original set is restored by collecting
two sets scaled down by 1/3. As 2 = 3log3 2, the similarity dimension of the
Cantor set is log3 2.

The definition of the similarity dimension is applicable only to mathe-
matical models, since fractals in nature possess the self-similarity only in a
statistical sense.

2.1.3 Box-counting dimension

The similarity dimension is applicable only in limited cases as we explained.
We would like to introduce another dimension which can be used more gen-
erally. We define such a dimension by borrowing the concept of the outer
measure.

Let the minimum number of cubes of edge length l necessary to cover an
object be N(l). If N(l) and l are related as

N(l) ∝ l−dBC , (2.3)

we can measure the ‘volume’ of the object because we know the volume of
the cubes without ambiguity. We refer to dBC as the box-counting dimension.
Precisely speaking, the box-covering dimension is defined as

dBC = lim
l↘0

log N(l)

log(1/l)
. (2.4)

Unlike the similarity dimension, the definition (2.4) is directly applicable
to fractals in nature as well as artificial fractals such as the Sierpinski gasket.
It has been indeed known since long years ago that the length of a coastline
depends on the precision of measurement [51] (Fig. 2.2). This reflect the fact
that the fractal dimensions of coast lines are greater than unity.
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0 75 150
miles

0 75 150 km

Figure 2.2: The Coastline of the UK. Taken from Wikipedia [52]. The box-
counting dimension of the coastline is determined by the minimum number
of boxes to cover it.

2.1.4 Cluster dimension

As explained above, we can use the similarity dimension only for artificial
fractals with a rigorous self-similarity. It would be convenient if the similarity
dimension could be used for objects with a self-similarity in a statistical sense
as the box-covering dimension. Let us stipulate that a fractal has a minimum
length scale. Let Ñ(L) be the average number of the minimum units inside
a cube of edge length L. As the similarity dimension is based on the number
of the smaller units, we define a cluster dimension in terms of the average
number of the minimum units:

Ñ(L) ∝ Ldc . (2.5)

We call dc the cluster dimension. We can rephrase Eq. (2.5) as

Ñ(L) = bdcÑ(L/b). (2.6)

Figure 2.3 is the simulation of a model of cluster formation, called the
diffusion-limited aggregation [53]. We let each particle perform random walk
starting at a random position on the four edges. The number of particles is
10,000 and the length of the edges is 500 in the simulation. By measuring
the number of particles inside circles of various radii, we can estimate the
cluster dimension. The estimated cluster dimension is dc = 1.7 [53].
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Figure 2.3: The diffusion-limited aggregation. 10,000 particles aggregate to
form a cluster. By counting the number of particles inside circles of various
radii, we can estimate the cluster dimension numerically.
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While there are many definitions of fractal dimensions, it is empirically
known that fractal dimensions of fractals in nature seldom depend on the
choice of the type of the fractal dimensionality. Hence, the definitions are
usually not distinguished and just called ‘the fractal dimension df ’. There
are, however, cases where fractal dimensions strongly depend on the choice
in complex networks as we will explain later.

2.2 Complex network

2.2.1 Graph

Graph theory has a long history. It began in the eighteenth century when a
great mathematician Leonhard Euler visited Königsberg. He asked himself
whether there is a route to visit every bridge in the city exactly once and to
go back to the starting point (Fig. 2.4). The map of the city is originally
a two-dimensional one, but in order to solve this problem we do not need
the Euclidian distance; we can abstract the map. The abstracted map is
represented by and curves connecting them. The black circles and curves are
called nodes and edges, respectively. In this case, the nodes represent lands
and the edges do bridges.

The nodes and edges are not necessarily associated with physical objects;
this kind of abstraction of problems is often useful. For instance, graphs often
appear in problems of computer algorithms, which have clearly nothing to
do with physical objects. For glossary of graph theory, refer to textbooks or
web dictionaries [54].

2.2.2 Complex network

Though there is no rigorous definition of complex networks, graphs which
appear in real systems are usually called complex networks. The adjective
‘complex’ is used because the real systems usually have a complex structure.
Real networks possess both randomness and order to some extent. Their
properties are different from Erdös-Rényi graphs [55], which are completely
random, and at the same time different from periodic lattices [56, 57, 58,
59, 60, 61, 62, 63, 49, 64, 65]. Conditions of theorems of graph theory do
not often hold in a rigorous sense, and hence we have to resort to some
approximations.

Statistical physics has historically treated interactions of components that
lie on a lattice with a translational symmetry and studied cooperative phe-
nomena. Attempts to understand real materials have prompted physicists
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Figure 2.4: The Königsberg bridge problem. The city of Königsberg has
seven bridges across rivers (left). The problem is to find a route to pass every
bridge in the city once and only once. The left figure can be abstracted into
the right figure by replacing each land and bridge with a node and an edge,
respectively.

to develop numerous calculation techniques. Physicists have noticed that
methodology of statistical mechanics is useful to understand networks, which
have nothing to do with materials and had traditionally been thought to be
outside the realm of physics.

2.2.3 Degree

The number of edges connected to a node i is called the degree of the node i
and denoted as ki. Let N be the total number of nodes and M be the total
number of edges. We have

N∑

i=1

ki = 2M. (2.7)

The average degree is

⟨k⟩ =
1

N

N∑

i=1

ki =
2M

N
. (2.8)

We denote by P (k) the probability that the degree of a randomly extracted
node is k, which is called the degree distribution function. Using the degree
distribution P (k), we can rewrite the average degree as

⟨k⟩ =
∞∑

k=0

kP (k). (2.9)
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In many real networks, degree distributions are power functions for large k
as in P (k) ∝ k−a with a > 0, which is often called the scale-free property.

2.2.4 Fractal complex networks

Only fractals embedded in the Euclidian spaces have been studied until re-
cently. In order to consider fractals in a space without the Euclidian distance,
we have to introduce another distance because the fractal is fundamentally
associated with the question as to “how a volume grows as the system size
increases”.

There are many choices of a distance in graphs, but there is no standard
choice as in the Euclidian space. Throughout this thesis, we use the shortest
distance as the distance on graphs.

The diameter of a graph is the largest of the shortest distances between
all the pairs of two nodes. The mean shortest distance is the average over
all pairs of nodes. Let N be the number of the nodes and L be a diameter.
The fractal dimension of the graph df may be intuitively given by

N ∝ Ldf . (2.10)

On the other hand, many real complex networks have a small-world property;
the number of nodes and the mean shortest distances are related as

⟨l⟩ ∝ log N. (2.11)

Because Eq. (2.11) is not the form of Eq. (2.10), it seems that most of real
complex networks are not fractals at a glance.

Song et al. found that a few graphs in real networks are indeed fractal
(Fig. 2.5) [11, 12]. They noticed that complex networks that had been studied
many times were fractal, i.e.,

1. a part of the WWW composed of 325,729 web pages, which are con-
nected if there is a URL link from one page to another;

2. a social network where the nodes are 392,340 actors, who are linked if
they were cast together in at least one film;

3. the biological networks of protein-protein interactions found in Es-
cherichia coli and Homo sapiens, where proteins are linked if there
is a physical binding between them.

Song et al. [11] argued that because of the long-tail distribution of degrees
of nodes the cluster dimension dc and dBC are not identical in scale-free
networks.
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a. b.

Figure 2.5: The renormalization-group procedure applied to a real complex
network. Taken from Song et al. [11]. a. The box-covering method for a
graph. We tile the graph with subgraphs whose diameter is less than lB.
Then we replace each subgraph with a single node; two renormalized nodes
are connected if there is at least one edge between the subgraphs. Thus we
obtain the network shown in the second column. The decimation is repeated
until the graph is reduced to a single node. b. The renormalization is
applied to the WWW network. The renormalized network is as complex as
the original one. This indicates that the WWW network is a fractal.

2.2.5 The (u, v)-flower

After the discovery in the real networks, several artificial fractal complex
networks have been devised [13]. One of such networks is the (u, v)-flower
(Fig. 2.6) [14]. As deterministic fractals such as the Sierpinski gasket and the
Cantor set helped us understand real fractals in the Euclidian spaces, deter-
ministic fractal complex networks can deepen our understanding of fractal
complex networks in the real world. As with many other artificial fractals,
the (u, v)-flower is a graph with a hierarchical structure [66, 60].

The (u, v)-flower is defined in the following way. First, we prepare a cycle
of length u + v as the first generation. Second, given a graph of generation
n, we obtain the (n + 1)th generation by replacing each link by two parallel
paths of length u and v. We can assume 1 ≤ u ≤ v without losing generality.

Let Mn and Nn be the numbers of edges and nodes, respectively. From
the definition of the (u, v)-flower, it straightforwardly follows that

Mn = wn, (2.12)

Nn = wNn−1 − w = · · · =
w − 2

w − 1
× wn +

w

w − 1
, (2.13)
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Figure 2.6: The (2, 2)-flower and the (2, 3)-flower in the first, second and
third generations. Each line is replaced by parallel lines of length u and v in
construction of the next generation.
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where

w = u + v. (2.14)

The mean degree of (u, v)-flower in the nth generation is

⟨k⟩ =
2Mn

Nn
. (2.15)

Similar consideration tells us about the degree distribution. The (u, v)-
flowers only have nodes of degree k = 2m, where m = 1, 2, · · · , n. Let Nm(m)
be the number of nodes of degree 2m in the nth generation. We thereby have

Nn(m) =

{
Nn−1(m − 1) for m > 1,

(w − 2)wn−1 for m = 1.
(2.16)

Solving this recurrence relation under the initial condition N1(1) = w, we
have

Nn(m) =

{
(w − 2)wn−m for m < n,

w for m = n,
(2.17)

which is related to the degree distribution P (k) in the form |Nn(m)dm| =
|P (k)dk|. We therefore have the degree distribution of the (u, v)-flower with
u, v ≥ 1 as

P (k) ∝ k−γ with γ = 1 +
ln(u + v)

ln 2
. (2.18)

The dimensionality of the (u, v)-flowers is totally different for u = 1 and
u > 1 [49]. When u = 1 the diameter dn of the nth generation is proportional
to the generation n, while the diameter dn is a power of u when u > 1:

dn ∼
{

(v − 1)n for u = 1,

un for u > 1.
(2.19)

Since Nn ∼ wn, we can transform Eq. (2.19) to

dn ∼
{

ln Nn for u = 1,

N ln u/ ln(u+v)
n for u > 1.

(2.20)

This means that the (u, v)-flowers have a small-world property only when u =
1, while the flowers have finite fractal dimensions for u > 1; see the definition
of fractal dimension Eq. (2.10) and the small-world property Eq. (2.11).
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When u > 1, it is clear from the construction of flowers that the similarity
dimension of the (u, v)-flower is

dsim =
ln(u + v)

ln u
for u > 1. (2.21)

Because the cluster dimension is an extension of the similarity dimension,
the cluster dimension of the (u, v)-flower is the same as that of the similarity
dimension for u > 1:

dc = dsim =
ln(u + v)

ln u
for u > 1. (2.22)

2.3 Self-avoiding walk

A self-avoiding path, which is called a simple path or just a path in graph
theory, is a path on a lattice (graph) that is forbidden to visit the same
point more than once [67]. This path is referred to as the self-avoiding
path throughout this thesis in order to distinguish it from other stochastic
processes.

Though the definition is quite easy, many important questions are still
open in the Euclidian spaces even today [8]. For example,

1. How many possible self-avoiding paths of length k are there?

2. How long is the typical distance from the starting point?

The goal of the next chapter is to find a graph on which these questions are
answered.

2.3.1 Self-avoiding walk in a Euclidian space

In a Euclidian space, the number of paths of length k, which is written as
Ck, on Rn is believed to behave as [8]

Ck ∼ µkkγ−1 (2.23)

and the mean square distance of paths of length k, which is denoted as ⟨R2
k⟩,

is hypothesized to be [8]
⟨R2

k⟩ ∼ k2ν . (2.24)

Here the sign ∼ denotes the asymptotic form of the function as k → ∞.
The constant µ is called the connective constant, which roughly means the
effective coordination number, i.e., the number of nodes to which a walker
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can go next. The exponent γ is a critical exponent associated with the
susceptibility and ν is one associated with the correlation length from the
viewpoint of the correspondence between the self-avoiding walk and the N -
vector model. Thus, µ is sensitive to the specific form of the lattice, while γ
and ν are universal quantities, that is, they are insensitive to the specific form
of the lattice and are believed to depend only on the Euclidian dimension.
The critical exponents are conjectured to be

γ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

43

32
for d = 2,

1.162 . . . for d = 3,

1 with a logarithmic correction for d = 4,

1 for d = 5,

(2.25)

ν =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

4
for d = 2,

0.59 . . . for d = 3,

1/2 with a logarithmic correction for d = 4,

1/2 for d = 5.

(2.26)

The upper critical dimension of the self-avoiding walk is d = 4, above which
the critical exponents are given by a mean-field model. The mean-field model
of the self-avoiding walk is the random walk, whose critical exponent ν is 1/2
as is well known.

Going beyond the Euclidian dimension, the self-avoiding walk in fractal
dimensions has also been actively studied since the 1980s [6, 9, 10]. It has
been conjectured that the universality class of the self-avoiding walk of frac-
tals are not determined just by a fractal dimension (precisely speaking the
similarity dimension).

Physicists have tried to express the exponent ν by the similarity dimen-
sion as an extension of Flory’s approximation in the Euclidian space [6, 9, 10].

ν =
3

2 + d
−→ ν =

3

2 + dsim
. (2.27)

They, however, found that replacement of the Euclidian dimension of Flory’s
approximation with the similarity dimension sometimes gives a deteriorated
accuracy. It was concluded that there is no simple formula for a fractal as in
the Euclidian space.
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2.3.2 N -vector model

This subsection describes the correspondence between the self-avoiding walk
and a zero-component ferromagnet. The connection was first discovered by de
Gennes [5, 4], and opened a way to study a polymer in terms of the standard
theory of critical phenomena. Shapiro [68] introduced a generating function,
whose divergence near a pole governs the behavior of the zero-component
ferromagnet at the critical point. We here follow the discussion by Madras
and Slade [8]. Their mapping of the self-avoiding walk to the N -vector model
is straightforward and can be directly applied to graphs as well as to usual
lattices.

Assume that spins are on a graph G = (V,E). The spins have N compo-
nents and the tip of each spin is on a sphere of radius

√
N :

S(x) = (S(x)
1 , S(x)

2 , · · · , S(x)
N ) ∈ S(N ,

√
N ), (2.28)

where S(m, r) is the sphere of radius r in Rm:

S(m, r) = {(a1, a2, · · · , am) ∈ Rm : a2
1 + a2 + · · · + a2

m = r2}. (2.29)

We consider the Hamiltonian with a ferromagnetic interaction given by

H = −
∑

⟨x,y⟩

S(x) · S(y), (2.30)

where x and y are nodes, and ⟨x, y⟩ is the edge connecting x and y. The sum
runs over all edges. The expectation value of any quantity A is

⟨A⟩ =
1

Z
E(Ae−βH) (2.31)

with

Z = E(e−βH), (2.32)

where E(·) is the expectation value with respect to the product of the uniform
measures on S(N ,

√
N ).

The quantity of our interest is the correlation function in the limit N → 0:

lim
N→0

⟨S(x)
i · S(y)

j ⟩. (2.33)

The limit N → 0 is an extrapolation and not a mathematically justified
procedure. We therefore have to explain its meaning. The limit should be
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defined so as to be consistent with the following lemma [8]:

Fix an integer N ≥ 1. Let S = (S1, S2, · · · , SN ) denote a vector which is
uniformly distributed on S(N ,

√
N ). Given nonnegative integers k1, · · · , kN ,

E(Sk1
1 Sk2

2 · · ·SkN
N )

=

⎧
⎨

⎩

2Γ(N+2
2 )

∏N
l=1 Γ

(
kl+1

2

)

πN/2Γ
(

k1+···+kN +N
2

) N (k1+···+kN−2)/2 when all kl are even,

0 otherwise.
(2.34)

!
We can prove it by mathematical induction.

We define the limit N → 0 in the following way. First, the following
trivial equality holds:

E(1) = 1. (2.35)

Second, since E(S2
1 + · · · + S2

N ) = N , it follows from the symmetry that

E(S2
i ) = 1. (2.36)

Third, when k1 + · · · + kN > 2, the exponent of N (k1+···+kN−2)/2 is positive.
For these three reasons, we define the limit N → 0 as follows.

lim
N→0

E(Sk1
1 Sk2

2 · · ·SkN
N )

=

{
1 all kl = 0, or one kl = 2 and kj = 0 (j ̸= l),

0 otherwise.
(2.37)

In order to evaluate Eq. (2.32), we expand the Boltzmann factor in the
following power series:

e−βH =
∏

⟨x,y⟩

exp[βS(x) · S(y)] =
∏

⟨x,y⟩

∞∑

mxy=0

βmxy

mxy!
(S(x) · S(y))mxy . (2.38)

Let us label the edges as e1, · · · , e|E|. In this notation, Eq. (2.38) can be
rewritten as

e−βH =
∞∑

m1,··· ,m|E|=0

β
∑

α∈E mα

∏
α∈E mα!

∏

α∈E

(S(e−α ) · S(e+
α ))mα . (2.39)
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Figure 2.7: Examples of the graphical representation of terms in Eq. (2.40).
The left diagram corresponds to the term E((S(x) ·S(y))2) and is called a two-
edge polygon. The right diagram represents the term E((S(x) · S(y))2(S(y) ·
S(z))(S(x) · S(z))).

Consider now the partition function

Z =
∞∑

m1,··· ,m|E|=0

β
∑

α∈E mα

∏
α∈E mα!

E

(
∏

α∈E

(S(e−α ) · S(e+
α ))mα

)
. (2.40)

A graphical interpretation of the sum in Eq. (2.40) can be obtained by
associating to each term in the sum a graph whose each edge eα is duplicated
mα times (if mα = 0, then it means that the edge is removed) (Fig. 2.7). It
follows from Eq. (2.37) that any term whose corresponding graph has a node
from which other than two or zero edges emanate will approach zero in the
limit as N → 0. Therefore, the only terms which may contribute are one
with no edges and ones with self-avoiding polygons.

A two-edge polygon with nearest-neighbor nodes x, y (Fig. 2.7, left) con-
tributes the amount

β2

2
E((S(x) · S(y))2) =

β2

2
N . (2.41)

Thus, the two-edge polygon is irrelevant in the limit N → 0. A non-
degenerate polygon, in other words a polygon consisting of at least three
edges, also does not contribute according to a similar argument. The only
term which is relevant in Eq. (2.40) is a graph with no edges. We therefore
have

lim
N→0

Z = 1. (2.42)

For the correlation function, the analysis is similar. We would like to
compute the limit N → 0 of the expectation value for x ̸= y:

∞∑

m1,··· ,m|E|=0

β
∑

α∈E mα

∏
α∈E mα!

E

(
S(x)

i S(y)
j

∏

α∈E

(S(e−α ) · S(e+
α ))mα

)
. (2.43)
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Terms corresponding to graphs with self-avoiding polygons do not contribute
because of the same reason. The only surviving terms are ones with self-
avoiding paths from x to y. Contribution due to the self-avoiding path
(x, v1, · · · , vk−1, y) is

βkE(S(x)
i (S(x) · S(v1))(S(v1) · S(v2)) · · · (S(vk−1) · S(y))S(y)

j ) = βkδi,j . (2.44)

All the contributing terms can be summed using the generating function
of the s-t paths connecting nodes s and t:

Gz(s, t) :=
∑

ω:s→t

z|ω|. (2.45)

Here ω is a simple path from s to t, and |ω| denotes the length of the path
ω. The generating function Gz(s, t) is often called the two-point function.

Using the generating function Gz(x, y) and (2.42), we have

lim
N→0

⟨S(x)
i · S(y)

j ⟩ =
∞∑

m1,··· ,m|E|=0

β
∑

α∈E mα

∏
α∈E mα!

E

(
S(x)

i S(y)
j

∏

α∈E

(S(e−α ) · S(e+
α ))mα

)

(2.46)

= δi,j

∑

ω:x→y

β|ω| = δi,jGβ(x, y). (2.47)

Now, the correspondence between the self-avoiding walk and the zero-component
ferromagnet is established:

lim
N→0

⟨S(x)
i · S(y)

j ⟩ = δi,jGβ(x, y). (2.48)

This relation holds on any graphs as well as on usual lattices.
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Chapter 3

Self-avoiding walk on fractal
complex network

The content of this chapter is based on Ref. [69]. This chapter is organized
as follows. In Sec. 3.1, we define an ensemble of paths of a fixed length,
the connective constant and the displacement exponent of the self-avoiding
walk on a graph. In Sec. 3.2, we extend the theory of the self-avoiding
walk in the Euclidian spaces [68, 7, 6] to the graphs of the (u, v)-flower, on
which the shortest distance is used as a distance instead of the Euclidian
distance. By conducting a renormalization-group analysis, we calculate the
connective constant µ and the critical exponent ν, which is associated with
the correlation length of the zero-component ferromagnet on the (u, v)-flowers
with ∀u, v ≥ 2. We thereby write down the critical exponent ν in arbitrary
fractal dimensions greater than unity. We also compare the results with a tree
approximation, which is usually referred to as a mean-field approximation
in the context of the study of complex networks. In Sec. 3.3, we exactly
obtain the two-point function for the (u, u)-flower and prove that ν = 1
regardless of the fractal dimension between one and two. In Sec. 3.4, we
carry out numerical simulations of the self-avoiding walk and observe that
the number of paths starting from a hub s behaves as in C(s)

k ∝ µkkγ−1 and
that the mean shortest distance between the starting point and the end point

increases as d(s)
k ≈ kν , where k is the length of a path and γ is the critical

exponent associated with the susceptibility of the mapped zero-component
ferromagnet.
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3.1 Ensemble of fixed length paths

In the model of the self-avoiding walk, all the paths of the same length
starting from a fixed node without self-intersection appear with the same
probability. In order to describe this accurately, let us define an ensemble.
Let G = (V,E) be a connected finite graph. A path of length k is defined as

ω = (ω0,ω1, · · · ,ωk), ωi ∈ V, (3.1)

ωi ̸= ωj for i ̸= j, (3.2)

(ωi,ωi+1) ∈ E. (3.3)

Let us denote by Ω(s)
k the set of the paths of length k for a fixed starting

node and a free end node.
In order to consider the typical end-to-end distance, we define a probabil-

ity distribution. Fixing a path length k and a starting node s, we introduce
a uniform measure such that

P (ω) =
1

#Ω(s)
k

, ∀ω ∈ Ω(s)
k . (3.4)

Though this is not a serious problem, note that when the graph is too small,
it may not contain a path of length k and hence #Ω(s)

k = 0.
In order to discuss the speed of diffusion on a graph, we next define a

distance on a graph. For any nodes v1, v2 ∈ V , we let d(v1, v2) denote the
shortest distance (the length of the shortest path(s)) between the nodes v1

and v2. The mean shortest distance between the ends of paths whose length
is k and which start from node s is then given by

d(s)
k :=

∑
(ω0,ω1,··· ,ωk)∈Ω

(s)
k

d(ω0,ωk)

#Ω(s)
k

, (3.5)

where we took the average over the uniform distribution (3.4). We define the
connective constant µ and the displacement exponent ν as

µ := lim
k→∞

(
#Ω(s)

k

)1/k

, (3.6)

ν := lim
k→∞

ln d(s)
k / ln k. (3.7)

Here we assumed that #Ω(s)
k increases as the product of an exponential µk

and a power function kν and that d(s)
k increases as a power function kν in

the same form as for the self-avoiding walk in Rn. Thus, by obtaining µ and
ν, we can tell the number of paths on the graph and the typical distance
from the starting point. The goal of this chapter is to calculate these two
quantities on graphs in arbitrary fractal dimensions.
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3.2 Exact renormalization-group analysis of
the general (u, v)-flowers

In this section, we first define a two-point function and apply an exact renor-
malization to it. We thus obtain the connective constant µ and the criti-
cal exponent ν of the zero-component ferromagnet. Next we consider the
mean-field theory of the self-avoiding walk and compare the result with the
prediction from the exact renormalization.

3.2.1 Generating function

Let O and R be nodes which are separated by a distance u in the first
generation (Fig. 2.6) and rn be the shortest distance between O and R in the
nth generation. The nodes O and R have the largest degree and hence are
called hubs. Because each edge is replaced by two parallel lines of length u
and v in the construction, the shortest distance rn increases as

rn = rn−1 × u = · · · = un−1r1 = un. (3.8)

Defining C(n)
k (R) as the number of self-avoiding paths of length k starting

from the node O and ending at the node R in the nth generation, we can
construct the two-point function as

Gn(x) =
∞∑

k=1

C(n)
k (R)xk. (3.9)

The correspondence between the self-avoiding walk and the N -vector model [8]
tells us that x corresponds to the inverse temperature β of the ferromag-
net and that the two-point function is the correlation function of the N -
component spins placed at O and R in the limit of N → 0:

lim
N→0

⟨S(O)
i S(R)

j ⟩ = δijGn(β), (3.10)

where S(v)
i denotes the ith component of the spin at a node v.

This suggests that the two-point function becomes in the thermodynamic
limit

Gn(x) ∼ exp(−rn/ξ(x)) as n → ∞, (3.11)

where ξ(x) is the correlation length, which should behave as [8]

ξ(x) ∼ (xc − x)−ν as x ↗ xc, (3.12)
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where xc is a critical point. The critical point xc is therefore equal to the
ferromagnetic transition temperature βc.

Let us assume that C(n)
k (R) in Eq. (3.9) behaves asymptotically as

C(n)
k (R)1/k ∼ µ, (3.13)

because at each step a walker has µ options to go next on average. Under
the assumption of Eq. (3.13), the convergence disk of (3.9) is |x| < 1/µ. We
thereby identify xc as 1/µ. In the theory of the self-avoiding walk in the
Euclidian space, it is conjectured that the exponents ν defined in Eqs. (3.7)
and (3.12) are the same, using the discussion of the scaling theory [8]. For the
same reason, we expect that the two exponents are also equivalent in our case.
However, the conjecture has never been proved in the Euclidian space, nor
can we rigorously prove the equivalence for the (u, v)-flower. Furthermore, we
do not a priori know whether we can use the shortest distance for a distance
on the (u, v)-flower for scaling theory. We assume that µ and ν defined in
the two different ways are equal on the (u, v)-flower too. We will check the
validity of this assumption in Sec. 3.4.

We can calculate the two-point function in the following way. The two-
point function of the first generation is G1(x) = xu + xv by definition. Since
the (n + 1)th generation can be regarded as a cycle of (u + v) pieces of the
nth generation graphs, we have

Gn+1(x) = Gn(x)u + Gn(x)v. (3.14)

The diagrammatic representation of Eq. (3.14) is shown in Fig. 3.1. There-
fore, we obtain

Gn+1(x) = G1(Gn(x)). (3.15)

Repeated use of this relation yields

Gn(x) = G1 ◦ G1 ◦ · · · ◦ G1︸ ︷︷ ︸
n

(x). (3.16)

3.2.2 Renormalization-group analysis

We define a renormalization procedure for the (u, v)-flower as the inverse
transformation of the constructing procedure of the flower (Fig. 3.2). When
the (n + 1)th generation is given, we coarse-grain the minute structure and
obtain the nth generation. Every cycle of length (u+v) is therefore replaced
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Figure 3.1: Diagrammatic representations of the two-point function Gn(x).
The (n+1)th generation can be regarded as a cycle of (u+v) pieces of graphs
in the nth generation.

Figure 3.2: An example of renormalization of a self-avoiding path on the
(2, 2)-flower. The decimation is carried out by erasing a smaller structure.

Figure 3.3: The renormalization-group flow. The top figure illustrates how
Gn(x) changes as the generation n gets larger with x fixed. The bottom figure
shows the flow of the scaling variable x. Here, xn+1 is the scaling variable in
the (n + 1)th flower and xn is the one in a coarse-grained flower.
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by a single edge. Renormalization of self-avoiding paths is also defined in a
similar way.

Let ϵ be a sufficiently small positive number. We define the variable xn

such that
Gn(xn) := ϵ for all n. (3.17)

The variable xn is the scaling variable of our theory; we observe how it
transforms under the renormalization transformation (Fig. 3.3). We will
prove in Sec. 3.2.3 the unique existence of xn which satisfies Eq. (3.17).

The two-point function of the (n + 1)th generation and that of the nth
generation are related as

Gn+1(xn+1) = ϵ = Gn(xn). (3.18)

This specifies how the scaling variable x is renormalized. From Eqs. (3.16)
and (3.18), we obtain

Gn(xn) = Gn+1(xn+1) = Gn(G1(xn+1)) = Gn(xu
n+1 + xv

n+1). (3.19)

The scaling variable therefore changes under the renormalization transfor-
mation as

xn = xu
n+1 + xv

n+1. (3.20)

We will show in Sec. 3.2.3 that the scaling variable xn changes as shown in
Fig. 3.3. The nontrivial fixed point xc is given by

xc = xu
c + xv

c . (3.21)

Next, we obtain the critical exponent ν by studying ξ(x) near the fixed point
xc. From Eqs. (3.11) and (3.19) we should have

rn+1

ξ(xn+1)
=

rn

ξ(xn)
, (3.22)

and hence

(xc − xn+1)
−ν ∼ rn+1

rn
(xc − xn)−ν = u(xc − xn)−ν . (3.23)

The Taylor expansion enables us to express ν in terms of xc:

xn − xc = xu
n+1 + xv

n+1 − xc

≈ xu
c + uxu−1

c (xn+1 − xc) + xv
c + vxv−1

c (xn+1 − xc) − xc

= (uxu−1
c + vxv−1

c )(xn+1 − xc), (3.24)

ν =
ln(u)

ln (uxu−1
c + vxv−1

c )
. (3.25)
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Figure 3.4: The function f(x) = xu +xv −x, which has a zero point between
0 and 1.

Since Eq. (3.21) cannot be solved explicitly in general, we will rely on a
numerical solver when we compare Eq. (3.25) with the value of numerical
simulation in Sec. 3.4.

3.2.3 Existence and uniqueness of a nontrivial fixed
point

In the above argument, we assumed the existence of a positive fixed point xc

satisfying Eq. (3.21) and the solution xn which meets Eq. (3.17). We here
prove the existence and the uniqueness of xc > 0 and that of xn as follows.

Let us study how the scaling variable x changes under the renormalization-
group equation (3.20). We define the difference of a scaling variable in the
original system and a coarse-grained system as

f(x) := xu + xv − x. (3.26)

Because 2 ≤ u ≤ v,

f(0) = 0, f(1) = 1, f ′(0) < 0, (3.27)

f ′′(x) = u(u − 1)xu−2 + v(v − 1)xv−2 > 0 for x > 0. (3.28)

Therefore, there exists exactly one positive number xc which satisfies 0 <
xc < 1 and f(xc) = 0 (Fig. 3.4). In other words, the renormalization-
group equation of the self-avoiding walk on the (u, v)-flower has exactly one
nontrivial fixed point for 2 ≤ u, v. Under the assumption of Eq. (3.13), on
the other hand, we have µ = 1/xc. We thereby arrive at

µ =
1

xc
> 1. (3.29)
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This result is natural because µ means the effective coordination number. If
µ were smaller than unity, a walker would quickly come to a dead end and a
path could not spread out.

Next, we show using mathematical induction that Gn(x) is a monotoni-
cally increasing function of x in x > 0 for ∀n ∈ N and that Gn(x) satisfies
Gn(0) = 0 and Gn(xc) = xc.

(i) For n = 1, we have

dG1

dx
(x) = uxu−1 + vxv−1 > 0 for x > 0, (3.30)

G1(xc) = xu
c + xv

c = xc, (3.31)

G1(0) = 0. (3.32)

Therefore, the statement is true for n = 1.

(ii) Suppose that the statement is true for Gn(x). We first prove the mono-
tonicity of Gn+1(x), which is given by

Gn+1(x) = Gn(G1(x)). (3.33)

Since both G1 and Gn are monotonically increasing functions, the com-
position of Gn and G1 is also a monotonically increasing function. Fur-
thermore, we have

Gn+1(xc) = Gn(G1(xc)) = Gn(xc) = xc, (3.34)

Gn+1(0) = Gn(G1(0)) = Gn(0) = 0. (3.35)

Therefore, the statement is also satisfied for Gn+1.

Together with the continuity of Gn(x), we have now proved the unique
existence of xn ∈ (0, xc) which satisfies Eq. (3.17) for an arbitrary constant
ϵ ∈ (0, xc).

3.2.4 Range of ν

We can study the range of the critical exponent ν in Eq. (3.25) by using
inequalities. We define xc as the unique positive solution of Eq. (3.21) from
now on:

xu−1
c + xv−1

c = 1, 2 ≤ u ≤ v. (3.36)

44



CHAPTER 3. SELF-AVOIDING WALK ON FRACTAL COMPLEX
NETWORK

First, we can obtain the upper bound of ν as

ν =
ln(u)

ln(uxu−1
c + vxv−1

c )
≤ ln(u)

ln(uxu−1
c + uxv−1

c )
=

ln(u)

ln (u (xu−1
c + xv−1

c ))
= 1.

(3.37)

The equality holds iif u = v.
We next bound ν from below. Since 0 < xc < 1, we have

ν ≥ ln(u)

ln(uxu−1
c + vxu−1

c )
. (3.38)

Since 1 = xu−1
c + xv−1

c ≤ 2xu−1
c , xc ≥ (1/2)1/(u−1). The denominator of the

above equation satisfies

ln(uxu−1
c + vxu−1

c ) ≥ ln

(
1

2
(u + v)

)
≥ ln u > 0 (3.39)

Therefore, ν > 0.
According to its definition (3.7), the exponent ν should satisfy 0 ≤ ν ≤ 1,

which is consistent with the prediction of the renormalization-group analysis
above.

3.2.5 Exact results

As we noted previously, the solution of Eq. (3.21) cannot be written down
explicitly in general. There are, however, exceptional cases where we can
obtain xc, µ, and ν explicitly.

First for the (u, u)-flower, Eq. (3.21) gives

xc = 2−
1

u−1 , (3.40)

from which we obtain

µ =
1

xc
= 2

1
u−1 , (3.41)

ν =
ln(u)

ln(u)
= 1. (3.42)

We will see in Sec.3.3 that this result coincides with the exact solution which
we will derive without using the renormalization-group analysis.
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Next for the (u, 2u − 1)-flower, by setting y = xu−1
c , we can reduce

Eq. (3.21) to the quadratic equation y2 + y − 1 = 0, which yields y =
(−1 +

√
5)/2 because y > 0, and then

xc =

(
−1 +

√
5

2

) 1
u−1

. (3.43)

We thereby obtain

µ =
1

xc
=

(
−1 +

√
5

2

) −1
u−1

, (3.44)

ν =
ln(u)

ln
(

5−
√

5
2 u + −3+

√
5

2

) . (3.45)

In this case, ν is a monotonically increasing function of u and converges to
unity in the limit of u → ∞.

3.2.6 Comparison to the mean-field theory

Let us compare our analytic expressions with mean-field theory. A tree ap-
proximation is usually referred to as a mean-field theory when we discuss
stochastic processes on complex networks. Under the mean-field approxima-
tion, the (u, v)-flower is approximated to a tree whose nodes have the same
degree as the mean degree of the original flower.

Let Mn and Nn be the numbers of edges and nodes, respectively. From
the definition of the (u, v)-flower, it straightforwardly follows that

Mn = wn, (3.46)

Nn = wNn−1 − w = · · · =
w − 2

w − 1
× wn +

w

w − 1
, (3.47)

where w = u + v.
The self-avoiding walk on this tree is identical with the random walk

with an immediate return being forbidden (namely, the non-reversal random
walk) [70, 71]. Since the connective constant µ is the effective coordination
number, the tree approximation gives

µMF = ⟨k⟩ − 1 =
2Mn

Nn
− 1

n→∞−−−→ u + v

u + v − 2
. (3.48)

Since we have neglected loops, the expression in Eq. (3.48) is expected to
overestimate the value of µ; a walker may encounter a visited site on a graph
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Figure 3.5: Comparison of the connective constants in the mean-field theory
and the renormalization-group analysis. The mean-field estimate µMF always
overestimates the true connective constant µ.

with loops, and hence the effective coordination number µ should be smaller
compared to a tree with the same average degree. We confirm that our
expectation is correct both analytically and numerically. In this section, we
first show analytic results (Fig. 3.5). We will explain our numerical simulation
in Sec. 3.4.

For the (u, u)-flower, we obtain from Eqs. (3.41) and (3.48)

µMF = 1 +
1

u − 1
≥ µ = 2

1
u−1 . (3.49)

For the (u, 2u − 1)-flower, we obtain from Eqs. (3.44) and (3.48)

µMF = 1 +
2

3u − 3
> µ =

(√
5 + 1

2

) 1
u−1

. (3.50)

3.3 Exact solution of the (u, u)-flower

We can indeed obtain the exact solution for the (u, u)-flower without relying
on the renormalization-group analysis in Sec. 3.2. Using Eq. (3.14) repeat-
edly, we obtain

G1(x) = xu + xu = 2xu, (3.51)

G2(x) = G1(x)u + G1(x)u = 2u+1xu2
, (3.52)

G3(x) = G2(x)u + G2(x)u = 2u2+u+1xu3
, (3.53)

· · · (3.54)

Gn(x) = 2un−1+un−2+···+1 = 2
un−1
u−1 xun

, (3.55)
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which are cast into the form

exp

(
− rn

ξ(x)

)
= Gn(x) = 2

un−1
u−1 xun

, (3.56)

with

ξ(x) = − rn

ln
(
2

un−1
u−1 xun

) = − un

ln
(
2

un−1
u−1 xun

) . (3.57)

Let x(n)
c be

x(n)
c := 2

−1+u−n

u−1 . (3.58)

We then have 0 < ξ(x) < ∞ when 0 < x < x(n)
c and ξ(x) diverges as

x ↗ x(n)
c . The Taylor expansion around x(n)

c gives

ξ(x) =
2

−1+u−n

u−1

x(n)
c − x + O((x(n)

c − x)2)
. (3.59)

In the thermodynamic limit n → ∞, we arrive at

lim
n→∞

x(n)
c = 2

−1
u−1 =: xc, (3.60)

ξ(x)
n→∞−−−→ 2

−1
u−1

xc − x + O((xc − x)2)
. (3.61)

The latter yields ν = 1. Therefore, we arrive at the same result as Eqs. (3.40)

and (3.42). The critical point x(n)
c in Eq. (3.58) is shifted from xc because of a

finite-size effect. This effect disappears when the system size becomes infinite
as n → ∞ and the critical point reaches the correct value in Eq. (3.60) in
the thermodynamic limit.

In this section, we have proved that the critical exponent ν of the self-
avoiding walk on the (u, u)-flower is ν = 1 for ∀u > 1. On the other hand,
the fractal dimension of the (u, u)-flower is df = ln(2u)/ ln(u), which takes a
value in the range 1 < df ≤ 2. We therefore confirm that there is no one-to-
one correspondence between the fractal dimension and the critical exponent
ν.

The critical exponents of the self-avoiding walk in the Euclidian space
are considered to be determined only by the dimensionality. It is indeed
conjectured that ν = 3/4 in R2 [8]. Extension of the self-avoiding walk
from the Euclidian space to fractals makes an infinite number of universality
classes.
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3.4 Numerical simulations

In Sec. 3.2, we used some hypotheses to derive the connective constant µ and
the critical exponent ν, i.e.,:

1. exponential growth of the number of paths of length k in Eq. (3.13);

2. power growth of the mean shortest distance from the starting point
with respect to the path length in Eq. (3.7);

3. the equivalence of the definitions of Eqs. (3.6) and (3.13);

4. the equivalence of the definitions of Eqs. (3.7) and (3.12).

In order to confirm the hypotheses, we here present our numerical simu-
lations. Only in this section and Appendix B, we write the displacement
exponent ν defined in Eq. (3.7) as ν ′ so as to distinguish it from the critical
exponent ν defined in the other way, Eq. (3.12).

3.4.1 The number of paths

We hypothesized that the number of paths of length k increases exponentially
in Eq. (3.13). In order to check the validity of this assumption, we counted
up the number of paths of length k which start from a hub and have a free
end point, using the depth-first search algorithm [3]. Note that the end point
was fixed in Eq. (3.13), but we adapt a free end point here. This is because
we can expect that the asymptotic form of the number of paths does not
depend on whether the end point is fixed or free as in the self-avoiding walk
in the Euclidian space [8].

We carry out the depth-first search in the following way [3]. We first
define a tree of height kmax whose nodes constitute a self-avoiding path, and
next explore the tree by a depth-first manner. Nodes of depth k consist of
all self-avoiding paths of length k starting from a node s. Two nodes are
connected if the path of the child node can be generated by appending an
edge to that of the parent node.

Drawing an analogy to the self-avoiding walk in the Euclidian spaces, we
assume that the number of paths of length k starting from a node s with a
free end point behaves as

C(s)
k = A(s)µkkγ−1, (3.62)

where γ is the critical exponent associated with the susceptibility. Because
C(s)

k increases exponentially, it is easy to acquire the value of µ, but γ, which
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is of more interest from the perspective of critical phenomena, is difficult to
obtain accurately.

Choosing a node with the largest degree, namely a hub, as a starting
point s, we computed C(s)

k for n = 4, 2 ≤ u ≤ v ≤ 10, and 1 ≤ k ≤ 30 and

fitted the series C(s)
k to

ln C(s)
k = A′ + k ln µ + (γ − 1) ln k. (3.63)

We obtained only µ in high precision (Fig. 3.6). The value of µ of the simu-
lation agrees well with the one of the renormalization-group analysis, while
the tree approximation overestimate µ because the existence of loops is not
taken into consideration. This figure supports the plausibility of Eq. (3.13).

The upper right points of the inset of Fig. 3.6, which correspond to the
(2, 2)-flower, deviate from the line. This is because the graph is smallest
for (u, v) = (2, 2) and the finite-size effect appears strongly. The number
of paths first increases and then starts decreasing due to a finite size effect
(Fig. 3.7). What we need to obtain is the asymptotic behavior of the rise in
the intermediate region.

3.4.2 The displacement exponent

We hypothesized in Eq. (3.7) that the mean shortest distance from the start-
ing point increases as a power function of the path length with the displace-
ment exponent ν ′. We here confirm it by the depth-first search algorithm [3].
Choosing a node with the largest degree, namely a hub, as a starting point

s, we computed ln d(s)
k for n = 4, 2 ≤ u ≤ v ≤ 10, and 1 ≤ k ≤ 30 by enu-

merating all the paths of length k. We found that ln d(s)
k fluctuates around

an asymptotic line and the amplitude of the fluctuation gets smaller as k
becomes larger, approaching to the line; see Fig. 3.8 for (u, v, n) = (3, 5, 5)

for example. The figure supports our assumption of the form d(s)
k ∝ kν′

.
Next, we also hypothesized that the critical exponent ν, which is defined

through the two-point function by Eq. (3.12), is equal to the displacement
exponent ν ′ in Eq. (3.7): ν = ν ′. We conducted a Monte-Carlo simulation
in order to check the validity of this assumption (Fig. 3.9). We need to
evaluate long paths to obtain ν ′ in high precision. Because the number of
paths grows exponentially, we cannot use the depth-first search algorithm,
which enumerates all the paths. We therefore adapted the biased sampling
algorithm [72], which is a kind of Monte-Carlo algorithm, in order to generate
long paths. In the biased sampling algorithm, we make a walker select the
next site randomly among adjacent unvisited sites, and thereby define P ′(ω)
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Figure 3.6: Comparison of the connective constant µ obtained by three dif-
ferent methods for various values of u and v. The horizontal axis denotes
the estimate of µ in simulation with the fitting in Eq. (3.63), while the ver-
tical axis denotes that of the renormalization-group analysis and the tree
approximation (mean-field theory with the common values of u and v). The
simulation condition is n = 4, 2 ≤ u ≤ v ≤ 10, and 1 ≤ k ≤ 30. A hub was
chosen as the starting point. The inset shows the whole range. The lower
left part of the inset is magnified and shown as the main figure. All symbols
are accompanied by error bars but only the typical size of the error bar is
shown.
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Figure 3.7: A sketch of the number of paths against the path length. The
number of paths increases as Eq. (3.62) when k is moderately large, and
then it starts decreasing due to the finite-size effect. What we need is the
asymptotic behavior in the thermodynamic limit indicated by the dashed
curve.

Figure 3.8: The mean shortest distance d(s)
k against the path length k. The

series of d(s)
k computed by the depth-first search is fitted to ln d(s)

k = A+ν ′ ln k.
We chose a hub as the starting node s. We counted all the paths of k ≤ 87 for

(u, v, n) = (3, 5, 5). The data points of ln d(s)
k fluctuate around an asymptotic

line and the amplitude of the fluctuation gets smaller as k becomes larger.
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as a distribution that the trajectory of the walker follows. Let li be the
number of sites to which a walker can go next in the step i. Then a path
appears with a probability proportional to 1/

∏
i li. We can express the

average of any quantity X in the form

⟨X⟩ =

∫
Ω

(s)
k

X(ω)
∏k−1

i=0 li(ω)dµ′

∫
Ω

(s)
k

∏k−1
i=0 li(ω)dµ′

(3.64)

≈ X(ω(1))
∏k−1

i=0 li(ω(1)) + · · · + X(ω(M))
∏k−1

i=0 li(ω(M))
∏k−1

i=0 li(ω(1)) + · · · +
∏k−1

i=0 li(ω(M))
. (3.65)

Here ω(i) for 1 ≤ i ≤ M is a random variable (path) which follows the
distribution P ′(ω).

The simulation condition was 2 ≤ u ≤ 5 and 2 ≤ v ≤ 10. We computed

the average d(s)
k over 10, 000 configurations of paths, using Eq. (3.65) for

various values of u and v. We used a hub as the starting node s. Assuming the
relation (3.7), we fitted the estimate of the obtained mean shortest distance

d(s)
k to

ln d(s)
k = A + ν ′ ln k. (3.66)

We rejected the data point for (u, v) = (2, 2) because the finite-size effect
appeared so strongly that fitting could not be done. Detail of analysis is
written in Appendix B. Figure 3.9 supports our assumption that the expo-
nents defined in the two ways are indeed equal to each other: ν = ν ′.
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Figure 3.9: The critical exponent ν of the zero-component ferromagnet and
the displacement exponent ν ′ defined in terms of the end-to-end shortest
distance estimated by simulations for various values of u and v. We estimate
the critical exponent ν by the renormalization-group analysis and computed
the displacement exponent ν ′ by the biased sampling algorithm followed by
curve fitting exemplified in Fig. B.1 in Appendix B. We chose a hub as the
starting point s. The simulation condition was n = 4, 2 ≤ u ≤ 5, and
2 ≤ v ≤ 10.
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Chapter 4

Review of tensor network

In this chapter, we review prerequisite knowledge that we need in Chap. 5.
This chapter is intended to be an introduction of tensor networks from the
viewpoint of numerical computation. Tensor networks consist of tensors,
whose calculation is usually done converting tensors and matrices to each
other. We start from the definition of notation of matrices in Sec. 4.1 and
see properties of the singular-value decomposition. In Sec. 4.2, we define
notations regarding tensors including several kinds of products of tensors. We
also introduce diagrammatic representation of tensor decompositions in this
section. In Sec. 4.3, we review the higher-order singular-value decomposition,
which enables us to see “inside” a tensor. Notations and techniques used
in this decomposition are the basis of the theory of tensor networks. In
Sec. 4.4, we will explain the alternating least-square (ALS) algorithm. The
ALS algorithm is the “workhorse” in this field. Finally, in Sec. 4.5, we explain
tensor networks with more complicated structures. We will mainly explain a
linear tensor network which is also known as the matrix-product state.

4.1 Matrix

In this section, we review introductory computation of matrices. We basically
use linear algebra in tensor networks of liberal arts level, but we need to
explain extra topics that we use in computer computation.

4.1.1 Colon notation

We use a colon notation that is used in MATLAB in this chapter. If A ∈
Rm×n, then A(k, :) designates the kth row:

A(k, :) = (ak1, · · · , akn). (4.1)
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Similarly, the kth column is specified by A(:, k).

4.1.2 Matrix norms

The analysis of matrix algorithms requires the use of matrix norms. For
example, when we approximate a matrix with another matrix, we need a
measure of distance on the space of matrices.

It is natural to define matrix norms generalizing vector norms. The most
frequently used vector norm is the vector 2-norm:

∥x∥ =

√√√√
d∑

i=1

x2
i , x ∈ Rd. (4.2)

The matrix 2-norm is defined by using the vector 2-norm:

∥A∥2 = sup
x ̸=0

∥Ax∥
∥x∥ . (4.3)

Another frequently used matrix-norm is the Frobenius norm:

∥A∥F =

√√√√
m∑

i=1

n∑

j=1

|aij|2, A ∈ Rm×n. (4.4)

Note that when A ∈ Rm×1, the Frobenius norm is reduced to the vector
2-norm. We will generalize the Frobenius norm to tensors shortly.

The matrix 2-norm and the Frobenius norm satisfy ∥A+B∥ ≤ ∥A∥+ ∥B∥.
Furthermore, these norms are mutually consistent, and therefore we can write

∥AB∥ ≤ ∥A∥∥B∥, A ∈ Rm×k, B ∈ Rk×n (4.5)

in the subscript-free norm notation.
These norms satisfy orthogonal invariance. If A ∈ Rm×n and there are

orthogonal matrices U ∈ Rm×m and V ∈ Rn×n, then

∥UAV ∥2 = ∥A∥2, (4.6)

∥UAV ∥F = ∥A∥F . (4.7)

For the 2-norm, the equality is obvious. For the Frobenius norm, it follows
from

∥UA∥F =
∑

j

∥UA(:, j)∥2 = ∥A∥F (4.8)

and

∥UAV ∥F = ∥AV ∥F = ∥(AV )T∥F = ∥V T AT∥F = ∥AT∥F = ∥A∥F . (4.9)
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4.1.3 The singular-value decomposition

For any real matrices, the singular-value decomposition (SVD) is defined as
follows.

Theorem 4.1 (Singular-Value Decomposition (SVD)) If A is a real
m×n matrix, then there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n

such that

UT AV = Σ = diag(σ1, · · · ,σp) ∈ Rm×n, p = min{m,n}, (4.10)

where σ1 ≥ · · · ≥ σp ≥ 0.

Proof is written in any standard textbook.
From the orthogonal invariance of the norms, it follows that

∥A∥2 = σ1, (4.11)

∥A∥F =
√

σ2
1 + · · · + σ2

p. (4.12)

These relations yield the next theorem.

Theorem 4.2 (The Eckart-Young Theorem) If k < rank(A) and the
SVD of A is given by A = USV T , then

min
rank(B)=k

∥A − B∥2 = ∥A − Ak∥2 = σk+1, (4.13)

min
rank(B)=k

∥A − B∥F = ∥A − Ak∥F =
√

σ2
k+1 + · · · σ2

rank(A), (4.14)

where

Ak =
k∑

i=1

σiU(:, i)V (:, i)T . (4.15)

This theorem says that by throwing away small singular values and the as-
sociated orthogonal bases we can approximate a matrix with a matrix of
smaller rank and that the error due to approximation is given by the 2-norm
or the Frobenius norm. We use this theorem to choose a smaller number of
degrees of freedom in the tensor renormalization group.
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4.1.4 The Kronercker product

We will use several kinds of matrix products in this chapter. The first one
is the Kronercker product. The Kronecker product enables us to generalize
linear algebra of matrices to tensors in a natural fashion as we will discuss
in a later part of this chapter.

Definition 4.1 (Kronecker product) The Kronecker product, denoted by
⊗, is a product of matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 to a larger matrix
with the size of m1m2 × n1n2. It is defined by using the notation of block
matrix,

A ⊗ B =

⎛

⎜⎝
a11B a12B · · · a1n1B

...
...

am11B am12B · · · am1n1B

⎞

⎟⎠ . (4.16)

Important properties of the Kronecker product include

(A ⊗ B)T = AT ⊗ BT , (4.17)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (4.18)

(B ⊗ C)−1 = B−1 ⊗ C−1. (4.19)

(4.20)

To understand the linear map A ⊗ B in terms of A and B, we define an
operation that converts a matrix into a long vector.

Definition 4.2 (Vectorization) Suppose that X is an m × n matrix. Its
vectorization, which is denoted by vec, is defined by

vec(X) =

⎛

⎜⎝
X(:, 1),

...
X(:, n)

⎞

⎟⎠ . (4.21)

We also define the inverse function of vec here.

Definition 4.3 (Reshaping of matrix) If the vectorization is the same
for two matrices A and B, then we call B is the reshape of A. Further-
more, if B ∈ Rm×n, we write the reshaping operation by

B = reshape(A,m, n). (4.22)

We frequently use the vectorization and reshape in computer calculation of
tensors.

If B ∈ Rm1×n1 , C ∈ Rm2×n2 , and X ∈ Rn1×m2 , then

Y = CXBT ⇐⇒ vec(Y ) = (B ⊗ C)vec(X). (4.23)
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4.2 Tensor

In this section, we briefly review tensor decompositions. It is particularly
important to set notation clearly when we discuss tensors because calculation
of tensors is much more complicated than that of matrices. For more detailed
review, refer to other sources [73, 74, 75].

4.2.1 Notation of tensors

If A ∈ Rn1×···×nd and i = (i1, · · · , id) with 1 ≤ ik ≤ nk for k = 1, · · · , d, then

A(i) := A(i1, · · · , id). (4.24)

We say A is an order-d tensor and ik is the kth mode.
By using the colon notation, we can extract smaller order tensors. For

example, if A is an order-3 tensor of 3 × 4 × 5, then

B = A(:, :, 2) ∈ R3×4, (4.25)

C = A(:, 1, 2) ∈ R3. (4.26)

Extracting an order-2 tensor (matrix) as in Eq. (4.25) is called slicing and
extracting an order-1 tensor (vector) is called fibering.

Generalizing the Frobenius norm of matrices, we define the corresponding
norm for tensors. If A ∈ Rn1×···×nd , then its Frobenius norm is given by

∥A∥F =

√√√√
n1∑

i1=1

· · ·
nd∑

id=1

A(i)2. (4.27)

The ‘vec’ operation and ‘reshape’ operation for tensors are defined in a similar
way as for matrices. We vectorize tensors in a FORTRAN fashion in the
column-major order. For example, if A ∈ R2×2×2, then its vectorization is
given by

vec(A) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(1, 1, 1)
A(2, 1, 1)
A(1, 2, 1)
A(2, 2, 1)
A(1, 1, 2)
A(2, 1, 2)
A(1, 2, 2)
A(2, 2, 2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.28)
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Alternatively, if we define an integer-valued function by

col(i, n) = i1 + (i2 − 1)n1 + (i3 − 3)n1n2 + · · · + (id − 1)n1 · · ·nd−1,
(4.29)

then the vectorization is characterized by

A(i) = vec(A)(col(i, n)). (4.30)

If two tensors A and B have the same vectorization, then we say that B is a
reshape of A. For example, for the above order-3 tensor A,

reshape(vec(A), 2, 2, 2) = A. (4.31)

Next, we define the transposition for tensors. The transposition of an
order-d tensor is denoted by A[p1 p2 ··· pd] = A[p], where [p] is a permuta-
tion of {1, 2, · · · , d}. For instance, for an order-3 tensor A, A(i1, i2, i3) =
A[3 2 1](i3, i2, i1). For a general order-d tensor, the transposition is defined by

A(i1, · · · , id) = A[p](ip1 , · · · , ipd
). (4.32)

4.2.2 Unfolding

We often need to convert back and forth between a tensor and a matrix. We
can perform this conversion by combining the transposition and the reshape
operation. There is a special conversion from a tensor to a matrix that we
call modal unfolding. If A ∈ Rn1×···×nd and N = n1 · · ·nd, then the mode-k
unfolding A(k) is an nk ×N/nk matrix whose columns are the mode-k fibers:

A(k)(ik, col(ĩ, ñ)) = A(i), (4.33)

where ĩ = (i1, · · · , ik−1, ik+1, · · · , id) and ñ = (n1, · · · , nk−1, nk+1, · · · , nd).
For example, the mode-2 unfolding of an order-3 tensor A ∈ R2×2×2 is

A(2) =

(
a111 a211 a112 a212

a121 a221 a122 a222

)
. (4.34)

We will use the modal unfolding to define tensor decompositions.

4.2.3 Outer product and canonical rank

The outer product is the operation to combine an order-d tensor A and an
order-f tensor B to produce an order-(d + f) tensor C. It is denoted by

C(i, j) = C(i1, · · · , id, j1, · · · , jf ) = A(i) ◦ B(j). (4.35)
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The rank, more specifically the canonical rank, of a tensor is defined by the
minimal number of outer products to represent the tensor as their summa-
tion. For example, an order-d tensor A is rank 1 iff there exists a decompo-
sition

A = b1 ◦ b2 ◦ · · · ◦ bd, (4.36)

where bk (k = 1, · · · , d) is a vector. Note that the above equation is equiv-
alent to

vec(A) = bd ⊗ · · ·⊗ b2 ⊗ b1. (4.37)

We define the canonical rank as follows:

Definition 4.4 (Canonical rank) Let A be an order-d tensor. If A is de-
composed by a sum of some vectors fk

j (j = 1, · · · , r, k = 1, · · · , d) as

A =
r∑

j=1

λjf
1
j ◦ · · · ◦ fd

j (4.38)

and no shorter summation of rank-1 tensors exists, then we say that A is a
canonical rank-k tensor.

4.2.4 Tensor network diagram

We are going to define a tensor contraction and is diagrammatic represen-
tation. Contraction of indices of two tensors are essentially a matrix multi-
plication of unfolded matrices. For example, let us consider a contraction of
two order-4 tensors A and B:

n2∑

k=1

A(i1, k, i3, i4)B(j1, j2, j3, k) =: C(i1, i3, i4, j1, j2, j3). (4.39)

We can calculate this using matrix-by-matrix product after carrying out
modal unfolding of A and B, i.e.,

C̃ := AT
(2)B(4), (4.40)

followed by reshape of C̃ to C. We can also contract more than two indices
at the same time with the sequence of permute, reshape, matrix-by-matrix
product, reshape, and permute.

To denote the sequence of contraction simply, we introduce tensor net-
work diagrams. The simplest diagram is the contraction of two tensors.
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A B

(a) (b)

A A

Figure 4.1: Diagrammatic representation of index contraction between two
tensors. (a) Contraction of a single index (Eq. (4.39)). (b) Contraction of
four indices. This is the square of the Frobenius norm (Eq. (4.27)).

Figure 4.1 (a) is the diagrammatic representation of Eq. (4.39). The nodes
denote order-4 tensors A and B and the linked bond is the one over which
summation is taken. The diagram has 6 open bonds, and thus it means
that the resulting tensor is of order 6. We also show in Fig. 4.1 (b) a dia-
grammatic representation of the Frobenius norm for an order-4 tensor. The
corresponding equation is ∥A∥2

F = vec(A)T vec(A).

4.2.5 Modal product

We now define a product of a tensor and a matrix.

Definition 4.5 (Modal product) Let S ∈ Rn1×···×nd and M ∈ Rmk×nk .
The mode-k product of S and M is given by

A(k) = MS(k), (4.41)

where the subscript k denotes the mode-k unfolding. We denote this operation
by

A = S ×k M. (4.42)

The diagrammatic representation of Eq. (4.42) is Fig. 4.2 (a).
The modal product has the following properties:

(S ×k F ) ×j G = (S ×j G) ×k F (j ̸= k), (4.43)

(S ×k F ) ×k G = S ×k (GF ). (4.44)

These relations are clear if we draw diagrams (Fig. 4.2 (a) and (b)).
We use the next theorem to derive a kind of tensor decomposition (HOSVD)

in Sec. 4.3.
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S M
S F

k
G

S F
k

kG

j

(a) (b) (c)

Figure 4.2: Diagrams regarding modal products. (a) Definition of modal
product (Eq. (4.42)). (b) Eq. (4.43). (c) Eq. (4.44).

Figure 4.3: The diagrammatic representation of Eq. (4.45) for an order-3
tensor A.

Theorem 4.3 Suppose S ∈ Rn1×···×nd and Mk ∈ Rmk×nk for k = 1, · · · , d.
The following equations are equivalent:

A = S ×1 M1 ×2 M2 · · ·×d Md (4.45)

⇐⇒ A(k) = MkS(k)(Md ⊗ · · ·⊗ Mk+1 ⊗ Mk−1 ⊗ · · ·⊗ M1). (4.46)

Furthermore, if M1, · · · ,Md are all nonsingular, then

S = A ×1 M−1
1 ×2 M−1

2 · · ·×d M−1
d . (4.47)

The equivalence is easy to be shown if we use Eq. (4.23). The latter half of
the theorem is manifest by drawing a diagram (Fig. 4.3).

4.3 Decomposition of tensors

We have generalization of SVD to tensors in two ways so as to preserve some
properties of SVD. The first generalization of SVD that we present here is
the higher-order singular-value decomposition (HOSVD). The next one is the
canonical decomposition.
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4.3.1 The higher-order singular-value decomposition

The higher-order singular-value decomposition (HOSVD) generalizes SVD so
as to preserve its orthonormal properties of row and column matrices [44].

Theorem 4.4 (HOSVD) If A ∈ Rn1×···×nd and SVD of its modal unfold-
ings are given by Ak = UkΣkV T

k (k = 1, · · · , d), then its HOSVD is

A = S ×1 U1 ×2 U2 · · ·×d Ud, (4.48)

where the core tensor S is defined by

S = A ×1 UT
1 ×2 UT

2 · · ·×d UT
d . (4.49)

Furthermore, the norm of the modal unfolding of S are structured in the
following sense:

∥S(k)(i, :)∥F = σi(A(k)). (4.50)

Here σi(A(k)) is the ith largest singular value of A(k).

The existence of the decomposition follows from Theorem 4.3. The norm
property Eq. (4.50) is shown as follows. The vectorization of A satisfies

vec(S) = (UT
d ⊗ · · ·⊗ UT

1 )vec(A). (4.51)

The relation (4.23) gives the mode-1 unfolding of the core tensor as

S(1) = UT
1 A(1)(Ud ⊗ · · ·⊗ U2) (4.52)

= Σ1V
T
1 (Ud ⊗ · · ·⊗ U2). (4.53)

Because the Frobenius norm is invariant under orthogonal transformations,
Eq. (4.50) holds k = 1. For k ̸= 1, the same argument holds for the permuted
tensor of A, namely A[k 1 2···k−1 k+1··· d].

Each column vector of Uk (k = 1, · · · , d) can be interpreted as the prin-
cipal component in each mode and the elements of the core tensor represents
interactions between different components.

The multilinear rank denoted by rank∗(A) is the rank of modal unfoldings:

rank∗(A) = (rank(A(1)), · · · , rank(A(d))). (4.54)

The HOSVD leads to a naive approximation with a lower multilinear tensor.
Suppose that rk < rank∗(A(k)) for k = 1, · · · , d. We define Ã by

Ã =
r1∑

j1=1

· · ·
rd∑

jd=1

S(j)U1(:, j1) ◦ · · · ◦ Ud(:, jd). (4.55)
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Its absolute error is bounded by

∥A − Ã∥ ≤ min
1≤k≤d

rank(A(k))∑

i=rk+1

σi(A(k))
2. (4.56)

See Ref. [44] for proof.

4.3.2 Canonical decomposition

One of the convenient attributes of SVD is that the singular matrix is diag-
onal. HOSVD, on the other hand, does not inherit this property; the core
matrix S is not a diagonal tensor. There is a route to generalize SVD to
tensors other than HOSVD. The canonical decomposition [76, 77] general-
izes SVD to tensors so as to preserve the diagonal property of the singular
matrix.

The canonical decomposition of an order-d tensor is given by

A =
r∑

j=1

λjf
1
j ◦ · · · ◦ fd

j . (4.57)

We can consider approximating a tensor with the best canonical rank-r
decomposition in terms of the Frobenius norm. However, this framework
has drawbacks: (1) finding the canonical rank is NP-hard [78]; (2) there
exist tensors that can be approximated in arbitrary precision by a lower
canonical rank [73]; (3) even if Xr+1 =

∑r+1
j=1 λjf 1

j ◦ · · · ◦ fd
j is the best

canonical rank-(r + 1) approximation, it does not necessarily follow that
Xr =

∑r
j=1 λjf1

j ◦ · · · ◦ fd
j is the best canonical rank-r approximation [79].

Simply put, for tensors we cannot obtain a beautiful theorem like the Eckart-
Young theorem even if we generalize SVD so as to keep the diagonal property.

4.4 Alternating least-square algorithm

We noted that by throwing away small elements of a core tensor as in
Eq. (4.55) we can approximate a tensor with a smaller multilinear rank.
However, this approximation is not optimal. Let us consider the following
optimization problem:

min
X

∥A − X∥F , (4.58)

where A is the original tensor of order-d and X is an order-d tensor with a
smaller multilinear rank than A. By varying X, we would like to minimize the
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above objective function. As we noted above, Eq. (4.55) is not the optimal
solution of this optimization problem.

We explain it using order-3 tensors. Suppose that A ∈ Rn1×n2×n3 , while
S ∈ Rr1×r2×r3 and Uk ∈ Rnk×rk (k = 1, 2, 3) are initialized randomly. We
define a tensor of a lower multilinear rank X as X = S ×1 U1 ×2 U2 ×3 U3.
We search S, U1, U2, and U3 that minimize the following function:

∥vec(A) − (U3 ⊗ U2 ⊗ U1)vec(S)∥. (4.59)

We can solve this problem using the alternating least-square (ALS) algo-
rithm [80]. The ALS algorithm works by freezing all but one of the unknowns
and minimize the objective function varying the single free tensor. Then we
optimize another tensor fixing the other tensors. This process keeps going
until some convergence criteria is met. The ALS algorithms are widely used
in tensor decomposition. As we will see later, the density-matrix renormal-
ization group is also an ALS algorithm.

Because {Uk} are orthogonal, Theorem 4.3 gives the optimal S as

vec(S) = (UT
3 ⊗ UT

2 ⊗ UT
1 )vec(A). (4.60)

Thus, we only need to search the optimal Uk (k = 1, 2, 3). The square of
the objective function is

∥A − X∥2
F = ∥A∥2

F + ∥X∥F − 2⟨A,X⟩, (4.61)

where ⟨A,X⟩ denotes the innter product of the two tensors, which is defined
as

⟨A,X⟩ := vec(A)T vec(X). (4.62)

We can transform the innter prodct as

⟨A,X⟩ = ⟨A,S ×1 U1 ×2 U2 ×3 U3⟩ (4.63)

= ⟨A ×1 UT
1 ×2 UT

2 ×3 UT
3 , S⟩ (4.64)

= ⟨S, S⟩ (4.65)

= ∥S∥2
F . (4.66)

Because the Frobenius norm is invariant under orthogonal transformations,
we have

∥X∥2
F = ∥S∥2

F . (4.67)
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Therefore, the objective function (4.61) becomes

∥A − X∥2
F = ∥A∥2

F − ∥S∥2
F . (4.68)

Because the first terms is a constant, we need to maximize the norm of
Eq. (4.60). The Frobenius norm of S is

∥S∥F = ∥(UT
3 ⊗ UT

2 ⊗ UT
1 )vec(A)∥F =

⎧
⎪⎨

⎪⎩

∥UT
1 A(1)(U3 ⊗ U2)∥F ,

∥UT
2 A(2)(U3 ⊗ U1)∥F ,

∥UT
3 A(3)(U2 ⊗ U1)∥F .

(4.69)

Here we used the relation (4.23). In the step of optimization of U1, we change
only U1 fixing U2 and U3. We optimize U1 by SVD; if SVD of A(1)(U3 ⊗ U2)
is PΣQ, then the optimal U1 is given by U1 = P (:, 1 : r1), where 1 : r1 means
that we only keep the first r1 columns of P . In the steps of optimization of
U2 and U3, we do similar processes. We repeat SVD until the norm stops
changing. Although it is not guaranteed to converge to the global optimum,
it works in many cases in practice.

4.4.1 Example of ALS: Image compression

As a simple example of lower-rank approximation of tensor, we explain the
compression of a color image. The image of Lena is an order-3 tensor of
size 512 × 512× 3, where each slice corresponds to R, G, and B color scales.
We exploit the fact that every slice is correlated to each other in order to
compress it. Let A ∈ R512×512×3 be the original image and X ∈ Rr×r×3 be the
compressed image. Our goal is to minimize the objective function (4.58); we
used the ALS algorithm to do this. We show in Fig. 4.4 compressed images
for various r with the relative error ∥A − X∥F /∥A∥F . The approximation
error decreases monotonically with respect to r.

4.5 Tensor networks

The HOSVD requires O(rd) memory for large d, and hence is useless. The
approximation with the canonical decomposition often fails because of the
difficulties mentioned above. Therefore, it is a good idea to look for an alter-
native of the canonical decomposition by increasing the number of param-
eters. A natural candidate is the tensor-train decomposition, which is also
called the matrix-product state. The tensor-train format takes storage of
O(d) to represent order-d tensors; its implementation is also simple. As a fa-
mous algorithm of tensor-train decomposition, we explain the density-matrix

67



4.5. TENSOR NETWORKS
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Figure 4.4: Image compression by the ALS algorithm. The top images are
the compressed ones with X ∈ Rr×r×3 (r = 16, 64, 256, respectively). The
bottom figure is the relative error of the approximation.
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renormalization group. The diagrammatic representation of the decomposi-
tion motivates us to consider more complicated structures of networks. For
a detailed review of the tensor networks, see Refs. [81, 22, 21], for example.

4.5.1 Tensor-train decomposition

Let us try to approximate a tensor with a product of matrices.

Definition 4.6 (Tensor-train decomposition) Let A be an order-d ten-
sor. We refer to the following decomposition by a product of d matrices as a
tensor-train decomposition (TT decomposition):

A(i1, · · · , id) = G1(i1) · · ·Gd(id), (4.70)

where Gk(ik) is an rk−1 × rk matrix and the boundary conditions are r0 =
rd = 1. We call Gk the core matrix and rk the TT-rank.

Clearly, the TT decomposition is a generalization of the canonical decompo-
sition with a larger number of parameters. If a tensor is decomposed by a
canonical decomposition with canonical rank r, then we can represent it with
a TT format with a TT-rank r. Finding the TT-rank is easy in contrast to
the canonical rank according to the following theorem.

Theorem 4.5 Let Ak be the unfolding of an order-d tensor A:

Ak(i1 · · · ik, ik+1 · · · id) = A(i). (4.71)

If rankAk = rk, then there exists a TT decomposition with a TT-rank not
higher than rk.

See Ref. [81] for a proof. Furthermore, we can represent any tensor with TT
decomposition exactly with the repeated use of SVD. This fact is, however,
not very useful in practice because this procedure requires an exponential
number of parameters with respect to d. In some cases, we can guarantee that
we can represent a tensor with small TT-ranks from physical argument (e.g.
entanglement entropy) [22] or from direct construction of TT decomposition,
but in general we do not know whether there is a low-rank approximation or
not until carrying out computation. Therefore, the more practical approach
is that we continue calculation hypothesizing that a tensor has a low-rank
TT approximation. After we obtain a solution, we check the validity of the
approximation.

The TT decomposition does not become difficult for high dimensionality;
its storage is linear in d. Furthermore, if vectors and matrices are prepared

69



4.5. TENSOR NETWORKS

(a) (b)

(c)

Figure 4.5: (a) TT format of the vector x. (b) TT format of the matrix H.
(c) Maximization of the Rayleigh quotient (Eq. (4.72)).

in TT format, we can do many basic operations of linear algebra with the
complexity linear in d, for example, addition of vectors, matrix-by-vector
multiplication, calculation of the Frobenius norm, matrix tranposition, and
trace of matrix. As we will see below, we can also calculate extreme eigen-
values of the TT matrix efficiently.

4.5.2 The density-matrix renormalization group

The density-matrix renormalization group is the minimization of the Rayleigh
quotient with the ALS algorithm. The Rayleigh quotient is defined by

xT Hx

xT x
, (4.72)

where H is the Hermitian matrix. It was first formulated using the density
matrix [82, 83], but is also possible with the TT format [84]. Here we assume
that both x and H are in the TT format (Fig. 4.5 (a) and (b)). Minimization
of Eq. (4.72) is equivalent to extremizing

xT Hx − λxT x, (4.73)

where λ is the Lagrange multiplier. We show a diagrammatic representation
of this equation in Fig. 4.5 (c). We freeze (d − 1) pieces of cores and change
the (k − 1)th core tensor so as to minimize Eq. (4.73) in the kth step. The
derivative of (4.73) with respect to the kth core tensor is indicated in a
diagram (Fig. 4.6 (a)). Except for the kth core tensor, the values of the
tensors are known in this step. Using the definition of H̃ and N in Fig. 4.6
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(a)

(b)

Figure 4.6: (a) Stationary condition of the objective function in the DMRG.
(b) The definition of H̃ and N in Eq. (4.74).

(b) and (c), we can write down the condition of the stationary point as the
following generalized eigenvalue problem:

H̃v = λNv, (4.74)

where v is the vectorization of the kth core, v = vec(Gk). By applying local
orthogonal transformations to x we can change N to the identity matrix, and
thus we can reduce the generalized eigenvalue problem (4.74) to the standard
eigenvalue problem H̃v = λv. We sweep from left to right and from right
to left several times until a convergence criteria is met, thereby obtaining
the lowest eigenvalue of H and the associated eigenvector. As we mentioned
in Sec. 4.4, ALS algorithms including the present one do not guarantee the
global minimum. We can obtain not only the lowest eigenvalues but also a
few extreme eigenvalues by minimizing the block Rayleigh quotient in the
same way [85].

4.5.3 Tensor network of lattice structure

In Sec. 4.5, we have reviewed the TT format, which is a one-dimensional
structure with the open boundary condition. We can generalize networks
to arbitrary graph structures so as to allow periodic boundary condition,
an infinite chain, a lattice structure, and so on (Fig. 4.7). It has been ap-
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(a) (b)

(c) (d)

Figure 4.7: Zoo of tensor networks. (a) One-dimensional structure with the
open boundary condition. (b) One-dimensional structure with the periodic
boundary condition. (c) Infinite one-dimensional structure. (d) Square lat-
tice representing a scalar.

plied to various problems of many-body physics [86, 21, 23], including cal-
culation of partition functions of classical spin systems [28], calculation of
ground-state energy of quantum spin systems [87], time evolution of quan-
tum systems [88, 89, 37], and stochastic processes [35, 36]. Physical intuition
of correlation and entanglement properties have motivated physicists to de-
velop many approximate schemes. For example, we can represent a partition
function of two-dimensional classical spin models on square lattices using a
diagram of Fig. 4.7 (d) at any temperatures [28]. This stems from the fact
that the two-dimensional network can represent polynominally decaying cor-
relations [21]. On the other hand, any two-point function represented by the
tensor-train format (Fig. 4.7 (a)) decays exponentially [22]. Thus, we expect
that a two-dimensional classical system at the criticality is well described
by a two-dimensional network. Indeed, it has been reported that tensor
networks of lattice structures produce quite accurate results for classical sys-
tems [28, 31, 29, 30, 90]. As another big advantage of the tensor networks
other than the tensor-train format is that they can represent an infinite sys-
tem as long as the system is translational invariant [91, 92, 45, 46, 93]. This
scheme is suitable especially for system with long-range correlations.
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Chapter 5

Nonequilibrium-relaxation
method with tensor networks

The content of this chapter is based on Ref. [94]. This chapter is organized
as follows. In Sec. 5.1, we explain notations and the model that we use as
an example of our algorithm. We consider the Glauber dynamics [39] in
discrete time throughout this chapter. We borrow notations from quantum
mechanics, expressing the probability distribution as a ket and the transition
probability as an operator. In Sec. 5.2, we explain how to construct a tensor-
network operator for the transition probability, using a higher-order singular-
value decomposition. We calculate the relaxation of the magnetization from
the all-spin-up state to the equilibrium with various bond dimensions and
compare the results with an analytic result. In Sec. 5.3, we analyze a system
at the critical point and estimate the dynamical critical exponent z using the
nonequilibrium-relaxation method.

5.1 Model and notation

Throughout this chapter, we focus on kinetic Ising models, whose defini-
tion we give in this section; we can easily generalize our algorithm to any
sublattice-update dynamics with nearest-neighbor interactions on a bipartite
graph. We first define the update rule of spins and next explain how to de-
scribe a Markov process, borrowing the notation of quantum mechanics and
using diagrams of tensor networks.

Unlike continuous time evolution, we do not need to perform the Suzuki-
Trotter decomposition for the time evolution; we instead construct an oper-
ator of time evolution using the higher-order singular-value decomposition.
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5.1.1 Kinetic Ising model

The Glauber dynamics [39] is a kind of kinetic Ising model whose transition
rule is a heat-bath type. We consider the Glauber dynamics in discrete time
although the original Glauber dynamics is in continuous time. The Glauber
dynamics in a computer simulation is usually the one in discrete time because
such dynamics is simulated by Monte Carlo methods in many cases. Our task
is to implement heat-bath algorithms using tensor networks.

We explain the Glauber dynamics taking the one-dimensional case as
an example; generalizing it to higher dimensions is straightforward. Let us
consider a one-dimensional spin chain of length 2N whose Hamiltonian is
given by

H = −
∑

i=1,··· ,2N

σiσi+1. (5.1)

We use periodic boundary conditions throughout this chapter.
We update a single spin with the following transition probability of the

heat-bath-type :

w(σi → σ′
i) =

eβσ′
i(σi−1+σi+1)

∑
σ′′

i =±1 eβσ′′
i (σi−1+σi+1)

. (5.2)

Here, σ denotes a spin variable, which takes the values ±1, i is the spin that
we try to update, and σi and σ′

i are the values of the spin i at the previous
and new time steps, respectively. We adopt the two-sublattice multi-spin-flip
dynamics, in which we divide the whole system into two sublattices and flip
all the spins on each sublattice simultaneously. In the odd time steps, the
transition probability of the whole system is given as follows:

w(σ1, · · · ,σ2N ; σ′
1, · · · ,σ′

2N)

=
∏

i=1,3,··· ,2N−1

eβσ′
i(σi−1+σi+1)

∑
σ′′

i =±1 eβσ′′
i (σi−1+σi+1)

∏

i=2,4,··· ,2N

δσi,σ′
i
, (5.3)

where δij is Kronecker’s delta. The above transition probability means that
spins at even sites are frozen and act as a heat bath to odd spins during the
time evolution. This is a sufficient condition for relaxation to the equilibrium.
In the even time steps, roles of spins at odd and even sites are exchanged.
The transition probability becomes

w(σ1, · · · ,σ2N ; σ′
1, · · · ,σ′

2N)

=
∏

i=2,4,··· ,2N

eβσ′
i(σi−1+σi+1)

∑
σ′′

i =±1 eβσ′′
i (σi−1+σi+1)

∏

i=1,3,··· ,2N−1

δσi,σ′
i
. (5.4)
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We obtain the probability distribution by applying the transition operators
(5.3) and (5.4) alternatively.

5.1.2 Diagramattic representation of the Markov chain

Consider a spin chain of length M (M ∈ N) and denote the spin variables
as σ = (σ1, · · · ,σM). We express the probability distribution P (σ) of a spin
configuration borrowing the notation of quantum mechanics:

P (σ) = ⟨σ|P ⟩. (5.5)

We now describe the ket of the probability distribution using a matrix-
product state [22]:

|P ⟩ =
∑

σ

Tr [A1(σ1) · · ·AM(σM)] |σ1 · · · σM⟩, (5.6)

where Ai(σi) represents a matrix state at site i. For example, consider the
fully magnetized state, in which all spins point up. We can represent it as a
product of matrices of 1 × 1:

Ai(+1) = 1, Ai(−1) = 0 (i = 1, · · · ,M). (5.7)

For another instance, let us consider a fully magnetized state whose spins
are all up or down with the same probability. In this case, the state is more
complex than the previous example, and we cannot express it as a product
of 1 × 1 matrices; we need 2 × 2 matrices to express the state as a matrix
product:

Ai(+1) = 2−1/M

(
1 0
0 0

)
, Ai(−1) = 2−1/M

(
0 0
0 1

)
(i = 1, · · · ,M).

(5.8)

Generally speaking, the more complex a state becomes, the larger matrices we
need to express it as a matrix-product state. The dimensionality of matrices
to express a state is called the bond dimension of a matrix-product state;
the bond dimension of the first example is thus one and that of the second
example is two. We can represent this matrix-product state as a diagram in
Fig. 5.1 (a).

Next, consider the transition probability W (σ → σ′) from a configuration
σ to a new configuration σ′; it is an order-2M tensor, which we can represent
as a matrix-product operator:

Ŵ =
∑

σ,σ′

|σ′⟩⟨σ′|Ŵ |σ⟩⟨σ| :=
∑

σ,σ′

W (σ → σ′)|σ′⟩⟨σ|. (5.9)
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(a) (b)

(c)

Figure 5.1: Diagrams in the tensor-network algorithm for a one-dimensional
system. (a) A matrix-product-state representation of the probability dis-
tribution. (b) A matrix-product-operator representation of the transition
probability. The squares and rhombuses indicate Y and X tensors defined
in Eqs. (5.14) and (5.13), respectively. (c) A diagrammatic representation of
the time evolution (5.11).
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(a) (b)

(c)

Figure 5.2: Diagrams in the tensor-network algorithm for a two-dimensional
system. (a) A tensor-network-state representation of the probability distri-
bution. (b) A tensor-network-operator representation of the transition prob-
ability. (c) Time evolution in a single time step, which updates half of the
spins (Eq. (5.10)).

Figure 5.1 (b) is a diagrammatic representation of this matrix-product op-
erator. Combining it with the matrix-product-state representation of the
probability distribution, we can represent the time evolution of a probability
distribution in the form

|P (t + 1)⟩ = Ŵ |P (t)⟩, (5.10)

which is followed by

|P (t)⟩ = Ŵ t|P (0)⟩. (5.11)

The corresponding diagram is Fig. 5.1 (c).

In a two-dimensional system, the probability distribution and the tran-
sition probability become a tensor-network state and a tensor-network oper-
ator, respectively (Fig. 5.2). We can represent any transition probabilities
with tensor-network operators in principle. However, writing down its form
is not a trivial problem in practice and requires ingenuity. For the two-
sublattice multi-spin-flip dynamics, we can write down the tensor-network
operator explicitly as we will explain in the following two sections.
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S

U

V V

Figure 5.3: A diagrammatic representation of the higher-order singular-value
decomposition (HOSVD) of a local transition probability Eq. (5.12).

5.2 One-dimensional kinetic Ising model

We numerically analyze the one-dimensional kinetic Ising model in this sec-
tion. The update rule is the one explained in Sec. 5.1.1. We prepare all the
spins to be σi = 1 at the initial time and observe the relaxation to equi-
librium. N. Ito et al. derived an asymptotic form of the relaxation of the
magnetization analytically [42, 43]. We calculate it numerically and compare
the result with their asymptotic form.

5.2.1 Transition matrix as matrix-product operator

We use the transition probabilities given by the order-4N tensors (5.3) and
(5.4). We first decompose the local transition probability by using the higher-
order singular-value decomposition [44, 73] as

w(σi → σ′
i) =

e1/T×σ′
i(σi−1+σi+1)

∑
σ′′

i =±1 e1/T×σ′′
i (σi−1+σi+1)

=
∑

α,β,γ=1,2

SαβγUσ′
iα

Vσi−1βVσi+1γ,

(5.12)

where S is an order-3 tensor called the core tensor, while U and V are 2× 2
orthogonal matrices and 1/T is the inverse temperature. We perform this
decomposition numerically. We can represent this equation using a diagram
in Fig. 5.3.

We next define the following order-4 tensors:

X(σ′
jσj)pq := VσjpVσjqδσ′

jσj , (5.13)

Y (σ′
i)βγ = Y (σ′

iσi)βγ :=
∑

α=1,2

SαβγUσ′
iα

. (5.14)

We let Y have an index σi because we need Y to have both indices σi and
σ′

i in the definition of a matrix-product operator below. We obtain matrix-
product-operator representations of the whole system by lining up X and Y
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(Fig. 5.1 (b)). For instance, in the odd time steps,

W (σ → σ′) = Tr[Y (σ′
1σ1)X(σ′

2σ2)Y (σ′
3σ3)X(σ′

4σ4) · · · ]. (5.15)

In the even time steps, the order of X and Y in the trace is interchanged.
We thus represent the time evolution by piling up the two matrix-product
operators alternatively to the initial matrix-product state (Fig. 5.1 (c)). We
set the initial state to be the all-spin-up state, which is a matrix-product state
of bond dimension D = 1. The bond dimensionality of the matrix-product
operator is two.

We calculate |P (t + 1)⟩ from |P (t)⟩ using Eq. (5.10). We can represent
|P (t+1)⟩ as a matrix-product state since |P (t)⟩ is also a matrix-product state
and Ŵ is a matrix-product operator. Our initial state |P (0)⟩ is the matrix-
product state of Eq. (5.7). We can represent the procedure of time evolution
graphically. Suppose that Fig. 5.1 (a) is the state at t = 0. Applying
the matrix-product operator of Fig. 5.1 (b), we obtain the state at t = 1.
Repeating the procedure, we can temporally evolve the stochastic process.
For example, Fig. 5.1 (c) is the state at t = 4. In numerical computation,
we contract vertical bonds every time we apply a matrix-product operator
to a state. Therefore, states are always expressed as matrix-product states.
The shape of the state is the same as in Fig. 5.1 (a) but all tensors are not
the same for t ≥ 1 because the applied matrix-product operators consist of
the two kinds of matrices (5.13) and (5.14). Each time we apply a matrix-
product operator to a state, the bond dimensionality of the state doubles, as
the bond dimensionality of the matrix-product operator is two. We would
be able to express the state at t exactly as a product of matrices of size 2t.
However, as the amount of computer memory is limited, of course, we need to
perform approximation; we truncate the bond dimensions at a dimensionality
D by using the singular-value decompositions and keep the D largest singular
values. When the dimensionality of every connected bond is less than D, we
say that the tensor network has bond dimensions D.

We explain this procedure in detail here, following Ref. [22]. Let us
consider approximating the bond connected by the two tensors Ai and Ai+1

in Eq. (5.6). The product before approximation is

D′∑

j=1

Ai(σs)i,jAi+1(σt)j,k. (5.16)

The dimensions of the indices σs and σt are two, and we assume that the
dimensions of the indices i, j, and k are D′ (D′ > D). Our task is to ap-
proximate the contraction (5.16), which is the summation of D′ terms, by a
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summation of D terms. First, we rewrite the tensors with three indices to
tensors with two indices (matrices):

Ai(σs)i,j = A
′

i(iσs, j), Ai+1(σt)j,k = A
′

i+1(j, kσt). (5.17)

Then the contraction (5.16) becomes a multiplication of the new two matri-
ces: A

′
iA

′
i+1.

We now approximate the product of two order-D′ matrices by a product
of two order-D matrices as follows. We first decompose A

′
iA

′
i+1 by using the

singular-value decomposition:

A
′

iA
′

i+1 = UΛV †. (5.18)

Here Λ is a diagonal matrix of size D′ and we assume that the eigenvalues are
sorted in the non-ascending order. We keep only the D largest eigenvalues
of Λ and omit the other small eigenvalues:

UΛV † ≈ Ũ Λ̃Ṽ †, (5.19)

where Λ̃ is the diagonal matrix of size D. We left out the last D′−D columns
of U and V , and defined the two new matrices Ũ and Ṽ . We now approximate
A

′
i and A

′
i+1 as follows:

A
′

i ≈ Ã
′

i := Ũ
√

Λ̃, (5.20)

A
′

i+1 ≈ Ã
′

i+1 :=
√

Λ̃Ṽ †. (5.21)

We reshape the matrices Ã
′
i(iσs, j) and Ã

′
i+1(j, kσt) to tensors with three

indices again:

Ã
′

i(iσs, j) = Ã
′

i(σs)i,j , (5.22)

Ã
′

i+1(j, kσt) = Ã
′

i+1(σt)j,k, (5.23)

where i and k runs over 1, · · · , D′, j runs over 1, · · · , D, and each of σs and
σt takes ±1. The contraction of the D′ terms is finally approximated by the
contraction of the D terms:

D′∑

j=1

Ai(σs)i,jAi+1(σt)j,k ≈
D∑

j=1

Ai(σs)i,jAi+1(σt)j,k. (5.24)

The computational complexity of the time evolution is of O(D3) because the
singular-value decomposition takes CPU time of O(mn2) for an m× n (m ≥
n) matrix.
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We finally calculate the average magnetization at the odd sites and that
at the even sites separately. Let us consider calculating the average of
σ1 as a representative of the odd spins. Suppose that the state at time
t is |P (t)⟩ =

∑
σ Tr[A(σ1)B(σ2)A(σ3)B(σ4) · · · ]|σ⟩. We first compute the

marginal distribution of |σ1⟩:

P (σ1; t) :=
∑

σ2,··· ,σ2N

Tr[A(σ1)B(σ2)A(σ3)B(σ4) · · · ]. (5.25)

The average magnetization of σ1 is then given by

⟨σ1⟩ =
∑

σ1=±1

σ1P (σ1; t)

= Tr[(A(+1) − A(−1))
∑

σ2

B(σ2)
∑

σ3

A(σ3)
∑

σ4

B(σ4) · · · ]. (5.26)

We can represent this equation as the diagram shown in Fig. 5.4. Each open
circle denotes

∑
σ=±1 A(σ), each solid circle denotes

∑
σ=±1 B(σ), and the

solid rhombus denotes A(+1) − A(−1).
At each time step, we repeat a sufficient number of renormalization until

the result converges. We explain the procedure of renormalization in detail.
In the first step, we define the two matrices

C = (A(+1) − A(−1))
∑

σ=±1

B(σ), (5.27)

E =
∑

σa=±1

A(σa)
∑

σb=±1

B(σb). (5.28)

In the second step, namely the renormalization step, we update C and E as

C ← CE, (5.29)

E ← EE. (5.30)

Here, the arrow denotes a substitution and CE and EE are matrix-by-matrix
multiplications. Every time these substitutions are done, the system size is
halved and the targeted matrix C changes taking the effect of its environment
matrix E into consideration. We call this step the renormalization step
because this procedure is similar to the renormalization.

The sum of probabilities
∑
σ Tr[A(σ1)B(σ2)A(σ3)B(σ4) · · · ] deviates from

unity as time evolves because of truncations by singular-value decomposi-
tions. To preserve the normalization of the probability, we divide the mag-
netization by the norm of the probability distribution at time t as in Fig. 5.4.

81



5.3. TWO-DIMENSIONAL KINETIC ISING MODEL

Figure 5.4: A diagrammatic representation of the average of the spins at odd
sites. The denominator is the norm of probability. The right figure shows
the definition of each symbol.

The average magnetization at odd sites is

⟨σodd⟩ =
Tr C

Tr E
. (5.31)

We repeat this renormalization procedure until the average magnetization
⟨σodd⟩ converges.

The calculation of the magnetization at even sites is similar. The magne-
tization of the whole system is the average of these two averaged magnetiza-
tions. The evaluation of the diagram in Fig. 5.4 takes CPU time of O(D3).
The total computational complexity of our algorithm is thus of O(D3).

We show the results of the calculation in Fig. 5.5. The broken line in
the figure is the analytic asymptotic form [42, 43]; the magnetization decays
exponentially with the correlation time

ξt =
1

log(coth(2/T ))
. (5.32)

As the bond dimension D increases, the range of time for which we can cal-
culate the magnetization precisely also expands. We were able to reproduce
the exponential decay up to around t ≈ 100 in one dimension with D = 1024.

We update half of the tensors at each step of time. An advantage of our
algorithm is that we can update half of the system at the same time, making
use of the translational variance of the system. We just need to update a
single tensor of a sublattice because the tensors of the same sublattice are all
the same. In Monte Carlo simulation, on the other hand, flipping a half of
the system takes the CPU time that increases linearly in the system size.

5.3 Two-dimensional kinetic Ising model

We numerically analyze the two-dimensional kinetic Ising model in this sec-
tion. In particular, by using the nonequilibrium-relaxation method, we esti-
mate the dynamical critical exponent z of the two-dimensional Ising model.
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Figure 5.5: The relaxation of the magnetization of the one-dimensional Ising
model. The horizontal axis indicates the number of the time steps, while
the vertical axis indicates the magnetization. We changed the maximum
bond dimension D. The broken line is the analytic asymptotic form [25]; the
magnetization decays exponentially with the correlation time ξt defined in
Eq. (5.32).
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5.3.1 Transition operator as tensor-network operator

The update rule of a single spin in the one-dimensional Glauber dynamics,
Eq. (5.2), changes in the two-dimensional case to

w(σi → σ′
i) =

e1/T×σ′
i(σL+σR+σD+σU )

∑
σ′′

i =±1 e1/T×σ′′
i (σL+σR+σD+σU )

(5.33)

=
∑

α,β,γ,δ,ϵ=1,2

SαβγδϵUσ′
iα

VσLβVσRγVσDδVσU ϵ, (5.34)

where the subscripts L,R,U, and D represent spins to the left, right, up,
and down of the spin σi, respectively. As in the one-dimensional case, we
perform the higher-order singular-value decomposition (HOSVD) and define
local transition operators:

X(σ′
jσj)pqrs := VσjpVσjqVσjrVσjsδσ′

j ,σj
, (5.35)

Y (σ′
i)βγδϵ := Y (σ′

iσi)βγδϵ =
∑

α=1,2

SαβγδϵUσ′
iα

. (5.36)

A diagrammatic representation of the transition operator of the whole system
consists of the local transition operators X and Y . The bond dimensionality
of the transition operator is two; see Fig. 5.2 (b). We calculate the time
evolution by stacking up the tensor-network operators for each of odd and
even time steps alternatively (Fig. 5.2 (c)).

We calculate the time evolution of a state by contracting the state and
tensor-network operators from the bottom layers. The state at t = 0 is
shown in Fig. 5.2 (a). Applying the tensor-network operator of Fig. 5.2 (b)
to this state, we can evolve the dynamics by one step (Fig. 5.2 (c)). We
then contract vertical bonds of Fig. 5.2 (c) and obtain the tensor-network
state at t = 1. The shape of the tensor network state at t = 1 is the same
as Fig. 5.2 (a), but all tensors are not the same. The lattice consists of
two sublattices; tensors of each sublattice share the common tensor. By
repeating the same procedure, we can calculate the states of t ≥ 1, |P (t)⟩.
During the calculation of the time evolution, we truncate bond indices by
singular-value decompositions if the bond dimensionality exceeds D. We can
do these singular-value decompositions in the time of O(D5) with a little
ingenuity [95].

We finally compute the magnetization by repeating renormalization of
the tensor network that contains an “impurity tensor” (the solid rhombus in
Fig. 5.4) until convergence as in the one-dimensional case. We also divide the
magnetization, which corresponds to the numerator of Fig. 5.4, by the norm
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of |P (t)⟩ (the denominator of the same figure) as in the one-dimensional case.
We use the algorithm by C. Wang et al. [95], in which one truncates bond di-
mensions by singular-value decompositions during renormalization, whereas
the other parts of the procedure are the same as the tensor renormalization
group with the higher-order singular-value decomposition [30]. The calcula-
tion of the average magnetization by tensor renormalization group takes the
time of O(D8) [95] and the total computational complexity of our algorithm
in two dimensions is also of O(D8).

5.3.2 Nonequilibrium relaxation

We observe the relaxation from the all-spin-up initial state to the equilibrium
state. The initial state is all-spin-up, which is a two-dimensional tensor-
network state of the bond dimension D = 1. The asymptotic behavior of the
magnetization depends on which phase the system is in. In our case, since
we do not apply a magnetic field, the asymptotic decay becomes as follows:

⟨σ⟩ =

⎧
⎪⎨

⎪⎩

e−t/ξt T > Tc,

t−λm T = Tc,

meq + ce−t/ξt T < Tc,

(5.37)

where Tc = 2.269... [96], ξt is the relaxation time, meq is the spontaneous
magnetization, c is a constant, and λm is the dynamical critical exponent
that characterizes the power-law decay of the magnetization at the critical
point. It is related with the standard critical exponents as [24, 25]

λm =
β

zν
. (5.38)

In the two-dimensional Ising model, the critical exponents β and ν have
been obtained analytically at 1/8 and 1, respectively, and therefore we can
evaluate z from the decay of the magnetization at the critical point. This
method is called the nonequilibrium-relaxation method [24, 25].

We calculated the relaxation of systems in the high-temperature phase
and at the critical point (Fig. 5.6). In the high-temperature phase, the
magnetization decays exponentially in time with the correlation time ξt, while
at the critical point ξt diverges, and the magnetization shows a power-law
decay. To calculate the critical exponent z precisely, we calculated “local
exponents” and extrapolated the results to the limit of the infinite time [24,
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(a) (b)

Figure 5.6: Relaxation of the magnetization from the all-spin-up state in
the two-dimensional Ising model. The horizontal axis indicates the time
steps and the y-axis indicates the magnetization, while D denotes the bond
dimensionality of tensors. (a) A semi-logarithmic plot for T = 3 > Tc under
no magnetic field. (b) A logarithmic plot at the critical point T = Tc ≈ 2.269.

25]. We define the local exponents by

λm(t) := −d log m(t)

d log t
≈ t

∆t

(
m(t − ∆t)

m(t)
− 1

)
, (5.39)

z(t) :=
β

νλm(t)
. (5.40)

We choose ∆t = 1 and fit the series z(t) to

z(t) = a/t + z, (5.41)

where a is a constant and z is the final estimate of the critical exponent when
the numbers of times steps are extrapolated to infinity. We did the extrap-
olation by the Bayesian linear regression [97] (Fig. 5.7). The intersection of
the line of the best fit and the y-axis is the point estimate of z. We used the
75 % credible interval at the origin of the x-axis as the uncertainty of our
estimate of z.

We calculated z for various bond dimensions ranging from D = 2 to D =
20 and carried out the analysis described as above. In the extrapolation of the
local exponent z(t), we did not use the first two data points corresponding
to t = 0, 1. We used five data points (t = 2, · · · , 6) for D < 17 and six
data points (t = 2, · · · , 7) for D ≥ 17. As Fig. 5.8 shows, the estimates
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Figure 5.7: Extrapolation of the local exponent z(t) to t → ∞ according to
Eq. (5.41). We performed the Bayesian linear regression. The line of the
best fit is the maximum a posteriori solution and the shaded area is the 75
% credible interval. The intersection of the line of the best fit and the y-axis
is the final estimate of the critical exponent z. The data is for the bond
dimension of tensors D = 20.

of z converges as D increases. We estimated the critical exponents z to be
2.16(5) using data of D = 20. The nonequilibrium-relaxation method with
a Monte Carlo method [24] estimated z to be z = 2.165(10) and a series
expansion [98] estimated z to be z = 2.183(5). Our result is consistent with
the values of these studies.
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Figure 5.8: Estimates of the dynamical critical exponent z with various bond
dimensions D. The error bars indicate the 75 % credible intervals of the
predictive distribution at 1/t = 0 in Eq. (5.41), i.e., the shaded area at the
origin of the x-axis in Fig. 5.7.
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Chapter 6

Summary

We summarize the results of Chaps. 3 and 5.
In Chap. 3, we studied the scaling properties of the self-avoiding walk

on the (u, v)-flower. By obtaining the connective constant µ and the critical
exponent ν, we studied (i) how the number of paths with a fixed length
and a fixed starting point increases and (ii) how the mean shortest distance
between the two end points grows as the path length increases.

In the Euclidian space, it is widely believed that the critical exponents of
the self-avoiding walk depends only on the Euclidian dimension. In contrast,
for the generalized problem on fractals, it has been conjectured since the
1980s [6, 9, 10] that critical exponents of the self-avoiding walk are not deter-
mined only by the similarity dimension [10]. Critical exponents are difficult to
obtain exactly except for a few cases in the Euclidian spaces [7, 6] and hence
the direct verification of the conjecture had never been done. Adaptation
of the (u, v)-flowers, on which we can easily carry out the renormalization-
group analysis, enabled us to confirm this conjecture directly. We expect
that fractal complex networks are useful in understanding scaling of other
stochastic models in fractals as well.

In contrast to scaling theories for Markovian processes on complex net-
works [58, 99, 100, 101], those for non-Markovian processes, such as the
self-avoiding walk, are poorly understood. The present methodology of the
renormalization group, however, is also applicable to non-Markovian dynam-
ics on graphs as well as Markovian processes. We believe that this direction
of research will deepen our understanding of non-Markovian dynamics on
complex networks.

It will be interesting to consider the extension of Flory’s approximation
of ν to fractal graphs. Flory’s approximation is to approximate ν by the
Euclidian dimension: ν = 3/(2 + d). Extension of this formula to fractals
embedded in the Euclidian space has been studied [6, 9, 10]. It is impos-
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sible to apply the renormalization-group analysis used here to real complex
networks because graphs for which the exact renormalization can be applied
are limited; this is the fundamental limit of the present renormalization-
group analysis. We, however, expect that the scaling properties of paths on
networks are determined only by a few parameters including not only the
similarity dimension but also other parameters. Our exact results will serve
as a basic model to develop a scaling theory which is generally applicable.
For example, we found that the speed of the increase of the mean shortest
distance between end-to-end points is related with the critical exponent of
the zero-component ferromagnet on the (u, v)-flower as in Fig. (3.9). If ν can
be expressed as a function of a few parameters, we can predict the number of
the s-t paths and the mean shortest end-to-end distance. It is also of interest
to study whether the critical exponent ν of the N -vector model in the limit
N → 0 is the same on other fractal networks as that of the displacement

exponent ν, which is defined by d(s)
k ≈ kν .

In Chap. 5, we have proposed an algorithm to compute sublattice-flip
dynamics on an infinite bipartite graph. We split local transition probabili-
ties into tensors that depend only on a single spin variable by a higher-order
singular-value decomposition and constructed a tensor-network-operator rep-
resentation of the transition probability of the whole system. We can apply
this approach to any sublattice-update dynamics with nearest-neighbor in-
teractions on a bipartite graph. The order of tensors is determined by the
degree of a graph (lattice).

For example, on a honeycomb lattice, the order of tensor is four, because
a node is surrounded by three nodes with an additional leg representing the
spin index. We can calculate the time evolution of magnetization of a hon-
eycomb lattice Ising model in the following way. We first compute the time
evolution of probability distribution by stacking up tensor network operators
as in Fig. 5.2. Similarly to the case of a square lattice in Sec. 5.3.1, the bond
dimension doubles at each step, and hence we need to cut off the bond di-
mensionality at D. This procedure takes O(D4) [95]. Next, we calculate the
magnetization by contracting the whole lattice to a single point. This con-
traction can be done, for instance, by tensor renormalization group [28] with
computational time O(D6). Therefore, the total computational complexity
for a honeycomb lattice is O(D6).

We treat the infinite system utilizing translational invariance and ob-
tained the magnetization in the thermodynamic limit directly without system-
size extrapolation. Instead of extrapolating the system size to infinity, we did
the bond-dimension extrapolation. We are also able to apply our algorithm
to an open boundary system in principle. The system, however, becomes
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inhomogeneous, and hence we will need to keep all the tensors that lie on all
the sites with the computational costs depending on the system size. There-
fore, studying dynamics in the thermodynamics limit directly is only possible
when we adopt the periodic boundary condition.

Our algorithm goes together well with the nonequilibrium-relaxation method.
In the nonequilibrium-relaxation method, one prepares a large system and
simulate it for a rather small number of time steps [25]. In calculation of
the time evolution with tensor networks, we cannot compute dynamics for
an arbitrary long time because an error due to singular-value decompositions
accumulates during the time evolution. We can, however, update an infinite
number of spins at once utilizing translational invariance. We calculated the
time evolution of the infinite system for a short period indeed with good
precision and were able to determine the critical exponent z.

We estimated only z among critical exponents because the other expo-
nents have been analytically known. The nonequilibrium-relaxation method,
however, can calculate the other critical exponents as well as the critical
temperature, and thus we can use it even for systems for which analytical
calculation is intractable. The nonequilibrium-relaxation method combined
with our algorithm is a new direction of study of critical phenomena with
tensor networks.

A shortcoming of our algorithm at present is that we can utilize it for a
limited range of time. This problem is serious in two dimensions; we obtained
the results only for t < 10 because it became difficult to increase bond dimen-
sions further as the dimensionality increased. The accuracy of our estimate
of the critical exponent z is worse than the estimate of the nonequilibrium-
relaxation method with a Monte Carlo simulation [24] because we used a
smaller number of time steps. In order to compute longer and to improve
the accuracy of the estimate, we need to develop a better scheme to truncate
bond dimensions during the time evolution.

In summary, we proposed both exact and approximate theories of renor-
malization group that becomes possible only after treating systems as net-
works. Viewing systems as networks enabled us to propose novel application
of renormalization group. We showed two examples of such new applications
in this thesis. In the first example, we revealed the compatibility of renor-
malization group and network structures. Because renormalization group
repeatedly changes scales of systems, it is natural to consider networks with
repeated structure, that is, fractal networks. The combination of renormal-
ization group and the fractal networks led us to exact solutions in arbitrary
fractal dimension because we were able to sum up degrees of freedom exactly
during the scale changes. In the second half of this thesis, we emphasized
that lattices are also networks. The renormalization-group study of lattices
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is much more difficult than that of fractal networks because it becomes im-
possible to sum up degrees of freedom exactly during the scale changes. In
such cases, viewing lattices as networks was beneficial. We were able to
consider not only finite lattice systems but also infinite lattice systems by
constructing networks consisting of many tensors. We summed up degrees of
freedom approximately during renormalization. This approximation method
is basically the same as in equillibrium systems, non-equillibrium systems,
finite systems, and infinite systems. This systematic treatment stems from
the network structure of the systems. They are all networks.
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Appendix A

Additional results of numerical
simulation

We described all important results in Chap. 3, but we here present several
additional results.

A.1 The number of paths

A shortcoming of an enumeration algorithm is that long paths are difficult
to sample, though what we need is a quantity for large k in Eq. (3.7).

As we noted, the number of paths increases as (3.62) when k is small,
and then it starts decreasing due to a finite-size effect (Fig. 3.7). We verified
this for various generations of the (2, 3)-flower (Fig. A.1).

A.2 The exponent of displacement ν ′ by the
depth-limited search

Longer paths should be obtained in order to determine the exponent ν ′ ac-
curately. To estimate ν ′, therefore, the biased sampling method was more
suitable than the depth-limited search. We also estimated ν ′ by the enumer-
ation algorithm for cross-check (Fig. A.2). The systematic error discussed
later is not taken into consideration.
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A.2. THE EXPONENT OF DISPLACEMENT ν ′ BY THE
DEPTH-LIMITED SEARCH

Figure A.1: The number of paths of length k for various generations of the
(2, 3)-flower. The number of paths increases as in Eq. (3.62) when k is small,
and then it starts decreasing due to a finite-size effect.
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APPENDIX A. ADDITIONAL RESULTS OF NUMERICAL
SIMULATION
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Figure A.2: The critical exponent ν calculated by the renormalization-group
analysis and the exponent of displacement ν ′ estimated by the enumeration
algorithm followed by a curve fitting. The points on the left deviate from the

line y = x because the mean end-to-end shortest distance d(s)
k does not still

reach an asymptotic region.
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Appendix B

Analysis of the Monte-Carlo
simulation

In this appendix, we explain the method used in data analysis of estimation
of the exponent of displacement ν ′ in Fig. 3.9.

The mean shortest distance d(s)
k for various values of u and v computed

by the biased sampling method is accompanied by an error:

(The mean shortest distance from the starting point) = d(s)
k ± σk. (B.1)

Here d(s)
k is the sample mean of the shortest distances d(s)

k over M realizations

and σk is the sample standard deviation of d(s)
k .

Each estimate of ν ′ is accompanied by two kinds of errors: a statistical
error and a systematic error. The statistical error, which is indicated by σk,
comes from fluctuation of random numbers. The systematic error, on the
other hand, is due to insufficient path lengths in our case: for example,

• d(s)
k has not reached the asymptotic region;

• ln d(s)
k ripples around the asymptotic line.

What we need to obtain is the asymptotic behavior of d(s)
k as k → ∞. There-

fore, ν ′ estimated by the fitting (3.66) is not accurate if k is too small.

Furthermore, we found that ln d(s)
k ripples around the asymptotic line as in

Fig. B.1 (a), and the amplitude of oscillation gets smaller as k becomes larger.
In other words, the model (3.66) is not correct in a strict sense, because the

average d(s)
k does not converge to eAk in the limit M → ∞. We define σ′

k as
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the standard deviation of ln d(s)
k :

σ′
k := [ln(d(s)

k + σk) − ln(d(s)
k − σk)]/2. (B.2)

Thus, simply fitting ln k and ln d(s)
k with a weight 1/σ′2

k has two downsides.
First, because the least-square method minimizes the total of residuals, the
fitting is done mainly using the data points of small k, whose oscillation is
large, while the data with large values of k are little taken into consideration.
Second, the error of the estimate of ν ′ is underestimated because the system-
atic error of oscillation is neglected. The problem is that we do not know
the amplitude of oscillation, and hence we resort to an ad hoc prescription
to take the systematic error into consideration.

We obtain the estimates of ν ′ for each (u, v)-flower in the following pro-
cedure:

1. Generate M pieces of paths and compute the sample mean shortest

distance d(s)
k and the sample mean standard deviation of d(s)

k , i.e., σk.

2. Remove the first data of d(s)
k whose sample mean standard deviations

are zero.

3. If there still remains d(s)
k whose sample mean standard deviation is zero,

then set σk to the average of the sample mean standard deviations of
neighboring data points. Compute σ′

k defined by Eq. (B.2).

4. Divide the data points into nb bins of the same width in ln k.

5. Do fitting inside each bin using Eq. (3.66) with a weight 1/σ′2
k and

calculate the root mean square of the residuals of ln d(s)
k . We denote

this root mean square by si. Let the mean of ln k in each bin be ln ki

and that of ln d(s)
k be ln d(s)

ki
.

6. Fit the data ln ki and ln d(s)
ki

(i = 1, · · · , nb) in all bins with a weight
1/s2

i using the model (3.66) (Fig. B.1 (b)). We denote the error of the
estimate of ν ′ as δν ′.

An example of plot before and after the coarse-graining procedure is given in
Fig. B.1. Step 2 is intended to remove the region where the distance increases
linearly. Otherwise s1 would become zero in Step 5. Step 3 is necessary to fit

ln d(s)
k with finite weights in Step 5. Steps 5 and 6 are done to coarse-grain
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Figure B.1: An example of coarse-graining procedure. The data (a) before

and (b) after coarse-graining. We computed ln d(s)
ki

by the biased-sampling
algorithm. The simulation condition was M = 10, 000, n = 4, u = 3, and
v = 5. After the coarse-graining described in the text, we fit representative
points in five bins (nb = 5) to the linear function (3.66).

data so as to assign a larger weight to the data with larger k and to avoid
the underestimation of the error of the estimate of ν ′ by taking account of
the effect of oscillation as a systematic error.

Thus obtained estimates of ν ′ are plotted in Fig. 3.9 when the number of
bins is nb = 5.
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reaction-diffusion model 2
→
A 3a, 2

→
A 0. Phys Rev E, 63(3):036101,

2001.

[18] Z. Nagy, C. Appert, and L. Santen. Relaxation times in the asep model
using a dmrg method. Journal of Statistical Physics, 109(3-4):623–639,
2002.

[19] A. Kemper, A. Schadschneider, and J. Zittartz. Transfer-matrix
density-matrix renormalization group for stochastic models: the
domany-kinzel cellular automaton. Journal of Physics A: Mathematical
and General, 34(19):L279, 2001.

[20] K. Temme and F. Verstraete. Stochastic matrix product states. Phys
Rev Lett, 104(21):210502, 2010.
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